WorldWideScience

Sample records for green vegetation fraction

  1. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Green Vegetation Fraction (GVF) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains weekly Green Vegetation Fraction (GVF) derived from VIIRS. The Green Vegetation Fraction product is updated daily and is used as an input to...

  2. Development of satellite green vegetation fraction time series for use in mesoscale modeling: application to the European heat wave 2006

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2014-01-01

    A method is presented for development of satellite green vegetation fraction (GVF) time series for use in the Weather Research and Forecasting (WRF) model. The GVF data is in the WRF model used to describe the temporal evolution of many land surface parameters, in addition to the evolution of veg...

  3. Attribution of trends in global vegetation greenness from 1982 to 2011

    Science.gov (United States)

    Zhu, Z.; Xu, L.; Bi, J.; Myneni, R.; Knyazikhin, Y.

    2012-12-01

    Time series of remotely sensed vegetation indices data provide evidence of changes in terrestrial vegetation activity over the past decades in the world. However, it is difficult to attribute cause-and-effect to vegetation trends because variations in vegetation productivity are driven by various factors. This study investigated changes in global vegetation productivity first, and then attributed the global natural vegetation with greening trend. Growing season integrated normalized difference vegetation index (GSI NDVI) derived from the new GIMMS NDVI3g dataset (1982-2011was analyzed. A combined time series analysis model, which was developed from simper linear trend model (SLT), autoregressive integrated moving average model (ARIMA) and Vogelsang's t-PST model shows that productivity of all vegetation types except deciduous broadleaf forest predominantly showed increasing trends through the 30-year period. The evolution of changes in productivity in the last decade was also investigated. Area of greening vegetation monotonically increased through the last decade, and both the browning and no change area monotonically decreased. To attribute the predominant increase trend of productivity of global natural vegetation, trends of eight climate time series datasets (three temperature, three precipitation and two radiation datasets) were analyzed. The attribution of trends in global vegetation greenness was summarized as relaxation of climatic constraints, fertilization and other unknown reasons. Result shows that nearly all the productivity increase of global natural vegetation was driven by relaxation of climatic constraints and fertilization, which play equally important role in driving global vegetation greenness.; Area fraction and productivity change fraction of IGBP vegetation land cover classes showing statistically significant (10% level) trend in GSI NDVIt;

  4. Combining Estimation of Green Vegetation Fraction in an Arid Region from Landsat 7 ETM+ Data

    Directory of Open Access Journals (Sweden)

    Kun Jia

    2017-11-01

    Full Text Available Fractional vegetation cover (FVC, or green vegetation fraction, is an important parameter for characterizing conditions of the land surface vegetation, and also a key variable of models for simulating cycles of water, carbon and energy on the land surface. There are several types of FVC estimation models using remote sensing data, and evaluating their performance over a specific region is of great significance. Therefore, this study firstly evaluated three types of FVC estimation models using Landsat 7 ETM+ data in an agriculture region of Heihe River Basin, China, and then proposed a combination strategy from different individual models to improve the FVC estimation accuracy, which employed the multiple linear regression (MLR and Bayesian model average (BMA methods. The validation results indicated that the spectral mixture analysis model with three endmembers (SMA3 achieved the best FVC estimation accuracy (determination coefficient (R2 = 0.902, root mean square error (RMSE = 0.076 among the seven individual models using Landsat 7 ETM+ data. In addition, the MLR and BMA combination methods could both improve FVC estimation accuracy (R2 = 0.913, RMSE = 0.063 and R2 = 0.904, RMSE = 0.069 for MLR and BMA, respectively. Therefore, it could be concluded that both MLR and BMA combination methods integrating FVC estimates from different models using Landsat 7 ETM+ data could effectively weaken the estimation errors of individual models and improve the final FVC estimation accuracy.

  5. Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data

    Directory of Open Access Journals (Sweden)

    Shenghui Fang

    2016-05-01

    Full Text Available This study developed an approach for remote estimation of Vegetation Fraction (VF and Flower Fraction (FF in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. The results showed that the Visible Atmospherically Resistant Index (VARIgreen worked most accurately for estimating VF in flower-free samples with an Root Mean Square Error (RMSE of 3.56%, while the Enhanced Vegetation Index (EVI2 was the best in flower-containing samples with an RMSE of 5.65%. Based on reflectance in green and NIR bands, a technique was developed to identify whether a sample contained flowers and then to choose automatically the appropriate algorithm for its VF estimation. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate FF in oilseed rape. No significant correlation was observed between VI and FF when soil was visible in the sensor’s field of view. Reflectance at 550 nm worked well for FF estimation with coefficient of determination (R2 above 0.6. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with RMSE below 6%.

  6. Heavy metals in green vegetables and soils from vegetable gardens ...

    African Journals Online (AJOL)

    Edible portions of five varieties of green vegetables, namely amaranth, chinese cabbage, cowpea leaves, leafy cabbage and pumpkin leaves, collected from several areas in Dar es Salaam, were analyzed for lead, cadmium, chromium, zinc, nickel and copper. Except for zinc, the levels of heavy metals in the vegetables ...

  7. The Impact of Soil Reflectance on the Quantification of the Green Vegetation Fraction from NDVI

    Science.gov (United States)

    Montandon, L. M.; Small, E. E.

    2008-01-01

    The green vegetation fraction (Fg) is an important climate and hydrologic model parameter. A common method to calculate Fg is to create a simple linear mixing rnodeP between two NDVI endmembers: bare soil NDVI (NDVI(sub o)) and full vegetation NDVI (NDVI(sub infinity)). Usually it is assumed that NDVI(sub o), is close to zero (NDVI(sub o) approx.-0.05) and is generally chosen from the lowest observed NDVI values. However, the mean soil NDVI computed from 2906 samples is much larger (NDVI=0.2) and is highly variable (standard deviation=O. 1). We show that the underestimation of NDVI(sub o) yields overestimations of Fg. The largest errors occur in grassland and shrubland areas. Using parameters for NDVI(sub o) and NDVI(sub infinity) derived from global scenes yields overestimations of Fg ((Delta) Fg*) that are larger than 0.2 for the majority of U.S. land cover types when pixel NDVI values are 0.2NDVI(sub pixel)NDVI values. When using conterminous U.S. scenes to derive NDV(sub o) and NDVI(sub infinity), the overestimation is less (0.10-0.17 for 0.2NDVI(sub pixel)NDVI cycle. We propose using global databases of NDVI(sub o) along with information on historical NDVI(sub pixel) values to compute a statistically most-likely estimate of Fg (Fg*). Using in situ measurements made at the Sevilleta LTER, we show that this approach yields better estimates of Fg than using global invariant NDVI(sub o) values estimated from whole scenes (Figure 2). At the two studied sites, the Fg estimate was adjusted by 52% at the grassland and 86% at the shrubland. More significant advances will require information on spatial distribution of soil reflectance.

  8. Vegetation composition and structure significantly influence green roof performance

    Energy Technology Data Exchange (ETDEWEB)

    Dunnett, N.; Nagase, A.; Booth, R.; Grime, P. [Sheffield Univ., Sheffield (United Kingdom). Dept. of Landscape Architecture

    2005-07-01

    The majority of published literature on green roofs contains little specific information on the contribution of plants to the various functions and properties of green roofs. This paper reviewed previously published material in an attempt to shed light on the role of vegetation composition in green roof systems, with specific reference to hydrology and biodiversity support. Two ongoing experiments at the University of Sheffield were then considered: (1) a comparison of quality and quantity of runoff from different types of vegetation; and (2) a comparison of flowering seasons and biodiversity support of different vegetation. Results of the studies showed that there was no general pattern of variation in runoff that could be related to vegetation complexity or taxonomic composition of the communities. During the winter months, high precipitation quickly saturated the soil and percolate losses were similar for all treatments. In the summer, throughflow losses differed between treatments in relation to the structure of the plant canopy. Differing mechanisms resulted in variations in the volume of percolate that was collected. Lower volumes of percolate were observed in herb-only monocultures of Leontdon hispidus, a species with a high water content. Tap-rooted species were seen to more effectively absorb soil moisture. The biodiversity support study focused on the study of Sedum species and Labiatae species, which suggested that mixed vegetation containing these species had a far greater likelihood of attracting wild bees to support pollination. Results of the studies indicated that green roof vegetation with greater structural and species diversity may provide different benefits than sedum-dominated roots. Further studies are needed to investigate the trade-offs between vegetation types, and green roof functions and performance in order to justify calls for a wider diversity of green roof types. 8 refs., 2 tabs., 1 fig.

  9. Determining Thermal Specifications for Vegetated GREEN Roofs in Moderate Winter Climats

    NARCIS (Netherlands)

    Dr. Christoph Maria Ravesloot

    2015-01-01

    Because local weather conditions in moderate climates are changing constantly, heat transfer specifications of substrate and vegetation in vegetated green roofs also change accordingly. Nevertheless, it is assumed that vegetated green roofs can have a positive effect on the thermal performance of

  10. Earlier vegetation green-up has reduced spring dust storms.

    Science.gov (United States)

    Fan, Bihang; Guo, Li; Li, Ning; Chen, Jin; Lin, Henry; Zhang, Xiaoyang; Shen, Miaogen; Rao, Yuhan; Wang, Cong; Ma, Lei

    2014-10-24

    The observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008. We find a significant dampening effect of advanced vegetation growth on spring dust storms (r = 0.49, p = 0.01), with a one-day earlier green-up date corresponding to a decrease in annual spring dust storm outbreaks by 3%. Moreover, the higher correlation (r = 0.55, p storm outbreak ratio (the ratio of dust storm outbreaks to times of strong wind events) indicates that such effect is independent of changes in surface wind. Spatially, a negative correlation is detected between areas with advanced green-up dates and regional annual spring dust storms (r = -0.49, p = 0.01). This new insight is valuable for understanding dust storms dynamics under the changing climate. Our findings suggest that dust storms in Inner Mongolia will be further mitigated by the projected earlier vegetation green-up in the warming world.

  11. Impacts of updated green vegetation fraction data on WRF simulations of the 2006 European heat wave

    Science.gov (United States)

    Refslund, J.; Dellwik, E.; Hahmann, A. N.; Barlage, M. J.; Boegh, E.

    2012-12-01

    Climate change studies suggest an increase in heat wave occurrences over Europe in the coming decades. Extreme events with excessive heat and associated drought will impact vegetation growth and health and lead to alterations in the partitioning of the surface energy. In this study, the atmospheric conditions during the heat wave year 2006 over Europe were simulated using the Weather Research and Forecasting (WRF) model. To account for the drought effects on the vegetation, new high-resolution green vegetation fraction (GVF) data were developed for the domain using NDVI data from MODIS satellite observations. Many empirical relationships exist to convert NDVI to GVF and both a linear and a quadratic formulation were evaluated. The new GVF product has a spatial resolution of 1 km2 and a temporal resolution of 8 days. To minimize impacts from low-quality satellite retrievals in the NDVI series, as well as for comparison with the default GVF climatology in WRF, a new background climatology using 10 recent years of observations was also developed. The annual time series of the new GVF climatology was compared to the default WRF GVF climatology at 18 km2 grid resolution for the most common land use classes in the European domain. The new climatology generally has higher GVF levels throughout the year, in particular an extended autumnal growth season. Comparison of 2006 GVF with the climatology clearly indicates vegetation stresses related to heat and drought. The GVF product based on a quadratic NDVI relationship shows the best agreement with the magnitude and annual range of the default input data, in addition to including updated seasonality for various land use classes. The new GVF products were tested in WRF and found to work well for the spring of 2006 where the difference between the default and new GVF products was small. The WRF 2006 heat wave simulations were verified by comparison with daily gridded observations of mean, minimum and maximum temperature and

  12. Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.

    Directory of Open Access Journals (Sweden)

    Muye Gan

    Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.

  13. Analysis and Mapping of the Spectral Characteristics of Fractional Green Cover in Saline Wetlands (NE Spain Using Field and Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Manuela Domínguez-Beisiegel

    2016-07-01

    Full Text Available Inland saline wetlands are complex systems undergoing continuous changes in moisture and salinity and are especially vulnerable to human pressures. Remote sensing is helpful to identify vegetation change in semi-arid wetlands and to assess wetland degradation. Remote sensing-based monitoring requires identification of the spectral characteristics of soils and vegetation and their correspondence with the vegetation cover and soil conditions. We studied the spectral characteristics of soils and vegetation of saline wetlands in Monegros, NE Spain, through field and satellite images. Radiometric and complementary field measurements in two field surveys in 2007 and 2008 were collected in selected sites deemed as representative of different soil moisture, soil color, type of vegetation, and density. Despite the high local variability, we identified good relationships between field spectral data and Quickbird images. A methodology was established for mapping the fraction of vegetation cover in Monegros and other semi-arid areas. Estimating vegetation cover in arid wetlands is conditioned by the soil background and by the occurrence of dry and senescent vegetation accompanying the green component of perennial salt-tolerant plants. Normalized Difference Vegetation Index (NDVI was appropriate to map the distribution of the vegetation cover if the green and yellow-green parts of the plants are considered.

  14. Vegetation impoverishment despite greening: a case study from central Senegal

    Science.gov (United States)

    Herrmann, Stefanie M.; Tappan, G. Gray

    2013-01-01

    Recent remote sensing studies have documented a greening trend in the semi-arid Sahel and Sudan zones of West Africa since the early 1980s, which challenges the mainstream paradigm of irreversible land degradation in this region. What the greening trend means on the ground, however, has not yet been explored. This research focuses on a region in central Senegal to examine changes in woody vegetation abundance and composition in selected sites by means of a botanical inventory of woody vegetation species, repeat photography, and perceptions of local land users. Despite the greening, an impoverishment of the woody vegetation cover was observed in the studied sites, indicated by an overall reduction in woody species richness, a loss of large trees, an increasing dominance of shrubs, and a shift towards more arid-tolerant, Sahelian species since 1983. Thus, interpretation of the satellite-derived greening trend as an improvement or recovery is not always justified. The case of central Senegal represents only one of several possible pathways of greening throughout the region, all of which result in similar satellite-derived greening signals.

  15. Observational Quantification of Climatic and Human Influences on Vegetation Greening in China

    Directory of Open Access Journals (Sweden)

    Wenjian Hua

    2017-04-01

    Full Text Available This study attempts to quantify the relative contributions of vegetation greening in China due to climatic and human influences from multiple observational datasets. Satellite measured vegetation greenness, Normalized Difference Vegetation Index (NDVI, and relevant climate, land cover, and socioeconomic data since 1982 are analyzed using a multiple linear regression (MLR method. A statistically significant positive trend of average growing-season (April–October NDVI is found over more than 34% of the vegetated areas, mainly in North China, while significant decreases in NDVI are only seen in less than 5% of the areas. The relationships between vegetation and climate (temperature, precipitation, and radiation vary by geographical location and vegetation type. We estimate the NDVI changes in association with the non-climatic effects by removing the climatic effects from the original NDVI time series using the MLR analysis. Our results indicate that land use change is the dominant factor driving the long-term changes in vegetation greenness. The significant greening in North China is due to the increase in crops, grasslands, and forests. The socioeconomic datasets provide consistent and supportive results for the non-climatic effects at the provincial level that afforestation and reduced fire events generally have a major contribution. This study provides a basis for quantifying the non-climatic effects due to possible human influences on the vegetation greening in China.

  16. Recent history of trends in vegetation greenness and large-scale ecosystem disturbances in Eurasia

    International Nuclear Information System (INIS)

    Potter, Christopher; Nemani, Ramakrishna; Kumar, Vipin; Klooster, Steven

    2007-01-01

    Recent patterns of land cover and vegetation dynamics on the Euasian continent have been linked to changes in the global carbon cycle. Our study was conducted to evaluate patterns in a 19-yr record of global satellite observations of terrestrial vegetation from the Advanced Very High Resolution Radiometer (AVHRR) as a means to characterize major trends in both vegetation 'greenness' and ecosystem disturbance. The fraction absorbed of photosynthetically active radiation (FPAR) by vegetation canopies worldwide has been computed from the AVHRR at a monthly time interval from 1982 to 2000 and gridded at a spatial resolution of 8 km globally. Unlike previous studies of the AVHRR multiyear time-series of vegetation dynamics, the 8-km spatial resolution makes it possible to compare disturbance events and greenness trends at the same level of spatial detail. Positive trends in FPAR were detected throughout a major greenbelt of central-eastern Europe starting in the mid-1980s. This Eurasian greenbelt extended in a wide swath over the Urals, into the vicinity of Lake Baykal south of the central Siberian plateau, mainly along a latitude belt from 55 deg N to 65 deg N. There was also significantly positive greening in relatively large areas of Great Britain, Italy, Greece, Turkey, the Caucasus and southern India. Nonetheless, a strong downward trend in the FPAR time-series over most of Eurasia was observed by the end of the 1990s. Throughout the 19-yr time period, Eurasia was also impacted by many notable droughts and other disturbance events that could have substantially offset decadal carbon gains attributed to satellite-observed greening. Large-scale ecosystems disturbance events were identified in the FPAR time-series by locating anomalously low values (FPAR-LO) that lasted longer than 12 consecutive months at any 8-km pixel. We find verifiable evidence of numerous disturbance types across Eurasia, including regional patterns of severe droughts, forest fires and insect

  17. Modularized substrate culture:a new method for green leafy vegetable planting

    Directory of Open Access Journals (Sweden)

    WANG Quanxi

    2015-10-01

    Full Text Available On the basis of analyzing general situation of green leafy vegetable production and main difficulty,we introduce the characteristics of modularized substrate culture for green leafy vegetable,and point out the important issues of modularized substrate culture which urgently need be solved in the coming future.

  18. Remote Estimation of Vegetation Fraction and Yield in Oilseed Rape with Unmanned Aerial Vehicle Data

    Science.gov (United States)

    Peng, Y.; Fang, S.; Liu, K.; Gong, Y.

    2017-12-01

    This study developed an approach for remote estimation of Vegetation Fraction (VF) and yield in oilseed rape, which is a crop species with conspicuous flowers during reproduction. Canopy reflectance in green, red, red edge and NIR bands was obtained by a camera system mounted on an unmanned aerial vehicle (UAV) when oilseed rape was in the vegetative growth and flowering stage. The relationship of several widely-used Vegetation Indices (VI) vs. VF was tested and found to be different in different phenology stages. At the same VF when oilseed rape was flowering, canopy reflectance increased in all bands, and the tested VI decreased. Therefore, two algorithms to estimate VF were calibrated respectively, one for samples during vegetative growth and the other for samples during flowering stage. During the flowering season, we also explored the potential of using canopy reflectance or VIs to estimate Flower Fraction (FF) in oilseed rape. Based on FF estimates, rape yield can be estimated using canopy reflectance data. Our model was validated in oilseed rape planted under different nitrogen fertilization applications and in different phenology stages. The results showed that it was able to predict VF and FF accurately in oilseed rape with estimation error below 6% and predict yield with estimation error below 20%.

  19. Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Fensholt, Rasmus; Drews, Martin

    2015-01-01

    and applicability of vegetation indices (VI), from Landsat imagery, to estimate IS fractions for European cities. The accuracy of three different measures of vegetation cover is examined for eight urban areas at different locations in Europe. The Normalized Difference Vegetation Index (NDVI) and Soil Adjusted...... Vegetation Index (SAVI) are converted to IS fractions using a regression modelling approach. Also, NDVI is used to estimate fractional vegetation cover (FR), and consequently IS fractions. All three indices provide fairly accurate estimates (MAEs ≈ 10%, MBE’s

  20. Phytochemical profile of some green leafy vegetables in South East ...

    African Journals Online (AJOL)

    The potential of eight common green leafy vegetables (GLV) in the raw and cooked forms as natural source of phytochemicals was assessed. The vegetables studied were the common ones found in southeast Nigeria and they included Ugu, Nchanwu, Okazi, Utazi, Oha, Nturukpa, Ahihara, and Onugbo. The vegetables ...

  1. Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Fensholt, Rasmus; Drews, Martin

    2015-01-01

    and applicability of vegetation indices (VI), from Landsat imagery, to estimate IS fractions for European cities. The accuracy of three different measures of vegetation cover is examined for eight urban areas at different locations in Europe. The Normalized Difference Vegetation Index (NDVI) and Soil Adjusted...... Vegetation Index (SAVI) are converted to IS fractions using a regression modelling approach. Also, NDVI is used to estimate fractional vegetation cover (FR), and consequently IS fractions. All three indices provide fairly accurate estimates (MAEs ≈ 10%, MBE’s ... the potential for developing and applying a single regression model to estimate IS fractions for numerous urban areas without reducing the accuracy considerably. Our findings indicate that the models can be applied broadly for multiple urban areas, and that the accuracy is reduced only marginally by applying...

  2. Process for the production of protein enriched fractions from vegetable materials

    NARCIS (Netherlands)

    Dijkink, B.H.; Willemsen, J.H.A.

    2006-01-01

    The present invention provides a method for the production of a protein enriched fraction and a fibre enriched fraction from a vegetable material, wherein the vegetable material comprises a total fat content of 0.1 to 22.0 % by dry weight of the total vegetable material and a total starch content of

  3. Vegetative cover and PAHs accumulation in soils of urban green space

    International Nuclear Information System (INIS)

    Peng Chi; Ouyang Zhiyun; Wang Meie; Chen Weiping; Jiao Wentao

    2012-01-01

    We investigated how urban land uses influence soil accumulation of polycyclic aromatic hydrocarbons (PAHs) in the urban green spaces composed of different vegetative cover. How did soil properties, urbanization history, and population density affect the outcomes were also considered. Soils examined were obtained at 97 green spaces inside the Beijing metropolis. PAH contents of the soils were influenced most significantly by their proximity to point source of industries such as the coal combustion installations. Beyond the influence circle of industrial emissions, land use classifications had no significant effect on the extent of PAH accumulation in soils. Instead, the nature of vegetative covers affected PAH contents of the soils. Tree–shrub–herb and woodland settings trapped more airborne PAH and soils under these vegetative patterns accumulated more PAHs than those of the grassland. Urbanization history, population density and soil properties had no apparent impact on PAHs accumulations in soils of urban green space. - Highlights: ► Land use did not affect PAHs in soils except for areas adjacent to industrial sources. ► Tree–shrub–herb and woodland cover amass more PAHs in soils than grassland cover. ► Urban development and soil property factors had little effect on PAHs in soils. - Industrial emissions aside, vegetative cover is the dominant factor controlling accumulation of PAHs in urban green space soils.

  4. Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data

    Directory of Open Access Journals (Sweden)

    S. O. Los

    2012-03-01

    global vegetation height product typically used in a climate model, a recent global tree height product, and a vegetation greenness product and is shown to produce realistic estimates of vegetation height. Finally, the GLAS bare soil cover fraction is compared globally with the MODIS bare soil fraction (r = 0.65 and with bare soil cover fraction estimates derived from AVHRR NDVI data (r = 0.67; the GLAS tree-cover fraction is compared with the MODIS tree-cover fraction (r = 0.79. The evaluation indicates that filters applied to the GLAS data are conservative and eliminate a large proportion of spurious data, while only in a minority of cases at the cost of removing reliable data as well.

    The new GLAS vegetation height product appears more realistic than previous data sets used in climate models and ecological models and hence should significantly improve simulations that involve the land surface.

  5. Nitrate in leafy green vegetables and estimated intake | Brkić ...

    African Journals Online (AJOL)

    Background: Vegetarian diets are rich in vegetables. Green leafy vegetables are foods that contain considerable amounts of nitrate, which can have both positive and negative effects on the human body. Their potential carcinogenicity and toxicity have been proven, particularly after the reduction of nitrate to nitrite itself or ...

  6. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects

    International Nuclear Information System (INIS)

    Walker, D A; Raynolds, M K; Kuss, P; Kade, A N; Epstein, H E; Frost, G V; Kopecky, M A; Daniëls, F J A; Leibman, M O; Moskalenko, N G; Khomutov, A V; Matyshak, G V; Khitun, O V; Forbes, B C; Bhatt, U S; Vonlanthen, C M; Tichý, L

    2012-01-01

    Satellite-based measurements of the normalized difference vegetation index (NDVI; an index of vegetation greenness and photosynthetic capacity) indicate that tundra environments are generally greening and becoming more productive as climates warm in the Arctic. The greening, however, varies and is even negative in some parts of the Arctic. To help interpret the space-based observations, the International Polar Year (IPY) Greening of the Arctic project conducted ground-based surveys along two >1500 km transects that span all five Arctic bioclimate subzones. Here we summarize the climate, soil, vegetation, biomass, and spectral information collected from the North America Arctic transect (NAAT), which has a more continental climate, and the Eurasia Arctic transect (EAT), which has a more oceanic climate. The transects have broadly similar summer temperature regimes and overall vegetation physiognomy, but strong differences in precipitation, especially winter precipitation, soil texture and pH, disturbance regimes, and plant species composition and structure. The results indicate that summer warmth and NDVI increased more strongly along the more continental transect. (letter)

  7. Positive effects of vegetation: Urban heat island and green roofs

    International Nuclear Information System (INIS)

    Susca, T.; Gaffin, S.R.; Dell'Osso, G.R.

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 deg. C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO 2 equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. - Highlights: → The local morphology and the scarcity of vegetation in NYC core determines its UHI. → We introduce the evaluation of the effects of the surface albedo on climate change. → We use it to compare a black roof with a white and a green one. → Surface albedo has a crucial role in the evaluation of the environmental loads of the roofs. → Vegetation has positive effects on both the urban and the building scale. - Vegetation has positive effects both on an urban scale, mitigating the urban heat island effect; and on a building scale, where albedo, thermal insulation and biological activity of plants play a crucial role.

  8. Could small scale vegetable production contribute to a green economy in South Africa?

    CSIR Research Space (South Africa)

    Musvoto, Constansia D

    2015-02-01

    Full Text Available and produces for sale. Some of the practices on these farms are compatible with a green economy, and with interventions that improve alignment with green economy principles, small scale vegetable production could contribute to a green economy and open up...

  9. Simple saponification method for the quantitative determination of carotenoids in green vegetables.

    Science.gov (United States)

    Larsen, Erik; Christensen, Lars P

    2005-08-24

    A simple, reliable, and gentle saponification method for the quantitative determination of carotenoids in green vegetables was developed. The method involves an extraction procedure with acetone and the selective removal of the chlorophylls and esterified fatty acids from the organic phase using a strongly basic resin (Ambersep 900 OH). Extracts from common green vegetables (beans, broccoli, green bell pepper, chive, lettuce, parsley, peas, and spinach) were analyzed by high-performance liquid chromatography (HPLC) for their content of major carotenoids before and after action of Ambersep 900 OH. The mean recovery percentages for most carotenoids [(all-E)-violaxanthin, (all-E)-lutein epoxide, (all-E)-lutein, neolutein A, and (all-E)-beta-carotene] after saponification of the vegetable extracts with Ambersep 900 OH were close to 100% (99-104%), while the mean recovery percentages of (9'Z)-neoxanthin increased to 119% and that of (all-E)-neoxanthin and neolutein B decreased to 90% and 72%, respectively.

  10. Faba Greens, Globe Artichoke’s Offshoots, Crenate Broomrape and Summer Squash Greens: Unconventional Vegetables of Puglia (Southern Italy With Good Quality Traits

    Directory of Open Access Journals (Sweden)

    Massimiliano Renna

    2018-03-01

    Full Text Available Globe artichoke (Cynara cardunculus L. subsp. [L.] scolymus Hayek, summer squash (Cucurbita pepo L. and faba bean (Vicia faba L. are widely cultivated for their immature inflorescences, fruits and seeds, respectively. Nevertheless, in some areas of Puglia (Southern Italy, other organs of these species are traditionally used as vegetables, instead of being considered as by-products. Offshoots (so-called cardoni or carducci of globe artichoke, produced during the vegetative growing cycle and removed by common cultural procedures, are used like to the cultivated cardoons (C. cardunculus L. var. altilis DC. The stems, petioles, flowers and smaller leaves of summer squash are used as greens (so-called cime di zucchini, like other leafy vegetables such as chicory (Cichorium intybus L. and Swiss chard (Beta vulgaris L.. Also the plant apex of faba bean, about 5–10 cm long, obtained from the green pruning, are used as greens (so-called cime di fava like spinach leaves. Moreover, crenate broomrape (Orobanche crenata Forssk., a root parasite plant that produces devastating effects on many crops (mostly legumes, is used like asparagus (Asparagus officinalis L. to prepare several traditional dishes. In this study ethnobotanical surveys and quality assessment of these unconventional vegetables were performed. For their content of fiber, offshoots of globe artichokes can be considered a useful food to bowel. Summer squash greens could be recommended as a vegetable to use especially in the case of hypoglycemic diets considering both content and composition of their carbohydrates. For their low content of nitrate, faba greens could be recommended as a substitute of nitrate-rich leafy vegetables. Crenate broomrape shows a high antioxidant activity and may be considered as a very nutritious agri-food product. Overall, the results of the present study indicate that offshoots of globe artichoke, summer squash greens, faba greens and crenate broomrape have good

  11. Vegetation Fraction Mapping with High Resolution Multispectral Data in the Texas High Plains

    Science.gov (United States)

    Oshaughnessy, S. A.; Gowda, P. H.; Basu, S.; Colaizzi, P. D.; Howell, T. A.; Schulthess, U.

    2010-12-01

    Land surface models use vegetation fraction to more accurately partition latent, sensible and soil heat fluxes from a partially vegetated surface as it affects energy and moisture exchanges between the earth’s surface and atmosphere. In recent years, there is interest to integrate vegetation fraction data into intelligent irrigation scheduling systems to avoid false positive signals to irrigate. Remote sensing can facilitate the collection of vegetation fraction information on individual fields over large areas in a timely and cost-effective manner. In this study, we developed and evaluated a set of vegetation fraction models using least square regression and artificial neural network (ANN) techniques using RapidEye satellite data (6.5 m spatial resolution and on-demand temporal resolution). Four images were acquired during the 2010 summer growing season, covering bare soil to full crop cover conditions, over the USDA-ARS-Conservation and Production Research Laboratory in Bushland, Texas [350 11' N, 1020 06' W; 1,170 m elevation MSL]. Spectral signatures were extracted from 25 ground truth locations with geographic coordinates. Vegetation fraction information was derived from digital photos taken at the time of image acquisition using a supervised classification technique. Comparison of performance statistics indicate that ANN performed slightly better than least square regression models.

  12. Linking Vital Rates of Landbirds on a Tropical Island to Rainfall and Vegetation Greenness.

    Directory of Open Access Journals (Sweden)

    James F Saracco

    Full Text Available Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI] to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons, bridled white-eye (Zosterops conspicillatus, and golden white-eye (Cleptornis marchei. Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness; while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the

  13. Use of endotrophic mycorhiza and soil microorganisms and vegetation establishment on mineral green roof substrate

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. [GeoVerde Inc., Schaffhausen (Switzerland)

    2004-07-01

    Green roofs have the potential to introduce colour and nature into urban and industrial areas. This paper showed how the addition of soil microorganisms into a green roof substrate can help establish vegetation. Microorganisms help the roots exploit essential nutrient and water reserves in the substrate by making them more readily available to the plant. Microorganisms facilitate uniform germination, plant development at the young stage, and prolonged vegetation development on the roof. Soil microorganisms and mycorrhizal fungi can be added directly in to the seed blends. As the products are blended with the seed, they also fulfill the function of a seeding aid. Mycorrhizal and other soil fungi were examined on mineral roof substrates by means of dry and hydroseeding in greenhouse and field tests. Results of this developmental work and experiences from practical applications were presented. It was noted that vegetation on green roof areas must be able to withstand harsh environmental conditions. As such, the challenges include drought that causes water stress, warm and cold temperatures, wind, acid rain and air pollution. This paper also presented details of the following categories of green roof systems. Intensive green roofs are usually referred to as roof gardens. They are constructed over reinforced concrete decks and usually are accessible. Simple intensive green roofs are vegetated with lawns or ground covering plants. Regular maintenance including irrigation, fertilization and mowing is also required. Extensive green roofs are low maintenance and low weight. Growing media is usually composed of purely mineral material or a blend of mineral with a low proportion of organic matter. Substrate is low in nutrient content and the depth . Vegetation usually consists of succulents that require minimal maintenance. The requirements to install each of these types of green roof systems were also presented. 7 refs., 3 tabs.

  14. Studying the Association between Green Space Characteristics and Land Surface Temperature for Sustainable Urban Environments: An Analysis of Beijing and Islamabad

    Directory of Open Access Journals (Sweden)

    Shahid Naeem

    2018-01-01

    Full Text Available Increasing trends of urbanization lead to vegetation degradation in big cities and affect the urban thermal environment. This study investigated (1 the cooling effect of urban green space spatial patterns on Land Surface Temperature (LST; (2 how the surrounding environment influences the green space cool islands (GCI, and vice versa. The study was conducted in two Asian capitals: Beijing, China and Islamabad, Pakistan by utilizing Gaofen-1 (GF-1 and Landsat-8 satellite imagery. Pearson’s correlation and normalized mutual information (NMI were applied to investigate the relationship between green space characteristics and LST. Landscape metrics of green spaces including Percentage of Landscape (PLAND, Patch Density (PD, Edge Density (ED, and Landscape Shape Index (LSI were selected to calculate the spatial patterns of green spaces, whereas GCI indicators were defined by Green Space Range (GR, Temperature Difference (TD, and Temperature Gradient (TG. The results indicate that both vegetation composition and configuration influence LST distributions; however, vegetation composition appeared to have a slightly greater effect. The cooling effect can be produced more effectively by increasing green space percentage, planting trees in large patches with equal distribution, and avoiding complex-shaped green spaces. The GCI principle indicates that LST can be decreased by increasing the green space area, increasing the water body fraction, or by decreasing the fraction of impervious surfaces. GCI can also be strengthened by decreasing the fraction of impervious surfaces and increasing the fraction of water body or vegetation in the surrounding environment. The cooling effect of vegetation and water could be explained based on their thermal properties. Beijing has already enacted the green-wedge initiative to increase the vegetation canopy. While designing the future urban layout of Islamabad, the construction of artificial lakes within the urban green

  15. Water retention and evapotranspiration of green roofs and possible natural vegetation types

    NARCIS (Netherlands)

    Metselaar, K.

    2012-01-01

    Matching vegetation to growing conditions on green roofs is one of the options to increase biodiversity in cities. A hydrological model has been applied to match the hydrological requirements of natural vegetation types to roof substrate parameters and to simulate moisture stress for specific

  16. Temperature and snowfall trigger alpine vegetation green-up on the world's roof.

    Science.gov (United States)

    Chen, Xiaoqiu; An, Shuai; Inouye, David W; Schwartz, Mark D

    2015-10-01

    Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth

  17. Analysis of the Influencing Factors and Key Driving Force concerning the Efficiency of Green Supply Chain of Fruits and Vegetables

    OpenAIRE

    LI, Yingtang; QIAO, Zhong

    2014-01-01

    Like the general green supply chain, the green supply chain of fruits and vegetables also requires low negative effects of the environment and high resource utilization rate, as well as the healthiness and freshness of fruits and vegetables. Currently, the level of development of the green supply chain of fruits and vegetables is low in China, and the freshness of fruits and vegetables can not be well maintained, so there is an urgent need to improve the operational efficiency of the green su...

  18. Effects of industrial processing on folate content in green vegetables.

    Science.gov (United States)

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Influence of vegetation dynamic modeling on the allocation of green and blue waters

    Science.gov (United States)

    Ruiz-Pérez, Guiomar; Francés, Félix

    2015-04-01

    The long history of the Mediterranean region is dominated by the interactions and co-evolution between man and its natural environment. It is important to consider that the Mediterranean region is recurrently or permanently confronted with the scarcity of the water. The issue of climate change is (and will be) aggravating this situation. This raises the question of a loss of services that ecosystems provide to human and also the amount of available water to be used by vegetation. The question of the water cycle, therefore, should be considered in an integrated manner by taking into account both blue water (water in liquid form used for the human needs or which flows into the oceans) and green water (water having the vapor for resulting from evaporation and transpiration processes). In spite of this, traditionally, very few hydrological models have incorporated the vegetation dynamic as a state variable. In fact, most of them are able to represent fairly well the observed discharge, but usually including the vegetation as a static parameter. However, in the last decade, the number of hydrological models which explicitly take into account the vegetation development as a state variable has increased substantially. In this work, we want to analyze if it is really necessary to use a dynamic vegetation model to quantify adequately the distribution of water into blue and green water. The study site is located in the Public Forest Monte de la Hunde y Palomeras (Spain). The vegetation in the study area is dominated by Aleppo pine of high tree density with scant presence of other species. Two different daily models were applied (with static and dynamic vegetation representation respectively) in three different scenarios: dry year (2005), normal year (2008) and wet year (2010). The static vegetation model simulates the evapotranspiration considering the vegetation as a stationary parameter. Contrarily, the dynamic vegetation model connects the hydrological model with a

  20. Green Diesel from Hydrotreated Vegetable Oil Process Design Study

    NARCIS (Netherlands)

    Hilbers, T.J.; Sprakel, Lisette Maria Johanna; van den Enk, L.B.J.; Zaalberg, B.; van den Berg, Henderikus; van der Ham, Aloysius G.J.

    2015-01-01

    A systematic approach was applied to study the process of hydrotreating vegetable oils. During the three phases of conceptual, detailed, and final design, unit operations were designed and sized. Modeling of the process was performed with UniSim Design®. Producing green diesel and jet fuel from

  1. Nutrient Content of Four Lesser – Known Green Leafy Vegetables ...

    African Journals Online (AJOL)

    Nigeria. U. E. Inyang. Department of Food Science and Technology, University of Uyo, Uyo, AkwaIbom State, Nigeria ... Green leafy vegetables as components of traditional foods .... promoting benefits of high fibre diets have made this class.

  2. Do leafy green vegetables and their ready-to-eat [RTE] salads carry a risk of foodborne pathogens?

    Science.gov (United States)

    Mercanoglu Taban, Birce; Halkman, A Kadir

    2011-12-01

    Over the past 10 years, there is an increasing demand for leafy green vegetables and their ready-to-eat (RTE) salads since people changed their eating habits because of healthier lifestyle interest. Nevertheless fresh leafy green vegetables and their RTE salads are recognized as a source of food poisoning outbreaks in many parts of the world. However, this increased proportion of outbreaks cannot be completely explained by increased consumption and enhanced surveillance of them. Both in Europe and in the USA, recent foodborne illness outbreaks have revealed links between some pathogens and some leafy green vegetables such as mostly lettuces and spinaches and their RTE salads since fresh leafy green vegetables carry the potential risk of microbiological contamination due to the usage of untreated irrigation water, inappropriate organic fertilizers, wildlife or other sources that can occur anywhere from the farm to the fork such as failure during harvesting, handling, processing and packaging. Among a wide range of pathogens causing foodborne illnesses, Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes are the most common pathogens that contaminate leafy green vegetables. Children, the elderly, pregnant women and immunocompromised people are the most at risk for developing complications from foodborne illness as a result of eating contaminated leafy greens or their RTE salads. These outbreaks are mostly restaurant associated or they sometimes spread across several countries by international trade routes. This review summarizes current observations concerning the contaminated leafy green vegetables and their RTE salads as important vehicles for the transmission of some foodborne pathogens to humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Climate contributions to vegetation variations in Central Asian drylands

    DEFF Research Database (Denmark)

    Zhou, Yu; Zhang, Li; Fensholt, Rasmus

    2015-01-01

    Central Asia comprises a large fraction of the world's drylands, known to be vulnerable to climate change. We analyzed the inter-annual trends and the impact of climate variability in the vegetation greenness for Central Asia from 1982 to 2011 using GIMMS3g normalized difference vegetation index...

  4. [Low consumption of fruit, vegetables and greens: associated factors among the elderly in a Midwest Brazilian city].

    Science.gov (United States)

    Silveira, Erika Aparecida; Martins, Bruna Bittar; de Abreu, Laísa Ribeiro Silva; Cardoso, Camila Kellen de Souza

    2015-12-01

    The scope of the study was to evaluate the prevalence of daily consumption of fruit, vegetables and greens by the elderly and its association with sociodemographic, lifestyle, morbidity and hospitalization variables. The study was part of the multiple-stage sampling cross-sectional research entitled the Goiânia Elderly Project (Projeto Idosos Goiânia). 416 elderly people were interviewed in their homes. Multivariate analysis was conducted using Poisson regression to analyze statistical associations. P values of fruit, vegetables and greens was 16.6%: fruit accounted for 44%, vegetables 39.7% and greens 32.5%. Factors statistically associated with daily consumption of fruits and vegetables were female sex, age between 70 and 79, higher education level, social class A/B and C, alcohol consumption, use of sweeteners, regular physical activity during leisure time, abdominal obesity and hospitalization. Public policies to promote health should develop strategies that encourage adequate intake of fruit, vegetables and greens among the elderly, since regular consumption of same can improve quality of life and prevent/control diseases.

  5. Salient beliefs about eating and buying dark green vegetables as told by Mid-western African–American women☆

    Science.gov (United States)

    Sheats, Jylana L.; Middlestadt, Susan E.

    2013-01-01

    Vegetables in the dark green group are the most nutritious, yet intake is low. Studies suggest that an increase in fruit and vegetables may improve diet-related health outcomes of African Americans. The aim of this exploratory study was to use the Reasoned Action Approach (RAA) to qualitatively assess salient, top-of-the-mind, beliefs (consequences, circumstances and referents) about eating and buying more dark green leafy vegetables each week over the next 3 months. Adult (n = 30), Midwestern African–American women, who buy and prepare food for their household participated in a face-to-face salient belief elicitation. A content analysis of verbatim text and a descriptive analysis were conducted. Findings suggest that the RAA can be used to identify salient consequences, circumstances and referents about eating and buying more dark green leafy vegetables. The use of the RAA allowed for the extraction of specific beliefs that may aid in the development of nutrition education programs that consider the varying priorities, motivators and barriers that subgroups within the population have in regard to buying and consuming dark green leafy vegetables. PMID:23415980

  6. Fibre and polyphenols of selected fruits, nuts and green leafy vegetables used in Serbian diet

    Directory of Open Access Journals (Sweden)

    Dodevska Margarita

    2015-01-01

    Full Text Available Fruits and vegetables are known as good sources of numerous bioactive compounds among which polyphenols and dietary fibre are considered essential because of their protective health effects. The aim of this study was to characterize the quality of selected plant foods of our region regarding amount of total phenols, fibres and ratio of certain fractions of fibre. Fifteen samples of plant foods (green leafy vegetables, fruits and nuts were evaluated for total antioxidant activity, total phenolic content, total, soluble and insoluble fibre and fractions of fibre: beta-glucans, arabinoxylan, cellulose and resistant starch. Generally nuts were the richest sources of fibre and total phenols. However, when serving size was taken into consideration, it appeared that raspberry and blackberry were the richest in total, soluble fibre and cellulose. At the same time, almonds and hazelnuts were particulary rich in insoluble fibre, while walnuts had the highest polyphenol content. Analyzed plant foods were poor sources of arabinoxylan and beta-glucan. Data on resistant starch presence in cashew nut is the first confirmation that resistant starch can be found in significant amount in some nuts. The results give rare insight into the quality of selected plant foods regarding dietary fibre and polyphenols from the nutritive point of view. [Projekat Ministarstva nauke Republike Srbije, br. III46001

  7. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.

    Science.gov (United States)

    Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan

    2017-06-03

    Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m 3 ) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.

  8. Technogenic contamination of Bulgarian green leafy vegetation and its contribution to public exposure

    International Nuclear Information System (INIS)

    Pavlova, P.; Vasilev, G.

    2007-01-01

    Main sources of excessive background ionizing radiation exposure for the Bulgarian public are the following: medical radiation procedures; occupational radiation exposure; enhanced natural radiation exposure (uranium mining and milling, artificial fertilizers, non-radioactive sources of energy, building materials etc.); environmental technogenic radionuclide contamination from global fallouts (1950-1970) and Chernobyl accident depositions (1986-1996 and after). The green leafy vegetation, incl. forage plants used for feeding of farm animals (sheep and cows) as well as leafy vegetables (lettuce, dock, spinach, parsley etc.) are one of the main reservoirs of technogenic radionuclides. Bulgaria is situated in the middle northern latitude zone (40 north - 50 north) where the global radioactive fallout from nuclear experiments (1945-1962) were most intensive. Bulgaria is also one of the countries most affected by the Chernobyl NPP accident on 26 April 1986. Respectively, the Bulgarian population dose burden is high compared with the other European countries (excluding the population near the site, i.e. Ukraine, Russia and Byelorussian). Both the global and Chernobyl fallout (globally distributed) contaminated the green leafy vegetation with technogenic radionuclides of two groups: Short-lived, mainly Iodine-131; Long-lived, mainly Cesium-137 and partially Strontium- 90. The effects on the Bulgarian public from technogenic radionuclide contamination of green leafy vegetation were analyzed. The analyses show the following chain in motion of technogenic radionuclides (Iodine-131 and Cesium-137 are chosen as representative): 1) Iodine-131: (duration of transfer - less than 30 to 60 days since fallout); a) fallout - meadow grass - sheep and cows - milk and dairy products - person; b) fallout - leafy vegetables - person; 2) Cesium-137 (duration of transfer - several days) (based on Chernobyl experience); a) fallout - meadow grass - forage - sheep, cows, etc. - milk and dairy

  9. 76 FR 24291 - Proposed National Marketing Agreement Regulating Leafy Green Vegetables; Recommended Decision and...

    Science.gov (United States)

    2011-04-29

    ... the hearing indicates that the value of leafy green vegetables grown for the United States fresh and... the 2008 production value, lettuce crops accounted for 79 percent, cabbage accounted for 15 percent... Food Safety Guidelines for Lettuce and Leafy Greens Supply Chain''. These guidelines have not been...

  10. Pathogens and Heavy Metals Concentration in Green Leafy Vegetables

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2010-01-01

    Full Text Available Presence of heavy metal and bacterial pathogen in randomly collected samples of green leafy from various stations of Bengaluru city was detected. Heavy metals (cadmium, zinc, copper, iron, chromium, nickel and lead were analyzed by tri-acid digestion method. The presence of heavy metals in general was in the order of Cd>Zn>Cu>Fe>Cr>Pb. Trace metal concentration in all green leafy vegetables of stations 1-5 were within permissible limit and it has been exceeded in station 6-10. This indicated high levels of soil contamination pose potential danger for the vegetables grown in the vicinity of Arakere lake, Bannerghatta road, Gottigere lake, Naganaikanakere, Bommasandra lake, Hulimavu lake, Kelaginakere and Amblipura lake. The total bacteria and coliforms were enumerated on TSA (Tryptone Soya Agar and VRBA (Violet Red Bile Agar media respectively. The total bacterial count in randomly collected samples of coriander ranged from 296 cfu/g to 8 cfu/g, in palak from 16 cfu/g to 0.9 cfu/g, whereas in case of cabbage was 104 cfu/g to 0.9 cfu/g which is an indication of improper pre-harvest and post harvest handling.

  11. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; LaFontaine, Frank J.; Kumar, Sujay V.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the SPoRT-MODIS GVF dataset on a land surface model (LSM) apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. In the West, higher latent heat fluxes prevailed, which enhanced the rates of evapotranspiration and soil moisture depletion in the LSM. By late Summer and Autumn, both the average sensible and latent heat fluxes increased in the West as a result of the more rapid soil drying and higher coverage of GVF. The impacts of the SPoRT GVF dataset on NWP was also examined for a single severe weather case study using the Weather Research and Forecasting (WRF) model. Two separate coupled LIS/WRF model simulations were made for the 17 July 2010 severe weather event in the Upper Midwest using the NCEP and SPoRT GVFs, with all other model parameters remaining the same. Based on the sensitivity results, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and

  12. Primary studies of trace quantities of green vegetation in Mono Lake area using 1990 AVIRIS data

    Science.gov (United States)

    Chen, Zhi-Kang; Elvidge, Chris D.; Groeneveld, David P.

    1992-01-01

    Our primary results in Jasper Ridge Biological Preserve indicate that high spectral resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data may provide a substantial advantage in vegetation, based on the chlorophyll red edge feature from 700-780 nm. The chlorophyll red edge was detected for green vegetation cover as low as 4.8 percent. The objective of our studies in Mono Lake area is to continue the experiments performed in Jasper Ridge and to examine the persistence of red edge feature of trace quantities of green vegetation for different plant communities with non-uniform soil backgrounds.

  13. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    It was hypothesised in this study that annual river yield (river flow as a fraction of rainfall) in the Molenaars catchment near Paarl, South Africa co-varies with an index of green vegetation cover derived from satellite data (the normalised difference vegetation index, NDVI). The catchment was partitioned into 'upland' and ...

  14. Insectivorous bats respond to vegetation complexity in urban green spaces.

    Science.gov (United States)

    Suarez-Rubio, Marcela; Ille, Christina; Bruckner, Alexander

    2018-03-01

    Structural complexity is known to determine habitat quality for insectivorous bats, but how bats respond to habitat complexity in highly modified areas such as urban green spaces has been little explored. Furthermore, it is uncertain whether a recently developed measure of structural complexity is as effective as field-based surveys when applied to urban environments. We assessed whether image-derived structural complexity (MIG) was as/more effective than field-based descriptors in this environment and evaluated the response of insectivorous bats to structural complexity in urban green spaces. Bat activity and species richness were assessed with ultrasonic devices at 180 locations within green spaces in Vienna, Austria. Vegetation complexity was assessed using 17 field-based descriptors and by calculating the mean information gain (MIG) using digital images. Total bat activity and species richness decreased with increasing structural complexity of canopy cover, suggesting maneuverability and echolocation (sensorial) challenges for bat species using the canopy for flight and foraging. The negative response of functional groups to increased complexity was stronger for open-space foragers than for edge-space foragers. Nyctalus noctula , a species foraging in open space, showed a negative response to structural complexity, whereas Pipistrellus pygmaeus , an edge-space forager, was positively influenced by the number of trees. Our results show that MIG is a useful, time- and cost-effective tool to measure habitat complexity that complemented field-based descriptors. Response of insectivorous bats to structural complexity was group- and species-specific, which highlights the need for manifold management strategies (e.g., increasing or reinstating the extent of ground vegetation cover) to fulfill different species' requirements and to conserve insectivorous bats in urban green spaces.

  15. Isoflavones from green vegetable soya beans and their antimicrobial and antioxidant activities.

    Science.gov (United States)

    Wang, Taoyun; Liu, Yanli; Li, Xiaoran; Xu, Qiongming; Feng, Yulin; Yang, Shilin

    2018-03-01

    Green vegetable soya beans, known as Maodou in China, are supplied as vegetable-type fruits of the soybean plant. Previous study indicated that green vegetable soya beans exhibited antioxidative and anti-inflammatory activities. However, the material basis and pharmacological activities of green soybean plant were not unravelled clearly. In this study, we investigated the chemical ingredients and their pharmacological activities. Investigation of the chemical ingredients indicated that two new isoflavones, 2'-hydroxyerythrin A (1), and daidzein-7-O-β-d-{6″-[(E)-but-2-enoyl]}glycoside (2), together with seven known ones - 7,4'-dihydroxy-6-methoxyisoflavone (3), daidzein (4), daidzin (5), genistein (6), formononetin (7), ononin (8), and isoerythrinin A (9) - were obtained. The structures of compounds 1-9 were elucidated on the basis of spectroscopic and chemical analysis. We evaluated the antimicrobial efficacies and free-radical scavenging potential of the isolated compounds (1-9). Compounds 1 and 9 exhibited the most pronounced efficacy against the tested bacterial strains with IC 50 values ranging from 10.6 to 22.6 μg mL -1 . The isolated compounds showed moderate radical scavenging properties with compound 6 being the most active, followed by compounds 3, 1 and 4. This study indicated that the isoflavones from soya beans could be considered as potential antioxidants or antimicrobials in the food, cosmetics and pharmaceutical industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes

    Science.gov (United States)

    Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...

  17. A FRACTIONATION STUDY OF MINERAL ELEMENTS IN RAW AND COOKED LEAF VEGETABLES CONSUMED IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Luciane Mie KAWASHIMA

    2009-07-01

    Full Text Available

    Five samplings of leaf vegetables widely consumed in Southern Brazil (lettuce, rucola, watercress, kale, chicory, Chinese cabbage, and cabbage were taken during the period of a year in food markets of the city of Campinas, Brazil. A selective extraction of potassium, sodium, calcium, magnesium, iron, manganese, copper, and zinc was conducted on the raw vegetables and four of the vegetables (kale, chicory, Chinese cabbage, and cabbage were also cooked briefly under dry heat for three minutes and submitted to the selective extraction. The extraction separated the minerals into fractions containing mineral elements bound to soluble complexes, bound to ligands solubilized by mild acidic oxidizing conditions, and bound to insoluble ligands under mild acidic oxidizing conditions. The minerals concentrations in each fraction were determined by flame atomic absorption spectrometry. The amount of K, Na, Ca, and Mg extractable at pH 7.0 (soluble fraction from raw vegetables varied between 22 to 75 % of the total content of the mineral present. The soluble fractions of minor elements such as Mn, Zn, and Fe varied from 0 to 100% in the raw vegetables. The brief cooking used besides causing negligible losses of the minerals also increased the solubility of the minerals by 44% to 200%. KEYWORDS: Leaf vegetables; soluble mineral elements in vegetables.

  18. How Can Implicit and Explicit Attitudes Both Be Changed? Testing Two Interventions to Promote Consumption of Green Vegetables.

    Science.gov (United States)

    Mattavelli, Simone; Avishai, Aya; Perugini, Marco; Richetin, Juliette; Sheeran, Paschal

    2017-08-01

    Although correlational studies have demonstrated that implicit and explicit attitudes are both important in predicting eating behavior, few studies targeting food choice have attempted to change both types of attitudes. We tested the impact of (a) an evaluative learning intervention that uses the self to change attitudes (i.e., a Self-Referencing task) and (b) a persuasive communication in modifying implicit and explicit attitudes towards green vegetables and promoting readiness to change. The study targeted individuals who explicitly reported they did not like or only moderately liked green vegetables. Participants (N = 273) were randomly allocated to a 2 (self-referencing: present vs. absent) × 2 (persuasive message: present vs. absent) factorial design. The outcomes were implicit and explicit attitudes as well as readiness to increase consumption of green vegetables. Implicit attitudes increased after repeatedly pairing green vegetable stimuli with the self in the self-referencing task but did not change in response to the persuasive communication. The persuasive message increased explicit attitudes and readiness to change, but did not alter implicit attitudes. A three-way interaction with pre-existing explicit attitudes was also observed. In the absence of a persuasive message, the self-referencing task increased on readiness to change among participants with more negative pre-existing explicit attitudes. This study is the first to demonstrate that a self-referencing task is effective in changing both implicit attitudes and readiness to change eating behavior. Findings indicate that distinct intervention strategies are needed to change implicit and explicit attitudes towards green vegetables.

  19. [The variability of vegetation beginning date of greenness period in spring in the north-south transect of eastern China based on NOAA NDVI].

    Science.gov (United States)

    Wang, Zhi; Liu, Shi-rong; Sun, Peng-sen; Guo, Zhi-hua; Zhou, Lian-di

    2010-10-01

    NDVI based on NOAA/AVHRR from 1982 to 2003 are used to monitor variable rules for the growing season in spring of vegetation in the north-south transect of eastern China (NSTEC). The following, mainly, are included: (1) The changing speed of greenness period in spring of most regions in NSTEC is slow and correlation with the year is not distinct; (2) The regions in which greenness period in spring distinctly change mainly presented an advance; (3) The regions in which inter-annual fluctuation of greenness period in spring is over 10 days were found in 3 kinds of areas: the area covered with agricultural vegetation types; the areas covered with evergreen vegetation types; the areas covered with steppe vegetation types; (4) changes of vegetation greenness period in spring have spatio-temporal patterns.

  20. Updated vegetation information in high resolution WRF simulations

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2013-01-01

    modify the energy distribution at the land surface. In weather and climate models it is important to represent the vegetation variability accurately to obtain reliable results. The weather research and forecasting (WRF) model uses green vegetation fraction (GVF) time series to represent vegetation...... seasonality. The GVF of each grid cell is additionally used to scale other parameters such as LAI, roughness, emissivity and albedo within predefined intervals. However, the default GYP used by WRF does not reflect recent climatic changes or change in management practices since it was derived more than 20...

  1. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method

    Science.gov (United States)

    Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian

    2017-06-01

    Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.

  2. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  3. Different techniques of multispectral data analysis for vegetation fraction retrieval

    Science.gov (United States)

    Kancheva, Rumiana; Georgiev, Georgi

    2012-07-01

    Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.

  4. In Vitro bile acid binding of kale, mustard greens, broccoli, cabbage and green bell pepper improves with microwave cooking

    Science.gov (United States)

    Bile acid binding potential of foods and food fractions has been related to lowering the risk of heart disease and that of cancer. Sautéing or steam cooking has been observed to significantly improve bile acid binding of green/leafy vegetables. It was hypothesized that microwave cooking could impr...

  5. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    Science.gov (United States)

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  6. The dual effect of vegetation green-up date and strong wind on the return period of spring dust storms.

    Science.gov (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-08-15

    Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Ji, Lei; Lei, Liping; Wang, Cuizhen; Yan, Dongmei; Li, Bin; Li, Jing

    2013-01-01

    The Qinghai-Tibetan Plateau has been experiencing a distinct warming trend, and climate warming has a direct and quick impact on the alpine grassland ecosystem. We detected the greenness trend of the grasslands in the plateau using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2009. Weather station data were used to explore the climatic drivers for vegetation greenness variations. The results demonstrated that the region-wide averaged normalized difference vegetation index (NDVI) increased at a rate of 0.036  yr−1. Approximately 20% of the vegetation areas, which were primarily located in the northeastern plateau, exhibited significant NDVI increase trend (p-value plateau. A strong positive relationship between NDVI and precipitation, especially in the northeastern plateau, suggested that precipitation was a favorable factor for the grassland NDVI. Negative correlations between NDVI and temperature, especially in the southern plateau, indicated that higher temperature adversely affected the grassland growth. Although a warming climate was expected to be beneficial to the vegetation growth in cold regions, the grasslands in the central and southwestern plateau showed a decrease in trends influenced by increased temperature coupled with decreased precipitation.

  8. Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables.

    Science.gov (United States)

    Jiménez-Aguilar, Dulce M; Grusak, Michael A

    2015-12-01

    The green leafy vegetables Cnidoscolus aconitifolius and Crotalaria longirostrata are native to Mexico and Central America, while Solanum scabrum and Gynandropsis gynandra are native to Africa. They are consumed in both rural and urban areas in those places as a main food, food ingredient or traditional medicine. Currently, there is limited information about their nutritional and phytochemical composition. Therefore, mineral, vitamin C, phenolic and flavonoid concentration, and antioxidant activity were evaluated in multiple accessions of these leafy vegetables, and their mineral and vitamin C contribution per serving was calculated. The concentrations of Ca, K, Mg and P in these leafy vegetables were 0.82-2.32, 1.61-7.29, 0.61-1.48 and 0.27-1.44 mg/g fresh weight (FW), respectively. The flavonoid concentration in S. scabrum accessions was up to 1413 μg catechin equivalents/g FW, while the highest antioxidant activities were obtained in C. longirostrata accessions (52-60 μmol Trolox equivalents/g FW). According to guidelines established by the US Food and Drug Administration, a serving size (30 g FW) of C. longirostrata would be considered an excellent source of Mo (20 % or more of the daily value), and a serving of any of these green leafy vegetables would be an excellent source of vitamin C. Considering the importance of the minerals, phytochemicals and antioxidants in human health and their presence in these indigenous green leafy vegetables, efforts to promote their consumption should be implemented.

  9. Green vegetables and colon cancer: the mechanism of a protective effect by chlorophyll

    NARCIS (Netherlands)

    Vogel, de J.

    2006-01-01

    One of the important environmental determinants of the risk of colon cancer is the composition of the diet. Regular consumption of high amounts of red meat increases colon cancer risk. In contrast, consumption of green vegetables decreases the risk of colon cancer. This thesis provides a molecular

  10. The Antioxidant Properties of Pectin Fractions Isolated from Vegetables Using a Simulated Gastric Fluid

    Directory of Open Access Journals (Sweden)

    Vasily V. Smirnov

    2017-01-01

    Full Text Available The antioxidant properties of vegetable pectin fractions against intraluminal reactive oxygen species were elucidated in vitro in conjunction with their structural features. The pectin fractions were isolated using a simulated gastric fluid (pH 1.5, pepsin 0.5 g/L, 37°C, 4 h from fresh white cabbage, carrot, onion, and sweet pepper. The fraction from onion was found to inhibit the production of superoxide radicals by inhibiting the xanthine oxidase. The high molecular weight of onion pectin and a large number of galactose residues in its side chains appeared to participate in interaction with xanthine oxidase. All the isolated pectic polysaccharides were found to be associated with protein (2–9% and phenolics (0.5–0.7% as contaminants; these contaminants were shown to be responsible for the antioxidant effect of vegetable pectin fractions against the hydroxyl and 1,1-diphenyl-2-picrylhydrazyl radicals.

  11. Evaluating the Impacts of NASA/SPoRT Daily Greenness Vegetation Fraction on Land Surface Model and Numerical Weather Forecasts

    Science.gov (United States)

    Bell, Jordan R.; Case, Jonathan L.; Molthan, Andrew L.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center develops new products and techniques that can be used in operational meteorology. The majority of these products are derived from NASA polar-orbiting satellite imagery from the Earth Observing System (EOS) platforms. One such product is a Greenness Vegetation Fraction (GVF) dataset, which is produced from Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA EOS Aqua and Terra satellites. NASA SPoRT began generating daily real-time GVF composites at 1-km resolution over the Continental United States (CONUS) on 1 June 2010. The purpose of this study is to compare the National Centers for Environmental Prediction (NCEP) climatology GVF product (currently used in operational weather models) to the SPoRT-MODIS GVF during June to October 2010. The NASA Land Information System (LIS) was employed to study the impacts of the new SPoRT-MODIS GVF dataset on land surface models apart from a full numerical weather prediction (NWP) model. For the 2010 warm season, the SPoRT GVF in the western portion of the CONUS was generally higher than the NCEP climatology. The eastern CONUS GVF had variations both above and below the climatology during the period of study. These variations in GVF led to direct impacts on the rates of heating and evaporation from the land surface. The second phase of the project is to examine the impacts of the SPoRT GVF dataset on NWP using the Weather Research and Forecasting (WRF) model. Two separate WRF model simulations were made for individual severe weather case days using the NCEP GVF (control) and SPoRT GVF (experimental), with all other model parameters remaining the same. Based on the sensitivity results in these case studies, regions with higher GVF in the SPoRT model runs had higher evapotranspiration and lower direct surface heating, which typically resulted in lower (higher) predicted 2-m temperatures (2-m dewpoint temperatures). The opposite was true

  12. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types

    Science.gov (United States)

    Qiong Zhao; Dehui Zeng; Zhiping Fan; Zhanyuan Yu; Yalin Hu; Jianwei Zhang

    2009-01-01

    We investigated the seasonal patterns of soil phosphorus (P) fractions under five vegetation types – Ulmus macrocarpa savanna, grassland, Pinus sylvestris var. mongolica plantation, Pinus tabulaeformis plantation, and Populus simonii plantation ...

  13. Bioavailability of iron and zinc in green leafy vegetables growing in river side and local areas of Allahabad district

    Directory of Open Access Journals (Sweden)

    Bhawna Srivastava

    2014-01-01

    Full Text Available Introduction: Green Leafy Vegetables (GLVs are the treasure trove of many micronutrients.Objective: The aim of the study is to find out the commonly growing vegetables in river side and local areas of Allahabad district and to access the bioavailability of iron and zinc in selected green leafy vegetables of river side and local areas of Allahabad district.Methods: Five to four commonly grown green leafy vegetables were selected from the Arailghat, Baluaghat, Gaughat, Mahewa, Muirabad, Rajapur, Rasullabad for the study. Total iron and zinc in sample were estimated by AOAC (2005 and bioavailability of zinc and iron from various food samples was determined in vitro method described by Luten (1996. Appropriate statistical technique was adopted for analysis of study.Result: Soya leaves, Radish leaves, Amaranth, Spinach were grown in both the areas except Kulpha and Karamwa, which are commonly grown in river side area. There was a significant difference between the bioavailability of iron and zinc in GLV grown in local and river side area.Conclusion: Hence it can be concluded that there is a contamination of heavy metals which binds with the iron and zinc and make them less bioavailable in the selected GLV.

  14. Heavy metal contamination of vegetables from green markets in Novi Sad

    Directory of Open Access Journals (Sweden)

    Arsenov Danijela D.

    2016-01-01

    Full Text Available are valuable source of vitamins, minerals and fibers important for healthy human nutrition. However, an increased level of heavy metals in vegetables has been noticed in recent years. This study was conducted with an aim to analyze content of heavy metals, cadmium (Cd, lead (Pb, and chromium (Cr in 11 vegetable species which are the most common in human diet. Vegetables were collected from three green markets (Limanska, Futoška and Riblja pijaca in Novi Sad, during September and October, from 2009 to 2011. Heavy metal contents were analyzed in edible parts of tomato, potato, spinach, onion, beetroot, parsley, parsnip, carrot, cauliflower, pepper and broccoli using atomic absorption spectrophotometer (Varian, AAS 240FS. The results showed statistically significant differences in element concentrations among analyzed vegetables. In general, the highest metal pollution was observed in the year of 2011. Spinach was found to contain the highest metals content - 0.89 μg/g for Cd, 5.81 μg/g for Pb, and 3.67 μg/g for Cr. According to Serbian official regulations, 18.18% of all analyzed species exceeded maximum permissible level for Cd, 9.09% for Pb, while for Cr these limits are not defined. Elevated content of heavy metals in vegetables might be related to soil contamination, atmospheric depositions during transportation and marketing. Thus, a continuous monitoring of vegetables on markets should be performed in order to prevent potential health risks to consumers.

  15. The long-term trends (1982-2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Zhang, Li; Guo, Huadong; Wang, Cuizhen; Ji, Lei; Li, Jing; Wang, Kun; Dai, Lin

    2014-01-01

    The increased rate of annual temperature in the Qinghai-Tibetan Plateau exceeded all other areas of the same latitude in recent decades. The influence of the warming climate on the alpine ecosystem of the plateau was distinct. An analysis of alpine vegetation under changes in climatic conditions was conducted in this study. This was done through an examination of vegetation greenness and its relationship with climate variability using the Advanced Very High Resolution Radiometer satellite imagery and climate datasets. Vegetation in the plateau experienced a positive trend in greenness, with 18.0 % of the vegetated areas exhibiting significantly positive trends, which were primarily located in the eastern and southwestern parts of the plateau. In grasslands, 25.8 % of meadows and 14.1 % of steppes exhibited significant upward trends. In contrast, the broadleaf forests experienced a trend of degradation. Temperature, particularly summer temperature, was the primary factor promoting the vegetation growth in the plateau. The wetter and warmer climate in the east contributed to the favorable conditions for vegetation. The alpine meadow was mostly sensitive to temperature, while the steppes were sensitive to both temperature and precipitation. Although a warming climate was expected to be beneficial to vegetation growth in the alpine region, the rising temperature coupled with reduced precipitation in the south did not favor vegetation growth due to low humidity and poor soil moisture conditions.

  16. Detection of Minerals in Green Leafy Vegetables Using Laser Induced Breakdown Spectroscopy

    Science.gov (United States)

    Shukla, P.; Kumar, R.; Raib, A. Kumar

    2016-11-01

    The distribution of minerals in different green leafy vegetables, such as spinach, chenopodium, chickpea, mustard, and fenugreek, was calculated using laser induced breakdown spectroscopy (LIBS). LIBS can provide an easy, reliable, efficient, low-cost, and in situ chemical analysis with a reasonable precision. In situ LIBS spectra in the range 200-500 nm were carried out using fresh leaves and leaves in the pellet form. As the spectra suggest, magnesium and calcium are present in each vegetable; however, the amount of them varies. It is observed that the amount of iron is maximal in spinach. The nutrition value of the plants was analyzed, and it was revealed that they are low in calories and fat and high in protein, fiber, iron, calcium, and phytochemicals.

  17. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming.

    Science.gov (United States)

    Li, Haidong; Jiang, Jiang; Chen, Bin; Li, Yingkui; Xu, Yuyue; Shen, Weishou

    2016-03-01

    The eastern Himalayas, especially the Yarlung Zangbo Grand Canyon Nature Reserve (YNR), is a global hotspot of biodiversity because of a wide variety of climatic conditions and elevations ranging from 500 to > 7000 m above sea level (a.s.l.). The mountain ecosystems at different elevations are vulnerable to climate change; however, there has been little research into the patterns of vegetation greening and their response to global warming. The objective of this paper is to examine the pattern of vegetation greening in different altitudinal zones in the YNR and its relationship with vegetation types and climatic factors. Specifically, the inter-annual change of the normalized difference vegetation index (NDVI) and its variation along altitudinal gradient between 1999 and 2013 was investigated using SPOT-VGT NDVI data and ASTER global digital elevation model (GDEM) data. We found that annual NDVI increased by 17.58% in the YNR from 1999 to 2013, especially in regions dominated by broad-leaved and coniferous forests at lower elevations. The vegetation greening rate decreased significantly as elevation increased, with a threshold elevation of approximately 3000 m. Rising temperature played a dominant role in driving the increase in NDVI, while precipitation has no statistical relationship with changes in NDVI in this region. This study provides useful information to develop an integrated management and conservation plan for climate change adaptation and promote biodiversity conservation in the YNR.

  18. Lyα Profile, Dust, and Prediction of Lyα Escape Fraction in Green Pea Galaxies

    Science.gov (United States)

    Yang, Huan; Malhotra, Sangeeta; Gronke, Max; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Dijkstra, Mark; Tilvi, V.; Wang, Junxian

    2017-08-01

    We studied Lyman-α (Lyα) escape in a statistical sample of 43 Green Peas with HST/COS Lyα spectra. Green Peas are nearby star-forming galaxies with strong [O III]λ5007 emission lines. Our sample is four times larger than the previous sample and covers a much more complete range of Green Pea properties. We found that about two-thirds of Green Peas are strong Lyα line emitters with rest-frame Lyα equivalent width > 20 \\mathringA . The Lyα profiles of Green Peas are diverse. The Lyα escape fraction, defined as the ratio of observed Lyα flux to intrinsic Lyα flux, shows anti-correlations with a few Lyα kinematic features—both the blue peak and red peak velocities, the peak separations, and the FWHM of the red portion of the Lyα profile. Using properties measured from Sloan Digital Sky Survey optical spectra, we found many correlations—the Lyα escape fraction generally increases at lower dust reddening, lower metallicity, lower stellar mass, and higher [O III]/[O II] ratio. We fit their Lyα profiles with the H I shell radiative transfer model and found that the Lyα escape fraction is anti-correlated with the best-fit N H I . Finally, we fit an empirical linear relation to predict {f}{esc}{Lyα } from the dust extinction and Lyα red peak velocity. The standard deviation of this relation is about 0.3 dex. This relation can be used to isolate the effect of intergalactic medium (IGM) scatterings from Lyα escape and to probe the IGM optical depth along the line of sight of each z> 7 Lyα emission-line galaxy in the James Webb Space Telescope era.

  19. Composition of the volatile fraction of a sample of Brazilian green propolic and its phytotoxic activity.

    Science.gov (United States)

    Fernandes-Silva, Caroline C; Lima, Carolina A; Negri, Giuseppina; Salatino, Maria L F; Salatino, Antonio; Mayworm, Marco A S

    2015-12-01

    Propolis is a resinous material produced by honeybees, containing mainly beeswax and plant material. Despite the wide spectrum of biological activity of propolis, to our knowledge no studies have been carried out about phytotoxic properties of Brazilian propolis and its constituents. The aims of this study were to analyze the chemical composition and to evaluate the phytotoxic activity of the volatile fraction of a sample of Brazilian green propolis. Main constituents are the phenylpropanoid 3-prenylcinnamic acid allyl ester (26.3%) and the sesquiterpene spathulenol (23.4%). Several other sesquiterpenes and phenylpropanoids, in addition to linalool and α-terpineol (monoterpenes), were also detected. The activity of solutions of the volatile fraction at 1.0, 0.5 and 0.1% was tested on lettuce seeds and seedlings. The solution at 1% inhibited completely the seed germination and solutions at 0.1 and 0.5% reduced the germination rate index. The solution at 0.5% reduced the growth of the hypocotyl-radicle axis and the development of the cotyledon leaf. The chemical composition of the volatile fraction of this Brazilian green propolis is different from those previously described, and these results may contribute to a better understanding about the chemical variations in propolis. The volatile fraction of Brazilian green propolis influences both germination of seed lettuce and the growth of its seedlings, showing an phytotoxic potential. © 2014 Society of Chemical Industry.

  20. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  1. Fruits and vegetables (image)

    Science.gov (United States)

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, vitamins, and minerals. ...

  2. The vegetation of the pale green patches in the mountain forest on the North side of Mt. Pangerango (West Java)

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1986-01-01

    Everybody visiting the Cibodas Mountain Garden must have observed that on the North side of Mt. Pangerango there are roughly between 2300 and 2700 m several sizeable pale green patches visible in the dark green montane forest. They were never visited and it intrigued me to know their vegetation

  3. Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage.

    Science.gov (United States)

    Santos, J; Mendiola, J A; Oliveira, M B P P; Ibáñez, E; Herrero, M

    2012-10-26

    The simultaneous analysis of fat- and water-soluble vitamins from foods is a difficult task considering the wide range of chemical structures involved. In this work, a new procedure based on a sequential extraction and analysis of both types of vitamins is presented. The procedure couples several simple extraction steps to LC-MS/MS and LC-DAD in order to quantify the free vitamins contents in fresh-cut vegetables before and after a 10-days storage period. The developed method allows the correct quantification of vitamins C, B(1), B(2), B(3), B(5), B(6), B(9), E and provitamin A in ready-to-eat green leafy vegetable products including green lettuce, ruby red lettuce, watercress, swiss chard, lamb's lettuce, spearmint, spinach, wild rocket, pea leaves, mizuna, garden cress and red mustard. Using this optimized methodology, low LOQs were attained for the analyzed vitamins in less than 100 min, including extraction and vitamin analysis using 2 optimized procedures; good repeatability and linearity was achieved for all vitamins studied, while recoveries ranged from 83% to 105%. The most abundant free vitamins found in leafy vegetable products were vitamin C, provitamin A and vitamin E. The richest sample on vitamin C and provitamin A was pea leaves (154 mg/g fresh weight and 14.4 mg/100g fresh weight, respectively), whereas lamb's lettuce was the vegetable with the highest content on vitamin E (3.1 mg/100 g fresh weight). Generally, some losses of vitamins were detected after storage, although the behavior of each vitamin varied strongly among samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The Soil-Root Strength Performance of Alternanthera Ficoidea and Zoysia Japonica as Green Roof Vegetation

    Directory of Open Access Journals (Sweden)

    Abdullah Muhamad Firdaurs

    2017-01-01

    Full Text Available The rise of awareness on environmentalism has demanded that all parties involved in built environment to implement green technology in their construction projects. Great care must be taken when designing a green roof system including the selection of plants and appropriate substrates. This study was performed to investigate the soil-root composite strength of two types of green roof vegetation (A. Ficoidea and Z. Japonica at different growth periods for up to 6 months. Both plants were planted in six plastic plots (45 cm × 29 cm × 13 cm containing a mixture of perlite, vermiculite and organic soil. Every two months, a series of direct shear tests were conducted on a sample from each species to determine the root-soil shear strength. The tests continued until the 6th month. The average results showed that Z. Japonica had higher soil-root shear strength (49.1 kPa compared to A. Ficoidea after two months of growth. In the 4th month however, A. Ficoidea managed to surpass Z. Japonica (28.7 kPa versus 18.5 kPa in terms of shear strength. However, their average peak shear strength decreased sharply compared to the previous month. Lastly, in six months, A. Ficoidea sustained a higher average peak soil shear strength (56.5 kPa compared to Z. Japonica (14.3 kPa. Therefore, it can be concluded that A. Ficoidea may offer a better soil reinforcement than Z. japonica and thus it could potentially be a good choice of green roof vegetation.

  5. Developing Methods for Fraction Cover Estimation Toward Global Mapping of Ecosystem Composition

    Science.gov (United States)

    Roberts, D. A.; Thompson, D. R.; Dennison, P. E.; Green, R. O.; Kokaly, R. F.; Pavlick, R.; Schimel, D.; Stavros, E. N.

    2016-12-01

    Terrestrial vegetation seldom covers an entire pixel due to spatial mixing at many scales. Estimating the fractional contributions of photosynthetic green vegetation (GV), non-photosynthetic vegetation (NPV), and substrate (soil, rock, etc.) to mixed spectra can significantly improve quantitative remote measurement of terrestrial ecosystems. Traditional methods for estimating fractional vegetation cover rely on vegetation indices that are sensitive to variable substrate brightness, NPV and sun-sensor geometry. Spectral mixture analysis (SMA) is an alternate framework that provides estimates of fractional cover. However, simple SMA, in which the same set of endmembers is used for an entire image, fails to account for natural spectral variability within a cover class. Multiple Endmember Spectral Mixture Analysis (MESMA) is a variant of SMA that allows the number and types of pure spectra to vary on a per-pixel basis, thereby accounting for endmember variability and generating more accurate cover estimates, but at a higher computational cost. Routine generation and delivery of GV, NPV, and substrate (S) fractions using MESMA is currently in development for large, diverse datasets acquired by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). We present initial results, including our methodology for ensuring consistency and generalizability of fractional cover estimates across a wide range of regions, seasons, and biomes. We also assess uncertainty and provide a strategy for validation. GV, NPV, and S fractions are an important precursor for deriving consistent measurements of ecosystem parameters such as plant stress and mortality, functional trait assessment, disturbance susceptibility and recovery, and biomass and carbon stock assessment. Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.

  6. The Role of Vegetation and Mulch in Mitigating the Impact of Raindrops on Soils in Urban Vegetated Green Infrastructure Systems

    Science.gov (United States)

    Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.

    2014-12-01

    Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  7. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  8. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Hansen, Birger Ulf

    2013-01-01

    vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid...... and GPP (R-2 = 0.85, p remote Arctic regions....... (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved....

  9. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    Science.gov (United States)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found

  10. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Potential effects of elevated base flow and midsummer spike flow experiments on riparian vegetation along the Green River

    Science.gov (United States)

    Friedman, Jonathan M.

    2018-01-01

    The Upper Colorado River Endangered Fish Recovery Program has requested experimental flow releases from Flaming Gorge Dam for (1) elevated summer base flows to promote larval endangered Colorado pikeminnow, and (2) midsummer spike flows to disadvantage spawning invasive smallmouth bass. This white paper explores the effects of these proposed flow modifications on riparian vegetation and sediment deposition downstream along the Green River. Although modest in magnitude, the elevated base flows and possible associated reductions in magnitude or duration of peak flows would exacerbate a long-term trend of flow stabilization on the Green River that is already leading to proliferation of vegetation including invasive tamarisk along the channel and associated sediment deposition, channel narrowing and channel simplification. Midsummer spike flows could promote establishment of late-flowering plants like tamarisk. Because channel narrowing and simplification threaten persistence and quality of backwater and side channel features needed by endangered fish, the proposed flow modifications could lead to degradation of fish habitat. Channel narrowing and vegetation encroachment could be countered by increases in peak flows or reductions in base flows in some years and by prescription of rapid flow declines following midsummer spike flows. These strategies for reducing vegetation encroachment would need to be balanced with flow

  12. A multitemporal and non-parametric approach for assessing the impacts of drought on vegetation greenness

    DEFF Research Database (Denmark)

    Carrao, Hugo; Sepulcre, Guadalupe; Horion, Stéphanie Marie Anne F

    2013-01-01

    This study evaluates the relationship between the frequency and duration of meteorological droughts and the subsequent temporal changes on the quantity of actively photosynthesizing biomass (greenness) estimated from satellite imagery on rainfed croplands in Latin America. An innovative non-parametric...... and non-supervised approach, based on the Fisher-Jenks optimal classification algorithm, is used to identify multi-scale meteorological droughts on the basis of empirical cumulative distributions of 1, 3, 6, and 12-monthly precipitation totals. As input data for the classifier, we use the gridded GPCC...... for the period between 1998 and 2010. The time-series analysis of vegetation greenness is performed during the growing season with a non-parametric method, namely the seasonal Relative Greenness (RG) of spatially accumulated fAPAR. The Global Land Cover map of 2000 and the GlobCover maps of 2005/2006 and 2009...

  13. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive

    International Nuclear Information System (INIS)

    Fraser, R H; Olthof, I; Carrière, M; Deschamps, A; Pouliot, D

    2011-01-01

    Analysis of coarse resolution (∼1 km) satellite imagery has provided evidence of vegetation changes in arctic regions since the mid-1980s that may be attributable to climate warming. Here we investigate finer-scale changes to northern vegetation over the same period using stacks of 30 m resolution Landsat TM and ETM + satellite images. Linear trends in the normalized difference vegetation index (NDVI) and tasseled cap indices are derived for four widely spaced national parks in northern Canada. The trends are related to predicted changes in fractional shrub and other vegetation covers using regression tree classifiers trained with plot measurements and high resolution imagery. We find a consistent pattern of greening (6.1–25.5% of areas increasing) and predicted increases in vascular vegetation in all four parks that is associated with positive temperature trends. Coarse resolution (3 km) NDVI trends were not detected in two of the parks that had less intense greening. A range of independent studies and observations corroborate many of the major changes observed.

  14. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  15. Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions

    International Nuclear Information System (INIS)

    Al-Muhtaseb, Ala’a H.; Jamil, Farrukh; Al-Haj, Lamya; Al-Hinai, Mohab A.; Baawain, Mahad; Myint, Myo Tay Zar; Rooney, David

    2016-01-01

    Highlights: • Active catalysts Pt/C and Pd/C were developed from waste date pits. • Catalysts showed good activity in hydrodeoxygenation of date pit oil to alkane fuels. • The liquid product fractions lay within the range of the jet fuel and green diesel. • Green diesel fraction obtained by Pd/C was 72.03% and jet fuel was 30.39%. • Date pits can be a promising platform for the production of catalysts and biofuels. - Abstract: Date pits are considered one of the major agricultural wastes in Oman. The present work involves the synthesis of active catalysts from waste date pits carbon produced by carbonization and impregnation with Pt and Pd metals. Synthesized catalysts Pt/C and Pd/C were characterized by XRD, SEM, TEM, EDX, BET and XPS. The activity of the catalysts’ performance was evaluated by the hydrodeoxygenation of date pits oil for the production of second-generation biofuels, which includes jet fuel and green diesel fractions. Results indicate that the synthesized catalysts were highly active for the hydrodeoxygenation of date pits oil. Based on the elemental analysis, the degree of deoxygenation (DOD) of product oil was 97.5% and 89.4% for the Pd/C and Pt/C catalysts respectively. The high DOD was also confirmed by product analyses that mainly consist of paraffinic hydrocarbons. Results also showed that between the two catalysts, Pd/C showed a higher activity towards hydrodeoxygenation, a conclusion that was based on the high DOD of the product oil due to hydrocarbons formation. Based on the type of components in the product oil, the maximum fraction of hydrocarbons formed lay within the range of 72.03% and 72.78% green diesel, and 30.39% and 28.25% jet fuel using Pd/C and Pt/C catalysts respectively. It can be concluded that waste date pits can be a promising platform for the production of catalysts and biofuels.

  16. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau.

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Chen, Xiaoqiu; An, Shuai; Fu, Yongshuo H; Wang, Shiping; Cong, Nan; Janssens, Ivan A

    2016-09-01

    Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime. Using both in situ and satellite observations, we found that vegetation green-up date showed a stronger negative partial correlation with daily minimum temperature (Tmin ) than with maximum temperature (Tmax ) before the growing season ('preseason' henceforth). Summer vegetation greenness was strongly positively correlated with summer Tmin , but negatively with Tmax . A 1-K increase in preseason Tmin advanced green-up date by 4 days (P greenness by 3.6% relative to the mean greenness during 2000-2004 (P green-up date (P > 0.10) and higher summer Tmax even reduced greenness by 2.6% K(-1) (P greenness were probably due to the accompanying decline in water availability. The dominant enhancing effect of nighttime warming indicates that climatic warming will probably have stronger impact on TP ecosystems than on apparently similar Arctic ecosystems where vegetation is controlled mainly by Tmax . Our results are crucial for future improvements of dynamic vegetation models embedded in the Earth System Models which are being used to describe the behavior of the Asian monsoon. The results are significant because the state of the vegetation on the TP plays an important role in steering the monsoon. © 2016 John Wiley & Sons Ltd.

  17. Effects of Warming Hiatuses on Vegetation Growth in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Hong Wei

    2018-04-01

    Full Text Available There have been hiatuses in global warming since the 1990s, and their potential impacts have attracted extensive attention and discussion. Changes in temperature not only directly affect the greening of vegetation but can also indirectly alter both the growth state and the growth tendency of vegetation by altering other climatic elements. The middle-high latitudes of the Northern Hemisphere (NH constitute the region that has experienced the most warming in recent decades; therefore, identifying the effects of warming hiatuses on the vegetation greening in that region is of great importance. Using satellite-derived Normalized Difference Vegetation Index (NDVI data and climatological observation data from 1982–2013, we investigated hiatuses in warming trends and their impact on vegetation greenness in the NH. Our results show that the regions with warming hiatuses in the NH accounted for 50.1% of the total area and were concentrated in Mongolia, central China, and other areas. Among these regions, 18.8% of the vegetation greenness was inhibited in the warming hiatus areas, but 31.3% of the vegetation grew faster. Because temperature was the main positive climatic factor in central China, the warming hiatuses caused the slow vegetation greening rate. However, precipitation was the main positive climatic factor affecting vegetation greenness in Mongolia; an increase in precipitation accelerated vegetation greening. The regions without a warming hiatus, which were mainly distributed in northern Russia, northern central Asia, and other areas, accounted for 49.9% of the total area. Among these regions, 21.4% of the vegetation grew faster over time, but 28.5% of the vegetation was inhibited. Temperature was the main positive factor affecting vegetation greenness in northern Russia; an increase in temperature promoted vegetation greening. However, radiation was the main positive climatic factor in northern central Asia; reductions in radiation

  18. Determination of Vitamin C, b-carotene and Riboflavin Contents in Five Green Vegetables Organically and Conventionally Grown.

    Science.gov (United States)

    Ismail, Amin; Cheah, Sook Fun

    2003-03-01

    As consumer interest in organically grown vegetables is increasing in Malaysia, there is a need to answer whether the vegetables are more nutritious than those conventionally grown. This study investigates commercially available vegetables grown organically and conventionally, purchased from retailers to analyse β-carotene, vitamin C and riboflavin contents. Five types of green vegetables were selected, namely Chinese mustard (sawi) (Brassica juncea), Chinese kale (kai-lan) (Brassica alboglabra), lettuce (daun salad) (Lactuca sativa), spinach (bayam putih) (Amaranthus viridis) and swamp cabbage (kangkung) (Ipomoea aquatica). For vitamin analysis, a reverse-phase high performance liquid chromatography was used to identify and quantify β -carotene, vitamin C and riboflavin. The findings showed that not all of the organically grown vegetables were higher in vitamins than that conventionally grown. This study found that only swamp cabbage grown organically was highest in β -carotene, vitamin C and riboflavin contents among the entire samples studied. The various nutrients in organically grown vegetables need to be analysed for the generation of a database on nutritional value which is important for future research.

  19. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  20. Role of Vegetation and Mulch in Mitigating the Effects of Raindrop Impact on Runoff and Infiltration from Urban Vegetated Green Infrastructure

    Science.gov (United States)

    Alizadehtazi, B.; Montalto, F. A.

    2013-12-01

    Rain drop impact causes soil crust formation which, in turn, reduces infiltration rates and increases runoff, contributing to soil erosion, downstream flooding and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. This impulse breaks larger soil aggregates into smaller particles and disperses soil from its original position. The displaced soil particles self-stratify, with finer particles at the top forming the crust. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Very little research has sought to quantify the effect that canopies and mulch can have on this phenomenon. This presentation presents preliminary findings from ongoing study conducted using rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to discuss green infrastructure facility maintenance and design strategies, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  1. Retention of nutrients in green leafy vegetables on dehydration.

    Science.gov (United States)

    Gupta, Sheetal; Gowri, B S; Lakshmi, A Jyothi; Prakash, Jamuna

    2013-10-01

    The objective of the study was to investigate the influence of dehydration on nutrient composition of Amaranthus gangeticus, Chenopodium album, Centella asiatica, Amaranthus tricolor and Trigonella foenum graecum. The green leafy vegetables (GLV) were steam blanched for 5 min after pretreatment and dried in an oven at 60 °C for 10-12 h. The fresh and dehydrated samples were analyzed for selected proximate constituents, vitamins, minerals, antinutrients and dialyzable minerals. Dehydration seems to have little effect on the proximate, mineral and antinutrient content of the GLV. Among the vitamins, retention of ascorbic acid was 1-14%, thiamine 22-71%, total carotene 49-73% and β-carotene 20-69% respectively, of their initial content. Dialyzable iron and calcium in the fresh vegetables ranged between 0.21-3.5 mg and 15.36-81.33 mg/100 g respectively, which reduced to 0.05-0.53 mg and 6.94-58.15 mg/100 g on dehydration. Dehydration seems to be the simplest convenient technology for preserving these sources of micronutrients, especially when they are abundantly available. Irrespective of the losses of vitamins that take place during dehydration, dehydrated GLV are a concentrated natural source of micronutrients and they can be used in product formulations. Value addition of traditional products with dehydrated GLV can be advocated as a feasible food-based approach to combat micronutrient malnutrition.

  2. Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

    Directory of Open Access Journals (Sweden)

    C. Yue

    2017-11-01

    Full Text Available Understanding the variations in global land carbon uptake, and their driving mechanisms, is essential if we are to predict future carbon-cycle feedbacks on global environmental changes. Satellite observations of vegetation greenness have shown consistent greening across the globe over the past three decades. Such greening has driven the increasing land carbon sink, especially over the growing season in northern latitudes. On the other hand, interannual variations in land carbon uptake are strongly influenced by El Niño–Southern Oscillation (ENSO climate variations. Marked reductions in land uptake and strong positive anomalies in the atmospheric CO2 growth rates occur during El Niño events. Here we use the year 2015 as a natural experiment to examine the possible response of land ecosystems to a combination of vegetation greening and an El Niño event. The year 2015 was the greenest year since 2000 according to satellite observations, but a record atmospheric CO2 growth rate also occurred due to a weaker than usual land carbon sink. Two atmospheric inversions indicate that the year 2015 had a higher than usual northern land carbon uptake in boreal spring and summer, consistent with the positive greening anomaly and strong warming. This strong uptake was, however, followed by a larger source of CO2 in the autumn. For the year 2015, enhanced autumn carbon release clearly offset the extra uptake associated with greening during the summer. This finding leads us to speculate that a long-term greening trend may foster more uptakes during the growing season, but no large increase in annual carbon sequestration. For the tropics and Southern Hemisphere, a strong transition towards a large carbon source for the last 3 months of 2015 is discovered, concomitant with El Niño development. This transition of terrestrial tropical CO2 fluxes between two consecutive seasons is the largest ever found in the inversion records. The strong transition to a

  3. Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

    Science.gov (United States)

    Yue, Chao; Ciais, Philippe; Bastos, Ana; Chevallier, Frederic; Yin, Yi; Rödenbeck, Christian; Park, Taejin

    2017-11-01

    Understanding the variations in global land carbon uptake, and their driving mechanisms, is essential if we are to predict future carbon-cycle feedbacks on global environmental changes. Satellite observations of vegetation greenness have shown consistent greening across the globe over the past three decades. Such greening has driven the increasing land carbon sink, especially over the growing season in northern latitudes. On the other hand, interannual variations in land carbon uptake are strongly influenced by El Niño-Southern Oscillation (ENSO) climate variations. Marked reductions in land uptake and strong positive anomalies in the atmospheric CO2 growth rates occur during El Niño events. Here we use the year 2015 as a natural experiment to examine the possible response of land ecosystems to a combination of vegetation greening and an El Niño event. The year 2015 was the greenest year since 2000 according to satellite observations, but a record atmospheric CO2 growth rate also occurred due to a weaker than usual land carbon sink. Two atmospheric inversions indicate that the year 2015 had a higher than usual northern land carbon uptake in boreal spring and summer, consistent with the positive greening anomaly and strong warming. This strong uptake was, however, followed by a larger source of CO2 in the autumn. For the year 2015, enhanced autumn carbon release clearly offset the extra uptake associated with greening during the summer. This finding leads us to speculate that a long-term greening trend may foster more uptakes during the growing season, but no large increase in annual carbon sequestration. For the tropics and Southern Hemisphere, a strong transition towards a large carbon source for the last 3 months of 2015 is discovered, concomitant with El Niño development. This transition of terrestrial tropical CO2 fluxes between two consecutive seasons is the largest ever found in the inversion records. The strong transition to a carbon source in the

  4. AKTIVITAS ANTIBAKTERI FRAKSI-FRAKSI EKSTRAK SIRIH HIJAU (Piper betle Linn TERHADAP PATOGEN PANGAN [Antibacterial Activity of Fractionated Green Sirih (Piper betle Linn Extract Against Food Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Maggy T. Suhartono

    2012-12-01

    Full Text Available Fractionation of green sirih (Piper betle Linn extract by chromatography colom using the mixture of several solvents i.e. chloroform, ethanol and acetic acid (4:1:1 resulted in 17 fractions. All fractions showed antibacterial activities but only 2 fractions (fraction 3 and fraction 4 showed the highest inhibition towards the six tested bacteria Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes. Among the tested bacteria, all fractions of green sirih extracts showed the most effective inhibition against, Salmonella Typhimurium with inhibition zone diameters ranging from 10 mm to 26 mm. Identification using GC-MS found that fraction 3 and fraction 4 contained chavicol; dodecanoic acid, myristic, palmitic and oleic acid.

  5. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated

  6. Ten Years of Post-Fire Vegetation Recovery following the 2007 Zaca Fire using Landsat Satellite Imagery

    Science.gov (United States)

    Hallett, J. K. E.; Miller, D.; Roberts, D. A.

    2017-12-01

    Forest fires play a key role in shaping eco-systems. The risk to vegetation depends on the fire regime, fuel conditions (age and amount), fire temperature, and physiological characteristics such as bark thickness and stem diameter. The 2007 Zaca Fire (24 kilometers NE of Buellton, Santa Barbara County, California) burned 826.4 km2 over the course of 2 months. In this study, we used a time series of Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager imagery, to evaluate plant burn severity and post fire recovery as defined into classes of above average recovery, normal recovery, and below average recovery. We spectrally unmixed the images into green vegetation (GV), non-photosynthetic vegetation (NPV), soil surface (SOIL), and ash with a spectral library developed using Constrained Reference Endmember Selection (CRES). We delineated the fire perimeter using the differenced Normalized Burn Ratio (dNBR) and evaluated changes in this index and the Normalized Difference Vegetation Index through time. The results showed an immediate decline in GV and NPV fractions, with a rise in soil and ash fractions directly following the fire, with a slow recovery in GV fraction and a loss of bare soil cover. The was a sharp increase in the ash fraction following the fire and gradual decrease in the year after. Most areas have recovered as of 2017, with prominent recovery in the center of the burn scar and reduced recovery in areas to the south. These results indicate how post-fire vegetation varies based on initial burn severity and pre-fire GV and NPV fractions.

  7. Vegetation physiology controls continental water cycle responses to climate change

    Science.gov (United States)

    Lemordant, L. A.; Swann, A. L. S.; Cook, B.; Scheff, J.; Gentine, P.

    2017-12-01

    Abstract per se:Predicting how climate change will affect the hydrologic cycle is of utmost importance for ecological systems and for human life and activities. A typical perspective is that global warming will cause an intensification of the mean state, the so-called "dry gets drier, wet gets wetter" paradigm. While this result is robust over the oceans, recent works suggest it may be less appropriate for terrestrial regions. Using Earth System Models (ESMs) with decoupled surface (vegetation physiology, PHYS) and atmospheric (radiative, ATMO) CO2 responses, we show that the CO2 physiological response dominates the change in the continental hydrologic cycle compared to radiative and precipitation changes due to increased atmospheric CO2, counter to previous assumptions. Using multiple linear regression analysis, we estimate the individual contribution of each of the three main drivers, precipitation, radiation and physiological CO2 forcing (see attached figure). Our analysis reveals that physiological effects dominate changes for 3 key indicators of dryness and/or vegetation stress (namely LAI, P-ET and EF) over the largest fraction of the globe, except for soil moisture which exhibits a more complex response. This highlights the key role of vegetation in controlling future terrestrial hydrologic response.Legend of the Figure attached:Decomposition along the three main drivers of LAI (a), P-ET (b), EF (c) in the control run. Green quantifies the effect of the vegetation physiology based on the run PHYS; red and blue quantify the contribution of, respectively, net radiation and precipitation, based on multiple linear regression in ATMO. Pie charts show for each variable the fraction (labelled in %) of land under the main influence (more than 50% of the changes is attributed to this driver) of one the three main drivers (green for grid points dominated by vegetation physiology, red for grid points dominated by net radiation, and blue for grid points dominated by the

  8. Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China

    Directory of Open Access Journals (Sweden)

    Wang Hao

    2017-10-01

    Full Text Available The Chinese government introduced six ecological restoration programs to improve its natural environment. Although these programs have proven successful in improving local environmental conditions, some studies have questioned their effectiveness when regions suffer from extreme weather conditions. Using the Grain for Green Program (GGP region as a study area, we estimated vegetation activities in the GGP region from 2000 to 2010 to clarify the trends in vegetation growth and their driving forces. The results showed that: (1 vegetation activities improved in the GGP region during 2000-2010, with 58.94% of the area showing an increased trend in the NDVI (normalized difference vegetation index; (2 26.33% of the increased vegetation was caused by human interference, and 11.61% by climate variation, human activity was the dominant cause, and resulted in 54.68% of the degradation compared to 4.74% from climate change; and, (3 the contribution of different land use types to the NDVI interannual variations showed that high contribution regions were focused in the arid and semiarid areas, where the vegetation growth is associated with variations in recipitation and temperature. However, conversions between farmland and grassland or forest had a significant effect on the change in the NDVI trend. Therefore, although climate conditions can affect vegetation growth, human activities are more important in vegetation changes, and appropriate human activities would contribute to its continual improvement. Hence, we recommend establishing an assessment and scientific management mechanism for eco-risks in the design and management of ecosystem restoration programs.

  9. Methanol fractionations of Catha edulis Frosk (Celastraceae) contracted Lewis rat aorta in vitro: a comparison between crimson and green leaves.

    Science.gov (United States)

    Mahmood, Samira Abdulla; Pavlovic, Dragan; Hoffmann, Ulrich

    2009-05-07

    The study investigated the effect of methanol extract and its fractionations obtained from Yemeni khat on the smooth muscle isometric tension in Lewis rat aortal ring preparations and compared the effects of the crimson and green leaves. Khat leaves were sorted into green (khat Light; KL) and crimson (khat Dark; KD) leaves, extracted with methanol, followed with solvent-solvent extraction (benzene, chloroform and ethylacetate). The contractile activity of the fractions was tested using aortal ring preparations. The control (phenylepherine contraction) methanol extracts contracted aortas at concentrations 250, 125 and 67.5 microg/ml buffer by 80.2%, 57.3%, 26.4% and 81.5%, 65.6%, 24.6% for KL and KD, respectively. Fractions of benzene (BF) and ethylacetate (EaF) contracted the aorta with 2 microgm, whereas, chloroform (ChF) with 1 microgm/1 ml buffer was less potent. The shape of contraction curve produced by EaF differed from that of ChF and BF of both (KL and KD). The EaF induced-contraction peaked after 3.3 +/- 0.94 mins, whereas those of BF and CHF peaked after 18.0 +/- 2.2, 19.7 +/- 0.94 mins, respectively. Pre-incubation with nifedipine (10(-6) M) insignificantly reduced the contraction induced by all fractionations, but prazosin (10(-6) M) reduced the contraction by 81.9%, 63.1%, 71.8% with p = 0.23, 0.09, 0.15 for BF, ChF and EaF of KL, respectively. It significantly reduced contraction of ChF, 64.1%; p = 0.02, and of EaF, 73.5%; p = 0.04 of KD, while the reduction in contraction of BF was 63.1%; p = 0.06. In conclusion, fractions of green and crimson Yemeni khat leaves contracted aortas of Lewis rats. Both leaves behave almost similarly. Contraction induced by chloroform fraction produced alpha-sympathetic activity.

  10. Hyperspectral Monitoring of Green Roof Vegetation Health State in Sub-Mediterranean Climate: Preliminary Results.

    Science.gov (United States)

    Piro, Patrizia; Porti, Michele; Veltri, Simone; Lupo, Emanuela; Moroni, Monica

    2017-03-23

    In urban and industrial environments, the constant increase of impermeable surfaces has produced drastic changes in the natural hydrological cycle. Decreasing green areas not only produce negative effects from a hydrological-hydraulic perspective, but also from an energy point of view, modifying the urban microclimate and generating, as shown in the literature, heat islands in our cities. In this context, green infrastructures may represent an environmental compensation action that can be used to re-equilibrate the hydrological and energy balance and reduce the impact of pollutant load on receiving water bodies. To ensure that a green infrastructure will work properly, vegetated areas have to be continuously monitored to verify their health state. This paper presents a ground spectroscopy monitoring survey of a green roof installed at the University of Calabria fulfilled via the acquisition and analysis of hyperspectral data. This study is part of a larger research project financed by European Structural funds aimed at understanding the influence of green roofs on rainwater management and energy consumption for air conditioning in the Mediterranean area. Reflectance values were acquired with a field-portable spectroradiometer that operates in the range of wavelengths 350-2500 nm. The survey was carried out during the time period November 2014-June 2015 and data were acquired weekly. Climatic, thermo-physical, hydrological and hydraulic quantities were acquired as well and related to spectral data. Broadband and narrowband spectral indices, related to chlorophyll content and to chlorophyll-carotenoid ratio, were computed. The two narrowband indices NDVI 705 and SIPI turned out to be the most representative indices to detect the plant health status.

  11. Updated vegetation information in high resolution regional climate simulations using WRF

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    Climate studies show that the frequency of heat wave events and above-average high temperatures during the summer months over Europe will increase in the coming decades. Such climatic changes and long-term meteorological conditions will impact the seasonal development of vegetation and ultimately...... modify the energy distribution at the land surface. In weather and climate models it is important to represent the vegetation variability accurately to obtain reliable results. The weather research and forecasting (WRF) model uses a green vegetation fraction (GVF) climatology to represent the seasonal...... or changes in management practice since it is derived more than twenty years ago. In this study, a new high resolution, high quality GVF product is applied in a WRF climate simulation over Denmark during the 2006 heat wave year. The new GVF product reflects the year 2006 and it was previously tested...

  12. Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data

    Science.gov (United States)

    Lu, Yuhao; Coops, Nicholas C.; Hermosilla, Txomin

    2017-04-01

    Urbanization globally is consistently reshaping the natural landscape to accommodate the growing human population. Urban vegetation plays a key role in moderating environmental impacts caused by urbanization and is critically important for local economic, social and cultural development. The differing patterns of human population growth, varying urban structures and development stages, results in highly varied spatial and temporal vegetation patterns particularly in the pan-Pacific region which has some of the fastest urbanization rates globally. Yet spatially-explicit temporal information on the amount and change of urban vegetation is rarely documented particularly in less developed nations. Remote sensing offers an exceptional data source and a unique perspective to map urban vegetation and change due to its consistency and ubiquitous nature. In this research, we assess the vegetation fractions of 25 cities across 12 pan-Pacific countries using annual gap-free Landsat surface reflectance products acquired from 1984 to 2012, using sub-pixel, spectral unmixing approaches. Vegetation change trends were then analyzed using Mann-Kendall statistics and Theil-Sen slope estimators. Unmixing results successfully mapped urban vegetation for pixels located in urban parks, forested mountainous regions, as well as agricultural land (correlation coefficient ranging from 0.66 to 0.77). The greatest vegetation loss from 1984 to 2012 was found in Shanghai, Tianjin, and Dalian in China. In contrast, cities including Vancouver (Canada) and Seattle (USA) showed stable vegetation trends through time. Using temporal trend analysis, our results suggest that it is possible to reduce noise and outliers caused by phenological changes particularly in cropland using dense new Landsat time series approaches. We conclude that simple yet effective approaches of unmixing Landsat time series data for assessing spatial and temporal changes of urban vegetation at regional scales can provide

  13. A Daily Snack Containing Leafy Green Vegetables, Fruit, and Milk before and during Pregnancy Prevents Gestational Diabetes in a Randomized, Controlled Trial in Mumbai, India.

    Science.gov (United States)

    Sahariah, Sirazul A; Potdar, Ramesh D; Gandhi, Meera; Kehoe, Sarah H; Brown, Nick; Sane, Harshad; Coakley, Patsy J; Marley-Zagar, Ella; Chopra, Harsha; Shivshankaran, Devi; Cox, Vanessa A; Jackson, Alan A; Margetts, Barrie M; Fall, Caroline Hd

    2016-07-01

    Prospective observational studies suggest that maternal diets rich in leafy green vegetables and fruit may help prevent gestational diabetes mellitus (GDM). Our objective was to test whether increasing women's dietary intake of leafy green vegetables, fruit, and milk before conception and throughout pregnancy reduced their risk of GDM. Project SARAS ("excellent") (2006-2012) was a nonblinded, individually randomized, controlled trial in women living in slums in the city of Mumbai, India. The interventions included a daily snack made from leafy green vegetables, fruit, and milk for the treatment group or low-micronutrient vegetables (e.g., potato and onion) for the control group, in addition to the usual diet. Results for the primary outcome, birth weight, have been reported. Women were invited to take an oral-glucose-tolerance test (OGTT) at 28-32 wk gestation to screen for GDM (WHO 1999 criteria). The prevalence of GDM was compared between the intervention and control groups, and Kernel density analysis was used to compare distributions of 120-min plasma glucose concentrations between groups. Of 6513 women randomly assigned, 2291 became pregnant; of these, 2028 reached a gestation of 28 wk, 1008 (50%) attended for an OGTT, and 100 (9.9%) had GDM. In an intention-to-treat analysis, the prevalence of GDM was reduced in the treatment group (7.3% compared with 12.4% in controls; OR: 0.56; 95% CI: 0.36, 0.86; P = 0.008). The reduction in GDM remained significant after adjusting for prepregnancy adiposity and fat or weight gain during pregnancy. Kernel density analysis showed that this was explained by the fact that fewer women in the treatment group had a 2-h glucose concentration in the range 7.5-10.0 mmol/L. In low-income settings, in which women have a low intake of micronutrient-rich foods, improving dietary micronutrient quality by increasing intake of leafy green vegetables, fruit, and/or milk may have an important protective effect against the development of GDM

  14. Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Hameed Ullah

    2017-01-01

    Full Text Available Chemical syntheses involve either hazardous reactants or byproducts which adversely affect the environment. It is, therefore, desirable to develop synthesis processes which either do not involve hazardous reactants or consume all the reactants giving no byproducts. We have synthesized CuO nanoparticles (NPs adhering to some of the principles of green chemistry. The CuO NPs have been synthesized exploiting extracts of vegetable wastes, that is, Cauliflower waste and Potatoes and Peas peels. The extracts were aimed to work as capping agents to get control over the microstructure and morphology of the resulting CuO NPs. The green synthesized CuO NPs were characterized to explore the microstructure, morphology, optical bandgaps, and photocatalytic performances. XRD revealed that the CuO NPs of all the samples crystallized in a single crystal system, that is, monoclinic. However, the morphologies and the optical bandgaps energies varied as a function of the extract of vegetable waste. Similarly, the CuO NPs obtained through different extracts have shown different photocatalytic activities. The CuO NPs produced with extract of Cauliflower have shown high degradation of MB (96.28% compared to obtained with Potatoes peels (87.37% and Peas peels (79.11%.

  15. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau

    International Nuclear Information System (INIS)

    Tian, Li; Zhang, Yangjian; Zhu, Juntao

    2014-01-01

    The Tibetan Plateau (TP) has fundamental ecological and environmental significance to China and Asia through its influence on regional and continental climates. In recent years, climate warming has caused unprecedented changes to land surface processes on the TP, which would unavoidably undermine the ecological and environmental functions of the TP. Among the numerous land surface processes potentially impacted by climate warming, the effect of vegetation greenness on surface energy balance is one of the most critical, but has been long ignored. In this study, we investigated the spatial and temporal patterns of land surface albedo (LSA) on the TP and evaluated the vegetation greenness in relation to patterns of LSA. We found that LSA has been decreasing in most of the vegetated grasslands on the TP from 2000 to 2013, as compared to a flat trend for desert area. The regions where LSA has been decreasing were spatially correlated to areas of increased vegetation greenness. Along rising altitude, LSA decreasing rate exhibited an overall decreasing trend. Across the TP, elevated vegetation greenness in grasslands acted as a primary factor pulling down LSA. The driving effects of vegetation greenness on LSA vary with grassland types, as revealed by a more significant relationship between vegetation greenness and LSA for the sparsely vegetated zone (i.e. steppe) than the more densely vegetated zone (i.e. meadow). Furthermore, the driving effect of vegetation greenness on LSA exhibited an obvious dependence on altitude as effects with rising altitude were relatively strong up to 3000 m, then weakened from 3500 m to 5000 m, and then the effects again increased from 5000 to 6000 m. The growing season LSA trend revealed in this study emphasizes the need to give greater attention to the growing season LSA flux in future surface energy balance studies. (letter)

  16. Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on GIMMS NDVI Data from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Donghai Wu

    2014-05-01

    Full Text Available Fractional vegetation cover (FVC is an important biophysical parameter of terrestrial ecosystems. Variation of FVC is a major problem in research fields related to remote sensing applications. In this study, the global FVC from 1982 to 2011 was estimated by GIMMS NDVI data, USGS global land cover characteristics data and HWSD soil type data with a modified dimidiate pixel model, which considered vegetation and soil types and mixed pixels decomposition. The evaluation of the robustness and accuracy of the GIMMS FVC with MODIS FVC and Validation of Land European Remote sensing Instruments (VALERI FVC show high reliability. Trends of the annual FVCmax and FVCmean datasets in the last 30 years were reported by the Mann–Kendall method and Sen’s slope estimator. The results indicated that global FVC change was 0.20 and 0.60 in a year with obvious seasonal variability. All of the continents in the world experience a change in the annual FVCmax and FVCmean, which represents biomass production, except for Oceania, which exhibited a significant increase based on a significance level of p = 0.001 with the Student’s t-test. Global annual maximum and mean FVC growth rates are 0.14%/y and 0.12%/y, respectively. The trends of the annual FVCmax and FVCmean based on pixels also illustrated that the global vegetation had turned green in the last 30 years. A significant trend on the p = 0.05 level was found for 15.36% of the GIMMS FVCmax pixels on a global scale (excluding permanent snow and ice, in which 1.8% exhibited negative trends and 13.56% exhibited positive trends. The GIMMS FVCmean similarly produced a total of 16.64% significant pixels with 2.28% with a negative trend and 14.36% with a positive trend. The North Frigid Zone represented the highest annual FVCmax significant increase (p = 0.05 of 25.17%, which may be caused mainly by global warming, Arctic sea-ice loss and an advance in growing seasons. Better FVC predictions at large regional scales

  17. Green roofs

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-04-01

    Full Text Available , beetles and spiders); and the number of birds that nest in vegetated roofs (including kestrels, swallows, and wagtails). Objective The primary objective of a green roof is to create a living habitat in an otherwise barren environment, hence the use... the negative environmental impacts including plant and insect specie loss. Thus at a philosophical level green roofs support the notion “replace what you displace”. Key ecological issues that can be addressed through green roofs include: Negative effects...

  18. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  19. Global changes in dryland vegetation dynamics (1988–2008 assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data

    Directory of Open Access Journals (Sweden)

    N. Andela

    2013-10-01

    Full Text Available Drylands, covering nearly 30% of the global land surface, are characterized by high climate variability and sensitivity to land management. Here, two satellite-observed vegetation products were used to study the long-term (1988–2008 vegetation changes of global drylands: the widely used reflective-based Normalized Difference Vegetation Index (NDVI and the recently developed passive-microwave-based Vegetation Optical Depth (VOD. The NDVI is sensitive to the chlorophyll concentrations in the canopy and the canopy cover fraction, while the VOD is sensitive to vegetation water content of both leafy and woody components. Therefore it can be expected that using both products helps to better characterize vegetation dynamics, particularly over regions with mixed herbaceous and woody vegetation. Linear regression analysis was performed between antecedent precipitation and observed NDVI and VOD independently to distinguish the contribution of climatic and non-climatic drivers in vegetation variations. Where possible, the contributions of fire, grazing, agriculture and CO2 level to vegetation trends were assessed. The results suggest that NDVI is more sensitive to fluctuations in herbaceous vegetation, which primarily uses shallow soil water, whereas VOD is more sensitive to woody vegetation, which additionally can exploit deeper water stores. Globally, evidence is found for woody encroachment over drylands. In the arid drylands, woody encroachment appears to be at the expense of herbaceous vegetation and a global driver is interpreted. Trends in semi-arid drylands vary widely between regions, suggesting that local rather than global drivers caused most of the vegetation response. In savannas, besides precipitation, fire regime plays an important role in shaping trends. Our results demonstrate that NDVI and VOD provide complementary information and allow new insights into dryland vegetation dynamics.

  20. Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green) and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal.

    Science.gov (United States)

    Burkart, Katrin; Meier, Fred; Schneider, Alexandra; Breitner, Susanne; Canário, Paulo; Alcoforado, Maria João; Scherer, Dieter; Endlicher, Wilfried

    2016-07-01

    Urban populations are highly vulnerable to the adverse effects of heat, with heat-related mortality showing intra-urban variations that are likely due to differences in urban characteristics and socioeconomic status. We investigated the influence of urban green and urban blue, that is, urban vegetation and water bodies, on heat-related excess mortality in the elderly > 65 years old in Lisbon, Portugal, between 1998 and 2008. We used remotely sensed data and geographic information to determine the amount of urban vegetation and the distance to bodies of water (the Atlantic Ocean and the Tagus Estuary). Poisson generalized additive models were fitted, allowing for the interaction between equivalent temperature [universal thermal climate index (UTCI)] and quartiles of urban greenness [classified using the Normalized Difference Vegetation Index (NDVI)] and proximity to water (≤ 4 km vs. > 4 km), while adjusting for potential confounders. The association between mortality and a 1°C increase in UTCI above the 99th percentile (24.8°C) was stronger for areas in the lowest NDVI quartile (14.7% higher; 95% CI: 1.9, 17.5%) than for areas in the highest quartile (3.0%; 95% CI: 2.0, 4.0%). In areas > 4 km from water, a 1°C increase in UTCI above the 99th percentile was associated with a 7.1% increase in mortality (95% CI: 6.2, 8.1%), whereas in areas ≤ 4 km from water, the estimated increase in mortality was only 2.1% (95% CI: 1.2, 3.0%). Urban green and blue appeared to have a mitigating effect on heat-related mortality in the elderly population in Lisbon. Increasing the amount of vegetation may be a good strategy to counteract the adverse effects of heat in urban areas. Our findings also suggest potential benefits of urban blue that may be present several kilometers from a body of water. Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W. 2016. Modification of heat-related mortality in an elderly urban population by

  1. CONSIDERATIONS ON ROMANIA’S VEGETABLE MARKET

    Directory of Open Access Journals (Sweden)

    Agatha POPESCU

    2013-12-01

    Full Text Available The paper aimed to present the situation of Romania’s vegetable market in the period 2007-2011 based on the statistical data regarding the main vegetables: tomatoes, onion, garlic, cabbage, green peppers and melons. The vegetable production increased by 33.99 from 3,166.8 tons in 2007 to 4,176.3 tons in 2011.This was due to the yield gain as follows: 58.55 % for melons, 27.62 % for green peppers, 27.05 % for tomatoes, 25.99 % for dry garlic, 24.96 % for dry onion, 12.61 % for white cabbage. In 2011, the contribution of various categories of vegetables to production was: 24.55 % white cabbage, 21.81 % tomatoes, 15.45 % melons, 9.44 % onion, 6.06 % green pepper, 1.59 % garlic and 21.1 % other vegetables. The contribution of the micro regions to vegetable production in 2011 was: 19.46 % South Muntenia, 18.95 % South East Romania, 17.30 % South West Oltenia, 15.92 % North East Romania, 10.43 % West Romania, 8.47 % North West Romania, 6.54 % Central Romania, 2.93 % Bucharest Ilfov. Vegetable production per inhabitant is higher in Romania compared to the average production per capita in the EU. The average consumption increased as a postive aspect reflecting the obtained production and import. Vegetable production should increase in order to cover much better the doestic market needs and support export to the EU market.

  2. COLORS OF A SECOND EARTH: ESTIMATING THE FRACTIONAL AREAS OF OCEAN, LAND, AND VEGETATION OF EARTH-LIKE EXOPLANETS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Kawahara, Hajime; Suto, Yasushi; Taruya, Atsushi; Fukuda, Satoru; Nakajima, Teruyuki; Turner, Edwin L.

    2010-01-01

    Characterizing the surfaces of rocky exoplanets via their scattered light will be an essential challenge in investigating their habitability and the possible existence of life on their surfaces. We present a reconstruction method for fractional areas of different surface types from the colors of an Earth-like exoplanet. We create mock light curves for Earth without clouds using empirical data. These light curves are fitted to an isotropic scattering model consisting of four surface types: ocean, soil, snow, and vegetation. In an idealized situation where the photometric errors are only photon shot noise, we are able to reproduce the fractional areas of those components fairly well. The results offer some hope for detection of vegetation via the distinct spectral feature of photosynthesis on Earth, known as the red edge. In our reconstruction method, Rayleigh scattering due to the atmosphere plays an important role, and for terrestrial exoplanets with an atmosphere similar to our Earth, it is possible to estimate the presence of oceans and an atmosphere simultaneously.

  3. Drought-induced vegetation stress in southwestern North America

    International Nuclear Information System (INIS)

    Zhang Xiaoyang; Goldberg, Mitchell; Tarpley, Dan; Kogan, Felix; Yu Yunyue; Friedl, Mark A; Morisette, Jeffrey

    2010-01-01

    Trends towards earlier greenup and increased average greenness have been widely reported in both humid and dry ecosystems. By analyzing NOAA (National Oceanic and Atmospheric Administration) AVHRR (Advanced Very High Resolution Radiometer) data from 1982 to 2007, we report complex trends in both the growing season amplitude and seasonally integrated vegetation greenness in southwestern North America and further highlight regions consistently experiencing drought stress. In particular, greenness measurements from 1982 to 2007 show an increasing trend in grasslands but a decreasing trend in shrublands. However, vegetation greenness in this period has experienced a strong cycle, increasing from 1982 to 1993 but decreasing from 1993 to 2007. The significant decrease during the last decade has reduced vegetation greenness by 6% in shrublands and 13% in grasslands (16% and 21%, respectively, in the severe drought years). The greenness cycle correlates to both annual precipitation and dry season length derived from NOAA North America Regional Reanalysis data. If drought events continue as predicted by climate models, they will exacerbate ecosystem degradation and reduce carbon uptake.

  4. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiafu [ORNL; Shi, Xiaoying [ORNL; Thornton, Peter E [ORNL; Shilong, Dr. Piao [Peking University; Xuhui, Dr. Wang [Peking University

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.

  5. Evaluation of the data of vegetable covering using fraction images and multitemporal vegetation index, derived of orbital data of moderate resolution of the sensor MODIS

    International Nuclear Information System (INIS)

    Murillo Mejia, Mario Humberto

    2006-01-01

    The objective was to evaluate the data obtained by sensor MODIS onboard the EOS terra satellite land cover units. The study area is the republic of Colombia in South America. The methodology consisted of analyzing the multitemporal (vegetation, soil and shade-water) fraction images and vegetation indices (NDVI) apply the lineal spectral mixture model to products derived from derived images by sensor MODIS data obtained in years 2001 and 2003. The mosaics of the original and the transformed vegetation (soil and shade-water) bands were generated for the whole study area using SPRING 4. 0 software, developed by INPE then these mosaics were segmented, classified, mapped, and edited to obtain a moderate resolution land cover map. The results derived from MODIS analysis were compared with Landsat ETM+ data acquire for a single test site. The results of the project showed the usefulness of MODIS images for large-scale land cover mapping and monitoring studies

  6. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction

    Science.gov (United States)

    Muthu, Karuppiah; Priya, Sethuraman

    2017-05-01

    Cassia auriculata L., the flower aqueous extract was fractionated by separating funnel using n-hexane (A1), chloroform (A2), ethyl acetate (A3) and triple distilled water (A4). The A4 fraction was concentrated and determined the presence of preliminary phytochemicals such as tannins, flavonoids, glycosides, carbohydrates and polyphenolic compounds. These phytochemical compounds acted as reducing as well as a stabilizing agent in the green synthesis of Ag NPs from aqueous silver ions. Initially, the colour change and UV-vis absorbance surface Plasmon resonance strong, wide band located at 435 nm has confirmed the synthesis of Ag NPs. The X-ray diffraction (XRD) pattern of Ag NPs shows a face-centered cubic crystal structure. The observed values were calculated by Debye-Scherrer equation to theoretical confirms the particle size of 18 nm. The surface morphology of Ag NPs was viewed by HRTEM, the particles are spherical and triangle shapes with sizes from 10 to 35 nm. Further, the Ag NPs was effective catalytic activity in the reduction of highly environmental polluted organic compounds of 4-nitrophenol and methyl orange. The green synthesis of Ag NPs seems to eco-friendly, cost-effective, conventional one spot synthesis and greater performance of catalytic degradation of environmentally polluted organic dyes.

  7. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China.

    Science.gov (United States)

    Lin, Xiao-Sheng; Tang, Jie; Li, Zhao-Yang; Li, Hai-Yi

    2016-01-01

    Liao River basin in Jilin Province is the place of origin of the Dongliao River. This study gives a comprehensive analysis of the vegetation coverage in the region and provides a potential theoretical basis for ecological restoration. The seasonal variation of vegetation greenness and dynamics based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region was studied. Analyzing the relationship NDVI, temperature and rainfall, we derived a set of predictor variables from 2001 to 2012 using the MODIS Terra level 1 Product (MOD02QKM). The results showed a general increasing trend in NDVI value in the region, while 34.63 % of the region showed degradation. NDVI values begin to rise from April when plants are regreening and they drop in September when temperature are decreasing and the leaves are falling in the study area and temperature was found decreasing during the period of 2001-2012 while rainfall showed an increasing trend. This model could be used to observe the change in vegetation greenness and the dynamic effects of temperature and rainfall. This study provided important data for the environmental protection of the basin area. And we hope to provide scientific analysis for controlling water and soil erosion, maintaining the sustainable productivity of land resources, enhancing the treatment of water pollution and stimulating the virtuous cycle of the ecological system.

  8. Estimating the Fractional Vegetation Cover from GLASS Leaf Area Index Product

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xiao

    2016-04-01

    Full Text Available The fractional vegetation cover (FCover is an essential biophysical variable and plays a critical role in the carbon cycle studies. Existing FCover products from satellite observations are spatially incomplete and temporally discontinuous, and also inaccurate for some vegetation types to meet the requirements of various applications. In this study, an operational method is proposed to calculate high-quality, accurate FCover from the Global LAnd Surface Satellite (GLASS leaf area index (LAI product to ensure physical consistency between LAI and FCover retrievals. As a result, a global FCover product (denoted by TRAGL were generated from the GLASS LAI product from 2000 to present. With no missing values, the TRAGL FCover product is spatially complete. A comparison of the TRAGL FCover product with the Geoland2/BioPar version 1 (GEOV1 FCover product indicates that these FCover products exhibit similar spatial distribution pattern. However, there were relatively large discrepancies between these FCover products over equatorial rainforests, broadleaf crops in East-central United States, and needleleaf forests in Europe and Siberia. Temporal consistency analysis indicates that TRAGL FCover product has continuous trajectories. Direct validation with ground-based FCover estimates demonstrated that TRAGL FCover values were more accurate (RMSE = 0.0865, and R2 = 0.8848 than GEOV1 (RMSE = 0.1541, and R2 = 0.7621.

  9. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Kun; Zhang, Li; Qiu, Yubao; Ji, Lei; Tian, Feng; Wang, Cuizhen; Wang, Zhiyong

    2013-01-01

    Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.

  10. In vitro neuroprotective properties of some commonly consumed green leafy vegetables in Southern Nigeria

    Directory of Open Access Journals (Sweden)

    E.E. Nwanna

    2016-03-01

    Full Text Available Green leafy vegetable is one of the major cuisines in Southern Nigeria and they are not only consumed for their palatability, but also for their nutritional and medicinal properties as reported in folklore. Notable among them are afang (Gnetum africanum, editan (Lasianthera africana and utazi (Gongronema latifolium. In this study, we investigated the effect of aqueous extracts from afang, editan and utazi leaves on cholinesterases [acetylcholinesterase (AChE and butyrylcholinesterase (BChE] and monoamine oxidase (MAO activities. Fe2+ chelating abilities were also determined as an assessment of their neuroprotective potentials in vitro. We also assayed for their total phenol contents while the constituent phenolics were characterized using high performance liquid chromatography coupled with diode array detector (HPLC-DAD. The results revealed that the extracts inhibited AChE, BChE and MAO activities and also chelated Fe2+ in concentration dependent manner. The HPLC-DAD characterization showed that gallic, caffeic and ellagic acids and rutin were the dominant phenolic compounds in the extracts; nevertheless, utazi had the highest distribution of identified phenolics while afang had the least. The ability of the aqueous extracts of the vegetables to inhibit key enzymes (AChE, BChE and MAO relevant to neurodegeneration, as well chelate metal ion could help suggest their possible neuroprotective properties. These vegetables could be use as dietary intervention in the management of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases.

  11. Comparison of chemical characteristics of high oleic acid fraction of moringa oleifera oil with some vegetable oils

    International Nuclear Information System (INIS)

    Rahman, F.; Nadeem, M.; Zahoor, Y.

    2014-01-01

    Chemical characteristics of High oleic acid fraction (HOF) of Moringa oleifera oil (MOO) was compared with sunflower, soybean and canola oils. HOF of MOO was obtained by dry fractionation at 0 degree C. Iodine value and C18:1 in HOF increased from 61.55 to 82.47 points and 70.29% to 81.15%, respectively. Cloud point of HOF was 1.1 degree C as compared to 10.2 degree C in MOO. The induction period of HOF was greater than all the vegetable oils tested in this investigation. HOF can be used as a source of edible oil with better health attributes and superior storage stability. (author)

  12. Evaluation of the New York City Green Carts program

    Directory of Open Access Journals (Sweden)

    Shannon M Farley

    2015-12-01

    Full Text Available Access to fresh fruits and vegetables is a concern, particularly among low-income populations. Mobile vending is one strategy to expand produce availability and access to increase consumption. In 2008, New York City launched a mobile vending initiative, Green Carts. We report on the evaluation. Three waves of cross-sectional observational surveys of produce availability, variety, and quality were conducted during the summers of 2008, 2009, and 2011 in a stratified random sample of stores and carts comparing establishments in Green Cart neighborhoods (n = 13 with comparison neighborhoods (n = 3. Bivariate analyses for availability, variety, and quality comparing Green Cart and comparison neighborhoods were presented across years, and logistic and negative binomial regressions were used to test whether fruit and vegetable availability, variety, and quality increased in Green Cart compared with comparison neighborhoods, adjusting for clustering and neighborhood demographics. Establishments selling fruits and vegetables in Green Cart neighborhoods increased between 2008 and 2011 (50% to 69%, p <0.0001; there was no comparable increase in comparison neighborhoods. Establishments selling more than 10 fruits and vegetables types increased from 31% to 38% (p = 0.0414 in Green Cart neighborhoods; there was no change in comparison neighborhoods. Produce quality was high among comparison establishments, with 95% and 94% meeting the quality threshold in 2008 and 2011, while declining in Green Cart neighborhood establishments from 96% to 88% (p < 0.0001. Sustained produce availability was found in Green Cart neighborhoods between 2008–2011. Green Carts are one strategy contributing to improving produce access among New Yorkers.

  13. The potential of building envelope greening to achieve quietness

    NARCIS (Netherlands)

    Van Renterghem, T.; Hornikx, M.C.J.; Forssén, J.; Botteldooren, D.

    2013-01-01

    Reduction of noise is one of the multiple benefits of building envelope greening measures. The potential of wall vegetation systems, green roofs, vegetated low screens at roof edges, and also combinations of such treatments, have been studied by means of combining 2D and 3D full-wave numerical

  14. Fractional vector calculus and fractional Maxwell's equations

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2008-01-01

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered

  15. Soil carbon fractions and enzyme activities under different vegetation types on the Loess Plateau of China

    OpenAIRE

    Zhang, Haixin; Zeng, Quanchao; An, Shaoshan; Dong, Yanghong; Darboux, Frédéric

    2016-01-01

    Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily ox...

  16. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp.

    NARCIS (Netherlands)

    Liu, C.; Hofstra, N.; Franz, E.

    2013-01-01

    The likelihood of leafy green vegetable (LGV) contamination and the associated pathogen growth and survival are strongly related to climatic conditions. Particularly temperature increase and precipitation pattern changes have a close relationship not only with the fate and transport of enteric

  17. Irradiation of dehydrated vegetables

    International Nuclear Information System (INIS)

    Esterhuyse, A; Esterhuizen, T.

    1985-01-01

    The reason for radurization was to decreased the microbial count of dehydrated vegetables. The average absorbed irradiation dose range between 2kGy and 15kGy. The product catagories include a) Green vegetables b) White vegetables c) Powders of a) and b). The microbiological aspects were: Declining curves for the different products of T.P.C., Coliforms, E. Coli, Stap. areus, Yeast + Mold at different doses. The organoleptical aspects were: change in taste, flavour, texture, colour and moisture. The aim is the marketing of irradiated dehydrated vegetables national and international basis

  18. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China).

    Science.gov (United States)

    Cui, Lifang; Wang, Lunche; Singh, Ramesh P; Lai, Zhongping; Jiang, Liangliang; Yao, Rui

    2018-05-23

    The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001-2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.

  19. The greening of the McGill Paleoclimate Model. Part I: Improved land surface scheme with vegetation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Department of Atmospheric and Oceanic Sciences, Global Environmental and Climate Change Centre (GEC3), Montreal, QC (Canada); Brovkin, Victor [Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)

    2005-04-01

    The formulation of a new land surface scheme (LSS) with vegetation dynamics for coupling to the McGill Paleoclimate Model (MPM) is presented. This LSS has the following notable improvements over the old version: (1) parameterization of deciduous and evergreen trees by using the model's climatology and the output of the dynamic global vegetation model, VECODE (Brovkin et al. in Ecological Modelling 101:251-261 (1997), Global Biogeochemical Cycles 16(4):1139, (2002)); (2) parameterization of tree leaf budburst and leaf drop by using the model's climatology; (3) parameterization of the seasonal cycle of the grass leaf area index; (4) parameterization of the seasonal cycle of tree leaf area index by using the time-dependent growth of the leaves; (5) calculation of land surface albedo by using vegetation-related parameters, snow depth and the model's climatology. The results show considerable improvement of the model's simulation of the present-day climate as compared with that simulated in the original physically-based MPM. In particular, the strong seasonality of terrestrial vegetation and the associated land surface albedo variations are in good agreement with several satellite observations of these quantities. The application of this new version of the MPM (the ''green'' MPM) to Holocene millennial-scale climate changes is described in a companion paper, Part II. (orig.)

  20. Harmonised investigation of the occurrence of human enteric viruses in the leafy green vegetable supply chain in three European countries.

    Science.gov (United States)

    Kokkinos, P; Kozyra, I; Lazic, S; Bouwknegt, M; Rutjes, S; Willems, K; Moloney, R; de Roda Husman, A M; Kaupke, A; Legaki, E; D'Agostino, M; Cook, N; Rzeżutka, A; Petrovic, T; Vantarakis, A

    2012-12-01

    Numerous outbreaks have been attributed to the consumption of raw or minimally processed leafy green vegetables contaminated with enteric viral pathogens. The aim of the present study was an integrated virological monitoring of the salad vegetables supply chain in Europe, from production, processing and point-of-sale. Samples were collected and analysed in Greece, Serbia and Poland, from 'general' and 'ad hoc' sampling points, which were perceived as critical points for virus contamination. General sampling points were identified through the analysis of background information questionnaires based on HACCP audit principles, and they were sampled during each sampling occasion where as-ad hoc sampling points were identified during food safety fact-finding visits and samples were only collected during the fact-finding visits. Human (hAdV) and porcine (pAdV) adenovirus, hepatitis A (HAV) and E (HEV) virus, norovirus GI and GII (NoV) and bovine polyomavirus (bPyV) were detected by means of real-time (RT-) PCR-based protocols. General samples were positive for hAdV, pAdV, HAV, HEV, NoV GI, NoV GII and bPyV at 20.09 % (134/667), 5.53 % (13/235), 1.32 % (4/304), 3.42 % (5/146), 2 % (6/299), 2.95 % (8/271) and 0.82 % (2/245), respectively. Ad hoc samples were positive for hAdV, pAdV, bPyV and NoV GI at 9 % (3/33), 9 % (2/22), 4.54 % (1/22) and 7.14 % (1/14), respectively. These results demonstrate the existence of viral contamination routes from human and animal sources to the salad vegetable supply chain and more specifically indicate the potential for public health risks due to the virus contamination of leafy green vegetables at primary production.

  1. Modified Dispersive Liquid-Liquid Micro Extraction Using Green Solvent for Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Vegetable Samples

    International Nuclear Information System (INIS)

    Kin, C.M.; Shing, W.L.

    2016-01-01

    According to International Agency for Research on Cancer (IARC), most of Polycyclic Aromatic Hydrocarbons (PAHs) known as genotoxic human carcinogen and mutagenic. PAHs represent as poorly degradable pollutants that exist in soils, sediments, surface water and atmosphere. A simple, rapid and sensitive extraction method termed modified Dispersive Liquid-Liquid Micro extraction (DLLME) using green solvent was developed to determine PAHs in vegetable samples namely radish, cabbage and cucumber prior to Gas Chromatography Flame Ionization Detection (GC-FID). The extraction method is based on replacing chlorinated organic extraction solvent in the conventional DLLME with low toxic solvent, 1-bromo-3-methylbutane without using dispersive solvent. Several experimental factors such as type and volume of extraction solvents, extraction time, confirmation of 12 PAHs by GC-MS, recovery percentages on vegetable samples and the comparative analysis with conventional DLLME were carried out. Both DLLME were successfully extracted 12 types of PAHs. In modified DLLME, the recoveries of the analytes obtained were in a range of 72.72 - 88.07 % with RSD value below 7.5 % which is comparable to the conventional DLLME. The use of microliter of low toxic extraction solvent without addition of dispersive solvent caused the method is economic and environmental friendly which is fulfill the current requirement, green chemistry based analytical method. (author)

  2. Quantitative Microbial Risk Assessment for Escherichia coli O157 : H7, Salmonella, and Listeria monocytogenes in Leafy Green Vegetables Consumed at Salad Bars

    NARCIS (Netherlands)

    Franz, E.; Tromp, S.O.; Rijgersberg, H.; Fels-Klerx, van der H.J.

    2010-01-01

    Fresh vegetables are increasingly recognized as a source of foodborne outbreaks in many parts of the world. The purpose of this study was to conduct a quantitative microbial risk assessment for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes infection from consumption of leafy green

  3. Recent ecological transitions in China: greening, browning, and influential factors

    Science.gov (United States)

    Lü, Yihe; Zhang, Liwei; Feng, Xiaoming; Zeng, Yuan; Fu, Bojie; Yao, Xueling; Li, Junran; Wu, Bingfang

    2015-03-01

    Ecological conservation and restoration are necessary to mitigate environmental degradation problems. China has taken great efforts in such actions. To understand the ecological transition during 2000-2010 in China, this study analysed trends in vegetation change using remote sensing and linear regression. Climate and socioeconomic factors were included to screen the driving forces for vegetation change using correlation or comparative analyses. Our results indicated that China experienced both vegetation greening (restoration) and browning (degradation) with great spatial heterogeneity. Socioeconomic factors, such as human populations and economic production, were the most significant factors for vegetation change. Nature reserves have contributed slightly to the deceleration of vegetation browning and the promotion of greening; however, a large-scale conservation approach beyond nature reserves was more effective. The effectiveness of the Three-North Shelter Forest Program lay between the two above approaches. The findings of this study highlighted that vegetation trend detection is a practical approach for large-scale ecological transition assessments, which can inform decision-making that promotes vegetation greening via proper socioeconomic development and ecosystem management.

  4. Recent ecological transitions in China: greening, browning, and influential factors.

    Science.gov (United States)

    Lü, Yihe; Zhang, Liwei; Feng, Xiaoming; Zeng, Yuan; Fu, Bojie; Yao, Xueling; Li, Junran; Wu, Bingfang

    2015-03-04

    Ecological conservation and restoration are necessary to mitigate environmental degradation problems. China has taken great efforts in such actions. To understand the ecological transition during 2000-2010 in China, this study analysed trends in vegetation change using remote sensing and linear regression. Climate and socioeconomic factors were included to screen the driving forces for vegetation change using correlation or comparative analyses. Our results indicated that China experienced both vegetation greening (restoration) and browning (degradation) with great spatial heterogeneity. Socioeconomic factors, such as human populations and economic production, were the most significant factors for vegetation change. Nature reserves have contributed slightly to the deceleration of vegetation browning and the promotion of greening; however, a large-scale conservation approach beyond nature reserves was more effective. The effectiveness of the Three-North Shelter Forest Program lay between the two above approaches. The findings of this study highlighted that vegetation trend detection is a practical approach for large-scale ecological transition assessments, which can inform decision-making that promotes vegetation greening via proper socioeconomic development and ecosystem management.

  5. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI)

    Science.gov (United States)

    Wilson, Natalie R.; Norman, Laura

    2018-01-01

    Watershed restoration efforts seek to rejuvenate vegetation, biological diversity, and land productivity at Cienega San Bernardino, an important wetland in southeastern Arizona and northern Sonora, Mexico. Rock detention and earthen berm structures were built on the Cienega San Bernardino over the course of four decades, beginning in 1984 and continuing to the present. Previous research findings show that restoration supports and even increases vegetation health despite ongoing drought conditions in this arid watershed. However, the extent of restoration impacts is still unknown despite qualitative observations of improvement in surrounding vegetation amount and vigor. We analyzed spatial and temporal trends in vegetation greenness and soil moisture by applying the normalized difference vegetation index (NDVI) and normalized difference infrared index (NDII) to one dry summer season Landsat path/row from 1984 to 2016. The study area was divided into zones and spectral data for each zone was analyzed and compared with precipitation record using statistical measures including linear regression, Mann– Kendall test, and linear correlation. NDVI and NDII performed differently due to the presence of continued grazing and the effects of grazing on canopy cover; NDVI was better able to track changes in vegetation in areas without grazing while NDII was better at tracking changes in areas with continued grazing. Restoration impacts display higher greenness and vegetation water content levels, greater increases in greenness and water content through time, and a decoupling of vegetation greenness and water content from spring precipitation when compared to control sites in nearby tributary and upland areas. Our results confirm the potential of erosion control structures to affect areas up to 5 km downstream of restoration sites over time and to affect 1 km upstream of the sites.

  6. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs

    Directory of Open Access Journals (Sweden)

    B. Ramesh Kumar

    2017-12-01

    Full Text Available Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC–MS has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC–MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects. Keywords: Green leafy vegetables, Phenolic acids, Flavonoids, HPLC, ESI-MS

  7. VEGETABLE PEELS: A PROMISING FEED RESOURCE FOR LIVESTOCK

    OpenAIRE

    Md. Emran HOSSAIN; Syeda Ayesha SULTANA; Mohammad Hasanul KARIM; Md. Imran AHMED

    2016-01-01

    The study was undertaken to find out the chemical composition of different vegetable peels available in Rangunia, Chittagong, Bangladesh. Total 10 different vegetable peels i.e., Banana blossom (Musa sapientum), Bottle gourd peel (Lagenaria siceraria), Brinjal peel (Solanum melongena), Gram husk (Cicer arietinum), Green banana peel (Musa sapieutum), Green coconut peel (Cocos nucifera), Pea husk (Pisum sativum), Potato peel (Solanum tuberosum), Pumpkin peel (Cucurbita maxima), Ripe banana peel...

  8. Comparison of nutritional compositions and antioxidant activities of building blocks in shinseoncho and kale green vegetable juices.

    Science.gov (United States)

    Kim, Seong Yeong

    2012-12-01

    Shinseoncho and kale were divided into stem [shinseoncho stems (SS) and kale stems (KS)] and leaf parts [shinseoncho leaves (SL) and kale leaves (KL)] and made into green vegetable juices for analyses of nutritional compositions and antioxidant activities. Higher values of total acidity were observed in SL (0.736%) and KL (0.841%) than in SS (0.417%) and KS (0.335%) (p KL (218.494 μg/mL)> KS (107.269 μg/mL)> SS (75.894 μg/mL). KL exerted the highest DPPH radical scavenging activity (84.834%) (p SL (63.473%)> KS (52.894%)> SS (35.443%). ABTS radical scavenging activity showed that SL (66.088%) and KL (38.511%) had higher scavenging activities, whereas SS (7.695%) and KS (9.609%) demonstrated to be lower activities (pgreen vegetable juices and the consumption of them may be beneficial as a nutrition source and in health protection.

  9. Estimation of leaf area index in cereal crops using red–green images

    DEFF Research Database (Denmark)

    Nielsen, Kristian Kirk; Andersen, Hans Jørgen; Thomsen, Anton

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red–green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b....... Conclusions Acknowledgements Appendix. Modelling the correlation between greenness and brightness References   Fig. 1. Simulated image of a vegetation canopy (left), with distribution of pixel greenness and brightness (right). View Within Article...

  10. Association between urban green space and self-reported lifestyle-related disorders in Oslo, Norway.

    Science.gov (United States)

    Camilla, Ihlebæk; Geir, Aamodt; Renata, Aradi; Bjørgulf, Claussen; Halvorsen, Thorén Kine

    2017-10-01

    The need for studies from more countries on the relationship between urban green space and health has been emphasized. The aim of this study was to investigate the association between two types of measurement of urban green space and self-reported lifestyle-related disorders in Oslo, Norway. Self-reported measures on mental disorders, asthma, type 2 diabetes and musculoskeletal pain of 8638 participants in the Oslo Health Study (HUBRO) were linked to two types of green space variables: the vegetation cover greenness derived from satellite data, which shows the city's vegetation cover regardless of property boundaries, and the land use greenness derived from municipal plans showing information about publicly accessible vegetation-covered areas. Associations between greenness and health measures were analysed by logistic regression models controlling for possible individual and contextual confounders. Increasing vegetation cover greenness was associated with fewer self-reported mental disorders for both men and women after controlling for possible confounders. The proportion of women who reported high levels of musculoskeletal pain increased with increasing degrees of both of the greenness measurements, but no significant association was observed for men. No association was found for asthma and diabetes type 2 for either men or women. Although there was a positive association between vegetation cover greenness and self-reported mental disorders, the main findings showed mixed results. The lack of clear associations between urban green space and lifestyle-related health disorders in Oslo might have been influenced by a large proportion of the inhabitants having easy access to green areas.

  11. Green roofs: potential at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Elena M [Los Alamos National Laboratory

    2009-01-01

    Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat

  12. Establishment and performance of an experimental green roof under extreme climatic conditions.

    Science.gov (United States)

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  13. Continental Scale Vegetation Structure Mapping Using Field Calibrated Landsat, ALOS Palsar And GLAS ICESat

    Science.gov (United States)

    Scarth, P.; Phinn, S. R.; Armston, J.; Lucas, R.

    2015-12-01

    Vertical plant profiles are important descriptors of canopy structure and are used to inform models of biomass, biodiversity and fire risk. In Australia, an approach has been developed to produce large area maps of vertical plant profiles by extrapolating waveform lidar estimates of vertical plant profiles from ICESat/GLAS using large area segmentation of ALOS PALSAR and Landsat satellite image products. The main assumption of this approach is that the vegetation height profiles are consistent across the segments defined from ALOS PALSAR and Landsat image products. More than 1500 field sites were used to develop an index of fractional cover using Landsat data. A time series of the green fraction was used to calculate the persistent green fraction continuously across the landscape. This was fused with ALOS PALSAR L-band Fine Beam Dual polarisation 25m data and used to segment the Australian landscapes. K-means clustering then grouped the segments with similar cover and backscatter into approximately 1000 clusters. Where GLAS-ICESat footprints intersected these clusters, canopy profiles were extracted and aggregated to produce a mean vertical vegetation profile for each cluster that was used to derive mean canopy and understorey height, depth and density. Due to the large number of returns, these retrievals are near continuous across the landscape, enabling them to be used for inventory and modelling applications. To validate this product, a radiative transfer model was adapted to map directional gap probability from airborne waveform lidar datasets to retrieve vertical plant profiles Comparison over several test sites show excellent agreement and work is underway to extend the analysis to improve national biomass mapping. The integration of the three datasets provide options for future operational monitoring of structure and AGB across large areas for quantifying carbon dynamics, structural change and biodiversity.

  14. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping.

    Science.gov (United States)

    Sadeghi-Tehran, Pouria; Virlet, Nicolas; Sabermanesh, Kasra; Hawkesford, Malcolm J

    2017-01-01

    Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1) comparison with ground-truth images, (2) variation along a day with changes in ambient illumination, (3) comparison with manual measurements and (4) an estimation of performance along the full life cycle of a wheat canopy. The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  15. Water quality and quantity investigation of green roofs in a dry climate.

    Science.gov (United States)

    Beecham, S; Razzaghmanesh, M

    2015-03-01

    Low-energy pollutant removal strategies are now being sought for water sensitive urban design. This paper describes investigations into the water quality and quantity of sixteen, low-maintenance and unfertilized intensive and extensive green roof beds. The factors of Slope (1° and 25°), Depth (100 mm and 300 mm), Growing media (type A, type B and type C) and Species (P1, P2 and P3) were randomized according to a split-split plot design. This consisted of twelve vegetated green roof beds and four non-vegetated beds as controls. Stormwater runoff was collected from drainage points that were installed in each area. Samples of run-off were collected for five rainfall events and analysed for water retention capacity and the water quality parameters of NO₂, NO₃, NH₄, PO₄, pH, EC, TDS, Turbidity, Na, Ca, Mg and K. The results indicated significant differences in terms of stormwater water quality and quantity between the outflows of vegetated and non-vegetated systems. The water retention was between 51% and 96% and this range was attributed to the green roof configurations in the experiment. Comparing the quality of rainfall as inflow, and the quality of runoff from the systems showed that green roofs generally acted as a source of pollutants in this study. In the vegetated beds, the intensive green roofs performed better than the extensive beds with regard to outflow quality while in the non-vegetated beds, the extensive beds performed better than intensive systems. This highlights the importance of vegetation in improving water retention capacity as well as the role of vegetation in enhancing pollutant removal in green roof systems. In addition growing media with less organic matter had better water quality performance. Comparison of these results with national and international standards for water reuse confirmed that the green roof outflow was suitable for non-potable uses such as landscape irrigation and toilet flushing. Copyright © 2014 Elsevier Ltd. All

  16. Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships.

    Science.gov (United States)

    Gómez-Mendoza, L; Galicia, L; Cuevas-Fernández, M L; Magaña, V; Gómez, G; Palacio-Prieto, J L

    2008-07-01

    Variations in the normalized vegetation index (NDVI) for the state of Oaxaca, in southern Mexico, were analyzed in terms of precipitation anomalies for the period 1997-2003. Using 10-day averages in NDVI data, obtained from AVHRR satellite information, the response of six types of vegetation to intra-annual and inter-annual fluctuations in precipitation were examined. The onset and temporal evolution of the greening period were studied in terms of precipitation variations through spectral analysis (coherence and phase). The results indicate that extremely dry periods, such as those observed in 1997 and 2001, resulted in low values of NDVI for much of Oaxaca, while good precipitation periods produced a rapid response (20-30 days of delay) from a stressed to a non-stressed condition in most vegetation types. One of these rapid changes occurred during the transition from dry to wet conditions during the summer of 1998. As in many parts of the tropics and subtropics, the NDVI reflects low frequency variations in precipitation on several spatial scales. Even after long dry periods (2001-2002), the various regional vegetation types are capable of recovering when a good rainy season takes place, indicating that vegetation types such as the evergreen forests in the high parts of Oaxaca respond better to rainfall characteristics (timing, amount) than to temperature changes, as is the case in most mid-latitudes. This finding may be relevant to prepare climate change scenarios for forests, where increases in surface temperature and precipitation anomalies are expected.

  17. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  18. Generalized fractional Schroedinger equation with space-time fractional derivatives

    International Nuclear Information System (INIS)

    Wang Shaowei; Xu Mingyu

    2007-01-01

    In this paper the generalized fractional Schroedinger equation with space and time fractional derivatives is constructed. The equation is solved for free particle and for a square potential well by the method of integral transforms, Fourier transform and Laplace transform, and the solution can be expressed in terms of Mittag-Leffler function. The Green function for free particle is also presented in this paper. Finally, we discuss the relationship between the cases of the generalized fractional Schroedinger equation and the ones in standard quantum

  19. Remotely Assessing Fraction of Photosynthetically Active Radiation (FPAR for Wheat Canopies Based on Hyperspectral Vegetation Indexes

    Directory of Open Access Journals (Sweden)

    Changwei Tan

    2018-06-01

    Full Text Available Fraction of photosynthetically active radiation (FPAR, as an important index for evaluating yields and biomass production, is key to providing the guidance for crop management. However, the shortage of good hyperspectral data can frequently result in the hindrance of accurate and reliable FPAR assessment, especially for wheat. In the present research, aiming at developing a strategy for accurate FPAR assessment, the relationships between wheat canopy FPAR and vegetation indexes derived from concurrent ground-measured hyperspectral data were explored. FPAR revealed the most strongly correlation with normalized difference index (NDI, and scaled difference index (N*. Both NDI and N* revealed the increase as the increase of FPAR; however, NDI value presented the stagnation as FPAR value beyond 0.70. On the other hand, N* showed a decreasing tendency when FPAR value was higher than 0.70. This special relationship between FPAR and vegetation index could be employed to establish a piecewise FPAR assessment model with NDI as a regression variable during FPAR value lower than 0.70, or N* as the regression variable during FPAR value higher than 0.70. The model revealed higher assessment accuracy up to 16% when compared with FPAR assessment models based on a single vegetation index. In summary, it is feasible to apply NDI and N* for accomplishing wheat canopy FPAR assessment, and establish an FPAR assessment model to overcome the limitations from vegetation index saturation under the condition with high FPAR value.

  20. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on riparian vegetation of the Green River, Utah and Colorado

    International Nuclear Information System (INIS)

    LaGory, K.E.; Van Lonkhuyzen, R.A.

    1995-06-01

    Four hydropower operational scenarios at Flaming Gorge Dam were evaluated to determine their potential effects on riparian vegetation along the Green River in Utah and Colorado. Data collected in June 1992 indicated that elevation above the river had the largest influence on plant distribution. A lower riparian zone occupied the area between the approximate elevations of 800 and 4,200-cfs flows--the area within the range of hydropower operational releases. The lower zone was dominated by wetland plants such as cattail, common spikerush, coyote willow, juncus, and carex. An upper riparian zone was above the elevation of historical maximum power plant releases from the dam (4,200 cfs), and it generally supported plants adapted to mesic, nonwetland conditions. Common species in the upper zone included box elder, rabbitbrush, grasses, golden aster, and scouring rush. Multispectral aerial videography of the Green River was collected in May and June 1992 to determine the relationship between flow and the areas of water and the riparian zone. From these relationships, it was estimated that the upper zone would decrease in extent by about 5% with year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation, but it would increase by about 8% under seasonally adjusted steady flow. The lower zone would increase by about 13% for both year-round and seasonally adjusted high fluctuation scenarios but would decrease by about 40% and 74% for seasonally adjusted moderate fluctuation and steady flows, respectively. These changes are considered to be relatively minor and would leave pre-dam riparian vegetation unaffected. Occasional high releases above power plant capacity would be needed for long-term maintenance of this relict vegetation

  1. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth Guthrie [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)], E-mail: elizabeth_nichols@ncsu.edu; Gregory, Samuel T.; Musella, Jennifer S. [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)

    2008-12-15

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C{sub 3}-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k{sub slow} and k{sub veryslow}. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior.

  2. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    International Nuclear Information System (INIS)

    Nichols, Elizabeth Guthrie; Gregory, Samuel T.; Musella, Jennifer S.

    2008-01-01

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C 3 -phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k slow and k veryslow . After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior

  3. GREEN ROOFS — A GROWING TREND

    Science.gov (United States)

    One of the most interesting stormwater control systems under evaluation by EPA are “green roofs”. Green roofs are vegetative covers applied to building roofs to slow, or totally absorb, rainfall runoff during storms. While the concept of over-planted roofs is very ancient, the go...

  4. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping

    Directory of Open Access Journals (Sweden)

    Pouria Sadeghi-Tehran

    2017-11-01

    Full Text Available Abstract Background Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. Results In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1 comparison with ground-truth images, (2 variation along a day with changes in ambient illumination, (3 comparison with manual measurements and (4 an estimation of performance along the full life cycle of a wheat canopy. Conclusion The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  5. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  6. Correcting the relationship between PRI and shadow fraction for the blue sky effect

    Science.gov (United States)

    Mõttus, Matti

    2016-04-01

    The Photochemical Reflectance Index (PRI) is defined as the normalized difference ratio of leaf reflectance at two specific wavelengths in the green spectral region. Its value depends on the status of leaf carotenoid content, and especially that of the xanthophyll cycle pigments. Due to the dependence on the xanthophyll cycle, when the photosynthetic apparatus of green leaves is close to the saturation limit, their PRI becomes dependent on light conditions. Therefore, by measuring the PRI of leaves in the same canopy under different local irradiance conditions on a sunny day, it should be possible to determine the saturation level of the leaves. In turn, this gives information on the light use efficiency (LUE) of the vegetation canopy. The average light conditions of visible foliage elements are often quantified with the shadow fraction -- the fraction of visible foliage not lit by direct sunlight. The dependence of PRI on the shadow fraction has been used to remotely measure canopy LUE on clear days. Variations in shadow fraction have been achieved with multiangular measurement. However, besides photosynthetic downregulation, the dependence of canopy PRI on shadow fraction is affected by the blue sky radiation caused by scattering in the atmosphere. To quantify this effect on remotely sensed PRI, we present the underlying definitions relating leaf and canopy PRI and perform the required calculations for typical midsummer conditions in Central Finland. We demonstrate that the effect of blue sky radiation on the variation of PRI with canopy shadow fraction is similar in shape and magnitude to that of LUE variations reported in literature. Next, we propose a new method to assess these PRI variations in structured vegetation. We investiagate this blue sky effect on the PRI -- shadow fraction relationship with high spatial (60 cm) and spectral (9.8 nm) resolution airborne imaging spectroscopy data from Hyytiälä, Finland. We evaluate the spectral irradiance in

  7. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    Directory of Open Access Journals (Sweden)

    David Helman

    2015-09-01

    Full Text Available We present an efficient method for monitoring woody (i.e., evergreen and herbaceous (i.e., ephemeral vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS. The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI in the dry season was attributed to the woody vegetation (NDVIW. A constant NDVI value was assumed for soil background during this period. In the wet season, changes in NDVI were attributed to the development of ephemeral herbaceous vegetation in the forest floor and its maximum value to the peak green cover (NDVIH. NDVIW and NDVIH agreed well with field estimates of leaf area index and fraction of vegetation cover in two differently structured Mediterranean forests. To further assess the method’s assumptions, understory NDVI was retrieved form MODIS Bidirectional Reflectance Distribution Function (BRDF data and compared with NDVIH. After calibration, leaf area index and woody and herbaceous vegetation covers were assessed for those forests. Applicability for pre- and post-fire monitoring is presented as a potential use of this method for forest management in Mediterranean-climate regions.

  8. Distribution of green open space in Malang City based on multispectral data

    Science.gov (United States)

    Hasyim, A. W.; Hernawan, F. P.

    2017-06-01

    Green open space is one of the land that its existence is quite important in urban areas where the minimum area is set to reach 30% of the total area of the city. Malang which has an area of 110,6 square kilometers, is one of the major cities in East Java Province that is prone to over-land conversion due to development needs. In support of the green space program, calculation of green space is needed precisely so that remote sensing which has high accuracy is now used for measurement of green space. This study aims to analyze the area of green open space in Malang by using Landsat 8 image in 2015. The method used was the vegetation index that is Normalized Difference Vegetation Index (NDVI). From the study obtained the calculation of green open space was better to use the vegetation index method to avoid the occurrence of misclassification of other types of land use. The results of the calculation of green open space using NDVI found that the area of green open space in Malang City in 2015 reached 39% of the total area.

  9. Green roof stormwater retention: effects of roof surface, slope, and media depth.

    Science.gov (United States)

    VanWoert, Nicholaus D; Rowe, D Bradley; Andresen, Jeffrey A; Rugh, Clayton L; Fernandez, R Thomas; Xiao, Lan

    2005-01-01

    Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.

  10. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  11. Spatially dependent biotic and abiotic factors drive survivorship and physical structure of green roof vegetation.

    Science.gov (United States)

    Aloisio, Jason M; Palmer, Matthew I; Giampieri, Mario A; Tuininga, Amy R; Lewis, James D

    2017-01-01

    Plant survivorship depends on biotic and abiotic factors that vary at local and regional scales. This survivorship, in turn, has cascading effects on community composition and the physical structure of vegetation. Survivorship of native plant species is variable among populations planted in environmentally stressful habitats like urban roofs, but the degree to which factors at different spatial scales affect survivorship in urban systems is not well understood. We evaluated the effects of biotic and abiotic factors on survivorship, composition, and physical structure of two native perennial species assemblages, one characterized by a mixture of C 4 grasses and forbs (Hempstead Plains, HP) and one characterized by a mixture of C 3 grasses and forbs (Rocky Summit, RS), that were initially sown at equal ratios of growth forms (5:1:4; grass, N-fixing forb and non-N-fixing forb) in replicate 2-m 2 plots planted on 10 roofs in New York City (New York, USA). Of 24 000 installed plants, 40% survived 23 months after planting. Within-roof factors explained 71% of variation in survivorship, with biotic (species identity and assemblage) factors accounting for 54% of the overall variation, and abiotic (growing medium depth and plot location) factors explaining 17% of the variation. Among-roof factors explained 29% of variation in survivorship and increased solar radiation correlated with decreased survivorship. While growing medium properties (pH, nutrients, metals) differed among roofs there was no correlation with survivorship. Percent cover and sward height increased with increasing survivorship. At low survivorship, cover of the HP assemblage was greater compared to the RS assemblage. Sward height of the HP assemblage was about two times greater compared to the RS assemblage. These results highlight the effects of local biotic and regional abiotic drivers on community composition and physical structure of green roof vegetation. As a result, initial green roof plant

  12. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts.

    Directory of Open Access Journals (Sweden)

    Wenqian Zhao

    Full Text Available Along with global climate change, the occurrence of extreme droughts in recent years has had a serious impact on the Amazon region. Current studies on the driving factors of the 2005 and 2010 Amazon droughts has focused on the influence of precipitation, whereas the impacts of temperature and radiation have received less attention. This study aims to explore the climate-driven factors of Amazonian vegetation decline during the extreme droughts using vegetation index, precipitation, temperature and radiation datasets. First, time-lag effects of Amazonian vegetation responses to precipitation, radiation and temperature were analyzed. Then, a multiple linear regression model was established to estimate the contributions of climatic factors to vegetation greenness, from which the dominant climate-driving factors were determined. Finally, the climate-driven factors of Amazonian vegetation greenness decline during the 2005 and 2010 extreme droughts were explored. The results showed that (i in the Amazon vegetation greenness responded to precipitation, radiation and temperature, with apparent time lags for most averaging interval periods associated with vegetation index responses of 0-4, 0-9 and 0-6 months, respectively; (ii on average, the three climatic factors without time lags explained 27.28±21.73% (mean±1 SD of vegetation index variation in the Amazon basin, and this value increased by 12.22% and reached 39.50±27.85% when time lags were considered; (iii vegetation greenness in this region in non-drought years was primarily affected by precipitation and shortwave radiation, and these two factors altogether accounted for 93.47% of the total explanation; and (iv in the common epicenter of the two droughts, pixels with a significant variation in precipitation, radiation and temperature accounted for 36.68%, 40.07% and 10.40%, respectively, of all pixels showing a significant decrease in vegetation index in 2005, and 15.69%, 2.01% and 45.25% in

  13. Air quality considerations for stormwater green street design

    International Nuclear Information System (INIS)

    Shaneyfelt, Kathryn M.; Anderson, Andrew R.; Kumar, Prashant; Hunt, William F.

    2017-01-01

    Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. - Highlights: • Green streets can be used for both stormwater and air quality management. • Design considerations must be made to minimize human exposure to air pollutants. • Urban vegetation can improve air quality with careful selection and placement.

  14. Establishment and performance of an experimental green roof under extreme climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Petra M., E-mail: pkklein@ou.edu [School of Meteorology, University of Oklahoma, Norman, OK (United States); Coffman, Reid, E-mail: rcoffma4@kent.edu [College of Architecture and Environmental Design, Kent State University, Kent, OH (United States)

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  15. Establishment and performance of an experimental green roof under extreme climatic conditions

    International Nuclear Information System (INIS)

    Klein, Petra M.; Coffman, Reid

    2015-01-01

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April–October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  16. Study of a Vegetation Index Based on HJ CCD Data's top-of-atmosphere reflectance and FPAR Inversion

    International Nuclear Information System (INIS)

    Dong, Taifeng; Wu, Bingfang; Meng, Jihua

    2014-01-01

    The Fraction of Photosynthetically Active Radiation (FPAR)absorbed by plant canopies is a key parameter for monitoring crop condition and estimating crop yield. In general, it is necessary to obtain Top of Canopy (TOC) reflectance from optical remote sensing data in digital number through atmospheric correction procedures before retrieving FPAR. However, there are a few of uncertainties that existe in the process of atmosphere correction and reduced the quality of TOC. This paper presents a vegetation index based on Top-of-Atmosphere (TOA) reflectance derived from HJ-1 CCD satellite for estimating direct crop FPAR. The vegetation index (HJVI) was designed based on the simulated results of a canopy-atmosphere radiative transfer model, including TOA reflectance and corresponded FPAR. The HJVI had taken the advantages of information in the green, the red and the near-infrared spectral domainswith with a aim of reducing the atmospheric effect and enhancing the sensitive to green vegetation. The HJVI was used to estimate soybean FPAR directly and validated using field measurements. The result indicated that the inversion algorithm produced a good relationship between the prediction and measurement (R 2 = 0.546, RMSE = 0.083) and the HJVI showed high potential for estimating FPAR based on the HJ-1 TOA reflectance directly

  17. Modeling a Hydrologically Optimal Green Roof Media Mixture

    Science.gov (United States)

    Background/Questions/MethodsA key environmental concern in managing urban ecosystems is controlling stormwater runoff to ameliorate pollution problems and sewage overflows. Vegetated green roofs have become an important green infrastructure tool to collect, store, and gradually r...

  18. Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010

    Directory of Open Access Journals (Sweden)

    Martin Brandt

    2014-03-01

    Full Text Available Local vegetation trends in the Sahel of Mali and Senegal from Geoland Version 1 (GEOV1 (5 km and the third generation Global Inventory Modeling and Mapping Studies (GIMMS3g (8 km Fraction of Absorbed Photosynthetically Active Radiation (FAPAR time series are studied over 29 years. For validation and interpretation of observed greenness trends, two methods are applied: (1 a qualitative approach using in-depth knowledge of the study areas and (2 a quantitative approach by time series of biomass observations and rainfall data. Significant greening trends from 1982 to 2010 are consistently observed in both GEOV1 and GIMMS3g FAPAR datasets. Annual rainfall increased significantly during the observed time period, explaining large parts of FAPAR variations at a regional scale. Locally, GEOV1 data reveals a heterogeneous pattern of vegetation change, which is confirmed by long-term ground data and site visits. The spatial variability in the observed vegetation trends in the Sahel area are mainly caused by varying tree- and land-cover, which are controlled by human impact, soil and drought resilience. A large proportion of the positive trends are caused by the increment in leaf biomass of woody species that has almost doubled since the 1980s due to a tree cover regeneration after a dry-period. This confirms the re-greening of the Sahel, however, degradation is also present and sometimes obscured by greening. GEOV1 as compared to GIMMS3g made it possible to better characterize the spatial pattern of trends and identify the degraded areas in the study region.

  19. EXTRACTION AND IDENTIFICATION OF CAROTENOIDS IN GREEN EATABLE VEGETABLES – A PROPOSAL FOR PRACTICAL CLASSES

    Directory of Open Access Journals (Sweden)

    D.S Paiva

    2006-07-01

    Full Text Available The  carotenoids  are  natural  colored  pigments  varying  from  yellow  to  red.  They  are  divided  in  carotenes,  as  β-carotene  and lycopene, and their oxygenated derivatives, the xanthophylls, as astaxanthin present in shellfishes.  β-carotenes are precursors of vitamin A being an important anti-oxidant molecule. Both β-carotene and lycopene, have been  used  in  the  cancer  inhibition.  In  the  present  work,  we  detected  the  presence  of  carotenoids  using  thin  layer chromatography (TLC for the separation of the pigments of green eatable vegetables, aiming the application of those methods  in  the  practical  classes  of  the  Biological  Science  Course  of  UFPE.  Spinacia  oleracea  (spinach,  Brassica oleracea (cabbage and Lactuca sativa (lettuce were macerated with washed send in the presence of sodium sulfate followed by the addition of 25 ml of hexane until total homogeneity. The extracts were filtrated, washed with 10 ml of hexane, concentrated in vacuum  evaporator  and resuspended in hexane. The  hexanic extract was applied  on silica gel  G  plates  activated  at  120°C  for  30  min.  The  chromatogram  was  developed  in  hexane-benzene-pyridine  system (40:5:5.  All  the  used  solvents  were  from  analytical  grade,  β-carotene  (C40H56  and  astaxanthin  (C40H52O4  from Sigma  St.  Louis  – USA  were  used  as  standards.  Meanwhile,  the  lycopene  was  identified  by  a  comparison  with  the same compound present in a tomato extract. The results demonstrated that β-carotene has a higher concentration in the  spinach  and  cabbage  than  in  the  lettuce.  However,  lettuce  presented  more  lycopene  than  the  others  two vegetables. Astaxanthin was not detected in all studied vegetables. In conclusion, green eatable vegetables could be a  good  source  of

  20. The green areas of San Juan, Puerto Rico

    Directory of Open Access Journals (Sweden)

    Olga M. Ramos-González

    2014-09-01

    Full Text Available Green areas, also known as green infrastructure or urban vegetation, are vital to urbanites for their critical roles in mitigating urban heat island effects and climate change and for their provision of multiple ecosystem services and aesthetics. Here, I provide a high spatial resolution snapshot of the green cover distribution of the city of San Juan, Puerto Rico, by incorporating the use of morphological spatial pattern analysis (MSPA as a tool to describe the spatial pattern and connectivity of the city's urban green areas. Analysis of a previously developed IKONOS 4-m spatial resolution classification of the city of San Juan from 2002 revealed a larger area of vegetation (green areas or green infrastructure than previously estimated by moderate spatial resolution imagery. The city as a whole had approximately 42% green cover and 55% impervious surfaces. Although the city appeared greener in its southern upland sector compared to the northern coastal section, where most built-up urban areas occurred (66% impervious surfaces, northern San Juan had 677 ha more green area cover dispersed across the city than the southern component. MSPA revealed that most forest cover occurred as edges and cores, and green areas were most commonly forest cores, with larger predominance in the southern sector of the municipality. In dense, built-up, urban land, most of the green areas occurred in private yards as islets. When compared to other cities across the United States, San Juan was most similar in green cover features to Boston, Massachusetts, and Miami, Florida. Per capita green space for San Juan (122.2 m²/inhabitant was also comparable to these two U.S. cities. This study explores the intra-urban vegetation variation in the city of San Juan, which is generally overlooked by moderate spatial resolution classifications in Puerto Rico. It serves as a starting point for green infrastructure mapping and landscape pattern analysis of the urban green spaces

  1. The green areas of San Juan, Puerto Rico

    Science.gov (United States)

    O.M. Ramos-Gonzalez

    2014-01-01

    Green areas, also known as green infrastructure or urban vegetation, are vital to urbanites for their critical roles in mitigating urban heat island effects and climate change and for their provision of multiple ecosystem services and aesthetics. Here, I provide a high spatial resolution snapshot of the green cover distribution of the city of San Juan, Puerto Rico, by...

  2. Retrofitted green roofs and walls and improvements in thermal comfort

    Science.gov (United States)

    Feitosa, Renato Castiglia; Wilkinson, Sara

    2017-06-01

    Increased urbanization has led to a worsening in the quality of life for many people living in large cities in respect of the urban heat island effect and increases of indoor temperatures in housing and other buildings. A solution may be to retrofit existing environments to their former conditions, with a combination of green infrastructures applied to existing walls and rooftops. Retrofitted green roofs may attenuate housing temperature. However, with tall buildings, facade areas are much larger compared to rooftop areas, the role of green walls in mitigating extreme temperatures is more pronounced. Thus, the combination of green roofs and green walls is expected to promote a better thermal performance in the building envelope. For this purpose, a modular vegetated system is adopted for covering both walls and rooftops. Rather than temperature itself, the heat index, which comprises the combined effect of temperature and relative humidity is used in the evaluation of thermal comfort in small scale experiments performed in Sydney - Australia, where identical timber framed structures prototypes (vegetated and non-vegetated) are compared. The results have shown a different understanding of thermal comfort improvement regarding heat index rather than temperature itself. The combination of green roof and walls has a valid role to play in heat index attenuation.

  3. Satellite view of seasonal greenness trends and controls in South Asia

    Science.gov (United States)

    Sarmah, Sangeeta; Jia, Gensuo; Zhang, Anzhi

    2018-03-01

    South Asia (SA) has been considered one of the most remarkable regions for changing vegetation greenness, accompanying its major expansion of agricultural activities, especially irrigated farming. The influence of the monsoon climate on the seasonal trends and anomalies of vegetation greenness is poorly understood in this area. Herein, we used the satellite-based Normalized Difference Vegetation Index (NDVI) to investigate various spatiotemporal patterns in vegetation activity during summer and winter monsoon (SM and WM) seasons and among irrigated croplands (IC), rainfed croplands (RC), and natural vegetation (NV) areas during 1982–2013. Seasonal NDVI variations with climatic factors (precipitation and temperature) and land use and cover changes (LUCC) have also been investigated. This study demonstrates that the seasonal dynamics of vegetation could improve the detailed understanding of vegetation productivity over the region. We found distinct greenness trends between two monsoon seasons and among the major land use/cover classes. Winter monsoons contributed greater variability to the overall vegetation dynamics of SA. Major greening occurred due to the increased productivity over irrigated croplands during the winter monsoon season; meanwhile, browning trends were prominent over NV areas during the same season. Maximum temperatures had been increasing tremendously during the WM season; however, the precipitation trend was not significant over SA. Both the climate variability and LUCC revealed coupled effects on the long term NDVI trends in NV areas, especially in the hilly regions, whereas anthropogenic activities (agricultural advancements) played a pivotal role in the rest of the area. Until now, advanced cultivation techniques have proven to be beneficial for the region in terms of the productivity of croplands. However, the crop productivity is at risk under climate change.

  4. The green synthesis of gold nanoparticles using the ethanol extract pf black tea and its tannin free fraction

    International Nuclear Information System (INIS)

    Banoee, M.; Mokhtari, N.; Akhavan Sepahi, A.; Jafari Fesharaki, P.; Monsef-Esfahani, H. R.; Ehsanfar, Z.; Khoshayand, M. R.; Shahverdi, A. R.

    2010-01-01

    In this research the ethanol extract of black tea and its tannin free fraction used for green synthesis of gold nanoparticles. All the extracts were used separately for the synthesis of gold nanoparticles through the reduction of aqueous AuCl 4 - . Transmission electron microscopy and visible absorption spectroscopy confirmed the reduction of gold ions to gold nanoparticles. The ethanol extract of black tea and its tannin free ethanol extract produced gold nanoparticles in the size ranges of 2.5-27.5 nm and 1.25-17.5 nm with an average size of 10 nm and 3 nm, respectively. The prepared colloid gold nanoparticles, using the ethanol extract of black tea, did not show the appropriate stability during storage time (24 hours) at 4 d eg C . In contrast, gold colloids, which were synthesized by a tannin free fraction showed no particle aggregation during short and long storage times at the same conditions. To the best of our knowledge, this is the first report on the rapid synthesis of gold nanoparticles using ethanol extract of black tea and its tannin free fraction.

  5. Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado

    Science.gov (United States)

    Rockwell, Barnaby W.

    2013-01-01

    Multispectral satellite data acquired by the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and Landsat 7 Enhanced Thematic Mapper Plus (TM) sensors are being used to populate an online Geographic Information System (GIS) of the spatial occurrence of mineral groups and green vegetation across the western conterminous United States and Alaska. These geospatial data are supporting U.S. Geological Survey national-scale mineral deposit database development and other mineral resource and geoenvironmental research as a means of characterizing mineral exposures related to mined and unmined hydrothermally altered rocks and mine waste. This report introduces a new methodology for the automated analysis of Landsat TM data that has been applied to more than 180 scenes covering the western United States. A map of mineral groups and green vegetation produced using this new methodology that covers the western San Juan Mountains, Colorado, and the Four Corners Region is presented. The map is provided as a layered GeoPDF and in GIS-ready digital format. TM data analysis results from other well-studied and mineralogically characterized areas with strong hydrothermal alteration and (or) supergene weathering of near-surface sulfide minerals are also shown and compared with results derived from ASTER data analysis.

  6. DIVERSITY OF SOIL ARTHROPOD IN GREEN BARRIER AREA PT. PUSRI

    Directory of Open Access Journals (Sweden)

    Arif Hidayat

    2016-05-01

    Full Text Available The research was conducted to inventory and identify as well as acknowledge the correlation between vegetation type with soil arthropods in the Green Barrier area of PT Pusri. PT. Pusri green Barrier area is 28 hectares and dominated by 10 types of vegetation, such as, the Angsana (Pterocarpus indicus Wild, Bambu (Bambusa Sp, Beringin (Ficus benyamina, Buah Roda (Hura crepitans L, Jati (Tectona grandis L, Kelampayan (Neolamarckia cadamba , Ketapang (Terminalia catappa L, Mahony (Swietenia macrophylla King, Pulai (Alstonia scholaris, and Sengon (Paraserianthes falcataria L. Soil arthropods were collected by using pit fall traps and funnel barlese-tullgren in every type of vegetation, between July-August 2015. Identification of arthropod genera Identification has been done in Entomology Laboratory of the Agriculture Plant Disease Faculty Sriwijaya University, and analysis of soil organic in the Laboratory of Soil Faculty of Agriculture Sriwijaya University. The results were obtained into 3 classes of soil arthropods belonging to the 10 orders, 28 families and 35 genera. The diversity index value of soil arthropods in various types of vegetation is classified moderately (H= 1-3, and no type of soil arthropods were dominant, mean that soil arthropods with different types spread over in the various types of vegetation in the area of Green Barrier PT. Pusri. Light intensity abiotic factors play an important role in the life of the soil arthropod communities in vegetation Sengon (Paraserianthes falcataria L with a correlation coefficient 1.00 Keywords: soil arthropods, community structure, a biotic factors, Green Barrier PT. Pusri

  7. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia).

    Science.gov (United States)

    Łuczaj, Łukasz; Zovkokončić, Marijana; Miličević, Tihomir; Dolina, Katija; Pandža, Marija

    2013-01-03

    Dalmatia is an interesting place to study the use of wild greens as it lies at the intersection of influence of Slavs, who do not usually use many species of wild greens, and Mediterranean culinary culture, where the use of multiple wild greens is common. The aim of the study was to document the mixtures of wild green vegetables which are sold in all the vegetable markets of Dalmatia. All vendors (68) in all 11 major markets of the Dalmatian coast were interviewed. The piles of wild vegetables they sold were searched and herbarium specimens taken from them. The mean number of species in the mix was 5.7. The most commonly sold wild plants are: Sonchus oleraceus L., Allium ampeloprasum L., Foeniculum vulgare Mill., Urospermum picroides F.W.Schmidt, Papaver rhoeas L., Daucus carota L., Taraxacum sp., Picris echioides L., Silene latifolia Poir. and Crepis spp. Also the cultivated beet (Beta vulgaris L.) and a few cultivated Brassicaceae varieties are frequent components. Wild vegetables from the mix are usually boiled for 20-30 minutes and dressed with olive oil and salt. Altogether at least 37 wild taxa and 13 cultivated taxa were recorded.Apart from the mixes, Asparagus acutifolius L. and Tamus communis L. shoots are sold in separate bunches (they are usually eaten with eggs), as well as some Asteraceae species, the latter are eaten raw or briefly boiled. The rich tradition of eating many wild greens may result both from strong Venetian and Greek influences and the necessity of using all food resources available in the barren, infertile land in the past. Although the number of wild-collected green vegetables is impressive we hypothesize that it may have decreased over the years, and that further in-depth local ethnobotanical studies are needed in Dalmatia to record the disappearing knowledge of edible plants.

  8. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  9. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  10. Mechanically fractionated flour isolated from green bananas (M. cavendishii var. nanica) as a tool to increase the dietary fiber and phytochemical bioactivity of layer and sponge cakes.

    Science.gov (United States)

    Segundo, Cristina; Román, Laura; Gómez, Manuel; Martínez, Mario M

    2017-03-15

    This article describes the effect of mechanically fractionated flours from green bananas on the nutritional, physical and sensory attributes of two types of cakes (sponge and layer). A plausible 30% replacement of banana flour in the formulation of layer cakes is demonstrated, finding only a small decline in the sensory perception. On the contrary, sponge cakes were noticeable worsened with the use of banana flours (lower specific volume, worse sensory attributes and higher hardness), which was minimized when using fine flour. Both layer and sponge cakes exhibited an enhancement of the resistant starch and dietary fiber content with the replacement of green banana flour (up to a fivefold improvement in RS performance). Moreover, sponge cakes yielded more polyphenols and antioxidant capacity with banana flours, especially with the coarse fraction. Therefore, results showed that a mechanical fractionation allowed a feasible nutritional enhancement of cakes with the use of banana flours. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Green Roofs and Green Walls for Biodiversity Conservation: A Contribution to Urban Connectivity?

    Directory of Open Access Journals (Sweden)

    Flavie Mayrand

    2018-03-01

    Full Text Available Green roofs and walls have recently emerged as conservation tools, and they offer promising additional opportunities to enhance biodiversity in cities. However, their ecological conditions remain poorly considered when planning wildlife corridors. To discuss the role of vegetated buildings in landscape connectivity, we reviewed the ecological and technical specificities of green walls and green roofs in light of the key factors concerning urban wildlife (patch size, quality, abundance, and isolation. Green roofs and walls show limited patch sizes, distinct habitat quality at the building scale, and limited redundancy of patch quality within the landscape. We also highlight that the abundance of roof and wall patches is often low. Future research is needed to establish if walls can be vertical corridors for wildlife, thereby reducing the isolation of green roofs. We argue that creating 3D ecological connectivity within the city requires substantial modifications of the design and maintenance of existing green building systems. We suggest that research is needed to integrate the biotic and abiotic characteristics of green buildings to make them more closely resemble those of open green spaces.

  12. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    OpenAIRE

    Xiaosong Li; Guoxiong Zheng; Jinying Wang; Cuicui Ji; Bin Sun; Zhihai Gao

    2016-01-01

    Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv) and NPV (fnpv) using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wi...

  13. Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model

    Directory of Open Access Journals (Sweden)

    J.-P. Lhomme

    1999-01-01

    Full Text Available In many experimental conditions, the evaporative fraction, defined as the ratio between evaporation and available energy, has been found stable during daylight hours. This constancy is investigated over fully covering vegetation by means of a land surface scheme coupled with a mixed-layer model, which accounts for entrainment of overlying air. The evaporation rate follows the Penman-Monteith equation and the surface resistance is given by a Jarvis type parameterization involving solar radiation, saturation deficit and leaf water potential. The diurnal course of the evaporative fraction is examined, together with the influence of environmental factors (soil water availability, solar radiation input, wind velocity, saturation deficit above the well-mixed layer. In conditions of fair weather, the curves representing the diurnal course of the evaporative fraction have a typical concave-up shape. Around midday (solar time these curves appear as relatively constant, but always lower that the daytime mean value. Evaporative fraction decreases when soil water decreases or when solar energy increases. An increment of saturation deficit above the mixed-layer provokes only a slight increase of evaporative fraction, and wind velocity has almost no effect. The possibility of estimation daytime evaporation from daytime available energy multiplied by the evaporative fraction at a single time of the day is also investigated. It appears that it is possible to obtain fairly good estimates of daytime evaporation by choosing adequately the time of the measurement of the evaporative fraction. The central hours of the day, and preferably about 3 hr before or after noon, are the most appropriate to provide good estimates. The estimation appears also to be much better when soil water availability (or evaporation is high than when it is low.

  14. Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir.

    Science.gov (United States)

    Karabiyikli, Seniz; Kisla, Duygu

    2012-04-16

    In this study, the antimicrobial effects of both traditional and commercial pomegranate sour sauce samples on some green vegetables and also on "kısır" which is a popular and traditional appetizer in Turkey were investigated. The inhibitory effect of the pomegranate products on the naturally existing bacterial microflora of lettuce, spring onion, parsley and kısır were analyzed. Also, all these food samples were inoculated with Staphylococcus aureus (ATCC-25923) and Escherichia coli O157:H7 (ATCC-43895) and antimicrobial effect of the pomegranate products on the inoculated microflora was detected. All the food samples were treated with pomegranate products for different time periods and the effect of treatment time was investigated. pH and titratable acidity values of the traditional and commercial pomegranate sour sauce samples were detected. The results showed that although the pomegranate products had an antimicrobial effect on the natural bacterial microflora of the food samples, the effect on inoculated food samples was more prominent and additionally the application time was found to be a crucial parameter for both cases. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The Energy Impact in Buildings of Vegetative Solutions for Extensive Green Roofs in Temperate Climates

    Directory of Open Access Journals (Sweden)

    Benedetta Barozzi

    2016-08-01

    Full Text Available Many bibliographical studies have highlighted the positive effects of green roofs as technological solutions both for new and renovated buildings. The one-year experimental monitoring campaign conducted has investigated, in detail, some aspects related to the surface temperature variation induced by the presence of different types of vegetation compared to traditional finishing systems for flat roofs and their impact from an energy and environmental point of view. The results obtained underlined how an appropriate vegetative solution selection can contribute to a significant reduction of the external surface temperatures (10 °C–20 °C for I > 500 W/m2 and 0 °C–5 °C for I < 500 W/m2, regardless of the season compared to traditional flat roofs. During the winter season, the thermal gradients of the planted surface temperatures are close to zero compared to the floor, except under special improving conditions. This entails a significant reduction of the energy loads from summer air conditioning, and an almost conservative behavior with respect to that from winter heating consumption. The analysis of the inside growing medium temperatures returned a further interesting datum, too: the temperature gradient with respect to surface temperature (annual average 4 °C–9 °C is a function of solar radiation and involves the insulating contribution of the soil.

  16. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables.

    Science.gov (United States)

    Gao, Yuan; Ma, Shuai; Wang, Meng; Feng, Xiao-Yuan

    2017-11-01

    Phenolic acids are thought to be beneficial for human health and responsible for vegetables' health-promoting properties. Free, conjugated, and bound phenolic acids of seven commonly consumed vegetables, including kidney bean, cow pea, snow pea, hyacinth bean, green soy bean, soybean sprouts and daylily, from the regions of Beijing, Hangzhou, and Guangzhou, were identified and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Three vegetables, namely green soy bean, soybean sprouts, and daylily ( Hemerocallis fulva L.), from the Beijing region contained higher concentrations of total phenolic acids than those from the Hangzhou and Guangzhou regions. The results indicated that the phenolic acid content in the seven vegetables appeared to be species-dependent. The highest content of phenolic acids was found in daylily, followed by green soy bean, while the least amounts were identified in kidney bean and hyacinth bean. Typically, phenolic acids are predominantly found in conjugated forms. Principle component analysis (PCA) revealed some key compounds that differentiated the seven vegetables. Green soy bean, compared to the other six vegetables, was characterized by higher levels of syringic acid, ferulic acid, vanillic acid, and sinapic acid. Other compounds, particularly p -coumaric acid, neochlorogenic acid, and caffeic acid, exhibited significantly higher concentrations in daylily. In addition, p -coumaric acid was the characteristic substance in cow pea. Results from this study can contribute to the development of vegetables with specific phytochemicals and health benefits.

  17. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs.

    Science.gov (United States)

    Washburn, Brian E; Swearingin, Ryan M; Pullins, Craig K; Rice, Matthew E

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  18. Composition and Diversity of Avian Communities Using a New Urban Habitat: Green Roofs

    Science.gov (United States)

    Washburn, Brian E.; Swearingin, Ryan M.; Pullins, Craig K.; Rice, Matthew E.

    2016-06-01

    Green roofs on buildings are becoming popular and represent a new component of the urban landscape. Public benefits of green roof projects include reduced stormwater runoff, improved air quality, reduced urban heat island effects, and aesthetic values. As part of a city-wide plan, several green roofs have been constructed at Chicago's O'Hare International Airport (ORD). Like some other landscaping features, green roofs on or near an airport might attract wildlife and thus increase the risk of bird-aircraft collisions. During 2007-2011, we conducted a series of studies to evaluate wildlife use of newly constructed green roofs and traditional (gravel) roofs on buildings at ORD. These green roofs were 0.04-1.62 ha in area and consisted of primarily stonecrop species for vegetation. A total of 188 birds were observed using roofs during this research. Of the birds using green roofs, 66, 23, and 4 % were Killdeer, European Starlings, and Mourning Doves, respectively. Killdeer nested on green roofs, whereas the other species perched, foraged, or loafed. Birds used green roofs almost exclusively between May and October. Overall, avian use of the green roofs was minimal and similar to that of buildings with traditional roofs. Although green roofs with other vegetation types might offer forage or cover to birds and thus attract potentially hazardous wildlife, the stonecrop-vegetated green roofs in this study did not increase the risk of bird-aircraft collisions.

  19. Recovery Time After a Late-Dry Season Fire: the Effect on Fluxes, Surface Properties and Vegetation Green-Up.

    Science.gov (United States)

    Saha, M. V.; D'Odorico, P.; Scanlon, T. M.

    2014-12-01

    Large regions of Africa burn on an annual basis. These fires damage vegetation, change surface albedo and modify the hydrologic cycle. Quantifying the magnitude and persistence of these changes is key in understanding the complex ways in which fire affects ecosystem functioning at smaller scales and will inform ongoing modeling efforts. We report the results of a field study in a semi-arid savanna in northern Botswana during the transition from dry to wet season (Oct-Dec) in 2012 and 2013. The goals of this study were to: (1) characterize the multifaceted effect that late dry-season fires have on fluxes and radiative surface processes during green-up, and (2) describe the timescales over which these variables recover to non-burnt levels. Our study synthesizes a suite of data, including flux tower measurements, vegetation sampling, time-lapse photography and concurrent remotely sensed variables over plots with variable burn patterns. Albedo decreased immediately after fire, converging on unburned values 10 days post-burn. The magnitude and direction of this response was comparable to the albedo change elicited by strong rainfall events. Soil temperature and soil heat flux were not significantly modified by fire. Carbon fluxes showed no discernible difference from an unburned control site immediately after fire. There was a small burst in ecosystem respiration at immediately following the first post-fire rainfall event, returning to baseline values after 3 days. Persistent CO2 release, which we attribute to soil respiration, occurred for 10 days after successive strong wetting events, confirming the centrality of available moisture in determining ecosystem function. Fire delayed the green-up in some plots, but this effect was variable and short-lived. One month after fire there was no evidence of a difference in ground observations of greenness between burnt and control plots or plots that differed in their time of burning. We attribute the relatively ephemeral

  20. Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments - A review

    Science.gov (United States)

    Abhijith, K. V.; Kumar, Prashant; Gallagher, John; McNabola, Aonghus; Baldauf, Richard; Pilla, Francesco; Broderick, Brian; Di Sabatino, Silvana; Pulvirenti, Beatrice

    2017-08-01

    Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment.

  1. Monitoring vegetation dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa

    Science.gov (United States)

    Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen

    2015-06-01

    Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.

  2. Sudden Onset of Life-Threatening Methaemoglobinaemia After Intake of Inappropriately Stored Vegetable (Collard Greens Meal in a 2.5-Year-Old Child

    Directory of Open Access Journals (Sweden)

    Ozlem Cakmak Yilmaz

    2015-06-01

    Full Text Available Acquired methaemoglobinaemia most commonly occurs due to intake of or contact to certain drugs, such as local anesthetics. However, intake of certain vegetables which are essential for a healthy diet may also cause methaemoglobinaemia due to their high nitrate or nitrite content, and prolonged and inappropriate storage after preparation of vegetable meals increases the risk. We present a 2.5-year-old girl with Down's syndrome who presented with central cyanosis due to severe methaemoglobinemiae with a methaemoglobin level of 62% after intake of collard greens (Brassica oleracea var. acephala soup. Although development of methaemoglobinaemia after food intake has been reported rarely before, recognition of this potentially life-threatening condition early in its course may be life-saving. [Cukurova Med J 2015; 40(2.000: 353-357

  3. Impact of green tea extract addition on oxidative changes in the lipid fraction of pastry products.

    Science.gov (United States)

    Żbikowska, Anna; Kowalska, Małgorzata; Rutkowska, Jarosława; Kozłowska, Mariola; Onacik-Gür, Sylwia

    2017-01-01

    Alongside flour, fat is the key ingredient of sponge cakes, including those with long shelf lives. It is an unstable food component, whose quality and nutritional safety depend on the composition and pres- ence of oxidation products. Consumption of fat oxidation products adversely affects the human body and contributes to the incidence of a number of medical conditions. Qualitative changes in fats extracted from thermostat sponge cakes with and without antioxidant additions were determined in this study. In the study, two types of antioxidant were used: natural - green tea extract in three doses (0.02%; 0.2% and 1.0%) and synthetic BHA (0.02%) and 100%, solid bakery shortening. Sponge-cakes were thermostatted at temperatures 63°C after twenty-eight days. In this study, the quality of the lipid fraction was analyzed. The amount of primary (PV) and secondary (AnV) oxidation products was determined, and   a Rancimat test was performed. Adding antioxidants to fats varied in the degree to which oxidation processes of lipids fractions were inhibited. The peroxide value after twenty-eight days of thermostatting ranged from 3.57 meq O/kg (BHA) and 11.14 O meq/kg (extract content - 1%) to 62.85 meq O/kg (control sample). In turn, the value of AnV after the storage period ranged from 4.84 (BHA) and 6.71 (extract content - 1%) to 16.83 (control sample). The best protective effects in the process of oxidation was achieved by BHA. The longest in- duction time and the lowest peroxide value and anisidine value were obtained for this antioxidant. It was achieved after twenty-eight days of fat thermostatting. Nonetheless, the results demonstrated it is possible to use the commercially available green tea extract to slow the adverse process of fat oxidation in sponge cake products.

  4. 21 CFR 155.120 - Canned green beans and canned wax beans.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Canned green beans and canned wax beans. 155.120... Vegetables § 155.120 Canned green beans and canned wax beans. (a) Identity—(1) Definition. Canned green beans and canned wax beans are the foods prepared from succulent pods of fresh green bean or wax bean plants...

  5. Antihepatic Fibrosis Effect of Active Components Isolated from Green Asparagus (Asparagus officinalis L.) Involves the Inactivation of Hepatic Stellate Cells.

    Science.gov (United States)

    Zhong, Chunge; Jiang, Chunyu; Xia, Xichun; Mu, Teng; Wei, Lige; Lou, Yuntian; Zhang, Xiaoshu; Zhao, Yuqing; Bi, Xiuli

    2015-07-08

    Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 μg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-β1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-β1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.

  6. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    Science.gov (United States)

    Jones, Jefferson J.; Falkinham III, Joseph O.

    2003-01-01

    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite green and its reduced, decolorized product were detected in the lipid fraction of M. avium strain A5 cells grown in the presence of malachite green, suggesting that a minor component of resistance could be due to sequestering the dyes in the extensive mycobacterial cell surface lipid. The membrane fraction of M. avium strain A5 had at least a fivefold-higher specific decolorization rate than did the crude extract, suggesting that the decolorization activity is membrane associated. The malachite green-decolorizing activity of the membrane fraction of M. avium strain A5 was abolished by either boiling or proteinase exposure, suggesting that the decolorizing activity was due to a protein. Decolorization activity of membrane fractions was stimulated by ferrous ion and inhibited by dinitrophenol and metyrapone. PMID:12821489

  7. GREEN PEA GALAXIES REVEAL SECRETS OF Lyα ESCAPE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huan; Wang, Junxian [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China (China); Malhotra, Sangeeta; Rhoads, James E. [Arizona State University, School of Earth and Space Exploration (United States); Gronke, Max; Dijkstra, Mark [Institute of Theoretical Astrophysics, University of Oslo (Norway); Jaskot, Anne [Smith College, Northampton, MA (United States); Zheng, Zhenya, E-mail: yanghuan@mail.ustc.edu.cn, E-mail: huan.y@asu.edu, E-mail: Sangeeta.Malhotra@asu.edu, E-mail: James.Rhoads@asu.edu [Pontificia Universidad Católica de Chile, Santiago (Chile)

    2016-04-01

    We analyze archival Lyα spectra of 12 “Green Pea” galaxies observed with the Hubble Space Telescope, model their Lyα profiles with radiative transfer models, and explore the dependence of the Lyα escape fraction on various properties. Green Pea galaxies are nearby compact starburst galaxies with [O iii] λ5007 equivalent widths (EWs) of hundreds of Å. All 12 Green Pea galaxies in our sample show Lyα lines in emission, with an Lyα EW distribution similar to high-redshift Lyα emitters. Combining the optical and UV spectra of Green Pea galaxies, we estimate their Lyα escape fractions and find correlations between Lyα escape fraction and kinematic features of Lyα profiles. The escape fraction of Lyα in these galaxies ranges from 1.4% to 67%. We also find that the Lyα escape fraction depends strongly on metallicity and moderately on dust extinction. We compare their high-quality Lyα profiles with single H i shell radiative transfer models and find that the Lyα escape fraction anticorrelates with the derived H i column densities. Single-shell models fit most Lyα profiles well, but not the ones with the highest escape fractions of Lyα. Our results suggest that low H i column density and low metallicity are essential for Lyα escape and make a galaxy an Lyα emitter.

  8. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo.

    Science.gov (United States)

    Heim, Amy; Lundholm, Jeremy

    2013-01-01

    Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  9. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2017-11-01

    Full Text Available Phenolic acids are thought to be beneficial for human health and responsible for vegetables’ health-promoting properties. Free, conjugated, and bound phenolic acids of seven commonly consumed vegetables, including kidney bean, cow pea, snow pea, hyacinth bean, green soy bean, soybean sprouts and daylily, from the regions of Beijing, Hangzhou, and Guangzhou, were identified and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS. Three vegetables, namely green soy bean, soybean sprouts, and daylily (Hemerocallis fulva L., from the Beijing region contained higher concentrations of total phenolic acids than those from the Hangzhou and Guangzhou regions. The results indicated that the phenolic acid content in the seven vegetables appeared to be species-dependent. The highest content of phenolic acids was found in daylily, followed by green soy bean, while the least amounts were identified in kidney bean and hyacinth bean. Typically, phenolic acids are predominantly found in conjugated forms. Principle component analysis (PCA revealed some key compounds that differentiated the seven vegetables. Green soy bean, compared to the other six vegetables, was characterized by higher levels of syringic acid, ferulic acid, vanillic acid, and sinapic acid. Other compounds, particularly p-coumaric acid, neochlorogenic acid, and caffeic acid, exhibited significantly higher concentrations in daylily. In addition, p-coumaric acid was the characteristic substance in cow pea. Results from this study can contribute to the development of vegetables with specific phytochemicals and health benefits.

  10. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    Increase in the petroleum prices, projected increases in the world's energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel---a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel-hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating catalysts suffers from fast catalyst deactivation in the absence of hydrogen combined with high temperatures and high fatty acid content in the feedstock. Additionally, excess hydrogen requirement for hydrodeoxygenation technique leads to high production costs. This thesis proposes a new technology-selective decarboxylation of brown grease, which is a mixture of fats and oils collected from waste water trap and rich in fatty acids, over a supported noble metal catalyst that overcomes the green diesel production challenges. In contrast to other feedstocks used for liquid biofuel production, brown grease is inexpensive and non-food competing feedstock, therefore the process finds solution to waste management issues, reduces the renewable fuel production cost and does not add to the global food shortage problems. Special catalyst formulations were developed to have a high activity and stability in the absence of hydrogen in the fatty acid decarboxylation process. The study shows how catalyst innovations can lead to a new technology that overcomes the process challenges. First, the effect of reaction parameters on the activity and the selectivity of brown grease decarboxylation with minimum hydrogen consumption over an activated carbon supported palladium catalyst were

  11. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    Science.gov (United States)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  12. Wild vegetable mixes sold in the markets of Dalmatia (southern Croatia

    Directory of Open Access Journals (Sweden)

    Łuczaj Łukasz

    2013-01-01

    Full Text Available Abstract Background Dalmatia is an interesting place to study the use of wild greens as it lies at the intersection of influence of Slavs, who do not usually use many species of wild greens, and Mediterranean culinary culture, where the use of multiple wild greens is common. The aim of the study was to document the mixtures of wild green vegetables which are sold in all the vegetable markets of Dalmatia. Methods All vendors (68 in all 11 major markets of the Dalmatian coast were interviewed. The piles of wild vegetables they sold were searched and herbarium specimens taken from them. Results The mean number of species in the mix was 5.7. The most commonly sold wild plants are: Sonchus oleraceus L., Allium ampeloprasum L., Foeniculum vulgare Mill., Urospermum picroides F.W.Schmidt, Papaver rhoeas L., Daucus carota L., Taraxacum sp., Picris echioides L., Silene latifolia Poir. and Crepis spp. Also the cultivated beet (Beta vulgaris L. and a few cultivated Brassicaceae varieties are frequent components. Wild vegetables from the mix are usually boiled for 20–30 minutes and dressed with olive oil and salt. Altogether at least 37 wild taxa and 13 cultivated taxa were recorded. Apart from the mixes, Asparagus acutifolius L. and Tamus communis L. shoots are sold in separate bunches (they are usually eaten with eggs, as well as some Asteraceae species, the latter are eaten raw or briefly boiled. Conclusions The rich tradition of eating many wild greens may result both from strong Venetian and Greek influences and the necessity of using all food resources available in the barren, infertile land in the past. Although the number of wild-collected green vegetables is impressive we hypothesize that it may have decreased over the years, and that further in-depth local ethnobotanical studies are needed in Dalmatia to record the disappearing knowledge of edible plants.

  13. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery

    Science.gov (United States)

    Richardson, Andrew D.; Hufkens, Koen; Milliman, Tom; Aubrecht, Donald M.; Chen, Min; Gray, Josh M.; Johnston, Miriam R.; Keenan, Trevor F.; Klosterman, Stephen T.; Kosmala, Margaret; Melaas, Eli K.; Friedl, Mark A.; Frolking, Steve

    2018-03-01

    Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from conventional, visible-wavelength, automated digital camera imagery collected through the PhenoCam network. For each archived image, we extracted RGB (red, green, blue) colour channel information, with means and other statistics calculated across a region-of-interest (ROI) delineating a specific vegetation type. From the high-frequency (typically, 30 min) imagery, we derived time series characterizing vegetation colour, including “canopy greenness”, processed to 1- and 3-day intervals. For ecosystems with one or more annual cycles of vegetation activity, we provide estimates, with uncertainties, for the start of the “greenness rising” and end of the “greenness falling” stages. The database can be used for phenological model validation and development, evaluation of satellite remote sensing data products, benchmarking earth system models, and studies of climate change impacts on terrestrial ecosystems.

  14. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  15. Quantitative microbial risk assessment for Escherichia coli O157:H7, salmonella, and Listeria monocytogenes in leafy green vegetables consumed at salad bars.

    Science.gov (United States)

    Franz, E; Tromp, S O; Rijgersberg, H; van der Fels-Klerx, H J

    2010-02-01

    Fresh vegetables are increasingly recognized as a source of foodborne outbreaks in many parts of the world. The purpose of this study was to conduct a quantitative microbial risk assessment for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes infection from consumption of leafy green vegetables in salad from salad bars in The Netherlands. Pathogen growth was modeled in Aladin (Agro Logistics Analysis and Design Instrument) using time-temperature profiles in the chilled supply chain and one particular restaurant with a salad bar. A second-order Monte Carlo risk assessment model was constructed (using @Risk) to estimate the public health effects. The temperature in the studied cold chain was well controlled below 5 degrees C. Growth of E. coli O157:H7 and Salmonella was minimal (17 and 15%, respectively). Growth of L. monocytogenes was considerably greater (194%). Based on first-order Monte Carlo simulations, the average number of cases per year in The Netherlands associated the consumption leafy greens in salads from salad bars was 166, 187, and 0.3 for E. coli O157:H7, Salmonella, and L. monocytogenes, respectively. The ranges of the average number of annual cases as estimated by second-order Monte Carlo simulation (with prevalence and number of visitors as uncertain variables) were 42 to 551 for E. coli O157:H7, 81 to 281 for Salmonella, and 0.1 to 0.9 for L. monocytogenes. This study included an integration of modeling pathogen growth in the supply chain of fresh leafy vegetables destined for restaurant salad bars using software designed to model and design logistics and modeling the public health effects using probabilistic risk assessment software.

  16. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    Science.gov (United States)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  17. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy, E-mail: jlundholm@smu.ca

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  18. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof

    International Nuclear Information System (INIS)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-01-01

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%–26% volumetric moisture content) and temperature (21 °C–36 °C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  19. Elevated CO2 as a driver of global dryland greening

    KAUST Repository

    Lu, Xuefei

    2016-02-12

    While recent findings based on satellite records indicate a positive trend in vegetation greenness over global drylands, the reasons remain elusive. We hypothesize that enhanced levels of atmospheric CO2 play an important role in the observed greening through the CO2 effect on plant water savings and consequent available soil water increases. Meta-analytic techniques were used to compare soil water content under ambient and elevated CO2 treatments across a range of climate regimes, vegetation types, soil textures and land management practices. Based on 1705 field measurements from 21 distinct sites, a consistent and statistically significant increase in the availability of soil water (11%) was observed under elevated CO2 treatments in both drylands and non-drylands, with a statistically stronger response over drylands (17% vs. 9%). Given the inherent water limitation in drylands, it is suggested that the additional soil water availability is a likely driver of observed increases in vegetation greenness.

  20. Elevated CO2 as a driver of global dryland greening

    KAUST Repository

    Lu, Xuefei; Wang, Lixin; McCabe, Matthew

    2016-01-01

    While recent findings based on satellite records indicate a positive trend in vegetation greenness over global drylands, the reasons remain elusive. We hypothesize that enhanced levels of atmospheric CO2 play an important role in the observed greening through the CO2 effect on plant water savings and consequent available soil water increases. Meta-analytic techniques were used to compare soil water content under ambient and elevated CO2 treatments across a range of climate regimes, vegetation types, soil textures and land management practices. Based on 1705 field measurements from 21 distinct sites, a consistent and statistically significant increase in the availability of soil water (11%) was observed under elevated CO2 treatments in both drylands and non-drylands, with a statistically stronger response over drylands (17% vs. 9%). Given the inherent water limitation in drylands, it is suggested that the additional soil water availability is a likely driver of observed increases in vegetation greenness.

  1. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of specific SOM

  2. Between green and grey

    NARCIS (Netherlands)

    Jeanet Kullberg

    2016-01-01

    Original title: Tussen groen en grijs Taking cuttings is cool. Growing vegetables is all the rage. Green oases can now be found scattered throughout Dutch towns and cities: community gardens and roof gardens where residents can go to relax and enjoy themselves, improve the appearance of their

  3. leafy vegetable, Gnetum africanum

    African Journals Online (AJOL)

    A prerequisite for successful in vitro culture is the establishment of an aseptic technique, thus the experiment was to investigate suitable sterilization regimes for the leaf explants of Gnetum africanum, an endangered green leafy vegetable. Three sterilization regimes were tested to establish the best regime using three to four ...

  4. Extraction of urban vegetation with Pleiades multiangular images

    Science.gov (United States)

    Lefebvre, Antoine; Nabucet, Jean; Corpetti, Thomas; Courty, Nicolas; Hubert-Moy, Laurence

    2016-10-01

    Vegetation is essential in urban environments since it provides significant services in terms of health, heat, property value, ecology ... As part of the European Union Biodiversity Strategy Plan for 2020, the protection and development of green-infrastructures is strengthened in urban areas. In order to evaluate and monitor the quality of the green infra-structures, this article investigates contributions of Pléiades multi-angular images to extract and characterize low and high urban vegetation. From such images one can extract both spectral and elevation information from optical images. Our method is composed of 3 main steps : (1) the computation of a normalized Digital Surface Model from the multi-angular images ; (2) Extraction of spectral and contextual features ; (3) a classification of vegetation classes (tree and grass) performed with a random forest classifier. Results performed in the city of Rennes in France show the ability of multi-angular images to extract DEM in urban area despite building height. It also highlights its importance and its complementarity with contextual information to extract urban vegetation.

  5. Migratory herbivorous waterfowl track satellite-derived green wave index.

    Directory of Open Access Journals (Sweden)

    Mitra Shariatinajafabadi

    Full Text Available Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI, has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7. Data were collected over three years (2008-2010. Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%, while the Greenland geese followed an earlier stage (GWI 20-40%. Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration, thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.

  6. Recent shifts in Himalayan vegetation activity trends in response to climatic change and environmental drivers

    Science.gov (United States)

    Mishra, N. B.; Mainali, K. P.

    2016-12-01

    Climatic changes along with anthropogenic disturbances are causing dramatic ecological impacts in mid to high latitude mountain vegetation including in the Himalayas which are ecologically sensitive environments. Given the challenges associated with in situ vegetation monitoring in the Himalayas, remote sensing based quantification of vegetation dynamics can provide essential ecological information on changes in vegetation activity that may consist of alternative sequence of greening and/or browning periods. This study utilized a trend break analysis procedure for detection of monotonic as well as abrupt (either interruption or reversal) trend changes in smoothed normalized difference vegetation index satellite time-series data over the Himalayas. Overall, trend breaks in vegetation greenness showed high spatio-temporal variability in distribution considering elevation, ecoregion and land cover/use stratifications. Interrupted greening was spatially most dominant in all Himalayan ecoregions followed by abrupt browning. Areas showing trend reversal and monotonic trends appeared minority. Trend type distribution was strongly dependent on elevation as majority of greening (with or without interruption) occurred at lower elevation areas at higher elevation were dominantly. Ecoregion based stratification of trend types highlighted some exception to this elevational dependence as high altitude ecoregions of western Himalayas showed significantly less browning compared to the ecoregions in eastern Himalaya. Land cover/use based analysis of trend distribution showed that interrupted greening was most dominant in closed needleleafed forest following by rainfed cropland and mosaic croplands while interrupted browning most dominant in closed to open herbaceous vegetation found at higher elevation areas followed by closed needleleafed forest and closed to open broad leafed evergreen forests. Spatial analysis of trend break timing showed that for majority of areas experiencing

  7. Are green caterers more likely to serve healthy meals than non-green caterers? Results from a quantitative study in Danish worksite catering.

    Science.gov (United States)

    Mikkelsen, Be; Bruselius-Jensen, M; Andersen, Js; Lassen, A

    2006-10-01

    The present study aimed to investigate whether organic conversion in catering has positive effects on the nutritional quality of menus offered. The methodology was based on a self-administered questionnaire. The self-declared priority given to the use of organic foods was measured as the basis for assigning catering managers to one of two groups: 'green' or 'non-green' caterers. These groups were then compared with regard to the relative nutritional quality of the menu options offered to customers. The study was carried out among randomly selected Danish worksite catering outlets. The subjects participating in the study comprised 526 Danish worksite catering managers. The results showed a strong correlation between caterers' 'green-ness' and the nutritional quality of the menu options offered. Green caters had more healthy options in their menus than non-green caters, which is likely to result in improved nutritional quality of the diets of end consumers. The reason for this may partly be the increased service training efforts that green caterers practise in order to be able to implement organic foods successfully. It may also be associated with the fact that the price premiums and availability of the organic products forces caterers to serve menus with higher amounts of root and non-green leafy vegetables, pulses and seasonal vegetables. The present findings suggest that organic conversion of public canteens may be a good opportunity to promote healthier eating in public catering.

  8. Unexplored vegetal green synthesis of silver nanoparticles: A ...

    African Journals Online (AJOL)

    Antibacterial properties of silver ion are known from ancient times. The plant extract mediated synthesis of nanoparticles is gaining popularity due to green chemistry for the generation of nanosized materials. Corchorus olitorus Linn and Ipomea batatas (L.) Lam are world crops having leaves of high nutritional value.

  9. Air quality considerations for stormwater green street design.

    Science.gov (United States)

    Shaneyfelt, Kathryn M; Anderson, Andrew R; Kumar, Prashant; Hunt, William F

    2017-12-01

    Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Estimation of leaf area index in cereal crops using red-green images

    DEFF Research Database (Denmark)

    Kirk, Kristian; Andersen, Hans Jørgen; Thomsen, Anton G

    2009-01-01

    A new method for estimating the leaf area index (LAI) in cereal crops based on red-green images taken from above the crop canopy is introduced. The proposed method labels pixels into vegetation and soil classes using a combination of greenness and intensity derived from the red and green colour b...

  11. Modeling green infrastructure land use changes on future air ...

    Science.gov (United States)

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  12. Green roofs: roof system reducing heating and cooling costs

    Directory of Open Access Journals (Sweden)

    Konasova, Sarka

    2016-06-01

    Full Text Available Green roofs are among the passive building systems that contribute to the thermal stability of the rooms under the roof in both summer and winter. Green roofs can provide a significant contribution to the thermal balance of the protected space. Over the past ten years, many studies have been carried out to investigate the energy benefits of green roofs in terms of the energy performance of buildings. These studies show that the installation of vegetated cover can achieve energy savings for both winter heating and summer cooling. The green roof, as a thermal insulation, reduces the amount of building operating energy costs and reduces heat losses. This article summarizes current literature and points to situations in which green roofs can play an important role in saving energy for heating and cooling due to improved thermal insulating function of the roof, in case of extensive vegetation coverage without significant overloading of the roof structure and associated over-dimensioning. It is important to note that these energy savings always depend on the particular climate, the type of building and the availability and the type of roof structure.

  13. Residential Greenness and Birthweight in the State of Massachusetts, USA

    Directory of Open Access Journals (Sweden)

    Kelvin C. Fong

    2018-06-01

    Full Text Available Natural vegetation, or greenness, may benefit maternal health and consequently, fetal growth, by providing opportunities for physical activity and psychological restoration, and decreasing detrimental environmental exposures. We retrieved Massachusetts Birth Registry data from 2001–2013 and investigated the association between residential greenness and birthweight in full-term births (≥37 weeks gestation. We calculated average residential greenness during pregnancy using 250 m normalized difference vegetation index (NDVI from satellites. We estimated associations between greenness and continuous birthweight, term low birthweight (TLBW: <2500 g, and small for gestational age (SGA: <10th percentile of birthweight stratified by sex and gestational age adjusted for individual and neighborhood covariates and considered nonlinearity and effect modification. Higher greenness exposure was associated with higher birthweight with stronger associations in the lower than higher range of greenness. Greenness was associated with lower odds of TLBW (OR 0.98; 95% CI 0.97, 0.99 per 0.1 increase in NDVI and SGA (OR 0.98; 95% 0.97, 0.99 and associations varied by population density (TLBW and socioeconomic status (TLBW, SGA. Our results suggest that greenness is beneficial to fetal growth exhibited by higher birthweight and lower odds of TLBW and SGA. Unlike prior studies, associations with TLBW and SGA appeared stronger among those with higher socioeconomic status.

  14. Methanol fractionations of Catha edulis frosk (Celastraceae ...

    African Journals Online (AJOL)

    The study investigated the effect of methanol extract and its fractionations obtained from Yemeni khat on the smooth muscle isometric tension in Lewis rat aortal ring preparations and compared the effects of the crimson and green leaves. Khat leaves were sorted into green (khat Light; KL) and crimson (khat Dark; KD) leaves ...

  15. Perceived personal safety in relation to urban woodland vegetation – A review

    OpenAIRE

    Jansson, Märit; Fors, Hanna; Lindgren, Therese; Wiström, Björn

    2013-01-01

    Urban woodland vegetation provides people with many aesthetic, ecological and psychological benefits, but can also generate problems concerning people’s perception of safety. This paper reviews existing knowledge about perceived personal safety in relation to vegetation, particularly woodland vegetation, in urban green spaces such as parks and residential areas. Individual and social factors, but also vegetation character, maintenance and design, proved to be important for perceived personal ...

  16. Desertification, resilience, and re-greening in the African Sahel - a matter of the observation period?

    Science.gov (United States)

    Kusserow, Hannelore

    2017-12-01

    Since the turn of the millennium various scientific publications have been discussing a re-greening of the Sahel after the 1980s drought mainly based on coarse-resolution satellite data. However, the author's own field studies suggest that the situation is far more complex and that both paradigms, the encroaching Sahara and the re-greening Sahel, need to be questioned.This paper discusses the concepts of desertification, resilience, and re-greening by addressing four main aspects: (i) the relevance of edaphic factors for a vegetation re-greening, (ii-iii) the importance of the selected observation period in the debate on Sahel greening or browning, and (iv) modifications in the vegetation pattern as possible indicators of ecosystem changes (shift from originally diffuse to contracted vegetation patterns).The data referred to in this paper cover a time period of more than 150 years and include the author's own research results from the early 1980s until today. A special emphasis, apart from fieldwork data and remote sensing data, is laid on the historical documents.The key findings summarised at the end show the following: (i) vegetation recovery predominantly depends on soil types; (ii) when discussing Sahel greening vs. Sahel browning, the majority of research papers only focus on post-drought conditions. Taking pre-drought conditions (before the 1980s) into account, however, is essential to fully understand the situation. Botanical investigations and remote-sensing-based time series clearly show a substantial decline in woody species diversity and cover density compared to pre-drought conditions; (iii) the self-organised patchiness of vegetation is considered to be an important indicator of ecosystem changes.

  17. Larvicidal activity of the methanol extract and fractions of the green fruits of Solanum lycocarpum (Solanaceae against the vector Culex quinquefasciatus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Thamer Matias Pereira

    2014-10-01

    Full Text Available Introduction The larvicidal activity of Solanum lycocarpum against Culex quinquefasciatus is unknown. Methods We evaluated the larvicidal activity of extracts of the green fruits of Solanum lycocarpum against third and fourth instar larvae of C. quinquefasciatus. Results Dichloromethane and ethyl acetate fractions showed the greatest larvicidal effect at 200mg/L (83.3% and 86.7%, respectively. The methanol and dichloromethane, ethyl acetate, and hydromethanolic fractions demonstrated larvicidal effects against C. quinquefasciatus, with LC50 values of 126.24, 75.13, 83.15, and 207.05mg/L, respectively. Conclusions Thus, when considering new drugs with larvicidal activity from natural products, S. lycocarpum fruits may be good candidate sources.

  18. Urban vegetation and thermal patterns following city growth in different socio-economic contexts

    Science.gov (United States)

    Dronova, I.; Clinton, N.; Yang, J.; Radke, J.; Marx, S. S.; Gong, P.

    2015-12-01

    Urban expansion accompanied by losses of vegetated spaces and their ecological services raises significant concerns about the future of humans in metropolitan "habitats". Despite recent growth of urban studies globally, it is still not well understood how environmental effects of urbanization vary with the rate and socioeconomic context of development. Our study hypothesized that with urban development, spatial patterns of surface thermal properties and green plant cover would shift towards higher occurrence of relatively warmer and less vegetated spaces such as built-up areas, followed by losses of greener and cooler areas such as urban forests, and that these shifts would be more pronounced with higher rate of economic and/or population growth. To test these ideas, we compared 1992-2011 changes in remotely sensed patterns of green vegetation and surface temperature in three example cities that experienced peripheral growth under contrasting socio-economic context - Dallas, TX, USA, Beijing, China and Kyiv, Ukraine. To assess their transformation, we proposed a metric of thermal-vegetation angle (TVA) estimated from per-pixel proxies of vegetation greenness and surface temperature from Landsat satellite data and examined changes in TVA distributions within each city's core and two decadal zones of peripheral sprawl delineated from nighttime satellite data. We found that higher economic and population growth were coupled with more pronounced changes in TVA distributions, and more urbanized zones often exhibited higher frequencies of warmer, less green than average TVA values with novel patterns such as "cooler" clusters of building shadows. Although greener and cooler spaces generally diminished with development, they remained relatively prevalent in low-density residential areas of Dallas and peripheral zones of Kyiv with exurban subsistence farming. Overall, results indicate that the effects of modified green space and thermal patterns within growing cities

  19. Fruit and Vegetable Consumption of U.S. Youth, 2009-2010. NCHS Data Brief. Number 156

    Science.gov (United States)

    Nielsen, Samara Joy; Rossen, Lauren M.; Harris, Diane M.; Ogden, Cynthia L.

    2014-01-01

    The Dietary Guidelines for Americans (DGA), 2010 encourage Americans, including youth, to increase their consumption of fruits and vegetables. Individuals are encouraged to "eat a variety of vegetables, especially dark-green and red and orange vegetables." Fruits and vegetables are sources of many under-consumed nutrients and consuming…

  20. A survey on parasitic contamination of leafy vegetables in Ihiala LGA ...

    African Journals Online (AJOL)

    This study was designed to assess the degree of parasitic contamination of vegetables sold in some selected markets in Ihiala Local Government Area, Anambra State Nigeria between January and June 2014. Vegetable samples which includes Amaranthus spp (green leaf), Telfara Occidentalis (pumpkin leaf), Talinium ...

  1. Simulating sub-Milankovitch climate variations associated with vegetation dynamics

    Directory of Open Access Journals (Sweden)

    E. Tuenter

    2007-01-01

    Full Text Available Climate variability at sub-Milankovitch periods (between 2 and 15 kyr is studied in a set of transient simulations with a coupled atmosphere/ocean/vegetation model of intermediate complexity (CLIMBER-2. Focus is on the region influenced by the African and Asian summer monsoon. Pronounced variations at periods of about 10 kyr (Asia and Africa and about 5 kyr (Asia are found in the monsoonal runoff in response to the precessional forcing. In the model this is due to the following mechanism. For low summer insolation (precession maximum precipitation is low and desert expands at the expense of grass, while for high insolation (precession minimum precipitation is high and the tree fraction increases also reducing the grass fraction. This induces sub-Milankovitch variations in the grass fraction and associated variations in the water holding capacity of the soil. The runoff does not exhibit sub-Milankovitch variability when vegetation is kept fixed. High-latitude vegetation also exhibits sub-Milankovitch variability under both obliquity and precessional forcing. We thus hypothesize that sub-Milankovitch variability can occur due to the dynamic response of the vegetation. However, this mechanism should be further tested with more sophisticated climate/vegetation models.

  2. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau

    Science.gov (United States)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.

    2017-12-01

    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks

  3. Selection of Leafy Green Vegetable Varieties for a Pick-and-Eat Diet Supplement on ISS

    Science.gov (United States)

    Massa, Gioia D.; Wheeler, Raymond M.; Stutte, Gary W.; Richards, Jeffrey T.; Spencer, LaShelle E.; Hummerick, Mary E.; Douglas, Grace L.; Sirmons, Takiyah

    2015-01-01

    Several varieties of leafy vegetables were evaluated with the goal of selecting those with the best growth, nutrition, and organoleptic acceptability for ISS. Candidate species were narrowed to commercially available cultivars with desirable growth attributes for space (e.g., short stature and rapid growth). Seeds were germinated in controlled environment chambers under conditions similar to what might be found in the Veggie plant growth chamber on ISS. Eight varieties of leafy greens were grown: 'Tyee' spinach, 'Flamingo' spinach, 'Outredgeous' Red Romaine lettuce, 'Waldmann's Dark Green' leaf lettuce, 'Bull's Blood' beet, 'Rhubarb' Swiss chard, 'Tokyo Bekana' Chinese cabbage, and Mizuna. Plants were harvested at maturity and biometric data on plant height, diameter, chlorophyll content, and fresh mass were obtained. Tissue was ground and extractions were performed to determine the tissue elemental content of Potassium (K), Magnesium (Mg), Calcium (Ca) and Iron (Fe). Following the biometric/elemental evaluation, four of the eight varieties were tested further for levels of anthocyanins, antioxidant (ORAC-fluorescein) capacity, lutein, zeaxanthin, and Vitamin K. For sensory evaluation, 'Outredgeous' lettuce, Swiss chard, Chinese cabbage, and Mizuna plants were grown, harvested when mature, packaged under refrigerated conditions, and sent to the JSC Space Food Systems Laboratory. Tasters evaluated overall acceptability, appearance, color intensity, bitterness, flavor, texture, crispness and tenderness. All varieties received acceptable scores with overall ratings greater than 6 on a 9-point hedonic scale. Chinese cabbage was the highest rated, followed by Mizuna, 'Outredgeous' lettuce, and Swiss chard. Based on our results, the selected varieties of Chinese cabbage, lettuce, Swiss chard and Mizuna seem suitable for a pick-and-eat scenario on ISS with a ranking based on all factors analyzed to help establish priority.

  4. Application of topography survey on the green sea turtle (Chelonia mydas) conservation

    Science.gov (United States)

    Fan, Yuan-Yu; Lo, Liu-Chih; Peng, Kuan-Chieh

    2017-04-01

    Taiwan is located in the Western Pacific monsoon region, typhoon is one of the common natural disasters. Taiwan is hit by typhoons 6 times on average each year, and 2016 have 5. Typhoon not only caused the loss of nature environment in Taiwan but also decreased the endangered species- green sea turtle's breeding success rate. In Wangan island, Penghu, green sea turtle nesting beach's slop is too steep to form the dune cliff, block the way which green sea turtle should nesting above the vegetation line. Nesting under the dune cliff is disturbed easily by the swell from typhoon, Leading to the whole nest was emptied or hatching rate decreased due to water content changed. In order to reduce the threat of typhoon on the green sea turtle, and promote the success of green sea turtle reproduction, we used LiDAR(Light Detection And Ranging) to monitor the topographic change of the green sea turtle nesting habitat and compare the invasion and deposition of the green sea turtle nests before and after the occurrence of typhoons. The results showed that the breeding success rate before the typhoon (2016/09/12) was 93%, which was not affected by the swell. The breeding success rate at the higher position after the typhoon was 95%, and under the dune cliff, 10 nests reproduction failed due to the swell changing the sand layer thickness. The production of dune cliffs is formed by the roots of coastal sand-fixation plants. In the past, the residents collected the coastal plants for fuel, after collecting, sparse vegetation is good to form the flat beach, and to promote green sea turtle nesting on the higher position from the disturbance of typhoon. In the future, to protect the success of green sea turtle's reproduction, should increase the human intervention that disturb the nesting beach's vegetation appropriately, Or cutting the roots directly to reduce the dune cliffs before the nesting season, help the green sea turtle nesting in a higher beach, improve the green sea turtle

  5. Modeling Košice Green Roofs Maps

    Science.gov (United States)

    Poorova, Zuzana; Vranayova, Zuzana

    2017-06-01

    The need to house population in urban areas is expected to rise to 66% in 2050, according to United Nations. The replacement of natural permeable green areas with concrete constructions and hard surfaces will be noticed. The densification of existing built-up areas is responsible for the decreasing vegetation, which results in the lack of evapotranspiration cooling the air. Such decreasing vegetation causes urban heat islands. Since roofs and pavements have a very low albedo, they absorb a lot of sunlight. Several studies have shown that natural and permeable surfaces, as in the case of green roofs, can play crucial role in mitigating this negative climate phenomenon and providing higher efficiency for the building, leading to savings. Such as water saving, what is the main idea of this research.

  6. Green Infrastructure Increases Biogeochemical Responsiveness, Vegetation Growth and Decreases Runoff in a Semi-Arid City, Tucson, AZ, USA

    Science.gov (United States)

    Meixner, T.; Papuga, S. A.; Luketich, A. M.; Rockhill, T.; Gallo, E. L.; Anderson, J.; Salgado, L.; Pope, K.; Gupta, N.; Korgaonkar, Y.; Guertin, D. P.

    2017-12-01

    Green Infrastructure (GI) is often viewed as a mechanism to minimize the effects of urbanization on hydrology, water quality, and other ecosystem services (including the urban heat island). Quantifying the effects of GI requires field measurements of the dimensions of biogeochemical, ecosystem, and hydrologic function that we expect GI to impact. Here we investigated the effect of GI features in Tucson, Arizona which has a low intensity winter precipitation regime and a high intensity summer regime. We focused on understanding the effect of GI on soil hydraulic and biogeochemical properties as well as the effect on vegetation and canopy temperature. Our results demonstrate profound changes in biogeochemical and hydrologic properties and vegetation growth between GI systems and nearby control sites. In terms of hydrologic properties GI soils had increased water holding capacity and hydraulic conductivity. GI soils also have higher total carbon, total nitrogen, and organic matter in general than control soils. Furthermore, we tested the sampled soils (control and GI) for differences in biogeochemical response upon wetting. GI soils had larger respiration responses indicating greater biogeochemical activity overall. Long-term Lidar surveys were used to investigate the differential canopy growth of GI systems versus control sites. The results of this analysis indicate that while a significant amount of time is needed to observe differences in canopy growth GI features due increase tree size and thus likely impact street scale ambient temperatures. Additionally monitoring of transpiration, soil moisture, and canopy temperature demonstrates that GI features increase vegetation growth and transpiration and reduce canopy temperatures. These biogeochemical and ecohydrologic results indicate that GI can increase the biogeochemical processing of soils and increase tree growth and thus reduce urban ambient temperatures.

  7. Feasibility of a Dual-Fuel Engine Fuelled with Waste Vegetable Oil and Municipal Organic Fraction for Power Generation in Urban Areas

    Directory of Open Access Journals (Sweden)

    L. De Simio

    2012-01-01

    Full Text Available Biomass, in form of residues and waste, can be used to produce energy with low environmental impact. It is important to use the feedstock close to the places where waste are available, and with the shortest conversion pathway, to maximize the process efficiency. In particular waste vegetable oil and the organic fraction of municipal solid waste represent a good source for fuel production in urban areas. Dual fuel engines could be taken into consideration for an efficient management of these wastes. In fact, the dual fuel technology can achieve overall efficiencies typical of diesel engines with a cleaner exhaust emission. In this paper the feasibility of a cogeneration system fuelled with waste vegetable oil and biogas is discussed and the evaluation of performance and emissions is reported on the base of experimental activities on dual fuel heavy duty engine in comparison with diesel and spark ignition engines. The ratio of biogas potential from MSW and biodiesel potential from waste vegetable oil was estimated and it results suitable for dual fuel fuelling. An electric power installation of 70 kW every 10,000 people could be achieved.

  8. Bioaccessibility and risk assessment of essential and non-essential elements in vegetables commonly consumed in Swaziland.

    Science.gov (United States)

    Mnisi, Robert Londi; Ndibewu, Peter P; Mafu, Lihle D; Bwembya, Gabriel C

    2017-10-01

    The green leafy vegetables (Mormodica involucrate, Bidens pilosa and Amaranthus spinosus) are economic; seasonal; locally grown and easily available; easy to propagate and store; highly nutritious food substances that form an important component of diets. This study applies a physiology based extraction technique (PBET) to mimic digestion of these vegetables to determine the fraction of essential (Fe and Zn) and non-essential elements (Cd, Cr and Pb) that are made available for absorption after ingestion. Prior to the application of the PBET, the vegetables were cooked adopting indigenous Swazi cooking methods. Cooking mobilized most of the metals out of the vegetable mass, and the final substrate concentrations are: raw > cooked > supernatant for all the metals, and the order of average metal leaching was: Pb (82.2%) >Cr (70.6%) >Zn (67.5%) >Fe (60.2%) >Cd (53.6%). This meant that the bioavailable concentrations are significantly lower than in the original vegetable mass, if only the solid mass is consumed. Bioaccessibility was higher in the gastric tract than in the intestinal phases of the PBET for all the metals in all the vegetables. Risk assessment protocols employed on the non-essential elements (Cr, Cd and Pb) showed that the associated risks of ingesting metal contaminated vegetables are higher for children, than they are for adults, based on the target hazard quotient (THQ) index. However, the overall health risk associated with ingestion of these metals is low, for both children and adults, based on the HR index. Conclusively, this study expounds on the nutritional and risk benefits associated with ingesting naturally grown vegetables. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Understanding the Seasonal Greenness Trends and Controls in South Asia Using Satellite Based Observations

    Science.gov (United States)

    Sarmah, S.; Jia, G.; Zhang, A.; Singha, M.

    2017-12-01

    South Asia (SA) is one of the most remarkable regions in changing vegetation greenness along with its major expansion of agricultural activity, especially irrigated farming. However, SA is predicted to be a vulnerable agricultural regions to future climate changes. The influence of monsoon climate on the seasonal trends and anomalies of vegetation greenness are not well understood in the region which can provide valuable information about climate-ecosystem interaction. This study analyzed the spatio-temporal patterns of seasonal vegetation trends and variability using satellite vegetation indices (VI) including AVHRR Normalized Difference Vegetation Index (NDVI) (1982-2013) and MODIS Enhanced Vegetation Index (EVI) (2000-2013) in summer monsoon (SM) (June-Sept) and winter monsoon (WM) (Dec-Apr) seasons among irrigated cropland (IC), rainfed cropland (RC) and natural vegetation (NV). Seasonal VI variations with climatic factors (precipitation and temperature) and LULC changes have been investigated to identify the forcings behind the vegetation trends and variability. We found that major greening occurred in the last three decades due to the increase in IC productivity noticeably in WM, however, recent (2000-2013) greening trends were lower than the previous decades (1982-1999) in both the IC and RC indicating the stresses on them. The browning trends, mainly concentrated in NV areas were prominent during WM and rigorous since 2000, confirmed from the moderate resolution EVI and LULC datasets. Winter time maximal temperature had been increasing tremendously whereas precipitation trend was not significant over SA. Both the climate variability and LULC changes had integrated effects on the vegetation changes in NV areas specifically in hilly regions. However, LULC impact was intensified since 2000, mostly in north east India. This study also revealed a distinct seasonal variation in spatial distribution of correlation between VI's and climate anomalies over SA

  10. Presidential Green Chemistry Challenge: 2013 Academic Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2013 award winner, Prof Richard P. Wool of the University of Delaware, created high-performance materials using vegetable oils, feathers, and flax. Can be used as adhesives, composites, foams, and circuit boards.

  11. Assessing the accuracy of remote sensing techniques in vegetation ...

    African Journals Online (AJOL)

    Assessing the accuracy of remote sensing techniques in vegetation fractions estimation. ... This study aimed at exploring different remote sensing (RS) techniques for quantitatively measuring vegetation and bare soil ... HOW TO USE AJOL.

  12. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs

    NARCIS (Netherlands)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-01-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs – rooftops covered with vegetation – can contribute mitigate the loss of urban green spaces by

  13. Determination of adulteration of malachite green in green pea and some prepared foodstuffs by micellar liquid chromatography.

    Science.gov (United States)

    Ashok, Vipin; Agrawal, Nitasha; Durgbanshi, Abhilasha; Esteve-Romero, Josep; Bose, Devasish

    2014-01-01

    A simple, fast, and robust micellar LC method was developed for the separation and identification of the nonpermitted color malachite green in green pea and some ready-to-eat foodstuffs. Malachite green (4-[(4-dimethylaminophenyl) phenyl-methyl]-N,N-dimethylaniline) is a hazardous dye that is used to treat fungal and protozoan infections in fish and is a common adulterant (coloring agent) in green pea and other green vegetables because of its green color. In the present work, malachite green was determined in various foodstuffs using a direct injection technique on an RP C18 column with isocratic elution. The optimum mobile phase consisted of 0.15 M sodium dodecyl sulfate (SDS), 6% pentanol buffered at pH 5. Detection was carried out at 620 nm. Malachite green was eluted in 9.2 min without any interference caused by endogenous compounds. Linearities (r > 0.9999), intraday and interday precision (RSD less than 1.00%) in micellar media, and robustness were studied for method validation. LOD and LOQ were 0.10 and 0.25 ppm, respectively. The simplicity of the developed method makes it useful for routine analysis in the area of food QC.

  14. Antimicrobial effect of Malaysian vegetables against enteric bacteria

    Directory of Open Access Journals (Sweden)

    Hassanain Al-Talib

    2016-03-01

    Conclusions: Garlic had excellent antimicrobial effects against enteric bacteria and was recommended to be given to patients with gastroenteritis. The other vegetables (pennywort, mint, parsley and celery showed no inhibitory effects on enteric bacteria but still can be used for its richness in vitamins and fibers. The performance of the well diffusion method was better than that of the disc diffusion method in detecting the antibacterial effects of green vegetables.

  15. Arsenic and Lead Uptake by Vegetable Crops Grown on Historically Contaminated Orchard Soils

    Directory of Open Access Journals (Sweden)

    M. B. McBride

    2013-01-01

    Full Text Available Transfer of Pb and As into vegetables grown on orchard soils historically contaminated by Pb arsenate pesticides was measured in the greenhouse. Lettuce, carrots, green beans, and tomatoes were grown on soils containing a range of total Pb (16.5–915 mg/kg and As (6.9–211 mg/kg concentrations. The vegetables were acid-digested and analyzed for total Pb and As using ICP-mass spectrometry. Vegetable contamination was dependent on soil total Pb and As concentrations, pH, and vegetable species. Arsenic concentrations were the highest in lettuce and green beans, lower in carrots, and much lower in tomato fruit. Transfer of Pb into lettuce and beans was generally lower than that of As, and Pb and As were strongly excluded from tomato fruit. Soil metal concentrations as high as 400 mg/kg Pb and 100 mg/kg As produced vegetables with concentrations of Pb and As below the limits of international health standards.

  16. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico.

    Science.gov (United States)

    Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G

    2006-08-01

    Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.

  17. Presidential Green Chemistry Challenge: 2014 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2014 award winner, Solazyme, engineered microalgae to produce oils tailored to customers’ needs that can mimic or enhance properties of traditional vegetable oils.

  18. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014)

    Science.gov (United States)

    Zhu, Zhe; Fu, Yingchun; Woodcock, Curtis; Olofsson, Pontus; Vogelmann, James; Holden, Christopher; Wang, Min; Dai, Shu; Yu, Yang

    2016-01-01

    Remote sensing has proven a useful way of evaluating long-term trends in vegetation “greenness” through the use of vegetation indices like Normalized Differences Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In particular, analyses of greenness trends have been performed for large areas (continents, for example) in an attempt to understand vegetation response to climate. These studies have been most often used coarse resolution sensors like Moderate Resolution Image Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR). However, trends in greenness are also important at more local scales, particularly in and around cities as vegetation offers a variety of valuable ecosystem services ranging from minimizing air pollution to mitigating urban heat island effects. To explore the ability to monitor greenness trends in and around cities, this paper presents a new way for analyzing greenness trends based on all available Landsat 5, 7, and 8 images and applies it to Guangzhou, China. This method is capable of including the effects of land cover change in the evaluation of greenness trends by separating the effects of abrupt and gradual changes, and providing information on the timing of greenness trends.

  19. Examining Land Cover and Greenness Dynamics in Hangzhou Bay in 1985–2016 Using Landsat Time-Series Data

    Directory of Open Access Journals (Sweden)

    Dengqiu Li

    2017-12-01

    Full Text Available Land cover changes significantly influence vegetation greenness in different regions. Dense Landsat time series stacks provide unique opportunity to analyze land cover change and vegetation greenness trends at finer spatial scale. In the past three decades, large reclamation activities have greatly changed land cover and vegetation growth of coastal areas. However, rarely has research investigated these frequently changed coastal areas. In this study, Landsat Normalized Difference Vegetation Index time series (1984–2016 data and the Breaks For Additive Seasonal and Trend algorithm were used to detect the intensity and dates of abrupt changes in a typical coastal area—Hangzhou Bay, China. The prior and posterior land cover categories of each change were classified using phenology information through a Random Forest model. The impacts of land cover change on vegetation greenness trends of the inland and reclaimed areas were analyzed through distinguishing gradual and abrupt changes. The results showed that the intensity and date of land cover change were detected successfully with overall accuracies of 88.7% and 86.1%, respectively. The continuous land cover dynamics were retrieved accurately with an overall accuracy of 91.0% for ten land cover classifications. Coastal reclamation did not alleviate local cropland occupation, but prompted the vegetation greenness of the reclaimed area. Most of the inland area showed a browning trend. The main contributors to the greenness and browning trends were also quantified. These findings will help the natural resource management community generate better understanding of coastal reclamation and make better management decisions.

  20. [Role of green tea in oxidative stress prevention].

    Science.gov (United States)

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  1. SMEX02 Watershed Vegetation Sampling Data, Walnut Creek, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the vegetation parameters stand density, plant height, phenological stage, ground cover, green and dry biomass, row spacing, stem and leaf...

  2. Analysis of monotonic greening and browning trends from global NDVI time-series

    NARCIS (Netherlands)

    Jong, de R.; Bruin, de S.; Wit, de A.J.W.; Schaepman, M.E.; Dent, D.L.

    2011-01-01

    Remotely sensed vegetation indices are widely used to detect greening and browning trends; especially the global coverage of time-series normalized difference vegetation index (NDVI) data which are available from 1981. Seasonality and serial auto-correlation in the data have previously been dealt

  3. Influence of seasoning on vegetable selection, liking and intent to purchase.

    Science.gov (United States)

    Manero, Joanna; Phillips, Carter; Ellison, Brenna; Lee, Soo-Yeun; Nickols-Richardson, Sharon M; Chapman-Novakofski, Karen M

    2017-09-01

    Low vegetable intake continues to be a health concern, and strategies to increase vegetable intake have resulted in only small increases. One strategy that has received less attention is the use of seasonings. This study's objective was to determine the impact of seasoning on vegetable selection, liking, and intent to purchase. We conducted a 3-week study in a public café on a university campus. Customers buying a main dish could select a vegetable side (seasoned [SS] or steamed [ST]) at no cost. Based on café data and power analysis (alpha 0.05, 80% power), 2 days per vegetable pair were conducted with carrot, broccoli, and green bean pairs randomized 3 days/week 1 and 3, with normal service week 2. Selection was greater for SS vs ST, n = 335 vs. 143 for all 3 vegetables combined; n = 97 vs 47 for carrots; n = 114 vs. 55 for broccoli; n = 124 vs. 41 for green beans (p purchase the vegetable that they selected. More customers chose the 'somewhat likely' and 'very likely' (n = 353) than the 'not likely' and 'definitely would not' (n = 121) purchase responses. Regression showed that people who did not often consume a vegetable with lunch while dining out were 1.59 times more likely to select the SS vegetables over the ST (p = 0.007). Given a choice, consumers were more likely to select a seasoned vegetable. With low vegetable consumption as a predictor of seasoned vegetable choice, offering seasoned vegetables may increase intake in those with poor vegetable intake in a café setting. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-07-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  5. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-01-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  6. Parasitic Contamination of Commonly Consumed Fresh Leafy Vegetables in Benha, Egypt

    Directory of Open Access Journals (Sweden)

    Maysa Ahmad Eraky

    2014-01-01

    Full Text Available This study evaluated the degree of parasitic contamination of vegetables which are commercialized and consumed fresh in Benha, Egypt. It included 530 vegetables: lettuce, watercress, parsley, green onion, and leek. Vegetables were collected randomly from markets within Benha. Samples were washed in saline, and the resulting washing solution was filtered and centrifuged to concentrate the parasitic stages. Sediments and supernatants were examined by iodine and modified Ziehl-Neelsen stained smears. Intestinal parasites were detected in 157/530 (29.6% samples. Giardia lamblia cysts were the most prevalent parasite (8.8% followed by Entamoeba spp. cysts (6.8%, Enterobius vermicularis eggs (4.9%, various helminth larvae (3.6%, Hymenolepis nana eggs (2.8%, Hymenolepis diminuta eggs (2.1%, and Ascaris lumbricoides eggs (0.6%. The highest contaminated vegetable was lettuce (45.5% followed by watercress (41.3%, parsley (34.3%, green onion (16.5%, and leek (10.7%. These results indicate a significant seasonal variation (P<0.05, with highest prevalence in summer (49% and the lowest in winter (10.8%. These findings provide evidence for the high risk of acquiring parasitic infection from the consumption of raw vegetables in Benha, Egypt. Effective measures are necessary to reduce parasitic contamination of vegetables.

  7. Comparison and Validation of Long Time Serial Global GEOV1 and Regional Australian MODIS Fractional Vegetation Cover Products Over the Australian Continent

    Directory of Open Access Journals (Sweden)

    Yanling Ding

    2015-05-01

    Full Text Available Fractional vegetation cover (FVC is one of the most critical parameters in monitoring vegetation status. Comprehensive assessment of the FVC products is critical for their improvement and use in land surface models. This study investigates the performances of two major long time serial FVC products: GEOV1 and Australian MODIS. The spatial and temporal consistencies of these products were compared during the 2000–2012 period over the main biome types across the Australian continent. Their accuracies were validated by 443 FVC in-situ measurements during the 2011–2012 period. Our results show that there are strong correlations between the GEOV1 and Australian MODIS FVC products over the main Australian continent while they exhibit large differences and uncertainties in the coastal regions covered by dense forests. GEOV1 and Australian MODIS describe similar seasonal variations over the main biome types with differences in magnitude, while Australian MODIS exhibit unstable temporal variations over grasslands and shifted seasonal variations over evergreen broadleaf forests. The GEOV1 and Australian MODIS products overestimate FVC values over the biome types with high vegetation density and underestimate FVC in sparsely vegetated areas and grasslands. Overall, the GEOV1 and Australian MODIS FVC products agree with in-situ FVC values with a RMSE around 0.10 over the Australian continent.

  8. Green space definition affects associations of green space with overweight and physical activity.

    Science.gov (United States)

    Klompmaker, Jochem O; Hoek, Gerard; Bloemsma, Lizan D; Gehring, Ulrike; Strak, Maciej; Wijga, Alet H; van den Brink, Carolien; Brunekreef, Bert; Lebret, Erik; Janssen, Nicole A H

    2018-01-01

    In epidemiological studies, exposure to green space is inconsistently associated with being overweight and physical activity, possibly because studies differ widely in their definition of green space exposure, inclusion of important confounders, study population and data analysis. We evaluated whether the association of green space with being overweight and physical activity depended upon definition of greenspace. We conducted a cross-sectional study using data from a Dutch national health survey of 387,195 adults. Distance to the nearest park entrance and surrounding green space, based on the Normalized Difference Vegetation Index (NDVI) or a detailed Dutch land-use database (TOP10NL), was calculated for each residential address. We used logistic regression analyses to study the association of green space exposure with being overweight and being moderately or vigorously physically active outdoors at least 150min/week (self-reported). To study the shape of the association, we specified natural splines and quintiles. The distance to the nearest park entrance was not associated with being overweight or outdoor physical activity. Associations of surrounding green space with being overweight or outdoor physical activity were highly non-linear. For NDVI surrounding greenness, we observed significantly decreased odds of being overweight [300m buffer, odds ratio (OR) = 0.88; 95% CI: 0.86, 0.91] and increased odds for outdoor physical activity [300m buffer, OR = 1.14; 95% CI: 1.10, 1.17] in the highest quintile compared to the lowest quintile. For TOP10NL surrounding green space, associations were mostly non-significant. Associations were generally stronger for subjects living in less urban areas and for the smaller buffers. Associations of green space with being overweight and outdoor physical activity differed considerably between different green space definitions. Associations were strongest for NDVI surrounding greenness. Copyright © 2017 The Authors. Published by

  9. Two-dimensional modeling of water and heat fluxes in green roof substrates

    Science.gov (United States)

    Suarez, F. I.; Sandoval, V. P.

    2016-12-01

    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  10. Effect of vegetation on rock and soil type discrimination

    Science.gov (United States)

    Siegal, B. S.; Goetz, A. F. H.

    1977-01-01

    The effect of naturally occurring vegetation on the spectral reflectance of earth materials in the wavelength region of 0.45 to 2.4 microns is determined by computer averaging of in situ acquired spectral data. The amount and type of vegetation and the spectral reflectance of the ground are considered. Low albedo materials may be altered beyond recognition with only ten per cent green vegetation cover. Dead or dry vegetation does not greatly alter the shape of the spectral reflectance curve and only changes the albedo with minimum wavelength dependency. With increasing amounts of vegetation the Landsat MSS band ratios 4/6, 4/7, 5/6, and 5/7 are significantly decreased whereas MSS ratios 4/5 and 6/7 remain entirely constant.

  11. Distribution of pink-pigmented facultative methylotrophs on leaves of vegetables.

    Science.gov (United States)

    Mizuno, Masayuki; Yurimoto, Hiroya; Yoshida, Naoko; Iguchi, Hiroyuki; Sakai, Yasuyoshi

    2012-01-01

    The distribution of pink-pigmented facultative methylotrophs (PPFMs) on the leaves of various vegetables was studied. All kinds of vegetable leaves tested gave pink-pigmented colonies on agar plates containing methanol as sole carbon source. The numbers of PPFMs on the leaves, colony-forming units (CFU)/g of fresh leaves, differed among the plants, although they were planted and grown at the same farm. Commercial green perilla, Perilla frutescens viridis (Makino) Makino, gave the highest counts of PPFMs (2.0-4.1×10(7) CFU/g) of all the commercial vegetable leaves tested, amounting to 15% of total microbes on the leaves. The PPFMs isolated from seeds of two varieties of perilla, the red and green varieties, exhibited high sequence similarity as to the 16S rRNA gene to two different Methylobacterium species, M. fujisawaense DSM5686(T) and M. radiotolerans JCM2831(T) respectively, suggesting that there is specific interaction between perilla and the PPFMs.

  12. Vegetables as a Source of Dietary Fiber to Prevent Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    Deddy Muchtadi

    2001-04-01

    Full Text Available For long time vegetables were thought only as sources of several vitamins; however, it has been shown that vegetables contain other component, which is also important for maintaining body's health, i.e., dietary fiber. Dietary fiber is a group of polysaccharides oan other polymers, which cannot be digested by upper gastro-intestinal system of human. Dietary fiber can be grouped as soluble and insoluble dietary fiber, showing in different physiological effect. Soluble dietary fiber (SDF is effective in preventing cardiovascular disease, while insoluble dietary fiber (IDF can prevent the development of colon cancer, diverticulosis as well as obesity.Local vegetables found to contain high SDF (higher than 3,06% db are: watercress, green bean, carrot, eggplant, lettuce, broccoli, spinach, string bean, and aubergine; while which contain high IDF (higher than 40,60% db are: winged bean, watercress, chinese leaves, katuk leaves, lettuce, green bean, broccoli, carrot and spinach. Cooking (i.e. boiling, steaming and pan frying decrease the IDF content of vegetables, while their SDF content is not affected by cooking treatments.

  13. Green area loss in San Juan's inner-ring suburban neighborhoods: a multidisciplinary approach to analyzing green/gray area dynamics

    Directory of Open Access Journals (Sweden)

    Luis E. Ramos-Santiago

    2014-06-01

    Full Text Available The loss of green areas and vegetation in suburban neighborhoods poses short- and long-term consequences associated with environmental changes and socioeconomic decline that can propel such developments to an unsustainable state. We summarize an interdisciplinary investigation aimed at identifying the drivers of green area loss, green cover loss, and quantifying the impact on three inner-ring suburban neighborhoods located along the Rio Piedras watershed in San Juan, Puerto Rico. An inductive approach to social-ecological research was undertaken because it provides a flexible platform for interdisciplinary collaboration on this complex and dynamic subject. The three developments selected for the study were constructed in the mid-20th century under paradigms of modernity that included providing conditions for a better and more dignified way of living, among which green areas played a central role. The green area change analysis was undertaken first, by way of using building footprint growth as a proxy, which represents a minimal estimate of change, and transferring the information from aerial photographs, original development plans, construction drawings, and GIS maps to AutoCAD to quantify building footprint change for each neighborhood. The period of analysis started from the time of the construction of each development to the year 2010. The second estimation was performed using orthorectified infrared aerial imagery to quantify green cover in year 2008 and contrast that information with the conditions at the time the developments were constructed. Green-gray area dynamics were thus analyzed together with longitudinal socioeconomic data to help in the assessment of effects. The investigation revealed long-term socioeconomic declining trends in two of the neighborhoods, weak governance of the built environment, substantial increase in automobile ownership, and distinct physical-spatial characteristics as drivers behind the changes observed. The

  14. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought

    KAUST Repository

    Meng, X. H.

    2014-04-01

    Moderate Resolution Imaging Spectroradiometer (MODIS)-derived vegetation fraction data were used to update the boundary conditions of the advanced research Weather Research and Forecasting (WRF) Model to assess the influence of realistic vegetation cover on climate simulations in southeast Australia for the period 2000–08. Results show that modeled air temperature was improved when MODIS data were incorporated, while precipitation changes little with only a small decrease in the bias. Air temperature changes in different seasons reflect the variability of vegetation cover well, while precipitation changes have a more complicated relationship to changes in vegetation fraction. Both MODIS and climatology-based simulation experiments capture the overall precipitation changes, indicating that precipitation is dominated by the large-scale circulation, with local vegetation changes contributing variations around these. Simulated feedbacks between vegetation fraction, soil moisture, and drought over southeast Australia were also investigated. Results indicate that vegetation fraction changes lag precipitation reductions by 6–8 months in nonarid regions. With the onset of the 2002 drought, a potential fast physical mechanism was found to play a positive role in the soil moisture–precipitation feedback, while a slow biological mechanism provides a negative feedback in the soil moisture–precipitation interaction on a longer time scale. That is, in the short term, a reduction in soil moisture leads to a reduction in the convective potential and, hence, precipitation, further reducing the soil moisture. If low levels of soil moisture persist long enough, reductions in vegetation cover and vigor occur, reducing the evapotranspiration and thus reducing the soil moisture decreases and dampening the fast physical feedback. Importantly, it was observed that these feedbacks are both space and time dependent.

  15. Predicting gender differences in liking for vegetables and preference for a variety of vegetables among 11-year-old children.

    Science.gov (United States)

    Lehto, Elviira; Ray, Carola; Haukkala, Ari; Yngve, Agneta; Thorsdottir, Inga; Roos, Eva

    2015-12-01

    We studied the factors that predict liking for vegetables and preference for a variety of vegetables among schoolchildren. Additionally, we examined if there were gender differences in the predictors that explain the hypothesized higher scores in liking vegetables and preferences among girls. The data from the PRO GREENS project included 424 Finnish children (response rate 77%) aged 11 to 12. The children completed validated measures about social and environmental factors related to their liking for vegetables and preferences both at baseline 2009 and follow-up 2010. The associations were examined with regression and mediation analyses. The strongest predictors of both girls' and boys' liking and preferences were higher levels of eating vegetables together with the family, previous vegetable intake and a lower level of perceived barriers. Liking was additionally predicted by a lower level of parental demand that their child should eat vegetables. Girls reported higher levels of liking and preferences in the follow-up. This gender difference was mainly explained by girls' lower level of perceived barriers related to vegetable intake and girls' higher previous vegetable intake. Interventions that aim to increase the low vegetable intake among boys by increasing their liking for vegetables and preference for a variety of vegetables could benefit from targeting perceived barriers, namely boys' perception and values concerning the consumption of vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Phenological Characterization of Desert Sky Island Vegetation Communities with Remotely Sensed and Climate Time Series Data

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2010-01-01

    Full Text Available Climate change and variability are expected to impact the synchronicity and interactions between the Sonoran Desert and the forested sky islands which represent steep biological and environmental gradients. The main objectives were to examine how well satellite greenness time series data and derived phenological metrics (e.g., season start, peak greenness can characterize specific vegetation communities across an elevation gradient, and to examine the interactions between climate and phenological metrics for each vegetation community. We found that representative vegetation types (11, varying between desert scrub, mesquite, grassland, mixed oak, juniper and pine, often had unique seasonal and interannual phenological trajectories and spatial patterns. Satellite derived land surface phenometrics (11 for each of the vegetation communities along the cline showed numerous distinct significant relationships in response to temperature (4 and precipitation (7 metrics. Satellite-derived sky island vegetation phenology can help assess and monitor vegetation dynamics and provide unique indicators of climate variability and patterns of change.

  17. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.

    Science.gov (United States)

    Mishra, Niti B; Mainali, Kumar P

    2017-06-01

    The reliable detection and attribution of changes in vegetation greenness is a prerequisite for the development of strategies for the sustainable management of ecosystems. We conducted a robust trend analysis on remote sensing derived vegetation index time-series matrices to detect significant changes in inter-annual vegetation productivity (greening versus browning) for the entire Himalaya, a biodiverse and ecologically sensitive yet understudied region. The spatial variability in trend was assessed considering elevation, 12 dominant land cover/use types and 10 ecoregions. To assess trend causation, at local scale, we compared multi-temporal imagery, and at regional scale, referenced ecological theories of mountain vegetation dynamics and ancillary literature. Overall, 17.56% of Himalayan vegetation (71,162km 2 ) exhibited significant trend (p3800m), with eastern high Himalaya browning more dominantly than western high Himalaya. Land cover/use based categorization confirmed dominant greening of rainfed and irrigated agricultural areas, though cropped areas in western Himalaya contained higher proportion of greening areas. While rising atmospheric CO 2 concentration and nitrogen deposition are the most likely climatic causes of detected greening, success of sustainable forestry practices (community forestry in Nepal) along with increasing agricultural fertilization and irrigation facilities could be possible human drivers. Comparison of multi-temporal imagery enabled direct attribution of some browning areas to anthropogenic land change (dam, airport and tunnel construction). Our satellite detected browning of high altitude vegetation in eastern Himalaya confirm the findings of recent dendrochronology based studies which possibly resulted from reduced pre-monsoon moisture availability in recent decades. These results have significant implications for environmental management in the context of climate change and ecosystem dynamics in the Himalaya. Copyright © 2017

  18. Prevention of metabolic diseases: fruits (including fruit sugars) vs. vegetables.

    Science.gov (United States)

    Kuzma, Jessica N; Schmidt, Kelsey A; Kratz, Mario

    2017-07-01

    To discuss recent evidence from observational and intervention studies on the relationship between fruit and vegetable (F&V) consumption and metabolic disease. Observational studies have consistently demonstrated a modest inverse association between the intake of fruit and leafy green vegetables, but not total vegetables, and biomarkers of metabolic disease as well as incident type 2 diabetes mellitus. This is in contrast to limited evidence from recently published randomized controlled dietary intervention trials, which - in sum - suggests little to no impact of increased F&V consumption on biomarkers of metabolic disease. Evidence from observational studies that fruit and leafy green vegetable intake is associated with lower type 2 diabetes risk and better metabolic health could not be confirmed by dietary intervention trials. It is unclear whether this discrepancy is because of limitations inherent in observational studies (e.g., subjective dietary assessment methods, residual confounding) or due to limitations in the few available intervention studies (e.g., short duration of follow-up, interventions combining whole fruit and fruit juice, or lack of compliance). Future studies that attempt to address these limitations are needed to provide more conclusive insight into the impact of F&V consumption on metabolic health.

  19. Effect of surface geometry and insolation on temperature profile of green roof in Saint-Petersburg environment

    Directory of Open Access Journals (Sweden)

    С. А. Игнатьев

    2016-08-01

    Full Text Available The paper addresses an issue of creating an environment favorable for the life in megacities by planting vegetation on the rooftops. It also provides information about rooftop greening practices adopted in other countries. The issues of ‘green roof’ building in climatic conditions of Saint Petersburg and roof vegetation impact on the urban ecosystem are examined. Vegetation composition quality- and quantity-wise has been proposed for the roof under research and a 3D model of this roof reflecting its geometric properties has been developed. A structure of roof covering and substrate qualitative composition is presented. An effect of rooftop geometry on the substrate temperature is explored. The annual substrate temperature and moisture content in different parts of the roof have been analyzed. Results of thermal imaging monitoring and insolation modelling for different parts of green roof surface are presented.

  20. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil ''noise''

    International Nuclear Information System (INIS)

    Escadafal, R.; Huete, A.

    1991-01-01

    The variations of near-infrared red reflectance ratios of ten aridic soil samples were correlated with a ''redness index'' computed from red and green spectral bands. These variations have been shown to limit the performances of vegetation indices (NDVI and SAVI) in discriminating low vegetation covers. The redness index is used to adjust for this ''soil noise''. Dala simulated for vegetation densities of 5 to 15% cover showed that the sensitivity of the corrected vegetation indices was significantly improved. Specifically, the ''noise-corrected'' SAVI was able to assess vegetation amounts with an error four times smaller than the uncorrected NDVI. These promising results should lead to a significant improvement in assessing biomass in arid lands from remotely sensed data. (author) [fr

  1. African leafy vegetables consumed by households in the Limpopo ...

    African Journals Online (AJOL)

    pureed green leafy vegetables was shown to have a beneficial effect ..... was regarded as very nutritious; “having it is just like having meat”. ...... chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc.

  2. Blue Water Trade-Offs With Vegetation in a CO2-Enriched Climate

    Science.gov (United States)

    Mankin, Justin S.; Seager, Richard; Smerdon, Jason E.; Cook, Benjamin I.; Williams, A. Park; Horton, Radley M.

    2018-04-01

    Present and future freshwater availability and drought risks are physically tied to the responses of surface vegetation to increasing CO2. A single-model large ensemble identifies the occurrence of colocated warming- and CO2-induced leaf area index increases with summer soil moisture declines. This pattern of "greening" and "drying," which occurs over 42% of global vegetated land area, is largely attributable to changes in the partitioning of precipitation at the land surface away from runoff and toward terrestrial vegetation ecosystems. Changes in runoff and ecosystem partitioning are inversely related, with changes in runoff partitioning being governed by changes in precipitation (mean and extremes) and ecosystem partitioning being governed by ecosystem water use and surface resistance to evapotranspiration (ET). Projections show that warming-influenced and CO2-enriched terrestrial vegetation ecosystems use water that historically would have been partitioned to runoff over 48% of global vegetated land areas, largely in Western North America, the Amazon, and Europe, many of the same regions with colocated greening and drying. These results have implications for how water available for people will change in response to anthropogenic warming and raise important questions about model representations of vegetation water responses to high CO2.

  3. [A review of green roof performance towards management of roof runoff].

    Science.gov (United States)

    Chen, Xiao-ping; Huang, Pei; Zhou, Zhi-xiang; Gao, Chi

    2015-08-01

    Green roof has a significant influence on reducing runoff volume, delaying runoff-yielding time, reducing the peak flow and improving runoff quality. This paper addressed the related research around the world and concluded from several aspects, i.e., the definition of green roof of different types, the mechanism how green roof manages runoff quantity and quality, the ability how green roof controls roof runoff, and the influence factors of green roof toward runoff quantity and quality. Afterwards, there was a need for more future work on research of green roof toward roof runoff, i.e., vegetation selection of green roof, efficient construction model selection of green roof, the regulating characteristics of green roof on roof runoff, the value assessment of green roof on roof runoff, analysis of source-sink function of green roof on the water pollutants of roof runoff and the research on the mitigation measures of roof runoff pollution. This paper provided a guideline to develop green roofs aiming to regulating roof runoff.

  4. Utilization of Yard for Vegetable Hydroponics in Serut Village, Panti Sub-District, Jember District

    OpenAIRE

    dewanti, parawita

    2018-01-01

    Vegetables as a horticultural product is a food source that is always consumed by humans daily, including in urban areas. Assorted Vegetables can be eaten raw or processed and it takes as a decoration on the food. Needs vegetables including lettuce, green pakcoy and other vegetables from day to day continues to increase. Therefore, it needs supply of vegetables from the area around the town of Jember including Serut Village, District Panti Sub-District, Jember District. Serut village has the ...

  5. Particle Simulation of Fractional Diffusion Equations

    KAUST Repository

    Allouch, Samer

    2017-07-12

    This work explores different particle-based approaches to the simulation of one-dimensional fractional subdiffusion equations in unbounded domains. We rely on smooth particle approximations, and consider four methods for estimating the fractional diffusion term. The first method is based on direct differentiation of the particle representation, it follows the Riesz definition of the fractional derivative and results in a non-conservative scheme. The other three methods follow the particle strength exchange (PSE) methodology and are by construction conservative, in the sense that the total particle strength is time invariant. The first PSE algorithm is based on using direct differentiation to estimate the fractional diffusion flux, and exploiting the resulting estimates in an integral representation of the divergence operator. Meanwhile, the second one relies on the regularized Riesz representation of the fractional diffusion term to derive a suitable interaction formula acting directly on the particle representation of the diffusing field. A third PSE construction is considered that exploits the Green\\'s function of the fractional diffusion equation. The performance of all four approaches is assessed for the case of a one-dimensional diffusion equation with constant diffusivity. This enables us to take advantage of known analytical solutions, and consequently conduct a detailed analysis of the performance of the methods. This includes a quantitative study of the various sources of error, namely filtering, quadrature, domain truncation, and time integration, as well as a space and time self-convergence analysis. These analyses are conducted for different values of the order of the fractional derivatives, and computational experiences are used to gain insight that can be used for generalization of the present constructions.

  6. Green roofs as a means of pollution abatement

    International Nuclear Information System (INIS)

    Rowe, D. Bradley

    2011-01-01

    Green roofs involve growing vegetation on rooftops and are one tool that can help mitigate the negative effects of pollution. This review encompasses published research to date on how green roofs can help mitigate pollution, how green roof materials influence the magnitude of these benefits, and suggests future research directions. The discussion concentrates on how green roofs influence air pollution, carbon dioxide emissions, carbon sequestration, longevity of roofing membranes that result in fewer roofing materials in landfills, water quality of stormwater runoff, and noise pollution. Suggestions for future directions for research include plant selection, development of improved growing substrates, urban rooftop agriculture, water quality of runoff, supplemental irrigation, the use of grey water, air pollution, carbon sequestration, effects on human health, combining green roofs with complementary related technologies, and economics and policy issues. - Green roofs can help mitigate air pollution, carbon dioxide emissions, sequester carbon, conserve energy, reduce the urban heat island, and improve water quality.

  7. Green roof valuation: a probabilistic economic analysis of environmental benefits.

    Science.gov (United States)

    Clark, Corrie; Adriaens, Peter; Talbot, F Brian

    2008-03-15

    Green (vegetated) roofs have gained global acceptance as a technologythat has the potential to help mitigate the multifaceted, complex environmental problems of urban centers. While policies that encourage green roofs exist atthe local and regional level, installation costs remain at a premium and deter investment in this technology. The objective of this paper is to quantitatively integrate the range of stormwater, energy, and air pollution benefits of green roofs into an economic model that captures the building-specific scale. Currently, green roofs are primarily valued on increased roof longevity, reduced stormwater runoff, and decreased building energy consumption. Proper valuation of these benefits can reduce the present value of a green roof if investors look beyond the upfront capital costs. Net present value (NPV) analysis comparing a conventional roof system to an extensive green roof system demonstrates that at the end of the green roof lifetime the NPV for the green roof is between 20.3 and 25.2% less than the NPV for the conventional roof over 40 years. The additional upfront investment is recovered at the time when a conventional roof would be replaced. Increasing evidence suggests that green roofs may play a significant role in urban air quality improvement For example, uptake of N0x is estimated to range from $1683 to $6383 per metric ton of NOx reduction. These benefits were included in this study, and results translate to an annual benefit of $895-3392 for a 2000 square meter vegetated roof. Improved air quality leads to a mean NPV for the green roof that is 24.5-40.2% less than the mean conventional roof NPV. Through innovative policies, the inclusion of air pollution mitigation and the reduction of municipal stormwater infrastructure costs in economic valuation of environmental benefits of green roofs can reduce the cost gap that currently hinders U.S. investment in green roof technology.

  8. Seasonally asymmetric enhancement of northern vegetation productivity

    Science.gov (United States)

    Park, T.; Myneni, R.

    2017-12-01

    Multiple evidences of widespread greening and increasing terrestrial carbon uptake have been documented. In particular, enhanced gross productivity of northern vegetation has been a critical role leading to observed carbon uptake trend. However, seasonal photosynthetic activity and its contribution to observed annual carbon uptake trend and interannual variability are not well understood. Here, we introduce a multiple-source of datasets including ground, atmospheric and satellite observations, and multiple process-based global vegetation models to understand how seasonal variation of land surface vegetation controls a large-scale carbon exchange. Our analysis clearly shows a seasonally asymmetric enhancement of northern vegetation productivity in growing season during last decades. Particularly, increasing gross productivity in late spring and early summer is obvious and dominant driver explaining observed trend and variability. We observe more asymmetric productivity enhancement in warmer region and this spatially varying asymmetricity in northern vegetation are likely explained by canopy development rate, thermal and light availability. These results imply that continued warming may facilitate amplifying asymmetric vegetation activity and cause these trends to become more pervasive, in turn warming induced regime shift in northern land.

  9. Evaluation of Green Roof Water Quantity and Quality Performance in an Urban Climate

    Science.gov (United States)

    In this report we present an analysis of water benefits from an array of observed green roof and control (non-vegetated) roof project sites throughout NYC. The projects are located on a variety of building sites and represent a diverse set of available extensive green roof instal...

  10. Revisiting "Vegetables" to combat modern epidemic of imbalanced glucose homeostasis.

    Science.gov (United States)

    Tiwari, Ashok Kumar

    2014-04-01

    Vegetables have been part of human food since prehistoric times and are considered nutritionally necessary and good for health. Vegetables are rich natural resource of biological antioxidants and possess capabilities of maintaining glucose homeostasis. When taken before starch-rich diet, juice also of vegetables such as ridge gourd, bottle gourd, ash gourd, chayote and juice of leaves of vegetables such as radish, Indian Dill, ajwain, tropical green amaranth, and bladder dock are reported to arrest significantly the rise in postprandial blood glucose level. Juice of vegetables such as ash gourd, squash gourd, and tropical green amaranth leaves are observed to tone-down sweet-beverages such as sucrose, fructose, and glucose-induced postprandial glycemic excursion. On the other hand, juice of egg-plant and juice of leaves of Ceylon spinach, Joyweed, and palak are reported to augment starch-induced postprandial glycemic excursion; and juice of leaves of Ceylon spinach, Joyweed, and radish supplement to the glucose-induced postprandial glycemia. Vegetables possess multifaceted antihyperglycemic activities such as inhibition of pancreatic α-amylase and intestinal α-glucosidase, inhibition of protein-tyrosine phosphatase 1β in liver and skeletal muscles, and insulin mimetic and secretagogue activities. Furthermore, they are also reported to influence polyol pathway in favor of reducing development of oxidative stress, and consequently the development of diabetic complications. In the wake of emergence of modern maladaptive diet-induced hyperglycemic epidemic therefore, vegetables may offer cost-effective dietary regimen to control diet-induced glycemic over load and future development of diabetes mellitus. However, for vegetables have been reported to do both, mitigate as well as supplement to the diet-induced postprandial glycemic load, care is required in selection of vegetables when considered as medicament.

  11. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    Science.gov (United States)

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in 5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  12. Presidential Green Chemistry Challenge: 2013 Designing Greener Chemicals Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2013 award winner, Cargill, Inc., developed a vegetable-oil-based transformer fluid that is much less flammable, provides superior performance, is less toxic, and has a substantially lower carbon footprint.

  13. Spatial environmental heterogeneity affects plant growth and thermal performance on a green roof.

    Science.gov (United States)

    Buckland-Nicks, Michael; Heim, Amy; Lundholm, Jeremy

    2016-05-15

    Green roofs provide ecosystem services, including stormwater retention and reductions in heat transfer through the roof. Microclimates, as well as designed features of green roofs, such as substrate and vegetation, affect the magnitude of these services. Many green roofs are partially shaded by surrounding buildings, but the effects of this within-roof spatial environmental heterogeneity on thermal performance and other ecosystem services have not been examined. We quantified the effects of spatial heterogeneity in solar radiation, substrate depth and other variables affected by these drivers on vegetation and ecosystem services in an extensive green roof. Spatial heterogeneity in substrate depth and insolation were correlated with differential growth, survival and flowering in two focal plant species. These effects were likely driven by the resulting spatial heterogeneity in substrate temperature and moisture content. Thermal performance (indicated by heat flux and substrate temperature) was influenced by spatial heterogeneity in vegetation cover and substrate depth. Areas with less insolation were cooler in summer and had greater substrate moisture, leading to more favorable conditions for plant growth and survival. Spatial variation in substrate moisture (7%-26% volumetric moisture content) and temperature (21°C-36°C) during hot sunny conditions in summer could cause large differences in stormwater retention and heat flux within a single green roof. Shaded areas promote smaller heat fluxes through the roof, leading to energy savings, but lower evapotranspiration in these areas should reduce stormwater retention capacity. Spatial heterogeneity can thus result in trade-offs between different ecosystem services. The effects of these spatial heterogeneities are likely widespread in green roofs. Structures that provide shelter from sun and wind may be productively utilized to design higher functioning green roofs and increase biodiversity by providing habitat

  14. The Impact of Green Space Layouts on Microclimate and Air Quality in Residential Districts of Nanjing, China

    Directory of Open Access Journals (Sweden)

    Liyan Rui

    2018-04-01

    Full Text Available This study numerically investigates the influence of different vegetation types and layouts on microclimate and air quality in residential districts based on the morphology and green layout of Nanjing, China. Simulations were performed using Computational Fluid Dynamics and the microclimate model ENVI-met. Four green indices, i.e., the green cover ratio, the grass and shrub cover ratio, the ecological landscaping plot ratio and the landscaping isolation index, were combined to evaluate thermal and wind fields, as well as air quality in district models. Results show that under the same green cover ratio (i.e., the same quantity of all types of vegetation, the reduction of grass and shrub cover ratio (i.e., the quantity of grass and shrubs, replaced by trees, has an impact, even though small, on thermal comfort, wind speed and air pollution, and increases the leisure space for occupants. When trees are present, a low ecological landscaping plot ratio (which expresses the weight of carbon dioxide absorption and is larger in the presence of trees is preferable due to a lower blocking effect on wind and pollutant dispersion. In conjunction with a low landscaping plot ratio, a high landscaping isolation index (which means a distributed structure of vegetation enhances the capability of local cooling and the general thermal comfort, decreasing the average temperature up to about 0.5 °C and the average predicted mean vote (PMV up to about 20% compared with the non-green scenario. This paper shows that the relationship vegetation-microclimate-air quality should be analyzed taking into account not only the total area covered by vegetation but also its layout and degree of aggregation.

  15. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    Science.gov (United States)

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-02

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    Science.gov (United States)

    Osunmadewa, Babatunde Adeniyi; Gebrehiwot, Worku Zewdie; Csaplovics, Elmar; Adeofun, Olabinjo Clement

    2018-03-01

    Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA) approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS) and end of season (EOS) was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0) and a significant decrease in other greenness trend maps (amplitude 1 and phase 1) was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0) was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1) was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.

  17. Spatio-temporal monitoring of vegetation phenology in the dry sub-humid region of Nigeria using time series of AVHRR NDVI and TAMSAT datasets

    Directory of Open Access Journals (Sweden)

    Osunmadewa Babatunde Adeniyi

    2018-03-01

    Full Text Available Time series data are of great importance for monitoring vegetation phenology in the dry sub-humid regions where change in land cover has influence on biomass productivity. However few studies have inquired into examining the impact of rainfall and land cover change on vegetation phenology. This study explores Seasonal Trend Analysis (STA approach in order to investigate overall greenness, peak of annual greenness and timing of annual greenness in the seasonal NDVI cycle. Phenological pattern for the start of season (SOS and end of season (EOS was also examined across different land cover types in four selected locations. A significant increase in overall greenness (amplitude 0 and a significant decrease in other greenness trend maps (amplitude 1 and phase 1 was observed over the study period. Moreover significant positive trends in overall annual rainfall (amplitude 0 was found which follows similar pattern with vegetation trend. Variation in the timing of peak of greenness (phase 1 was seen in the four selected locations, this indicate a change in phenological trend. Additionally, strong relationship was revealed by the result of the pixel-wise regression between NDVI and rainfall. Change in vegetation phenology in the study area is attributed to climatic variability than anthropogenic activities.

  18. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    Directory of Open Access Journals (Sweden)

    Frank Canters

    2008-06-01

    Full Text Available Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city’s inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing.

  19. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Both phenolic and non-phenolic green tea fractions inhibit migration of cancer cells

    Science.gov (United States)

    Green tea consumption is associated with chemoprevention of many cancer types. Fresh tea leaves are rich in polyphenolic catechins, which can constitute up to 30% of the dry leaf weight. While the polyphenols of green tea have been well investigated, it is still largely unknown, whether or not non-p...

  1. Levels of lead, cadmium and zinc in vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, G.; Haegglund, J.; Jorhem, L.

    1976-01-01

    The concentrations of lead, cadmium and zinc have been determined in 455 samples of fresh fruit, vegetables and mushrooms by dry ashing and atomic absorption spectrophotometry. The lead content in all samples was in the range < 0.001-0.288 mg/kg, the mean being 0.02 mg/kg. Leaf vegetables (lettuce and spinach) showed higher values, mean 0.04 mg/kg. The mean values of the cadmium content in fruit, green vegetables, potatoes and root vegetables were 0.003, 0.013, 0.016 and 0.038 mg/kg respectively. The zinc contents were in the ppm range. The ratio Zn/Cd was also determined in some samples. All values concern edible parts and are calculated on wet weight basis. The fruit and vegetables were estimated to constitute about 2 percent and 8 percent respectively of the provisional tolerable weekly intake of these metals recommended by an FAO/WHO Expert Committee.

  2. Assessment of Urban Vegetation using Remote Sensing Data: a Case Study in Seoul, Korea

    Science.gov (United States)

    Kim, H.; Kim, J.; Yeom, J.; Kim, Y.

    2011-12-01

    Vegetation in the city has various positive effects on the entire urban ecosystem: it reduces CO2 and air temperature, improves air quality, helps to maintain the water balance of natural ground, decreases surface overflow during floods, and provides food source as well as living space for diverse wildlife. Urban green areas also have a social and educational role, e.g. for recreational activity, positive experience in a natural environment, and perception of seasonal changes. In addition, citizens can find a balance between urban green and built up spaces. However, the very high intensity of land use in urban areas changes the local urban ecosystem to a large degree and leads to enormous stress for the urban vegetation. In this study, we aim to develop a method for assessing effects of urban vegetation on ecosystem function using remote sensing technology. We use multispectral RapidEye satellite and LiDAR data for the classification of urban vegetation types in metropolitan area Seoul and test different kinds of vegetation indices focusing on the red edge of RapidEye data to assess the stress degree of the vegetation.

  3. Phylloquinone content from wild green vegetables may contribute substantially to dietary intake

    DEFF Research Database (Denmark)

    Bügel, Susanne Gjedsted; Spagner, Camilla; Poulsen, Sanne Kellebjerg

    2016-01-01

    Background: Traditional Nordic eatable wild plants are now sold in local stores and available to everyone. Wild vegetables may contain large amounts of vitamin K1. Due to the concomitant therapeutic use of anticoagulants among the populations, it is important to gain knowledge about the content...... phylloquinone content of 400-600 μg vitamin K1/100 g fresh weight. The average daily intake when consuming the average Danish diet is low (64 ±20 μg/d or 72±23 μg/10 MJ/d), however, inclusion of wild vegetables as in the New Nordic Diet increases the vitamin K1 intake to 233±51 μg/d or 260±50 μg/10 MJ/d...... of vitamin K1 in these products, as well as their contribution to the diet. The objective of this study was to measure the vitamin K1 content in four wild eatable plants and to estimate how much these wild vegetables contribute to the daily dietary vitamin K1 intake. Results: The wild vegetables had a high...

  4. Mary Poppins was right: Adding small amounts of sugar or salt reduces the bitterness of vegetables.

    Science.gov (United States)

    Bakke, Alyssa J; Stubbs, Cody A; McDowell, Elliott H; Moding, Kameron J; Johnson, Susan L; Hayes, John E

    2018-07-01

    Only a quarter of adults and 7% of children consume recommended amounts of vegetables each day. Often vegetables are not initially palatable due to bitterness, which may lead children and adults to refuse to taste or eat them. The objective of this research was to determine if very small amounts of sugar or salt (common household ingredients) could lead to significant reductions in bitterness intensity and increased hedonic ratings of green vegetable purees. For Experiment 1, three different green vegetable purees (broccoli, spinach, and kale) were prepared with different levels of sugar (0%, 0.6%, 1.2%, and 1.8%) or salt (0 and 0.2%). Samples were evaluated using standard descriptive analysis techniques with nine adults who completed more than 20 h of green vegetable specific training as a group. For Experiment 2, each vegetable puree was prepared with either 0% or 2% sugar, and bitterness was assessed via a forced choice task with 84 adults. For Experiment 3, each vegetable puree was prepared with 0%, 1%, or 2% sugar and rated for liking on standard 9 point hedonic scales by 99 adults. Experiments 1 and 2 showed that addition of small amounts of sugar and salt each reduced the bitterness (and increased sweetness and saltiness) from all three vegetables without altering other sensory properties (e.g. texture or aroma). Experiment 3 showed that adding sugar to vegetable purees increased hedonic ratings for adult consumers. We also found parents had mixed attitudes about the idea of adding sugar to foods intended for infants and toddlers. Further research on the effects of bitterness masking especially for specific populations (e.g., infants and young children or adults who have higher sensitivity to bitter taste) is warranted. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Detecting inter-annual variability in the phenological characteristics of southern Africa’s vegetation using satellite imagery

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2011-01-01

    Full Text Available provides consistent measurements of vegetation greenness which captures phenological cycles and vegetation function. Understanding the inter-annual variability in phenology is imperative, as phenological changes will be one of the first signs of the impact...

  6. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    Science.gov (United States)

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction.

  7. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nabulo, G.; Black, C.R. [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.u [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2011-02-15

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl{sub 2}-soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: Cadmium uptake by tropical green vegetables varies greatly between types. Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. Modelling with dilute CaCl{sub 2} extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl{sub 2} extraction of soil but model parameters are genotype-specific.

  8. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    International Nuclear Information System (INIS)

    Nabulo, G.; Black, C.R.; Young, S.D.

    2011-01-01

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl 2 -soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: → Cadmium uptake by tropical green vegetables varies greatly between types. → Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. → Modelling with dilute CaCl 2 extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl 2 extraction of soil but model parameters are genotype-specific.

  9. An environmental cost-benefit analysis of alternative green roofing strategies

    Science.gov (United States)

    Richardson, M.; William, R. K.; Goodwell, A. E.; Le, P. V.; Kumar, P.; Stillwell, A. S.

    2016-12-01

    Green roofs and cool roofs are alternative roofing strategies that mitigate urban heat island effects and improve building energy performance. Green roofs consist of soil and vegetation layers that provide runoff reduction, thermal insulation, and potential natural habitat, but can require regular maintenance. Cool roofs involve a reflective layer that reflects more sunlight than traditional roofing materials, but require additional insulation during winter months. This study evaluates several roofing strategies in terms of energy performance, urban heat island mitigation, water consumption, and economic cost. We use MLCan, a multi-layer canopy model, to simulate irrigated and non-irrigated green roof cases with shallow and deep soil depths during the spring and early summer of 2012, a drought period in central Illinois. Due to the dry conditions studied, periodic irrigation is implemented in the model to evaluate its effect on evapotranspiration. We simulate traditional and cool roof scenarios by altering surface albedo and omitting vegetation and soil layers. We find that both green roofs and cool roofs significantly reduce surface temperature compared to the traditional roof simulation. Cool roof temperatures always remain below air temperature and, similar to traditional roofs, require low maintenance. Green roofs remain close to air temperature and also provide thermal insulation, runoff reduction, and carbon uptake, but might require irrigation during dry periods. Due to the longer lifetime of a green roof compared to cool and traditional roofs, we find that green roofs realize the highest long term cost savings under simulated conditions. However, using longer-life traditional roof materials (which have a higher upfront cost) can help decrease this price differential, making cool roofs the most affordable option due to the higher maintenance costs associated with green roofs

  10. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis.

    Science.gov (United States)

    Wang, Ping-Yu; Fang, Jun-Chao; Gao, Zong-Hua; Zhang, Can; Xie, Shu-Yang

    2016-01-01

    Some previous studies reported no significant association of consuming fruit or vegetables, or fruit and vegetables combined, with type 2 diabetes. Others reported that only a greater intake of green leafy vegetables reduced the risk of type 2 diabetes. To further investigate the relationship between them, we carried out a meta-analysis to estimate the independent effects of the intake of fruit, vegetables and fiber on the risk of type 2 diabetes. Searches of MEDLINE and EMBASE for reports of prospective cohort studies published from 1 January 1966 to 21 July 2014 were carried out, checking reference lists, hand-searching journals and contacting experts. The primary analysis included a total of 23 (11 + 12) articles. The pooled maximum-adjusted relative risk of type 2 diabetes for the highest intake vs the lowest intake were 0.91 (95% confidence interval [CI] 0.87-0.96) for total fruits, 0.75 (95% CI 0.66-0.84) for blueberries, 0.87 (95% CI 0.81-0.93) for green leafy vegetables, 0.72 (95% CI 0.57-0.90) for yellow vegetables, 0.82 (95% CI 0.67-0.99) for cruciferous vegetables and 0.93 (95% CI 0.88-0.99) for fruit fiber in these high-quality studies in which scores were seven or greater, and 0.87 (95% CI 0.80-0.94) for vegetable fiber in studies with a follow-up period of 10 years or more. A higher intake of fruit, especially berries, and green leafy vegetables, yellow vegetables, cruciferous vegetables or their fiber is associated with a lower risk of type 2 diabetes.

  11. First Brazilian patent for dielectric vegetable oil for transformers; Primeira patente brasileira de oleo dieletrico vegetal para transformadores

    Energy Technology Data Exchange (ETDEWEB)

    Carioca, Jose O.B.; Carvalho, Paulo C.M.; Correa, Raimundo G.C.; Bernardo, Francisco A.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Coelho Junior, Luiz G. [2 Companhia Energetica do Ceara (COELCE), Fortaleza, CE (Brazil); Abreu, Rosa F.A. [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2008-07-01

    The present paper discuss the development of different insulating oils for electric power transformers during the last hundred years and analyze comparatively the potential for the use of vegetable oils as a source for green dielectric oils, due to its high level of biodegradability, nontoxic, material compatibility, good electric strength and insulation properties, long-term oxidative and thermal stability, relatively low pour point and reasonable cost. Based on these premises, the authors developed a new type of insulating fluid based on Brazilian vegetable oils never used before for this purpose. This product is competitive with similar and patented products developed from canola and soya vegetable oils. Recently a new patent related with the process for the production of this fluid was submitted to the World Industrial Property Organization - WIPO. (author)

  12. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    Directory of Open Access Journals (Sweden)

    Willem J. D. van Leeuwen

    2008-03-01

    Full Text Available This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR and examine burn severity at the selected sites. The phenological metrics (pheno-metrics included the timing and greenness (i.e. NDVI for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation

  13. Vegetation Dynamics and Rainfall Sensitivity of the Amazon

    Science.gov (United States)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Hall, Forrest G.; Myneni, Ranga B.; Wang, Yujie; Bi, Jian; Mendes de Moura, Yhasmin; Sellers, Piers J.

    2014-01-01

    We show that the vegetation canopy of the Amazon rainforest is highly sensitive to changes in precipitation patterns and that reduction in rainfall since 2000 has diminished vegetation greenness across large parts of Amazonia. Large-scale directional declines in vegetation greenness may indicate decreases in carbon uptake and substantial changes in the energy balance of the Amazon. We use improved estimates of surface reflectance from satellite data to show a close link between reductions in annual precipitation, El Nino southern oscillation events, and photosynthetic activity across tropical and subtropical Amazonia. We report that, since the year 2000, precipitation has declined across 69% of the tropical evergreen forest (5.4 million sq km) and across 80% of the subtropical grasslands (3.3 million sq km). These reductions, which coincided with a decline in terrestrial water storage, account for about 55% of a satellite-observed widespread decline in the normalized difference vegetation index (NDVI). During El Nino events, NDVI was reduced about 16.6% across an area of up to 1.6 million sq km compared with average conditions. Several global circulation models suggest that a rise in equatorial sea surface temperature and related displacement of the intertropical convergence zone could lead to considerable drying of tropical forests in the 21st century. Our results provide evidence that persistent drying could degrade Amazonian forest canopies, which would have cascading effects on global carbon and climate dynamics.

  14. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    Science.gov (United States)

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  15. Consumer Acceptance Comparison Between Seasoned and Unseasoned Vegetables.

    Science.gov (United States)

    Feng, Yiming; Albiol Tapia, Marta; Okada, Kyle; Castaneda Lazo, Nuria Blanca; Chapman-Novakofski, Karen; Phillips, Carter; Lee, Soo-Yeun

    2018-02-01

    Recent findings show that approximately 87% of the U.S. population fail to meet the vegetable intake recommendations, with unpleasant taste of vegetables being listed as the primary reason for this shortfall. In this study, spice and herb seasoning was used to enhance palatability of vegetables, in order to increase consumer acceptance. In total, 749 panelists were screened and recruited as specific vegetable likers of the vegetable being tested or general vegetable likers. Four sessions were designed to evaluate the effect of seasoning within each type of vegetable, including broccoli, cauliflower, carrot, and green bean. Each panelist was only allowed to participate in one test session to evaluate only one vegetable type, so as to mitigate potential learning effect. Overall, the results showed that seasoned vegetables were significantly preferred over unseasoned vegetables (P trend of seasoned vegetable being preferred remained. The findings from this study demonstrate the effect of seasoning in enhancing consumer liking of vegetables, which may lead to increased consumption to be assessed in future studies. To improve the sensory properties of vegetables, masking the bitter taste of vegetables using spice and herb seasoning are gaining increasing attention. Our findings suggest that the overall liking of vegetables could be improved by incorporating spice and herb seasonings that are specifically formulated for each vegetable. Ultimately, developing and commercializing spice and herb seasonings may aid to increase vegetable consumption, as well as expanding the vegetable seasoning market. © 2018 The Authors Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  16. AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 < z < 1.2

    International Nuclear Information System (INIS)

    Mendez, Alexander J.; Coil, Alison L.; Moustakas, John; Lotz, Jennifer; Salim, Samir; Simard, Luc

    2011-01-01

    We present quantitative morphologies of ∼300 galaxies in the optically defined green valley at 0.4 20 . We find that the green galaxy population is intermediate between the red and blue galaxy populations in terms of concentration, asymmetry, and morphological type and merger fraction estimated using Gini/M 20 . We find that most green galaxies are not classified as mergers; in fact, the merger fraction in the green valley is lower than in the blue cloud. We show that at a given stellar mass, green galaxies have higher concentration values than blue galaxies and lower concentration values than red galaxies. Additionally, we find that 12% of green galaxies have B/T = 0 and 21% have B/T ≤ 0.05. Our results show that green galaxies are generally massive (M * ∼ 10 10.5 M sun ) disk galaxies with high concentrations. We conclude that major mergers are likely not the sole mechanism responsible for quenching star formation in this population and that either other external processes or internal secular processes play an important role both in driving gas toward the center of these galaxies and in quenching star formation.

  17. Using endmembers in AVIRIS images to estimate changes in vegetative biomass

    Science.gov (United States)

    Smith, Milton O.; Adams, John B.; Ustin, Susan L.; Roberts, Dar A.

    1992-01-01

    Field techniques for estimating vegetative biomass are labor intensive, and rarely are used to monitor changes in biomass over time. Remote-sensing offers an attractive alternative to field measurements; however, because there is no simple correspondence between encoded radiance in multispectral images and biomass, it is not possible to measure vegetative biomass directly from AVIRIS images. Ways to estimate vegetative biomass by identifying community types and then applying biomass scalars derived from field measurements are investigated. Field measurements of community-scale vegetative biomass can be made, at least for local areas, but it is not always possible to identify vegetation communities unambiguously using remote measurements and conventional image-processing techniques. Furthermore, even when communities are well characterized in a single image, it typically is difficult to assess the extent and nature of changes in a time series of images, owing to uncertainties introduced by variations in illumination geometry, atmospheric attenuation, and instrumental responses. Our objective is to develop an improved method based on spectral mixture analysis to characterize and identify vegetative communities, that can be applied to multi-temporal AVIRIS and other types of images. In previous studies, multi-temporal data sets (AVIRIS and TM) of Owens Valley, CA were analyzed and vegetation communities were defined in terms of fractions of reference (laboratory and field) endmember spectra. An advantage of converting an image to fractions of reference endmembers is that, although fractions in a given pixel may vary from image to image in a time series, the endmembers themselves typically are constant, thus providing a consistent frame of reference.

  18. Collective action on improving environmental and economic performance of vegetable production: Exploring pesticides safety in India

    NARCIS (Netherlands)

    Aravindakshan, S.; Sherief, A.K.

    2015-01-01

    From the chemical input-intensive yield-enhancement practices of the Green Revolution era, agricultural research and development focus is gradually shifting towards establishing Good Agricultural Practices (GAP) in fruits and vegetable sector. The dominant problems affecting fruits and vegetables in

  19. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  20. Antioxidant and Anti-Inflammatory Activities of Kenyan Leafy Green Vegetables, Wild Fruits, and Medicinal Plants with Potential Relevance for Kwashiorkor

    Directory of Open Access Journals (Sweden)

    H. R. Tufts

    2015-01-01

    Full Text Available Background. Inflammation, together with related oxidative stress, is linked with the etiology of kwashiorkor, a form of severe acute malnutrition in children. A diet rich in anti-inflammatory and antioxidant phytochemicals may offer potential for the prevention and treatment of kwashiorkor. We selected and assayed five leafy green vegetables, two wild fruits, and six medicinal plants from Kenya for their antioxidant and anti-inflammatory properties. Consensus regarding medicinal plant use was established from ethnobotanical data. Methods. Antioxidant activity and phenolic content were determined using the oxygen radical absorbance capacity (ORAC assay and Folin-Ciocalteu procedure, respectively. Anti-inflammatory activity was assessed in vitro targeting the inflammatory mediator tumour necrosis factor-alpha (TNF-α. Results. Mangifera indica (leaves used medicinally showed the greatest antioxidant activity (5940 ± 632 µM TE/µg and total phenolic content (337 ± 3 mg GAE/g but Amaranthus dubius (leafy vegetable showed the greatest inhibition of TNF-α (IC50 = 9 ± 1 μg/mL, followed by Ocimum americanum (medicinal plant (IC50 = 16 ± 1 μg/mL. Informant consensus was significantly correlated with anti-inflammatory effects among active medicinal plants (r2=0.7639, P=0.0228. Conclusions. Several plant species commonly consumed by Kenyan children possess activity profiles relevant to the prevention and treatment of kwashiorkor and warrant further investigation.

  1. Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel.

    Science.gov (United States)

    Brandt, Martin; Mbow, Cheikh; Diouf, Abdoul A; Verger, Aleixandre; Samimi, Cyrus; Fensholt, Rasmus

    2015-04-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass of woody species, herb biomass, and woody species abundance in different ecosystems located in the Sahel zone of Senegal. We found that the positive trend observed in satellite vegetation time series (+36%) is caused by an increment of in situ measured biomass (+34%), which is highly controlled by precipitation (+40%). Whereas herb biomass shows large inter-annual fluctuations rather than a clear trend, leaf biomass of woody species has doubled within 27 years (+103%). This increase in woody biomass did not reflect on biodiversity with 11 of 16 woody species declining in abundance over the period. We conclude that the observed greening in the Senegalese Sahel is primarily related to an increasing tree cover that caused satellite-driven vegetation indices to increase with rainfall reversal. © 2014 John Wiley & Sons Ltd.

  2. Focusing on the big picture: urban vegetation and eco-hydrological services in U.S. cities (abstract)

    Science.gov (United States)

    Trees and vegetation can be key components of urban green infrastructure and green spaces such as parks and residential yards. Large trees, characterized by broad canopies, and high leaf and stem volumes, can intercept a substantial amount of stormwater while promoting evapotrans...

  3. Developing resilient green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Brien, C J

    2014-08-15

    Living roofs are an emerging green infrastructure technology that can potentially be used to ameliorate both climate change and urban heat island effects. There is not much information regarding the design of green roofs for dry climates and so the aim of this study was to develop low maintenance and unfertilized green roofs for a dry climate. This paper describes the effects of four important elements of green roofs namely slope, depth, growing media and plant species and their possible interactions in terms of plant growth responses in a dry climate. Sixteen medium-scale green roofs were set up and monitored during a one year period. This experiment consisted of twelve vegetated platforms and four non-vegetated platforms as controls. The design for the experiment was a split-split-plot design in which the factors Slope (1° and 25°) and Depth (100mm, 300 mm) were randomized to the platforms (main plots). Root depth and volume, average height of plants, final dry biomass and ground cover, relative growth rate, final dry shoot-root ratio, water use efficiency and leaf succulence were studied during a twelve month period. The results showed little growth of the plants in media type A, whilst the growth was significant in both media types B and C. On average, a 90% survival rate of plants was observed. Also the growth indices indicated that some plants can grow efficiently in the harsh environment created by green roofs in a dry climate. The root growth pattern showed that retained water in the drainage layer is an alternative source of water for plants. It was also shown that stormwater can be used as a source of irrigation water for green roofs during six months of the year at the study site. In summary, mild sloping intensive systems containing media type C and planted with either Chrysocephalum apiculatum or Disphyma crassifolium showed the best performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Substrate Composition and Depth Affect Soil Moisture Behavior and Plant-Soil Relationship on Mediterranean Extensive Green Roofs

    Directory of Open Access Journals (Sweden)

    Julie Chenot

    2017-10-01

    Full Text Available The Mediterranean basin is extremely vulnerable to climate change, and one of the areas most impacted by human water demand. Yet the green roofs increasingly created both for aesthetic reasons and to limit pollution and urban runoff are themselves very water-demanding. Successful green roof installation depends on the establishment of the vegetation, and the substrate is the key element: it conserves water, and provides the nutrients and physical support indispensable for plant growth. Since typical Mediterranean plant communities require no maintenance, this study seeks to develop techniques for creating maintenance- and watering-free horizontal green roofs for public or private buildings in a Mediterranean context. The innovative aspect of this study lies in creating two soil mixes, fine elements (clay and silt and coarse elements (pebbles of all sizes, in two different thicknesses, to assess vegetation development. Monitoring of substrate moisture was carried out and coupled with local rainfall measurements during summer and autumn. As expected, substrate moisture is mainly influenced by substrate depth (the deeper, the moister and composition (the finer the particles (clays and silts, the higher the moisture content. Vegetation cover impacts moisture to a lesser extent but is itself affected by the composition and depth of the substrates. These results are subsequently discussed with relation to the issue of sustainable green roofs in Mediterranean climates. Considering applications of our results, for an optimal colonization of a Mediterranean vegetation, a substrate thickness of 15 cm composed mainly of fine elements (75% clay-silt and 25% pebble-sand would be recommended in green roofs.

  5. Development of multi-functional streetscape green infrastructure using a performance index approach

    International Nuclear Information System (INIS)

    Tiwary, A.; Williams, I.D.; Heidrich, O.; Namdeo, A.; Bandaru, V.; Calfapietra, C.

    2016-01-01

    This paper presents a performance evaluation framework for streetscape vegetation. A performance index (PI) is conceived using the following seven traits, specific to the street environments – Pollution Flux Potential (PFP), Carbon Sequestration Potential (CSP), Thermal Comfort Potential (TCP), Noise Attenuation Potential (NAP), Biomass Energy Potential (BEP), Environmental Stress Tolerance (EST) and Crown Projection Factor (CPF). Its application is demonstrated through a case study using fifteen street vegetation species from the UK, utilising a combination of direct field measurements and inventoried literature data. Our results indicate greater preference to small-to-medium size trees and evergreen shrubs over larger trees for streetscaping. The proposed PI approach can be potentially applied two-fold: one, for evaluation of the performance of the existing street vegetation, facilitating the prospects for further improving them through management strategies and better species selection; two, for planning new streetscapes and multi-functional biomass as part of extending the green urban infrastructure. - Highlights: • A performance evaluation framework for streetscape vegetation is presented. • Seven traits, relevant to street vegetation, are included in a performance index (PI). • The PI approach is applied to quantify and rank fifteen street vegetation species. • Medium size trees and evergreen shrubs are found more favourable for streetscapes. • The PI offers a metric for developing sustainable streetscape green infrastructure. - A performance index is developed and applied to fifteen vegetation species indicating greater preference to medium size trees and evergreen shrubs for streetscaping.

  6. New Triterpenoid Saponins from Green Vegetable Soya Beans and Their Anti-Inflammatory Activities.

    Science.gov (United States)

    Lan, Xiuhua; Deng, Kejun; Zhao, Jianping; Chen, Yiyi; Xin, Xuhui; Liu, Yanli; Khan, Ikhlas A; Yang, Shilin; Wang, Taoyun; Xu, Qiongming

    2017-12-20

    Ten compounds were isolated and identified from green vegetable soya beans, of which five are new triterpenoid saponins (1-5) and five are known compounds (6-10). The chemical structures of the five triterpenoid saponins (1-5) were elucidated to be 3β,24-dihydroxy-22β,30-epoxy-30-oxoolean-12-en 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-xylopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 1; 3β,24-dihydroxy-22β,30-epoxy-30-oxoolean-12-en 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-(3″-O-formyl)-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 2; 22-keto-3β,24-dihydroxy oleanane-12-ene 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-(3″-O-formyl)-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 3; 3β,22β,24-trihydroxy oxyolean-18(19)-ene-29-acid 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 4; and punicanolic acid 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 5 from the spectroscopic data (IR, GTC/FID, HR-ESI-MS, and 1D and 2D NMR). The nitric oxide release inhibitions of compounds 1-10 in LPS-stimulated RAW264.7 cells were evaluated, and the data suggested that compounds 1, 2, and 5 might possess moderate anti-inflammatory activities, with IC 50 values of 18.8, 16.1, and 13.2 μM, respectively.

  7. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on the substantiation of a health claim related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard

    DEFF Research Database (Denmark)

    Tetens, Inge

    related to a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf chard, red Swiss chard, golden Swiss chard and white Swiss chard and protection of blood lipids from oxidative damage. The food that is the subject of the health claim, a combination...... of the following frozen vegetables: red spinach (Spinacia oleracea L.), green spinach (Spinacia oleracea L.), red chicory (Cichorium intybus L.), green chicory (Cichorium intybus L.), green leaf chard (Beta vulgaris L. var. cicla), red leaf chard (Beta vulgaris L. var. cicla), red Swiss chard (Beta vulgaris L. var...... conclusions could be drawn for the scientific substantiation of the claim were provided by the applicant. The Panel concludes that a cause and effect relationship has not been established between consumption of a combination of red spinach, green spinach, red chicory, green chicory, green leaf chard, red leaf...

  8. Composting of sewage sludge from wastewater treatment plant mixed with a recirculated vegetal fraction in two ratios; Compostaje de fangos de E.D.A.R. en pilas con dos proporciones diferentes de estructurante vegetal recirculado

    Energy Technology Data Exchange (ETDEWEB)

    Plana, R.; Dominguez, J. [Universidad de Vigo (Spain); Aguilera, F.

    2002-07-01

    Due to the next European Directives that are being prepared about the waste management, specially about the organic fraction (U. S. W. sewage sludges, pig slurries, etc.) it will be necessary a previous biological treatment of the waste before spreading it on the soil. the current work studies the windrow composting of sewage sludge from an urban wastewater treatment plant mixed with a recirculated vegetal fraction in two different volumetric ratios (2:1 and 1:1). Temperature and oxygen consumption are measured to control the composting process, as well as the turning frequency and the quantity of products that is degradated. Although the process reaches thermofilic temperatures in both windrow, it is showed that in the 2:1 ratio more sludge is proportionally degradated. An economic study of the composting of this sewage sludge in different composting methods (dynamic and semi static) was made. (Author) 7 refs.

  9. Greenness and school-wide test scores are not always positively associated – A replication of "linking student performance in Massachusetts elementary schools with the 'greenness' of school surroundings using remote sensing"

    Science.gov (United States)

    Matthew H.E.M. Browning; Ming Kuo; Sonya Sachdeva; Kangjae Lee; Lynne Westphal

    2018-01-01

    Recent studies find vegetation around schools correlates positively with student test scores. To test this relationship in schools with less green cover and more disadvantaged students, we replicated a leading study, using six years of NDVI-derived greenness data to predict school-level math and reading achievement in 404 Chicago public schools. A direct replication...

  10. Changes in Landscape Greenness and Climatic Factors over 25 Years (1989–2013) in the USA

    Science.gov (United States)

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and ...

  11. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  12. Multiseasonal-multispectral remote sensing of phenological change for natural vegetation inventory. Ph.D. Thesis

    Science.gov (United States)

    Schrumpf, B. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Variations in phenological development among plant species was noted, as well as the tendency for the seasonal appearance of some vegetation types to be dominated by the appearance of one or a few similarly developing species. Most of the common plants in the study area could be characterized by temporal aspects of their phenological development. There was a strong similarity among the spectral signatures of vegetation types in which the spectral return was dominated by green plant material. When the soil background dominated the spectral return from a vegetation stand, then the spectral radiance and the vegetation physiognomy were apparently related. When the deciduous shrubs lost their leaves, their spectral signature altered with a slight decrease of radiance in the visible wavelengths and a strong decrease in the near infrared. As the foliage of perennial grasses cured from August to November, its apparent green radiance remained unchanged, red radiance increased over 50 percent, and near infrared radiance decreased approximately 30 percent. A reflective mineral surface exhibited high radiance levels in all four bands, thus providing a marked contrast to the absorption characteristics of vegetation canopies.

  13. Plant-based fertilizers for organic vegetable production

    DEFF Research Database (Denmark)

    Sørensen, Jørn Nygaard; Thorup-Kristensen, Kristian

    2011-01-01

    To ensure high yield and quality in organic vegetable production, crops often require additional fertilizer applied during the season. Due to the risk of contamination of edible plant products from slurry, plant-based fertilizers may be used as an alternative. The purpose of our work was to develop...... fertility, the term “mobile green manures” is used for green-manure crops that are harvested in one field and then moved as a whole and used as fertilizer in other fields. To further investigate mobile-green-manure crops for use as efficient fertilizers, pot and field experiments were conducted...... with cauliflower (Brassica oleracea botrytis) and kale (Brassica oleracea sabellica) supplied with organic matter consisting of a wide range of plant species with varying nutrient concentrations. Further, field experiments were conducted with leek (Allium porrum) and celery (Apium graveolens dulce) supplied...

  14. Distribution of Pink-Pigmented Facultative Methylotrophs on Leaves of Vegetables

    OpenAIRE

    MIZUNO, Masayuki; YURIMOTO, Hiroya; YOSHIDA, Naoko; IGUCHI, Hiroyuki; SAKAI, Yasuyoshi

    2012-01-01

    The distribution of pink-pigmented facultative methylotrophs (PPFMs) on the leaves of various vegetables was studied. All kinds of vegetable leaves tested gave pink-pigmented colonies on agar plates containing methanol as sole carbon source. The numbers of PPFMs on the leaves, colony-forming units (CFU)/g of fresh leaves, differed among the plants, although they were planted and grown at the same farm. Commercial green perilla, Perilla frutescens viridis (Makino) Makino, gave the highest coun...

  15. Choice architectural nudge interventions to promote vegetable consumption based on automatic processes decision-making

    DEFF Research Database (Denmark)

    Skov, Laurits Rohden; Friis Rasmussen, Rasmus; Møller Andersen, Pernille

    2014-01-01

    that had a default portion size of vegetable had he intended impact of increasing vegetable consumption. This emphasises the importance of portion sizes in out of home eating as well as underlines the effect of the one-unit bias. The remaining two nudges were not successful in increasing vegetable intake......, but promoted health by decreasing total energy intake which suggests that visual variety of fruit and greens prompts a healthy-eater subconscious behaviour....

  16. The red edge in arid region vegetation: 340-1060 nm spectra

    Science.gov (United States)

    Ray, Terrill W.; Murray, Bruce C.; Chehbouni, A.; Njoku, Eni

    1993-01-01

    The remote sensing study of vegetated regions of the world has typically been focused on the use of broad-band vegetation indices such as NDVI. Various modifications of these indices have been developed in attempts to minimize the effect of soil background, e.g., SAVI, or to reduce the effect of the atmosphere, e.g., ARVI. Most of these indices depend on the so-called 'red edge,' the sharp transition between the strong absorption of chlorophyll pigment in visible wavelengths and the strong scattering in the near-infrared from the cellular structure of leaves. These broadband indices tend to become highly inaccurate as the green canopy cover becomes sparse. The advent of high spectral resolution remote sensing instrument such as the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) has allowed the detection of narrow spectral features in vegetation and there are reports of detection of the red edge even for pixels with very low levels of green vegetation cover by Vane et al. and Elvidge et al., and to characterize algal biomass in coastal areas. Spectral mixing approaches similar to those of Smith et al. can be extended into the high spectral resolution domain allowing for the analysis of more endmembers, and potentially, discrimination between material with narrow spectral differences. Vegetation in arid regions tends to be sparse, often with small leaves such as the creosote bush. Many types of arid region vegetation spend much of the year with their leaves in a senescent state, i.e., yellow, with lowered chlorophyll pigmentation. The sparseness of the leaves of many arid region plants has the dual effect of lowering the green leaf area which can be observed and of allowing more of the sub-shrub soil to be visible which further complicates the spectrum of a region covered with arid region vegetation. Elvidge examined the spectral characteristics of dry plant materials showing significant differences in the region of the red edge and the diagnostic ligno

  17. A national assessment of green infrastructure and change for the conterminous United States using morphological image processing

    Science.gov (United States)

    J.D Wickham; Kurt H. Riitters; T.G. Wade; P. Vogt

    2010-01-01

    Green infrastructure is a popular framework for conservation planning. The main elements of green infrastructure are hubs and links. Hubs tend to be large areas of ‘natural’ vegetation and links tend to be linear features (e.g., streams) that connect hubs. Within the United States, green infrastructure projects can be characterized as: (...

  18. Ground-and satellite-based evidence of the biophysical mechanisms behind the greening Sahel

    DEFF Research Database (Denmark)

    Brandt, Martin Stefan; Mbow, Cheikh; Diouf, Abdoul A.

    2015-01-01

    After a dry period with prolonged droughts in the 1970s and 1980s, recent scientific outcome suggests that the decades of abnormally dry conditions in the Sahel have been reversed by positive anomalies in rainfall. Various remote sensing studies observed a positive trend in vegetation greenness...... over the last decades which is known as the re-greening of the Sahel. However, little investment has been made in including long-term ground-based data collections to evaluate and better understand the biophysical mechanisms behind these findings. Thus, deductions on a possible increment in biomass...... remain speculative. Our aim is to bridge these gaps and give specifics on the biophysical background factors of the re-greening Sahel. Therefore, a trend analysis was applied on long time series (1987-2013) of satellite-based vegetation and rainfall data, as well as on ground-observations of leaf biomass...

  19. Nutrient Content of Four Lesser – Known Green Leafy Vegetables ...

    African Journals Online (AJOL)

    Leaves of four lesser – known leafy vegetable species (Heinsiacrinita, Lasiantheraafricana, Colocasiaesculenta and Ipomeabatatas) used for traditional food preparations by the Efik and Ibibio ethnic groups in Nigeria were analyzed for proximate composition, amino acid profile and mineral contents. The leaves were ...

  20. A step-by-step introduction to vegetables at the beginning of complementary feeding. The effects of early and repeated exposure.

    Science.gov (United States)

    Hetherington, Marion M; Schwartz, C; Madrelle, J; Croden, F; Nekitsing, C; Vereijken, C M J L; Weenen, H

    2015-01-01

    Breastfeeding (BF) is associated with willingness to accept vegetables. This may be due to the variety of flavours delivered via breast milk. Some mothers add vegetables to milk during complementary feeding (CF) to enhance acceptance. The present study tested a step-by-step exposure to vegetables in milk then rice during CF, on intake and liking of vegetables. Just before CF, enrolled mothers were randomised to an intervention (IG, n = 18; 6 BF) or control group (CG, n = 18; 6 BF). IG infants received 12 daily exposures to vegetable puree added to milk (days 1-12), then 12 × 2 daily exposures to vegetable puree added to rice at home (days 13-24). Plain milk and rice were given to CG. Then both received 11 daily exposures to vegetable puree. Intake was weighed and liking rated on days 25-26 and 33-35 after the start of CF in the laboratory, supplemented by the same data recorded at home. Vegetables were rotated daily (carrots, green beans, spinach, broccoli). Intake, liking and pace of eating were greater for IG than CG infants. Intake and liking of carrots were greater than green beans. However, at 6m then 18m follow up, vegetable (carrot > green beans) but not group differences were observed. Mothers reported appreciation of the structure and guidance of this systematic approach. Early exposure to vegetables in a step-by-step method could be included in CF guidelines and longer term benefits assessed by extending the exposure period. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Green roof systems: a study of public attitudes and preferences in southern Spain.

    Science.gov (United States)

    Fernandez-Cañero, Rafael; Emilsson, Tobias; Fernandez-Barba, Carolina; Herrera Machuca, Miguel Ángel

    2013-10-15

    This study investigates people's preconceptions of green roofs and their visual preference for different green roof design alternatives in relation to behavioral, social and demographical variables. The investigation was performed as a visual preference study using digital images created to represent eight different alternatives: gravel roof, extensive green roof with Sedums not in flower, extensive green roof with sedums in bloom, semi-intensive green roof with sedums and ornamental grasses, semi-intensive green roof with shrubs, intensive green roof planted with a lawn, intensive green roof with succulent and trees and intensive green roof with shrubs and trees. Using a Likert-type scale, 450 respondents were asked to indicate their preference for each digital image. Results indicated that respondents' sociodemographic characteristics and childhood environmental background influenced their preferences toward different green roof types. Results also showed that green roofs with a more careful design, greater variety of vegetation structure, and more variety of colors were preferred over alternatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Exact solutions of fractional Schroedinger-like equation with a nonlocal term

    International Nuclear Information System (INIS)

    Jiang Xiaoyun; Xu Mingyu; Qi Haitao

    2011-01-01

    We study the time-space fractional Schroedinger equation with a nonlocal potential. By the method of Fourier transform and Laplace transform, the Green function, and hence the wave function, is expressed in terms of H-functions. Graphical analysis demonstrates that the influence of both the space-fractal parameter α and the nonlocal parameter ν on the fractional quantum system is strong. Indeed, the nonlocal potential may act similar to a fractional spatial derivative as well as fractional time derivative.

  3. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  4. Artichoke (Cynara scolymus L. as cash-cover crop in an organic vegetable system

    Directory of Open Access Journals (Sweden)

    Anna LENZI

    2015-11-01

    Full Text Available In organic vegetable systems green manure crops play an important role as a nitrogen source, but they cover the soil for several months without producing a direct income. Globe artichoke (Cynara scolymus L. provides both heads to be harvested and particularly abundant plant residues to be possibly incorporated into the soil, so it may play a double role of cash and cover crop. This paper describes an on-farm study in which seed-propagated artichoke, cultivated as an annual crop, preceded zucchini squash and lettuce cultivated in sequence within a vegetable organic system. Artichoke produced about 7 t ha-1 of saleable heads and left, after harvest, 50.3 t ha-1 of fresh biomass usable as green manure. Zucchini squash and lettuce following artichoke showed a significant increase in yield when artichoke residues were incorporated into the soil. Furthermore, a residual positive effect of green manure on soil fertility was detected after lettuce harvest. 

  5. Genetic taste markers and preferences for vegetables and fruit of female breast care patients.

    Science.gov (United States)

    Drewnowski, A; Henderson, S A; Hann, C S; Berg, W A; Ruffin, M T

    2000-02-01

    To explore links between genetic responsiveness to the bitter taste of 6-n-propylthiouracil (PROP) and self-reported preferences for vegetables and fruit of female breast care patients. PROP tasting was defined by detection thresholds and by perceived bitterness and hedonic ratings for PROP solutions. Nontasters, medium tasters, and supertasters were identified by their PROP thresholds and by the ratio of perceived bitterness of PROP to the perceived saltiness of sodium chloride solutions. Subjects rated preferences for vegetables and fruit using 9-point category scales. A clinical sample of 170 patients with newly diagnosed breast cancer and 156 cancer-free control subjects were recruited from the University of Michigan Breast Care Center. Principal components factor analysis, one-way analyses of variance, and Pearson correlations and chi 2 tests were used to analyze taste and food preference data. Genetic responsiveness to PROP was associated with lower acceptance of cruciferous and selected green and raw vegetables (P cancer prevention that emphasize consumption of cruciferous vegetables and bitter salad greens. Alternatively, PROP-sensitive women may seek to reduce bitter taste by adding fat, sugar, or salt.

  6. Fractional-order devices

    CERN Document Server

    Biswas, Karabi; Caponetto, Riccardo; Mendes Lopes, António; Tenreiro Machado, José António

    2017-01-01

    This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator...

  7. Quantifying interception associated with new urban vegetation canopies

    Science.gov (United States)

    Yerk, W.; Montalto, F. A.

    2013-12-01

    Interception of precipitation by vegetation canopies has long been recognized as an important component of the hydrologic cycle, though most research has been in closed or sparse canopy forests. Much less work has been published on interception by urban vegetation, and especially associated with the low growing shrubs commonly installed in green infrastructure program. To inform urban watershed model with vegetation-specific interception data, a field experiment was designed to directly measure canopy throughfall associated with two shrub species commonly included in urban greening programs. Data was collected at a high (e.g. five second) sampling frequency. A non-parametric Kruskal-Wallis test performed on data collected between August and October of 2012 demonstrated statistically significant (p= 0.0011) differences in recorded throughfall between two species (94% for Itea virginica, 86% for Cornus sericea). Additionally, the results suggested that the relationship of throughfall to rainfall intensity varied by species. For Itea, the ratio of throughfall to precipitation intensity was close to 1:1. However, for Cornus, the throughfall rate was on average slower (or 0.85 of the precipitation intensity). An improved and expanded set-up installed in 2013 added two additional species (Prunus laurocerasus and Hydrangea quercifolia). The 2013 results confirm interspecies differences in both throughfall amount, and in the relationship of throughfall rate to precipitation intensity. The results are discussed with respect to droplet splashing and enhanced evaporation within the canopy. Both years' findings suggest that the quantity of water intercepted by vegetation canopies exceeds the canopy storage capacity, as assumed in many conventional hydrologic models.

  8. Comparative Assessment of Two Vegetation Fractional Cover Estimating Methods and Their Impacts on Modeling Urban Latent Heat Flux Using Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2017-05-01

    Full Text Available Quantifying vegetation fractional cover (VFC and assessing its role in heat fluxes modeling using medium resolution remotely sensed data has received less attention than it deserves in heterogeneous urban regions. This study examined two approaches (Normalized Difference Vegetation Index (NDVI-derived and Multiple Endmember Spectral Mixture Analysis (MESMA-derived methods that are commonly used to map VFC based on Landsat imagery, in modeling surface heat fluxes in urban landscape. For this purpose, two different heat flux models, Two-source energy balance (TSEB model and Pixel Component Arranging and Comparing Algorithm (PCACA model, were adopted for model evaluation and analysis. A comparative analysis of the NDVI-derived and MESMA-derived VFCs showed that the latter achieved more accurate estimates in complex urban regions. When the two sources of VFCs were used as inputs to both TSEB and PCACA models, MESMA-derived urban VFC produced more accurate urban heat fluxes (Bowen ratio and latent heat flux relative to NDVI-derived urban VFC. Moreover, our study demonstrated that Landsat imagery-retrieved VFC exhibited greater uncertainty in obtaining urban heat fluxes for the TSEB model than for the PCACA model.

  9. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    International Nuclear Information System (INIS)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E; Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G; Epstein, H E; Yu, Q; Forbes, B C; Kaarlejaervi, E; Comiso, J C; Jia, G J; Kaplan, J O; Kumpula, T; Kuss, P; Matyshak, G

    2009-01-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  10. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E [University of Alaska Fairbanks, Fairbanks, AK (United States); Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G [Earth Cryosphere Institute, Russian Academy of Science, Siberian Branch, Tyumen (Russian Federation); Epstein, H E; Yu, Q [University of Virginia, Charlottesville, VA (United States); Forbes, B C; Kaarlejaervi, E [Arctic Center, University of Lapland, Rovaniemi (Finland); Comiso, J C [NASA Goddard Space Flight Center, MD (United States); Jia, G J [Chinese Academy of Sciences, Institute for Atmospheric Physics, Beijing (China); Kaplan, J O [Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf (Switzerland); Kumpula, T [University of Joensuu, Joensuu (Finland); Kuss, P [University of Berne, Berne (Switzerland); Matyshak, G [Moscow State University, Moscow (Russian Federation)

    2009-10-15

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  11. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo [v1; ref status: indexed, http://f1000r.es/2ha

    Directory of Open Access Journals (Sweden)

    Amy Heim

    2013-12-01

    Full Text Available Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  12. Nutrient and Total Polyphenol Contents of Dark Green Leafy Vegetables, and Estimation of Their Iron Bioaccessibility Using the In Vitro Digestion/Caco-2 Cell Model

    Directory of Open Access Journals (Sweden)

    Francis Kweku Amagloh

    2017-07-01

    Full Text Available Dark green leafy vegetables (DGLVs are considered as important sources of iron and vitamin A. However, iron concentration may not indicate bioaccessibility. The objectives of this study were to compare the nutrient content and iron bioaccessibility of five sweet potato cultivars, including three orange-fleshed types, with other commonly consumed DGLVs in Ghana: cocoyam, corchorus, baobab, kenaf and moringa, using the in vitro digestion/Caco-2 cell model. Moringa had the highest numbers of iron absorption enhancers on an “as-would-be-eaten” basis, β-carotene (14169 μg/100 g; p < 0.05 and ascorbic acid (46.30 mg/100 g; p < 0.001, and the best iron bioaccessibility (10.28 ng ferritin/mg protein. Baobab and an orange-fleshed sweet potato with purplish young leaves had a lower iron bioaccessibility (6.51 and 6.76 ng ferritin/mg protein, respectively compared with that of moringa, although these three greens contained similar (p > 0.05 iron (averaging 4.18 mg/100 g and β-carotene levels. The ascorbic acid concentration of 25.50 mg/100 g in the cooked baobab did not enhance the iron bioaccessibility. Baobab and the orange-fleshed sweet potato with purplish young leaves contained the highest levels of total polyphenols (1646.75 and 506.95 mg Gallic Acid Equivalents/100 g, respectively; p < 0.001. This suggests that iron bioaccessibility in greens cannot be inferred based on the mineral concentration. Based on the similarity of the iron bioaccessibility of the sweet potato leaves and cocoyam leaf (a widely-promoted “nutritious” DGLV in Ghana, the former greens have an added advantage of increasing the dietary intake of provitamin A.

  13. Penicilllium discolor, a new species from cheese, nuts and vegetables

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Samson, Robert A.; Rassing, Birgitte A.

    1997-01-01

    The new species Penicillum discolor, frequently isolated from nuts, vegetables and cheese is described. It is characterised by rough, dark green conidia, synnemateous growth on malt agar and the production of the secondary metabolites chaetoglobosins A, B and C, palitantin, cyclopenin, cyclopenol...

  14. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  15. Assessment of Change in Green Infrastructure Components Using Morphological Spatial Pattern Analysis for the Conterminous United States

    Science.gov (United States)

    Green infrastructure is a widely used framework for conservation planning in the United States and elsewhere. The main components of green infrastructure are hubs and corridors. Hubs are large areas of natural vegetation, and corridors are linear features that connect hubs. W...

  16. Benthic algal vegetation in Isfjorden, Svalbard

    Directory of Open Access Journals (Sweden)

    Stein Fredriksen

    2015-08-01

    Full Text Available Benthic algal vegetation was investigated at 10 sites in Isfjorden, Svalbard. Five sites were visited during summer 2010 and five during summer 2012. Both the littoral and sublittoral vegetation were sampled, the littoral by hand-picking and use of a throwable rake and the sublittoral using a triangular dredge. A total of 88 different taxa were registered, comprising 17 Chlorophyta, 40 Ochrophyta, 30 Rhodophyta and the Xantophyceae Vaucheria sp. The green algae Ulvaria splendens (Ruprecht Vinogradova was recorded in Svalbard for the first time. Most of the sites consisted of hard bottom substrate, but one site, Kapp Wijk, consisted of loose-lying calcareous red algae (rhodoliths and had species not recorded elsewhere. The sublittoral at the other sites was dominated by kelp. Molecular analysis confirmed the presence of the red alga Ceramium virgatum and a dwarf form of the brown alga Fucus vesiculosus. This study provides a baseline for future studies investigating changes in the vegetation due to environmental changes.

  17. Green roofs provide habitat for urban bats

    Directory of Open Access Journals (Sweden)

    K.L. Parkins

    2015-07-01

    Full Text Available Understanding bat use of human-altered habitat is critical for developing effective conservation plans for this ecologically important taxon. Green roofs, building rooftops covered in growing medium and vegetation, are increasingly important conservation tools that make use of underutilized space to provide breeding and foraging grounds for urban wildlife. Green roofs are especially important in highly urbanized areas such as New York City (NYC, which has more rooftops (34% than green space (13%. To date, no studies have examined the extent to which North American bats utilize urban green roofs. To investigate the role of green roofs in supporting urban bats, we monitored bat activity using ultrasonic recorders on four green and four conventional roofs located in highly developed areas of NYC, which were paired to control for location, height, and local variability in surrounding habitat and species diversity. We then identified bat vocalizations on these recordings to the species level. We documented the presence of five of nine possible bat species over both roof types: Lasiurus borealis, L. cinereus, L. noctivagans, P. subflavus,andE. fuscus. Of the bat calls that could be identified to the species level, 66% were from L. borealis. Overall levels of bat activity were higher over green roofs than over conventional roofs. This study provides evidence that, in addition to well documented ecosystem benefits, urban green roofs contribute to urban habitat availability for several North American bat species.

  18. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs)

    Institute of Scientific and Technical Information of China (English)

    Ramesh Kumar Bonta

    2017-01-01

    Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases.The role of herbal medicines in improving human health is gaining popularity over the years,which also increases the need for safety and efficiency of these products.Green leafy vegetables(GLVs)are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system.Highly selective,susceptible and versatile analytical techniques are necessary for extraction,identifica-tion, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectro-metry methods are used for qualitative and quantitative analysis of phenolic compounds.The online coupling of liquid chromatography with mass spectrometry(LC–MS)has become a useful tool in the metabolic profiling of plant samples.In this review,the separation and identification of phenolic acids and flavonoids from GLVs by LC–MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques.It concludes with the advantages of the combination of these two methods and prospects.

  19. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs).

    Science.gov (United States)

    Kumar, B Ramesh

    2017-12-01

    Diets containing high proportions of fruits and vegetables reduce the risk of onset of chronic diseases. The role of herbal medicines in improving human health is gaining popularity over the years, which also increases the need for safety and efficiency of these products. Green leafy vegetables (GLVs) are the richest source of phenolic compounds with excellent antioxidant properties. Increased consumption of diets containing phenolic compounds may give positive and better results to human health and significantly improves the immune system. Highly selective, susceptible and versatile analytical techniques are necessary for extraction, identification, and quantification of phenolic compounds from plant extracts, which helps to utilize their important biological properties. Recent advances in the pre-treatment procedures, separation techniques and spectrometry methods are used for qualitative and quantitative analysis of phenolic compounds. The online coupling of liquid chromatography with mass spectrometry (LC-MS) has become a useful tool in the metabolic profiling of plant samples. In this review, the separation and identification of phenolic acids and flavonoids from GLVs by LC-MS have been discussed along with the general extraction procedures and other sources of mass spectrometer used. The review is devoted to the understanding of the structural configuration, nature and accumulation pattern of phenolic acids and flavonoids in plants and to highlighting the recent developments in the chemical investigation of these compounds by chromatographic and spectroscopic techniques. It concludes with the advantages of the combination of these two methods and prospects.

  20. Theoretical study on recoilless fractions of simple cubic monatomic nanocrystalline particles

    International Nuclear Information System (INIS)

    Huang Jianping; Wang Luya

    2002-01-01

    Recoilless fractions of simple cubic monatomic nanocrystalline particles are calculated by using displacement-displacement Green's function. The numerical results show that the recoilless fractions on the surface of monatomic nanocrystalline particles are smaller than those in the inner, and they decrease when the particle size increase, the recoilless fractions of whole monatomic nanocrystalline particles increase when the particle size increase. These effects are more evident when the temperature is higher

  1. Thermal damping effect due to a green barrier which includes Arundo donax as bioclimatic element in buildings

    Directory of Open Access Journals (Sweden)

    P. Rodríguez-Salinas

    2017-09-01

    Full Text Available Among the main environmental impacts of the operation of residential buildings are those due to greenhouse gases generation as a result of electric consumption of air conditioning systems. The use of vegetation systems in residential buildings represents an alternative to reduce this energy consumption. Green vegetation systems barriers are often used as protection against winds, but recently they are also being used as acoustic dampers. This work explores their use as thermal insulation systems for buildings. Specifically, we report the behavior of an Arundo donax green barrier as a bioclimatic element. The results are analyzed based on indoor and outdoor temperature measurement in prototype buildings, in function of the green barrier presence. Additionally Arundo donax transpiration under extreme environmental conditions was determined.

  2. Total, Soluble and Insoluble Oxalate Contents of Ripe Green and Golden Kiwifruit.

    Science.gov (United States)

    Nguyễn, Hà Vũ Hồng; Savage, Geoffrey P

    2013-03-05

    Three bulk samples of two different cultivars of kiwifruit, green ( Actinidia deliciosa L . ) and golden ( Actinidia chinensis L . ) were bought ripe, ready to eat from a local market. The aim of the study was to determine the oxalate composition of each of the three fractions of kiwifruit, namely skin, pulp and seeds. The pulp consisted of 90.4% of the edible portion of the two cultivars while the skin and seeds made up a mean of 8.0% and 1.6% respectively. Total oxalate was extracted with 2.0 M HCL at 21 °C for 15 min and soluble oxalates extracted at 21 °C in water for 15 min from each fraction. The total and soluble oxalate compositions of each fraction were determined using ion exchange HPLC chromatography. The pulp of golden kiwifruit contained lower amounts of total oxalates (15.7 vs. 19.3 mg/100 g FW) and higher amounts of soluble oxalates (8.5 vs. 7.6 mg/100 g FW) when compared to the green cultivar. The skin of the green cultivar contained lower levels of insoluble oxalates (36.9 vs. 43.6 mg/100 g FW), while the seeds of the green cultivar contained higher levels of insoluble oxalates 106.7 vs. 84.7 mg/100 g FW.

  3. LBA-ECO ND-30 Fractional Cover of Mixed Land Use Ranches, Para and Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains images of fractional cover estimates of photosynthetic vegetation (PV) canopy, nonphotosynthetic vegetation (NPV), and exposed soils (S)...

  4. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.).

    Science.gov (United States)

    Ning, Zengping; He, Libin; Xiao, Tangfu; Márton, László

    2015-01-01

    The accumulation of thallium (Tl) in brassicaceous crops is widely known, but both the uptake extents of Tl by the individual cultivars of green cabbage and the distribution of Tl in the tissues of green cabbage are not well understood. Five commonly available cultivars of green cabbage grown in the Tl-spiked pot-culture trials were studied for the uptake extent and subcellular distribution of Tl. The results showed that all the trial cultivars mainly concentrated Tl in the leaves (101∼192 mg/kg, DW) rather than in the roots or stems, with no significant differences among cultivars (p = 0.455). Tl accumulation in the leaves revealed obvious subcellular fractionation: cell cytosol and vacuole > cell wall > cell organelles. The majority (∼ 88%) of leaf-Tl was found to be in the fraction of cytosol and vacuole, which also served as the major storage site for other major elements such as Ca and Mg. This specific subcellular fractionation of Tl appeared to enable green cabbage to avoid Tl damage to its vital organelles and to help green cabbage tolerate and detoxify Tl. This study demonstrated that all the five green cabbage cultivars show a good application potential in the phytoremediation of Tl-contaminated soils.

  5. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation.

    Science.gov (United States)

    Das, Lalatendu Keshary; Kundu, S S; Kumar, Dinesh; Datt, Chander

    2015-02-01

    To evaluate some forage feeds of ruminants in terms of their carbohydrate (CHO) and protein fractions using Cornell Net Carbohydrate and Protein System (CNCPS). Eleven ruminant feeds (six green fodders - maize, oat, sorghum, bajra, cowpea, berseem and five range herbages - para grass, guinea grass, hedge lucerne, setaria grass and hybrid napier) were selected for this study. Each feed was chemically analyzed for proximate principles (dry matter, crude protein [CP], ether extract, organic matter and ash), fiber fractions (neutral detergent fiber, acid detergent fiber, acid detergent lignin, cellulose and hemicellulose), primary CHO fractions (CHO, non-structural CHO, structural CHO and starch) and primary protein fractions (neutral detergent insoluble CP, acid detergent insoluble CP, non-protein nitrogen and soluble protein). The results were fitted to the equations of CNCPS to arrive at various CHO (CA - fast degrading, CB1 - intermediate degrading, CB2 - slow degrading and CC - non-degrading or unavailable) and protein (PA - instantaneously degrading, PB1 - fast degrading, PB2 - intermediate degrading, PB3 - slow degrading and PC - non-degrading or unavailable) fractions of test feeds. Among green fodders, cowpea and berseem had higher CA content while except hedge lucerne all range herbages had lower CA values. CB1 content of all feeds was low but similar. All feeds except cowpea, berseem, and hedge lucerne contained higher CB2 values. Oat among green fodders and hybrid napier among range herbages had lower CC fraction. Feeds such as bajra, cowpea, berseem and the setaria grass contained lower PA fraction. All green fodders had higher PB1 content except maize and cowpea while all range herbages had lower PB1 values except hedge lucerne. Para grass and hybrid napier contained exceptionally low PB2 fraction among all feeds. Low PC contents were reported in oat and berseem fodders. Based on our findings, it was concluded that feeds with similar CP and CHO content

  6. Fractionation of carbohydrate and protein content of some forage feeds of ruminants for nutritive evaluation

    Directory of Open Access Journals (Sweden)

    Lalatendu Keshary Das

    2015-02-01

    Full Text Available Aim: To evaluate some forage feeds of ruminants in terms of their carbohydrate (CHO and protein fractions using Cornell Net Carbohydrate and Protein System (CNCPS. Materials and Methods: Eleven ruminant feeds (six green fodders - maize, oat, sorghum, bajra, cowpea, berseem and five range herbages - para grass, guinea grass, hedge lucerne, setaria grass and hybrid napier were selected for this study. Each feed was chemically analyzed for proximate principles (dry matter, crude protein [CP], ether extract, organic matter and ash, fiber fractions (neutral detergent fiber, acid detergent fiber, acid detergent lignin, cellulose and hemicellulose, primary CHO fractions (CHO, non-structural CHO, structural CHO and starch and primary protein fractions (neutral detergent insoluble CP, acid detergent insoluble CP, non-protein nitrogen and soluble protein. The results were fitted to the equations of CNCPS to arrive at various CHO (CA - fast degrading, CB1 - intermediate degrading, CB2 - slow degrading and CC - nondegrading or unavailable and protein (PA - instantaneously degrading, PB1 - fast degrading, PB2 - intermediate degrading, PB3 - slow degrading and PC - non-degrading or unavailable fractions of test feeds. Results: Among green fodders, cowpea and berseem had higher CA content while except hedge lucerne all range herbages had lower CA values. CB1 content of all feeds was low but similar. All feeds except cowpea, berseem, and hedge lucerne contained higher CB2 values. Oat among green fodders and hybrid napier among range herbages had lower CC fraction. Feeds such as bajra, cowpea, berseem and the setaria grass contained lower PA fraction. All green fodders had higher PB1 content except maize and cowpea while all range herbages had lower PB1 values except hedge lucerne. Para grass and hybrid napier contained exceptionally low PB2 fraction among all feeds. Low PC contents were reported in oat and berseem fodders. Conclusion: Based on our findings, it

  7. Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo [v2; ref status: indexed, http://f1000r.es/2v4

    Directory of Open Access Journals (Sweden)

    Amy Heim

    2014-01-01

    Full Text Available Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect of Cladonia lichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, the Cladonia modules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, the Cladonia modules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

  8. Green ergonomics: combining sustainability and ergonomics.

    Science.gov (United States)

    Pilczuk, Davana; Barefield, Kevin

    2014-01-01

    When discussing ergonomics, the term 'sustainability' usually refers to the preservation of the human workforce. However, in 2010 Gulfstream Aerospace Corporation made a conscious effort to combine ergonomics and environmental sustainability in order to increase employee engagement for both programs. They introduced a companywide campaign called Green Ergo which is the idea of creating ergonomic solutions from scrap material found on site. This concept embraced the true meaning of 'green' and encouraged engineers and employees all across the company to design innovative green ergonomic solutions. The idea generated over 35 new ergo solutions, reduced waste production, and solved over 700 ergo problems for a fraction of the cost of newly purchased items. The demand for these items grew large enough that the company outsourced their manufacturing to a local non-profit. The Green Ergo campaign has changed the culture of the company and has increased the level of buy-in for both the ergonomics and sustainability programs.

  9. Nutritional composition and flavonoid content of edible wild greens and green pies: a potential rich source and antioxidant nutrients in the Mediterranean diet

    NARCIS (Netherlands)

    Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.C.H.; Chamalides, Ch.; Foufa, E.

    2000-01-01

    The traditional Greek diet is dominated by the high consumption of olive oil, fruit and vegetables. Antioxidants represent a common element in these foods and may be important mediators of the beneficial effect of this diet. Wild edible greens are frequently consumed throughout Greece. Seven edible

  10. Analysis of Decadal Vegetation Dynamics Using Multi-Scale Satellite Images

    Science.gov (United States)

    Chiang, Y.; Chen, K.

    2013-12-01

    This study aims at quantifying vegetation fractional cover (VFC) by incorporating multi-resolution satellite images, including Formosat-2(RSI), SPOT(HRV/HRG), Landsat (MSS/TM) and Terra/Aqua(MODIS), to investigate long-term and seasonal vegetation dynamics in Taiwan. We used 40-year NDVI records for derivation of VFC, with field campaigns routinely conducted to calibrate the critical NDVI threshold. Given different sensor capabilities in terms of their spatial and spectral properties, translation and infusion of NDVIs was used to assure NDVI coherence and to determine the fraction of vegetation cover at different spatio-temporal scales. Based on the proposed method, a bimodal sequence of intra-annual VFC which corresponds to the dual-cropping agriculture pattern was observed. Compared to seasonal VFC variation (78~90%), decadal VFC reveals moderate oscillations (81~86%), which were strongly linked with landuse changes and several major disturbances. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.

  11. Semi-arid vegetation response to antecedent climate and water balance windows

    Science.gov (United States)

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation

  12. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  13. Study of selective metals accumulation in green mustard (Brassica rapa var. parachinesis L.) from Cameron Highlands farmlands, Pahang

    International Nuclear Information System (INIS)

    Zaini Hamzah; Marlinda Musa; Ahmad Saat; Ahmad Saat

    2011-01-01

    There are many essential and non-essential elements including metals and radionuclides present in vegetables. However, the accumulation of the several metals and radionuclides might cause the contamination to vegetables itself. Green mustard (Brasissca rapa var. Parachinesis L.) was selected to represent the vegetable in this study. Objectives of this study are to determine the concentration of metals and radionuclides in the samples and to calculate the enrichment factor (EF) and also to estimate the uptake, base on biological accumulation coefficient (BAC), for the various parts of selected vegetables. Three farmlands in the Cameron Highlands were studied namely Bharat, Kg Raja and Bertam area. The green mustard and soil samples were collected during the harvest season. Samples were dried, ground and sieved prior to analysis. Analyses for both samples were done by using X-rays Fluorescence Spectroscopy (XRF) to measure the concentration of Fe, Zn, Hg, U and Th. The concentration of all elements in the soils is lower than their concentration in the control soil, except for Zn, U and Th. The concentration of all elements in Green Mustard is lower than their concentration in the soil where it was grown. The EF values in the Brasissca rapa var. Parachinesis L are lower than 2 except for U and Th, indicating some degree of contamination due to anthropogenic activities or naturally origin. The BAC values show that Zn and Hg were accumulated in the green mustard, depending on where the plant grows. (Author)

  14. A continued fraction representation of the mass operator

    International Nuclear Information System (INIS)

    Saraswati, D.K.

    1976-01-01

    We explore some further possibilities of application of the projection operator method of Zwanzig to the theory of Green's functions of quantum statistical mechanics, initiated by Ichiyanagi, and present a continued fraction representation of the mass operator involving a hierarchy of the random forces. As an application of the theory, we calculate the polarization operator of the phonon Green's function of the Frohlich Hamiltonian in the first approximation which corresponds to the assumption that the electron momenta are orthogonal to the phonon momentum. (author)

  15. Monitoring of the Green Roofs Installation in Brno-City District, Czech Republic

    Science.gov (United States)

    Rebrova, Tatiana; Beckovsky, David; Selnik, Petr

    2017-12-01

    In spite of the rapidly growing interest to the green roofs, there is insufficient information about their local quantities and areas in Czech Republic as well as in Central Europe. There is a lack of technical information that leads to the further development, application and environmental contribution of green roofs under local climatic conditions. The purpose of the research is to follow the tendency of how the process of green roofs’ popularization is performed in the Czech Republic and to determine basic parameters of the installed green roofs. These parameters include total quantity, area and the most common roof vegetation type (extensive or intensive); how many green roofs were installed over the last years and as a result, how the proportion of the green roofs to the conventional ones is changing. For initial evaluation Brno-City District was chosen as the next stage of university environmental project EnviHUT following the genesis of green roofs under local weather conditions.

  16. Green Product Development with Consumer Heterogeneity under Horizontal Competition

    Directory of Open Access Journals (Sweden)

    Bing Xu

    2018-06-01

    Full Text Available In this paper, we explore the pricing and greenness issues of two competitive firms without and with consumer heterogeneity. We derive and compare the optimal solutions and profits employed by firms under different scenarios. Then, we identify the effects of consumer heterogeneity under different competition intensities. The analytical results reveal that if market competition is at a relatively low level, we find that: (i when the greenness sensitivity of consumers with no preference is sufficiently small, more consumers have high environmental awareness, and companies easily achieve their environmental goals as well as economic goals; (ii when the greenness sensitivity of consumers with no preference is at a medium level, as the fraction of consumers with high environmental awareness increases, and the firm might achieve economic goals at the cost of reducing environmental goals; and (iii when the greenness sensitivity of consumers with no preference is at a high level, the fraction of consumers with high environmental awareness increases, but firms might have more difficulty achieving their environmental and economic goals. On the other hand, if the market competition is at a relatively high level, the presence of consumer heterogeneity can help improve environmental goals, but make achievement of economic goals difficult.

  17. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    Science.gov (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate

  18. Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis

    Science.gov (United States)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.

  19. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs.

    Science.gov (United States)

    Wong, Gwendolyn K L; Jim, C Y

    2016-12-15

    Green roof, an increasingly common constituent of urban green infrastructure, can provide multiple ecosystem services and mitigate climate-change and urban-heat-island challenges. Its adoption has been beset by a longstanding preconception of attracting urban pests like mosquitoes. As more cities may become vulnerable to emerging and re-emerging mosquito-borne infectious diseases, the knowledge gap needs to be filled. This study gauges the habitat preference of vector mosquitoes for extensive green roofs vis-à-vis positive and negative control sites in an urban setting. Seven sites in a university campus were selected to represent three experimental treatments: green roofs (GR), ground-level blue-green spaces as positive controls (PC), and bare roofs as negative controls (NC). Mosquito-trapping devices were deployed for a year from March 2015 to 2016. Human-biting mosquito species known to transmit infectious diseases in the region were identified and recorded as target species. Generalized linear models evaluated the effects of site type, season, and weather on vector-mosquito abundance. Our model revealed site type as a significant predictor of vector mosquito abundance, with considerably more vector mosquitoes captured in PC than in GR and NC. Vector abundance was higher in NC than in GR, attributed to the occasional presence of water pools in depressions of roofing membrane after rainfall. Our data also demonstrated seasonal differences in abundance. Weather variables were evaluated to assess human-vector contact risks under different weather conditions. Culex quinquefasciatus, a competent vector of diseases including lymphatic filariasis and West Nile fever, could be the most adaptable species. Our analysis demonstrates that green roofs are not particularly preferred by local vector mosquitoes compared to bare roofs and other urban spaces in a humid subtropical setting. The findings call for a better understanding of vector ecology in diverse urban landscapes

  20. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables.

    Science.gov (United States)

    van Hoek, Angela H A M; Veenman, Christiaan; van Overbeek, Wendy M; Lynch, Gretta; de Roda Husman, Ana Maria; Blaak, Hetty

    2015-07-02

    In total 1216 vegetables obtained from Dutch stores during 2012 and 2013 were analysed to determine the prevalence of 3rd-generation cephalosporin (3GC) resistant bacteria on soil-grown fresh produce possibly consumed raw. Vegetables grown conventionally and organically, from Dutch as well as foreign origin were compared. Included were the following vegetable types; blanched celery (n=192), bunched carrots (n=190), butterhead lettuce (n=137), chicory (n=96), endive (n=188), iceberg lettuce (n=193) and radish (n=120). Overall, 3GC-resistant Enterobacteriaceae were detected on 5.2% of vegetables. Based on primary habitat and mechanism of 3GC-resistance, these bacteria could be divided into four groups: ESBL-producing faecal species (Escherichia coli, Enterobacter spp.), AmpC-producing faecal species (Citrobacter freundii, Enterobacter spp.), ESBL-producing environmental species (Pantoea spp., Rahnella aquatilis, Serratia fonticola), and AmpC-producing environmental species (Cedecca spp., Hafnia alvei, Pantoea spp., Serratia plymuthica), which were detected on 0.8%, 1.2%, 2.6% and 0.4% of the vegetables analysed, respectively. Contamination with faecal 3GC-resistant bacteria was most frequently observed in root and bulb vegetables (average prevalence 4.4%), and less frequently in stem vegetables (prevalence 1.6%) and leafy greens (average prevalence 0.6%). In Dutch stores, only four of the included vegetable types (blanched celery, bunched carrots, endive, iceberg lettuce) were available in all four possible variants: Dutch/conventional, Dutch/organic, foreign/conventional, foreign/organic. With respect to these vegetable types, no statistically significant difference was observed in prevalence of 3GC-resistant Enterobacteriaceae between country of origin or cultivation type (5.2%, 5.7%, 5.7% and 3.3%, respectively). Vegetables consumed raw may be a source of dissemination of 3GC-resistant Enterobacteriaceae and their resistance genes to humans. The magnitude of the

  1. Some physical applications of fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Guo Xiaoyi; Xu Mingyu

    2006-01-01

    The fractional Schroedinger equation is solved for a free particle and for an infinite square potential well. The fundamental solution of the Cauchy problem for a free particle, the energy levels and the normalized wave functions of a particle in a potential well are obtained. In the barrier penetration problem, the reflection coefficient and transmission coefficient of a particle from a rectangular potential wall is determined. In the quantum scattering problem, according to the fractional Schroedinger equation, the Green's function of the Lippmann-Schwinger integral equation is given

  2. Higher intake of fruits, vegetables or their fiber reduces the risk of type?2 diabetes: A meta?analysis

    OpenAIRE

    Wang, Ping?Yu; Fang, Jun?Chao; Gao, Zong?Hua; Zhang, Can; Xie, Shu?Yang

    2015-01-01

    Abstract Aims/Introduction Some previous studies reported no significant association of consuming fruit or vegetables, or fruit and vegetables combined, with type 2 diabetes. Others reported that only a greater intake of green leafy vegetables reduced the risk of type 2 diabetes. To further investigate the relationship between them, we carried out a meta‐analysis to estimate the independent effects of the intake of fruit, vegetables and fiber on the risk of type 2 diabetes. Materials and Meth...

  3. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)

    International Nuclear Information System (INIS)

    Dutrieux, L P; Bartholomeus, H; Herold, M; Verbesselt, J

    2012-01-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000–11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr −1 ) and warming (+0.27% yr −1 ) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting

  4. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A

    2014-01-01

    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)

  5. Microbiological survey of raw and ready-to-eat leafy green vegetables marketed in Italy.

    Science.gov (United States)

    Losio, M N; Pavoni, E; Bilei, S; Bertasi, B; Bove, D; Capuano, F; Farneti, S; Blasi, G; Comin, D; Cardamone, C; Decastelli, L; Delibato, E; De Santis, P; Di Pasquale, S; Gattuso, A; Goffredo, E; Fadda, A; Pisanu, M; De Medici, D

    2015-10-01

    The presence of foodborne pathogens (Salmonella spp., Listeria monocytogenes, Escherichia coli O157:H7, thermotolerant Campylobacter, Yersinia enterocolitica and norovirus) in fresh leafy (FL) and ready-to-eat (RTE) vegetable products, sampled at random on the Italian market, was investigated to evaluate the level of risk to consumers. Nine regional laboratories, representing 18 of the 20 regions of Italy and in which 97.7% of the country's population resides, were involved in this study. All laboratories used the same sampling procedures and analytical methods. The vegetable samples were screened using validated real-time PCR (RT-PCR) methods and standardized reference ISO culturing methods. The results show that 3.7% of 1372 fresh leafy vegetable products and 1.8% of 1160 "fresh-cut" or "ready-to-eat" (RTE) vegetable retailed in supermarkets or farm markets, were contaminated with one or more foodborne pathogens harmful to human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Recent slowdown of atmospheric CO2 amplification due to vegetation-climate feedback over northern lands

    Science.gov (United States)

    Li, Z.; Xia, J.; Ahlström, A.; Rinke, A.; Koven, C.; Hayes, D. J.; Ji, D.; Zhang, G.; Krinner, G.; Chen, G.; Dong, J.; Liang, J.; Moore, J.; Jiang, L.; Yan, L.; Ciais, P.; Peng, S.; Wang, Y.; Xiao, X.; Shi, Z.; McGuire, A. D.; Luo, Y.

    2017-12-01

    The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern high latitudes since 1960s1-3. It remains unclear that whether this mechanism is still robust since 1990s, because a paused vegetation growth increase4,5 and weakened temperature control on CO2 uptake6,7 have been detected during this period. Here, based on in-situ atmospheric CO2 concentration records above northern 50o N, we found a slowdown of the atmospheric CO2 amplification from the mid-1990s to mid-2000s. This phenomenon is associated with the pause of vegetation greening trend and slowdown of spring warming. We further showed that both the vegetation greenness and its growing season length are positively correlated to spring but not autumn temperature from 1982 to 2010 over the northern lands. However, the state-of-art terrestrial biosphere models produce positive responses of gross primary productivity to both spring and autumn warming. These findings emphasize the importance of vegetation-climate feedback in shaping the atmospheric CO2 seasonality, and call for an improved carbon-cycle response to non-uniform seasonal warming at high latitudes in current models.

  7. Green Space and Deaths Attributable to the Urban Heat Island Effect in Ho Chi Minh City.

    Science.gov (United States)

    Dang, Tran Ngoc; Van, Doan Quang; Kusaka, Hiroyuki; Seposo, Xerxes T; Honda, Yasushi

    2018-04-01

    To quantify heat-related deaths in Ho Chi Minh City, Vietnam, caused by the urban heat island (UHI) and explore factors that may alleviate the impact of UHIs. We estimated district-specific meteorological conditions from 2010 to 2013 using the dynamic downscaling model and calculated the attributable fraction and number of mortalities resulting from the total, extreme, and mild heat in each district. The difference in attributable fraction of total heat between the central and outer districts was classified as the attributable fraction resulting from the UHI. The association among attributable fraction, attributable number with a green space, population density, and budget revenue of each district was then explored. The temperature-mortality relationship between the central and outer areas was almost identical. The attributable fraction resulting from the UHI was 0.42%, which was contributed by the difference in temperature distribution between the 2 areas. Every 1-square-kilometer increase in green space per 1000 people can prevent 7.4 deaths caused by heat. Green space can alleviate the impacts of UHIs, although future studies conducting a heath economic evaluation of tree planting are warranted.

  8. Total, Soluble and Insoluble Oxalate Contents of Ripe Green and Golden Kiwifruit

    Directory of Open Access Journals (Sweden)

    Hà Vũ Hồng Nguyễn

    2013-03-01

    Full Text Available Three bulk samples of two different cultivars of kiwifruit, green (Actinidia deliciosa L. and golden (Actinidia chinensis L. were bought ripe, ready to eat from a local market. The aim of the study was to determine the oxalate composition of each of the three fractions of kiwifruit, namely skin, pulp and seeds. The pulp consisted of 90.4% of the edible portion of the two cultivars while the skin and seeds made up a mean of 8.0% and 1.6% respectively. Total oxalate was extracted with 2.0 M HCL at 21 °C for 15 min and soluble oxalates extracted at 21 °C in water for 15 min from each fraction. The total and soluble oxalate compositions of each fraction were determined using ion exchange HPLC chromatography. The pulp of golden kiwifruit contained lower amounts of total oxalates (15.7 vs. 19.3 mg/100 g FW and higher amounts of soluble oxalates (8.5 vs. 7.6 mg/100 g FW when compared to the green cultivar. The skin of the green cultivar contained lower levels of insoluble oxalates (36.9 vs. 43.6 mg/100 g FW, while the seeds of the green cultivar contained higher levels of insoluble oxalates 106.7 vs. 84.7 mg/100 g FW.

  9. Combined nutritional and environmental life cycle assessment of fruits and vegetables

    DEFF Research Database (Denmark)

    Stylianou, Katerina S.; Fantke, Peter; Jolliet, Olivier

    2016-01-01

    -LCA) framework that compares environmental and nutritional effects of foods in a common end -point metric, Disability Adjusted Life Years (DALY). In the assessment, environmental health impact categories include green house gases, particulate matter (PM), and pesticide residues on fruits and vegetables, while......; 35 μDALY/serving fruit benefit compared to a factor 10 lower impact. Replacing detrimental foods, such as trans-fat and red meat, with fruits or vegetables further enhances health benefit. This study illustrates the importance of considering nutritional effects in food-LCA.......Nutritional health effects from the ‘use stage’ of the life cycle of food products can be substantial, especially for fruits and vegetables. To assess potential one-serving increases in fruit and vegetable consumption in Europe, we employ the Combined Nutritional and Environmental LCA (CONE...

  10. Predicting Opportunities for Greening and Patterns of Vegetation on Private Urban Lands

    Science.gov (United States)

    Troy, Austin R.; Grove, J. Morgan; O'Neil-Dunne, Jarlath P. M.; Pickett, Steward T. A.; Cadenasso, Mary L.

    2007-09-01

    This paper examines predictors of vegetative cover on private lands in Baltimore, Maryland. Using high-resolution spatial data, we generated two measures: “possible stewardship,” which is the proportion of private land that does not have built structures on it and hence has the possibility of supporting vegetation, and “realized stewardship,” which is the proportion of possible stewardship land upon which vegetation is growing. These measures were calculated at the parcel level and averaged by US Census block group. Realized stewardship was further defined by proportion of tree canopy and grass. Expenditures on yard supplies and services, available by block group, were used to help understand where vegetation condition appears to be the result of current activity, past legacies, or abandonment. PRIZM™ market segmentation data were tested as categorical predictors of possible and realized stewardship and yard expenditures. PRIZM™ segmentations are hierarchically clustered into 5, 15, and 62 categories, which correspond to population density, social stratification (income and education), and lifestyle clusters, respectively. We found that PRIZM 15 best predicted variation in possible stewardship and PRIZM 62 best predicted variation in realized stewardship. These results were further analyzed by regressing each dependent variable against a set of continuous variables reflective of each of the three PRIZM groupings. Housing age, vacancy, and population density were found to be critical determinants of both stewardship metrics. A number of lifestyle factors, such as average family size, marriage rates, and percentage of single-family detached homes, were strongly related to realized stewardship. The percentage of African Americans by block group was positively related to realized stewardship but negatively related to yard expenditures.

  11. Intake of Raw Fruits and Vegetables Is Associated With Better Mental Health Than Intake of Processed Fruits and Vegetables

    Science.gov (United States)

    Brookie, Kate L.; Best, Georgia I.; Conner, Tamlin S.

    2018-01-01

    Background: Higher intakes of fruits and vegetables, rich in micronutrients, have been associated with better mental health. However, cooking or processing may reduce the availability of these important micronutrients. This study investigated the differential associations between intake of raw fruits and vegetables, compared to processed (cooked or canned) fruits and vegetables, and mental health in young adults. Methods: In a cross-sectional survey design, 422 young adults ages 18–25 (66.1% female) living in New Zealand and the United States completed an online survey that assessed typical consumption of raw vs. cooked/canned/processed fruits and vegetables, negative and positive mental health (depressive symptoms, anxiety, negative mood, positive mood, life satisfaction, and flourishing), and covariates (including socio-economic status, body mass index, sleep, physical activity, smoking, and alcohol use). Results: Controlling for covariates, raw fruit and vegetable intake (FVI) predicted reduced depressive symptoms and higher positive mood, life satisfaction, and flourishing; processed FVI only predicted higher positive mood. The top 10 raw foods related to better mental health were carrots, bananas, apples, dark leafy greens like spinach, grapefruit, lettuce, citrus fruits, fresh berries, cucumber, and kiwifruit. Conclusions: Raw FVI, but not processed FVI, significantly predicted higher mental health outcomes when controlling for the covariates. Applications include recommending the consumption of raw fruits and vegetables to maximize mental health benefits. PMID:29692750

  12. Intake of Raw Fruits and Vegetables Is Associated With Better Mental Health Than Intake of Processed Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Kate L. Brookie

    2018-04-01

    Full Text Available Background: Higher intakes of fruits and vegetables, rich in micronutrients, have been associated with better mental health. However, cooking or processing may reduce the availability of these important micronutrients. This study investigated the differential associations between intake of raw fruits and vegetables, compared to processed (cooked or canned fruits and vegetables, and mental health in young adults.Methods: In a cross-sectional survey design, 422 young adults ages 18–25 (66.1% female living in New Zealand and the United States completed an online survey that assessed typical consumption of raw vs. cooked/canned/processed fruits and vegetables, negative and positive mental health (depressive symptoms, anxiety, negative mood, positive mood, life satisfaction, and flourishing, and covariates (including socio-economic status, body mass index, sleep, physical activity, smoking, and alcohol use.Results: Controlling for covariates, raw fruit and vegetable intake (FVI predicted reduced depressive symptoms and higher positive mood, life satisfaction, and flourishing; processed FVI only predicted higher positive mood. The top 10 raw foods related to better mental health were carrots, bananas, apples, dark leafy greens like spinach, grapefruit, lettuce, citrus fruits, fresh berries, cucumber, and kiwifruit.Conclusions: Raw FVI, but not processed FVI, significantly predicted higher mental health outcomes when controlling for the covariates. Applications include recommending the consumption of raw fruits and vegetables to maximize mental health benefits.

  13. Effect of hydrofluoric acid on acid decomposition mixtures for determining iron and other metallic elements in green vegetables

    International Nuclear Information System (INIS)

    Dogbe, S.A.; Afful, S.; Debrah, C.

    2007-01-01

    The efficiency of acid mixtures, HNO 3 - HCI0 4 -HF, HNO 3 - HCI - HF, HNO 3 - HCIO 4 and HNO 3 - HCI in the decomposition of four edible green vegetables, Gboma (Solanum macrocarpon), Aleefu (Amaranttius hibiridus), Shoeley (Hibiscus sabdariffa) and Ademe (Corchorus olitorius), for flame Atomic Absorption Spectrometer analysis of Fe, Mn, Mg, Cu, Zn and Ca was studied. The concentrations of Fe were higher (120.61 -710.10 mg/kg), while the values of Cu were lower (2.31 - 4.84 mg/kg) in all the samples. The values of concentration for Fe were more reproducible when HF was included in the decomposition mixtures. There were no significant differences in the concentrations of the other elements when HF was included in the acid mixture as compared to the acid mixtures without HF. Therefore, the inclusion of HF in the acid decomposition mixtures would ensure total and precise estimation of Fe in plant materials, but not critical for analysis of Mn, Mg, Cu, Zn and Ca. Performance of the decomposition procedures was verified by applying the methods to analyse Standard Reference Material IAEA-V-10 Hay Powder. (au)

  14. Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2016-12-01

    Full Text Available The Upper Guinea Forest (UGF region of West Africa is one of the most climatically marginal and human-impacted tropical forest regions in the world. Research on the patterns and drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the region and to understand how climate and land use change will affect other tropical forests around the globe. We compared six spectral indices calculated from the 2001–2015 MODIS optical-infrared reflectance data with manually-interpreted measurements of woody vegetation cover from high resolution imagery. The tasseled cap wetness (TCW index was found to have the strongest association with woody vegetation cover, whereas greenness indices, such as the enhanced vegetation index (EVI, had relatively weak associations with woody cover. Trends in woody vegetation cover measured with the TCW index were analyzed using Mann–Kendall statistics and were contrasted with trends in vegetation greenness measured with EVI. In the drier West Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions, EVI trends were primarily positive, and TCW trends were primarily negative, suggesting that woody vegetation cover was decreasing, while herbaceous vegetation cover is increasing. In the wettest tropical forests in the Western Guinean Lowland Forest ecoregion, declining trends in both TCW and EVI were indicative of widespread forest degradation resulting from human activities. Across all ecoregions, declines in woody cover were less prevalent in protected areas where human activities were restricted. Multiple lines of evidence suggested that human land use and resource extraction, rather than climate trends or short-term climatic anomalies, were the predominant drivers of recent vegetation change in the UGF region of West Africa.

  15. Stability of vitamin C in frozen raw fruit and vegetable homogenates

    Science.gov (United States)

    Retention of vitamin C in homogenized raw fruits and vegetables stored under laboratory conditions prior to analysis was investigated. Raw collard greens, clementines, and potatoes were chosen, to be representative of food matrices to be sampled in USDA’s National Food and Nutrient Analysis Program...

  16. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  17. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Goh, K.M.; Stout, J.D.; Rafter, T.A.

    1977-01-01

    Soil organic matter was extracted using the classical procedure and fractionated into humin (nonextractable), humic acid, and fulvic acid. The masses of total organic carbon in the whole soil samples and in the fractions, together with their 14 C content and 13 C/ 12 C ratios, were also determined. The following New Zealand soils were studied: a Fluvaquent, with experimental pasture plots, formed from deeply mixing subsoils of low organic carbon content; a Typic Fragiaqualf and a Typic Dystrochrept with moderately productive pastures; and an Umbric Vitrandept at two sites under native tussock and under introduced grasses of low productivity. The degree of radiocarbon enrichment of the different fractions in both topsoil and subsoil samples was examined in relation to differences in soil type, soil biological activity, and vegetation history. There was variation in the distribution and enrichment of the organic matter fractions both within the same soil type and between soil types, as well as between the topsoil and subsoil of the same soil. Differences appeared to be primarily a function of the stage of decomposition and translocation of the fractions through the soil rather than due to vegetation differences

  18. Handling Procedures of Vegetable Crops

    Science.gov (United States)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  19. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  20. Vegetation coupling to global climate: Trajectories of vegetation change and phenology modeling from satellite observations

    Science.gov (United States)

    Fisher, Jeremy Isaac

    Important systematic shifts in ecosystem function are often masked by natural variability. The rich legacy of over two decades of continuous satellite observations provides an important database for distinguishing climatological and anthropogenic ecosystem changes. Examples from semi-arid Sudanian West Africa and New England (USA) illustrate the response of vegetation to climate and land-use. In Burkina Faso, West Africa, pastoral and agricultural practices compete for land area, while degradation may follow intensification. The Nouhao Valley is a natural experiment in which pastoral and agricultural land uses were allocated separate, coherent reserves. Trajectories of annual net primary productivity were derived from 18 years of coarse-grain (AVHRR) satellite data. Trends suggested that pastoral lands had responded rigorously to increasing rainfall after the 1980's droughts. A detailed analysis at Landsat resolution (30m) indicated that the increased vegetative cover was concentrated in the river basins of the pastoral region, implying a riparian wood expansion. In comparison, riparian cover was reduced in agricultural regions. We suggest that broad-scale patterns of increasing semi-arid West African greenness may be indicative of climate variability, whereas local losses may be anthropogenic in nature. The contiguous deciduous forests, ocean proximity, topography, and dense urban developments of New England provide an ideal landscape to examine influences of climate variability and the impact of urban development vegetation response. Spatial and temporal patterns of interannual climate variability were examined via green leaf phenology. Phenology, or seasonal growth and senescence, is driven by deficits of light, temperature, and water. In temperate environments, phenology variability is driven by interannual temperature and precipitation shifts. Average and interannual phenology analyses across southern New England were conducted at resolutions of 30m (Landsat

  1. Rapid bioassay-guided screening of toxic substances in vegetable oils that shorten the life of SHRSP rats

    Directory of Open Access Journals (Sweden)

    Lewandowski Paul

    2010-02-01

    Full Text Available Abstract It has been consistently reported that vegetable oils including canola oil have a life shortening effect in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP and this toxic effect is not due to the fatty acid composition of the oil. Although it is possible that the phytosterol content or type of phytosterol present in vegetable oils may play some role in the life shortening effect observed in SHRSP rats this is still not completely resolved. Furthermore supercritical CO2 fractionation of canola oil with subsequent testing in SHRSP rats identified safe and toxic fractions however, the compounds responsible for life shortening effect were not characterised. The conventional approach to screen toxic substances in oils using rats takes more than six months and involves large number of animals. In this article we describe how rapid bioassay-guided screening could be used to identify toxic substances derived from vegetable oils and/or processed foods fortified with vegetable oils. The technique incorporates sequential fractionation of oils/processed foods and subsequent treatment of human cell lines that can be used in place of animal studies to determine cytotoxicity of the fractions with structural elucidation of compounds of interest determined via HPLC-MS and GC-MS. The rapid bioassay-guided screening proposed would require two weeks to test multiple fractions from oils, compared with six months if animal experiments were used to screen toxic effects. Fractionation of oil before bio-assay enhances the effectiveness of the detection of active compounds as fractionation increases the relative concentration of minor components.

  2. Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew

    2009-01-01

    Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.

  3. Systems of Vegetal Façade and Green Roofs used as a Sustainable Option in Architecture

    OpenAIRE

    Chanampa, Mariana; Vidal Rivas, Pilar; Alonso Ojembarrena, Javier; Olivieri, Francesca

    2010-01-01

    Green architecture contributes not only in reducing the building’s thermal loads but also in reducing the effects of the urban heat island in densely built-up areas in a hardly natural environment. The current green systems are built in situ/on site and are very expensive, hence the need to create industrialized prevegetated systems which improve the buildings’ energy savings and reduce the times of construction works. The present paper describes three green systems for façades (gabion façade...

  4. Particle-size fractionation and stable carbon isotope distribution applied to the study of soil organic matter dynamics

    International Nuclear Information System (INIS)

    Cerri, C.; Feller, C.; Balesdent, J.; Victoria, R.; Plenecassagne, A.

    1985-01-01

    The present Note concerns the dynamics of organic matter in soils under forest (C 3 -type vegetation) and 12 and 50 years old sugar-cane (C 4 -type vegetation) cultivation. The decomposition rate of ‘forest organic matter” and the accumulation rate of “sugar-cane organic matter” are estimated through 13 C measurements of total soil and different organic fractions (particle-size, fractionation) [fr

  5. Green Roofs: Federal Energy Management Program (FEMP) Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Scholz-Barth, K.; Tanner, S.

    2004-09-01

    In a ''green roof,'' a layer of vegetation (e.g., a roof garden) covers the surface of a roof to provide shade, cooler indoor and outdoor temperatures, and effective storm-water management to reduce runoff. The main components are waterproofing, soil, and plants. There are two basic kinds: intensive and extensive. An intensive green roof often features large shrubs and trees, and it can be expensive to install and maintain. An extensive green roof features shallow soil and low-growing, horizontally spreading plants that can thrive in the alpine conditions of many rooftops. These plants do not require a lot of water or soil, and they can tolerate a significant amount of exposure to the sun and wind. This Federal Technology Alert focuses on the benefits, design, and implementation of extensive green roofs and includes criteria for their use on federal facilities.

  6. The role of water availability in controlling coupled vegetation-atmosphere dynamics

    Science.gov (United States)

    Scanlon, Todd Michael

    This work examines how water availability affects vegetation structure and vegetation-atmosphere exchange of water, carbon, and energy for a savanna ecosystem. The study site is the Kalahari Transect (KT), in southern Africa, which follows a north-south decline in mean annual rainfall from ˜1600 mm/yr to ˜250 mm/yr between the latitudes 12°--26°S. Eddy covariance (EC) flux measurements taken over a time frame of 1--9 days at four sites along the transect during the wet (growing) season revealed that the ecosystem water use efficiency for the sites, defined as the ratio of net carbon flux to evapotranspiration, decreased with increasing mean annual rainfall. EC data were used to parameterize a large eddy simulation model, which was applied over a heterogeneous remotely-sensed surface. Water availability for the vegetation was found to affect the relative controls (structural vs. meteorological) on the spatial distribution of vegetation fluxes. When the spatial distribution of vapor pressure deficit, D, was most predictable (i.e. non water-limiting conditions) it was unimportant in shaping the distribution of the vegetation fluxes, while at times when D was least predictable (i.e. water-limiting conditions) it was most important. This observation is explained by the relative degree of vegetation-atmosphere coupling and the complexity of the non-local effects on D , both of which are dependent upon water availability. Based upon the differing ways in which trees and grass respond to interannual variability in rainfall, a new method was developed to estimate fractional tree, grass, and bare soil cover from a synthesis of satellite and ground-based data. This method was applied to the KT where it was found that tree fractional cover declines with mean annual rainfall, while grass fractional cover peaks near the middle of the gradient. A soil moisture model applied to this data indicated a shift from nutrient- to water-limitation from the mesic to arid portions of

  7. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  8. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    Directory of Open Access Journals (Sweden)

    Xiaosong Li

    2016-09-01

    Full Text Available Photosynthetic vegetation (PV and non-photosynthetic vegetation (NPV are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv and NPV (fnpv using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wide-field view (WFV data. To deal with endmember variability, pixel-invariant (Spectral Mixture Analysis, SMA and pixel-variable (Multi-Endmember Spectral Mixture Analysis, MESMA, and Automated Monte Carlo Unmixing Analysis, AutoMCU endmember selection approaches were applied. Observed fractional cover data from 104 field sites were used for comparison. For fpv, all methods show statistically significant correlations with observed data, among which AutoMCU had the highest performance (R2 = 0.49, RMSE = 0.17, followed by MESMA (R2 = 0.48, RMSE = 0.21, and SMA (R2 = 0.47, RMSE = 0.27. For fnpv, MESMA had the lowest performance (R2 = 0.11, RMSE = 0.24 because of coupling effects of the NPV and bare soil endmembers, SMA overestimates fnpv (R2 = 0.41, RMSE = 0.20, but is significantly correlated with observed data, and AutoMCU provides the most accurate predictions of fnpv (R2 = 0.49, RMSE = 0.09. Thus, the AutoMCU approach is proven to be more effective than SMA and MESMA, and GF-1 WFV data are capable of distinguishing NPV from bare soil in the Otindag Sandy Land.

  9. Climate mitigation from vegetation biophysical feedbacks during the past three decades

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhenzhong [Peking Univ., Beijing (China); Piao, Shilong [Peking Univ., Beijing (China); Chinese Academy of Sciences (CAS), Beijing (China); Li, Laurent Z. X. [Sorbonne Univ. Paris (France); Zhou, Liming [State Univ. of New York (SUNY), Albany, NY (United States); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Wang, Tao [Chinese Academy of Sciences (CAS), Beijing (China); Li, Yue [Peking Univ., Beijing (China); Lian, Xu [Peking Univ., Beijing (China); Wood, Eric F. [Princeton Univ., NJ (United States); Friedlingstein, Pierre [Univ. of Exeter (United Kingdom); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Estes, Lyndon D. [Princeton Univ., NJ (United States); Clark Univ., Worcester, MA (United States); Myneni, Ranga B. [Boston Univ., MA (United States); Peng, Shushi [Peking Univ., Beijing (China); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Seneviratne, Sonia I. [ETH Zurich (Switzerland); Wang, Yingping [Commonwealth Scientific and Industrial Research Organization (CSIRO), Aspendale, VIC (Australia)

    2017-05-22

    The surface air temperature response to vegetation changes has been studied for the extreme case of land-cover change; yet, it has never been quantified for the slow but persistent increase in leaf area index (LAI) observed over the past 30 years (Earth greening). We isolate the fingerprint of increasing LAI on surface air temperature using a coupled land–atmosphere global climate model prescribed with satellite LAI observations. Furthermore, we found that the global greening has slowed down the rise in global land-surface air temperature by 0.09 ± 0.02 °C since 1982. This net cooling effect is the sum of cooling from increased evapotranspiration (70%), changed atmospheric circulation (44%), decreased shortwave transmissivity (21%), and warming from increased longwave air emissivity (-29%) and decreased albedo (-6%). The global cooling originated from the regions where LAI has increased, including boreal Eurasia, Europe, India, northwest Amazonia, and the Sahel. Increasing LAI did not, but, significantly change surface air temperature in eastern North America and East Asia, where the effects of large-scale atmospheric circulation changes mask local vegetation feedbacks. Overall, the sum of biophysical feedbacks related to the greening of the Earth mitigated 12% of global land-surface warming for the past 30 years.

  10. Effects of food processing on the radioactivity of vegetables and cereals

    International Nuclear Information System (INIS)

    Roussel-Debet, S.; Real, J.

    1995-01-01

    The decrease of radioactivity for 134 Cs, 85 Sr, 106 Ru, 57 Co, 110m Ag during food processing was measured. Washing and bleaching vegetables directly contaminated by a single aerosol deposit led to a radioactivity decrease (depending on the vegetable, the radionuclide and the time of deposition) up to 90% for caesium. The efficiency of these processes was less important when the vegetables were contaminated by root transfer, except for peeling of root vegetables. Canning of vegetables indirectly contaminated by caesium, strontium, cobalt and ruthenium, after paring and bleaching, was rather interesting with residual radioactivity varying from 30 to 50% for green beans and from 5 to 20% for carrots. Measurements of stable caesium and strontium in cereals before and after industrial processing showed an important activity decrease; retention factors varied from 0.1 to 0.2 for wheat milling and 0.1 to 0.4 for rice processing. (authors). 6 refs., 9 tabs., 1 figs

  11. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    Science.gov (United States)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized

  12. Effect of Steaming and Boiling on the Antioxidant Properties and Biogenic Amines Content in Green Bean (Phaseolus vulgaris Varieties of Different Colours

    Directory of Open Access Journals (Sweden)

    Raffaella Preti

    2017-01-01

    Full Text Available Effects of boiling and steaming cooking methods were studied on total polyphenols, antioxidant capacity, and biogenic amines of three green bean varieties, purple, yellow, and green. The vegetables gave good values both for antioxidant capacity and for phenolics content, with the purple variety being the richest in healthful components. Both the heat treatments affected the antioxidant properties of these vegetables, with boiling that reduced the initial antioxidant capacity till 30% in the yellow variety, having the same trend for total polyphenols, with the major decrement of 43% in the green variety. On the contrary, biogenic amines significantly increased only after boiling in green and yellow variety, while purple variety did not show any changes in biogenic amines after cooking. The steaming method showed being better cooking approach in order to preserve the antioxidant properties of green beans varieties and to maintain the biogenic amines content at the lowest level.

  13. The fractional finite Hankel transform and its applications in fractal space

    International Nuclear Information System (INIS)

    Jiang Xiaoyun; Xu Mingyu

    2009-01-01

    In the present work, a generalized finite Hankel transform is derived which is useful in solving equations in fractal dimension d f and involving a fractal diffusion coefficient D 0 r -θ . The corresponding inversion formula is established and some properties are given. Then, the transform is successfully used to solve a class of time-fractional diffusion equations in fractional spatial dimension with an absorbent term and Schroedinger equation in fractional-dimensional space. Green's functions and exact wave function of the above problems are found.

  14. Thermal and water regime of green roof segments filled with Technosol

    Science.gov (United States)

    Jelínková, Vladimíra; Šácha, Jan; Dohnal, Michal; Skala, Vojtěch

    2016-04-01

    Artificial soil systems and structures comprise appreciable part of the urban areas and are considered to be perspective for number of reasons. One of the most important lies in contribution of green roofs and facades to the heat island effect mitigation, air quality improvement, storm water reduction, etc. The aim of the presented study is to evaluate thermal and water regime of the anthropogenic soil systems during the first months of the construction life cycle. Green roof test segments filled with two different anthropogenic soils were built to investigate the benefits of such systems in the temperate climate. Temperature and water balance measurements complemented with meteorological observations and knowledge of physical properties of the soil substrates provided basis for detailed analysis of thermal and hydrological regime. Water balance of green roof segments was calculated for available vegetation seasons and individual rainfall events. On the basis of an analysis of individual rainfall events rainfall-runoff dependency was found for green roof segments. The difference between measured actual evapotranspiration and calculated potential evapotranspiration was discussed on period with contrasting conditions in terms of the moisture stress. Thermal characteristics of soil substrates resulted in highly contrasting diurnal variation of soils temperatures. Green roof systems under study were able to reduce heat load of the roof construction when comparing with a concrete roof construction. Similarly, received rainfall was significantly reduced. The extent of the rainfall reduction mainly depends on soil, vegetation status and experienced weather patterns. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  15. Inhibitory Effects of Juices Prepared from Individual Vegetables on CYP3A4 Activity in Recombinant CYP3A4 and LS180 Cells.

    Science.gov (United States)

    Tsujimoto, Masayuki; Agawa, Chie; Ueda, Shinya; Yamane, Takayoshi; Kitayama, Haruna; Terao, Aya; Fukuda, Tomoya; Minegaki, Tetsuya; Nishiguchi, Kohshi

    2017-01-01

    Human intestinal absorption and drug metabolism vary to a large extent among individuals. For example, CYP3A4 activity has large individual variation that cannot be attributed to only genetic differences. Various flavonoids in vegetables, such as kaempferol and quercetin, possess inhibitory effects, and some vegetable and fruit juices have also been found to inhibit CYP3A4 activity. Therefore, differences in daily intake of flavonoid-containing vegetables may induce individual variation in intestinal bioavailability. To identify a vegetable that strongly inhibits CYP3A4, we investigated the effects of juices, prepared from individual vegetables, on CYP3A4 activity using recombinant CYP3A4 and LS180 cells in this study. Nine vegetable juices (cabbage, Japanese radish, onion, tomato, eggplant, carrot, Chinese cabbage, green pepper, and lettuce), were prepared and recombinant CYP3A4 and LS180 cells were used for evaluation of CYP3A4 activity. Metabolism to 6β-hydroxytestosterone by recombinant CYP3A4 was strongly inhibited by cabbage, onion, and green pepper juices, and cabbage and green pepper juices significantly inhibited CYP3A4 activity in a preincubation time-dependent manner. In addition, CYP3A4 activity in LS180 cells was significantly inhibited by cabbage and onion juices. In conclusion, this study showed that juices prepared from some individual vegetables could significantly inhibit CYP3A4 activity. Therefore, variation in the daily intake of vegetables such as cabbage and onion may be one of the factors responsible for individual differences in intestinal bioavailability.

  16. Seasonal Differences in Climatic Controls of Vegetation Growth in the Beijing-Tianjin Sand Source Region of China.

    Science.gov (United States)

    Wang, H.

    2017-12-01

    Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP

  17. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  18. Modelling of green roofs' hydrologic performance using EPA's SWMM.

    Science.gov (United States)

    Burszta-Adamiak, E; Mrowiec, M

    2013-01-01

    Green roofs significantly affect the increase in water retention and thus the management of rain water in urban areas. In Poland, as in many other European countries, excess rainwater resulting from snowmelt and heavy rainfall contributes to the development of local flooding in urban areas. Opportunities to reduce surface runoff and reduce flood risks are among the reasons why green roofs are more likely to be used also in this country. However, there are relatively few data on their in situ performance. In this study the storm water performance was simulated for the green roofs experimental plots using the Storm Water Management Model (SWMM) with Low Impact Development (LID) Controls module (version 5.0.022). The model consists of many parameters for a particular layer of green roofs but simulation results were unsatisfactory considering the hydrologic response of the green roofs. For the majority of the tested rain events, the Nash coefficient had negative values. It indicates a weak fit between observed and measured flow-rates. Therefore complexity of the LID module does not affect the increase of its accuracy. Further research at a technical scale is needed to determine the role of the green roof slope, vegetation cover and drying process during the inter-event periods.

  19. Parental role modeling of fruits and vegetables at meals and snacks is associated with children’s adequate consumption

    Science.gov (United States)

    Draxten, Michelle; Fulkerson, Jayne A.; Friend, Sarah; Flattum, Colleen F.; Schow, Robin

    2014-01-01

    Parental role modeling of healthful eating behaviors has been shown to be positively correlated to children’s dietary intake and preference for fruits and vegetables. However, no study to date has utilized both parent and child report of parental role modeling and assessed role modeling at snacks and dinner. The purpose of this study is to 1) examine associations between parent and child report of parental role modeling of fruit and vegetable consumption at snacks and dinner and 2) determine whether parental role modeling is associated with children meeting daily fruit and vegetable recommendations. Parent-child dyads (N=160) participating in the Healthy Home Offerings via the Mealtime Environment (HOME) Plus study completed baseline surveys that included questions regarding parental role modeling of fruits and vegetables at dinner and snacks. Children also completed 24-hour dietary recalls. Spearman correlations and chi-square/Fisher’s exact test were used to examine relationships between parent and child report of parental role modeling of fruit and vegetable consumption at snacks and dinner and whether children met daily recommended servings of fruits and vegetables. On average, children consumed less than three servings of fruits and vegetables per day with only 23% of children consuming the recommended four daily servings. Similarities between parent and child reports of parental role modeling of fruits and vegetables at snacks and dinner varied by food type (e.g., fruit versus green salad) and whether the role modeling behavior was at snack or dinner. Statistically significant correlations were seen between parent and child report of parental role modeling consumption of fruit at dinner and green salad at dinner. Children who reported parental role modeling of vegetable consumption at snack and green salad at dinner were significantly more likely, than those who did not, to meet the daily fruit and vegetable consumption recommendations. Parents who

  20. Phenological Indicators of Vegetation Recovery in Wetland Ecosystems

    Science.gov (United States)

    Taddeo, S.; Dronova, I.

    2017-12-01

    Landscape phenology is increasingly used to measure the impacts of climatic and environmental disturbances on plant communities. As plants show rapid phenological responses to environmental changes, variation in site phenology can help characterize vegetation recovery following restoration treatments and qualify their resistance to environmental fluctuations. By leveraging free remote sensing datasets, a phenology-based analysis of vegetation dynamics could offer a cost-effective assessment of restoration progress in wetland ecosystems. To fulfill this objective, we analyze 20 years of free remote sensing data from NASA's Landsat archive to offer a landscape-scale synthesis of wetland restoration efforts in the Sacramento-San Joaquin Delta of California, USA. Through an analysis of spatio-temporal changes in plant phenology and greenness, we assess how 25 restored wetlands across the Delta have responded to restoration treatments, time, and landscape context. We use a spline smoothing approach to generate both site-wide and pixel-specific phenological curves and identify key phenological events. Preliminary results reveal a greater variability in greenness and growing season length during the initial post-restoration years and a significant impact of landscape context in the time needed to reach phenological stability. Well-connected sites seem to benefit from an increased availability of propagules enabling them to reach peak greenness and maximum growing season length more rapidly. These results demonstrate the potential of phenological analyses to measure restoration progress and detect factors promoting wetland recovery. A thorough understanding of wetland phenology is key to the quantification of ecosystem processes including carbon sequestration and habitat provisioning.

  1. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    OpenAIRE

    Đặng Van Uy; Tran The Nam

    2018-01-01

    The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixe...

  2. Vegetables, fruits and phytoestrogens in the prevention of diseases

    Directory of Open Access Journals (Sweden)

    Heber David

    2004-04-01

    Full Text Available The intake of 400-600 g/d of fruits and vegetables is associated with reduced incidence of many common forms of cancer, and diets rich in plant foods are also associated with a reduced risk of heart disease and many chronic diseases of ageing. These foods contain phytochemicals that have anti-cancer and anti-inflammatory properties which confer many health benefits. Many phytochemicals are colourful, and recommending a wide array of colourful fruits and vegetables is an easy way to communicate increased diversity of intake to the consumer. For example, red foods contain lycopene, the pigment in tomatoes, which is localized in the prostate gland and may be involved in maintaining prostate health, and which has also been linked with a decreased risk of cardiovascular disease. Green foods, including broccoli, Brussels sprouts and kale, contain glucosinolates which have also been associated with a decreased risk of cancer. Garlic and other white-green foods in the onion family contain allyl sulphides which may inhibit cancer cell growth. Other bioactive substances in green tea and soybeans have health benefits as well. Consumers are advised to ingest one serving of each of the seven colour groups daily, putting this recommendation within the United States National Cancer Institute and American Institute for Cancer Research guidelines of five to nine servings per day. Grouping plant foods by colour provides simplification, but it is also important as a method to help consumers make wise food choices and promote health.

  3. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund

    2017-01-01

    Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast...... days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity....

  4. Effect of temperature variations during cooking and storage on ascorbic acid contents of vegetables: a comparative study

    International Nuclear Information System (INIS)

    Zaman, W.U.; Akram, M.; Rehman, R.

    2013-01-01

    Summary: Vegetables are generally boiled for cooking or stored in refrigerators. This results in loss of their nutritional values. Ascorbic acid is one of the important nutrients for human health. In this study, Ascorbic acid (vitamin-C) content of various vegetables of Pakistan was determined, and effect of boiling and freezing were compared with natural Ascorbic acid contents by HPLC. The maximum concentration of Ascorbic acid was found in green chilli: i.e. 105 mg /100 g in fresh state; while in boiled and frozen state its concentration is comparatively less: i.e. 85 and 92 mg/100 g respectively. The other vegetables like: cabbage, to mato, turnip, potato, spinach, onion, garlic, green pea, green beans and cauliflower contained greater amount of Ascorbic acid in their fresh state i.e. 30, 20, 25.3, 20, 30, 24.3, 31, 28.5, 30, 42 mg/100 g as compared to frozen (23.4, 13, 23.6, 15, 23.4, 14.1,25, 26.5, 27.0, and 39 mg/100g respectively) and boiled state (11.6, 9.3, 22.5, 10.0, 20.3, 13.1, 23, 25.2 and 35 mg /100g respectively). The minimum amount of Ascorbic acid was found in boiled state of carrot and lettuce: i.e. 4.0 mg/100 g. These results showed that freezing or boiling of vegetables causes significant lo ss of available Ascorbic acid contents, especially boiling. (author)

  5. To what extent can vegetation change and plant stress be surveyed by remote sensing?

    Energy Technology Data Exchange (ETDEWEB)

    Toemmervik, Hans

    1998-12-31

    Air pollution from the nickel processing industry in the Kola region of Russia accounts for a large part of the environmental problems in the north-eastern parts of Norway and Finland. The objectives of this thesis were to examine if vegetation damage and plant stress can be surveyed by remote sensing and to assess the use of chlorophyll fluorescence measurements to detect plant stress in the field. The study was carried out in the border area between Norway and Russia. Two spaceborne and one airborne sensors were used. Changes in vegetation cover could be monitored with a degree of accuracy varying from 75 to 83%. A hybrid classification method monitored changes in both lichen dominated vegetation and in vegetation cover types dominated by dwarf shrubs and green plants, which were significantly associated with the differences in SO{sub 2} emission during the period from 1973 to 1994. Vegetation indices, change detection maps and prediction maps provided information on biomass and coverage of green vegetation. This was associated with the differences in the SO{sub 2} emissions during the same period. The vegetation and land cover types with the greatest stress and damage had the largest modelled SO{sub 2} concentration levels in the ground air layer while the vegetation cover types with the lowest degree of stress had the lowest. Comparison of the airborne casi map with the previously processed Landsat TM map from the same area showed that the casi map separated the complete vegetation cover into more detail than the Landsat TM map. The casi images indicated a red-edge shift for the medium to heavily damaged vegetation cover types. Problems with using airborne remote sensing by casi include variable clouds, lack of synoptic view, and cost. The variation in chlorophyll fluorescence of 11 plant species at 16 sites was most influenced by precipitation, temperature and continentality. 373 refs., 49 figs., 37 tabs.

  6. A Comparison of Total Antioxidant Capacities of Concord, Purple, Red, and Green Grapes Using the CUPRAC Assay

    Directory of Open Access Journals (Sweden)

    Connor M. Callaghan

    2013-10-01

    Full Text Available Considering how popular grapes are in terms of their antioxidant benefits, we compared concord, purple, red, and green grapes for total antioxidant capacity (TAC and carbohydrate concentration. All grapes were acquired from commercial sources and samples of each were separated into skinned and not skinned groups. Each whole grape and the skins were individually homogenized and then separated into pulp and supernatant fractions. Each fraction was analyzed for total TAC and carbohydrates. The concord grapes and purple grapes had significantly higher TAC in the homogenates than did the red or green grapes. The concord grapes and green grapes had significantly higher TAC in the pulp than in the cytosol whereas the red and purple grapes had approximately the same amount. The majority of the TAC of the purple and red grapes was in the skin whereas the concord and green grapes had approximately the same TAC in the skin and pulp. The concord and purple grapes had the highest TAC when compared to the red and green grapes, whereas the red and green grapes had approximately the same total TAC.

  7. Disaggregating tree and grass phenology in tropical savannas

    Science.gov (United States)

    Zhou, Qiang

    Savannas are mixed tree-grass systems and as one of the world's largest biomes represent an important component of the Earth system affecting water and energy balances, carbon sequestration and biodiversity as well as supporting large human populations. Savanna vegetation structure and its distribution, however, may change because of major anthropogenic disturbances from climate change, wildfire, agriculture, and livestock production. The overstory and understory may have different water use strategies, different nutrient requirements and have different responses to fire and climate variation. The accurate measurement of the spatial distribution and structure of the overstory and understory are essential for understanding the savanna ecosystem. This project developed a workflow for separating the dynamics of the overstory and understory fractional cover in savannas at the continental scale (Australia, South America, and Africa). Previous studies have successfully separated the phenology of Australian savanna vegetation into persistent and seasonal greenness using time series decomposition, and into fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) using linear unmixing. This study combined these methods to separate the understory and overstory signal in both the green and senescent phenological stages using remotely sensed imagery from the MODIS (MODerate resolution Imaging Spectroradiometer) sensor. The methods and parameters were adjusted based on the vegetation variation. The workflow was first tested at the Australian site. Here the PV estimates for overstory and understory showed best performance, however NPV estimates exhibited spatial variation in validation relationships. At the South American site (Cerrado), an additional method based on frequency unmixing was developed to separate green vegetation components with similar phenology. When the decomposition and frequency methods were compared, the frequency

  8. Nutrient Density and the Cost of Vegetables from Elementary School Lunches.

    Science.gov (United States)

    Ishdorj, Ariun; Capps, Oral; Murano, Peter S

    2016-01-01

    Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. © 2016 American Society for Nutrition.

  9. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  10. Nutrient Density and the Cost of Vegetables from Elementary School Lunches123

    Science.gov (United States)

    Ishdorj, Ariun; Capps, Oral; Murano, Peter S

    2016-01-01

    Vegetables are the major source of the dietary fiber, magnesium, potassium, and vitamins A and C that are crucial in the diets of children. This study assessed the nutrient content of vegetables offered through the National School Lunch Program and examined the relation between the overall nutrient density of vegetable subgroups and the costs of nutrients offered and wasted before and after the changes in school meal standards. Using data collected from 3 elementary schools before and after the changes in school meal standards, we found that vegetable plate waste increased from 52% to 58%. Plate waste for starchy vegetables, exclusive of potatoes, was relatively high compared with other subgroups; however, plate waste for white potatoes was the lowest among any type of vegetable. Energy density; cost per 100 g, per serving, and per 100 kcal; and percentage daily value were calculated and used to estimate nutrient density value and nutrient density per dollar. Cost per 100 kcal was highest for red/orange vegetables followed by dark green vegetables; however, nutrient density for red/orange vegetables was the highest in the group and provided the most nutrients per dollar compared with other subgroups. Given that many vegetables are less energy dense, measuring vegetable costs per 100 g and per serving by accounting for nutrient density perhaps is a better way of calculating the cost of vegetables in school meals. PMID:26773034

  11. Interception of radioactive fallout by vegetation

    International Nuclear Information System (INIS)

    Chamberlain, A.C.; Garland, J.A.

    1991-12-01

    A review has been carried out of information on the fraction of radioactive material, deposited by dry or wet deposition processes, that is intercepted by vegetation. The amount of information available is limited, but it is clear that a substantial fraction may be intercepted in some circumstances. In dry deposition, the results of measurements indicate that interception decreases with increasing particle size for particles larger than about 40 μm. In low volume water sprays, interception fractions for 7 Be, 89 Sr and microspheres of 3 to 25 μm diameter were similar, but that for periodate was lower. The fraction intercepted decreased with an increase in the amount of simulated rainfall. The data are particularly sparse for dry deposition of particles smaller than 30 μm diameter. In addition, there is no information on interception at the moderate rates of rainfall common in Britain, and little is known of the differences between various species of plants. (author)

  12. The urban forest cultivating green infrastructure for people and the environment

    CERN Document Server

    Calfapietra, Carlo; Samson, Roeland; O'Brien, Liz; Ostoić, Silvija; Sanesi, Giovanni; Amo, Rocío

    2017-01-01

    This book focuses on urban "green infrastructure" – the interconnected web of vegetated spaces like street trees, parks and peri-urban forests that provide essential ecosystem services in cities. The green infrastructure approach embodies the idea that these services, such as storm-water runoff control, pollutant filtration and amenities for outdoor recreation, are just as vital for a modern city as those provided by any other type of infrastructure. Ensuring that these ecosystem services are indeed delivered in an equitable and sustainable way requires knowledge of the physical attributes of trees and urban green spaces, tools for coping with the complex social and cultural dynamics, and an understanding of how these factors can be integrated in better governance practices. By conveying the findings and recommendations of COST Action FP1204 GreenInUrbs, this volume summarizes the collaborative efforts of researchers and practitioners from across Europe to address these challenges. .

  13. Assessment of anthropogenic vegetation productivity decline in the Volta basin from 1982 to 2003

    Science.gov (United States)

    Vlek, Quang Bao Le, Lulseged Tamene, Paul L. G.

    2009-04-01

    carrying capacity to start with. As population pressure increases, more fragile lands will be taken into cultivation leading degradation with below average population densities. The fraction of degraded areas is modest in relation to the land showing significant improvement in green biomass, which covers 87.4 thousands km2 (22% of the basin's land mass). Moreover, about 81% of the greening areas experienced no significant correlation to annual rainfall, showing that this profound greening cannot be explained by rainfall dynamics. Given worldwide evidences on the effect of atmospheric fertilization (e.g. the elevated atmospheric levels CO2 and NOx) on vegetation productivity, the observed productivity improvements in Africa is likely explained by the shift in atmospheric chemistry. Assuming that atmospheric fertilization is ubiquitous, the process would mask degradation of land due to direct human activities. After correction for atmospheric fertilization effect by considering pristine regions with no human disturbance and lacking significant NDVI-rainfall correlation in sub-Saharan Africa, the area of human-induced productivity decline increased from 8 to 65%. The masked degradation areas for the various land-cover types are 106 thousands km2 for agriculture, 55.5 thousands km2 for shrubland, 52.5 thousands km2 for woodland and 10.4 thousands km2 for arid grassland. At this rate of decline in land productivity, the basin may soon lack the land resources necessary for economic development.

  14. Quantifying the City’s Green Area Potential Gain Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Teresa Santos

    2016-11-01

    Full Text Available Information about green spaces available in a city is essential for urban planning. Urban green areas are generally assessed through environmental indicators that reflect the city’s quality of life and urban comfort. A methodology based on 3D measure and analysis of green urban areas at the city scale is presented. Two products are proposed: (1 measuring current vegetation cover at ground level through object-oriented classification of WorldView-2 imagery; and (2 estimating potential green cover at rooftop level using 3D data obtained by LiDAR sensor. The methodology, implemented in Lisbon, Portugal, demonstrates that: (1 remote sensing imagery provides powerful tools for master planning and policy analysis regarding green urban area expansion; and (2 measures of urban sustainability cannot be solely based on indicators obtained from 2D geographical information. In fact, 2D urban indicators should be complemented by 3D modelling of geographic data.

  15. An NDVI-Based Vegetation Phenology Is Improved to be More Consistent with Photosynthesis Dynamics through Applying a Light Use Efficiency Model over Boreal High-Latitude Forests

    Directory of Open Access Journals (Sweden)

    Siheng Wang

    2017-07-01

    Full Text Available Remote sensing of high-latitude forests phenology is essential for understanding the global carbon cycle and the response of vegetation to climate change. The normalized difference vegetation index (NDVI has long been used to study boreal evergreen needleleaf forests (ENF and deciduous broadleaf forests. However, the NDVI-based growing season is generally reported to be longer than that based on gross primary production (GPP, which can be attributed to the difference between greenness and photosynthesis. Instead of introducing environmental factors such as land surface or air temperature like previous studies, this study attempts to make VI-based phenology more consistent with photosynthesis dynamics through applying a light use efficiency model. NDVI (MOD13C2 was used as a proxy for both fractional of absorbed photosynthetically active radiation (APAR and light use efficiency at seasonal time scale. Results show that VI-based phenology is improved towards tracking seasonal GPP changes more precisely after applying the light use efficiency model compared to raw NDVI or APAR, especially over ENF.

  16. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  17. Comment on "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth".

    Science.gov (United States)

    Li, Yue; Zeng, Zhenzhong; Huang, Ling; Lian, Xu; Piao, Shilong

    2018-06-15

    Forzieri et al (Reports, 16 June 2017, p. 1180) used satellite data to show that boreal greening caused regional warming. We show that this positive sensitivity of temperature to the greening can be derived from the positive response of vegetation to boreal warming, which indicates that results from a statistical regression with satellite data should be carefully interpreted. Copyright © 2018, American Association for the Advancement of Science.

  18. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    Science.gov (United States)

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Bioactive compounds of fresh and dehydrated green pepper

    Directory of Open Access Journals (Sweden)

    Ana Marinho do Nascimento

    2017-07-01

    Full Text Available Pepper Capsicum annuum L., belongs to the Solanaceae family, which contains approximately 31 species. Bioactive compounds also known as phytochemicals are chemical and biochemical components that are present in most fruits and vegetables. The objective of the present study was to verify if the bioactive compounds of the green pepper remain after being submitted to the drying process. The experiment was conducted in a completely randomized design with 2 treatments and 5 replicates. Green peppers were used from the (Economic Center of Supply Corporation of the city of Patos, Paraíba. The peppers were packed in plastic boxes and transported to the Laboratory of Chemistry, Biochemistry and Food Analysis of the Federal University of Campina Grande, Campus Pombal. Where they were selected, washed and sanitized. After that, the minimum processing was done and the drying was carried out in a circulation oven at 60 ºC. At the end of the drying, the samples were crushed and sieved. After this process, the analyzes of ascorbic acid, chlorophylls, carotenoids, anthocyanin flavonoids and phenolic compounds. It was found that there was a significant difference between treatments. The bioactive properties of green pepper were not lost after the heat treatment. Some phytochemicals as ascorbic acid, carotenoids and phenolic compounds were concentrated. Therefore the loss of water during the drying process increased the concentration of the bioactive compounds of dehydrated pepper, the product obtained with this method exhibited high levels of phytochemicals, the use of drying may be an alternative to prolong the shelf life of the vegetable.

  20. The Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During Drought

    KAUST Repository

    Meng, X. H.; Evans, J. P.; McCabe, Matthew

    2014-01-01

    Simulated feedbacks between vegetation fraction, soil moisture, and drought over southeast Australia were also investigated. Results indicate that vegetation fraction changes lag precipitation reductions by 6–8 months in nonarid regions. With the onset of the 2002 drought, a potential fast physical mechanism was found to play a positive role in the soil moisture–precipitation feedback, while a slow biological mechanism provides a negative feedback in the soil moisture–precipitation interaction on a longer time scale. That is, in the short term, a reduction in soil moisture leads to a reduction in the convective potential and, hence, precipitation, further reducing the soil moisture. If low levels of soil moisture persist long enough, reductions in vegetation cover and vigor occur, reducing the evapotranspiration and thus reducing the soil moisture decreases and dampening the fast physical feedback. Importantly, it was observed that these feedbacks are both space and time dependent.

  1. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries

    NARCIS (Netherlands)

    Kowalik, W.; Dabrowska-Zielinska, K.; Meroni, M.; Raczka, T.U.; Wit, de A.J.W.

    2014-01-01

    In the period 1999-2009 ten-day SPOT-VEGETATION products of the Normalized Difference Vegetation Index (NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) at 1 km spatial resolution were used in order to estimate and forecast the wheat yield over Europe. The products were

  2. Using soil microbial inoculations to enhance substrate performance on extensive green roofs.

    Science.gov (United States)

    Molineux, Chloe J; Gange, Alan C; Newport, Darryl J

    2017-02-15

    Green roofs are increasing in popularity in the urban environment for their contribution to green infrastructure; but their role for biodiversity is not often a design priority. Maximising biodiversity will impact positively on ecosystem services and is therefore fundamental for achieving the greatest benefits from green roofs. Extensive green roofs are lightweight systems generally constructed with a specialised growing medium that tends to be biologically limited and as such can be a harsh habitat for plants to thrive in. Thus, this investigation aimed to enhance the soil functioning with inoculations of soil microbes to increase plant diversity, improve vegetation health/performance and maximise access to soil nutrients. Manipulations included the addition of mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs, with complex relationships between depth and type of substrate and the type of microbial inoculant applied, with no clear pattern being observed. For bait plant measurements (heights, leaf numbers, root/shoot biomass, leaf nutrients), a compost tea may have positive effects on plant performance when grown in substrates of shallower depths (5.5cm), even one year after inoculums are applied. Results from the species richness surveys show that diversity was significantly increased with the application of an AM fungal treatment and that overall, results suggest that brick-based substrate blends are most effective for vegetation performance as are deeper depths (although this varied with time). Microbial inoculations of green roof habitats appeared to be sustainable; they need only be done once for benefits to still been seen in subsequent years where treatments are added independently (not in combination). They seem to be a novel and viable method of enhancing

  3. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables.

    Science.gov (United States)

    McBride, Murray B; Shayler, Hannah A; Spliethoff, Henry M; Mitchell, Rebecca G; Marquez-Bravo, Lydia G; Ferenz, Gretchen S; Russell-Anelli, Jonathan M; Casey, Linda; Bachman, Sharon

    2014-11-01

    Paired vegetable/soil samples from New York City and Buffalo, NY, gardens were analyzed for lead (Pb), cadmium (Cd) and barium (Ba). Vegetable aluminum (Al) was measured to assess soil adherence. Soil and vegetable metal concentrations did not correlate; vegetable concentrations varied by crop type. Pb was below health-based guidance values (EU standards) in virtually all fruits. 47% of root crops and 9% of leafy greens exceeded guidance values; over half the vegetables exceeded the 95th percentile of market-basket concentrations for Pb. Vegetable Pb correlated with Al; soil particle adherence/incorporation was more important than Pb uptake via roots. Cd was similar to market-basket concentrations and below guidance values in nearly all samples. Vegetable Ba was much higher than Pb or Cd, although soil Ba was lower than soil Pb. The poor relationship between vegetable and soil metal concentrations is attributable to particulate contamination of vegetables and soil characteristics that influence phytoavailability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale

    Science.gov (United States)

    Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.

    2017-12-01

    Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at

  5. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  6. Green design application on campus to enhance student’s quality of life

    Science.gov (United States)

    Tamiami, H.; Khaira, F.; Fachrudin, A.

    2018-02-01

    Green design becomes an important thing to applied in the building. Green building will provide comfortability and enhance Quality of Life (QoL) for the users. The purpose of this research is to analyze how green design application on campus to enhance student’s QoL. This research conducted in three campuses which located in North Sumatera Province, namely Universitas Sumatera Utara (USU), Universitas Negeri Medan (Unimed) and Universitas Medan Area (UMA) which have a lot of vegetation, open space, and multi-mass buildings. This research compared the green design application to QoL from three universities. Green design in this research that become independent variables focus on the energy efficiency and conservation (EEC), indoor health and comfort (IHC) and building environment management (BEM) with dependent variable is QoL. This research uses quantitative methods with questionnaire survey techniques. The population is students from the three universities with the sample of each University is 50 samples. The analysis uses multiple regression analysis. The results show that green design application may enhance QoL of students. The campus should have a good green design application to enhance QoL of students and give them comfortability.

  7. The Importance of Temporal and Spatial Vegetation Structure Information in Biotope Mapping Schemes: A Case Study in Helsingborg, Sweden

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Hammer, Mårten; Gunnarsson, Allan

    2012-02-01

    Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson's diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon's diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation

  8. Scenario-visualization for the assessment of perceived green space qualities at the urban-rural fringe.

    Science.gov (United States)

    Lange, Eckart; Hehl-Lange, Sigrid; Brewer, Mark J

    2008-11-01

    The provision of green space is increasingly being perceived as an important factor for quality of life. However, green spaces often face high developmental pressure. The main objective of this study is to investigate a prospective approach to green space planning by combining three-dimensional (3D) visualization of green space scenarios and survey techniques to facilitate improved participation of the public. Aside from the 'Status quo', scenarios 'Agriculture', 'Recreation', 'Nature conservation' and 'Wind turbines' are visualized in three dimensions. In order to test responses, a survey was conducted both in print format and on the Internet. Overall, 49 different visualizations that belong to one of the scenarios were available in the survey and were rated according to the perceived esthetic, recreational and ecological values. The highest rated scenes include vegetation elements such as meadows with orchards, single trees, shrubs or forest. The least attractive scenes are those where buildings are highly dominant or where there are no vegetation elements. Based on the ratings for the individual images and on the corresponding scenarios, our study shows that there is high potential for improving the existing landscape. All suggested changes are either rated about equal to or considerably higher than the status quo, with the scenario 'Nature conservation' receiving the highest scores.

  9. What You See Depends on Your Point of View: Comparison of Greenness Indices Across Spatial and Temporal Scales and What That Means for Mule Deer Migration and Fitness

    Science.gov (United States)

    Miller, B. W.; Chong, G.; Steltzer, H.; Aikens, E.; Morisette, J. T.; Talbert, C.; Talbert, M.; Shory, R.; Krienert, J. M.; Gurganus, D.

    2015-12-01

    Climate change models for the north­ern Rocky Mountains predict warming and changes in water availability that may alter vegetation. Changes to vegetation may include timing of plant life-history events, or phenology, such as green-up, flower­ing, and senescence. These changes could make forage available earlier in the growing season, but shifts in phenol­ogy may also result in earlier senescence (die-off or dormancy) and reduced overall production. Greenness indices such as the normalized difference vegetation index (NDVI) are regularly used to quantify greenness over large areas using remotely sensed reflectance data. The timing and scale of current satellite data, however, may be insufficient to capture fine-scale differences in phenology that are important indicators of habitat quality. The Wyoming Range Mule Deer herd is one of the largest in the west but it declined precipitously in the early 1990s and has not recovered. Accurate measurement of greenness over space and time would allow managers to better understand the role of plant phenology and productivity in mule deer population dynamics, for example. To connect spatial and temporal patterns of plant productivity with habitat quality, we compare greenness patterns (MODIS data) with migratory mule deer movement (GPS collars). Sagebrush systems provide winter habitat for mule deer. To understand sagebrush phenology as an indicator of productivity, we constructed NDVI time series and compared dates of phenological stages and magnitudes of greenness from three perspectives: at-surface/species-specific (mantis sensors: downward looking, <1m above vegetation); near surface/site-specific (PhenoCam: oblique, 2m); and satellite/landscape-scale (varied platforms). Greenness indices from these sensors contribute unique insights to understanding vegetation phenology, snow cover and reflectance. Understanding phenology and productivity at multiple scales can help guide resource management decisions related to

  10. A Socio-Ecological Exploration of Fear of Crime in Urban Green Spaces

    DEFF Research Database (Denmark)

    Maruthaveeran, Sreetheran

    of crime in Malaysia and possibly also other countries. It is pertinent to further investigate the interactions of the attributes (e.g., dense vegetation, graffiti, presence of drug addicts) which evoke fear of crime in urban green spaces. Although it is important to investigate how physical...

  11. Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-attenuation Values in a Cost-benefit Analysis of a Green Wall Affecting Courtyards

    Science.gov (United States)

    Veisten, Knut; Smyrnova, Yuliya; Klæboe, Ronny; Hornikx, Maarten; Mosslemi, Marjan; Kang, Jian

    2012-01-01

    Economic unit values of soundscape/acoustic effects have been based on changes in the number of annoyed persons or on decibel changes. The normal procedure has been the application of these unit values to noise-attenuation measures affecting the noisier façade of a dwelling. Novel modular vegetation-based soundscape measures, so-called green walls, might be relevant for both noisy and quieter areas. Moreover, their benefits will comprise noise attenuation as well as non-acoustic amenity effects. One challenge is to integrate the results of some decades of non-acoustic research on the amenity value of urban greenery into design of the urban sound environment, and incorporate these non-acoustic properties in the overall economic assessment of noise control and overall sound environment improvement measures. Monetised unit values for green walls have been included in two alternative cases, or demonstration projects, of covering the entrances to blocks of flats with a green wall. Since these measures improve the noise environment on the quiet side of the dwellings and courtyards, not the most exposed façade, adjustment factors to the nominal quiet side decibel reductions to arrive at an estimate of the equivalent overall acoustic improvement have been applied. A cost-benefit analysis of the green wall case indicates that this measure is economically promising, when valuing the noise attenuation in the quieter area and adding the amenity/aesthetic value of the green wall. PMID:23202816

  12. Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-attenuation Values in a Cost-benefit Analysis of a Green Wall Affecting Courtyards

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2012-10-01

    Full Text Available Economic unit values of soundscape/acoustic effects have been based on changes in the number of annoyed persons or on decibel changes. The normal procedure has been the application of these unit values to noise-attenuation measures affecting the noisier façade of a dwelling. Novel modular vegetation-based soundscape measures, so-called green walls, might be relevant for both noisy and quieter areas. Moreover, their benefits will comprise noise attenuation as well as non-acoustic amenity effects. One challenge is to integrate the results of some decades of non-acoustic research on the amenity value of urban greenery into design of the urban sound environment, and incorporate these non-acoustic properties in the overall economic assessment of noise control and overall sound environment improvement measures. Monetised unit values for green walls have been included in two alternative cases, or demonstration projects, of covering the entrances to blocks of flats with a green wall. Since these measures improve the noise environment on the quiet side of the dwellings and courtyards, not the most exposed façade, adjustment factors to the nominal quiet side decibel reductions to arrive at an estimate of the equivalent overall acoustic improvement have been applied. A cost-benefit analysis of the green wall case indicates that this measure is economically promising, when valuing the noise attenuation in the quieter area and adding the amenity/aesthetic value of the green wall.

  13. Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 3. Optical dynamics and vegetation index sensitivity to biomass and plant cover

    International Nuclear Information System (INIS)

    Leeuwen, W.J.D. van; Huete, A.R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (VI) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large VI dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone. (author)

  14. SMAP Multi-Temporal Soil Moisture and Vegetation Optical Depth Retrievals in Vegetated Regions Including Higher-Order Soil-Canopy Interactions

    Science.gov (United States)

    Feldman, A.; Akbar, R.; Konings, A. G.; Piles, M.; Entekhabi, D.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission utilizes a zeroth order radiative transfer model, known as the tau-omega model, to retrieve soil moisture from microwave brightness temperature observations. This model neglects first order scattering which is significant at L-Band in vegetated regions, or 30% of land cover. Previous higher order algorithms require extensive in-situ measurements and characterization of canopy layer physical properties. We propose a first order retrieval algorithm that approximately characterizes the eight first order emission pathways using rough surface reflectivity, vegetation optical depth (VOD), and scattering albedo terms. The recently developed Multi-Temporal Dual Channel Algorithm (MT-DCA) then retrieves these three parameters in a forward model without ancillary information under the assumption of temporally static albedo and constant vegetation water content between three day SMAP revisits. The approximated scattering terms are determined to be conservative estimates of analytically derived first order scattering terms. In addition, we find the first order algorithm to be more sensitive to surface emission than the tau-omega model. The simultaneously retrieved VOD, previously demonstrated to be proportional to vegetation water content, can provide insight into vegetation dynamics in regions with significant phenology. Specifically, dry tropical forests exhibit an increase in VOD during the dry season in alignment with prior studies that suggest that certain vegetative species green up during the dry season despite limited water availability. VOD retrieved using the first order algorithm and MT-DCA framework can therefore contribute to understanding of tropical forests' role in the carbon, energy, and water cycles, which has yet to be fully explained.

  15. Precision radiocarbon dating of a Late Holocene vegetation history

    International Nuclear Information System (INIS)

    Prior, C.A.; Chester, P.I.

    2001-01-01

    The purpose of this research is to precisely date vegetation changes associated with early human presence in the Hawkes Bay region. A sequence of AMS radiocarbon ages was obtained using a new technique developed at Rafter Radiocarbon Laboratory. A density separation method was used to concentrate pollen and spores extracted from unconsolidated lake sediments from a small-enclosed lake in coastal foothills of southern Hawkes Bay. Radiocarbon measurements were made on fractions of concentrated pollen, separated from associated organic debris. These ages directly date vegetation communities used to reconstruct the vegetation history of the region. This technique results in more accurate dating of Late Holocene vegetation changes interpreted from palynological analyses than techniques formerly used. Precision dating of palynological studies of New Zealand prehistory and history is necessary for correlation of vegetation changes to cultural changes because of the short time span of human occupation of New Zealand. (author). 35 refs., 3 figs., 1 tab

  16. Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park

    International Nuclear Information System (INIS)

    Yang, An-Shik; Juan, Yu-Hsuan; Wen, Chih-Yung; Chang, Chao-Jui

    2017-01-01

    Highlights: • The cooling efficacy from vegetation implanted in a urban public park is studied. • Three cases showing various types of greening in the park renewal were conducted. • On-site measurements were also conducted to validate the CFD simulation results. • The increase of GCR are linear with PET comfort area percentage. • Results can be used as a guideline for the green sustainability. - Abstract: Vegetation covers in urban parks are very useful for providing a cool microclimate which mitigates urban heat islands (UHIs). The objectives of this investigation are to therefore conduct on-site measurements and computational fluid dynamic simulations to evaluate the cooling efficacy from vegetation planted in a public park in Taipei, which is a subtropical city in Taiwan. The thermo-flow characteristics are predicted and compared with the measured air velocity and temperature data by using ultrasonic anemometers and an infrared camera to validate the computer modeling, including the sophisticated configurations of trees. Computations are also conducted to resolve the physiological equivalent temperature (PET) profiles for assessing the thermal comfort state at the pedestrian level of the outdoor environment. To investigate the impacts of park renewal on the urban microclimate, three pavilions and supplementary green areas are added to the simulation, and the results reveal that there is a better cooling effect in the park with a higher green coverage ratio (GCR). Moreover, the simulations find that the increased tree coverage ratio can more than compensate for loss of coverage of grasses, resulting in an overall decrease in average temperature. The relationship between thermal comfortable area and green coverage ratio tends to be nonlinear in nature. However, it would be more convenient for applications to adopt the linear regression analysis for determining the correlation between the GCR and PET for the percentage of areas that are comfortable (C

  17. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks.

    Science.gov (United States)

    Vieira, Joana; Matos, Paula; Mexia, Teresa; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Correia, Otília; Santos-Reis, Margarida; Branquinho, Cristina; Pinho, Pedro

    2018-01-01

    The growing human population concentrated in urban areas lead to the increase of road traffic and artificial areas, consequently enhancing air pollution and urban heat island effects, among others. These environmental changes affect citizen's health, causing a high number of premature deaths, with considerable social and economic costs. Nature-based solutions are essential to ameliorate those impacts in urban areas. While the mere presence of urban green spaces is pointed as an overarching solution, the relative importance of specific vegetation structure, composition and management to improve the ecosystem services of air purification and climate regulation are overlooked. This avoids the establishment of optimized planning and management procedures for urban green spaces with high spatial resolution and detail. Our aim was to understand the relative contribution of vegetation structure, composition and management for the provision of ecosystem services of air purification and climate regulation in urban green