WorldWideScience

Sample records for green light emitting

  1. Novel green-emitting Na2CaPO4F:Eu2+ phosphors for near-ultraviolet white light-emitting diodes

    International Nuclear Information System (INIS)

    Huang, Chien-Hao; Chen, Yen-Chi; Kuo, Te-Wen; Chen, Teng-Ming

    2011-01-01

    In this study, green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02 Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light. - Highlights: → Novel green-emitting Na 2 CaPO 4 F:Eu 2+ phosphors were synthesized by solid-state reactions in this research. → White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl 10 O 17 :Eu 2+ , green-emitting Na 2 CaPO 4 F:0.02Eu 2+ , and red-emitting CaAlSiN 3 :Eu 2+ phosphors into a single package. → The white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.

  2. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan, E-mail: twk@hanayng.ac.kr

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  3. Organic light-emitting diodes with direct contact-printed red, green, blue, and white light-emitting layers

    Science.gov (United States)

    Chen, Sun-Zen; Peng, Shiang-Hau; Ting, Tzu-Yu; Wu, Po-Shien; Lin, Chun-Hao; Chang, Chin-Yeh; Shyue, Jing-Jong; Jou, Jwo-Huei

    2012-10-01

    We demonstrate the feasibility of using direct contact-printing in the fabrication of monochromatic and polychromatic organic light-emitting diodes (OLEDs). Bright devices with red, green, blue, and white contact-printed light-emitting layers with a respective maximum luminance of 29 000, 29 000, 4000, and 18 000 cd/m2 were obtained with sound film integrity by blending a polymeric host into a molecular host. For the red OLED as example, the maximum luminance was decreased from 29 000 to 5000 cd/m2 as only the polymeric host was used, or decreased to 7000 cd/m2 as only the molecular host was used. The markedly improved device performance achieved in the devices with blended hosts may be attributed to the employed polymeric host that contributed a good film-forming character, and the molecular host that contributed a good electroluminescence character.

  4. Low driving voltage blue, green, yellow, red and white organic light-emitting diodes with a simply double light-emitting structure.

    Science.gov (United States)

    Zhang, Zhensong; Yue, Shouzhen; Wu, Yukun; Yan, Pingrui; Wu, Qingyang; Qu, Dalong; Liu, Shiyong; Zhao, Yi

    2014-01-27

    Low driving voltage blue, green, yellow, red and white phosphorescent organic light-emitting diodes (OLEDs) with a common simply double emitting layer (D-EML) structure are investigated. Our OLEDs without any out-coupling schemes as well as n-doping strategies show low driving voltage, e.g. white OLED, respectively. This work demonstrates that the low driving voltages and high efficiencies can be simultaneously realized with a common simply D-EML structure.

  5. Efficiency optimization of green phosphorescent organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Soo; Jeon, Woo Sik; Yu, Jae Hyung [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Pode, Ramchandra, E-mail: rbpode@khu.ac.k [Department of Physics, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of); Kwon, Jang Hyuk, E-mail: jhkwon@khu.ac.k [Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701 (Korea, Republic of)

    2011-03-01

    Using a narrow band gap host of bis[2-(2-hydroxyphenyl)-pyridine]beryllium (Bepp{sub 2}) and green phosphorescent Ir(ppy){sub 3} [fac-tris(2-phenylpyridine) iridium III] guest concentration as low as 2%, high efficiency phosphorescent organic light-emitting diode (PHOLED) is realized. Current and power efficiencies of 62.5 cd/A (max.), 51.0 lm/W (max.), and external quantum efficiency (max.) of 19.8% are reported in this green PHOLED. A low current efficiency roll-off value of 10% over the brightness of 10,000 cd/m{sup 2} is noticed in this Bepp{sub 2} single host device. Such a high efficiency is obtained by the optimization of the doping concentration with the knowledge of the hole trapping and the emission zone situations in this host-guest system. It is suggested that the reported device performance is suitable for applications in high brightness displays and lighting.

  6. High-luminosity blue and blue-green gallium nitride light-emitting diodes.

    Science.gov (United States)

    Morkoç, H; Mohammad, S N

    1995-01-06

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.

  7. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    Science.gov (United States)

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  8. A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging.

    Science.gov (United States)

    Uno, Shin-Nosuke; Kamiya, Mako; Morozumi, Akihiko; Urano, Yasuteru

    2017-12-19

    We have developed the first green-light-emitting, spontaneously blinking fluorophore (SBF), HEtetTFER. In combination with our near-infrared-light-emitting SBF (HMSiR), HEtetTFER allows dual-colour single-molecule localization microscopy (SMLM) in buffer solution without any additive and without photoactivation.

  9. Efficiency Drop in Green InGaN /GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations

    Science.gov (United States)

    Auf der Maur, Matthias; Pecchia, Alessandro; Penazzi, Gabriele; Rodrigues, Walter; Di Carlo, Aldo

    2016-01-01

    White light emitting diodes (LEDs) based on III-nitride InGaN /GaN quantum wells currently offer the highest overall efficiency for solid state lighting applications. Although current phosphor-converted white LEDs have high electricity-to-light conversion efficiencies, it has been recently pointed out that the full potential of solid state lighting could be exploited only by color mixing approaches without employing phosphor-based wavelength conversion. Such an approach requires direct emitting LEDs of different colors, including, in particular, the green-yellow range of the visible spectrum. This range, however, suffers from a systematic drop in efficiency, known as the "green gap," whose physical origin has not been understood completely so far. In this work, we show by atomistic simulations that a consistent part of the green gap in c -plane InGaN /GaN -based light emitting diodes may be attributed to a decrease in the radiative recombination coefficient with increasing indium content due to random fluctuations of the indium concentration naturally present in any InGaN alloy.

  10. Effect of Interface Nanotexture on Light Extraction of InGaN-Based Green Light Emitting Diodes

    International Nuclear Information System (INIS)

    Yao-Bo, Pan; Sheng-Li, Qi; Hao, Fang; Guo-Yi, Zhang; Mao-Sheng, Hao

    2010-01-01

    We report the enhancement of the light extraction of InGaN-based green light emitting diodes (LEDs) via the interface nanotexturing. The texture consists of high-density nanocraters on the surface of a sapphire substrate with an in situ etching. The width of nanocraters is about 0.5 μm and the depth is around 0.1 μm. It is demonstrated that the LEDs with interface texture exhibit about a 27% improvement in luminance intensity, compared with standard LEDs. High power InGaN-based green LEDs are obtained by using the interface nanotexture. An optical ray-tracing simulation is performed to investigate the effect of interface nanotexture on light extraction. (cross-disciplinary physics and related areas of science and technology)

  11. Controlled light emission from white organic light-emitting devices with a single blue-emitting host and multiple fluorescent dopants

    International Nuclear Information System (INIS)

    Chin, Byung Doo; Kim, Jai Kyeong; Park, O Ok

    2007-01-01

    In this work, we fabricated white organic light-emitting devices (WOLEDs) containing a layered light-emitting region composed of a single blue-emitting host and different fluorescent dopant materials. The effects of varying the dye-doping ratio and emitting layer thickness on the efficiency, lifetime, spectral voltage-dependence and white balance were investigated for devices with a blue/orange stacked layer structure. Addition of a blue host layer doped with a green-emitting dopant, to give a blue/green/orange emitter, resulted in a broadband white spectrum without the need for a charge-blocking interlayer. The composition of blue, green and orange dopants in the host and the thickness of each emitting layer were optimized, resulting in a device efficiency of 9-11 cd A -1 even at a high brightness of 10 000 cd m -2 (achieved at a bias voltage of less than 9 V) with an emission spectrum suitable for lighting applications

  12. Bluish-green color emitting Ba2Si3O8:Eu2+ ceramic phosphors for white light-emitting diodes.

    Science.gov (United States)

    Xiao, F; Xue, Y N; Zhang, Q Y

    2009-10-15

    This paper reports on the structural and optical properties of Eu(2+) activated Ba(2)Si(3)O(8) ceramic phosphors synthesized by a sol-gel method. The ceramic phosphors have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and fluorescence measurements. The structural characterization results suggest that the as-prepared phosphors are of single phase monoclinic Ba(2)Si(3)O(8) with rod-like morphology. A broad excitation band ranging from 300 to 410 nm matches well with the ultraviolet (UV) radiation of light-emitting diodes (LEDs). Upon 380 nm UV light excitation, these phosphors emit bluish-green emission centered at 500 nm with color coordination (x=0.25, y=0.40). All the obtained results indicate that the Ba(2)Si(3)O(8):Eu(2+) ceramic phosphors are promising bluish-green candidates for the phosphor-converted white LEDs.

  13. Recent developments in white light emitting diodes

    Science.gov (United States)

    Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V.

    2018-05-01

    In the recent years solid state lighting based on LEDs has revolutionized lighting technology. LEDs have many advantages over the conventional lighting based on fluorescent and incandescent lamps such as mercury free, high conversion efficiency of electrical energy into light, long lifetime reliability and ability to use with many types of devices. LEDs have emerged as a new potentially revolutionary technology that could save up to half of energy used for lighting applications. White LEDs would be the most important light source in the future, so much so that this aspect had been highlighted by the Nobel committee during the award of 2014 Nobel Prize for Physics. Recent advancement in the fabrication of GaN chip capable of emitting in blue and near UV region paved way for fabrication of white LED lamps. Mainly there are two approaches used for preparing white emitting solid state lamp. In the first approach blue light (λ=450 nm) emitted from the InGaN LED chip is partially absorbed by the YAG:Ce3+ phosphor coated on it and re-emitted as yellow fluorescence. A white light can be generated by the combination of blue + yellow emission bands. These lamps are already available. But they are suffering from major drawback that their Colour Rendering Index (CRI) is low. In the second approach, white LEDs are made by coating near ultraviolet emitting (360 to 410nm) LED with a mixture of high efficiency red, green and blue emitting phosphors, analogous to the fluorescent lamp. This method yields lamps with better color rendition. Addition of a yellow emitting phosphor improves CRI further. However conversion efficiency is compromised to some extent. Further the cost of near UV emitting chip is very high compared to blue emitting chips. Thus cost and light output wise, near UV chips are much inferior to blue chips. Recently some rare earth activated oxynitrides, silicates, fluorides have emerged as an important family of luminescent materials for white LED application

  14. Green light emitting curcumin dye in organic solvents

    Science.gov (United States)

    Mubeen, Mohammad; Deshmukh, Abhay D.; Dhoble, S. J.

    2018-05-01

    In this modern world, the demand for the white light emission has increased because of its wide applications in various display and lighting devices, sensors etc. This white light can be produced by mixing red, green and blue lights. Thus this green light can be produced from the plant extract i.e., Turmeric. Curcumin is the essential element present in turmeric to generate the green light. The Photoluminescence (PL) emission is observed at 540 nm at 380nm excitation. This method of generating green light is very simple, cost effective and efficient when compared to other methods.

  15. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites.

    Science.gov (United States)

    Zhou, Li; He, Benzhao; Huang, Jiachang

    2013-09-21

    A facile and green approach for the synthesis of amphibious fluorescent carbon dots (CDs) from natural polysaccharide is reported. Light-emitting polymer nanocomposites with excellent optical performance can be easily prepared by incorporation of the amphibious CDs into the polymer matrix.

  16. Green Fluorescent Organic Light Emitting Device with High Luminance

    Directory of Open Access Journals (Sweden)

    Ning YANG

    2014-06-01

    Full Text Available In this work, we fabricated the small molecule green fluorescent bottom-emission organic light emitting device (OLED with the configuration of glass substrate/indium tin oxide (ITO/Copper Phthalocyanine (CuPc 25 nm/ N,N’-di(naphthalen-1-yl-N,N’-diphenyl-benzidine (NPB 45 nm/ tris(8-hydroxyquinoline aluminium (Alq3 60 nm/ Lithium fluoride (LiF 1 nm/Aluminum (Al 100 nm where CuPc and NPB are the hole injection layer and the hole transport layer, respectively. CuPc is introduced in this device to improve carrier injection and efficiency. The experimental results indicated that the turn-on voltage is 2.8 V with a maximum luminance of 23510 cd/m2 at 12 V. The maximum current efficiency and power efficiency are 4.8 cd/A at 100 cd/m2 and 4.2 lm/W at 3 V, respectively. The peak of electroluminance (EL spectrum locates at 530 nm which is typical emission peak of green light. In contrast, the maximum current efficiency and power efficiency of the device without CuPc are only 4.0 cd/A at 100 mA/cm2 and 4.2 lm/W at 3.6 V, respectively.

  17. Green synthetic strategy of BCNO nanostructure and phosphor-based lightEmitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yue [The Quartermaster Research Institute of General Logistics Department, Beijing 100010 (China); Yuan, Bo [Chemical Defense Institute of China, Beijing 100010 (China); Zhang, Dongjiu [Key Laboratory of Space Launching Site Reliability Technology, Hainan 570100 (China); Ma, Tian; Huang, Xiancong [The Quartermaster Research Institute of General Logistics Department, Beijing 100010 (China); Chu, Zengyong [College of Science, National University of Defense Technology, Changsha 410073 (China); Lai, Kan [The Quartermaster Research Institute of General Logistics Department, Beijing 100010 (China)

    2016-11-15

    BCNO phosphor has been paid much attention due to their unique physical, electronic and optical properties. Here we have successfully obtained BCNO nano-particle phosphor by microwave treating from boric acid, urea, and glucose at low temperatures and in short reaction time. Glucose decomposed into graphene quantum dots (GQDs), which facilitated the formation of hexagonal boron nitride (h-BN). Through our method, GQDs domains were uniformly incorporated into h-BN, leading to the formation of BCNO and decrease of bandgap. BCNO demonstrated excellent performance in light emitting diodes (LEDs) with green and blue light. We envision that this BCNO phosphor will enable the next generation blue and green LED devices due to the easiness of large scale fabrication at an economic cost.

  18. Green synthetic strategy of BCNO nanostructure and phosphor-based lightEmitting diodes

    International Nuclear Information System (INIS)

    Kang, Yue; Yuan, Bo; Zhang, Dongjiu; Ma, Tian; Huang, Xiancong; Chu, Zengyong; Lai, Kan

    2016-01-01

    BCNO phosphor has been paid much attention due to their unique physical, electronic and optical properties. Here we have successfully obtained BCNO nano-particle phosphor by microwave treating from boric acid, urea, and glucose at low temperatures and in short reaction time. Glucose decomposed into graphene quantum dots (GQDs), which facilitated the formation of hexagonal boron nitride (h-BN). Through our method, GQDs domains were uniformly incorporated into h-BN, leading to the formation of BCNO and decrease of bandgap. BCNO demonstrated excellent performance in light emitting diodes (LEDs) with green and blue light. We envision that this BCNO phosphor will enable the next generation blue and green LED devices due to the easiness of large scale fabrication at an economic cost.

  19. Using Pre-TMIn Treatment to Improve the Optical Properties of Green Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Bing Xu

    2014-01-01

    Full Text Available We investigated the effects of pre-TMIn treatment on the optical properties of green light emitting diodes (LEDs. Although pre-TMIn treatment did not affect the epitaxial structure of quantum wells, it significantly improved the quality of the surface morphology relative to that of the untreated sample. Indium cluster can be seen by high-resolution transmission electron microscopy (HR-TEM, which is the explanation for the red-shift of photoluminescence (PL. Time-resolved photoluminescence measurements indicated that the sample prepared with pre-TMIn treatment had a shorter radiative decay time. As a result, the light output power of the treated green LED was higher than that of the conventional untreated one. Thus, pre-TMIn treatment appears to be a simple and efficient means of improving the performance of green LEDs.

  20. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    KAUST Repository

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M.; Speck, James S.; Nakamura, Shuji; Ooi, Boon S.; DenBaars, Steven P.

    2017-01-01

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021

  1. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haichuan, E-mail: hcmu@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Rao, Lu [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Weiling; Wei, Bin [Key Laboratory of Advanced Display and System Applications, Ministry of Education, School of Mechanics Engineering and Automation, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Wang, Keke; Xie, Haifen [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2015-12-01

    Highlights: • In-situ thermal treating the organic tri-layer (CBP/CBP:Ir(ppy){sub 3}/TPBi) of the green light PHOLED under various temperatures during the organic materials evaporation. • Investigating the effect of in situ thermal treatment on the electroluminescence (EL) performance of the green light PHOLED with tri-layer structures. • Provide an easy and practical way to improve the EL performance of the OLEDs without major modification of the organic materials and OLEDs structures required. - Abstract: Simplified multilayer green light phosphorescent organic light emitting diodes (PHOLED) with the structure of ITO/MoO{sub 3}(1 nm)/CBP(20 nm)/CBP:Ir(ppy){sub 3} (1 wt%) (15 nm)/TPBi(60 nm)/LiF(0.5 nm)/Al were fabricated via thermal evaporation and in situ thermal treatment (heating the OLED substrates to certain temperatures during the thermal evaporation of the organic materials) was performed. The effect of the in situ thermal treatment on the electroluminescence (EL) performance of the PHOLED was investigated. It was found that the OLED exhibited strong EL dependence on the thermal treatment temperatures, and their current efficiency was improved with the increasing temperature from room temperature (RT) to 69 °C and deteriorated with the further increasing temperature to 105 °C. At the brightness of 1000 cd/m{sup 2}, over 80% improvement of the current efficiency at the optimal thermal treatment temperature of 69 °C (64 cd/A) was demonstrated compared to that at RT (35 cd/A). Meanwhile, the tremendous influences of the in situ thermal treatment on the morphology of the multilayer CBP/CBP:Ir(ppy){sub 3}/TPBi were also observed. At the optimal thermal treatment temperature of 69 °C, the improvement of the EL performance could be ascribed to the enhancement of the electron and hole transporting in the CBP:Ir(ppy){sub 3} emitting layer, which suppressed the triplets self-quenching interactions and promoted the charge balance and excitons formation. The

  2. Synthesis and characterization of yellow and green light emitting novel polymers containing carbazole and electroactive moieties

    International Nuclear Information System (INIS)

    Aydın, Aysel; Kaya, İsmet

    2012-01-01

    Graphical abstract: The homopolymer of 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane and the copolymer with EDOT of 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane were synthesized via electrochemical reaction on indium tin oxide (ITO)-coated glass plate. The obtained polymeric compounds were investigated as fluorescence properties in solution form. The synthesized polymers showed good fluorescence property indicating tunable light emission with green and yellow colors. This shows that these polymers could be used in production of new polymeric light emitting diodes (PLED)s for green and yellow color emissions. - Abstract: The compounds 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane (B1) and 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane (B2) were synthesized via Ullmann and Suzuki couplings. Additionally, the homopolymers and copolymers of these compounds with 3,4-ethylenedioxythiophene (EDOT) and thiophene (Th) were synthesized and coated onto an ITO-glass surface via electrochemical oxidative polymerization. The spectroelectrochemical and electrochromic properties of these compounds were also investigated. The switching ability of these polymers was measured as the percent transmittance (%T) at their point of maximum contrast. The solid state electrical conductivities of the polymeric films coated onto the ITO-glass surface were measured via the four point probe technique using an electrometer. The compounds were characterized by FT-IR and NMR, and their thermal stabilities were determined via TG measurements. Fluorescence measurements were performed using DMSO solutions, and the synthesized polymers emitted both green and yellow colors based on the tuning of the excitation wavelength, which indicates that these polymers could be used to produce new polymeric light emitting diodes (PLEDs) with green and yellow emissions.

  3. Oxycarbonitride phosphors and light emitting devices using the same

    Science.gov (United States)

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  4. Improvement of quantum efficiency in green light-emitting diodes with pre-TMIn flow treatment

    International Nuclear Information System (INIS)

    Lee, Ya-Ju; Chen, Yi-Ching; Lu, Tien-Chang

    2011-01-01

    The effects of pre-trimethlyindium (TMIn) flow on the improved electrical characteristics and highly stable temperature properties of InGaN green light-emitting diodes (LEDs) are discussed. For the LED sample with a pre-TMIn flow treatment, the tunnelling of injected carriers associated with threading defects is significantly reduced, which promotes the diffusion-recombination of injected carriers, as well as the overall emission efficiency of the LED. In addition, the pre-TMIn flow treatment evidently reduces the dependence of external quantum efficiency on temperature and efficiency droop of green LEDs. As a result, we conclude that the pre-TMIn flow treatment is a promising scheme for the improvement of output performance of InGaN-based green LEDs.

  5. A tunable lighting system integrated by inorganic and transparent organic light-emitting diodes

    Science.gov (United States)

    Zhang, Jing-jing; Zhang, Tao; Jin, Ya-fang; Liu, Shi-shen; Yuan, Shi-dong; Cui, Zhao; Zhang, Li; Wang, Wei-hui

    2014-05-01

    A tunable surface-emitting integrated lighting system is constructed using a combination of inorganic light-emitting diodes (LEDs) and transparent organic LEDs (OLEDs). An RB two-color LED is used to supply red and blue light emission, and a green organic LED is used to supply green light emission. Currents of the LED and OLED are tuned to produce a white color, showing different Commission Internationale d'Eclairage (CIE) chromaticity coordinates and correlated color temperatures with a wide adjustable range. Such an integration can compensate for the lack of the LED's luminance uniformity and the transparent OLED's luminance intensity.

  6. Enhanced Emission Efficiency of Size-Controlled InGaN/GaN Green Nanopillar Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Ou, Yiyu; Iida, Daisuke; Fadil, Ahmed

    2016-01-01

    Nanopillar InGaN/GaN green light-emitting diode (LED) arrays were fabricated by self-assembled Au nanoparticles patterning and dry etching process. Structure size and density of the nanopillar arrays have been modified by varying the Au film thickness in the nanopatterning process. Fabricated...

  7. Triphenylsilane-substituted arenes as host materials for use in green phosphorescent organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jwajin; Lee, Kum Hee; Kim, Young Seok; Lee, Hyun Woo [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Ho Won [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Kim, Young Kwan, E-mail: kimyk@hongik.ac.kr [Department of Information Display, Hongik University, Seoul 121-791 (Korea, Republic of); Yoon, Seung Soo, E-mail: ssyoon@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2016-03-15

    We demonstrated triphenylsilane-substituted arenes (1–4) as host materials for green phosphorescent organic light-emitting diodes. Particularly, a device using 9,9-dimethyl-2-(triphenylsilyl)-7-[4-(triphenylsilyl)phenyl]-9H-fluorene (compound 4) as the host material with the green phosphorescence dopant bis[2-(1,1′,2′,1′′-terphen-3-yl)pyridinato-C,N]iridium(III) (acetylacetonate) showed the efficient green emission with an external quantum efficiency of 4.64%, a power efficiency of 7.2 lm/W and luminous efficiency of 16.6 cd/A at 20 mA/cm{sup 2}, respectively, with the Commission International de L’Eclairage chromaticity coordinates of (0.33, 0.59) at 8.0 V.

  8. Single nanowire green InGaN/GaN light emitting diodes

    Science.gov (United States)

    Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati

    2016-10-01

    Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.

  9. Fabrication of InGaN/GaN nanopillar light-emitting diode arrays

    DEFF Research Database (Denmark)

    Ou, Yiyu; Fadil, Ahmed; Ou, Haiyan

    Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction.......Nanopillar InGaN/GaN green light-emitting diode arrays were fabricated by using self-assembled nanopatterning and dry etching process. Both internal and external quantum efficiency were increased due to strain relaxation and enhanced light extraction....

  10. Continuous light-emitting Diode (LED) lighting for improving food quality

    OpenAIRE

    Lu, C; Bian, Z

    2016-01-01

    Lighting-emitting diodes (LEDs) have shown great potential for plant growth and development, with higher luminous efficiency and positive impact compared with other artificial lighting. The combined effects of red/blue or/and green, and white LED light on plant growth and physiology, including chlorophyll fluorescence, nitrate content and phytochemical concentration before harvest, were investigated. The results showed that continuous light (CL)\\ud exposure at pre-harvest can effectively redu...

  11. GREEN LIGHT EMITTING TRICOMPONENT LUMINOPHORS OF 2-NAPHTHOL FOR CONSTRUCTION OF ORGANIC LIGHT EMITTING DEVICES

    OpenAIRE

    K. G. MANE , P. B. NAGORE , DR. S. R. PUJARI

    2018-01-01

    This article presents a previous study and incredible progress in basic theoretical modeling, and working for organic light-emitting devices (OLEDs) including preparation and characteristic studies of Organo- Luminescent Materials by conventional solid state reaction technique.

  12. High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Nobuki, Shunichiro, E-mail: shunichiro.nobuki.nb@hitachi.com [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Wakana, Hironori; Ishihara, Shingo [Hitachi Research Laboratory, Hitachi Ltd., 7-1-1 Omika-cho, Hitachi-city, Ibaraki 319-1292 (Japan); Mikami, Akiyoshi [Dept. of Electrical Engineering, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2014-03-03

    We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high external quantum efficiency of 59.7% and power efficiency of 243 lm/W at 2.73 V at 0.053 mA/cm{sup 2}. A double emission layer and a thick n-doped electron transport layer were adopted to improve the exciton recombination factor. A high refractive index hemispherical lens was attached to a high refractive index substrate for extracting light trapped inside the substrate and the multiple-layers of OLEDs to air. Additionally, we analyzed an energy loss mechanism to clarify room for the improvement of our OLEDs including the charge balance factor. - Highlights: • We developed high efficiency green phosphorescent organic light-emitting diode (OLED). • Our OLED had external quantum efficiency of 59.7% and power efficiency of 243 lm/W. • A double emission layer and thick n-doped electron transport layer were adopted. • High refractive index media (hemispherical lens and substrate) were also used. • We analyzed an energy loss mechanism to clarify the charge balance factor of our OLED.

  13. Efficient fluorescent red, green, and blue organic light-emitting devices with a blue host of spirobifluorene derivative

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.-H. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China)], E-mail: lerongho@yuntech.edu.tw; Huang, Y.-W.; Wang, Y.-Y. [Department of Chemical and Material Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Chang, H.-Y. [EChem Hightech CO., LTD, Hsin-Chu Industrial Park, Hu-Kou, Hsin-Chu, Taiwan (China)

    2008-06-02

    Efficient fluorescent blue, green, and red (RGB) organic light-emitting devices (OLEDs) were fabricated using a blue host material of pyrimidine-containing spirobifluorene derivative 2,7-bis[2-(4-tert-butylphenyl)pyrimidine-5-yl]-9,9'-spirobifluorene (TBPSF) doped with blue dye perylene, green dye 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l] pyrano[6,7,8-ij] quinolizin-11-one (C545T), and red dye 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB), respectively. The brightness and current efficiency of the perylene doped blue device reached 10117 cd/m{sup 2} and 2.97 cd/A. Green emission of the C545T doped device reached 8500 cd/m{sup 2} and 13.0 cd/A. Red emission of the DCJTB doped device can be as high as 9000 cd/m{sup 2} and 2.0 cd/A, respectively. High color purity of the blue (Commission Internationale de L'Eclairage (CIE{sub x,y}) coordinates (CIE, x = 0.27, y = 0.24)), green (CIE, x = 0.19, y = 0.63) and red (CIE, x = 0.62, y = 0.37) emissions were achieved for RGB dyes doped TBPSF OLEDs. High brightness, large current efficiency, and good color purity of TBPSF-based RGB OLEDs were obtained by the configuration optimization device, such as inserting the hole and electron-injection materials, and suitable dopant content and light emitting layer thickness.

  14. A Closed-Loop Smart Control System Driving RGB Light Emitting Diodes

    KAUST Repository

    Al-Saggaf, Abeer

    2015-05-01

    The demand for control systems that are highly capable of driving solid-state optoelectronic devices has significantly increased with the advancement of their efficiency and elevation of their current consumption. This work presents a closed-loop control system that is based on a microcontroller embedded system capable of driving high power optoelectronic devices. In this version of the system, the device in the center of control is a high-power red, green, and blue light emitting diode package. The system features a graphical user interface, namely an Android mobile phone application, in which the user can easily use to vary the light color and intensity of the light-emitting device wirelessly via Bluetooth. Included in the system is a feedback mechanism constituted by a red, green, and blue color sensor through which the user can use to observe feedback color information about the emitted light. The system has many commercial application including in-door lighting and research application including plant agriculture research fields.

  15. A Closed-Loop Smart Control System Driving RGB Light Emitting Diodes

    KAUST Repository

    Al-Saggaf, Abeer

    2015-01-01

    The demand for control systems that are highly capable of driving solid-state optoelectronic devices has significantly increased with the advancement of their efficiency and elevation of their current consumption. This work presents a closed-loop control system that is based on a microcontroller embedded system capable of driving high power optoelectronic devices. In this version of the system, the device in the center of control is a high-power red, green, and blue light emitting diode package. The system features a graphical user interface, namely an Android mobile phone application, in which the user can easily use to vary the light color and intensity of the light-emitting device wirelessly via Bluetooth. Included in the system is a feedback mechanism constituted by a red, green, and blue color sensor through which the user can use to observe feedback color information about the emitted light. The system has many commercial application including in-door lighting and research application including plant agriculture research fields.

  16. The effects of light-emitting diode lighting on greenhouse plant growth and quality

    Directory of Open Access Journals (Sweden)

    Margit Olle

    2013-06-01

    Full Text Available The aim of this study is to present the light emitting diode (LED technology for greenhouse plant lighting and to give an overview about LED light effects on photosynthetic indices, growth, yield and nutritional value in green vegetables and tomato, cucumber, sweet pepper transplants. The sole LED lighting, applied in closed growth chambers, as well as combinations of LED wavelengths with conventional light sources, fluorescent and high pressure sodium lamp light, and natural illumination in greenhouses are overviewed. Red and blue light are basal in the lighting spectra for green vegetables and tomato, cucumber, and pepper transplants; far red light, important for photomorphogenetic processes in plants also results in growth promotion. However, theoretically unprofitable spectral parts as green or yellow also have significant physiological effects on investigated plants. Presented results disclose the variability of light spectral effects on different plant species and different physiological indices.

  17. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    Science.gov (United States)

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  18. Synthesis, Photoluminescence Behavior of Green Light Emitting Tb(III) Complexes and Mechanistic Investigation of Energy Transfer Process.

    Science.gov (United States)

    Bala, Manju; Kumar, Satish; Devi, Rekha; Khatkar, Avni; Taxak, V B; Boora, Priti; Khatkar, S P

    2018-06-04

    A series of five new terbium(III) ion complexes with 4,4-difluoro-1-phenylbutane-1,3-dione (HDPBD) and anciliary ligands was synthesized. The composition and properties of complexes were analyzed by elemental analysis, IR, NMR, powder X-ray diffaraction, TG-DTG and photoluminescence spectroscopy. These complexes exhibited ligand sensitized green emission at 546 nm associated with 5 D 4  →  7 F 5 transitions of terbium ion in the emission spectra. The photoluminescence study manifested that the organic ligands act as antenna and facilitate the absorbed energy to emitting levels of Tb(III) ion efficiently. The enhanced luminescence intensity and decay time of ternary C2-C5 complexes observed due to synergistic effect of anciliary ligands. The CIE color coordinates of complexes came under the green region of chromaticity diagram. The mechanistic investigation of intramolecular energy transfer in the complexes was discussed in detail. These terbium(III) complexes can be thrivingly used as one of the green component in light emitting material and in display devices. Graphical Abstract Illustrate the sensitization process of the Tb ion and intramolecular energy transfer process in the Tb 3+ complex.

  19. Reduced-droop green III-nitride light-emitting diodes utilizing GaN tunnel junction

    Science.gov (United States)

    Alhassan, Abdullah I.; Young, Erin C.; Alyamani, Ahmed Y.; Albadri, Abdulrahman; Nakamura, Shuji; DenBaars, Steven P.; Speck, James S.

    2018-04-01

    We report the fabrication of low-droop high-efficiency green c-plane light-emitting diodes (LEDs) utilizing GaN tunnel junction (TJ) contacts. The LED epitaxial layers with a top p-GaN layer were grown by metal organic chemical vapor deposition and an n++-GaN layer was deposited by molecular beam epitaxy to form a TJ. The TJ LEDs were then compared with equivalent LEDs having a tin-doped indium oxide (ITO) contact. The TJ LEDs exhibited a higher performance and a lower efficiency droop than did the ITO LEDs. At 35 A/cm2, the external quantum efficiencies for the TJ and ITO LEDs were 31.2 and 27%, respectively.

  20. Highly efficient white top-emitting organic light-emitting diodes with forward directed light emission

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2010-07-01

    The demand for highly efficient and energy saving illumination has increased considerably during the last decades. Organic light emitting diodes (OLEDs) are promising candidates for future lighting technologies. They offer high efficiency along with excellent color quality, allowing substantially lower power consumption than traditional illuminants. Recently, especially top-emitting devices have attracted high interest due to their compatibility with opaque substrates like metal sheets. In this contribution, we demonstrate top-emitting OLEDs with white emission spectra employing a multilayer hybrid cavity structure with two highly efficient phosphorescent emitter materials for orange-red (Ir(MDQ)2(acac)) and green (Ir(ppy)3) emission as well as the stable fluorescent blue emitter TBPe. To improve the OLED performance and modify the color quality, two different electron blocking layers and anode material combinations are tested. Compared to Lambertian emission, our devices show considerably enhanced forward emission, which is preferred for most lighting applications. Besides broadband emission and angle independent emission maxima, power efficiencies of 13.3 lm/W at 3 V and external quantum efficiencies of 5.3% are achieved. The emission shows excellent CIE coordinates of (0.420,0.407) at approx. 1000 cd/m{sup 2} and color rendering indices up to 77.

  1. Spectral effects of light-emitting diodes on plant growth and development: The importance of green and blue light

    Science.gov (United States)

    Cope, K. R.; Bugbee, B.

    2011-12-01

    Light-emitting diodes (LEDs) are an emerging technology for plant growth lighting. Due to their narrow spectral output, colored LEDs provide many options for studying the spectral effects of light on plants. Early on, efficient red LEDs were the primary focus of photobiological research; however, subsequent studies have shown that normal plant growth and development cannot be achieved under red light without blue light supplementation. More recent studies have shown that red and blue (RB) LEDs supplemented with green light increase plant dry mass. This is because green light transmits more effectively through the leaf canopy than red and blue light, thus illuminating lower plant leaves and increasing whole-plant photosynthesis. Red, green and blue (RGB) light can be provided by either a conventional white light source (such as fluorescent lights), a combination of RGB LEDs, or from recently developed white LEDs. White LEDs exceed the efficiency of fluorescent lights and have a comparable broad spectrum. As such, they have the potential to replace fluorescent lighting for growth-chamber-based crop production both on Earth and in space. Here we report the results of studies on the effects of three white LED types (warm, neutral and cool) on plant growth and development compared to combinations of RB and RGB LEDs. Plants were grown under two constant light intensities (200 and 500 μmol m-2 s-1). Temperature, environmental conditions and root-zone environment were uniformly maintained across treatments. Phytochrome photoequilbria and red/far-red ratios were similar among treatments and were comparable to conventional fluorescent lights. Blue light had a significant effect on both plant growth (dry mass gain) and development (dry mass partitioning). An increase in the absolute amount (μmol m-2 s-1) of blue light from 0-80 μmol m-2 s-1 resulted in a decrease in stem elongation, independent of the light intensity. However, an increase in the relative amount (%) of blue

  2. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors

    KAUST Repository

    Lee, Changmin

    2017-07-12

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021) substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  3. Gigabit-per-second white light-based visible light communication using near-ultraviolet laser diode and red-, green-, and blue-emitting phosphors.

    Science.gov (United States)

    Lee, Changmin; Shen, Chao; Cozzan, Clayton; Farrell, Robert M; Speck, James S; Nakamura, Shuji; Ooi, Boon S; DenBaars, Steven P

    2017-07-24

    Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector. The emission from the NUV LD and the RGB phosphor combination measured a color rendering index (CRI) of 79 and correlated color temperature (CCT) of 4050 K, indicating promise of this approach for creating high quality white lighting. Using this configuration, data was successfully transmitted at a rate of more than 1 Gbps. This NUV laser-based system is expected to have lower background noise from sunlight at the LD emission wavelength than a system that uses a blue LD due to the rapid fall off in intensity of the solar spectrum in the NUV spectral region.

  4. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2018-02-01

    A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light-emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole-type host and a triazine-type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light-emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light-emitting diodes.

  5. Fabrication and evaluation of green-light emitting Ta2O5:Er, Ce co-sputtered thin films

    Directory of Open Access Journals (Sweden)

    K. Miura

    2015-01-01

    Full Text Available Erbium and cerium co-doped tantalum-oxide (Ta2O5:Er, Ce thin films were fabricated using radio-frequency co-sputtering of Ta2O5, Er2O3, and CeO2 for the first time. Enhanced green-light emission due to Er3+ that seems to be sensitized by Ce3+ was observed from the film annealed at 900 °C for 20 min. From XRD measurements of the films, the β-Ta2O5 (orthorhombic, δ-Ta2O5 (hexagonal, and (201 Ta2O5 phases seem to be very important for obtaining green PL from them. Such Ta2O5:Er, Ce co-sputtered films can be used as high-refractive-index materials of autocloned photonic crystals that can be applied to novel green-light-emitting devices, and they will also be used as multi-functional coating films that can work both as anti-reflection and down-conversion films for realizing high-efficiency silicon solar cells.

  6. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  7. Efficient blue-green and green electroluminescent devices obtained by doping iridium complexes into hole-block material as supplementary light-emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zheng, Youxuan, E-mail: yxzheng@mail.nju.edu.cn [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Deng, Ruiping; Feng, Jing; Song, Mingxing; Hao, Zhaomin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Hongjie, E-mail: hongjie@ciac.jl.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zuo, Jinglin; You, Xiaozeng [State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2014-04-15

    In this work, organic electroluminescent (EL) devices with dominant and supplementary light-emitting layers (EMLs) were designed to further improve the EL performances of two iridium{sup III}-based phosphorescent complexes, which have been reported to provide EL devices with slow EL efficiency roll-off. The widely used hole-block material 2,2′,2''-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) was selected as host material to construct the supplementary EML. Compared with single-EML devices, double-EMLs devices showed higher EL efficiencies, higher brightness, and lower operation voltage attributed to wider recombination zone and better balance of carriers. In addition, the insertion of supplementary EML is instrumental in facilitating carriers trapping, thus improving the color purity. Finally, high performance blue-green and green EL devices with maximum current efficiencies of 35.22 and 90.68 cd/A, maximum power efficiencies of 26.36 and 98.18 lm/W, and maximum brightness of 56,678 and 112,352 cd/m{sup 2}, respectively, were obtained by optimizing the doping concentrations. Such a device design strategy extends the application of a double EML device structure and provides a chance to simplify device fabrication processes. -- Highlights: • Electroluminescent devices with supplementary light-emitting layer were fabricated. • Doping concentrations and thicknesses were optimized. • Better balance of holes and electrons causes the enhanced efficiency. • Improved carrier trapping suppresses the emission of host material.

  8. Principles of phosphorescent organic light emitting devices.

    Science.gov (United States)

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  9. Top-emitting organic light-emitting diodes.

    Science.gov (United States)

    Hofmann, Simone; Thomschke, Michael; Lüssem, Björn; Leo, Karl

    2011-11-07

    We review top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where non-transparent substrates are used. The optical effects of the microcavity structure as well as the loss mechanisms are discussed. Outcoupling techniques and the work on white top-emitting OLEDs are summarized. We discuss the power dissipation spectra for a monochrome and a white top-emitting OLED and give quantitative reports on the loss channels. Furthermore, the development of inverted top-emitting OLEDs is described.

  10. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes

    Science.gov (United States)

    Zhang, Liuqi; Yang, Xiaolei; Jiang, Qi; Wang, Pengyang; Yin, Zhigang; Zhang, Xingwang; Tan, Hairen; Yang, Yang (Michael); Wei, Mingyang; Sutherland, Brandon R.; Sargent, Edward H.; You, Jingbi

    2017-06-01

    Inorganic perovskites such as CsPbX3 (X=Cl, Br, I) have attracted attention due to their excellent thermal stability and high photoluminescence quantum efficiency. However, the electroluminescence quantum efficiency of their light-emitting diodes was CsPbBr3 lattice and by depositing a hydrophilic and insulating polyvinyl pyrrolidine polymer atop the ZnO electron-injection layer to overcome these issues. As a result, we obtained light-emitting diodes exhibiting a high brightness of 91,000 cd m-2 and a high external quantum efficiency of 10.4% using a mixed-cation perovskite Cs0.87MA0.13PbBr3 as the emitting layer. To the best of our knowledge, this is the brightest and most-efficient green perovskite light-emitting diodes reported to date.

  11. Optimization of emission color and efficiency of organic light emitting diodes for lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany)

    2008-07-01

    In recent years the performance of organic light emitting diodes (OLEDs) has reached a level where OLED lighting presents an interesting application target. Research activities therefore focus amongst other things on the development of high efficient and stable white light emitting devices. We demonstrate how the color coordinates can be adjusted to achieve a warm white emission spectrum, whereas the OLED stack contains phosphorescent red and green dyes combined with a fluorescent blue one. Detailed results are presented with respect to a variation of layer thicknesses and dopant concentrations of the emission layers. Furthermore the influence of various dye molecules and hence different energy level alignments between host and dopants on color and efficiency will be discussed.

  12. Development and evaluation of a light-emitting diode endoscopic light source

    Science.gov (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  13. Synthesis and characterization of pure and Li⁺ activated Alq₃ complexes for green and blue organic light emitting diodes and display devices.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2014-08-01

    Pure and Li(+)-doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X-ray diffraction, ultraviolet-visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X-ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet-visible and PL spectra revealed that Li(+) activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li(+) enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383-456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green- and blue-emitting organic light emitting diode, PL liquid-crystal display and solid-state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Fabrication of white light-emitting diodes based on UV light-emitting diodes with conjugated polymers-(CdSe/ZnS) quantum dots as hybrid phosphors.

    Science.gov (United States)

    Jung, Hyunchul; Chung, Wonkeun; Lee, Chang Hun; Kim, Sung Hyun

    2012-07-01

    White light-emitting diodes (LEDs) were fabricated using GaN-based 380-nm UV LEDs precoated with the composite of blue-emitting polymer (poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(2-methoxy-5-{2-ethylhexyloxy)-1 ,4-phenylene)]), yellow green-emitting polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)]), and 605-nm red-emitting quantum dots (QDs). CdSe cores were obtained by solvothermal route using CdO, Se precursors and ZnS shells were synthesized by using diethylzinc, and hexamethyldisilathiane precursors. The optical properties of CdSe/ZnS QDs were characterized by UV-visible and photoluminescence (PL) spectra. The structural data and composition of the QDs were transmission electron microscopy (TEM), and EDX technique. The quantum yield and size of the QDs were 58.7% and about 6.7 nm, respectively. Three-band white light was generated by hybridizing blue (430 nm), green (535 nm), and red (605 nm) emission. The color-rendering index (CRI) of the device was extremely improved by introducing the QDs. The CIE-1931 chromaticity coordinate, color temperature, and CRI of a white LED at 20 mA were (0.379, 0.368), 3969 K, and 90, respectively.

  15. Reverse leakage current characteristics of InGaN/GaN multiple quantum well ultraviolet/blue/green light-emitting diodes

    Science.gov (United States)

    Zhou, Shengjun; Lv, Jiajiang; Wu, Yini; Zhang, Yuan; Zheng, Chenju; Liu, Sheng

    2018-05-01

    We investigated the reverse leakage current characteristics of InGaN/GaN multiple quantum well (MQW) near-ultraviolet (NUV)/blue/green light-emitting diodes (LEDs). Experimental results showed that the NUV LED has the smallest reverse leakage current whereas the green LED has the largest. The reason is that the number of defects increases with increasing nominal indium content in InGaN/GaN MQWs. The mechanism of the reverse leakage current was analyzed by temperature-dependent current–voltage measurement and capacitance–voltage measurement. The reverse leakage currents of NUV/blue/green LEDs show similar conduction mechanisms: at low temperatures, the reverse leakage current of these LEDs is attributed to variable-range hopping (VRH) conduction; at high temperatures, the reverse leakage current of these LEDs is attributed to nearest-neighbor hopping (NNH) conduction, which is enhanced by the Poole–Frenkel effect.

  16. Light-emitting diodes - Their potential in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Naichia Gary; Wu, Chia-Hao [College of Applied Sciences, MingDao University, 369 Wen-Hua Road, Peetou, Changhua 52345 (China); Cheng, Ta Chih [Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, 1 Hseuh-Fu Rd., Nei-Pu Hsiang, Pingtung 91201 (China)

    2010-10-15

    The rapid development of high brightness light-emitting diodes (LEDs) makes feasible the use of LEDs, among other light sources (such as laser, intense pulse light and other incoherent light systems), for medical treatment and light therapy. This paper provides a general review on red, green, blue, ultraviolet LED applications in photo rejuvenation and medical treatments of a variety of physical abnormalities, as well as the relief of stress, circadian rhythm disorders, and seasonal affective disorder. The review, concentrated in the papers published after 1990, intends to show that LEDs are well qualified to succeed its more energy demanding counterparts in the named areas and beyond. (author)

  17. Luminescent properties of green- or red-emitting Eu2+-doped Sr3Al2O6 for LED

    International Nuclear Information System (INIS)

    Zhang Jilin; Zhang Xinguo; Shi Jianxin; Gong Menglian

    2011-01-01

    Eu 2+ -doped Sr 3 Al 2 O 6 (Sr 3-x Eu x Al 2 O 6 ) was synthesized by a solid-state reaction under either H 2 and N 2 atmosphere or CO atmosphere. When H 2 was used as the reducing agent, the phosphor exhibited green emission under near UV excitation, while CO was used as the reducing agent, the phosphor mainly showed red emission under blue light excitation. Both emissions belong to the d-f transition of Eu 2+ ion. The relationship between the emission wavelengths and the occupation of Eu 2+ at different crystallographic sites was studied. The preferential substitution of Eu 2+ into different Sr 2+ cites at different reaction periods and the substitution rates under different atmospheres were discussed. Finally, green-emitting and red-emitting LEDs were fabricated by coating the phosphor onto near UV- or blue-emitting InGaN chips. - Highlights: →Sr 3 Al 2 O 6 :Eu 2+ is synthesized by a solid-state reaction under different atmospheres. →Phosphor obtained under H 2 +N 2 atmosphere emits green light under NUV excitation. →Phosphor obtained under CO atmosphere emits red light under blue light excitation. →Different emission wavelengths are due to Eu 2+ in different Sr 2+ sites. →The preferential substitution and the substitution rates of Eu 2+ are discussed.

  18. Sharp green electroluminescence from 1H-pyrazolo[3,4-b]quinoline-based light-emitting diodes

    Science.gov (United States)

    Tao, Y. T.; Balasubramaniam, E.; Danel, A.; Jarosz, B.; Tomasik, P.

    2000-09-01

    A multilayer organic light-emitting diode was fabricated using a fluorescent compound {6-N,N-diethylamino-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline} (PAQ-NEt2) doped into the hole-transporting layer of NPB {4,4'-bis[N-(1-naphthyl-1-)-N-phenyl-amino]-biphenyl}, with the TPBI {2,2',2″-(1,3,5-phenylene)tris[1-phenyl-1H-benzimidazole]} as an electrontransporting material. At 16% PAQ-NEt2 doping concentration, the device gave a sharp, bright, and efficient green electroluminescence (EL) peaked at around 530 nm. The full width at half maximum of the EL is 60 nm, which is 60% of the green emission from typical NPB/AlQ [where AlQ=tris(8-hydroxyquinoline) aluminum] device. For the same concentration, a maximum luminance of 37 000 cd/m2 was obtained at 10.0 V and the maximum power, luminescence, and external quantum efficiencies were obtained 4.2 lm/W, 6.0 cd/A, and 1.6%, respectively, at 5.0 V.

  19. Plant experiments with light-emitting diode module in Svet space greenhouse

    Science.gov (United States)

    Ilieva, Iliyana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for SVET Space Greenhouse using Cree R XLamp R 7090 XR light-emitting diodes (LEDs) is developed. Three types of monochromic LEDs emitting in the red, green, and blue region of the spectrum are used. The new LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. DMX programming device controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 µmol.m-2 .s-1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with "salad-type" plants - lettuce and chicory were carried at 400 µmol.m-2 .s-1 PPFD (high light - HL) and 220 µmol.m-2 .s-1 PPFD (low light - LL) and composition 70% red, 20% green and 10% blue light. In vivo modulated chlorophyll fluorescence was measured by a PAM fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II (ΦP SII ) and non-photochemical quenching (NPQ) were calculated. Both lettuce and chicory plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by the actual PSII quantum yield, ΦP SII . The calculated steady state NPQ values did not differ significantly in lettuce and chicory. The rapid phase of the NPQ increase was accelerated in all studied LL leaves. In conclusion low light conditions ensured more effective functioning of PSII than HL when lettuce and chicory plants were grown at 70% red, 20% green and 10% blue light composition.

  20. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-03-01

    Full Text Available The objective of this study was to investigate the response of light emitting diodes (LEDs at different light intensities (70 and 80 for green LEDs, 88 and 238 for red LEDs and 80 and 238 μmol m−2 s−1 for blue LEDs at three wavelengths in lettuce leaves. Lettuce leaves were exposed to (522 nm, red (639 nm and blue (470 nm LEDs of different light intensities. Thylakoid multiprotein complex proteins and photosynthetic metabolism were then investigated. Biomass and photosynthetic parameters increased with an increasing light intensity under blue LED illumination and decreased when illuminated with red and green LEDs with decreased light intensity. The expression of multiprotein complex proteins including PSII-core dimer and PSII-core monomer using blue LEDs illumination was higher at higher light intensity (238 μmol m−2 s−1 and was lowered with decreased light intensity (70–80 μmol m−2 s−1. The responses of chloroplast sub-compartment proteins, including those active in stomatal opening and closing, and leaf physiological responses at different light intensities, indicated induced growth enhancement upon illumination with blue LEDs. High intensity blue LEDs promote plant growth by controlling the integrity of chloroplast proteins that optimize photosynthetic performance in the natural environment.

  1. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem

    Energy Technology Data Exchange (ETDEWEB)

    Massabuau, F. C.-P., E-mail: fm350@cam.ac.uk; Oehler, F.; Pamenter, S. K.; Thrush, E. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A. [Department of Materials Science and Metallurgy, University of Cambridge, 22 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Davies, M. J.; Dawson, P. [Photon Science Institute, School of Physics and Astronomy, Alan Turing Building, University of Manchester, Manchester M13 9PL (United Kingdom); Kovács, A.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt- Straße, D-52425 Jülich (Germany); Williams, T.; Etheridge, J. [Monash Centre for Electron Microscopy, Monash University, Clayton Campus, VIC 3800 (Australia); Hopkins, M. A.; Allsopp, D. W. E. [Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-09-15

    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.

  2. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem

    International Nuclear Information System (INIS)

    Massabuau, F. C.-P.; Oehler, F.; Pamenter, S. K.; Thrush, E. J.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.; Davies, M. J.; Dawson, P.; Kovács, A.; Dunin-Borkowski, R. E.; Williams, T.; Etheridge, J.; Hopkins, M. A.; Allsopp, D. W. E.

    2014-01-01

    The impact of trench defects in blue InGaN/GaN light emitting diodes (LEDs) has been investigated. Two mechanisms responsible for the structural degradation of the multiple quantum well (MQW) active region were identified. It was found that during the growth of the p-type GaN capping layer, loss of part of the active region enclosed within a trench defect occurred, affecting the top-most QWs in the MQW stack. Indium platelets and voids were also found to form preferentially at the bottom of the MQW stack. The presence of high densities of trench defects in the LEDs was found to relate to a significant reduction in photoluminescence and electroluminescence emission efficiency, for a range of excitation power densities and drive currents. This reduction in emission efficiency was attributed to an increase in the density of non-radiative recombination centres within the MQW stack, believed to be associated with the stacking mismatch boundaries which form part of the sub-surface structure of the trench defects. Investigation of the surface of green-emitting QW structures found a two decade increase in the density of trench defects, compared to its blue-emitting counterpart, suggesting that the efficiency of green-emitting LEDs may be strongly affected by the presence of these defects. Our results are therefore consistent with a model that the “green gap” problem might relate to localized strain relaxation occurring through defects.

  3. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates.

    Science.gov (United States)

    Kumar, Sudhir; Jagielski, Jakub; Kallikounis, Nikolaos; Kim, Young-Hoon; Wolf, Christoph; Jenny, Florian; Tian, Tian; Hofer, Corinne J; Chiu, Yu-Cheng; Stark, Wendelin J; Lee, Tae-Woo; Shih, Chih-Jen

    2017-09-13

    Pure green light-emitting diodes (LEDs) are essential for realizing an ultrawide color gamut in next-generation displays, as is defined by the recommendation (Rec.) 2020 standard. However, because the human eye is more sensitive to the green spectral region, it is not yet possible to achieve an ultrapure green electroluminescence (EL) with a sufficiently narrow bandwidth that covers >95% of the Rec. 2020 standard in the CIE 1931 color space. Here, we demonstrate efficient, ultrapure green EL based on the colloidal two-dimensional (2D) formamidinium lead bromide (FAPbBr 3 ) hybrid perovskites. Through the dielectric quantum well (DQW) engineering, the quantum-confined 2D FAPbBr 3 perovskites exhibit a high exciton binding energy of 162 meV, resulting in a high photoluminescence quantum yield (PLQY) of ∼92% in the spin-coated films. Our optimized LED devices show a maximum current efficiency (η CE ) of 13.02 cd A -1 and the CIE 1931 color coordinates of (0.168, 0.773). The color gamut covers 97% and 99% of the Rec. 2020 standard in the CIE 1931 and the CIE 1976 color space, respectively, representing the "greenest" LEDs ever reported. Moreover, the device shows only a ∼10% roll-off in η CE (11.3 cd A -1 ) at 1000 cd m -2 . We further demonstrate large-area (3 cm 2 ) and ultraflexible (bending radius of 2 mm) LEDs based on 2D perovskites.

  4. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.

    1999-01-01

    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LE......, preliminary results from ramping the blue light power output with time are demonstrated. It is shown that this technique enables the separation of OSL components with differing stimulation rates.......Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...... (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination...

  5. Color-converted remote phosphor prototype of a multiwavelength excitable borosilicate glass for white light-emitting diodes

    International Nuclear Information System (INIS)

    Tian Hua; Qiu Kun; Song Jun; Wang Da-Jian; Liu Ji-Wen

    2012-01-01

    We report a unique red light-emitting Eu-doped borosilicate glass to convert color for warm white light-emitting diodes. This glass can be excited from 394 nm-peaked near ultraviolet light, 466 nm-peaked blue light, to 534 nm-peaked green light to emit the desired red light with an excellent transmission in the wavelength range of 400–700 nm which makes this glass suitable for color conversion without a great cost of luminous power loss. In particular, when assembling this glass for commercial white light-emitting diodes, the tested results show that the color rendering index is improved to 84 with a loss of luminous power by 12 percent at average, making this variety of glass promising for inorganic “remote-phosphor” color conversion

  6. Coherence characteristics of light-emitting diodes

    International Nuclear Information System (INIS)

    Mehta, Dalip Singh; Saxena, Kanchan; Dubey, Satish Kumar; Shakher, Chandra

    2010-01-01

    We report the measurement of coherence characteristics of light-emitting diodes (LEDs). Experiments were performed using red and green color LEDs directly illuminating the Young's double slit kept in the far-zone. Fourier transform fringe analysis technique was used for the measurement of the visibility of interference fringes from which the modulus of degree of spectral coherence was determined. Low degree of spectral coherence, typically 0.4 for red and 0.2 for green LED with double-slit separation of 400 μm was observed. A variable slit was then kept in front of the LEDs and the double slit was illuminated with the light coming out of the slit. Experiments were performed with various slit sizes and the visibility of the interference fringes was observed. It was found that visibility of the interference fringes changes drastically in presence of variable slit kept in front of LEDs and a high degree of spectral coherence, typically 0.85 for red and 0.8 for green LED with double-slit separation of 400 μm and rectangular slit opening of 500 μm was observed. The experimental results are compared with the theoretical counterparts. Coherence lengths of both the LEDs were also determined and it was obtained 5.8±2 and 24±4 μm for green and red LEDs, respectively.

  7. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    OpenAIRE

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incand...

  8. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host

    Science.gov (United States)

    Chang, Chih-Hao; Wu, Szu-Wei; Huang, Chih-Wei; Hsieh, Chung-Tsung; Lin, Sung-En; Chen, Nien-Po; Chang, Hsin-Hua

    2016-03-01

    Recently, exciplex had drawn attention because of its potential for efficient electroluminescence or for use as a host in organic light-emitting diodes (OLEDs). In this study, four kinds of hole transport material/electron transport material combinations were examined to verify the formation of exciplex and the corresponding energy bandgaps. We successfully demonstrated that the combination of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 3,5,3‧,5‧-tetra(m-pyrid-3-yl)phenyl[1,1‧]biphenyl (BP4mPy) could form a stable exciplex emission with an adequate energy gap. Using exciplex as a host in red, green, and blue phosphorescent OLEDs with an identical trilayer architecture enabled effective energy transfer from exciplex to emitters, achieving corresponding efficiencies of 8.8, 14.1, and 15.8%. A maximum efficiency of 11.3% and stable emission was obtained in white OLEDs.

  9. True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Zhao, Chao; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Priante, Davide; Shen, Chao; Elafandy, Rami T.; Anjum, Dalaver H.; Alhamoud, Abdullah A.; Alatawi, Abdullah A.; Yang, Yang; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2016-01-01

    An urgent challenge for the lighting research community is the lack of efficient optical devices emitting in between 500 and 600 nm, resulting in the “green-yellow gap”. In particular, true green (∼555 nm) and true yellow (∼590 nm), along with blue and red, constitute four technologically important colors. The III-nitride material system, being the most promising choice of platform to bridge this gap, still suffers from high dislocation density and poor crystal quality in realizing high-power, efficient devices. Particularly, the high polarization fields in the active region of such 2D quantum confined structures prevent efficient recombination of carriers. Here we demonstrate a true yellow nanowire (NW) light emitting diode (LED) with peak emission of 588 nm at 29.5 A/cm2 (75 mA in a 0.5 × 0.5 mm2 device) and a low turn-on voltage of ∼2.5 V, while having an internal quantum efficiency of 39%, and without “efficiency droop” up to an injection current density of 29.5 A/cm2. By mixing yellow light from a NW LED in reflective configuration with that of a red, green, and blue laser diode (LD), white light with a correlated color temperature of ∼6000 K and color-rendering index of 87.7 was achieved. The nitride-NW-based device offers a robust, long-term stability for realizing yellow light emitters for tunable color-rendering index solid-state lighting, on a scalable, low-cost, foundry-compatible titanium/silicon substrate, suitable for industry uptake.

  10. True Yellow Light-Emitting Diodes as Phosphor for Tunable Color-Rendering Index Laser-Based White Light

    KAUST Repository

    Janjua, Bilal

    2016-10-11

    An urgent challenge for the lighting research community is the lack of efficient optical devices emitting in between 500 and 600 nm, resulting in the “green-yellow gap”. In particular, true green (∼555 nm) and true yellow (∼590 nm), along with blue and red, constitute four technologically important colors. The III-nitride material system, being the most promising choice of platform to bridge this gap, still suffers from high dislocation density and poor crystal quality in realizing high-power, efficient devices. Particularly, the high polarization fields in the active region of such 2D quantum confined structures prevent efficient recombination of carriers. Here we demonstrate a true yellow nanowire (NW) light emitting diode (LED) with peak emission of 588 nm at 29.5 A/cm2 (75 mA in a 0.5 × 0.5 mm2 device) and a low turn-on voltage of ∼2.5 V, while having an internal quantum efficiency of 39%, and without “efficiency droop” up to an injection current density of 29.5 A/cm2. By mixing yellow light from a NW LED in reflective configuration with that of a red, green, and blue laser diode (LD), white light with a correlated color temperature of ∼6000 K and color-rendering index of 87.7 was achieved. The nitride-NW-based device offers a robust, long-term stability for realizing yellow light emitters for tunable color-rendering index solid-state lighting, on a scalable, low-cost, foundry-compatible titanium/silicon substrate, suitable for industry uptake.

  11. Three-peak standard white organic light-emitting devices for solid-state lighting

    Science.gov (United States)

    Guo, Kunping; Wei, Bin

    2014-12-01

    Standard white organic light-emitting device (OLED) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency red OLED employing phosphorescent dopant has been investigated. The device generates saturated red emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.66, 0.34), characterized by a low driving voltage of 3.5 V and high external quantum efficiency of 20.1% at 130 cd m-2. In addition, we have demonstrated a two-peak cold white OLED by combining with a pure blue emitter with the electroluminescent emission of 464 nm, 6, 12-bis{[N-(3,4-dimethylpheyl)-N-(2,4,5-trimethylphenyl)]} chrysene (BmPAC). It was found that the man-made lighting device capable of yielding a relatively stable color emission within the luminance range of 1000-5000 cd m-2. And the chromaticity coordinates, varying from (0.25, 0.21) to (0.23, 0.21). Furthermore, an ultrathin layer of green-light-emitting tris (2-phenylpyridinato)iridium(Ⅲ) Ir(ppy)3 in the host material was introduced to the emissive region for compensating light. By appropriately controlling the layer thickness, the white light OLED achieved good performance of 1280 cd m-2 at 5.0 V and 5150 cd m-2 at 7.0 V, respectively. The CIE coordinates of the emitted light are quite stable at current densities from 759 cd m-2 to 5150 cd m-2, ranging from (0.34, 0.37) to (0.33, 0.33).

  12. Solution-Grown ZnO Films toward Transparent and Smart Dual-Color Light-Emitting Diode.

    Science.gov (United States)

    Huang, Xiaohu; Zhang, Li; Wang, Shijie; Chi, Dongzhi; Chua, Soo Jin

    2016-06-22

    An individual light-emitting diode (LED) capable of emitting different colors of light under different bias conditions not only allows for compact device integration but also extends the functionality of the LED beyond traditional illumination and display. Herein, we report a color-switchable LED based on solution-grown n-type ZnO on p-GaN/n-GaN heterojunction. The LED emits red light with a peak centered at ∼692 nm and a full width at half-maximum of ∼90 nm under forward bias, while it emits green light under reverse bias. These two lighting colors can be switched repeatedly by reversing the bias polarity. The bias-polarity-switched dual-color LED enables independent control over the lighting color and brightness of each emission with two-terminal operation. The results offer a promising strategy toward transparent, miniaturized, and smart LEDs, which hold great potential in optoelectronics and optical communication.

  13. Plasmon enhanced green GaN light-emitting diodes - Invited paper

    DEFF Research Database (Denmark)

    Ou, Haiyan; Fadil, Ahmed; Iida, Daisuke

    in spectral design, more compact etc. TheIII-nitride (GaN, InNetc.) semiconductors are attracting a lot of research effort because the combination of both could emit light with wavelength range from UV to infrared. Basically one material platform could provide all the solutions to light sources.However huge...... nanosphere lithography. For both cases, emission enhancement is demonstrated. For periodic Ag nanoparicles, aphotoluminescence enhancement of 2.7 is observed with a nanodisk diameter of 330 nm.It is found that an optimalpitch exists for a given particle size.For the random Ag nanoparticles,low temperature...

  14. Salt-Doped Polymer Light-Emitting Devices

    Science.gov (United States)

    Gautier, Bathilde

    Polymer Light-Emitting Electrochemical Cells (PLECs) are solid state devices based on the in situ electrochemical doping of the luminescent polymer and the formation of a p-n junction where light is emitted upon the application of a bias current or voltage. PLECs answer the drawbacks of polymer light-emitting diodes as they do not require an ultra-thin active layer nor are they reliant on low work function cathode materials that are air unstable. However, because of the dynamic nature of the doping, they suffer from slow response times and poor stability over time. Frozen-junction PLECs offer a solution to these drawbacks, yet they are impractical due to their sub-ambient operation temperature requirement. Our work presented henceforth aims to achieve room temperature frozen-junction PLECS. In order to do that we removed the ion solvating/transporting polymer from the active layer, resulting in a luminescent polymer combined solely with a salt sandwiched between an ITO electrode and an aluminum electrode. The resulting device was not expected to operate like a PLEC due to the absence of an ion-solvating and ion-transporting medium. However, we discovered that the polymer/salt devices could be activated by applying a large voltage bias, resulting in much higher current and luminance. More important, the activated state is quasi static. Devices based on the well-known orange-emitting polymer MEH-PPV displayed a luminance storage half-life of 150 hours when activated by forward bias (ITO biased positively with respect to the aluminum) and 200 hours when activated by reverse bias. More remarkable yet, devices based on a green co-polymer displayed no notable decay in current density or luminance even after being stored for 1200 hours at room temperature! PL imaging under UV excitation demonstrates the presence of doping. These devices are described herein along with an explanation of their operating mechanisms.

  15. Synthesis, crystal structure and photoluminescence study of green light emitting bis(1[(4-butylphenylimino]methyl naphthalen-2-ol Ni(II complex

    Directory of Open Access Journals (Sweden)

    M. Srinivas

    2016-09-01

    Full Text Available Synthetically feasible and cost effective Ni(II complex phosphor (4 as green organic light emitting diode (OLED was prepared by using Schiff base 1-[(4-butylphenylimino]methyl naphthalen-2-ol (3. The single crystals of Ni(II complex were grown from chloroform and hexane (1:1 v/v solution. The green crystals of the complex were characterized by using single crystal XRD studies and were evaluated for their photophysical properties. From the Diffused Reflectance Spectrum of the complex, the measured band gap energy was found to be 1.83 eV and the PL spectrum of the complex showed emission peak at 519 nm. The excitation peaks at 519 nm were appeared at 394 nm and 465 nm. The Commission Internationale De L'Eclairage (CIE chromaticity diagram indicated that, the complex exhibit green color. Hence, Ni(II complex (4 could be a promising green OLED for developing strong electroluminescent materials for flat panel display applications.

  16. Spectrum study of top-emitting organic light-emitting devices with micro-cavity structure

    International Nuclear Information System (INIS)

    Liu Xiang; Wei Fuxiang; Liu Hui

    2009-01-01

    Blue and white top-emitting organic light-emitting devices OLEDs with cavity effect have been fabricated. TBADN:3%DSAPh and Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 were used as emitting materials of microcavity OLEDs. On a patterned glass substrate, silver was deposited as reflective anode, and copper phthalocyanine (CuPc) layer as HIL and 4'-bis[N-(1-Naphthyl)- N-phenyl-amino]biphenyl (NPB) layer as HTL were made. Al/Ag thin films were made as semi-transparent cathode with a transmittance of about 30%. By changing the thickness of indium tin oxide ITO, deep blue with Commission Internationale de L'Eclairage chromaticity coordinates (CIEx, y) of (0.141, 0.049) was obtained on TBADN:3%DSAPh devices, and different color (red, blue and green) was obtained on Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 devices, full width at half maxima (FWHM) was only 17 nm. The spectral intensity and FWHM of emission in cavity devices have also been studied.

  17. Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode

    DEFF Research Database (Denmark)

    Mesta, Murat; Carvelli, Marco; de Vries, Rein J

    2013-01-01

    we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile......In multilayer white organic light-emitting diodes the electronic processes in the various layers--injection and motion of charges as well as generation, diffusion and radiative decay of excitons--should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here...

  18. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes

    International Nuclear Information System (INIS)

    Kim, Kyu-Sang; Han, Dong-Pyo; Kim, Hyun-Sung; Shim, Jong-In

    2014-01-01

    Two kinds of green InGaN light emitting diodes (LEDs) have been investigated in order to understand the different slopes in logarithmic light output power-current (L-I) curves. Through the analysis of the carrier rate equation and by considering the carrier density-dependent the injection efficiency into quantum wells, the slopes of the logarithmic L-I curves can be more rigorously understood. The low current level, two as the tunneling current is initially dominant. The high current level beyond the peak of the external quantum efficiency (EQE) diminishes below one as the carrier overflow becomes dominant. In addition, the normalized carrier injection efficiency can be obtained by analyzing the slopes of the logarithmic L-I curves. The carrier injection efficiency decreases after the EQE peak of the InGaN LEDs, determined from the analysis of the slopes of the logarithmic L-I curves

  19. Energy down converting organic fluorophore functionalized mesoporous silica hybrids for monolith-coated light emitting diodes

    Directory of Open Access Journals (Sweden)

    Markus Börgardts

    2017-04-01

    Full Text Available The covalent attachment of organic fluorophores in mesoporous silica matrices for usage as energy down converting phosphors without employing inorganic transition or rare earth metals is reported in this article. Triethoxysilylpropyl-substituted derivatives of the blue emitting perylene, green emitting benzofurazane, and red emitting Nile red were synthesized and applied in the synthesis of mesoporous hybrid materials by postsynthetic grafting to commercially available MCM-41. These individually dye-functionalized hybrid materials are mixed in variable ratios to furnish a powder capable of emitting white light with CIE chromaticity coordinates of x = 0.33, y = 0.33 and an external quantum yield of 4.6% upon irradiation at 410 nm. Furthermore, as a proof of concept two different device setups of commercially available UV light emitting diodes, are coated with silica monoliths containing the three triethoxysilylpropyl-substituted fluorophore derivatives. These coatings are able to convert the emitted UV light into light with correlated color temperatures of very cold white (41100 K, 10700 K as well as a greenish white emission with correlated color temperatures of about 5500 K.

  20. Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Soo Yook, Kyoung [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of); Lee, Jun Yeob, E-mail: leej17@dankook.ac.k [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of)

    2010-10-15

    The effect of the polyvinylidenefluoride (PVDF) interlayer on the hole injection and the device performances of the green phosphorescent organic light-emitting diodes (PHOLEDs) was investigated. The hole current density of the hole only device was improved and the power efficiency of the green PHOLEDs was enhanced from 10.5 to 12.5 lm/W by the PVDF interlayer. The reduction of the interfacial energy barrier was responsible for the high hole current density in the PVDF interlayer based green PHOLEDs.

  1. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    For optoelectronic applications, organic semiconductors have several advantages over their inorganic counterparts such as facile synthesis, tunability via synthetic chemistry, and low temperature processing. Self-assembled, molecular crystalline nanofibers are of particular interest as they could...... form ultra-small light-emitters in future nanophotonic applications. Such organic nanofibers exhibit many interesting optical properties including polarized photo- and electroluminescence, waveguiding, and emission color tunability. We here present a first step towards a multicolored, electrically...... driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  2. High efficient white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Krause, Ralf [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Kozlowski, Fryderyk; Schmid, Guenter; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuremberg (Germany)

    2007-07-01

    Due to the rapid progress in the last years the performance of organic light emitting diodes (OLEDs) has reached a level where general lighting presents a most interesting application target. We demonstrate, how the color coordinates of the emission spectrum can be adjusted using a combinatorial evaporation tool to lie on the desired black body curve representing cold and warm white, respectively. The evaluation includes phosphorescent and fluorescent dye approaches to optimize lifetime and efficiency, simultaneously. Detailed results are presented with respect to variation of layer thicknesses and dopant concentrations of each layer within the OLED stack. The most promising approach contains phosphorescent red and green dyes combined with a fluorescent blue one as blue phosphorescent dopants are not yet stable enough to achieve long lifetimes.

  3. Organic light emitting diode with light extracting electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Abhinav; Buhay, Harry

    2017-04-18

    An organic light emitting diode (10) includes a substrate (20), a first electrode (12), an emissive active stack (14), and a second electrode (18). At least one of the first and second electrodes (12, 18) is a light extracting electrode (26) having a metallic layer (28). The metallic layer (28) includes light scattering features (29) on and/or in the metallic layer (28). The light extracting features (29) increase light extraction from the organic light emitting diode (10).

  4. Printable candlelight-style organic light-emitting diode

    Science.gov (United States)

    Jou, J. H.; Singh, M.; Song, W. C.; Liu, S. H.

    2017-06-01

    Candles or oil lamps are currently the most friendly lighting source to human eyes, physiology, ecosystems, artifacts, environment, and night skies due to their blue light-less emission. Candle light also exhibits high light-quality that provides visual comfort. However, they are relatively low in power efficacy (0.3 lm/W), making them energy-wasting, besides having problems like scorching hot, burning, catching fire, flickering, carbon blacking, oxygen consuming, and release of green house gas etc. In contrast, candlelight organic light-emitting diode (OLED) can be made blue-hazard free and energy-efficient. The remaining challenges are to maximize its light-quality and enable printing feasibility, the latter of which would pave a way to cost-effective manufacturing. We hence demonstrate herein the design and fabrication of a candlelight OLED via wet-process. From retina protection perspective, its emission is 13, 12 and 8 times better than those of the blue-enriched white CFL, LED and OLED. If used at night, it is 9, 6 and 4 times better from melatonin generation perspective.

  5. High Intensity Organic Light-emitting Diodes

    Science.gov (United States)

    Qi, Xiangfei

    This thesis is dedicated to the fabrication, modeling, and characterization to achieve high efficiency organic light-emitting diodes (OLEDs) for illumination applications. Compared to conventional lighting sources, OLEDs enabled the direct conversion of electrical energy into light emission and have intrigued the world's lighting designers with the long-lasting, highly efficient illumination. We begin with a brief overview of organic technology, from basic organic semiconductor physics, to its application in optoelectronics, i.e. light-emitting diodes, photovoltaics, photodetectors and thin-film transistors. Due to the importance of phosphorescent materials, we will focus on the photophysics of metal complexes that is central to high efficiency OLED technology, followed by a transient study to examine the radiative decay dynamics in a series of phosphorescent platinum binuclear complexes. The major theme of this thesis is the design and optimization of a novel architecture where individual red, green and blue phosphorescent OLEDs are vertically stacked and electrically interconnected by the compound charge generation layers. We modeled carrier generation from the metal-oxide/doped organic interface based on a thermally assisted tunneling mechanism. The model provides insights to the optimization of a stacked OLED from both electrical and optical point of view. To realize the high intensity white lighting source, the efficient removal of heat is of a particular concern, especially in large-area devices. A fundamental transfer matrix analysis is introduced to predict the thermal properties in the devices. The analysis employs Laplace transforms to determine the response of the system to the combined effects of conduction, convection, and radiation. This perspective of constructing transmission matrices greatly facilitates the calculation of transient coupled heat transfer in a general multi-layer composite. It converts differential equations to algebraic forms, and

  6. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport

    Science.gov (United States)

    Anthopoulos, Thomas D.; Markham, Jonathan P. J.; Namdas, Ebinazar B.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.

    2003-06-01

    High-efficiency single-layer-solution-processed green light-emitting diodes based on a phosphorescent dendrimer are demonstrated. A peak external quantum efficiency of 10.4% (35 cd/A) was measured for a first generation fac-tris(2-phenylpyridine) iridium cored dendrimer when blended with 4,4'-bis(N-carbazolyl)biphenyl and electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene at 8.1 V. A maximum power efficiency of 12.8 lm/W was measured also at 8.1 V and 550 cd/m2. These results indicate that, by simple blending of bipolar and electron-transporting molecules, highly efficient light-emitting diodes can be made employing a very simple device structure.

  7. Effects of doping parameters on the CIE value of flexible white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Juang Fuhshyang; Lin Mingyein; Yang Chanyi [Institute of Electro-Optical and Materials Science, National Huwei University of Science and Technology, Huwei, Yunlin (Taiwan); Tsai Yusheng [Department of Electro-Optics Engineering, National Huwei University of Science and Technology, Huwei, Yunlin (Taiwan); Lin, David [Windell Corporation, 1F, No. 9, Kung-Yen 7 Road, Industrial Zone, Taichung (Taiwan); Wang Wentunn; Shen Chaiyuan [Electronics Research and Service Organization, Industrial Technology Research Institute, 195 Chung Hsing Rd., Sec. 4 Chu Tung, Hsin Chu (Taiwan)

    2004-09-01

    Red dopants were doped in different emitters, blue and green, respectively, to fabricate white organic light emitting diodes on flexible substrates. The competitive emission between blue and red emitters with various doped-zones was studied. When the DCJT doped zone was located far away from the hole-injection layer, both the blue and red color can be emitted. An appropriate red-dopant position in the device enhanced the green emission from 8-hydroxyquinoline aluminum (Alq3) which was combined with the red and blue emission to generate a white light. Finally, a white emission with the CIE value, (0.30, 0.32), independent of the applied voltage, was obtained with the optimum doped width and location. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    Science.gov (United States)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  9. Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure

    Science.gov (United States)

    Zhuang, Shiwei; Ma, Xue; Hu, Daqiang; Dong, Xin; Zhang, Yuantao; Zhang, Baolin

    2018-03-01

    Perovskite light emitting diodes (PeLEDs) now emerge as a promising new optoelectronic application field for these amazing semiconductors. For the purpose of investigating the device structures and light emission mechanisms of PeLEDs, we have fabricated green PeLEDs based on the ITO/Al2O3/CsPbBr3 heterojunction structure. The emission layer inorganic perovskite CsPbBr3 film with small grain sizes (∼28.9 nm) was prepared using a two-step method. The device exhibits a typical rectification behavior with turn-on voltage of ∼6 V. The EL emission band is narrow with the FWHM of ∼25 nm. The peak EQE of the device was ∼0.09%. The working mechanism of the device is also discussed. The result of the present work provides a feasible innovation idea of PeLEDs fabrication and great potentials for the development of perovskite based LEDs.

  10. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun; Quan, Li Na; Zhao, Yongbiao; Peng, Wei; Banavoth, Murali; Sarmah, Smritakshi P.; Yuan, Mingjian; Sinatra, Lutfan; AlYami, Noktan; Liu, Jiakai; Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Comin, Riccardo; Hedhili, Mohamed N.; Mohammed, Omar F.; Lu, Zheng Hong; Kim, Dong Ha; Sargent, Edward H.; Bakr, Osman

    2016-01-01

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  11. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

    KAUST Repository

    Pan, Jun

    2016-08-16

    A two-step ligand-exchange strategy is developed, in which the long-carbon-chain ligands on all-inorganic perovskite (CsPbX3, X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-paircapped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.

  12. Phototherapy with blue and green mixed-light is as effective against unconjugated jaundice as blue light and reduces oxidative stress in the Gunn rat model.

    Science.gov (United States)

    Uchida, Yumiko; Morimoto, Yukihiro; Uchiike, Takao; Kamamoto, Tomoyuki; Hayashi, Tamaki; Arai, Ikuyo; Nishikubo, Toshiya; Takahashi, Yukihiro

    2015-07-01

    Phototherapy using blue light-emitting diodes (LED) is effective against neonatal jaundice. However, green light phototherapy also reduces unconjugated jaundice. We aimed to determine whether mixed blue and green light can relieve jaundice with minimal oxidative stress as effectively as either blue or green light alone in a rat model. Gunn rats were exposed to phototherapy with blue (420-520 nm), filtered blue (FB; 440-520 nm without 1.00), respectively. Blue plus green phototherapy is as effective as blue phototherapy and it attenuates irradiation-induced oxidative stress. Combined blue and green spectra might be effective against neonatal hyperbilirubinemia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Beyond conventional c-plane GaN-based light emitting diodes: A systematic exploration of LEDs on semi-polar orientations

    Science.gov (United States)

    Monavarian, Morteza

    Despite enormous efforts and investments, the efficiency of InGaN-based green and yellow-green light emitters remains relatively low, and that limits progress in developing full color display, laser diodes, and bright light sources for general lighting. The low efficiency of light emitting devices in the green-to-yellow spectral range, also known as the "Green Gap", is considered a global concern in the LED industry. The polar c-plane orientation of GaN, which is the mainstay in the LED industry, suffers from polarization-induced separation of electrons and hole wavefunctions (also known as the "quantum confined Stark effect") and low indium incorporation efficiency that are the two main factors that contribute to the Green Gap phenomenon. One possible approach that holds promise for a new generation of green and yellow light emitting devices with higher efficiency is the deployment of nonpolar and semi-polar crystallographic orientations of GaN to eliminate or mitigate polarization fields. In theory, the use of other GaN planes for light emitters could also enhance the efficiency of indium incorporation compared to c-plane. In this thesis, I present a systematic exploration of the suitable GaN orientation for future lighting technologies. First, in order to lay the groundwork for further studies, it is important to discuss the analysis of processes limiting LED efficiency and some novel designs of active regions to overcome these limitations. Afterwards, the choice of nonpolar orientations as an alternative is discussed. For nonpolar orientation, the (1100)-oriented (mo-plane) structures on patterned Si (112) and freestanding m-GaN are studied. The semi-polar orientations having substantially reduced polarization field are found to be more promising for light-emitting diodes (LEDs) owing to high indium incorporation efficiency predicted by theoretical studies. Thus, the semi-polar orientations are given close attention as alternatives for future LED technology

  14. Blue laser diode (LD) and light emitting diode (LED) applications

    International Nuclear Information System (INIS)

    Bergh, Arpad A.

    2004-01-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Blue laser diode (LD) and light emitting diode (LED) applications

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, Arpad A [Optoelectronics Industry Development Association (OIDA), 1133 Connecticut Avenue, NW, Suite 600, Washington, DC 20036-4329 (United States)

    2004-09-01

    The family of blue LEDs, edge emitting and surface emitting lasers, enable a number of applications. Blue lasers are used in digital applications such as optical storage in high density DVDs. The resolution of the spot size and hence the storage density is diffraction limited and is inversely proportional to the square of the wavelength of the laser. Other applications include printing, optical scanners, and high-resolution photo-lithography. As light emitters, blue LEDs are used for signaling and in direct view large area emissive displays. They are also making inroads into signage and LCD back-lighting, mobile platforms, and decorative accent lighting in curtains, furniture, etc. Blue LEDs produce white light either with phosphor wavelength converters or in combination with red and green LEDs. The full potential of LED light sources will require three devices to enable complete control over color and intensity. Sensing and medical/bio applications have a major impact on home security, on monitoring the environment, and on health care. New emerging diagnostic and therapeutic applications will improve the quality and reduce the cost of health care. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Light-Emitting Pickles

    Science.gov (United States)

    Vollmer, M.; Mollmann, K-P.

    2015-01-01

    We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.

  17. Light collection optics for measuring flux and spectrum from light-emitting devices

    Science.gov (United States)

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  18. Light emitting fabric technologies for photodynamic therapy.

    Science.gov (United States)

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    International Nuclear Information System (INIS)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-01-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  20. [1,2,4]Triazolo[1,5-a]pyridine as Building Blocks for Universal Host Materials for High-Performance Red, Green, Blue and White Phosphorescent Organic Light-Emitting Devices.

    Science.gov (United States)

    Song, Wenxuan; Shi, Lijiang; Gao, Lei; Hu, Peijun; Mu, Haichuan; Xia, Zhenyuan; Huang, Jinhai; Su, Jianhua

    2018-02-14

    The electron-accepting [1,2,4]triazolo[1,5-a]pyridine (TP) moiety was introduced to build bipolar host materials for the first time, and two host materials based on this TP acceptor and carbazole donor, namely, 9,9'-(2-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-CzTP) and 9,9'-(5-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (m-CzTP), were designed and synthesized. These two TP-based host materials possess a high triplet energy (>2.9 eV) and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital levels as well as the bipolar transporting feature, which permits their applicability as universal host materials in multicolor phosphorescent organic light-emitting devices (PhOLEDs). Blue, green, and red PhOLEDs based on o-CzTP and m-CzTP with the same device configuration all show high efficiencies and low efficiency roll-off. The devices hosted by o-CzTP exhibit maximum external quantum efficiencies (η ext ) of 27.1, 25.0, and 15.8% for blue, green, and red light emitting, respectively, which are comparable with the best electroluminescene performance reported for FIrpic-based blue, Ir(ppy) 3 -based green, and Ir(pq) 2 (acac)-based red PhOLEDs equipped with a single-component host. The white PhOLEDs based on the o-CzTP host and three lumophors containing red, green, and blue emitting layers were fabricated with the same device structure, which exhibit a maximum current efficiency and η c of 40.4 cd/A and 17.8%, respectively, with the color rendering index value of 75.

  1. Non-doped white organic light-emitting diodes based on aggregation-induced emission

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuming; Kwok, Hoi Sing [Center for Display Research, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Zhao Zujin; Tang, Ben Zhong, E-mail: eekwok@ust.h [Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-03-10

    Non-doped white organic light-emitting diodes (WOLEDs) based on newly synthesized bluish-green light-emitting material 1,3,6,8-tetrakis [4-(1,2,2-triphenylvinyl)phenyl]pyrene (TTPEPy) and red light-emitting material 4-(4-(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl) phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTPETTD) have been demonstrated. A maximum efficiency of 7.4 cd A{sup -1}, 4 lm W{sup -1} and brightness of 18 000 cd m{sup -2} have been achieved by employing 3 nm thick 4, 4'-bis [N-(1-naphthyl-1-)-N-phenyl-amino]- biphenyl (NPB) as an electron-blocking layer. The WOLEDs exhibit a high colour rendering index of 90 and moderate colour stability with 1931 Commision International de L'Eclairage coordinates changing from (0.41, 0.41) to (0.38, 0.40) over a wide range of driving voltages. Moreover, the non-doped WOLEDs enjoy a reduced efficiency roll-off due to their nature of aggregation-induced emission.

  2. Non-doped white organic light-emitting diodes based on aggregation-induced emission

    International Nuclear Information System (INIS)

    Chen Shuming; Kwok, Hoi Sing; Zhao Zujin; Tang, Ben Zhong

    2010-01-01

    Non-doped white organic light-emitting diodes (WOLEDs) based on newly synthesized bluish-green light-emitting material 1,3,6,8-tetrakis [4-(1,2,2-triphenylvinyl)phenyl]pyrene (TTPEPy) and red light-emitting material 4-(4-(1,2,2-triphenylvinyl)phenyl)-7-(5-(4-(1,2,2-triphenylvinyl) phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BTPETTD) have been demonstrated. A maximum efficiency of 7.4 cd A -1 , 4 lm W -1 and brightness of 18 000 cd m -2 have been achieved by employing 3 nm thick 4, 4'-bis [N-(1-naphthyl-1-)-N-phenyl-amino]- biphenyl (NPB) as an electron-blocking layer. The WOLEDs exhibit a high colour rendering index of 90 and moderate colour stability with 1931 Commision International de L'Eclairage coordinates changing from (0.41, 0.41) to (0.38, 0.40) over a wide range of driving voltages. Moreover, the non-doped WOLEDs enjoy a reduced efficiency roll-off due to their nature of aggregation-induced emission.

  3. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    International Nuclear Information System (INIS)

    Fei-Peng, Chen; Bin, Xu; Wen-Jing, Tian; Zu-Jin, Zhao; Ping, Lü; Chan, Im

    2010-01-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq 3 )/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m 2 . The investigation reveals that the white light is composed of a blue–green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films

  4. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    Science.gov (United States)

    Chen, Fei-Peng; Xu, Bin; Zhao, Zu-Jin; Tian, Wen-Jing; Lü, Ping; Im, Chan

    2010-03-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m2. The investigation reveals that the white light is composed of a blue-green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.

  5. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.

    Science.gov (United States)

    Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi

    2012-11-07

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.

  6. Application of Surface Plasmonics for Semiconductor Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed

    This thesis addresses the lack of an efficient semiconductor light source at green emission colours. Considering InGaN based quantum-well (QW) light-emitters and light-emitting diodes (LEDs), various ways of applying surface plasmonics and nano-patterning to improve the efficiency, are investigated....... By placing metallic thin films or nanoparticles (NPs) in the near-field of QW light-emitters, it is possible to improve their internal quantum efficiency (IQE) through the Purcell enhancement effect. It has been a general understanding that in order to achieve surface plasmon (SP) coupling with QWs......-QW coupling does not necessarily lead to emission enhancement. The findings of this work show that the scattering and absorption properties of NPs play a crucial role in determining whether the implementation will improve or degrade the optical performance. By applying these principles, a novel design...

  7. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Ma, Dongge, E-mail: mdg1014@ciac.jl.cn; Ding, Junqiao; Wang, Lixiang [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Leo, Karl [Tech. Univ. Dresden, Inst. Angew. Photophys., D-01062 Dresden (Germany); Qiao, Qiquan [Department of Electrical Engineering and Computer Sciences, College of Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Jia, Huiping; Gnade, Bruce E. [Department of Materials Science and Engineering and Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye → green dye → red host → red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1 ± 0.8% and power efficiency of 37.5 ± 1.4 lm/W but shows no color shift over a wide range of voltages.

  8. Light emitting device having peripheral emissive region

    Science.gov (United States)

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  9. The optoelectronic chameleon - GaN-based light emitters from the UV to green

    Energy Technology Data Exchange (ETDEWEB)

    Kneissl, Michael [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany)

    2008-07-01

    Group III-nitrides have evolved into one of the most versatile and important semiconductor materials for optoelectronic devices. GaN-based blue, green and white light emitting diodes have already entered many parts of everyday life and violet lasers are expected to be following soon. However, considering the extraordinary electronic properties and the wide spectral range that is accessible through nitride materials, it appears that it we have just touched the tip of the iceberg. We discuss some of the new fields of research for InAlGaN materials and devices and review progress in the development of near and deep ultraviolet light emitting diodes, as well as growth and optical properties of InN and indium rich InGaN alloys for emitter in the blue-green spectral range and beyond.

  10. White organic light-emitting devices incorporating nanoparticles of II-VI semiconductors

    International Nuclear Information System (INIS)

    Ahn, Jin H; Bertoni, Cristina; Dunn, Steve; Wang, Changsheng; Talapin, Dmitri V; Gaponik, Nikolai; Eychmueller, Alexander; Hua Yulin; Bryce, Martin R; Petty, Michael C

    2007-01-01

    A blue-green fluorescent organic dye and red-emitting nanoparticles, based on II-VI semiconductors, have been used together in the fabrication of white organic light-emitting devices. In this work, the materials were combined in two different ways: in the form of a blend, and as separate layers deposited on the opposite sides of the substrate. The blended-layer structure provided purer white emission. However, this device also exhibited a number of disadvantages, namely a high drive voltage, a low efficiency and some colour instability. These problems could be avoided by using a device structure that was fabricated using separate dye and nanoparticle layers

  11. Non-doped-type white organic light-emitting diodes for lighting purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jianzhuo [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Li Wenlian, E-mail: wllioel@yahoo.com.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Chu Bei, E-mail: beichu@163.co [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Yan Fei; Yang Dongfang; Liu Huihui; Wang Junbo [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)

    2010-05-15

    We demonstrate a non-doped white organic light-emitting diode (WOLED) in which the blue-, green- and red-emissions are generated from 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl, tris(8-hydroxyquinoline)aluminum (Alq) and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyl-julolidyl 9-enyl)-4H-pyran (DCJTB), which is used as an ultrathin layer. The DCJTB ultrathin layer plays the chromaticity tuning role in optimizing the white spectral band by modulating the location of the DCJTB ultrathin layer in the green emissive Alq layer. The optimized WOLED gives the Commission Internationale de l'Eclairage-1931 xy coordinates of (0.319, 0.335), a color rendering index of 91.2 at 10 V, a maximum brightness of 21010 cd/m{sup 2} at 12 V and a maximum current efficiency of 5.17 cd/A at 6.6 V. The electroluminescence mechanism of the white device is also discussed.

  12. High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy

    Directory of Open Access Journals (Sweden)

    M.R. Philip

    2017-06-01

    Full Text Available We report on the achievement of high efficiency green, yellow, and red InGaN/AlGaN dot-in-a-wire nanowire light-emitting diodes grown on Si(111 by molecular beam epitaxy. The peak emission wavelengths were altered by varying the growth conditions, including the substrate temperature, and In/Ga flux ratio. The devices demonstrate relatively high (>40% internal quantum efficiency at room temperature, relative to that measured at 5 K. Moreover, negligible blue-shift in peak emission spectrum associated with no efficiency droop was measured when injection current was driven up to 556 A/cm2.

  13. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2017-01-01

    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  14. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  15. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Science.gov (United States)

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  16. Degradation of phosphorescent blue organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Steinbacher, Frank [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Kowalsky, Wolfgang [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany)

    2009-07-01

    Development of phosphorescent materials has significantly improved the efficiency of organic light-emitting diodes (OLEDs). By using efficient red, green and blue phosphorescent emitter materials high efficient white OLEDs can be achieved. However, due to low stability of blue phosphorescent materials the lifetime of phosphorescent white OLEDs remains an issue. As a result, degradation of blue phosphorescent materials needs to be further investigated and improved. In this work, blue OLED devices based on the phosphorescent emitter FIrpic were investigated. Single-carrier hole-only as well as electron-only devices were fabricated. For investigation of degradation process the devices were stressed with electrical current and UV-light to study the impact of charge carriers as well as excitons and exciton-polaron quenching on the stability of the blue dye.

  17. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes

    KAUST Repository

    Janjua, Bilal

    2017-02-16

    White light based on blue laser - YAG: Ce phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm with peak output power of 400 μW. A low turn-on voltage of ∼2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of ∼39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.

  18. Health-friendly high-quality white light using violet-green-red laser and InGaN nanowires-based true yellow nanowires light-emitting diodes

    Science.gov (United States)

    Janjua, Bilal; Ng, Tien K.; Zhao, Chao; Anjum, Dalaver H.; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Shen, Chao; Ooi, Boon S.

    2017-02-01

    White light based on blue laser - YAG: Ce3+ phosphor has the advantage of implementing solid-state lighting and optical wireless communications combined-functionalities in a single lamp. However, the blue light was found to disrupt melatonin production, and therefore the human circadian rhythm in general; while the yellow phosphor is susceptible to degradation by laser irradiation and also lack tunability in color rendering index (CRI). In this investigation, by using a violet laser, which has 50% less impact on circadian response, as compared to blue light, and an InGaN-quantum-disks nanowires-based light-emitting diode (NWs-LED), we address both issues simultaneously. The white light is therefore generated using violet-green-red lasers, in conjunction with a yellow NWs-LED realized using molecular beam epitaxy technique, on titanium-coated silicon substrates. Unlike the conventional quantum-well-based LED, the NWs-LED showed efficiency-droop free behavior up to 9.8 A/cm2 with peak output power of 400 μW. A low turn-on voltage of 2.1 V was attributed to the formation of conducting titanium nitride layer at NWs nucleation site and improved fabrication process in the presence of relatively uniform height distribution. The 3D quantum confinement and the reduced band bending improve carriers-wavefunctions overlap, resulting in an IQE of 39 %. By changing the relative intensities of the individual color components, CRI of >85 was achieved with tunable correlated color temperature (CCT), thus covering the desired room lighting conditions. Our architecture provides important considerations in designing smart solid-state lighting while addressing the harmful effect of blue light.

  19. Recent Advances in Conjugated Polymers for Light Emitting Devices

    Science.gov (United States)

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  20. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    Science.gov (United States)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  1. Preparation and performance optimization of TPBISi green-light organic luminescent material devices

    Directory of Open Access Journals (Sweden)

    Zheng Huajing

    2017-01-01

    Full Text Available The Study analyzed and tested the absorption spectrum, photoluminescence spectrum, and device’s electroluminescence spectrum of a new silole material. The device with Silol as an emitting layer, emitted green-light whose structure is ITO/NPB/2,2,3,3-tetraphenyl-4,4-bisthienylsilole(TPBTSi/Alq3/Mg: A by improvement of preparation technology and optimization of thin film. It reaches the maximum luminescence of 11290.2 cd/m2, the maximum luminous efficiency of 0.84 lm/W, luminescence spectrum of 516 nm, chromaticity diagram CIE coordinate of(0.275, 0.4568 when voltage is 15V. All of the above is the green characteristic spectrum of TPBTSi.

  2. Novel Strategy for Photopatterning Emissive Polymer Brushes for Organic Light Emitting Diode Applications.

    Science.gov (United States)

    Page, Zachariah A; Narupai, Benjaporn; Pester, Christian W; Bou Zerdan, Raghida; Sokolov, Anatoliy; Laitar, David S; Mukhopadhyay, Sukrit; Sprague, Scott; McGrath, Alaina J; Kramer, John W; Trefonas, Peter; Hawker, Craig J

    2017-06-28

    A light-mediated methodology to grow patterned, emissive polymer brushes with micron feature resolution is reported and applied to organic light emitting diode (OLED) displays. Light is used for both initiator functionalization of indium tin oxide and subsequent atom transfer radical polymerization of methacrylate-based fluorescent and phosphorescent iridium monomers. The iridium centers play key roles in photocatalyzing and mediating polymer growth while also emitting light in the final OLED structure. The scope of the presented procedure enables the synthesis of a library of polymers with emissive colors spanning the visible spectrum where the dopant incorporation, position of brush growth, and brush thickness are readily controlled. The chain-ends of the polymer brushes remain intact, affording subsequent chain extension and formation of well-defined diblock architectures. This high level of structure and function control allows for the facile preparation of random ternary copolymers and red-green-blue arrays to yield white emission.

  3. Perovskite Materials for Light-Emitting Diodes and Lasers.

    Science.gov (United States)

    Veldhuis, Sjoerd A; Boix, Pablo P; Yantara, Natalia; Li, Mingjie; Sum, Tze Chien; Mathews, Nripan; Mhaisalkar, Subodh G

    2016-08-01

    Organic-inorganic hybrid perovskites have cemented their position as an exceptional class of optoelectronic materials thanks to record photovoltaic efficiencies of 22.1%, as well as promising demonstrations of light-emitting diodes, lasers, and light-emitting transistors. Perovskite materials with photoluminescence quantum yields close to 100% and perovskite light-emitting diodes with external quantum efficiencies of 8% and current efficiencies of 43 cd A(-1) have been achieved. Although perovskite light-emitting devices are yet to become industrially relevant, in merely two years these devices have achieved the brightness and efficiencies that organic light-emitting diodes accomplished in two decades. Further advances will rely decisively on the multitude of compositional, structural variants that enable the formation of lower-dimensionality layered and three-dimensional perovskites, nanostructures, charge-transport materials, and device processing with architectural innovations. Here, the rapid advancements in perovskite light-emitting devices and lasers are reviewed. The key challenges in materials development, device fabrication, operational stability are addressed, and an outlook is presented that will address market viability of perovskite light-emitting devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    Energy Technology Data Exchange (ETDEWEB)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia); ItraMAS Corporation. Sdn. Bhd., 542A-B Mukim 1, Lorong Perusahaan Baru 2, Kawasan Perindustrian, Perai 13600, Penang (Malaysia); Yap, B.K. [Center of Microelectronic and Nanotechnology Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, Jln. Uniten-Ikram, 4300 Kajang, Selangor (Malaysia); Woon, K.L., E-mail: ph7klw76@um.edu.my [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-10-15

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN{sub 6})/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN{sub 6} and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m{sup 2}. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN{sub 6} and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency.

  5. Green lights

    DEFF Research Database (Denmark)

    Fisker, Peter Kielberg

    This study investigates the effect of drought on economic activity globally using remote sensing data. In particular, predicted variation in greenness is correlated with changes in the density of artificial light observed at night on a grid of 0.25 degree latitude-longitude pixels. I define drought...... as greenness estimated by lagged variation in monthly rainfall and temperature. This definition of drought performs well in identifying self-reported drought events since 2000 compared with measures of drought that do not take greenness into account, and the subsequent analysis indicates that predicted...... variation in greenness is positively associated with year-on-year changes in luminosity: If a unit of observation experiences a predicted variation in greenness that lies 1 standard deviation below the global mean, on average 1.5 - 2.5 light pixels out of 900 are extinguished that year. Finally, an attempt...

  6. Color optimization of conjugated-polymer/InGaN hybrid white light emitting diodes by incomplete energy transfer

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Lai, Chun-Feng; Madhusudhana Reddy, P.; Chen, Yung-Lin; Chiou, Wei-Yung; Chang, Shinn-Jen

    2015-01-01

    By using the wavelength conversion method, white light emitting diodes (WLEDs) were produced by applying mixtures of polysiloxane and fluorescent polymers on InGaN based light emitting diodes. UV curable organic–inorganic hybrid materials with high refractive index (1.561), compromised optical, thermal and mechanical properties was used as encapsulants. Red light emitting fluorescent FABD polymer (with 9,9-dioctylfluorene (F), anthracene (A) and 2,1,3-benzothiadiazole (B), and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (D) repeating units) and green light emitting fluorescent FAB polymer were used as wavelength converters. The encapsulant/fluorescent polymer mixture and InGaN produce the white light by incomplete energy transfer mechanism. WLEDs with high color rendering index (CRI, about 93), and tunable correlated color temperature (CCT) properties can be produced by controlling the composition and chemical structures of encapsulating polymer and fluorescent polymer in hybrid materials, offering cool-white and neutral-white LEDs. - Highlights: • Highly efficient white light-emitting diodes (WLEDs) were produced. • Conjugated-polymer/InGaN hybrid WLEDs by incomplete energy transfer mechanism. • WLEDs with high color-rendering index and tunable correlated color temperature. • Polysiloxane encapsulant with superior optical, mechanical and thermal properties

  7. BaZrO3 perovskite nanoparticles as emissive material for organic/inorganic hybrid light-emitting diodes

    DEFF Research Database (Denmark)

    Tamulevičius, S.; Ivaniuk, K.; Cherpak, V.

    2017-01-01

    In the present work we have demonstrated double-channel emission from organic exciplexes coupled to inorganic nanoparticles. The process is demonstrated by yellow-green emission in light-emitting diodes based on organic exciplexes hybridized with perovskite-type dispersed BaZrO3 nanoparticles...

  8. Evaluation of light-emitting diode beacon light fixtures.

    Science.gov (United States)

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  9. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    International Nuclear Information System (INIS)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-01-01

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes

  10. Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons

    Science.gov (United States)

    Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo

    2005-06-01

    We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.

  11. Printing method for organic light emitting device lighting

    Science.gov (United States)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol

    2013-03-01

    Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.

  12. InGaN/GaN light-emitting diode microwires of submillimeter length

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, W. V., E-mail: lundin.vpegroup@mail.ioffe.ru; Rodin, S. N.; Sakharov, A. V.; Lundina, E. Yu. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Usov, S. O. [Russian Academy of Sciences, Research and Engineering Center of Submicron Heterostructures for Microelectronics (Russian Federation); Zadiranov, Yu. M.; Troshkov, S. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Tsatsulnikov, A. F. [Russian Academy of Sciences, Research and Engineering Center of Submicron Heterostructures for Microelectronics (Russian Federation)

    2017-01-15

    Microcrystalline wire-like InGaN/GaN light-emitting diodes designed as core–shell structures 400–600 μm in length are grown by metal–organic vapor-phase epitaxy on sapphire and silicon substrates. The technology of the titanium-nanolayer-induced ultrafast growth of nanowire and microwire crystals is used. As a current is passed through the microcrystals, an electroluminescence signal is observed in the blue–green spectral region.

  13. Novel asymmetrical pyrene derivatives as light emitting materials: Synthesis and photophysics

    International Nuclear Information System (INIS)

    Li Yang; Wang Dong; Wang Lei; Li Zhengqiang; Cui Qing; Zhang Haiquan; Yang Huai

    2012-01-01

    A series of novel substituted pyrene derivatives with asymmetrical groups have been successfully synthesized in excellent yield. Structures of the asymmetrical compound were fully characterized by 1 H-NMR, IR spectroscopy and mass spectrometry. By introducing ethynyl functions to pyrene, we obtained highly efficient blue and green light emitting materials. It has been demonstrated that the emission characteristics of pyrene derivatives have been bathochromatically tuned in the visible region by extending the π-conjugation. The photophysical properties of these compounds were carefully examined in different organic solvents and different concentrations. The electrochemical properties and geometrical electronic structures of the new pyrene derivatives have been investigated by cyclic voltammograms and density functional theory (DFT) calculations. - Highlights: ► It is the first research about asymmetrial pyrene derivatives as highly efficient light emitting materials. ► The solvatochromism and concentration effect of the new compounds have been discussed. ► Furthermore, the electrochemical properties and geometrical electronic structures were also investigated in this paper.

  14. A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe.

    Science.gov (United States)

    Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon

    2015-04-22

    The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of light to make recommendations for use in surveillance. The abundance and diversity of Culicoides collected using commercially available traps fitted with Light Emitting Diode (LED) platforms emitting ultraviolet (UV) (390 nm wavelength), blue (430 nm), green (570 nm), yellow (590 nm), red (660 nm) or white light (425 nm - 750 nm with peaks at 450 nm and 580 nm) were compared. A Centre for Disease Control (CDC) UV light-suction trap was also included within the experimental design which was fitted with a 4 watt UV tube (320-420 nm). Generalised linear models with negative binomial error structure and log-link function were used to compare trap abundance according to LED colour, meteorological conditions and seasonality. The experiment was conducted over 49 nights with 42,766 Culicoides caught in 329 collections. Culicoides obsoletus Meigen and Culicoides scoticus Downes and Kettle responded indiscriminately to all wavelengths of LED used with the exception of red which was significantly less attractive. In contrast, Culicoides dewulfi Goetghebuer and Culicoides pulicaris Linnaeus were found in significantly greater numbers in the green LED trap than in the UV LED trap. The LED traps collected significantly fewer Culicoides than the standard CDC UV light-suction trap. Catches of Culicoides were reduced in LED traps when compared to the standard CDC UV trap, however, their reduced power requirement and small size fulfils a requirement for trapping in logistically challenging areas or where many

  15. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  16. Synthesis of Won-WX2 (n=2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Light-Emitting Diodes

    KAUST Repository

    Han, Shikui

    2017-07-04

    Preparation of two-dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn -WX2 (n=2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn -WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single- or few-layer WX2 nanosheets (NSs). As a proof-of-concept application, the WOn -WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light-emitting diodes (QLEDs). The QLED prepared with WO2.9 NP-WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.

  17. Near UV-Blue Excitable Green-Emitting Nanocrystalline Oxide

    Directory of Open Access Journals (Sweden)

    C. E. Rodríguez-García

    2011-01-01

    Full Text Available Green-emitting Eu-activated powders were produced by a two-stage method consisting of pressure-assisted combustion synthesis and postannealing in ammonia. The as-synthesized powders exhibited a red photoluminescence (PL peak located at =616 nm when excited with =395 nm UV. This emission peak corresponds to the 5D0→7F2 transition in Eu3+. After annealing in ammonia, the PL emission changed to an intense broad-band peak centered at =500 nm, most likely produced by 4f65d1→4f7 electronic transitions in Eu2+. This green-emitting phosphor has excitation band in the near UV-blue region (=300–450 nm. X-ray diffraction analysis reveals mainly the orthorhombic EuAlO3 and Al2O3 phases. Transmission electron microscopy observations showed that the grains are formed by faceted nanocrystals (~4 nm of polygonal shape. The excellent excitation and emission properties make these powders very promising to be used as phosphors in UV solid-state diodes coupled to activate white-emitting lamps.

  18. Light emitting diodes as a plant lighting source

    Energy Technology Data Exchange (ETDEWEB)

    Bula, R.J.; Tennessen, D.J.; Morrow, R.C. [Wisconsin Center for Space Automation and Robotics, Madison, WI (United States); Tibbitts, T.W. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-31

    Electroluminescence in solid materials is defined as the generation of light by the passage of an electric current through a body of solid material under an applied electric field. A specific type of electroluminescence, first noted by Lossew in 1923, involves the generation of photons when electrons are passed through a p-n junction of certain solid materials (junction of a n-type semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor). Development efforts to translate these observations into visible light emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode (LEDs), was first used in a report by Wolfe, et al., in 1955. The development of this light emitting semiconductor technology dates back less than 30 years. During this period of time, the LED has evolved from a rare and expensive light generating device to one of the most widely used electronic components. The most popular applications of the LED are as indicators or as optoelectronic switches. However, several recent advances in LED technology have made possible the utilization of LEDs for applications that require a high photon flux, such as for plant lighting in controlled environments. The new generation of LEDs based on a gallium aluminum arsenide (GaAlAS) semiconductor material fabricated as a double heterostructure on a transparent substrate has opened up many new applications for these LEDs.

  19. Hybrid Structure White Organic Light Emitting Diode for Enhanced Efficiency by Varied Doping Rate.

    Science.gov (United States)

    Kim, Dong-Eun; Kang, Min-Jae; Park, Gwang-Ryeol; Kim, Nam-Kyu; Lee, Burm-Jong; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-03-01

    Novel materials based on Zn(HPB)2 and Ir-complexes were synthesized as blue or red emitters, respectively. White organic light emitting diodes were fabricated using the Zn(HPB)2 as a blue emitting layer, Ir-complexes as a red emitting layer and Alq3 as a green emitting layer. The obtained experimental results, were based on white OLEDs fabricated using double emission layers of Zn(HPB)2 and Alq3:Ir-complexes. The doping rate of the Ir-complexes was varied at 0.4%, 0.6%, 0.8% and 1.0%. When the doping rate of the Alq3:Ir-complexes was 0.6%, a white emission was achieved. The Commission Internationale de l'Eclairage coordinates of the device's white emission were (0.316, 0.331) at an applied voltage of 10.75 V.

  20. A simple and portable colorimeter using a red-green-blue light-emitting diode and its application to the on-site determination of nitrite and iron in river-water.

    Science.gov (United States)

    Suzuki, Yasutada; Aruga, Terutomi; Kuwahara, Hiroyuki; Kitamura, Miki; Kuwabara, Tetsuo; Kawakubo, Susumu; Iwatsuki, Masaaki

    2004-06-01

    A portable colorimeter using a red-green-blue light-emitting diode as a light source has been developed. An embedded controller sequentially turns emitters on and off, and acquires the signals detected by two photo diodes synchronized with their blinking. The controller calculates the absorbance and displays it on a liquid-crystal display. The whole system, including a 006P dry cell, is contained in a 100 x 70 x 50 mm aluminum case and its mass is 280 g. This colorimeter was successfully applied to the on-site determination of nitrite and iron in river-water.

  1. Irradiation Pattern Analysis for Designing Light Sources-Based on Light Emitting Diodes

    International Nuclear Information System (INIS)

    Rojas, E.; Stolik, S.; La Rosa, J. de; Valor, A.

    2016-01-01

    Nowadays it is possible to design light sources with a specific irradiation pattern for many applications. Light Emitting Diodes present features like high luminous efficiency, durability, reliability, flexibility, among others as the result of its rapid development. In this paper the analysis of the irradiation pattern of the light emitting diodes is presented. The approximation of these irradiation patterns to both, a Lambertian, as well as a Gaussian functions for the design of light sources is proposed. Finally, the obtained results and the functionality of bringing the irradiation pattern of the light emitting diodes to these functions are discussed. (Author)

  2. Introduction of Red-Green-Blue Fluorescent Dyes into a Metal-Organic Framework for Tunable White Light Emission.

    Science.gov (United States)

    Wen, Yuehong; Sheng, Tianlu; Zhu, Xiaoquan; Zhuo, Chao; Su, Shaodong; Li, Haoran; Hu, Shengmin; Zhu, Qi-Long; Wu, Xintao

    2017-10-01

    The unique features of the metal-organic frameworks (MOFs), including ultrahigh porosities and surface areas, tunable pores, endow the MOFs with special utilizations as host matrices. In this work, various neutral and ionic guest dye molecules, such as fluorescent brighteners, coumarin derivatives, 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM), and 4-(p-dimethylaminostyryl)-1-methylpyridinium (DSM), are encapsulated in a neutral MOF, yielding novel blue-, green-, and red-phosphors, respectively. Furthermore, this study introduces the red-, green-, and blue-emitting dyes into a MOF together for the first time, producing white-light materials with nearly ideal Commission International ed'Eclairage (CIE) coordinates, high color-rendering index values (up to 92%) and quantum yields (up to 26%), and moderate correlated color temperature values. The white light is tunable by changing the content or type of the three dye guests, or the excitation wavelength. Significantly, the introduction of blue-emitting guests in the methodology makes the available MOF host more extensive, and the final white-light output more tunable and high-quality. Such strategy can be widely adopted to design and prepare white-light-emitting materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus

    International Nuclear Information System (INIS)

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Cheol Young

    2016-01-01

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m"2). We measured the change in the levels of plasma cortisol and H_2O_2 and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H_2O_2) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time. The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. -- Highlights: •Green light efficiently reduces retinal damage and stress. •Green spectra reduce caspase production and apoptosis. •Red light-induced retina damage may induce apoptosis in goldfish retina. •The retina of goldfish recognizes green spectra as a stable environment.

  4. Effect of green light spectra on the reduction of retinal damage and stress in goldfish, Carassius auratus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jin Ah; Kim, Na Na; Choi, Young Jae; Choi, Cheol Young, E-mail: choic@kmou.ac.kr

    2016-07-22

    We investigated the effect of light spectra on retinal damage and stress in goldfish using green (530 nm) and red (620 nm) light emitting diodes (LEDs) at three intensities each (0.5, 1.0, and 1.5 W/m{sup 2}). We measured the change in the levels of plasma cortisol and H{sub 2}O{sub 2} and expression and levels of caspase-3. The apoptotic response of green and red LED spectra was assessed using the terminal transferase dUTP nick end labeling (TUNEL) assay. Stress indicator (cortisol and H{sub 2}O{sub 2}) and apoptosis-related genes (caspase-3) decreased in green light, but increased in red light with higher light intensities over time. The TUNEL assay revealed that more apoptotic cells were detected in outer nuclear layers after exposure to red LED over time with the increase in light intensity, than the other spectra. These results indicate that green light efficiently reduces retinal damage and stress, whereas red light induces it. Therefore, red light-induced retina damage may induce apoptosis in goldfish retina. -- Highlights: •Green light efficiently reduces retinal damage and stress. •Green spectra reduce caspase production and apoptosis. •Red light-induced retina damage may induce apoptosis in goldfish retina. •The retina of goldfish recognizes green spectra as a stable environment.

  5. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A. [Department of Applied Physics, Technische Universiteit Eindhoven, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands); Eersel, H. van [Simbeyond B.V., P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  6. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    Science.gov (United States)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.

    2016-03-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  7. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    International Nuclear Information System (INIS)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A.; Eersel, H. van

    2016-01-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  8. High performance tunnel injection InGaN/GaN quantum Dot light emitting diodes emitting in the green (λ=495nm)

    KAUST Repository

    Zhang, Meng; Banerjee, Animesh; Bhattacharya, Pallab

    2011-01-01

    peak at 495 nm at 300 K. The characteristics of tunnel injection InGaN/GaN quantum dot light emitting diodes are presented. The current density at maximum efficiency is 90.2 A/cm 2, which is superior to equivalent multiquantum well devices. © 2010

  9. Highly Efficient Spectrally Stable Red Perovskite Light-Emitting Diodes.

    Science.gov (United States)

    Tian, Yu; Zhou, Chenkun; Worku, Michael; Wang, Xi; Ling, Yichuan; Gao, Hanwei; Zhou, Yan; Miao, Yu; Guan, Jingjiao; Ma, Biwu

    2018-05-01

    Perovskite light-emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi-2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light-emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi-2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi-2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi-2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m -2 and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Colour tuneable light-emitting transistor

    Energy Technology Data Exchange (ETDEWEB)

    Feldmeier, Eva J.; Melzer, Christian; Seggern, Heinz von [Electronic Materials Department, Institute of Materials Science, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In recent years the interest in ambipolar organic light-emitting field-effect transistors has increased steadily as the devices combine switching behaviour of transistors with light emission. Usually, small molecules and polymers with a band gap in the visible spectral range serve as semiconducting materials. Mandatory remain balanced injection and transport properties for both charge carrier types to provide full control of the spatial position of the recombination zone of electrons and holes in the transistor channel via the applied voltages. As will be presented here, the spatial control of the recombination zone opens new possibilities towards light-emitting devices with colour tuneable emission. In our contribution an organic light-emitting field-effect transistors is presented whose emission colour can be changed by the applied voltages. The organic top-contact field-effect transistor is based on a parallel layer stack of acenes serving as organic transport and emission layers. The transistor displays ambipolar characteristics with a narrow recombination zone within the transistor channel. During operation the recombination zone can be moved by a proper change in the drain and gate bias from one organic semiconductor layer to another one inducing a change in the emission colour. In the presented example the emission maxima can be switched from 530 nm to 580 nm.

  11. [A novel yellow organic light-emitting device].

    Science.gov (United States)

    Ma, Chen; Wang, Hua; Hao, Yu-Ying; Gao, Zhi-Xiang; Zhou, He-Feng; Xu, Bing-She

    2008-07-01

    The fabrication of a novel organic yellow-light-emitting device using Rhodamine B as dopant with double quantum-well (DQW) structure was introduced in the present article. The structure and thickness of this device is ITO/CuPc (6 nm) /NPB (20 nm) /Alq3 (3 nm)/Alq3 : Rhodamine B (3 nm) /Alq3 (3 nm) /Al q3 : Rhodamine B(3 nm) /Alq3 (30 nm) /Liq (5 nm)/Al (30 nm). With the detailed investigation of electroluminescence of the novel organic yellow-light-emitting device, the authors found that the doping concentration of Rhodamine B (RhB) had a very big influence on luminance and efficiency of the organic yellow-light-emitting device. When doping concentration of Rhodamine B (RhB) was 1.5 wt%, the organic yellow-light-emitting device was obtained with the maximum current efficiency of 1.526 cd x A(-1) and the maximum luminance of 1 309 cd x m(-2). It can be seen from the EL spectra of the devices that there existed energy transferring from Alq3 to RhB in the organic light-emitting layers. When the doping concentration of RhB increased, lambda(max) of EL spectra redshifted obviously. The phenomenon was attributed to the Stokes effect of quantum wells and self-polarization of RhB dye molecules.

  12. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com [Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, Gyeonggi 443-803 (Korea, Republic of)

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  13. Light emission mechanism of mixed host organic light-emitting diodes

    Science.gov (United States)

    Song, Wook; Lee, Jun Yeob

    2015-03-01

    Light emission mechanism of organic light-emitting diodes with a mixed host emitting layer was studied using an exciplex type mixed host and an exciplex free mixed host. Monitoring of the current density and luminance of the two type mixed host devices revealed that the light emission process of the exciplex type mixed host was dominated by energy transfer, while the light emission of the exciplex free mixed host was controlled by charge trapping. Mixed host composition was also critical to the light emission mechanism, and the contribution of the energy transfer process was maximized at 50:50 mixed host composition. Therefore, it was possible to manage the light emission process of the mixed host devices by managing the mixed host composition.

  14. Peculiarities of electrooptical characteristics of gallium phosphide light-emitting diodes in high injection level conditions

    Directory of Open Access Journals (Sweden)

    O. M. Hontaruk

    2015-04-01

    Full Text Available Electroluminescence of green N-doped gallium phosphide light-emitting diodes was studied. The negative differential resistance region in the current-voltage characteristics was found at low temperature (Т ≤ 90 К. Possible reason of this phenomenon is the redistribution of recombinational flows between annihilation channels on isolated nitrogen atoms and annihilation channel on the NN1 pairs.

  15. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells.

    Science.gov (United States)

    Dehghani-Soltani, Samereh; Shojaee, Mohammad; Jalalkamali, Mahshid; Babaee, Abdolreza; Nematollahi-Mahani, Seyed Noureddin

    2017-08-30

    Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.

  16. Blue to bluish-green tunable phosphor Sr2LiSiO4F:Ce3+,Tb3+ and efficient energy transfer for near-ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Xie, Mubiao; Zeng, Lihua; Ye, TingLi; Yang, Xi; Zhu, Xianmei; Peng, Siyun; Lei, Lei

    2014-01-01

    Ce 3+ and Tb 3+ activated Sr 2 LiSiO 4 F phosphors were prepared by a solid state reaction technique at high temperature, and their ultraviolet (UV)-visible spectroscopic properties were investigated. Under ultraviolet light excitation, Ce 3+ -doped Sr 2 LiSiO 4 F phosphors emit blue light (420 nm), while Tb 3+ -doped phosphors show yellowish green emission. Efficient energy transfer from Ce 3+ to Tb 3+ ions in co-doped samples was confirmed in terms of corresponding excitation and emission spectra. The energy transfer mechanism between Ce 3+ and Tb 3+ was discussed and demonstrated to be dipole–dipole interaction in Sr 2 LiSiO 4 F:Ce 3+ ,Tb 3+ phosphors. Due to energy transfer from Ce 3+ to Tb 3+ , Ce 3+ and Tb 3+ co-doped Sr 2 LiSiO 4 F phosphors show intense absorption in near-UV region, and present tunable emission from blue to bluish green under 360 nm light excitation. The results indicate that these phosphors can be considered as candidates for white LEDs pumped by n-UV chips. (paper)

  17. Top emitting white OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, Patricia; Luessem, Bjoern; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, George-Baehr-Strasse 1, 01069 Dresden (Germany)

    2009-07-01

    Top emitting organic light emitting diodes (TOLEDs) provide a number of interesting opportunities for new applications, such as the opportunity to fabricate ITO-free devices by using opaque substrates. This makes it possible to manufacture low cost OLEDs for signage and lighting applications. A general top emitting device consists of highly reflecting metal contacts as anode and semitransparent cathode, the latter one for better outcouling reasons. In between several organic materials are deposited as charge transporting, blocking, and emission layers. Here, we show a top emitting white organic light emitting diode with silver electrodes arranged in a p-i-n structure with p- and n-doped charge transport layers. The centrical emission layer consists of two phosphorescent (red and green) and one fluorescent (blue) emitter systems separated by an ambipolar interlayer to avoid mutual exciton quenching. By adding an additional dielectric capping layer on top of the device stack, we achieve a reduction of the strong microcavity effects which appear due to the high reflection of both metal electrodes. Therefore, the outcoupled light shows broad and nearly angle-independent emission spectra, which is essential for white light emitting diodes.

  18. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    International Nuclear Information System (INIS)

    Lau, K.-T.; McHugh, Eimear; Baldwin, Susan; Diamond, Dermot

    2006-01-01

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate

  19. Paired emitter-detector light emitting diodes for the measurement of lead(II) and cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Lau, K.-T. [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: kim.lau@dcu.ie; McHugh, Eimear [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Baldwin, Susan [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Diamond, Dermot [Adaptive Sensors Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland)]. E-mail: Dermot.diamond@dcu.ie

    2006-05-31

    A transmittance mode optical device based on using a reverse biased light emitting diode (LED) as light detector has been developed for colorimetric analysis. This new optical device was validated with bromocresol green dye for absorbance measurements before being employed for detecting cadmium(II) and lead(II) in water. Results show that the performance of this LED-based device is comparable to much more expensive bench top UV-vis instruments, but with the advantages of being low cost, low power and simple to operate.

  20. Numerical analysis of the electrical and the optical properties of green phosphorescent organic light-emitting diodes

    International Nuclear Information System (INIS)

    Hwang, Young Wook; Lee, Hyeon Gi; Won, Tae Young

    2014-01-01

    In this paper, we report a theoretical study on the electrical-optical properties of phosphorescent organic light-emitting diodes (PHOLEDs). Our simulation reveals that the refractive index of each material plays a crucial role in the emission characteristics and that the barrier height at the interface significantly influences the behavior of charge transport as well as the generation of excitons. The calculated transient profiles indicate that the carrier recombination in the PHOLEDs takes place mainly at the interface between the emitting layer and the hole transport layer after 8 μs. In the case of high index of refraction, the simulation result via modal analysis implies a possibility for improving the light extraction by increasing the substrate mode. As the thickness of each layer has been altered, we observe that the chromaticity of the device changes periodically.

  1. White organic light-emitting diodes from three emitter layers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Lim, J.T. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Jeong, C.H. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Lee, J.H. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Yeom, G.Y. [Department of Advanced Materials Science and Engineering, SungKyunKwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of)]. E-mail: gyyeom@skku.edu

    2006-11-23

    Three-wavelength white organic light-emitting diodes (WOLEDs) were fabricated using two doped layers, which were obtained by separating the recombination zones into three emitter layers. A sky blue emission originated from the 4,4'-bis(2,2'-diphenylethen-1-yl)biphenyl (DPVBi) layer. A green emission originated from a tris(8-quinolinolato)aluminum (III) (Alq{sub 3}) host doped with a green fluorescent 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benz opyrano [6,7,8-ij]-quinolizin-11-one (C545T) dye. An orange emission was obtained from the N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) host doped with a red fluorescent dye, 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4 H-pyran (DCJTB). A white light resulted from the partial excitations of these three emitter layers by controlling the layer thickness and concentration of the fluorescent dyes in each emissive layer simultaneously. The electroluminescent spectrum of the device was not sensitive to the driving voltage of the device. The white light device showed a maximum luminance of approximately 53,000 cd/m{sup 2}. The external quantum and power efficiency at a luminance of approximately 100 cd/m{sup 2} were 2.62% and 3.04 lm/W, respectively.

  2. Highly efficient silicon light emitting diode

    NARCIS (Netherlands)

    Le Minh, P.; Holleman, J.; Wallinga, Hans

    2002-01-01

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a

  3. Evaluation of light-emitting diode beacon light fixtures : final report.

    Science.gov (United States)

    2009-12-01

    Rotating beacons containing filament light sources have long been used on highway maintenance trucks : to indicate the presence of the truck to other drivers. Because of advances in light-emitting diode (LED) : technologies, flashing lights containin...

  4. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    Science.gov (United States)

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Dry etching characteristics of GaN for blue/green light-emitting diode fabrication

    International Nuclear Information System (INIS)

    Baik, K.H.; Pearton, S.J.

    2009-01-01

    The etch rates, surface morphology and sidewall profiles of features formed in GaN/InGaN/AlGaN multiple quantum well light-emitting diodes by Cl 2 -based dry etching are reported. The chlorine provides an enhancement in etch rate of over a factor of 40 relative to the physical etching provided by Ar and the etching is reactant-limited until chlorine gas flow rates of at least 50 standard cubic centimeters per minute. Mesa sidewall profile angle control is possible using a combination of Cl 2 /Ar plasma chemistry and SiO 2 mask. N-face GaN is found to etch faster than Ga-face surfaces under the same conditions. Patterning of the sapphire substrate for improved light extraction is also possible using the same plasma chemistry

  6. Background story of the invention of efficient blue InGaN light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shuji [University of California, Santa Barbara, CA (United States)

    2015-06-15

    Shuji Nakamura discovered p-type doping in Gallium Nitride (GaN) and developed blue, green, and white InGaN based light emitting diodes (LEDs) and blue laser diodes (LDs). His inventions made possible energy efficient, solid-state lighting systems and enabled the next generation of optical storage. Together with Isamu Akasaki and Hiroshi Amano, he is one of the three recipients of the 2014 Nobel Prize in Physics. In his Nobel lecture, Shuji Nakamura gives an overview of this research and the story of his inventions. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

    CERN Multimedia

    2004-01-01

    View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

  8. Quantitative description of charge-carrier transport in a white organic light-emitting diode

    Science.gov (United States)

    Schober, M.; Anderson, M.; Thomschke, M.; Widmer, J.; Furno, M.; Scholz, R.; Lüssem, B.; Leo, K.

    2011-10-01

    We present a simulation model for the analysis of charge-carrier transport in organic thin-film devices, and apply it to a three-color white hybrid organic light-emitting diode (OLED) with fluorescent blue and phosphorescent red and green emission. We simulate a series of single-carrier devices, which reconstruct the OLED layer sequence step by step. Thereby, we determine the energy profiles for hole and electron transport, show how to discern bulk from interface limitation, and identify trap states.

  9. Hybrid light emitting transistors (Presentation Recording)

    Science.gov (United States)

    Muhieddine, Khalid; Ullah, Mujeeb; Namdas, Ebinazar B.; Burn, Paul L.

    2015-10-01

    Organic light-emitting diodes (OLEDs) are well studied and established in current display applications. Light-emitting transistors (LETs) have been developed to further simplify the necessary circuitry for these applications, combining the switching capabilities of a transistor with the light emitting capabilities of an OLED. Such devices have been studied using mono- and bilayer geometries and a variety of polymers [1], small organic molecules [2] and single crystals [3] within the active layers. Current devices can often suffer from low carrier mobilities and most operate in p-type mode due to a lack of suitable n-type organic charge carrier materials. Hybrid light-emitting transistors (HLETs) are a logical step to improve device performance by harnessing the charge carrier capabilities of inorganic semiconductors [4]. We present state of the art, all solution processed hybrid light-emitting transistors using a non-planar contact geometry [1, 5]. We will discuss HLETs comprised of an inorganic electron transport layer prepared from a sol-gel of zinc tin oxide and several organic emissive materials. The mobility of the devices is found between 1-5 cm2/Vs and they had on/off ratios of ~105. Combined with optical brightness and efficiencies of the order of 103 cd/m2 and 10-3-10-1 %, respectively, these devices are moving towards the performance required for application in displays. [1] M. Ullah, K. Tandy, S. D. Yambem, M. Aljada, P. L. Burn, P. Meredith, E. B. Namdas., Adv. Mater. 2013, 25, 53, 6213 [2] R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nature Materials 2010, 9, 496 [3] T. Takenobu, S. Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, Phys. Rev. Lett. 2008, 100, 066601 [4] H. Nakanotani, M. Yahiro, C. Adachi, K. Yano, Appl. Phys. Lett. 2007, 90, 262104 [5] K. Muhieddine, M. Ullah, B. N. Pal, P. Burn E. B. Namdas, Adv. Mater. 2014, 26,37, 6410

  10. Monochromic radiation through light-emitting diode (LED positively augments in vitro shoot regeneration in Orchid (Dendrobium sonia

    Directory of Open Access Journals (Sweden)

    Vandita Billore

    2017-07-01

    Full Text Available Monochromatic lights emitted by light-emitting diodes (LEDs have generated great interest for efficient and controlled growth in vitro, especially of plants which are endangered or require specific intensity and wavelength of light. In the present study, we have evaluated the effect of monochromatic LEDs on in vitro morphogenesis: growth, proliferation of shoot cultures, and rooting of Dendrobium sonia. Different light sources viz. white LEDs (W, blue LEDs (B, yellow LEDs (Y and red LEDs (R were tested under photoperiod of 16 h of exposure and 8 h of dark. The frequency of morphogenesis depended on the wavelength of the applied monochromatic light. Higher wavelength monochromatic light (yellow light was observed to induce higher shoot proliferation (98%, early PLB (protocorm-like bodies formation, differentiation into green buds and shoot initiation as compared to red, blue and white light treatments. Yellow light also yielded higher number of shoots per explants (29 shoots/explant than red, blue and white light treatments. The results suggest that the monochromatic light sources stimulate morphogenic effects on in vitro culture of Dendrobium sonia, and that yellow light treatment can be used to enhance the efficiency of micropropagation.

  11. Origin of the Electroluminescence from Annealed-ZnO/GaN Heterojunction Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Kai-Chiang Hsu

    2015-11-01

    Full Text Available This paper addressed the effect of post-annealed treatment on the electroluminescence (EL of an n-ZnO/p-GaN heterojunction light-emitting diode (LED. The bluish light emitted from the 450 °C-annealed LED became reddish as the LED annealed at a temperature of 800 °C under vacuum atmosphere. The origins of the light emission for these LEDs annealed at various temperatures were studied using measurements of electrical property, photoluminescence, and Auger electron spectroscopy (AES depth profiles. A blue-violet emission located at 430 nm was associated with intrinsic transitions between the bandgap of n-ZnO and p-GaN, the green-yellow emission at 550 nm mainly originating from the deep-level transitions of native defects in the n-ZnO and p-GaN surfaces, and the red emission at 610 nm emerging from the Ga-O interlayer due to interdiffusion at the n-ZnO/p-GaN interface. The above-mentioned emissions also supported the EL spectra of LEDs annealed at 700 °C under air, nitrogen, and oxygen atmospheres, respectively.

  12. Array of organic thin film transistors integrated with organic light emitting diodes on a plastic substrate

    International Nuclear Information System (INIS)

    Ryu, Gi-Seong; Choe, Ki-Beom; Song, Chung-Kun

    2006-01-01

    In order to demonstrate the possible application of an organic thin film transistor (OTFT) to a flexible active matrix organic light emitting diode (OLED) an array of 64 x 64 pixels was fabricated on a 4-in. size poly-ethylene-terephehalate substrate. Each pixel was composed of one OTFT integrated with one OLED. OTFTs successfully drove OLEDs by varying current in a wide range and some images were displayed on the array by emitting green light. The OTFTs used poly(4-vinylphenol) for the gate and pentacene for the semiconductor taking account compatibility with the PET substrate. The average mobility in the array was 0.2 cm 2 /V.s, which was reduced from 1.0 cm 2 /V.s in a single OTFT, and its variation over the entire substrate was 10%

  13. White-light-emitting supramolecular gels.

    Science.gov (United States)

    Praveen, Vakayil K; Ranjith, Choorikkat; Armaroli, Nicola

    2014-01-07

    Let there be light, let it be white: Recent developments in the use of chromophore-based gels as scaffolds for the assembly of white-light-emitting soft materials have been significant. The main advantage of this approach lies in the facile accommodation of selected luminescent components within the gel. Excitation-energy-transfer processes between these components ultimately generate the desired light output. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Color Rendering Index Thermal Stability Improvement of Glass-Based Phosphor-Converted White Light-Emitting Diodes for Solid-State Lighting

    Directory of Open Access Journals (Sweden)

    Chun-Chin Tsai

    2014-01-01

    Full Text Available High color rendering index performance has been required for phosphor-converted warm-white light-emitting diodes (PC-WWLEDs in lighting industry. The characteristics of low-temperature fabricated phosphor (yellow: Ce3+:YAG, green: Tb3+:YAG, and red: CaAlClSiN3:Eu2+ doped glass were presented for applications to high color rendering index warm-white-light-emitting diodes. Color coordinates (x, y = (0.36, 0.29, quantum yield (QY = 55.6%, color rending index (CRI = 85.3, and correlated color temperature (CCT = 3923 K were characterized. Glass-based PC-WWLEDs was found able to maintain good thermal stability for long-time high-temperature operation. QY decay, CRI remenance, and chromaticity shift were also analyzed for glass- and silicone-based high-power PC-WLEDs by thermal aging at 150°C and 250°C for industrial test standard’s aging time 1008 hours. Better than the silicone’s, thermal stability of glass-based PC-WLEDs has been improved. The resulted high color rendering index (CRI glass phosphor potentially can be used as a phosphor layer for high-performance and low-cost PC-WLEDs used in next-generation indoor solid-state lighting applications.

  15. Effects of multiple interruptions with trimethylindium-treatment in the InGaN/GaN quantum well on green light emitting diodes

    Science.gov (United States)

    Qiao, Liang; Ma, Zi-Guang; Chen, Hong; Wu, Hai-Yan; Chen, Xue-Fang; Yang, Hao-Jun; Zhao, Bin; He, Miao; Zheng, Shu-Wen; Li, Shu-Ti

    2016-10-01

    In this study, the influence of multiple interruptions with trimethylindium (TMIn)-treatment in InGaN/GaN multiple quantum wells (MQWs) on green light-emitting diode (LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence (PL) full-width at half maximum (FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence (EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204360 and 61210014), the Science and Technology Planning Projects of Guangdong Province, China (Grant Nos. 2014B050505020, 2015B010114007, and 2014B090904045), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20134407110008), the Guangzhou Municipal Science and Technology Project of Guangdong Province, China (Grant No. 2016201604030027), and the Zhongshan Science and Technology Project of Guangdong Province, China (Grant No. 2013B3FC0003).

  16. Green Lighting. Energy-efficient integrated lighting systems - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linhart, F.; Scartezzini, J.-L.

    2009-10-15

    The objective of the Green Lighting project was to develop a High Performance Integrated Lighting System, based on advanced technologies for day- and electric lighting, achieving a Lighting Power Density (LPD) that does not exceed 3 W/m{sup 2}. The project has revealed that Anidolic Daylighting Systems (ADS) are an ideal basis for High Performance Integrated Lighting Systems. Not only are they able to provide adequate illumination (i.e. sufficiently high illuminance) in office rooms during large fractions of normal office hours, under various sky conditions and over the entire year, but they are also highly appreciated by office occupants at the condition that glare control mechanisms are available. Complementary electric lighting is, however, still necessary to back up the ADS at times when there is insufficient daylight flux available. It was shown during this project, that the most interesting trade-offs between energy-efficiency and visual comfort are obtained by using a combination of ceiling-mounted directly emitting luminaires with very high optical efficiencies for ambient lighting and portable desk lamps for temporary task lighting. The most appropriate lamps for the ceiling-mounted luminaires are currently highly efficient fluorescent tubes, but white LED tubes can be considered a realistic option for the future. The most suitable light sources for desk lamps for temporary task lighting are Compact Fluorescent Lamps (CFLs) and white LED light bulbs. Based on the above-mentioned technologies, a High Performance Integrated Lighting System with a very low LPD has been developed over the last three years. The system has been set up in an office room of the LESO solar experimental building located on the EPFL campus; it has been tested intensively during a Post-Occupancy Evaluation (POE) study involving twenty human subjects. This study has revealed that the subjects' performance and subjective visual comfort was improved by the new system, compared to

  17. The Light-Emitting Diode as a Light Detector

    Science.gov (United States)

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  18. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    Energy Technology Data Exchange (ETDEWEB)

    Hammersley, S.; Dawson, P. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.

  19. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    International Nuclear Information System (INIS)

    Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.

    2015-01-01

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation

  20. Understanding the role of ultra-thin polymeric interlayers in improving efficiency of polymer light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Jim; Wang, Xuhua; Bradley, Donal D. C.; Kim, Ji-Seon, E-mail: ji-seon.kim@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, South Kensington Campus, Imperial College London, London SW7 2AZ (United Kingdom); Wright, Edward N.; Walker, Alison B. [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-05-28

    Insertion of ultra-thin polymeric interlayers (ILs) between the poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hole injection and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) light emission layers of polymer light emitting diodes (PLEDs) can significantly increase their efficiency. In this paper, we investigate experimentally a broad range of probable causes of this enhancement with an eye to determining which IL parameters have the most significant effects. The importance of hole injection and electron blocking was studied through varying the IL material (and consequently its electronic energy levels) for both PLED and hole-only diode structures. The role of IL conductivity was examined by introducing a varying level of charge-transfer doping through blending the IL materials with a strong electron-accepting small molecule in concentrations from 1% to 7% by weight. Depositing ILs with thicknesses below the exciton diffusion length of ∼15 nm allowed the role of the IL as a physical barrier to exciton quenching to be probed. IL containing PLEDs was also fabricated with Lumation Green Series 1300 (LG 1300) light emission layers. On the other hand, the PLEDs were modeled using a 3D multi-particle Kinetic Monte Carlo simulation coupled with an optical model describing how light is extracted from the PLED. The model describes charge carrier transport and interactions between electrons, holes, singlets, and triplets, with the current density, luminance, and recombination zone (RZ) locations calculated for each PLED. The model shows F8BT PLEDs have a narrow charge RZ adjacent to the anode, while LG 1300 PLEDs have a wide charge RZ that is evenly distributed across the light emitting layer. Varying the light emitting layer from F8BT to Lumation Green Series 1300, we therefore experimentally examine the dependence of the IL function, specifically in regard to anode-side exciton quenching, on the location of the RZ. We found an exponential dependence of

  1. Direct Growth of III-Nitride Nanowire-Based Yellow Light-Emitting Diode on Amorphous Quartz Using Thin Ti Interlayer

    KAUST Repository

    Prabaswara, Aditya

    2018-02-06

    Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

  2. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  3. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    The effect of various microlens parameters such as diameter and area fraction on light-extraction efficiency was systematically studied. Improvement of 4% in extraction efficiency was obtained by employing it on white light emitting diode. The area fraction of microlenses was increased up to 0.34 by reducing the spin speed.

  4. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    Science.gov (United States)

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede

  5. Broadband mid-infrared superlattice light-emitting diodes

    Science.gov (United States)

    Ricker, R. J.; Provence, S. R.; Norton, D. T.; Boggess, T. F.; Prineas, J. P.

    2017-05-01

    InAs/GaSb type-II superlattice light-emitting diodes were fabricated to form a device that provides emission over the entire 3-5 μm mid-infrared transmission window. Variable bandgap emission regions were coupled together using tunnel junctions to emit at peak wavelengths of 3.3 μm, 3.5 μm, 3.7 μm, 3.9 μm, 4.1 μm, 4.4 μm, 4.7 μm, and 5.0 μm. Cascading the structure recycles the electrons in each emission region to emit several wavelengths simultaneously. At high current densities, the light-emitting diode spectra broadened into a continuous, broadband spectrum that covered the entire mid-infrared band. When cooled to 77 K, radiances of over 1 W/cm2 sr were achieved, demonstrating apparent temperatures above 1000 K over the 3-5 μm band. InAs/GaSb type-II superlattices are capable of emitting from 3 μm to 30 μm, and the device design can be expanded to include longer emission wavelengths.

  6. Colour-tunable light-emitting diodes based on InP/GaP nanostructures

    International Nuclear Information System (INIS)

    Hatami, Fariba; Masselink, W Ted; Harris, James S

    2006-01-01

    We describe a novel colour-tunable light-emitting diode whose operation is based on direct band-gap emission from coupled configurations of InP quantum dots and quantum wells embedded in GaP. The control of the emission colour stems from a marked difference in the current dependence of intensities of two different emission processes. At lower currents, the emission is dominated by the 720 nm luminescence from the quantum dots and appears red; at higher currents, the emission is dominated by the 550 nm quantum-well luminescence and the perceived colour is green. Thus, we are able to tune the colour of such diodes from red to green by means of drive current. A multi-colour pixel can be realized by a single diode, with rapid switching between colour states to provide a range of colour mix

  7. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic light-emitting diodes.

    Science.gov (United States)

    Zhao, Yongbiao; Chen, Jiangshan; Ma, Dongge

    2013-02-01

    In this paper, highly efficient and simple monochrome blue, green, orange, and red organic light emitting diodes (OLEDs) based on ultrathin nondoped emissive layers (EMLs) have been reported. The ultrathin nondoped EML was constructed by introducing a 0.1 nm thin layer of pure phosphorescent dyes between a hole transporting layer and an electron transporting layer. The maximum external quantum efficiencies (EQEs) reached 17.1%, 20.9%, 17.3%, and 19.2% for blue, green, orange, and red monochrome OLEDs, respectively, indicating the universality of the ultrathin nondoped EML for most phosphorescent dyes. On the basis of this, simple white OLED structures are also demonstrated. The demonstrated complementary blue/orange, three primary blue/green/red, and four color blue/green/orange/red white OLEDs show high efficiency and good white emission, indicating the advantage of ultrathin nondoped EMLs on constructing simple and efficient white OLEDs.

  8. Fabrication and performance of ACTFEL display devices using manganese-doped zinc germanate as a green-emitting electroluminescent layer

    International Nuclear Information System (INIS)

    Kim, Joo Han; Yoon, Kyung Ho

    2010-01-01

    Alternating-current thin-film electroluminescent (ACTFEL) display devices fabricated using manganese-doped zinc germanate (Zn 2 GeO 4 :Mn) as a green-emitting electroluminescent layer material are described. The ACTFEL display devices were fabricated with a standard bottom emission structure having a multilayer stack of thin films in the metal/semiconductor/insulator/ metal (MSIM) configuration. The device was constructed on a transparent Corning glass substrate through which the emitted EL light passed. The Zn 2 GeO 4 :Mn emission layer was synthesized by using a RF magnetron sputter deposition method, followed by post-annealing at 700 .deg. C in air ambient for 1 hour. The obtained Zn 2 GeO 4 :Mn films were found to be polycrystalline with a rhombohedral crystal structure. A green emission spectrum with a maximum at approximately 538 nm was produced from the fabricated device. The chromaticity color coordinates of the EL emission were measured to be x = 0.308 and y = 0.657. The device demonstrated a sharp increase in the intensity of green EL emission upon increasing the AC peak voltage applied to the device above a threshold of 148 V.

  9. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    Directory of Open Access Journals (Sweden)

    Wenyan Liu

    2015-01-01

    Full Text Available The quantum dot-based light-emitting diodes (QD-LEDs were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM, and power efficiency (PE. The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to the low emission temperature coefficients of 0.022, 0.050, and 0.068 nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.

  10. Efficient and color-saturated inverted bottom-emitting organic light-emitting devices with a semi-transparent metal-assisted electron injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Meng-Huan, E-mail: kinneas.ac94g@nctu.edu.t [Department of Applied Chemistry, National Chiao Tung University, 210 R, CPT Building, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Wu, Chang-Yen [Department of Photonics, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chen, Teng-Ming [Department of Applied Chemistry, National Chiao Tung University, 210 R, CPT Building, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2011-01-15

    We report the development of highly efficient and color-saturated green fluorescent 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H, 11H-benzo[l]pyrano-[6,7,8-ij]quinolizin-11-one dye-doped inverted bottom-emitting organic light-emitting diode (IBOLED). This was enabled by the insertion of a silver (Ag) based semi-transparent metal-assisted electron injection layer between the ITO cathode and n-doped electron transporting layer. This IBOLED with ITO/Ag bilayer cathode with its synergistic microcavity effect achieved luminous efficiencies of 20.7 cd/A and 12.4 lm/W and a saturated CIE{sub x,y} of (0.22, 0.72) at 20 mA/cm{sup 2}, which are twice better than those of the conventional OLED and have over 60% improvement on IBOLED without ITO/Ag bilayer cathode.

  11. p-i-n Homojunction in Organic Light-Emitting Transistors

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Takenobu, Taishi; Sawabe, Kosuke; Tsuda, Satoshi; Yomogidao, Yohei; Yamao, Takeshi; Hotta, Shu; Adachi, Chihaya; Iwasa, Yoshihiro

    2011-01-01

    A new method for investigating light-emitting property in organic devices is demonstrated. We apply the ambipolar light-emitting transistors (LETS) to directly observe the recombination zone, and find a strong link between the transistor performance and the zone size. This finding unambiguously

  12. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  13. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    Science.gov (United States)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  14. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    OpenAIRE

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from lo...

  15. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    Science.gov (United States)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  16. Optimal nitrogen and phosphorus codoping carbon dots towards white light-emitting device

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wang, Yaling; Miao, Yanqin; Yang, Yongzhen, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); He, Yuheng; Liu, Xuguang, E-mail: yyztyut@126.com, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-08-22

    Through a one-step fast microwave-assisted approach, nitrogen and phosphorus co-doped carbon dots (N,P-CDs) were synthesized using ammonium citrate (AC) as a carbon source and phosphates as additive reagent. Under the condition of an optimal reaction time of 140 s, the influence of additive with different N and P content on fluorescent performance of N,P-CDs was further explored. It was concluded that high nitrogen content and moderate phosphorus content are necessary for obtaining high quantum yield (QY) N,P-CDs, among which the TAP-CDs (CDs synthesized using ammonium phosphate as additive reagent) show high quantum yield (QY) of 62% and red-green-blue (RGB) spectral composition of 51.67%. Besides, the TAP-CDs exhibit satisfying thermal stability within 180 °C. By virtue of good optical and thermal properties of TAP-CDs, a white light-emitting device (LED) was fabricated by combining ultraviolet chip with TAP-CDs as phosphor. The white LED emits bright warm-white light with the CIE chromaticity coordinate of (0.38, 0.35) and the corresponding color temperature (CCT) of 4450 K, indicating the potential of TAP-CDs phosphor in white LED.

  17. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu

    2015-12-22

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport layers built using organic materials and inorganic oxides. Herein, we report the infrared LEDs that use quantum-tuned materials for each of the hole-transporting, the electron-transporting, and the light-emitting layers. We successfully tailor the bandgap and band position of each CQD-based component to produce electroluminescent devices that exhibit emission that we tune from 1220 to 1622 nm. Devices emitting at 1350 nm achieve peak external quantum efficiency up to 1.6% with a low turn-on voltage of 1.2 V, surpassing previously reported all-inorganic CQD LEDs.

  18. Hybrid Light-Emitting Diode Enhanced With Emissive Nanocrystals

    DEFF Research Database (Denmark)

    Kopylov, Oleksii

    This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non-radiative e......This thesis investigates a new type of white light emitting hybrid diode, composed of a light emitting GaN/InGaN LED and a layer of semiconductor nanocrystals for color conversion. Unlike standard white LEDs, the device is configured to achieve high color conversion efficiency via non...... of the hybrid diode fabrication including process techniques for GaN LED and incorporation of the nanocrystals are presented with the emphasis on the differences with standard LED processing. Results and analysis of optical and electrical characterization including photoluminescence (PL), micro-PL, time......-resolved PL and electroluminescence (EL) together with current-voltage characteristics are presented to evaluate the device performance. A clear evidence of non-radiative energy transfer was seen in the carrier dynamics of both the LED and the nanocrystals when the quantum well – nanocrystals separation...

  19. The efficiency challenge of nitride light-emitting diodes for lighting

    KAUST Repository

    Weisbuch, Claude; Piccardo, Marco; Martinelli, Lucio; Iveland, Justin; Peretti, Jacques; Speck, James S.

    2015-01-01

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We discuss the challenges of light-emitting diodes in view of their application to solid-state lighting. The requirement is to at least displace the quite efficient fluorescent, sodium, and high

  20. Preparation and luminescence of green-emitting ZnAl{sub 2}O{sub 4}:Mn{sup 2+} phosphor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ing-Bang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chang, Yee-Shin [Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chen, Hao-Long [Department of Electronic Engineering, Kao Yuan University, Lujhu, Kaohsiung 821, Taiwan (China); Hwang, Ching Chiang [Department of Biotechnology, Mingdao University, Chang-Hua 52345, Taiwan (China); Jian, Chen-Jhu; Chen, Yu-Shiang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Tsai, Mu-Tsun, E-mail: mttsai@ms23.hinet.net [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China)

    2014-11-03

    Nanocrystalline Mn{sup 2+}-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Mn{sup 2+}) green-emitting phosphor films were deposited on silicon substrate by sol–gel spin coating and subsequent heat treatment up to 1000 °C. The effects of dopant concentration and heat treatment on the optical and structural properties were investigated. The variations in sol viscosity with time, film thickness with number of layers were also examined. Thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray microscopy, atomic force microscopy, and photoluminescence spectrum. Single-phase ZnAl{sub 2}O{sub 4} started to crystallize at around 600 °C, with a normal spinel structure. On annealing at 1000 °C, the films had smooth surfaces with a nanocrystalline structure. Under UV or visible light excitation, the phosphor films exhibited an intense green emission band peaking at around 512 nm, corresponding to the typical {sup 4}T{sub 1} → {sup 6}A{sub 1} transition of tetrahedral Mn{sup 2+} ions. The most intense green emission was obtained by exciting at 456 nm. The emission intensity of films was highly dependent upon the excitation wavelength, crystallinity, dopant content, and deposition conditions. The results show that the ZnAl{sub 2}O{sub 4}:Mn{sup 2+} films have good potential for use as a green phosphor for displays and/or white light-emitting diodes. - Highlights: • ZnAl2O4:Mn2 + thin film phosphors have been synthesized by a sol–gel process. • The most intense green emission was obtained by exciting at 456 nm. • Photoluminescence is highly dependent on the crystallinity and doping content. • Emission intensity can also be modulated by controlling the film thickness.

  1. Organic light emitting diodes on ITO-free polymer anodes

    Energy Technology Data Exchange (ETDEWEB)

    Fehse, Karsten; Schwartz, Gregor; Walzer, Karsten; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden, D-01062 Dresden (Germany)

    2007-07-01

    The high material cost of indium, being the main component of the commonly used indium-tin-oxide anodes (ITO) in organic light emitting diodes (OLEDs), is an obstacle for the production of efficient low-cost OLEDs. Therefore, new anode materials are needed for large scale OLED production. Recently, we demonstrated that the polymer PEDOT:PSS can substitute ITO as anode. Another highly conductive polymer is polyaniline (PANI) that provides 200 S/cm with a work function of 4.8 eV. In this study, we use PANI as anode for OLEDs (without ITO layer underneath the polymer) with electrically doped hole- and electron transport layers and intrinsic materials in between. Fluorescent blue (Spiro-DPVBi) as well as phosphorescent green (Ir(ppy){sub 3}) and red emitters (Ir(MDQ){sub 2}(acac)) were used for single colour and white OLEDs. Green single and double emission OLEDs achieve device efficiencies of 34 lm/W and 40.7 lm/W, respectively. The white OLED shows a power efficiency of 8.9 lm/W at 1000 cd/m{sup 2} with CIE coordinates of (0.42/0.39).

  2. Modulation of the photoluminescence in carbon dots through surface modification: from mechanism to white light-emitting diodes

    Science.gov (United States)

    Zhu, Jinyang; Shao, He; Bai, Xue; Zhai, Yue; Zhu, Yongsheng; Chen, Xu; Pan, Gencai; Dong, Biao; Xu, Lin; Zhang, Hanzhuang; Song, Hongwei

    2018-06-01

    Carbon dots (CDs) have emerged as a new type of fluorescent material because of their unique optical advantages, such as high photoluminescence quantum yields (QYs), excellent photo-stability, excitation-dependent emissions, and low toxicity. However, the photoluminescence mechanism for CDs remains unclear, which limits their further practical application. Here, CDs were synthesized via a solvothermal route from citric acid and urea. Through the oxidation and reduction treatment of pristine CDs, the origin of the photoluminescence and the involved mechanism were revealed. We found that the blue/green/red emissions originated from three diverse emitting states, i.e. the intrinsic state, and C=O- and C=N-related surface states, respectively. Based on the as-prepared CDs, a pH sensor depending on the radiometric luminescence detection was developed. Furthermore, we constructed CD/PVP (PVP, polyvinylpyrrolidone) composite films, which exhibited white light emission with photoluminescence QYs of 15.3%. The white light emission with different correlated color temperatures (CCTs), from 4807 K to 3319 K, was obtained by simply changing the amount of PVP solution. Benefiting from the white light-emitting solid-state films, single-component white light-emitting diodes were fabricated with an average color rendering index value (Ra) of 80.0, luminous efficiency of 10.2 lm W‑1, and good working stability, thus indicating a promising potential for practical lighting applications.

  3. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    International Nuclear Information System (INIS)

    Baek, H I; Lee, C H

    2008-01-01

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp 2 Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{4-(N,N-diphenylamino) phenyl}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A -1 (an external quantum efficiency of 8.5%) at 100 cd m -2 and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested

  4. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  5. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  6. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Santilli, Ruggero Maria

    1997-01-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out

  7. Does antimatter emit a new light?

    Energy Technology Data Exchange (ETDEWEB)

    Santilli, Ruggero Maria [Instituto per la Ricerca di Base (Italy)

    1997-08-15

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particles and antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus bypassing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out.

  8. Does antimatter emit a new light?

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1996-01-01

    Contemporary theories of antimatter have a number of insufficiencies which stimulated the recent construction of the new isodual theory based on a certain anti-isomorphic map of all (classical and quantum) formulations of matter called isoduality. In this note we show that the isodual theory predicts that antimatter emits a new light, called isodual light, which can be distinguished from the ordinary light emitted by matter via gravitational interactions (only). In particular, the isodual theory predicts that all stable antiparticles such as the isodual photon, the positron and the antiproton experience antigravity in the field of matter (defined as the reversal of the sign of the curvature tensor). The antihydrogen atom is therefore predicted to: experience antigravity in the field of Earth; emit the isodual photon; and have the same spectroscopy of the hydrogen atom, although subjected to an anti-isomorphic isodual map. In this note we also show that the isodual theory predicts that bound states of elementary particle sand antiparticles (such as the positronium) experience ordinary gravitation in both fields of matter and antimatter, thus by passing known objections against antigravity. A number of intriguing and fundamental, open theoretical and experimental problems of 'the new physics of antimatter' are pointed out. 16 refs

  9. Optical design of adjustable light emitting diode for different lighting requirements

    International Nuclear Information System (INIS)

    Lu Jia-Ning; Yu Jie; Tong Yu-Zhen; Zhang Guo-Yi

    2012-01-01

    Light emitting diode (LED) sources have been widely used for illumination. Optical design, especially freedom compact lens design is necessary to make LED sources applied in lighting industry, such as large-range interior lighting and small-range condensed lighting. For different lighting requirements, the size of target planes should be variable. In our paper we provide a method to design freedom lens according to the energy conservation law and Snell law through establishing energy mapping between the luminous flux emitted by a Lambertian LED source and a certain area of the target plane. The algorithm of our design can easily change the radius of each circular target plane, which makes the size of the target plane adjustable. Ray-tracing software Tracepro is used to validate the illuminance maps and polar-distribution maps. We design lenses for different sizes of target planes to meet specific lighting requirements. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Light-emitting device test systems

    Science.gov (United States)

    McCord, Mark; Brodie, Alan; George, James; Guan, Yu; Nyffenegger, Ralph

    2018-01-23

    Light-emitting devices, such as LEDs, are tested using a photometric unit. The photometric unit, which may be an integrating sphere, can measure flux, color, or other properties of the devices. The photometric unit may have a single port or both an inlet and outlet. Light loss through the port, inlet, or outlet can be reduced or calibrated for. These testing systems can provide increased reliability, improved throughput, and/or improved measurement accuracy.

  11. Blue-light emitting triazolopyridinium and triazoloquinolinium salts

    KAUST Repository

    Carboni, Valentina; Su, Xin; Qian, Hai; Aprahamian, Ivan; Credi, Alberto

    2017-01-01

    Compounds that emit blue light are of interest for applications that include optoelectronic devices and chemo/biosensing and imaging. The design and synthesis of small organic molecules that can act as high-efficiency deep-blue-light emitters

  12. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000 cd/m{sup 2} corresponding to a current efficiency of 110 cd/A, low efficiency roll-off with 21% at 10 000 cd/m{sup 2} and low turn on voltage of 2.4 V. Especially, the device showed very small color change with the variation of Δx = 0.02, Δy = 0.02 in the CIE 1931 coordinates as the viewing angle changes from 0° to 60°. The performance of the device is superior to that of the metal/metal cavity structured device.

  13. Analysis of chemical degradation mechanism of phosphorescent organic light emitting devices by laser-desorption/ionization time-of-flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rabelo de Moraes, Ines; Scholz, Sebastian; Luessem, Bjoern; Leo, Karl [Institut fuer Angewandte Photophysik, Technische Universitaet Dresden (Germany)

    2010-07-01

    Phosphorescent organic light emitting diodes (OLEDs) have attracted much interest for their potential application in full color flat-panel displays and as an alternative lighting source. However, low efficiency, and the short operation lifetime, in particular in the case of blue emitting devices, are the major limitations for the current OLEDs commercialization. In order to overcome these limitations, a deep knowledge about the aging and the degradation mechanism is required. Our work focuses on the chemical degradation mechanism of different iridium based emitter materials like FIrpic (light blue) and Ir(ppy)3 (green), commonly used in OLEDs. For this purpose, the devices were aged by electrical driving until the luminance reached 6% of the initial luminance. The laser-desorption/ionization time-of-flight mass spectrometry was used to determine specific degradation pathways.

  14. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    Science.gov (United States)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  15. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Jäger, Lars; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, Augsburg (Germany); Noguchi, Yutaka [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki (Japan); Center of Frontier Science, Chiba University, Chiba (Japan); Ishii, Hisao [Center of Frontier Science, Chiba University, Chiba (Japan)

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  16. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  17. The application of multispectral light detectors to gauge detonative events by means of their emitted light signature

    CSIR Research Space (South Africa)

    Olivier, Marius

    2016-09-01

    Full Text Available It is well known that reacting explosives emit light of varying intensity across the light spectrum. Measurement of this emitted light could have many applications, i.a. the creation of a database of characteristic light signatures at specific...

  18. White organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenow, Thomas Conrad

    2011-03-22

    Three approaches were taken in order to achieve reproducible and highly efficient white OLEDs with excellent colour quality. The first approach is based on the triplet harvesting concept. Otherwise unused triplet excitons are transferred from a fluorescent to a phosphorescent emitter with a smaller triplet energy. Because a blue emitter allowing for triplet transfer to a phosphorescent green emitter was not available, a model system for a three-colour white OLED was developed and investigated. This model device consists of the fluorescent blue emitter 4P-NPD and the phosphorescent emitters Ir(dhfpy){sub 2}acac and Ir(MDQ){sub 2}acac emitting in the yellow and red region, respectively. Here, it was shown that both phosphorescent emitters are excited by triplet diffusion and not by direct charge carrier recombination. The second approach is based on a hybrid white OLED with a single emission layer. This layer is a combination of a fluorescent blue and two phosphorescent emitters in a common matrix material. Because of the above mentioned lack of a blue emitter, which allows for triplet transfer to a green phosphorescent emitter, the concentrations of all emitters were chosen in a way that exciton transfer between the emitters was suppressed. The result is a non-radiative recombination of triplet excitons on the fluorescent blue emitter and an accordingly low quantum efficiency. However, a remarkable colour stability against varying brightness was achieved with this OLED. The most successful approach is based on a stacked OLED. Here, the concept of triplet harvesting is limited to triplet transfer between a fluorescent blue and a phosphorescent red emitter. The resulting spectral gap is filled by a full phosphorescent unit comprising the emission of a green and a yellow emitter, which is stacked on top of the triplet harvesting OLED. By individually optimising both units, it was possible to reach lighting relevant luminous efficacies up to {eta}{sub {nu}}=33 lm/W at

  19. High-efficiency tris(8-hydroxyquinoline)aluminum (Alq3) complexes for organic white-light-emitting diodes and solid-state lighting.

    Science.gov (United States)

    Pérez-Bolívar, César; Takizawa, Shin-ya; Nishimura, Go; Montes, Victor A; Anzenbacher, Pavel

    2011-08-08

    Combinations of electron-withdrawing and -donating substituents on the 8-hydroxyquinoline ligand of the tris(8-hydroxyquinoline)aluminum (Alq(3)) complexes allow for control of the HOMO and LUMO energies and the HOMO-LUMO gap responsible for emission from the complexes. Here, we present a systematic study on tuning the emission and electroluminescence (EL) from Alq(3) complexes from the green to blue region. In this study, we explored the combination of electron-donating substituents on C4 and C6. Compounds 1-6 displayed the emission tuning between 478 and 526 nm, and fluorescence quantum yield between 0.15 and 0.57. The compounds 2-6 were used as emitters and hosts in organic light-emitting diodes (OLEDs). The highest OLED external quantum efficiency (EQE) observed was 4.6%, which is among the highest observed for Alq(3) complexes. Also, the compounds 3-5 were used as hosts for red phosphorescent dopants to obtain white light-emitting diodes (WOLED). The WOLEDs displayed high efficiency (EQE up to 19%) and high white color purity (color rendering index (CRI≈85). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes

    Science.gov (United States)

    Li, Lu; Liang, Jiajie; Chou, Shu-Yu; Zhu, Xiaodan; Niu, Xiaofan; Zhibinyu; Pei, Qibing

    2014-03-01

    Highly efficient organic light emitting diodes (OLEDs) based on multiple layers of vapor evaporated small molecules, indium tin oxide transparent electrode, and glass substrate have been extensively investigated and are being commercialized. The light extraction from the exciton radiative decay is limited to less than 30% due to plasmonic quenching on the metallic cathode and the waveguide in the multi-layer sandwich structure. Here we report a flexible nanocomposite electrode comprising single-walled carbon nanotubes and silver nanowires stacked and embedded in the surface of a polymer substrate. Nanoparticles of barium strontium titanate are dispersed within the substrate to enhance light extraction efficiency. Green polymer OLED (PLEDs) fabricated on the nanocomposite electrode exhibit a maximum current efficiency of 118 cd/A at 10,000 cd/m2 with the calculated external quantum efficiency being 38.9%. The efficiencies of white PLEDs are 46.7 cd/A and 30.5%, respectively. The devices can be bent to 3 mm radius repeatedly without significant loss of electroluminescent performance. The nanocomposite electrode could pave the way to high-efficiency flexible OLEDs with simplified device structure and low fabrication cost.

  1. Efficiency Control in Iridium Complex-Based Phosphorescent Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Boucar Diouf

    2012-01-01

    Full Text Available Key factors to control the efficiency in iridium doped red and green phosphorescent light emitting diodes (PhOLEDs are discussed in this review: exciton confinement, charge trapping, dopant concentration and dopant molecular structure. They are not independent from each other but we attempt to present each of them in a situation where its specific effects are predominant. A good efficiency in PhOLEDs requires the triplet energy of host molecules to be sufficiently high to confine the triplet excitons within the emitting layer (EML. Furthermore, triplet excitons must be retained within the EML and should not drift into the nonradiative levels of the electron or hole transport layer (resp., ETL or HTL; this is achieved by carefully choosing the EML’s adjacent layers. We prove how reducing charge trapping results in higher efficiency in PhOLEDs. We show that there is an ideal concentration for a maximum efficiency of PhOLEDs. Finally, we present the effects of molecular structure on the efficiency of PhOLEDs using red iridium complex dopant with different modifications on the ligand to tune its highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO energies.

  2. Synthesis of WO{sub n}-WX{sub 2} (n=2.7, 2.9; X=S, Se) heterostructures for highly efficient green quantum dot light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Shikui; Tan, Chaoliang; Zhang, Xiao; Chen, Junze; Huang, Ying; Chen, Bo; Luo, Zhimin; Ma, Qinglang; Sindoro, Melinda; Zhang, Hua [Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore (Singapore); Yang, Xuyong [Luminous. Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (Singapore); Zhu, Yihan; Han, Yu [Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Zhang, Hao; Li, Hai; Huang, Xiao; Huang, Wei [Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) (China); Qi, Xiaoying [Singapore Institute of Manufacturing Technology, Singapore (Singapore); Sun, Xiao Wei [Luminous. Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (Singapore); Dept. of Electrical and Electronic Engineering, College of Engineering, Southern Univ. of Science and Technology, Nanshan, Shenzhen, Guangdong (China)

    2017-08-21

    Preparation of two-dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WO{sub n}-WX{sub 2} (n=2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WO{sub n} nanomaterials. The WO{sub n}-WX{sub 2} heterostructures are composed of WO{sub 2.9} nanoparticles (NPs) or WO{sub 2.7} nanowires (NWs) grown together with single- or few-layer WX{sub 2} nanosheets (NSs). As a proof-of-concept application, the WO{sub n}-WX{sub 2} heterostructures are used as the anode interfacial buffer layer for green quantum dot light-emitting diodes (QLEDs). The QLED prepared with WO{sub 2.9} NP-WSe{sub 2} NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes.

    Science.gov (United States)

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, GuanHua; Yam, ChiYung

    2016-07-21

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems.

  4. Very low roughness MAPLE-deposited films of a light emitting polymer: an alternative to spin coating

    International Nuclear Information System (INIS)

    Caricato, A P; Cesaria, M; Leo, C; Mazzeo, M; Genco, A; Tunno, T; Gigli, G; Martino, M; Carallo, S; Massafra, A

    2015-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique is emerging as an alternative route to conventional deposition methods of organic materials (solution-phase and thermal evaporation approaches). However, the high surface roughness of the films deposited by MAPLE makes this technique not compatible with applications in electronics and photonics. In this paper we report the deposition of MAPLE-films of a green light emitting polymer, commercially named ADS125GE, with remarkable low roughness values, down to about 10 nm at the thickness conventionally used in photonic devices (∼40 nm). This issue is discussed as a function of polymer concentration, target-substrate distance and substrate rotation based on AFM topography images, roughness estimation and optical (absorption and luminescent) measurements. In addition we have fabricated an organic light emitting diode with this technique using the best deposition parameters which guarantee the lowest roughness. These results open the way to MAPLE applications in organic photonics and opto-electronics. (paper)

  5. Smart design to resolve spectral overlapping of phosphor-in-glass for high-powered remote-type white light-emitting devices.

    Science.gov (United States)

    Lee, Jin Seok; Arunkumar, P; Kim, Sunghoon; Lee, In Jae; Lee, Hyungeui; Im, Won Bin

    2014-02-15

    The white light-emitting diode (WLED) is a state-of-the-art solid state technology, which has replaced conventional lighting systems due to its reduced energy consumption, its reliability, and long life. However, the WLED presents acute challenges in device engineering, due to its lack of color purity, efficacy, and thermal stability of the lighting devices. The prime cause for inadequacies in color purity and luminous efficiency is the spectral overlapping of red components with yellow/green emissions when generating white light by pumping a blue InGaN chip with yellow YAG:Ce³⁺ phosphor, where red phosphor is included, to compensate for deficiencies in the red region. An innovative strategy was formulated to resolve this spectral overlapping by alternatively arranging phosphor-in-glass (PiG) through cutting and reassembling the commercial red CaAlSiN₃:Eu²⁺ and green Lu₃Al₅O₁₂:Ce³⁺ PiG. PiGs were fabricated using glass frits with a low softening temperature of 600°C, which exhibited excellent thermal stability and high transparency, improving life time even at an operating temperature of 200°C. This strategy overcomes the spectral overlapping issue more efficiently than the randomly mixed and patented stacking design of multiple phosphors for a remote-type WLED. The protocol for the current design of PiG possesses excellent thermal and chemical stability with high luminous efficiency and color purity is an attempt to make smarter solid state lighting for high-powered remote-type white light-emitting devices.

  6. A Novel trans-1-(9-Anthryl)-2-phenylethene Derivative Containing a Phenanthroimidazole Unit for Application in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Zhou, Nonglin; Wang, Shirong; Xiao, Yin; Li, Xianggao

    2018-01-04

    Aryl-substituted phenanthroimidazoles (PIs) have attracted tremendous attention in the field of organic light-emitting diodes (OLEDs), because they are simple to synthesize and have excellent thermal properties, high photoluminescence quantum yields (PLQYs), and bipolar properties. Herein, a novel blue-green emitting material, (E)-2-{4'-[2-(anthracen-9-yl)vinyl]-[1,1'-biphenyl]-4-yl}-1-phenyl-1H-phenanthro[9,10-d]imidazole (APE-PPI), containing a t-APE [1-(9-anthryl)-2-phenylethene] core and a PI moiety was designed and synthesized. Owing to the PI skeleton, APE-PPI possesses high thermal stability and a high PLQY, and the compound exhibits bipolar transporting characteristics, which were identified by single-carrier devices. Nondoped blue-green OLEDs with APE-PPI as the emitting layer show emission at λ=508 nm, a full width at half maximum of 82 nm, a maximum brightness of 9042 cd m -2 , a maximum current efficiency of 2.14 cd A -1 , and Commission Internationale de L'Eclairage (CIE) coordinates of (0.26, 0.55). Furthermore, a white OLED (WOLED) was fabricated by employing APE-PPI as the blue-green emitting layer and 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) doped in tris-(8-hydroxyquinolinato)aluminum (Alq 3 ) as the red-green emitting layer. This WOLED exhibited a maximum brightness of 10029 cd m -2 , a maximum current efficiency of 16.05 cd A -1 , CIE coordinates of (0.47, 0.47), and a color rendering index (CRI) of 85. The high performance of APE-PPI-based devices suggests that the t-APE and PI combination can potentially be used to synthesize efficient electroluminescent materials for WOLEDs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Light extraction efficiency enhancement for fluorescent SiC based white light-emitting diodes

    DEFF Research Database (Denmark)

    Ou, Haiyan; Ou, Yiyu; Argyraki, Aikaterini

    Fluorescent SiC based white light-emitting diodes(LEDs) light source, as an innovative energy-efficient light source, would even have longer lifetime, better light quality and eliminated blue-tone effect, compared to the current phosphor based white LED light source. In this paper, the yellow...

  8. Lutzomyia spp. (Diptera: Psychodidae) response to olfactory attractant- and light emitting diode-modified Mosquito Magnet X (MM-X) traps.

    Science.gov (United States)

    Mann, Rajinder S; Kaufman, Phillip E; Butler, Jerry F

    2009-09-01

    Mosquito Magnet-X traps were modified for use with blue, green, red, and blue-green-red light-emitting diodes and olfactory attractants to determine the response of Lutzomyia shannoni (Dyar) and Lutzomyia vexator (Coquillett) (Diptera: Psychodidae) field populations to these attractants. Red and blue-green-red-baited traps captured the highest numbers of Lu. shannoni and Lu. vexator, respectively, although, there were no significant differences between the colors. Baiting the traps with CO, attracted significantly higher numbers of Lu. shannoni but showed no effect on Lu. vexator capture. In comparison with CO, alone, Lu. shannoni preferred 1-octen-3-ol and 1-hexen-3-ol (0.05 g per trap) in combination with CO.

  9. Optimization of white organic light emitting diodes based on emitting layer charge carrier conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Baek, H I; Lee, C H [School of Electrical Engineering and Computer Science and Inter-University Semiconductor Research Center, Seoul National University, Seoul 151-744 (Korea, Republic of)], E-mail: hibaek75@snu.ac.kr

    2008-05-21

    We have fabricated white organic light emitting diodes (OLEDs) with multi-emitting layer (EML) structures in which 4,4'-N,N'-dicarbazole-biphenyl (CBP) layers doped with the phosphorescent dopants fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3')iridium(acetylacetonate) (btp{sub 2}Ir(acac)) and the fluorescent dopant 4,4'-bis[2-{l_brace}4-(N,N-diphenylamino) phenyl{r_brace}vinyl]biphenyl (DPAVBi) were used as green (G), red (R) and blue (B) EMLs, respectively. A higher efficiency was expected with the R/G/B EML sequence from the hole transport layer interface than with the G/R/B sequence because of the differences in the charge carrier conduction properties of the EMLs doped with phosphorescent dopants and the luminance balance between the phosphorescent and fluorescent emissions. A high efficiency of 18.3 cd A{sup -1} (an external quantum efficiency of 8.5%) at 100 cd m{sup -2} and good colour stability were achieved with the R/G/B EML sequence as expected, with an additional non-doped CBP interlayer used between the G and B EMLs. In addition, the OLED with this sequence was found to have the longest lifetime of the white devices we tested.

  10. Enhanced quantum efficiency in blue-emitting polymer/dielectric nanolayer nanocomposite light-emitting devices

    International Nuclear Information System (INIS)

    Park, Jong Hyeok; Lim, Yong Taik; Park, O Ok; Yu, Jae-Woong; Kim, Jai Kyeong; Kim, Young Chul

    2004-01-01

    Light-emitting devices based on environmentally stable, blue-emitting polymer/dielectric nanolayer nanocomposites were fabricated by blending poly(di-octylfluorene) (PDOF) with organo-clay. By reducing the excimer formation that leads to long wavelength tails, the photoluminescence (PL) and electroluminescence (EL) color purity of the device was enhanced. When a conjugated polymer/dielectric nanolayer nanocomposite is applied to an EL device, we expect an electronic structure similar to the well-known quantum well in small nanodomains. The ratio of PDOF/organo-clay was regulated from 2:1 to 0.5:1 (w/w). The light-emitting device of 0.5:1 (w/w) blend demonstrated the highest quantum efficiency (QE), 0.72% (ph/el), which is ∼500 times higher value compared with that of the pure PDOF layer device. However, the driving voltage of the nanocomposite devices tended to increase with increasing organo-clay content

  11. Study of photophysical processes in organic light-emitting diodes based on light-emission profile reconstruction

    NARCIS (Netherlands)

    Carvelli, M.

    2012-01-01

    Organic light-emitting diodes (OLEDs) are emerging as a promising option for energy-efficient, flexible light sources. A key factor that needs to be measured and controlled is the shape of the emission profile, i.e. the spatial distribution of the emitting excitons across the active layer thickness.

  12. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn; Liu, Bin; Wang, Lianhui [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Shi, Hongying [Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China); Huang, Wei, E-mail: iamdirector@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816 (China)

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using δ-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  13. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes

    Science.gov (United States)

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-09-01

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

  14. Blue Light Emitting Diodes for Optical Stimulation of Quartz in Retrospective Dosimetry and Dating (invited paper)

    International Nuclear Information System (INIS)

    Botter-Jensen, L.; Duller, G.A.T.; Murray, A.S.; Banerjee, D.

    1999-01-01

    Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination of the dependence of the blue LED OSL on preheat temperature, it is deduced that there is no evidence that the blue LEDs stimulate deep traps in a different manner from broadband filtered light. It is concluded that blue LEDs offer a practical alternative to existing stimulation sources. They have the significant advantages that the life-time is indefinite, and the output can be controlled electronically; this allows the power to be readily controlled by software. Unlike a filtered light source, there are no electromechanical parts, and the switch on/off times are about 10 times faster than a shutter. Finally, preliminary results from ramping the blue light power output with time are demonstrated. It is shown that this technique enables the separation of OSL components with differing stimulation rates. (author)

  15. Si light-emitting device in integrated photonic CMOS ICs

    Science.gov (United States)

    Xu, Kaikai; Snyman, Lukas W.; Aharoni, Herzl

    2017-07-01

    The motivation for integrated Si optoelectronics is the creation of low-cost photonics for mass-market applications. Especially, the growing demand for sensitive biochemical sensors in the environmental control or medicine leads to the development of integrated high resolution sensors. Here CMOS-compatible Si light-emitting device structures are presented for investigating the effect of various depletion layer profiles and defect engineering on the photonic transition in the 1.4-2.8 eV. A novel Si device is proposed to realize both a two-terminal Si-diode light-emitting device and a three-terminal Si gate-controlled diode light-emitting device in the same device structure. In addition to the spectral analysis, differences between two-terminal and three-terminal devices are discussed, showing the light emission efficiency change. The proposed Si optical source may find potential applications in micro-photonic systems and micro-optoelectro-mechanical systems (MOEMS) in CMOS integrated circuitry.

  16. Improvement in light-extraction efficiency of light emitting diode ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... emitting diode (OLED) can be enhanced by using light- extraction ... to grow, ω should posses a positive value, which is possible only when ∂φ/∂h < 0, .... To detect small changes, first, the source LED was sta- bilized by ...

  17. Solution processed multilayer red, green and blue phosphorescent organic light emitting diodes using carbazole dendrimer as a host

    International Nuclear Information System (INIS)

    Hasan, Zainal Abidin; Woon, Kai Lin; Wong, Wah Seng; Ariffin, Azhar; Chen, Show-An

    2017-01-01

    4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl, a novel carbazole dendrimer, has been synthesized. This compound shows an excellent thermal stability with a high glass transition temperature of 283 °C and decomposition temperature of 487 °C. Density functional theory is used to investigate the frontier orbitals. It was found that the Highest Occupied Molecular Orbital and the Lowest Unoccupied Molecular Orbital levels of 4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl are nearly degenerate to the next highest or lowest frontier orbitals. The electron rich outer dendrons along with Highest Occupied Molecular Orbital level of 5.24 eV as determined from cyclic voltammetry makes 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2, 2'-dimethylbiphenyl a good hole transporting material. This compound also shows a triplet energy of 2.83 eV. Solution processable multilayer red, green and blue phosphorescent organic light emitting diodes are fabricated having 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl) carbazol-9-yl)-2,2'-dimethylbiphenyl as a hole transporting host. It was found that the CIE-coordinates remain constant within a wide range of brightness.

  18. Degradation of light emitting diodes: a proposed methodology

    International Nuclear Information System (INIS)

    Koh, Sau; Vam Driel, Willem; Zhang, G.Q.

    2011-01-01

    Due to their long lifetime and high efficacy, light emitting diodes have the potential to revolutionize the illumination industry. However, self heat and high environmental temperature which will lead to increased junction temperature and degradation due to electrical overstress can shorten the life of the light emitting diode. In this research, a methodology to investigate the degradation of the LED emitter has been proposed. The epoxy lens of the emitter can be modelled using simplified Eyring methods whereas an equation has been proposed for describing the degradation of the LED emitters. (semiconductor devices)

  19. Green LED as an Effective Light Source for Curing Acrylate-Based Dental Resins in Combination with Irgacure 784

    Directory of Open Access Journals (Sweden)

    Katalin Bukovinszky

    2018-01-01

    Full Text Available Low intensity green light emitting diodes (LED were shown to be an effective light source to induce the photopolymerization of an acrylate-based photocurable dental restorative resin mixture of bisphenol A glycerolate dimethacrylate (BisGMA, triethylene glycol dimethacrylate (TEGDMA, and diurethane dimethacrylate (UDMA, in combination with fluorinated diaryl titanocene (Irgacure 784. Dental matrices were prepared by the LED light source at different intensities. The mechanical properties, such as Vickers microhardness, compressive strength, diametric tensile strength, flexural strength, and E-modulus of the created samples, were investigated. The kinetics of the photopolymerization was followed by Raman spectroscopy and conversion values were determined. It was found that, despite its narrow-emission range centered at a wavelength of 531 nm, the green LED light source is suitable for the preparation of dental matrices with good mechanical properties and high conversion values.

  20. New Materials and Device Designs for Organic Light-Emitting Diodes

    Science.gov (United States)

    O'Brien, Barry Patrick

    Research and development of organic materials and devices for electronic applications has become an increasingly active area. Display and solid-state lighting are the most mature applications and, and products have been commercially available for several years as of this writing. Significant efforts also focus on materials for organic photovoltaic applications. Some of the newest work is in devices for medical, sensor and prosthetic applications. Worldwide energy demand is increasing as the population grows and the standard of living in developing countries improves. Some studies estimate as much as 20% of annual energy usage is consumed by lighting. Improvements are being made in lightweight, flexible, rugged panels that use organic light emitting diodes (OLEDs), which are particularly useful in developing regions with limited energy availability and harsh environments. Displays also benefit from more efficient materials as well as the lighter weight and ruggedness enabled by flexible substrates. Displays may require different emission characteristics compared with solid-state lighting. Some display technologies use a white OLED (WOLED) backlight with a color filter, but these are more complex and less efficient than displays that use separate emissive materials that produce the saturated colors needed to reproduce the entire color gamut. Saturated colors require narrow-band emitters. Full-color OLED displays up to and including television size are now commercially available from several suppliers, but research continues to develop more efficient and more stable materials. This research program investigates several topics relevant to solid-state lighting and display applications. One project is development of a device structure to optimize performance of a new stable Pt-based red emitter developed in Prof Jian Li's group. Another project investigates new Pt-based red, green and blue emitters for lighting applications and compares a red/blue structure with a red/green

  1. Luminescence properties of Ca2 Ga2 SiO7 :RE phosphors for UV white-light-emitting diodes.

    Science.gov (United States)

    Jiao, Mengmeng; Lv, Wenzhen; Lü, Wei; Zhao, Qi; Shao, Baiqi; You, Hongpeng

    2015-03-16

    A series of Eu(2+) -, Ce(3+) -, and Tb(3+) -doped Ca2 Ga2 SiO7 phosphors is synthesized by using a high-temperature solid-state reaction. The powder X-ray diffraction and structure refinement data indicate that our prepared phosphors are single phased and the phosphor crystalizes in a tetrahedral system with the ${P\\bar 42m}$ (113) space group. The Eu(2+) - and Ce(3+) -doped phosphors both have broad excitation bands, which match well with the UV light-emitting diodes chips. Under irradiation of λ=350 nm, Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) have green and blue emissions, respectively. Luminescence of Ca2 Ga2 SiO7 :Tb(3+) , Li(+) phosphor varies with the different Tb(3+) contents. The thermal stability and energy-migration mechanism of Ca2 Ga2 SiO7 :Eu(2+) are also studied. The investigation results indicate that the prepared Ca2 Ga2 SiO7 :Eu(2+) and Ca2 Ga2 SiO7 :Ce(3+) , Li(+) samples show potential as green and blue phosphors, respectively, for UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. White electroluminescence from ZnO nanorods/p-GaN heterojunction light-emitting diodes under reverse bias

    International Nuclear Information System (INIS)

    Zhang, Lichun; Li, Qingshan; Qu, Chong; Zhang, Zhongjun; Huang, Ruizhi; Zhao, Fengzhou

    2013-01-01

    Heterojunction light-emitting diodes (LEDs) based on arrays of ZnO nanorods were fabricated on p-GaN films by the hydrothermal method. Without any phosphors, white-light electroluminescence (EL) from ZnO nanorods/p-GaN heterojunction LEDs operated at reverse breakdown bias was observed. The EL spectra are composed of an ultraviolet (UV) emission centered at 382 nm, a blue light located at 431 nm and a broadband yellow–green light at around 547 nm, which originated from band-edge emission in ZnO, the Mg acceptor levels in p-GaN and the deep-level states near the ZnO/GaN interface, respectively. The chromaticity coordinates of EL spectrum are very close to the (0.333, 0.333) of standard white light. The origin of these emissions has been discussed and the tunneling effect in the interface is probably the mechanism to explain EL emission. (paper)

  3. High performance tunnel injection InGaN/GaN quantum Dot light emitting diodes emitting in the green (λ=495nm)

    KAUST Repository

    Zhang, Meng

    2011-05-01

    InGaN/GaN self-organized quantum dots with density of (2-5)×10 10 cm-2, internal quantum efficiency of 32% and a reduced recombination lifetime of 0.6 ns were grown by plasma assisted molecular beam epitaxy. The photoluminescence spectra of the dots peak at 495 nm at 300 K. The characteristics of tunnel injection InGaN/GaN quantum dot light emitting diodes are presented. The current density at maximum efficiency is 90.2 A/cm 2, which is superior to equivalent multiquantum well devices. © 2010 Elsevier B.V. All rights reserved.

  4. A new light emitting diode-light emitting diode portable carbon dioxide gas sensor based on an interchangeable membrane system for industrial applications.

    Science.gov (United States)

    de Vargas-Sansalvador, I M Pérez; Fay, C; Phelan, T; Fernández-Ramos, M D; Capitán-Vallvey, L F; Diamond, D; Benito-Lopez, F

    2011-08-12

    A new system for CO(2) measurement (0-100%) based on a paired emitter-detector diode arrangement as a colorimetric detection system is described. Two different configurations were tested: configuration 1 (an opposite side configuration) where a secondary inner-filter effect accounts for CO(2) sensitivity. This configuration involves the absorption of the phosphorescence emitted from a CO(2)-insensitive luminophore by an acid-base indicator and configuration 2 wherein the membrane containing the luminophore is removed, simplifying the sensing membrane that now only contains the acid-base indicator. In addition, two different instrumental configurations have been studied, using a paired emitter-detector diode system, consisting of two LEDs wherein one is used as the light source (emitter) and the other is used in reverse bias mode as the light detector. The first configuration uses a green LED as emitter and a red LED as detector, whereas in the second case two identical red LEDs are used as emitter and detector. The system was characterised in terms of sensitivity, dynamic response, reproducibility, stability and temperature influence. We found that configuration 2 presented a better CO(2) response in terms of sensitivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A 3 W High-Voltage Single-Chip Green Light-Emitting Diode with Multiple-Cells Network

    Directory of Open Access Journals (Sweden)

    W. Wang

    2015-01-01

    Full Text Available A parallel and series network structure was introduced into the design of the high-voltage single-chip (HV-SC light-emitting diode to inhibit the effect of current crowding and to improve the yield. Using such a design, a 6.6×5 mm2 large area LED chip of 24 parallel stages was demonstrated with 3 W light output power (LOP at the current of 500 mA. The forward voltage was measured to be 83 V with the same current injection, corresponding to 3.5 V for a single stage. The LED chip’s average thermal resistance was identified to be 0.28 K/W by using infrared thermography analysis.

  6. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature.

    Science.gov (United States)

    Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young

    2016-10-01

    This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.

  7. White organic light emitting diodes based on fluorene-carbazole dendrimers

    International Nuclear Information System (INIS)

    Usluer, Özlem; Demic, Serafettin; Kus, Mahmut; Özel, Faruk; Serdar Sariciftci, Niyazi

    2014-01-01

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m 2 and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films

  8. Adaptation of light-harvesting functions of unicellular green algae to different light qualities.

    Science.gov (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2018-05-28

    Oxygenic photosynthetic organisms perform photosynthesis efficiently by distributing captured light energy to photosystems (PSs) at an appropriate balance. Maintaining photosynthetic efficiency under changing light conditions requires modification of light-harvesting and energy-transfer processes. In the current study, we examined how green algae regulate their light-harvesting functions in response to different light qualities. We measured low-temperature time-resolved fluorescence spectra of unicellular green algae Chlamydomonas reinhardtii and Chlorella variabilis cells grown under different light qualities. By observing the delayed fluorescence spectra, we demonstrated that both types of green algae primarily modified the associations between light-harvesting chlorophyll protein complexes (LHCs) and PSs (PSII and PSI). Under blue light, Chlamydomonas transferred more energy from LHC to chlorophyll (Chl) located far from the PSII reaction center, while energy was transferred from LHC to PSI via different energy-transfer pathways in Chlorella. Under green light, both green algae exhibited enhanced energy transfer from LHCs to both PSs. Red light induced fluorescence quenching within PSs in Chlamydomonas and LHCs in Chlorella. In Chlorella, energy transfer from PSII to PSI appears to play an important role in balancing excitation between PSII and PSI.

  9. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China and School of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Zhao, De Gang, E-mail: dgzhao@red.semi.ac.cn; Jiang, De Sheng; Chen, Ping; Liu, Zong Shun; Zhu, Jian Jun; Li, Xiang; Shi, Ming; Zhao, Dan Mei [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Liu, Jian Ping; Zhang, Shu Ming; Wang, Hui; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2015-11-15

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may become significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed.

  10. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Liu, Wei; Zhao, De Gang; Jiang, De Sheng; Chen, Ping; Liu, Zong Shun; Zhu, Jian Jun; Li, Xiang; Shi, Ming; Zhao, Dan Mei; Liu, Jian Ping; Zhang, Shu Ming; Wang, Hui; Yang, Hui

    2015-01-01

    The electroluminescence (EL) spectra of blue–green light emitting InGaN/GaN multiple quantum well (MQW) structures grown via metal-organic chemical vapor deposition are investigated. With increasing In content in InGaN well layers, the peak energy redshifts, the emission intensity reduces and the inhomogeneous broadening of the luminescence band increases. In addition, it is found that the EL spectra shrink with increasing injection current at low excitation condition, which may be ascribed to both Coulomb screening of polarization field and carrier transferring from shallower localization states to the deeper ones, while at high currents the state-filling effect in all localization states may become significant and lead to a broadening of EL spectra. However, surprisingly, for the MQW sample with much higher In content, the EL spectral bandwidth can be almost unchanged with increasing current at the high current range, since a large number of carriers may be captured by the nonradiative recombination centers distributed outside the localized potential traps and the state-filling effect in the localization states is suppressed

  11. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    Science.gov (United States)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  12. Interference phenomenon determines the color in an organic light emitting diode

    Science.gov (United States)

    Granlund, Thomas; Pettersson, Leif A. A.; Anderson, Mats R.; Inganäs, Olle

    1997-06-01

    We report on electroluminescence from two-layer organic diodes made of poly(3-methyl-4-octylthiophene) and 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole films between electrodes of indium tin oxide and Ca/Al. The diodes emitted light in the green-blue range; the electroluminescence spectra varied between diodes with different thicknesses of the polymer and molecular layers. The optical phenomena were simulated with a model accounting for interference effects; simulated results showed that the electroluminescence from the organic diode can be due neither to luminescence of the polymer nor of the molecular layer. These model simulations, together with electrochemical measurements, can be interpreted as evidence for an indirect optical transition at the polymer/molecule interface that only occurs in a strong electric field. We label this transition an electroplex.

  13. Doping of nano structures for light emitting diode applications

    International Nuclear Information System (INIS)

    Han, S. W.; Yoo, H. J.; Jeong, E. S.; Park, S. H.

    2006-04-01

    Lighting Emitting Diodes (LED) have been widely studied and developed for practical applications and the LED market in the world have been dramatically expended. GaN-based LEDs are mostly used. However, for diverse application, we should first solved several problems in the GaN-based LEDs, thermal heating effects and low light emitting efficiency. The thermal heating effects reduce the life time of LEDs and the low light emitting efficiency are disadvantageous in competition with electric lights. In this project, we studied the possibility of ZnO nanomaterials as LEDs. We have developed a techniques to fabricated reproducible ZnO nanorod arrays on various substrates with 40 - 100 nm diameters. We have successfully fabricated two-dimensional ZnO film growth on one-dimensional nanorods. We have also systematically studied ZnO nanorod growth on GaN and Al 2 O 3 substrated with different proton treatments to understand the ZnO nanorod growth mechanism. These techniques will be used to develop p-ZnO/n-ZnO nanomaterials as LEDs

  14. Spin-polarized light-emitting diodes based on organic bipolar spin valves

    Science.gov (United States)

    Vardeny, Zeev Valentine; Nguyen, Tho Duc; Ehrenfreund, Eitan Avraham

    2017-10-25

    Spin-polarized organic light-emitting diodes are provided. Such spin-polarized organic light-emitting diodes incorporate ferromagnetic electrodes and show considerable spin-valve magneto-electroluminescence and magneto-conductivity responses, with voltage and temperature dependencies that originate from the bipolar spin-polarized space charge limited current.

  15. Silicon light-emitting diodes and lasers photon breeding devices using dressed photons

    CERN Document Server

    Ohtsu, Motoichi

    2016-01-01

    This book focuses on a novel phenomenon named photon breeding. It is applied to realizing light-emitting diodes and lasers made of indirect-transition-type silicon bulk crystals in which the light-emission principle is based on dressed photons. After presenting physical pictures of dressed photons and dressed-photon phonons, the principle of light emission by using dressed-photon phonons is reviewed. A novel phenomenon named photon breeding is also reviewed. Next, the fabrication and operation of light emitting diodes and lasers are described The role of coherent phonons in these devices is discussed. Finally, light-emitting diodes using other relevant crystals are described and other relevant devices are also reviewed.

  16. Organic bistable light-emitting devices

    Science.gov (United States)

    Ma, Liping; Liu, Jie; Pyo, Seungmoon; Yang, Yang

    2002-01-01

    An organic bistable device, with a unique trilayer structure consisting of organic/metal/organic sandwiched between two outmost metal electrodes, has been invented. [Y. Yang, L. P. Ma, and J. Liu, U.S. Patent Pending, U.S. 01/17206 (2001)]. When the device is biased with voltages beyond a critical value (for example 3 V), the device suddenly switches from a high-impedance state to a low-impedance state, with a difference in injection current of more than 6 orders of magnitude. When the device is switched to the low-impedance state, it remains in that state even when the power is off. (This is called "nonvolatile" phenomenon in memory devices.) The high-impedance state can be recovered by applying a reverse bias; therefore, this bistable device is ideal for memory applications. In order to increase the data read-out rate of this type of memory device, a regular polymer light-emitting diode has been integrated with the organic bistable device, such that it can be read out optically. These features make the organic bistable light-emitting device a promising candidate for several applications, such as digital memories, opto-electronic books, and recordable papers.

  17. Investigations of thin p-GaN light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  18. Exciplex elimination in an organic light-emitting diode based on a fluorene derivative by inserting 4,4'-N,N'-dicarbazole-biphenylinto donor/acceptor interface

    International Nuclear Information System (INIS)

    Wei, Zhang; Jun-Sheng, Yu; Jiang, Huang; Ya-Dong, Jiang; Qing, Zhang; Kang-Li, Cao

    2010-01-01

    Organic light-emitting diodes (OLEDs) composed of a novel fluorene derivative of 2,3-bis(9,9-dihexyl-9H-fluoren-2-yl)-6,7-difluoroquinoxaline (F2Py) were fabricated, and exciplex emission was observed in the device. To depress the exciplex in an OLED for pure colour light emission, 4, 4'-N,N'-dicarbazole-biphenyl (CBP) was inserted as a separator at the donor/acceptor interface. It was found that the device without the CBP layer emitted a green light peaking at 542 nm from the exciplex and a shoulder peak about 430 nm from F2Py. In contrast, the OLED with CBP layer emitted only a blue light peak at about 432 nm from F2Py. Device efficiencies were calculated by a simulative mode in an injection controlled type mechanism, and the results showed that exciplexes yield much lower quantum efficiency than excitons. The device with CBP has a higher power efficiency as no exciplex was present. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. White organic light emitting diodes based on fluorene-carbazole dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Usluer, Özlem, E-mail: usluerozlem@yahoo.com.tr [Department of Chemistry, Muğla Sıtkı Koçman University, 48000 Muğla (Turkey); Demic, Serafettin [Department of Materials Science and Engineering, Izmir Katip Çelebi University, 35620 Çiğli, Izmir (Turkey); Kus, Mahmut, E-mail: mahmutkus1@gmail.com [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Özel, Faruk [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Serdar Sariciftci, Niyazi [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz (Austria)

    2014-02-15

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m{sup 2} and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films.

  20. Solid State pH Sensor Based on Light Emitting Diodes (LED) As Detector Platform

    Science.gov (United States)

    Lau, King Tong; Shepherd, R.; Diamond, Danny; Diamond, Dermot

    2006-01-01

    A low-power, high sensitivity, very low-cost light emitting diode (LED)-based device developed for low-cost sensor networks was modified with bromocresol green membrane to work as a solid-state pH sensor. In this approach, a reverse-biased LED functioning as a photodiode is coupled with a second LED configured in conventional emission mode. A simple timer circuit measures how long (in microsecond) it takes for the photocurrent generated on the detector LED to discharge its capacitance from logic 1 (+5 V) to logic 0 (+1.7 V). The entire instrument provides an inherently digital output of light intensity measurements for a few cents. A light dependent resistor (LDR) modified with similar sensor membrane was also used as a comparison method. Both the LED sensor and the LDR sensor responded to various pH buffer solutions in a similar way to obtain sigmoidal curves expected of the dye. The pKa value obtained for the sensors was found to agree with the literature value.

  1. All-Quantum-Dot Infrared Light-Emitting Diodes

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Liu, Mengxia; Yuan, Mingjian; Ip, Alexander H.; Ahmed, Osman S.; Levina, Larissa; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Colloidal quantum dots (CQDs) are promising candidates for infrared electroluminescent devices. To date, CQD-based light-emitting diodes (LEDs) have employed a CQD emission layer sandwiched between carrier transport

  2. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  3. Fabrication of full-color GaN-based light-emitting diodes on nearly lattice-matched flexible metal foils.

    Science.gov (United States)

    Kim, Hyeryun; Ohta, Jitsuo; Ueno, Kohei; Kobayashi, Atsushi; Morita, Mari; Tokumoto, Yuki; Fujioka, Hiroshi

    2017-05-18

    GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.

  4. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    International Nuclear Information System (INIS)

    Pereira, D.; Pinto, A.; Califórnia, A.; Gomes, J.; Pereira, L.

    2016-01-01

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  5. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes.

    Science.gov (United States)

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-09-19

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at ~ 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at ~ 5 V, the highest luminance (160 cd/m 2 ) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

  6. Early history, discovery, and expression of Aequorea green fluorescent protein, with a note on an unfinished experiment.

    Science.gov (United States)

    Tsuji, Frederick I

    2010-08-01

    The bioluminescent hydromedusan jellyfish, Aequorea victoria, emits a greenish light (lambda(max) = 508 nm) when stimulated electrically or mechanically. The light comes from photocytes located along the margin of its umbrella. The greenish light depends on two intracellular proteins working in consort: aequorin (21.4 kDa) and a green fluorescent protein (27 kDa). An excited state green fluorescent protein molecule results, which, on returning to the ground state, emits a greenish light. Similarly, a green light emission may be induced in the green fluorescent protein by exposing it to ultraviolet or blue light. Because the green light can be readily detected under a fluorescence microscope, the green fluorescent protein, tagged to a protein of interest, has been used widely as a marker to locate proteins in cells and to monitoring gene expression. This article reviews the work that took place leading to the discovery, cloning, and expression of the green fluorescent protein, with a note on an unfinished experiment. (c) 2010 Wiley-Liss, Inc.

  7. Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

    Science.gov (United States)

    Wu, Shengfan; Li, Sihua; Sun, Qi; Huang, Chenchao; Fung, Man-Keung

    2016-05-01

    Ultrathin emissive layers (UEMLs) of phosphorescent materials with a layer thickness of less than 0.3 nm were introduced for high-efficiency organic light-emitting diodes (OLEDs). All the UEMLs for white OLEDs can be prepared without the use of interlayers or spacers. Compared with devices fabricated with interlayers inserted in-between the UEMLs, our spacer-free structure not only significantly improves device efficiency, but also simplifies the fabrication process, thus it has a great potential in lowering the cost of OLED panels. In addition, its spacer-free structure decreases the number of interfaces which often introduce unnecessary energy barriers in these devices. In the present work, UEMLs of red, green and blue-emitting phosphorescent materials and yellow and blue phosphorescent emitters are utilized for the demonstration of spacer-free white OLEDs. Upon optimization of the device structure, we demonstrated spacer-free and simple-structured white-emitting OLEDs with a good device performance. The current and power efficiencies of our white-emitting devices are as high as 56.0 cd/A and 55.5 lm/W, respectively. These efficiencies are the highest ever reported for OLEDs fabricated with the UEML approach.

  8. Advanced light emitting device structures for optoelectronic applications

    International Nuclear Information System (INIS)

    Kovac, J.

    2002-01-01

    Several factors are driving the recent development of light emitting devices (LED,s). The most important ones are brightness, available efficiency, architecture form flexibility, rugged construction and low applied voltages. These are contributing to growth in markets such as traffic lights, automotive brake signals and instrument displays, video displays, traffic signals, decorative signs and the many uses of the new white LED-based products. A new developments are directed to various materials used for high brightness HB-LED,s based on AlGaAs (red), AlInGaP (yellow-green to red) and InGaN (blue, green and white) devices. The development of LED,s depends on epitaxial growth advances, mainly molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE). As a technology improved, the performace of visible LED,s increased at the rate 10x per decade from less than 0.1 lm/W to the best red and orange LED,s now providing about 100 lm/W. The main engineering challenge is now the extraction or the ability to get all the light out of the chip to where it is needed. This has led to novel changes in the shape of the LED chip and to the replacement of GaAs with transparent GaP substrate throught wafer bonding after the LED has been produced. Most of the focus for nitride devices (InGaN) is to develop improved or new substrate materials to replace sapphire and enable the growth of lower defect density materials. Organic LED,s (OLED,s) have been undergone dramatic improvements in performace in the last five years. Two main technologies for OLED,s have emerged in the last decade, either based on conjaguated polymers, or sublimed films of small molecules. Recent improvements have taken OLED,s to luminous efficiency greater than 20 lm/W. However, in contrast to conventional LED,s, OLED,s share many of the properties associated with other organic substances and polymers. They allow more design flexibility than inorganic LED,s and thus lead to the high

  9. Compact light-emitting diode lighting ring for video-assisted thoracic surgery.

    Science.gov (United States)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-01-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  10. Compact light-emitting diode lighting ring for video-assisted thoracic surgery

    Science.gov (United States)

    Lu, Ming-Kuan; Chang, Feng-Chen; Wang, Wen-Zhe; Hsieh, Chih-Cheng; Kao, Fu-Jen

    2014-10-01

    In this work, a foldable ring-shaped light-emitting diode (LED) lighting assembly, designed to attach to a rubber wound retractor, is realized and tested through porcine animal experiments. Enabled by the small size and the high efficiency of LED chips, the lighting assembly is compact, flexible, and disposable while providing direct and high brightness lighting for more uniform background illumination in video-assisted thoracic surgery (VATS). When compared with a conventional fiber bundle coupled light source that is usually used in laparoscopy and endoscopy, the much broader solid angle of illumination enabled by the LED assembly allows greatly improved background lighting and imaging quality in VATS.

  11. Electroluminescence of organic light-emitting diodes consisting of an undoped (pbi)2Ir(acac) phosphorescent layer

    Science.gov (United States)

    Lei, Xia; Yu, Junsheng; Zhao, Juan; Jiang, Yadong

    2011-11-01

    The electroluminescence (EL) characteristics of phosphorescent organic light-emitting diodes (OLEDs) with an undoped bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] emissive layer (EML) of various film thicknesses were studied. The results showed that the intensity of green light emission decreased rapidly with the increasing thickness of (pbi)2Ir(acac), which was relevant to the triplet excimer emission. It suggested that the concentration quenching of monomer emission in the undoped (pbi)2Ir(acac) film was mainly due to the formation of triplet excimer and partly due to the triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). A green OLED with a maximum luminance of 26,531 cd/m2, a current efficiency of 36.2 cd/A, and a power efficiency of 32.4 lm/W was obtained, when the triplet excimer emission was eliminated. Moreover, the white OLED with low efficiency roll-off was realized due to the broadened recombination zone and reduced quenching effects in the EML when no electron blocking layer was employed.

  12. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism

    NARCIS (Netherlands)

    Santato, C.; Capelli, R.; Loi, M.A.; Murgia, M.; Cicoira, F.; Roy, Arunesh; Stallinga, P; Zamboni, R.; Rost, C.; Karg, S.F.; Muccini, M.

    2004-01-01

    Optoelectronic properties of light-emitting field-effect transistors (LETs) fabricated on bottom-contact transistor structures using a tetracene film as charge-transport and light-emitting material are investigated. Electroluminescence generation and transistor current are correlated, and the bias

  13. Hybrid daylight/light-emitting diode illumination system for indoor lighting.

    Science.gov (United States)

    Ge, Aiming; Qiu, Peng; Cai, Jinlin; Wang, Wei; Wang, Junwei

    2014-03-20

    A hybrid illumination method using both daylight and light-emitting diodes (LEDs) for indoor lighting is presented in this study. The daylight can be introduced into the indoor space by a panel-integration system. The daylight part and LEDs are combined within a specific luminaire that can provide uniform illumination. The LEDs can be turned on and dimmed through closed-loop control when the daylight illuminance is inadequate. We simulated the illumination and calculated the indoor lighting efficiency of our hybrid daylight and LED lighting system, and compared this with that of LED and fluorescent lighting systems. Simulation results show that the efficiency of the hybrid daylight/LED illumination method is better than that of LED and traditional lighting systems, under the same lighting conditions and lighting time; the method has hybrid lighting average energy savings of T5 66.28%, and that of the LEDs is 41.62%.

  14. The correlation between electroluminescence properties and the microstructure of Europium-implanted MOS light emitting diodes

    International Nuclear Information System (INIS)

    Rebohle, L.; Lehmann, J.; Kanjilal, A.; Prucnal, S.; Nazarov, A.; Tyagulskii, I.; Skorupa, W.; Helm, M.

    2009-01-01

    In this work we investigated the correlation between the EL, the electrical properties and the microstructure of Eu-implanted MOS light emitting devices. The EL spectrum shows a red EL line centered at 618 nm which is usually assigned to Eu 3+ and a broad blue-green EL band attributed to Eu 2+ . It was found that the red EL is favored by low injection currents, low Eu concentrations, lower anneal temperatures and shorter anneal times, especially for flash lamp annealing. These properties are correlated with microstructural changes triggered by ion implantation and annealing, especially with the formation and ripening of Eu or Eu oxide clusters which strongly quench the red EL. Finally, the influence of Eu agglomerations at the injecting interface on the electrical properties of the light emitter is discussed.

  15. Micro-light-emitting-diode array with dual functions of visible light communication and illumination

    International Nuclear Information System (INIS)

    Huang Yong; Guo Zhi-You; Sun Hui-Qing; Huang Hong-Yong

    2017-01-01

    We demonstrate high-speed blue 4 × 4 micro-light-emitting-diode (LED) arrays with 14 light-emitting units (two light-emitting units are used as the positive and negative electrodes for power supply, respectively) comprising multiple quantum wells formed of GaN epitaxial layers grown on a sapphire substrate, and experimentally test their applicability for being used as VLC transmitters and illuminations. The micro-LED arrays provide a maximum −3-dB frequency response of 60.5 MHz with a smooth frequency curve from 1 MHz to 500 MHz for an optical output power of 165 mW at an injection current of 30 mA, which, to our knowledge, is the highest response frequency ever reported for blue GaN-based LEDs operating at that level of optical output power. The relationship between the frequency and size of the device single pixel diameter reveals the relationship between the response frequency and diffusion capacitance of the device. (paper)

  16. GaN light-emitting device based on ionic liquid electrolyte

    Science.gov (United States)

    Hirai, Tomoaki; Sakanoue, Tomo; Takenobu, Taishi

    2018-06-01

    Ionic liquids (ILs) are attractive materials for fabricating unique hybrid devices based on electronics and electrochemistry; thus, IL-gated transistors and organic light-emitting devices of light-emitting electrochemical cells (LECs) are investigated for future low-voltage and high-performance devices. In LECs, voltage application induces the formation of electrochemically doped p–n homojunctions owing to ion rearrangements in composites of semiconductors and electrolytes, and achieves electron–hole recombination for light emission at the homojunctions. In this work, we applied this concept of IL-induced electrochemical doping to the fabrication of GaN-based light-emitting devices. We found that voltage application to the layered IL/GaN structure accumulated electrons on the GaN surface owing to ion rearrangements and improved the conductivity of GaN. The ion rearrangement also enabled holes to be injected by the strong electric field of electric double layers on hole injection contacts. This simultaneous injection of holes and electrons into GaN mediated by ions achieves light emission at a low voltage of around 3.4 V. The light emission from the simple IL/GaN structure indicates the usefulness of an electrochemical technique in generating light emission with great ease of fabrication.

  17. Color tunable hybrid light-emitting diodes based on perovskite quantum dot/conjugated polymer

    Science.gov (United States)

    Germino, José C.; Yassitepe, Emre; Freitas, Jilian N.; Santiago, Glauco M.; Bonato, Luiz Gustavo; de Morais, Andréia; Atvars, Teresa D. Z.; Nogueira, Ana F.

    2017-08-01

    Inorganic organic metal halide perovskite materials have been investigated for several technological applications, such as photovoltaic cells, lasers, photodetectors and light emitting diodes (LEDs), either in the bulk form or as colloidal nanoparticles. Recently, all inorganic Cesium Lead Halide (CsPbX3, X=Cl,Br, I) perovskite quantum dots (PQDs) were reported with high photoluminescence quantum yield with narrow emission lines in the visible wavelengths. Here, green-emitting perovskite quantum dots (PQDs) prepared by a synthetic method based on a mixture of oleylamine and oleic acid as surfactants were applied in the electroluminescent layer of hybrid LEDs in combination with two different conjugated polymers: polyvinylcarbazole (PVK) or poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO). The performance of the diodes and the emission color tuning upon dispersion of different concentrations of the PQDs in the polymer matrix is discussed. The presented approach aims at the combination of the optical properties of the PQDs and their interaction with wide bandgap conjugated polymers, associated with the solution processing ability of these materials.

  18. Fabrication and Luminescent properties of ZnWO{sub 4}:Eu{sup 3+}, Dy{sup 3+} white light-emitting phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yongqing, E-mail: zhaiyongqinghbu@163.com; Wang, Meng; Zhao, Qian; Yu, Jiabao; Li, Xuemin

    2016-04-15

    ZnWO{sub 4}:Eu{sup 3+},Dy{sup 3+} white light-emitting phosphors were prepared by a hydrothermal method followed with calcination process. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectrum, Raman spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), diffused reflectance spectra, photoluminescence excitation and emission spectra, and photoluminescence decay curves. Furthermore, external quantum efficiency of ZnWO{sub 4}:Eu{sup 3+},Dy{sup 3+} was determined. The results showed that the obtained phosphors have monoclinic wolframite structure. The particles of the phosphors was nearly spherical in shape, and the particle size was about 70–100 nm. Upon excitation at UV light, the white light-emitting can be obtained by combining the blue–green emission of tungstate group and characteristic emission of Eu{sup 3+} and Dy{sup 3+}. Based on the excitation/emission spectra and decay curves, the energy transfer and photoluminescence mechanism for ZnWO{sub 4}:Eu{sup 3+}, Dy{sup 3+} system were discussed.

  19. Investigation of organic light emitting diodes for interferometric purposes

    Science.gov (United States)

    Pakula, Anna; Zimak, Marzena; Sałbut, Leszek

    2011-05-01

    Recently the new type of light source has been introduced to the market. Organic light emitting diode (OLED) is not only interesting because of the low applying voltage, wide light emitting areas and emission efficiency. It gives the possibility to create a light source of a various shape, various color and in the near future very likely even the one that will change shape and spectrum in time in controlled way. Those opportunities have not been in our reach until now. In the paper authors try to give an answer to the question if the new light source -OLED - is suitable for interferometric purposes. Tests cover the short and long term spectrum stability, spectrum changes due to the emission area selection. In the paper the results of two OLEDs (red and white) are shown together with the result of an attempt to use them in an interferometric setup.

  20. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  1. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  2. Lead-free/rare earth-free Green-light-emitting crystal based on organic-inorganic hybrid [(C10H16N)2][MnBr4] with high emissive quantum yields and large crystal size

    Science.gov (United States)

    Cai, Xing-Wei; Zhao, Yu-Yuan; Li, Hong; Huang, Cui-Ping; Zhou, Zhen

    2018-06-01

    With the flourishing development of emitting materials, tremendous technological progress has been accomplished. However, they still face great challenges in convenient economical environmental-friendly large-scale commercial production. Herein we designed this organic-inorganic hybrid lead-free compound, an emerging class of high-efficiency emitting materials, [(C10H16N)2][MnBr4] (1), which emits intense greenish photoluminescence with a high emissive quantum yields of 72.26%, was prepared through the convenient economical solution method. What's more, compared with rare earth fluorescent materials (especially green-emitting Tb), Mn material is rich in natural resources and low commercial cost, which would possess an increasingly predominant advantage in the preparation of luminescent materials. Additionally, the exceptional thermal stability as well as the low-cost/convenient preparation process makes crystal 1 with the large size of more than 1 cm to be an ideal technologically important green-emitting material and it would open up a new route towards the commercialization process of lead-free/rare earth-free hybrid emitting materials in display and sensing.

  3. Efficient organic light emitting-diodes (OLEDs)

    CERN Document Server

    Chang, Yi-Lu

    2015-01-01

    Following two decades of intense research globally, the organic light-emitting diode (OLED) has steadily emerged as the ultimate display technology of choice for the coming decades. Portable active matrix OLED displays have already become prevalent, and even large-sized ultra-high definition 4K TVs are being mass-produced. More exotic applications such as wearable displays have been commercialized recently. With the burgeoning success in displays, researchers are actively bringing the technology forward into the exciting solid-state lighting market. This book presents the knowledge needed for

  4. How to distinguish scattered and absorbed light from re-emitted light for white LEDs?

    NARCIS (Netherlands)

    Meretska, Maryna; Lagendijk, Aart; Thyrrestrup Nielsen, Henri; Mosk, Allard; IJzerman, Wilbert; Vos, Willem L.

    2017-01-01

    We have studied the light transport through phosphor diffuser plates that are used in commercial solid-state lighting modules (Fortimo). These polymer plates contain YAG:Ce+3 phosphor particles that scatter, absorb and re-emit incident light in the visible wavelength range (400-700 nm). To

  5. Longitudinally mounted light emitting plasma in a dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Gilliard, Richard; DeVincentis, Marc; Hafidi, Abdeslam; O' Hare, Daniel; Hollingsworth, Gregg [LUXIM Corporation, 1171 Borregas Avenue, Sunnyvale, CA 94089 (United States)

    2011-06-08

    Methods for coupling power from a dielectric resonator to a light-emitting plasma have been previously described (Gilliard et al IEEE Trans. Plasma Sci. at press). Inevitably, regardless of the efficiency of power transfer, much of the emitted light is absorbed in the resonator itself which physically surrounds much if not all of the radiating material. An investigation into a method is presented here for efficiently coupling power to a longitudinally mounted plasma vessel which is mounted on the surface of the dielectric material of the resonator, thereby eliminating significant absorption of light within the resonator structure. The topology of the resonator and its physical properties as well as those of the metal halide plasma are presented. Results of basic models of the field configuration and plasma are shown as well as a configuration suitable as a practical light source.

  6. Finding the Acceleration and Speed of a Light-Emitting Object on an Inclined Plane with a Smartphone Light Sensor

    Science.gov (United States)

    Kapucu, Serkan

    2017-01-01

    This study investigates how the acceleration and speed of a light-emitting object on an inclined plane may be determined using a smartphone's light sensor. A light-emitting object was released from the top of an inclined plane and its illuminance values were detected by a smartphone's light sensor during its subsequent motion down the plane. Using…

  7. Highly Efficient Green-Emitting Phosphors Ba2Y5B5O17 with Low Thermal Quenching Due to Fast Energy Transfer from Ce3+ to Tb3.

    Science.gov (United States)

    Xiao, Yu; Hao, Zhendong; Zhang, Liangliang; Xiao, Wenge; Wu, Dan; Zhang, Xia; Pan, Guo-Hui; Luo, Yongshi; Zhang, Jiahua

    2017-04-17

    This paper demonstrates a highly thermally stable and efficient green-emitting Ba 2 Y 5 B 5 O 17 :Ce 3+ , Tb 3+ phosphor prepared by high-temperature solid-state reaction. The phosphor exhibits a blue emission band of Ce 3+ and green emission lines of Tb 3+ upon Ce 3+ excitation in the near-UV spectral region. The effect of Ce 3+ to Tb 3+ energy transfer on blue to green emission color tuning and on luminescence thermal stability is studied in the samples codoped with 1% Ce 3+ and various concentrations (0-40%) of Tb 3+ . The green emission of Tb 3+ upon Ce 3+ excitation at 150 °C can keep, on average, 92% of its intensity at room temperature, with the best one showing no intensity decreasing up to 210 °C for 30% Tb 3+ . Meanwhile, Ce 3+ emission intensity only keeps 42% on average at 150 °C. The high thermal stability of the green emission is attributed to suppression of Ce 3+ thermal de-excitation through fast energy transfer to Tb 3+ , which in the green-emitting excited states is highly thermally stable such that no lifetime shortening is observed with raising temperature to 210 °C. The predominant green emission is observed for Tb 3+ concentration of at least 10% due to efficient energy transfer with the transfer efficiency approaching 100% for 40% Tb 3+ . The internal and external quantum yield of the sample with Tb 3+ concentration of 20% can be as high as 76% and 55%, respectively. The green phosphor, thus, shows attractive performance for near-UV-based white-light-emitting diodes applications.

  8. Green Light for Nocturnally Migrating Birds

    Directory of Open Access Journals (Sweden)

    Hanneke Poot

    2008-12-01

    Laboratory experiments have shown the magnetic compass to be wavelength dependent: migratory birds require light from the blue-green part of the spectrum for magnetic compass orientation, whereas red light (visible long-wavelength disrupts magnetic orientation. We designed a field study to test if and how changing light color influenced migrating birds under field conditions. We found that nocturnally migrating birds were disoriented and attracted by red and white light (containing visible long-wavelength radiation, whereas they were clearly less disoriented by blue and green light (containing less or no visible long-wavelength radiation. This was especially the case on overcast nights. Our results clearly open perspective for the development of bird-friendly artificial lighting by manipulating wavelength characteristics. Preliminary results with an experimentally developed bird-friendly light source on an offshore platform are promising. What needs to be investigated is the impact of bird-friendly light on other organisms than birds.

  9. Light emitting diodes for today's energy conscious world

    Energy Technology Data Exchange (ETDEWEB)

    Papanier, J

    2000-10-01

    The role played by light emitting diodes in back lighting, decorative illumination, emergency lighting, and automated signage are described as indicators of the many benefits and advantages of LED technology. The basic principles underlying the functioning of LEDs are explained, including the reasons behind their high efficiency in applications requiring colour. The difference between wattage and lumens is clarified; wattage refers to power consumption, whereas lumens measure brightness or light output, the measure most significant in the case of LEDs.

  10. Electron injection mechanisms of green organic light-emitting devices fabricated utilizing a double electron injection layer consisting of cesium carbonate and fullerene

    International Nuclear Information System (INIS)

    Yang, J.S.; Choo, D.C.; Kim, T.W.; Jin, Y.Y.; Seo, J.H.; Kim, Y.K.

    2010-01-01

    Electron injection mechanisms of the luminance efficiency of green organic light-emitting devices (OLEDs) fabricated utilizing a cesium carbonate (Cs 2 CO 3 )/fullerene (C 60 ) heterostructure acting as an electron injection layer (EIL) were investigated. Current density-voltage and luminance-voltage measurements showed that the current densities and the luminances of the OLEDs with a Cs 2 CO 3 or Cs 2 CO 3 /C 60 EIL were higher than that of the OLEDs with a Liq EIL. The luminance efficiency of the OLEDs with a Cs 2 CO 3 EIL was almost three times higher than that of the OLEDs with a Liq EIL. Because the electron injection efficiency of the Cs 2 CO 3 layer in OLEDs was different from that of the C 60 layer, the luminance efficiency of the OLEDs with a double EIL consisting of a Cs 2 CO 3 layer and a C 60 layer was smaller than that of the OLEDs with a Cs 2 CO 3 EIL. The electron injection mechanisms of OLEDs with a Cs 2 CO 3 and C 60 double EIL are described on the basis of the experimental results.

  11. Synthesis and green electrophosphorescence of a novel cyclometalated iridium complex in polymer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu Lilan [Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101 (China); Tsai Sunghao [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China); Guo Tzungfang [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan, Taiwan 70101 (China); Yang Chenghsien [Carbon Nanocapsules Research Department, Nano-Powder and Thin Film Technology Center, ITRI South, Tainan, Taiwan 709 (China)]. E-mail: jasonyang0606@yahoo.com.tw; Sun, I-W. [Department of Chemistry, National Cheng Kung University, Tainan, Taiwan 70101 (China)]. E-mail: iwsun@mail.ncku.edu.tw

    2007-10-15

    Abstact: In this paper, we synthesized a new complex bis(dibenzo[f,h]quinolinato-N,C {sup 2'}) iridium(III) acetylactonate ((DBQ){sub 2}Ir(acac)) having a longer conjugate system than bis(2-phenylpyridinato-N,C {sup 2'}) iridium(III) acetylacetonate ((PPY){sub 2}Ir(acac)). Interestingly (DBQ){sub 2}Ir(acac) emits at the same wavelength as (photoluminescence of 530 nm) (PPY){sub 2}Ir(acac). A high-efficiency electrophosphorescent polymer light-emitting diodes was constructed by using (DBQ){sub 2}Ir(acac) as the dopant, and a blend of poly(vinylcarbazole) (PVK) with 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol (PBD) as the host material. The electroluminescence efficiency of 9.5 cd/A is reported for the device doped with 3 wt% of (DBQ){sub 2}Ir(acac). In this device, the emission from the PVK or PBD host was effectively inhibited with the using (DBQ){sub 2}Ir(acac) . Emission from the dopant molecules in such devices involve localization of the injected electron and hole on the metal-organic center. This can occur by a variety of mechanisms, including Foerster and Dexter energy transfer from the host transport material to the dopant, and direct trapping of both electrons and holes on the metal-organic center.

  12. Active targeting of tumor cells using light emitting bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Hong, Yeong Jin; Kim, Hyun Ju; Le, Uuenchi N.; Rhee, Joon Haeng; Song, Ho Chun; Heo, Young Jun; Bom, Hee Seung; Choy, Hyon E

    2004-01-01

    The presence of bacteria and viruses in human tumors has been recognized for more than 50 years. Today, with the discovery of bacterial strains that specifically target tumors, and aided by genomic sequencing and genetic engineering, there is new interest in the use of bacteria as tumor vectors. Here, we show that bacteria injected intravenously into live animals entered and replicated in solid tumors and metastases using the novel imaging technology of biophotonics. Bioluminescence operon (LuxCDABE) or fluorescence protein, GFP) has been cloned into pUC19 plasmid to engineer pUC19lux or pUC19gfp. Engineered plasmid was transformed into different kinds of wild type (MG1655) or mutant E. coli (DH5, ppGpp, fnr, purE, crpA, flagella, etc.) strains to construct light emitting bacteria. Xenograft tumor model has been established using CT26 colon cancer cell line. Light emitting bacteria was injected via tail vein into tumor bearing mouse. In vivo bioluminescence imaging has been done after 20 min to 14 days of bacterial injection. We observed localization of tumors by light-emitting E. coli in tumor (CT-26) bearing mice. We confirmed the presence of light-emitting bacteria under the fluorescence microscope with E. coli expressing GFP. Althoug varying mutants strain with deficient invading function has been found in tumor tissues, mutant strains of movement (flagella) couldn't show any light signal from the tumor tissue under the cooled CCD camera, indicating bacteria may actively target the tumor cells. Based on their 'tumor-finding' nature, bacteria may be designed to carry multiple genes or drugs for detection and treatment of cancer, such as prodrug-converting enzymes, toxins, angiogenesis inhibitors and cytokines

  13. Steady full colour white organic light-emitting devices consisting of an ultrathin red fluorescent layer

    International Nuclear Information System (INIS)

    Wen Wen; Yu Junsheng; Li Lu; Wang Jun; Jiang Yadong

    2009-01-01

    White organic light-emitting devices were fabricated using an ultrathin red fluorescent dye of 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene inserted in tris(8-quinolinolato) aluminium layer as a red and green emitting layer (EML) and a thin 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-diphenyl (DPVBi) layer as blue EML. A maximum power efficiency of 2.4 lm W -1 at 5.5 V and a maximum luminance of 16 690 cd m -2 at 18.5 V were obtained. Pure white emission with a good colour rendering index of 80 was achieved as low as 5 V. The Commission Internationale de l'Eclairage (CIE) coordinates near (0.330, 0.300) show a slight variation of (-0.020, +0.002) in a wide range of voltages. The achievement of full colour white emission at low-operation voltages and high-colour stability is attributed to the confining emission zone function of the thin EML and direct carrier trapping in the ultrathin layer.

  14. Green lights program in China

    Energy Technology Data Exchange (ETDEWEB)

    Dadi, Zhuo; Hong, Liu [Beijing Energy Efficiency Center (China)

    1996-12-31

    In China`s 9th 5-year plan (1996-2000), the Chinese government has placed high priority on energy conservation. The China Green Lights Program (CGLP) is listed as one of the key projects of energy conservation. The basic strategy of the CGLP is to mobilise all of the potential contributors to participate in the program, and to use market signals and supplementary non-market instruments to facilitate its implementation. Governmental funds and loans will be used as seed money to attract private participation in the program. The program contains the following elements: (1) Information dissemination to educate the public on the economic and other values of the program and to provide CGLP information to increase consumer awareness and, as a result, increase the demand for energy-efficient lighting systems. (2) Development of standards and codes for lighting systems, establishment of product specifications, and enforcement of product standards. (3) Development of quality certification and labelling system to provide assurances to consumers that the products they are purchasing will meet their performance and cost saving expectations. (4) Highlighted support and financing for production technology development and production capacity expansion. (5) Demonstration and pilot projects to boost consumer confidence in green lighting systems and to demonstrate new production technologies and processes. (6) International co-operation to expand the international exchange and absorb advanced technology and experience for implementation of the China Green Lights Program.

  15. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal

    2016-10-06

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  16. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal; Dursun, Ibrahim; Priante, Davide; Saidaminov, Makhsud I.; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.

    2016-01-01

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  17. Recent advances in light outcoupling from white organic light-emitting diodes

    Science.gov (United States)

    Gather, Malte C.; Reineke, Sebastian

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been successfully introduced to the smartphone display market and have geared up to become contenders for applications in general illumination where they promise to combine efficient generation of white light with excellent color quality, glare-free illumination, and highly attractive designs. Device efficiency is the key requirement for such white OLEDs, not only from a sustainability perspective, but also because at the high brightness required for general illumination, losses lead to heating and may, thus, cause rapid device degradation. The efficiency of white OLEDs increased tremendously over the past two decades, and internal charge-to-photon conversion can now be achieved at ˜100% yield. However, the extraction of photons remains rather inefficient (typically physics of outcoupling in white OLEDs and review recent progress toward making light extraction more efficient. We describe how structures that scatter, refract, or diffract light can be attached to the outside of white OLEDs (external outcoupling) or can be integrated close to the active layers of the device (internal outcoupling). Moreover, the prospects of using top-emitting metal-metal microcavity designs for white OLEDs and of tuning the average orientation of the emissive molecules within the OLED are discussed.

  18. Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Wong, Michael Y; Zysman-Colman, Eli

    2017-06-01

    The design of thermally activated delayed fluorescence (TADF) materials both as emitters and as hosts is an exploding area of research. The replacement of phosphorescent metal complexes with inexpensive organic compounds in electroluminescent (EL) devices that demonstrate comparable performance metrics is paradigm shifting, as these new materials offer the possibility of developing low-cost lighting and displays. Here, a comprehensive review of TADF materials is presented, with a focus on linking their optoelectronic behavior with the performance of the organic light-emitting diode (OLED) and related EL devices. TADF emitters are cross-compared within specific color ranges, with a focus on blue, green-yellow, orange-red, and white OLEDs. Organic small-molecule, dendrimer, polymer, and exciplex emitters are all discussed within this review, as is their use as host materials. Correlations are provided between the structure of the TADF materials and their optoelectronic properties. The success of TADF materials has ushered in the next generation of OLEDs. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  20. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  1. Azimuthal anisotropy of light extraction from photonic crystal light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chun-Feng; Lu, T.C.; Wang, S.C. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan (China); Chao, C.H.; Hsueh, H.T.; Wang, J.F.T.; Yeh, W.Y.; Chi, J.Y. [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Kuo, H.C.

    2008-07-01

    Photonic crystal (PhC) light-emitting diodes (LEDs) exhibiting anisotropic light extraction have been investigated experimentally and theoretically. It is found that the anisotropic light extraction strongly depends on the lattice constant and orientation. Optical images of the anisotropy in the azimuthal direction are obtained using annular structure with triangular lattice. 6-fold symmetric light extraction patterns with varying number of petals are observed. More petals in multiple of 6 appear in the observed image with lattice constant increasing. This anisotropic behavior suggests a new means to optimize the PhC design of GaN LED for light extraction. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    Science.gov (United States)

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  3. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    Science.gov (United States)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  4. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    Science.gov (United States)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  5. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  6. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui

    2013-05-29

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices with the emissive layer consisting of multiple platinum-complex/spacer layer cells show a peak external quantum efficiency of 18.1%, which is among the best EQE values for platinum-complex based light emitting devices. Devices with an ultrathin phosphor emissive layer show stronger luminance decay with the operating time compared to the counterpart devices having a host-guest emissive layer.

  7. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, R. S.

    2011-01-01

    for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  8. Improved outcoupling of light in organic light emitting devices, utilizing a holographic DFB-structure

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany)]. E-mail: nils.reinke@physik.uni-augsburg.de; Fuhrmann, Thomas [Macromolecular Chemistry and Molecular Materials, University of Kassel (Germany); Perschke, Alexandra [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany); Franke, Hilmar [Organische Funktionsmaterialien, University of Duisburg-Essen (Germany)

    2004-12-10

    In this work organic light emitting devices (OLEDs) were fabricated implementing gratings, in order to extract waveguided electroluminescence (EL). The gratings were recorded by exposing thin films of the molecular azo glass N, N'-bis (4-phenyl)-N, N'-bis [(4-phenylazo)-phenyl] benzidine (AZOPD) to holographic light patterns. The photopatterned AZOPD serves as hole transport material for devices with aluminum-tris(8-hydroxyquinoline) doped with 1% of 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (Alq{sub 3}:DCM) as emissive/electron transport layer. The corrugated devices showed enhanced emission in the forward direction. The emitted light is polarized preferably parallel to the grating lines. In addition, we have found a doubling in the total luminance with respect to the unstructured device.

  9. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  10. All solution-processed micro-structured flexible electrodes for low-cost light-emitting pressure sensors fabrication.

    Science.gov (United States)

    Shimotsu, Rie; Takumi, Takahiro; Vohra, Varun

    2017-07-31

    Recent studies have demonstrated the advantage of developing pressure-sensitive devices with light-emitting properties for direct visualization of pressure distribution, potential application to next generation touch panels and human-machine interfaces. To ensure that this technology is available to everyone, its production cost should be kept as low as possible. Here, simple device concepts, namely, pressure sensitive flexible hybrid electrodes and OLED architecture, are used to produce low-cost resistive or light-emitting pressure sensors. Additionally, integrating solution-processed self-assembled micro-structures into the flexible hybrid electrodes composed of an elastomer and conductive materials results in enhanced device performances either in terms of pressure or spatial distribution sensitivity. For instance, based on the pressure applied, the measured values for the resistances of pressure sensors range from a few MΩ down to 500 Ω. On the other hand, unlike their evaporated equivalents, the combination of solution-processed flexible electrodes with an inverted OLED architectures display bright green emission when a pressure over 200 kPa is applied. At a bias of 3 V, their luminance can be tuned by applying a higher pressure of 500 kPa. Consequently, features such as fingernails and fingertips can be clearly distinguished from one another in these long-lasting low-cost devices.

  11. Nanocrystalline silicon as the light emitting material of a field emission display device

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A; Sola, F; Resto, O; Fonseca, L F; Gonzalez-BerrIos, A; Jesus, J De; Morell, G

    2008-01-01

    A nanocrystalline Si-based paste was successfully tested as the light emitting material in a field emission display test device that employed a film of carbon nanofibers as the electron source. Stable emission in the 550-850 nm range was obtained at 16 V μm -1 . This relatively low field required for intense cathodoluminescence (CL) from the PSi paste may lead to longer term reliability of both the electron emitting and the light emitting materials, and to lower power consumption. Here we describe the synthesis, characterization, and analyses of the light emitting nanostructured Si paste and the electron emitting C nanofibers used for building the device, including x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The corresponding spectra and field emission curves are also shown and discussed

  12. China Green Lights Program: A Review and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiang

    1999-06-10

    This report reviews the development of China's Green Lights Program in the last two years, and discusses the remaining barriers to the widespread adoption of efficient lighting technologies in China: chiefly quality, high initial costs, and lack of accurate information. A variety of policy options are recommended for the future expansion of China's Green Lights Program.

  13. Utilization of solvothermally grown InP/ZnS quantum dots as wavelength converters for fabrication of white light-emitting diodes.

    Science.gov (United States)

    Jang, Eun-Pyo; Yang, Heesun

    2013-09-01

    This work reports on a simple solvothermal synthesis of InP/ZnS core/shell quantum dots (QDs) using a much safer and cheaper phosphorus precursor of tris(dimethylamino)phosphine than the most popularly chosen tris(trimethylsilyl)phosphine. The band gap of InP QDs is facilely controlled by varying the solvothermal core growth time (4 vs. 6 h) with a fixed temperature of 150 degrees C, and the successive solvothermal ZnS shelling at 220 degrees C for 6 h results in green- and yellow-emtting InP/ZnS QD with emission quantum yield of 41-42%. The broad size distribution of as-synthesized InP/ZnS QDs, which appears to be inherent in the current solvothermal approach, is improved by a size-selective sorting procedure, and the emission properties of the resulting size-sorted QD fractions are investigated. To produce white emission for general lighting source, a blue light-emitting diode (LED) is combined with non-size-soroted green or yellow QDs as wavelength converters. Furthermore, the QD-LED that includes a blend of green and yellow QDs is fabricated to generate a white lighting source with an enhanced color rendering performance, and its electroluminescent properties are characterized in detail.

  14. Smartphone-Driven Low-Power Light-Emitting Device

    Directory of Open Access Journals (Sweden)

    Hea-Ja An

    2017-01-01

    Full Text Available Low-level light (laser therapy (LLLT has been widely researched in the recent past. Existing LLLT studies were performed based on laser. Recently, studies using LED have increased. This study presents a smartphone-driven low-power light-emitting device for use in colour therapy as an alternative medicine. The device consists of a control unit and a colour probe. The device is powered by and communicates with a smartphone using USB On-The-Go (OTG technology. The control unit controls emitting time and intensity of illumination with the configuration value of a smartphone application. Intensity is controlled by pulse width modulation (PWM without feedback. A calibration is performed to resolve a drawback of no feedback. To calibrate, intensity is measured in every 10 percent PWM output. PWM value is linearly calibrated to obtain accurate intensity. The device can control the intensity of illumination, and so, it can find application in varied scenarios.

  15. Efficient white organic light emission by single emitting layer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Wook; Chung, Choong-Heui; Lee, Jin Ho; Kim, Yong-Hae; Sohn, Choong-Yong; Kim, Bong-Chul; Hwang, Chi-Sun; Song, Yoon-Ho; Lim, Jongtae; Ahn, Young-Joo; Kang, Gi-Wook; Lee, Namheon; Lee, Changhee

    2003-02-24

    Stable organic white light-emitting diodes are successfully fabricated by a single organic white emitting layer, which is Bis (2-methyl-8-quinolinato) (triphenylsiloxy) aluminum (III) (SAlq) doped red fluorescent dye of 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)- 4H-pyran (DCJTB). The incomplete energy transfer from blue-emitting SAlq to red-emitting DCJTB enables to obtain a stable white balanced light-emission by the DCJTB doping concentration of 0.5%. A device with the structure of ITO/TPD (50 nm)/SAlq:DCJTB (30 nm, 0.5%)/Alq{sub 3} (20 nm)/LiF (0.5 nm)/Al (110 nm) shows maximum luminance of 20 400 cd/m{sup 2} at 810 mA/cm{sup 2}, external quantum efficiency of 2% at 200 cd/m{sup 2} ({approx}3 mA/cm{sup 2}), power efficiency of 2.3 lm/W at 67 cd/m{sup 2} ({approx}1 mA/cm{sup 2}), and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.34, 0.39) at 1.8 mA/cm{sup 2} to (0.31, 0.38) at 36 mA/cm{sup 2}.

  16. Efficient light emitting devices based on phosphorescent partially doped emissive layers

    KAUST Repository

    Yang, Xiaohui; Jabbour, Ghassan E.

    2013-01-01

    We report efficient organic light emitting devices employing an ultrathin phosphor emissive layer. The electroluminescent spectra of these devices can be tuned by introducing a low-energy emitting phosphor layer into the emission zone. Devices

  17. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes.

    Science.gov (United States)

    Jun, Shinae; Lee, Junho; Jang, Eunjoo

    2013-02-26

    A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.

  18. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Changchun 130022 (China)

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  19. Fabrication of Si/ZnS radial nanowire heterojunction arrays for white light emitting devices on Si substrates.

    Science.gov (United States)

    Katiyar, Ajit K; Sinha, Arun Kumar; Manna, Santanu; Ray, Samit K

    2014-09-10

    Well-separated Si/ZnS radial nanowire heterojunction-based light-emitting devices have been fabricated on large-area substrates by depositing n-ZnS film on p-type nanoporous Si nanowire templates. Vertically oriented porous Si nanowires on p-Si substrates have been grown by metal-assisted chemical etching catalyzed using Au nanoparticles. Isolated Si nanowires with needle-shaped arrays have been made by KOH treatment before ZnS deposition. Electrically driven efficient white light emission from radial heterojunction arrays has been achieved under a low forward bias condition. The observed white light emission is attributed to blue and green emission from the defect-related radiative transition of ZnS and Si/ZnS interface, respectively, while the red arises from the porous surface of the Si nanowire core. The observed white light emission from the Si/ZnS nanowire heterojunction could open up the new possibility to integrate Si-based optical sources on a large scale.

  20. Efficient light harvesting from flexible perovskite solar cells under indoor white light-emitting diode illumination

    NARCIS (Netherlands)

    Lucarelli, G.; Di Giacomo, F.; Zardetto, V.; Creatore, M.; Brown, T.M.

    2017-01-01

    This is the first report of an investigation on flexible perovskite solar cells for artificial light harvesting by using a white light-emitting diode (LED) lamp as a light source at 200 and 400 lx, values typically found in indoor environments. Flexible cells were developed using either

  1. Fabrication of organic light emitting diode using Molybdenum ...

    Indian Academy of Sciences (India)

    65

    out by measuring sheet resistance, optical transmittance and surface ... role in the organic light-emitting diode (OLED) performance because it determines the .... coated glass by thermal vacuum deposition method and optimize it by using ...

  2. A potential green emitting citrate gel synthesized NaSrBO3:Tb3+ phosphor for display application

    Science.gov (United States)

    Bedyal, A. K.; Kumar, Vinay; Swart, H. C.

    2018-04-01

    A potential green emitting NaSrBO3:Tb3+ (1-9 mol%) phosphor was synthesized by a citrate gel combustion method. X-ray diffraction patterns confirmed the monoclinic phase of the phosphor. The phosphor emitted intense green emission under near-UV and electron excitation due to the characteristic transitions 5D4→7F6(488 nm),5D4→7F5(544 nm),5D4→7F4(586 nm) and 5D4→7F3(622 nm) of Tb3+ ions. The optimal molar concentration of Tb3+ ions was found to be 6 mol%, after that concentration quenching occurred. The dipole-dipole interaction was found to be accountable for energy transfer between the Tb3+ ions. X-ray photoelectron spectroscopy was carried out to analyze the chemical states of the elements and suggest that terbium was mostly presented in the (+3) valance state in the phosphor. The approximated Commission Internationale de l‧Eclairage coordinates for the PL (0.31, 0.61) and CL (0.33, 0.57) were found to be very close to the well-known green emitting phosphor. The obtained results suggest that the studied phosphor could be an ultimate choice for green emission in display applications.

  3. Characteristics of organic light emitting diodes with copper iodide as injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Stakhira, P., E-mail: stakhira@polynet.lviv.u [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Hotra, Z. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Rzeszow University of Technology, W. Pola 2, Rzeszow, 35-959 (Poland); Tataryn, V. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Luka, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2010-09-30

    We have studied the use of a thin copper iodide (CuI) film as an efficient injection layer of holes from indium tin oxide (ITO) anode in a light-emitting diode structure based on tris-8-hydroxyquinoline aluminium (Alq3). The results of impedance analysis of two types of diode structures, ITO/CuI/Alq3/poly(ethylene glycol) dimethyl ether/Al and ITO/Alq3/poly(ethylene glycol) dimethyl ether/Al, are presented. Comparative analysis of their current density-voltage, luminance-voltage and impedance characteristics shows that presence of CuI layer facilitates injection of holes from ITO anode into the light-emitting layer Alq3 and increases electroluminescence efficiency of the organic light emitting diodes.

  4. Organic Light-Emitting Diodes Based on Phthalimide Derivatives: Improvement of the Electroluminescence Properties

    Directory of Open Access Journals (Sweden)

    Frédéric Dumur

    2018-03-01

    Full Text Available In this study, a phthalimide-based fluorescent material has been examined as a green emitter for multilayered organic light-emitting diodes (OLEDs. By optimizing the device stacking, a maximum brightness of 28,450 cd/m2 at 11.0 V and a maximum external quantum efficiency of 3.11% could be obtained. Interestingly, OLEDs fabricated with Fluo-2 presented a 20-fold current efficiency improvement compared to the previous results reported in the literature, evidencing the crucial role of the device stacking in the electroluminescence (EL performance of a selected emitter. Device lifetime was also examined and an operational stability comparable to that reported for a standard triplet emitter i.e., bis(4-methyl-2,5-diphenyl-pyridineiridium(III acetylacetonate [(mdppy2Iracac] was evidenced.

  5. Ultraviolet light-emitting diodes in water disinfection.

    Science.gov (United States)

    Vilhunen, Sari; Särkkä, Heikki; Sillanpää, Mika

    2009-06-01

    The novel system of ultraviolet light-emitting diodes (UV LEDs) was studied in water disinfection. Conventional UV lamps, like mercury vapor lamp, consume much energy and are considered to be problem waste after use. UV LEDs are energy efficient and free of toxicants. This study showed the suitability of LEDs in disinfection and provided information of the effect of two emitted wavelengths and different test mediums to Escherichia coli destruction. Common laboratory strain of E. coli (K12) was used and the effects of two emitted wavelengths (269 and 276 nm) were investigated with two photolytic batch reactors both including ten LEDs. The effects of test medium were examined with ultrapure water, nutrient and water, and nutrient and water with humic acids. Efficiency of reactors was almost the same even though the one emitting higher wavelength had doubled optical power compared to the other. Therefore, the effect of wavelength was evident and the radiation emitted at 269 nm was more powerful. Also, the impact of background was studied and noticed to have only slight deteriorating effect. In the 5-min experiment, the bacterial reduction of three to four log colony-forming units (CFU) per cubic centimeter was achieved, in all cases. When turbidity of the test medium was greater, part of the UV radiation was spent on the absorption and reactions with extra substances on liquid. Humic acids can also coat the bacteria reducing the sensitivity of the cells to UV light. The lower wavelength was distinctly more efficient when the optical power is considered, even though the difference of wavelengths was small. The reason presumably is the greater absorption of DNA causing more efficient bacterial breakage. UV LEDs were efficient in E. coli destruction, even if LEDs were considered to have rather low optical power. The effect of wavelengths was noticeable but the test medium did not have much impact. This study found UV LEDs to be an optimal method for bacterial

  6. White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.S.; Jeong, C.H.; Lim, J.T. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); Yeom, G.Y. [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyonggi-Do, 440-746 (Korea, Republic of); The National Program for Tera-level Devices, Hawolgok-dong, Sungbuk-gu, Seoul, 136-791 (Korea, Republic of)], E-mail: gyyeom@skku.edu

    2008-04-01

    White top-emitting organic light-emitting diodes (TEOLEDs) composed of one doped emissive layer which emits two-wavelength light though the radiative recombination were fabricated. As the emissive layer, 4,4-bis(2,2-diphenylethen-1-yl)biphenyl (DPVBi) was used as the host material and 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) was added as the dopant material. By optimizing the DCJTB concentration (1.2%) and the thickness of the DPVBi layer (30 nm), the intensity ratio of the two wavelengths could be adjusted for balanced white light emission. By using the device composed of glass/Ag (100 nm)/ITO (90 nm)/2-TNATA (60 nm)/NPB (15 nm)/DPVBi:DCJTB (1.2%, 30 nm)/Alq{sub 3} (20 nm)/Li (1.0 nm)/Al (2.0 nm)/Ag (20 nm)/ITO (63 nm)/SiO{sub 2} (42 nm), the Commission Internationale d'Eclairage (CIE) chromaticity coordinate of (0.32, 0.34) close to the ideal white color CIE coordinate could be obtained at 100 cd/m{sup 2}.

  7. White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, Jung Jin; Park, O Ok; Im, Sang Hyuk; Chin, Byung Doo

    2013-01-01

    We demonstrated that white emission can be obtained from nano-structured top-emitting organic light-emitting diodes (TEOLEDs) based on a blue emitting layer (EML). The nano-structured TEOLEDs were fabricated on nano-patterned substrates, in which both optical micro-cavity and scattering effects occur simultaneously. Due to the combination of these two effects, the electroluminescence spectra of the nano-structured device with a blue EML exhibited not only blue but also yellow colours, which corresponded to the intrinsic emission of the EML and the resonant emission of the micro-cavity effect. Consequently, it was possible to produce white emission from nano-structured TEOLEDs without employing a multimode micro-cavity. The intrinsic emission wavelength can be varied by altering the dopant used for the EML. Furthermore, the emissive characteristics turned out to be strongly dependent on the nano-pattern sizes of the nano-structured devices. (paper)

  8. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode

    International Nuclear Information System (INIS)

    Mu Ye; Zhang Zhen-Song; Wang Hong-Bo; Qu Da-Long; Wu Yu-Kun; Yan Ping-Rui; Li Chuan-Nan; Zhao Yi

    2015-01-01

    It is still challenging to obtain broadband emission covering visible light spectrum as much as possible with negligible angular dependence. In this work, we demonstrate a low driving voltage top-emitting white organic light-emitting diode (TEWOLED) based on complementary blue and yellow phosphor emitters with negligible angular dependence. The bottom copper anode with medium reflectance, which is compatible with the standard complementary metal oxide semiconductor (CMOS) technology below 0.13 μm, and the semitransparent multilayer Cs2CO3/Al/Cu cathode as a top electrode, are introduced to realize high-performance TEWOLED. Our TEWOLED achieves high efficiencies of 15.4 cd/A and 12.1 lm/W at a practical brightness of 1000 cd/m 2 at low voltage of 4 V. (paper)

  9. Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen.

    Science.gov (United States)

    Ye, Yiyang; Chen, Tupei; Zhen, Juyuan; Xu, Chen; Zhang, Jun; Li, Huakai

    2018-02-01

    The ability to selectively scatter green light is essential for an RGB transparent projection display, and this can be achieved by a silver-core, titania-shell nanostructure (Ag@TiO 2 ), based on the metallic nanoparticle's localized surface plasmon resonance. The ability to selectively scatter green light is shown in a theoretical design, in which structural optimization is included, and is then experimentally verified by characterization of a transparent film produced by dispersing such nanoparticles in a polymer matrix. A visual assessesment indicates that a high-quality green image can be clearly displayed on the transparent film. For completeness, a theoretical design for selective scattering of red light based on Ag@TiO 2 is also shown.

  10. Tuning the colour of white polymer light emitting diodes

    NARCIS (Netherlands)

    Kok, M.M. de; Sarfert, W.; Paetzold, R.

    2010-01-01

    Colour tuning of white polymer light emitting diode (LED) light sources can be attained by various methods at various stages in the production process of the lamps and/or by the design of the active material incorporated in the LEDs. In this contribution we will describe the methods and discuss the

  11. Ideality factor of GaN-based light-emitting diodes determined by the measurement of photovoltaic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Joong; Ryu, Geun-Hwan; Yang, Won-Bo; Ryu, Han-Youl [Inha University, Incheon (Korea, Republic of)

    2014-11-15

    We present a method for determining the ideality factor of GaN-based light-emitting diodes (LEDs) by using the measured photovoltaic characteristics. The relation between the short-circuit current and the open-circuit voltage is obtained as the incident power of a laser diode emitting at 405 nm is varied, which is used to determine the ideality factor of the LED. From the photovoltaic measurements, the ideality factors of a blue and a green LED are determined to be 1.16 and 1.78, respectively. The ideality factors obtained by using the photovoltaic measurement are found to be much smaller than those obtained by using the I - V curve without illumination, which is believed to result from the different carrier generation and transport mechanisms. Investigating the photovoltaic characteristics of GaN-based LEDs is expected to provide insight into the origin of the high diode ideality factor in GaN-based devices.

  12. Ideality factor of GaN-based light-emitting diodes determined by the measurement of photovoltaic characteristics

    International Nuclear Information System (INIS)

    Kim, Hyun-Joong; Ryu, Geun-Hwan; Yang, Won-Bo; Ryu, Han-Youl

    2014-01-01

    We present a method for determining the ideality factor of GaN-based light-emitting diodes (LEDs) by using the measured photovoltaic characteristics. The relation between the short-circuit current and the open-circuit voltage is obtained as the incident power of a laser diode emitting at 405 nm is varied, which is used to determine the ideality factor of the LED. From the photovoltaic measurements, the ideality factors of a blue and a green LED are determined to be 1.16 and 1.78, respectively. The ideality factors obtained by using the photovoltaic measurement are found to be much smaller than those obtained by using the I - V curve without illumination, which is believed to result from the different carrier generation and transport mechanisms. Investigating the photovoltaic characteristics of GaN-based LEDs is expected to provide insight into the origin of the high diode ideality factor in GaN-based devices.

  13. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2017-07-01

    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  14. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application

    Science.gov (United States)

    Chen, Weiwei; Xin, Xing; Zang, Zhigang; Tang, Xiaosheng; Li, Cunlong; Hu, Wei; Zhou, Miao; Du, Juan

    2017-11-01

    All-inorganic cesium lead halide (CsPbBr3) perovskite quantum dots (QDs), as one kind of promising materials, have attracted considerable attention in optoelectronic applications. Herein, we synthesized the colloidal CsPbBr3 QDs with tunable photoluminescence (PL) (493-531 nm) by adjusting the reaction temperatures, which revealed narrow emission bandwidths of about 25 nm. The average diameters of the QDs could be adjusted from 7.1 to 12.3 nm as the temperature increased from 100 °C to 180 °C. Moreover, the radiative lifetimes of CsPbBr3 QDs were measured to be 2 ns, and the single QD fluorescence intensity time trace results demonstrated its suppressed blinking emission. Moreover, green light emitting diodes by using CsPbBr3 QDs casted on blue LED chips were further fabricated, which provided potential applications in the field of display and lighting technology.

  15. Bright green light treatment of depression for older adults [ISRCTN69400161

    Directory of Open Access Journals (Sweden)

    Knickerbocker Nancy C

    2005-11-01

    Full Text Available Abstract Background Bright white light has been successfully used for the treatment of depression. There is interest in identifying which spectral colors of light are the most efficient in the treatment of depression. It is theorized that green light could decrease the intensity duration of exposure needed. Late Wake Treatment (LWT, sleep deprivation for the last half of one night, is associated with rapid mood improvement which has been sustained by light treatment. Because spectral responsiveness may differ by age, we examined whether green light would provide efficient antidepressant treatment in an elder age group. Methods We contrasted one hour of bright green light (1,200 Lux and one hour of dim red light placebo ( Results The protocol was completed by 33 subjects who were 59 to 80 years old. Mood improved on average 23% for all subjects, but there were no significant statistical differences between treatment and placebo groups. There were negligible adverse reactions to the bright green light, which was well tolerated. Conclusion Bright green light was not shown to have an antidepressant effect in the age group of this study, but a larger trial with brighter green light might be of value.

  16. Invariable optical properties of phosphor-free white light-emitting diode under electrical stress

    International Nuclear Information System (INIS)

    Hao, Long; Hao, Fang; Sheng-Li, Qi; Li-Wen, Sang; Wen-Yu, Cao; Jian, Yan; Jun-Jing, Deng; Zhi-Jian, Yang; Guo-Yi, Zhang

    2010-01-01

    This paper reports that a dual-wavelength white light-emitting diode is fabricated by using a metal-organic chemical vapor deposition method. Through a 200-hours' current stress, the reverse leakage current of this light-emitting diode increases with the aging time, but the optical properties remained unchanged despite the enhanced reverse leakage current. Transmission electron microscopy and cathodeluminescence images show that indium atoms were assembled in and around V-shape pits with various compositions, which can be ascribed to the emitted white light. Evolution of cathodeluminescence intensities under electron irradiation is also performed. Combining cathodeluminescence intensities under electron irradiation and above results, the increase of leakage channels and crystalline quality degradation are realized. Although leakage channels increase with aging, potential fluctuation caused by indium aggregation can effectively avoid the impact of leakage channels. Indium aggregation can be attributed to the mechanism of preventing optical degradation in phosphor-free white light-emitting diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films

    International Nuclear Information System (INIS)

    Zhang Jun; Li Qian; Di Xiaowei; Liu Zhiliang; Xu Gang

    2008-01-01

    Multicolored semiconductor quantum dots have shown great promise for construction of miniaturized light-emitting diodes with compact size, low weight and cost, and high luminescent efficiency. The unique size-dependent luminescent property of quantum dots offers the feasibility of constructing single-color or full-color output light-emitting diodes with one type of material. In this paper, we have demonstrated the facile fabrication of blue-, green-, red- and full-color-emitting semiconductor quantum dot optical films via a layer-by-layer assembly technique. The optical films were constructed by alternative deposition of different colored quantum dots with a series of oppositely charged species, in particular, the new use of cationic starch on glass substrates. Semiconductor ZnSe quantum dots exhibiting blue emission were deposited for fabrication of blue-emitting optical films, while semiconductor CdTe quantum dots with green and red emission were utilized for construction of green- and red-emitting optical films. The assembly of integrated blue, green and red semiconductor quantum dots resulted in full-color-emitting optical films. The luminescent optical films showed very bright emitting colors under UV irradiation, and displayed dense, smooth and efficient luminous features, showing brighter luminescence in comparison with their corresponding quantum dot aqueous colloid solutions. The assembled optical films provide the prospect of miniaturized light-emitting-diode applications.

  18. Light emitting structures porous silicon-silicon substrate

    International Nuclear Information System (INIS)

    Monastyrskii, L.S.; Olenych, I.B.; Panasjuk, M.R.; Savchyn, V.P.

    1999-01-01

    The research of spectroscopic properties of porous silicon has been done. Complex of photoluminescence, electroluminescence, cathodoluminescence, thermostimulated depolarisation current analyte methods have been applied to study of geterostructures and free layers of porous silicon. Light emitting processes had tendency to decrease. The character of decay for all kinds of luminescence were different

  19. The application of the light emitting diode in MR room lighting

    International Nuclear Information System (INIS)

    Cao Jun; Wang Chunhong

    2009-01-01

    Objective: To investigate the application of white light emitting diode (LED) in magnetic resonance room, in order to resolve the damageable problem of incandescent lights under the high magnetic field. Methods: The white LEDs and the incandescent lights were installed in MR room, the number of damaged lights was compared after 300 hours. Chi-square test was used for the statistical analysis. And the illuminance and 50 000 hours electricity consumption between LED and incandescent lights were calculated. Results: The number of damaged LED and incandescent lights was 2 and 32, respectively and there was a significant difference (χ 2 =48.813, P=0.000). The illuminance of the LED and incandescent lights was 155 lx and 100 lx at the 0.75 m horizontal level and the 50 000 hour's electricity consumption was 200 kW and 5000 kW, respectively. Conclusion: It is feasible and a great advantage to use the white LEDs in MR room lighting. (authors)

  20. SPEAKING IN LIGHT - Jupiter radio signals as deflections of light-emitting electron beams in a vacuum chamber

    Science.gov (United States)

    Petrovic, K.

    2015-10-01

    Light emitting electron beam generated in a vacuum chamber is used as a medium for visualizing Jupiter's electromagnetic radiation. Dual dipole array antenna is receiving HF radio signals that are next amplified to radiate a strong electromagnetic field capable of influencing the propagation of electron beam in plasma. Installation aims to provide a platform for observing the characteristics of light emitting beam in 3D, as opposed to the experiments with cathode ray tubes in 2-dimensional television screens. Gas giant 'speaking' to us by radio waves bends the light in the tube, allowing us to see and hear the messages of Jupiter - God of light and sky.

  1. The efficiency challenge of nitride light-emitting diodes for lighting

    KAUST Repository

    Weisbuch, Claude

    2015-03-13

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We discuss the challenges of light-emitting diodes in view of their application to solid-state lighting. The requirement is to at least displace the quite efficient fluorescent, sodium, and high intensity discharge lamps used today in the main energy consuming lighting sectors, industrial, commercial and outdoors, with more efficient and better light quality lamps. We show that both from the point of view of cost of ownership and carbon emissions reduction, the relevant metric is efficiency, more than the cost of lumens. Then, progress from present performance requires identification of the loss mechanisms in light emission from LEDs, and solutions competing with mainstream c-plane LEDS grown on sapphire need to be on par with these. Special attention is devoted to a discussion of the efficiency droop mechanisms, and of a recent direct measurement of Auger generated electrons which appear to be responsible for droop.

  2. Utilizing a Spiro Core with Acridine- and Phenothiazine-Based New Hole Transporting Materials for Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Ramanaskanda Braveenth

    2018-03-01

    Full Text Available Two new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9H-yl-9,9′ spirobi[fluorene] (SP1 and 2,7-di(10H-phenothiazin-10-yl-9,9′-spirobi[fluorene] (SP2, were designed and synthesized by using the Buchwald–Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs with SP1 and SP2 as hole transporting materials. Both of the materials revealed improved device properties, in particular, the SP2-based device showed excellent power (34.47 lm/W and current (38.41 cd/A efficiencies when compare with the 4,4′-bis(N-phenyl-1-naphthylaminobiphenyl (NPB-based reference device (30.33 lm/W and 32.83 cd/A. The external quantum efficiency (EQE of SP2 was 13.43%, which was higher than SP1 (13.27% and the reference material (11.45% with a similar device structure. The SP2 hole transporting material provides an effective charge transporting path from anode to emission layer, which is explained by the device efficiencies.

  3. Luminescence and squeezing of a superconducting light-emitting diode

    Science.gov (United States)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  4. Photon extraction from nitride ultraviolet light-emitting devices

    Science.gov (United States)

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R

    2015-02-24

    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  5. Establishing a green lights revolving fund

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The report details the experiences of the City of Houston in establishing a Green Lights Revolving Fund. It provides examples of key documents and guidelines which can be used in other jurisdictions to establish an internal revolving fund to provide continuing monies through recapture of cost savings for an ongoing program of energy improvements in governmental facilities. It provides guidelines on how to establish a continuing source of funds for governmental facility energy improvements. The report provides background information on the ongoing energy improvement programs in the City of Houston, including its participation in the Environmental Protection Agency`s Green Lights Program. It reviews the steps required to establish a Green Lights Revolving Fund, including the administrative, legal, budgetary, accounting, interdepartmental, mayoral, and governing body approvals and actions needed to create a self-sustaining revolving fund devoted to energy improvements. The report also describes two funding sources in addition to the grant seed funds which were used to increase the initial funds available in the Green Lights Revolving Fund. It provides sample documents for modification and use in other jurisdictions that want to use similar funding sources. It reports the initial project submission and selection procedure and criteria, and provides a transferable project application kit based on the criteria specified. It also details a sample repayment memorandum of understanding between departments, which can be used in other governments. Other transferable products provided in the report are sample energy audit summaries which were conducted by qualified, independent staff to determine the accuracy of the departmental project costs and savings payback calculations.

  6. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations.

    Science.gov (United States)

    Zhang, Congcong; Chen, Penglei; Hu, Wenping

    2016-03-09

    Organic light-emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field-effect transistors (OFETs) and the light-generation capability of organic light-emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state-of-the-art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source-drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structural effects of a light emitting copolymer having perylene moieties in the side chain on the electroluminescent characteristics

    International Nuclear Information System (INIS)

    Lee, Chang Ho; Ryu, Seung Hoon; Jang, Hee Dong; Oh, Se Young

    2004-01-01

    We have synthesized a novel side chain light emitting copolymer. The side chain light emitting copolymer has a perylene moiety as an emitting unit and methylmethacrylate (MMA) as a spacer to decrease the concentration quenching of light emitting site in the polymer intrachain. These polymers are very soluble in most organic solvents such as monochlorobenzene, tetrahydrofuran, chloroform and benzene. The single-layered electroluminescent (EL) device consisting of ITO/carrier transporting copolymer and light emitting copolymer/Al was manufactured. The carrier transporting copolymer has triphenylamine moiety as a hole transporting unit and triazine moiety as an electron transporting unit in the polymer side chain. This device exhibits maximum external quantum efficiency when the MMA contents of light emitting copolymer is 30 wt.%. In particular, the device emits more blue light as MMA contents increase

  8. Fluorescence lifetime imaging using light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Gordon T; Munro, Ian; Poher, Vincent; French, Paul M W; Neil, Mark A A [Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Elson, Daniel S [Institute of Biomedical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Hares, Jonathan D [Kentech Instruments Ltd, Unit 9, Hall Farm Workshops, South Moreton, Didcot, Oxfordshire, OX11 9AG (United Kingdom)], E-mail: gordon.kennedy@imperial.ac.uk

    2008-05-07

    We demonstrate flexible use of low cost, high-power light emitting diodes as illumination sources for fluorescence lifetime imaging (FLIM). Both time-domain and frequency-domain techniques have been implemented at wavelengths spanning the range 450-640 nm. Additionally, we demonstrate optically sectioned fluorescence lifetime imaging by combining structured illumination with frequency-domain FLIM.

  9. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    Science.gov (United States)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.

  10. Luminescence properties of novel red-emitting phosphor InNb1-xPxO4:Eu3+ for white light emitting-diodes

    Directory of Open Access Journals (Sweden)

    Tang An

    2015-06-01

    Full Text Available InNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.

  11. Steady full colour white organic light-emitting devices consisting of an ultrathin red fluorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Wen Wen; Yu Junsheng; Li Lu; Wang Jun; Jiang Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn

    2009-01-07

    White organic light-emitting devices were fabricated using an ultrathin red fluorescent dye of 3-(dicyanomethylene)-5, 5-dimethyl-1-(4-dimethylamino-styryl)cyclohexene inserted in tris(8-quinolinolato) aluminium layer as a red and green emitting layer (EML) and a thin 4, 4'-bis(2, 2'-diphenylvinyl)-1, 1'-diphenyl (DPVBi) layer as blue EML. A maximum power efficiency of 2.4 lm W{sup -1} at 5.5 V and a maximum luminance of 16 690 cd m{sup -2} at 18.5 V were obtained. Pure white emission with a good colour rendering index of 80 was achieved as low as 5 V. The Commission Internationale de l'Eclairage (CIE) coordinates near (0.330, 0.300) show a slight variation of (-0.020, +0.002) in a wide range of voltages. The achievement of full colour white emission at low-operation voltages and high-colour stability is attributed to the confining emission zone function of the thin EML and direct carrier trapping in the ultrathin layer.

  12. China Green Lights Program: A Review and Recommendations; TOPICAL

    International Nuclear Information System (INIS)

    Lin, Jiang

    1999-01-01

    This report reviews the development of China's Green Lights Program in the last two years, and discusses the remaining barriers to the widespread adoption of efficient lighting technologies in China: chiefly quality, high initial costs, and lack of accurate information. A variety of policy options are recommended for the future expansion of China's Green Lights Program

  13. Luminance mechanisms in green organic light-emitting devices fabricated utilizing tris(8-hydroxyquinoline)aluminum/4,7-diphenyl-1, 10-phenanthroline multiple heterostructures acting as an electron transport layer.

    Science.gov (United States)

    Choo, Dong Chul; Seo, Su Yul; Kim, Tae Whan; Jin, You Young; Seo, Ji Hyun; Kim, Young Kwan

    2010-05-01

    The electrical and the optical properties in green organic light-emitting devices (OLEDs) fabricated utilizing tris(8-hydroxyquinoline)aluminum (Alq3)/4,7-diphenyl-1,10-phenanthroline (BPhen) multiple heterostructures acting as an electron transport layer (ETL) were investigated. The operating voltage of the OLEDs with a multiple heterostructure ETL increased with increasing the number of the Alq3/BPhen heterostructures because more electrons were accumulated at the Alq3/BPhen heterointerfaces. The number of the leakage holes existing in the multiple heterostructure ETL of the OLEDs at a low voltage range slightly increased due to an increase of the internal electric field generated from the accumulated electrons at the Alq3/BPhen heterointerface. The luminance efficiency of the OLEDs with a multiple heterostructure ETL at a high voltage range became stabilized because the increase of the number of the heterointerface decreased the quantity of electrons accumulated at each heterointerface.

  14. Vacuum Deposited Organic Light Emitting Devices on Flexible Substrates

    National Research Council Canada - National Science Library

    Forrest, Stephen

    2002-01-01

    The objective of this eight year program was to demonstrate both passive and active matrix, flexible, small scale displays based on small molecular weight organic light emitting device (OLED) technology...

  15. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    DEFF Research Database (Denmark)

    Thorseth, Anders

    2012-01-01

    are simulated using radiometrically measured single LED spectra. The method uses electrical input powers as input parameters and optimizes the resulting spectral power distribution with regard to color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal......To address the problem of spectral light quality from color mixing light-emitting diode systems, a method for optimizing the spectral output of multicolor LED system with regards to standardized quality parameters has been developed. The composite spectral power distribution from the LEDs...

  16. Polaron self-localization in white-light emitting hybrid perovskites

    KAUST Repository

    Cortecchia, Daniele

    2017-02-03

    Two-dimensional (2D) perovskites with the general formula APbX are attracting increasing interest as solution processable, white-light emissive materials. Recent studies have shown that their broadband emission is related to the formation of intra-gap colour centres. Here, we provide an in-depth description of the charge localization sites underlying the generation of such radiative centres and their corresponding decay dynamics, highlighting the formation of small polarons trapped within their lattice distortion field. Using a combination of spectroscopic techniques and first-principles calculations to study the white-light emitting 2D perovskites (EDBE)PbCl and (EDBE)PbBr, we infer the formation of Pb , Pb, and X (where X = Cl or Br) species confined within the inorganic perovskite framework. Due to strong Coulombic interactions, these species retain their original excitonic character and form self-trapped polaron-excitons acting as radiative colour centres. These findings are expected to be relevant for a broad class of white-light emitting perovskites with large polaron relaxation energy.

  17. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huishan, E-mail: yanghuishan1697@163.com

    2013-10-15

    White organic light-emitting devices have been realized by using highly blue fluorescent dye 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl(p-TDPVBi) and [2-methyl-6-[2-(2, 3,6,7-tetrahydro-1H, red fluorescent dye 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile(DCM2), together with well known green fluorescent dye quinacridone (QAD). The fabrication of multilayer WOLEDs did not involve the hard-to-control doping process. The structure of the device is ITO/m-MTDATA (45 nm)/NPB(8 nm)/p-TDPVBi(15 nm)/DCM2(x nm)/Alq{sub 3} (5 nm)/QAD(y nm)/Alq{sub 3}(55 nm)/LiF(1 nm)/Al, where 4,4′,4′′-tris{N,-(3-methylphenyl)-N-phenylamine}triphenylamine (m-MTDATA) acts as a hole injection layer, N,N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biph-enyl-4, 4′-diamine (NPB) acts as a hole transport layer, p-TDPVBi acts as a blue emitting layer, DCM2 acts as a red emitting layer, QAD acts as a green emitting layer, tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) acts as an electron transport layer, and WOLEDs of devices A, B, C and D are different in layer thickness of DCM2 and QAD, respectively. To change the thickness of dual sub-monolayer DCM2 and QAD, the WOLEDs were obtained. When x, y=0.05, 0.1, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.4458, 0.4589) at 3 V to (0.3137, 0.3455) at 12 V that are well in the white region, and the color temperature and color rendering index were 5348 K and 85 at 8 V, respectively. Its maximum luminance was 35260 cd/m{sup 2} at 12 V, and maximum current efficiency and maximum power efficiency were 13.54 cd/A at 12 V and 6.68 lm/W at 5 V, respectively. Moreover, the current efficiency is largely insensitive to the applied voltage. The electroluminescence intensity of white EL devices varied only little at deferent dual sub-monolayer. Device D exhibited relatively high color rendering index (CRI) in the range of 88–90, which was essentially

  18. Stacked white OLED having separate red, green and blue sub-elements

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2015-06-23

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  19. Stacked white OLED having separate red, green and blue sub-elements

    Science.gov (United States)

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2016-06-28

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  20. Optimization of light quality from color mixing light-emitting diode systems for general lighting

    Science.gov (United States)

    Thorseth, Anders

    2012-03-01

    Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.

  1. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    Science.gov (United States)

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  2. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Lijuan Zou

    2003-08-05

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.

  3. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    International Nuclear Information System (INIS)

    Lijuan Zou

    2003-01-01

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm 2 , the optimal radiance R could reach 0.38 mW/cm 2 , and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be ∼ 10 -5 cm 2 /Vs and ∼ 10 -4 cm 2 /Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces

  4. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    International Nuclear Information System (INIS)

    Wu, F.; Dawei, Z.; Shuzhen, S.; Yiming, Z.; Songlin, Z.; Jian, X.

    2012-01-01

    We have investigated the feasibility of employing quantum dot (QD) phosphor-based light-emitting diodes (LEDs) in aviation applications that request Night Vision Imaging Systems (NVIS) compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nano crystal QDs can be tailored by varying the nano crystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  5. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Lu; Xia, Fafa; Ye, Qiuyu; Xiang, Xishu; Xie, Bing, E-mail: bxie@des.ecnu.edu.cn

    2015-12-15

    Highlights: • Rare metals (Ga, In) are separated and recycled from waste light-emitting diodes. • Pyrolysis, physical disaggregation and vacuum metallurgy separation are proposed. • There is no hazardous materials produced in this process. - Abstract: This work develops a novel process of recycling rare metals (Ga, In) from waste light-emitting diodes using the combination of pyrolysis, physical disaggregation methods and vacuum metallurgy separation. Firstly, the pure chips containing InGaN/GaN are adopted to study the vacuum separation behavior of rare metals, which aims to provide the theoretical foundation for recycling gallium and indium from waste light-emitting diodes. In order to extract the rare-metal-rich particles from waste light-emitting diodes, pyrolysis and physical disaggregation methods (crushing, screening, grinding and secondly screening) are studied respectively, and the operating parameters are optimized. With low boiling points and high saturation vapor pressures under vacuum, gallium and indium are separated from rare-metal-rich particles by the process of evaporation and condensation. By reference to the separating parameters of pure chips, gallium and indium in waste light-emitting diodes are recycled with the recovery efficiencies of 93.48% and 95.67% under the conditions as follows: heating temperature of 1373 K, vacuum pressure of 0.01–0.1 Pa, and holding time of 60 min. There are no secondary hazardous materials generated in the whole processes. This work provides an efficient and environmentally friendly process for recycling rare metals from waste light-emitting diodes.

  6. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light.

    Science.gov (United States)

    Yang, Chih-Chi; Doong, Ruey-An; Chen, Ku-Fan; Chen, Giin-Shan; Tsai, Yung-Pin

    2018-01-01

    This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO 2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO 2 that is doped with Cu 2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced. The CuO-doped anatase TiO 2 powder was successfully synthesized in this study by a sol-gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.

  7. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2012-01-01

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr '1 m '2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  8. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  9. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  10. Silicon based light-emitting materials and devices

    International Nuclear Information System (INIS)

    Chen Weide

    1999-01-01

    Silicon based light-emitting materials and devices are the key to optoelectronic integration. Recently, there has been significant progress in materials engineering methods. The author reviews the latest developments in this area including erbium doped silicon, porous silicon, nanocrystalline silicon and Si/SiO 2 superlattice structures. The incorporation of these different materials into devices is described and future device prospects are assessed

  11. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Science.gov (United States)

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  12. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Directory of Open Access Journals (Sweden)

    Ole Rechner

    Full Text Available Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm, violet (420 nm, blue (470 nm, or green (515 nm. We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates, and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants over control plants.

  13. Blue-light emitting triazolopyridinium and triazoloquinolinium salts

    KAUST Repository

    Carboni, Valentina

    2017-01-27

    Compounds that emit blue light are of interest for applications that include optoelectronic devices and chemo/biosensing and imaging. The design and synthesis of small organic molecules that can act as high-efficiency deep-blue-light emitters in the solid state and can be easily processed from solutions represents a significant challenge. Herein we present the preparation and photophysical, photochemical and electrochemical properties of a series of triazolopyridinium and triazoloquinolinium compounds. The compounds are soluble in water or polar organic solvents and exhibit photoluminescence in the blue region of the spectrum in fluid solution, in the solid state and in a frozen matrix.

  14. Slim planar apparatus for converting LED light into collimated polarized light uniformly emitted from its top surface.

    Science.gov (United States)

    Teng, Tun-Chien; Tseng, Li-Wei

    2014-10-20

    This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

  15. Effect of inserting of thin Rubrene layer on performance of Organic Light-Emitting Diodes based on Zn(BTz)2

    Science.gov (United States)

    Tomova, R. L.; Petrova, P. K.; Stoycheva-Topalova, R. T.

    2010-11-01

    Organic light-emitting diodes (OLEDs) with improved performances are fabricated using a thin (1 nm) yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (Rubrene) inserted at different position in green emitting electroluminescent (EL) layer of bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTz)2) in configuration: ITO/PVK:TPD/ Zn(BTz)2 (x nm)/ Rubrene (1 nm)/ Zn(BTz)2 (75-x nm)/Al, where PVK:TPD is a hole transporting layer of N, N'-bis(3-methylphenyl)-N, N'-diphenylbenzidine (TPD) incorporated in poly(N-vinylcarbazole) (PVK) matrix and Al is a cathode. EL spectra predominantly influenced by Rubrene emission when the doping layer is close to (PVK:TPD)/ Zn(BTz)2 (x→ 0-15 nm) and to Zn(BTz)2/Al (x→ 70-75 nm) interfaces and shift toward emission of Zn(BTz)2 increasing the distance of Rubrene from both interfaces (x→35 nm). The same dependence of the EL efficiency on the position of the doping Rubrene layer in the OLED structure was found.

  16. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.

    Science.gov (United States)

    Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume

    2017-09-20

    A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.

  17. Pollution prevention initiatives at US EPA: 'Green Lights'

    International Nuclear Information System (INIS)

    Lawson, J.; Kwartin, R.

    1991-01-01

    US EPA is initiating a pollution prevention approach to supplement its historic command-control, regulatory approach to environmental protection. EPA believes polllution prevention, where applicable and possible, represents a quicker, less expensive and even profitable strategy for environmental protection. Most clearly, energy-efficiency provides an opportunity to prevent significant amounts of pollution related to the inefficeint generation and use of electricity. EPA's first energy productivity and pollution prevention program is Green Lights. Beyond its own merits, Green Lights will also provide important experience to EPA as it develops its Green Machines program to accelerate the market for efficient appliances and equipment

  18. Effects of melatonin injection or green-wavelength LED light on the antioxidant system in goldfish (Carassius auratus) during thermal stress.

    Science.gov (United States)

    Jung, Seo Jin; Choi, Young Jae; Kim, Na Na; Choi, Ji Yong; Kim, Bong-Seok; Choi, Cheol Young

    2016-05-01

    We tested the mitigating effects of melatonin injections or irradiation from green-wavelength light-emitting diodes (LEDs) on goldfish (Carassius auratus) exposed to thermal stress (high water temperature, 30 °C). The effects of the two treatments were assessed by measuring the expression and activity levels of the antioxidant enzymes, superoxide dismutase and catalase, plasma hydrogen peroxide, lipid hydroperoxide, and lysozyme. In addition, a comet assay was conducted to confirm that high water temperature damaged nuclear DNA. The expression and activity of the antioxidant enzymes, plasma hydrogen peroxide, and lipid hydroperoxide were significantly higher after exposure to high temperature and were significantly lower in fish that received melatonin or LED light than in those that received no mitigating treatment. Plasma lysozyme was significantly lower after exposure to high temperature and was significantly higher after exposure to melatonin or LED light. The comet assay revealed that thermal stress caused a great deal of damage to nuclear DNA; however, treatment with melatonin or green-wavelength LED light prevented a significant portion of this damage from occurring. These results indicate that, although high temperatures induce oxidative stress and reduce immune system strength in goldfish, both melatonin and green-wavelength LED light inhibit oxidative stress and boost the immune system. LED treatment increased the antioxidant and immune system activity more significantly than did melatonin treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Origin of colour stability in blue/orange/blue stacked phosphorescent white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Kim, Sung Hyun; Jang, Jyongsik; Yook, Kyoung Soo; Lee, Jun Yeob

    2009-01-01

    The origin of colour stability in phosphorescent white organic light-emitting diodes (PHWOLEDs) with a blue/orange/blue stacked emitting structure was studied by monitoring the change in a recombination zone. A balanced recombination zone shift between the blue and the orange light-emitting layers was found to be responsible for the colour stability in the blue/orange/blue stacked PHWOLEDs.

  20. Organic light emitting diodes with spin polarized electrodes

    NARCIS (Netherlands)

    Arisi, E.; Bergenti, I.; Dediu, V.; Loi, M.A.; Muccini, M.; Murgia, M.; Ruani, G.; Taliani, C.; Zamboni, R.

    2003-01-01

    Electrical and optical properties of Alq3 based organic light emitting diodes with normal and spin polarized electrodes are presented. Epitaxial semitransparent highly spin polarized La0.7Sr0.3MnO3 were used as hole injector, substituting the traditional indium tin oxide electrode. A comparison of

  1. Performance of injection-limited polymer light-emitting diodes

    NARCIS (Netherlands)

    Blom, P.W.M.; Woudenberg, T.V.; Huiberts, H.; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The electro-optical characteristics of a polymer light emitting diode (PLED) with a strongly reduced hole injection have been investigated. The device consists of a poly-p-phenylene vinylene semiconductor with a Ag hole injecting contact, which has an injection barrier of about 1 eV. It is observed

  2. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  3. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties

    Directory of Open Access Journals (Sweden)

    Inge Verboven

    2018-02-01

    Full Text Available To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm/barium titanate (10 µm/zinc-oxide (10 µm and poly(3,4-ethylenedioxythiophenepoly(styrenesulfonate (10 µm. Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm as smoothing layer/silver (200 nm/poly(3,4-ethylenedioxythiophenepoly(styrenesulfonate (35 nm/super yellow (80 nm/calcium/aluminum (12/17 nm. Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables.

  4. A white organic light emitting diode based on anthracene-triphenylamine derivatives

    Science.gov (United States)

    Jiang, Quan; Qu, Jianjun; Yu, Junsheng; Tao, Silu; Gan, Yuanyuan; Jiang, Yadong

    2010-10-01

    White organic lighting-diode (WOLED) can be used as flat light sources, backlights for liquid crystal displays and full color displays. Recently, a research mainstream of white OLED is to develop the novel materials and optimize the structure of devices. In this work a WOLED with a structure of ITO/NPB/PAA/Alq3: x% rubrene/Alq3/Mg: Ag, was fabricated. The device has two light-emitting layers. NPB is used as a hole transport layer, PAA as a blue emitting layer, Alq3: rubrene host-guest system as a yellow emitting layer, and Alq3 close to the cathode as an electron transport layer. In the experiment, the doping concentration of rubrene was optimized. WOLED 1 with 4% rubrene achieved a maximum luminous efficiency of 1.80 lm/W, a maximum luminance of 3926 cd/m2 and CIE coordinates of (0.374, 0.341) .WOLED 2 with 2% rubrene achieved a maximum luminous efficiency of 0.65 lm/W, a maximum luminance of 7495cd/m2 and CIE coordinates of (0.365,0.365).

  5. Finding the Average Speed of a Light-Emitting Toy Car with a Smartphone Light Sensor

    Science.gov (United States)

    Kapucu, Serkan

    2017-01-01

    This study aims to demonstrate how the average speed of a light-emitting toy car may be determined using a smartphone's light sensor. The freely available Android smartphone application, "AndroSensor," was used for the experiment. The classroom experiment combines complementary physics knowledge of optics and kinematics to find the…

  6. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    International Nuclear Information System (INIS)

    Guan Yunxia; Niu Lianbin

    2009-01-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq 3 /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Foerster energy transfer from the blue-emitting host to the orange-emitting dopant.

  7. Trapping of Rift Valley Fever (RVF vectors using Light Emitting Diode (LED CDC traps in two arboviral disease hot spots in Kenya

    Directory of Open Access Journals (Sweden)

    Tchouassi David P

    2012-05-01

    Full Text Available Abstract Background Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captures following the development of super-bright light-emitting diodes (LEDs which emit narrow wavelengths of light or very specific colors. Therefore, we investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV vectors. Methods The efficiency of selected colored LED CDC light traps (red, green, blue, violet, combination of blue-green-red (BGR to sample RVF vectors was evaluated relative to incandescent light (as control in a CDC light trap in two RVF hotspots (Marigat and Ijara districts in Kenya. In field experiments, traps were baited with dry ice and captures evaluated for Aedes tricholabis, Ae. mcintoshi, Ae. ochraceus, Mansonia uniformis, Mn. africana and Culex pipiens, following Latin square design with days as replicates. Daily mosquito counts per treatment were analyzed using a generalized linear model with Negative Binomial error structure and log link using R. The incidence rate ratios (IRR that mosquito species chose other treatments instead of the control, were estimated. Results Seasonal preference of Ae.mcintoshi and Ae. ochraceus at Ijara was evident with a bias towards BGR and blue traps respectively in one trapping period but this pattern waned during another period at same site with significantly low numbers recorded in all colored traps except blue relative to the control. Overall results showed that higher captures of all species were recorded in control traps compared to the other LED traps (IRR  Conclusion Based on our trapping design and color, none of the LEDs

  8. Effect of 670-nm Light-Emitting Diode Light On Neuronal Cultures

    Science.gov (United States)

    Wong-Riley, Margaret T. T.; Whelan, Harry T.

    2002-01-01

    Light close to and within the near infrared range has documented benefits for promoting wound healing in human and animal studies. Our preliminary results using light-emitting diodes (LEDs) in this range have also demonstrated two-to five-fold increases in growth-phase-specific DNA synthesis in normal fibroblasts, muscle cells, osteoblasts, and mucosal epithelial cells in tissue cultures. However, the mechanisms of action of such light on cells are poorly understood. We hypothesized that the therapeutic effects of such light result from the stimulation of cellular events associated with increases in cytochrome oxidase activity. As a first step in testing our hypothesis, we subjected primary neuronal cultures to impulse blockade by tetrodotoxin (TTX), a voltage-dependent sodium channel blocker, and applied LED light at 670 nm to determine if it could partially or fully reverse the reduction of cytochrome oxidase activity by TTX. The wavelength and parameters were previously tested to be beneficial for wound healing.

  9. Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications

    Directory of Open Access Journals (Sweden)

    Fengbing Wu

    2012-01-01

    Full Text Available We have investigated the feasibility of employing quantum dot (QD phosphor-based light-emitting diodes (LEDs in aviation applications that request Night Vision Imaging Systems (NVIS compliance. Our studies suggest that the emerging QD phosphor-based LED technology could potentially be superior to conventional aviation lighting technology by virtue of the marriage of tight spectral control and broad wavelength tunability. This largely arises from the fact that the optical properties of semiconductor nanocrystal QDs can be tailored by varying the nanocrystal size without any compositional changes. It is envisioned that the QD phosphor-based LEDs hold great potentials in cockpit illumination, back light sources of monitor screens, as well as the LED indicator lights of aviation panels.

  10. Benzoporphyrin derivative and light-emitting diode for use in photodynamic therapy: Applications of space light-emitting diode technology

    International Nuclear Information System (INIS)

    Whelan, Harry T.; Houle, John M.; Bajic, Dawn M.; Schmidt, Meic H.; Reichert, Kenneth W. II; Meyer, Glenn A.

    1998-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality that recently has been applied as adjuvant therapy for brain tumors. PDT consists of intravenously injecting a photosensitizer, which preferentially accumulates in tumor cells, into a patient and then activating the photosensitizer with a light source. This results in free radical generation followed by cell death. The development of more effective light sources for PDT of brain tumors has been facilitated by applications of space light-emitting diode array technology; thus permitting deeper tumor penetration of light and use of better photosensitizers. Currently, the most commonly used photosensitizer for brain tumor PDT is Photofrin registered . Photofrin registered is a heterogeneous mixture of compounds derived from hematoporphyrin. Photofrin registered is activated with a 630 nm laser light and does destroy tumor cells in animal models and humans. However, treatment failure does occur using this method. Most investigators attribute this failure to the limited penetration of brain tissue by a 630 nm laser light and to the fact that Photofrin registered has only a minor absorption peak at 630 nm, meaning that only a small fraction of the chemical is activated. Benzoporphyrin Derivative Monoacid Ring A (BPD) is a new, second generation photosensitizer that can potentially improve PDT for brain tumors. BPD has a major absorption peak at 690 nm, which gives it two distinct advantages over Photofrin registered . First, longer wavelengths of light penetrate brain tissue more easily so that larger tumors could be treated, and second, the major absorption peak means that a larger fraction of the drug is activated upon exposure to light. In the first part of this project we have studied the tumoricidal effects of BPD in vitro using 2A9 canine glioma and U373 human glioblastoma cell cultures. Using light emitting diodes (LED) with a peak emission of 688 nm as a light source, cell kill of up to 86 percent was

  11. Theoretical analysis of enhanced light output from a GaN light emitting diode with an embedded photonic crystal

    International Nuclear Information System (INIS)

    Wen Feng; Liu Deming; Huang Lirong

    2010-01-01

    The enhancement of the light output of an embedded photonic crystal light emitting diode is investigated based on the finite-difference time-domain modeling. The embedded photonic crystal (PC) lattice type, multi-layer embedded PC, distance between the multiple quantum well and the embedded PC are studied. It is found that the embedded one dimensional PC can act as well as embedded two dimensional PCs. The emitted light flux in the up direction can be increased by a new kind of multi-layer embedded PC. Also, we show that the light output in the up direction for the LED with both surfaces and embedded PC could be as high as five times that of a conventional LED. (semiconductor devices)

  12. Theoretical analysis of enhanced light output from a GaN light emitting diode with an embedded photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wen Feng; Liu Deming; Huang Lirong, E-mail: hlr5649@163.co [Wuhan National Laboratory for Optoelectronics, College of Opto-Electronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-10-15

    The enhancement of the light output of an embedded photonic crystal light emitting diode is investigated based on the finite-difference time-domain modeling. The embedded photonic crystal (PC) lattice type, multi-layer embedded PC, distance between the multiple quantum well and the embedded PC are studied. It is found that the embedded one dimensional PC can act as well as embedded two dimensional PCs. The emitted light flux in the up direction can be increased by a new kind of multi-layer embedded PC. Also, we show that the light output in the up direction for the LED with both surfaces and embedded PC could be as high as five times that of a conventional LED. (semiconductor devices)

  13. Perspective: Toward efficient GaN-based red light emitting diodes using europium doping

    Science.gov (United States)

    Mitchell, Brandon; Dierolf, Volkmar; Gregorkiewicz, Tom; Fujiwara, Yasufumi

    2018-04-01

    While InGaN/GaN blue and green light-emitting diodes (LEDs) are commercially available, the search for an efficient red LED based on GaN is ongoing. The realization of this LED is crucial for the monolithic integration of the three primary colors and the development of nitride-based full-color high-resolution displays. In this perspective, we will address the challenges of attaining red luminescence from GaN under current injection and the methods that have been developed to circumvent them. While several approaches will be mentioned, a large emphasis will be placed on the recent developments of doping GaN with Eu3+ to achieve an efficient red GaN-based LED. Finally, we will provide an outlook to the future of this material as a candidate for small scale displays such as mobile device screens or micro-LED displays.

  14. White organic light-emitting devices with high color purity and stability

    Science.gov (United States)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-04-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq3(20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm-2 at the applied voltage of 13.4 V and Commission International de 1‧Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIEx, y = 0.0171, 0.0167; corresponding Δu‧v‧ = 0.0119) when the current density increases from 10 to 100 mA cm-2. It reveals that the emissive dopant Rb acts as charge traps to improve electron-hole balance, provides sites for electron-hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates.

  15. Changes of plasma growth hormone, insulin-like growth factors-I, thyroid hormones, and testosterone concentrations in embryos and broiler chickens incubated under monochromatic green light

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2014-07-01

    Full Text Available Previous studies showed that monochromatic green light stimuli during embryogenesis accelerated posthatch body weight and pectoral muscle growth of broilers. In this experiment, we further investigated whether the regulation of broiler embryonic or posthatch growth by green light stimulus during incubation is associated with the changes of some important hormones at different ages of embryos and broiler chickens. Fertile broiler eggs (Arbor Acres, n=880 were pre-weighed and randomly assigned 1 of 2 incubation treatment groups: i dark condition (control group, and ii monochromatic green light group (560 nm. The monochromatic lighting systems sourced from light-emitting diode lamps were equalised at the intensity of 15 lux (lx at eggshell level. The dark condition was set as a commercial control from day one until hatching. After hatch, 120 day-old male chicks from each group were housed under white light with an intensity of 30 lx at bird-head level. Compared with the dark condition, chicks incubated under the green light showed significantly higher growth hormone (GH levels from 19 d of embryogenesis (E19 to 5 d of posthatch (H5, and higher plasma insulinlike growth factor (IGF-I levels from both E17 to E19 and H3 to H35. No significant differences were found in plasma thyroxine, triiodothyronine, and testosterone in embryos or hatched birds between the 2 groups. These results indicate that somatotropic axis hormones (GH and IGF-I may be the most important contributor to chicken growth promoted by green light stimuli during embryogenesis.

  16. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    Science.gov (United States)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  17. Green-Yellow Electroluminescence from a host-dopant blended system as the active layer in a bilayer polymer light emitting diode: Poly(n-vinyl carbazole) as the host and a new soluble thiophene based copolymer [poly(2,2‧-BT)-co-(3-DDT)] as the dopant

    Science.gov (United States)

    Shahalizad, Afshin; Ahmadi-Kandjani, Sohrab; Movla, Hossein; Omidi, Hafez; Massoumi, Bakhshali; Zakerhamidi, Mohammad Sadegh; Entezami, Ali Akbar

    2014-11-01

    A new type of bilayer Polymer Light Emitting Diode (PLED) which emits green-yellow light is reported. In this PLED, a novel thiophene-based copolymer [poly(2,2‧-BT)-co-(3-DDT)] with an excellent electron transporting property has been doped in hole transporting and electron blocking poly(n-vinylcarbazole) (PVK). Formation of type-II heterojunctions among nm-size features in PVK:poly(2,2‧-BT)-co-(3-DDT) blended system makes exciplex and electroplex emissions would be dominant in the Electroluminescence (EL) spectrum of the device. These cross recombinations between electrons in the LUMO of poly(2,2‧-BT)-co-(3-DDT) and holes in the HOMO of PVK is a reason for the low driving voltage of the PLED because there is no need for the charge carriers to hop or tunnel to the adjacent polymer. Morphological investigations demonstrate that the mixing degree between the components is high, favoring formation of exciplexes and electroplexes at the interface of the components.

  18. White organic light-emitting diodes with 9, 10-bis (2-naphthyl) anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Guan Yunxia; Niu Lianbin [Key Laboratory of Optical Engineering, College of Physics and Information Technology, Chongqing Normal University, Chongqing 400047 (China)], E-mail: gyxybsy@126.com, E-mail: niulb03@126.com

    2009-03-01

    White organic light-emitting diodes were fabricated by 9, 10-bis (2-naphthyl) anthracene (ADN) doped with Rubrene with a structure of ITO/copper phthalocyanine (CuPc) / NPB /ADN: Rubrene /Alq{sub 3} /CsF/Mg:Ag/Ag. Multilayer organic devices using AND and Rubrene as an emitting layer produced white emissions with good chromaticity and luminous efficiency as high as 5.93 cd/A. This performance can be explained by Foerster energy transfer from the blue-emitting host to the orange-emitting dopant.

  19. Can a tachyon emit light radiation in all directions

    Energy Technology Data Exchange (ETDEWEB)

    Ramanujam, G A [NGM Coll., Tamil Nadu (India). Dept. of Physics

    1976-03-01

    It is shown here that a critical analysis of the approaches employed by various authors to accommodate tachyons into special relativity leads one to the conclusion that a tachyon can emit light radiation only along its line of motion.

  20. Low-driving-voltage and colour-stable white organic light-emitting diodes with a cross-patterned multi-emissive layer

    International Nuclear Information System (INIS)

    Hyun, Woo Jin; Park, O Ok; Park, Jae Kyun; Chin, Byung Doo

    2012-01-01

    We have applied a simple cross-patterning technique for the fabrication of phosphorescent white organic light-emitting diodes (WOLEDs) with red, green and blue (RGB) emitters; the resulting device has relatively low driving voltage and high colour stability. The selectively cross-patterned multicolour emitting layer (EML) was easily prepared using a metal mask without an alignment process. Not only was the characteristic of low driving voltage obtained but also of improved colour stability, which can be ascribed to the simplified stack of the EML and the corresponding suppression of the biased shift in the recombination zone. The spatial distribution and variation of the stacked EML structure could explain the origin of the robust white emission. Compared with the conventional WOLED with a RGB simple stack, the cross-patterned multi-EML device showed a slight change in colour coordinates in the luminance range 100-8000 cd m -2 , with a decrease in the driving voltage of 0.5-2.0 V, while the luminous efficiency was maintained. (paper)

  1. Light emitting diodes (LED): applications in forest and native plant nurseries

    Science.gov (United States)

    Thomas D. Landis; Jeremiah R. Pinto; R. Kasten Dumroese

    2013-01-01

    It was quotes like this that made us want to learn more about light emitting diodes (LED). Other than knowing that LEDs were the latest innovation in artificial lighting, we knew that we had a lot to learn. So we started by reviewing some of the basics. The following review is a brief synopsis of how light affects plants and some discussion about LED lighting. If you...

  2. The growth and flowering of Hyacinthus orientalis L. Forced in pots under fluorescent light of different colours

    Directory of Open Access Journals (Sweden)

    Małgorzata Śmigielska

    2014-09-01

    Full Text Available Three hyacinth cultivars were forced under fluorescent lamps which emitted white, blue, green, yellow and red light. The plants started flowering in the first decade of February. The forcing period for two cultivars, ‘Anna Marie’ and ‘Blue Star’, was shortest under lamps emitting red light. The cultivar ‘White Pearl’ flowered equally early under lamps emitting red, white and blue light. The impact of light colour (wavelength on the leaf greenness index (SPAD was demonstrated. The photosynthetic activity of leaves was dependent on the cultivar. It was related both to the net rate of photosynthesis and the photosynthetic efficiency. Specific leaf area (SLA also depended on the cultivar. The level of SLA was related to the rate of photosynthesis and its efficiency. SLA was highest in all cultivars under green and yellow colour light. The chlorophyll content in the fresh and dry weight of leaves was highest under yellow light lamps.

  3. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes

    OpenAIRE

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-01-01

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepare...

  4. Improved light extraction from white organic light-emitting devices using a binary random phase array

    International Nuclear Information System (INIS)

    Inada, Yasuhisa; Nishiwaki, Seiji; Hirasawa, Taku; Nakamura, Yoshitaka; Hashiya, Akira; Wakabayashi, Shin-ichi; Suzuki, Masa-aki; Matsuzaki, Jumpei

    2014-01-01

    We have developed a binary random phase array (BRPA) to improve the light extraction performance of white organic light-emitting devices (WOLEDs). We demonstrated that the scattering of incoming light can be controlled by employing diffraction optics to modify the structural parameters of the BRPA. Applying a BRPA to the substrate of the WOLED leads to enhanced extraction efficiency and suppression of angle-dependent color changes. Our systematic study clarifies the effect of scattering on the light extraction of WOLEDs

  5. Improved light extraction from white organic light-emitting devices using a binary random phase array

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Yasuhisa, E-mail: inada.yasuhisa@jp.panasonic.com; Nishiwaki, Seiji; Hirasawa, Taku; Nakamura, Yoshitaka; Hashiya, Akira; Wakabayashi, Shin-ichi; Suzuki, Masa-aki [R and D Division, Panasonic Corporation, 1006 Kadoma, Kadoma City, Osaka 571-8501 (Japan); Matsuzaki, Jumpei [Device Development Center, Eco Solutions Company, Panasonic Corporation, 1048 Kadoma, Osaka 571-8686 Japan (Japan)

    2014-02-10

    We have developed a binary random phase array (BRPA) to improve the light extraction performance of white organic light-emitting devices (WOLEDs). We demonstrated that the scattering of incoming light can be controlled by employing diffraction optics to modify the structural parameters of the BRPA. Applying a BRPA to the substrate of the WOLED leads to enhanced extraction efficiency and suppression of angle-dependent color changes. Our systematic study clarifies the effect of scattering on the light extraction of WOLEDs.

  6. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    Science.gov (United States)

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  7. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  8. Safety of light emitting diodes in toys.

    Science.gov (United States)

    Higlett, M P; O'Hagan, J B; Khazova, M

    2012-03-01

    Light emitting diodes (LEDs) are increasingly being used in toys. An assessment methodology is described for determining the accessible emission limits for the optical radiation from the toys, which takes account of expected use and reasonably foreseeable misuse of toys. Where data are available, it may be possible to assess the toy from the data sheet alone. If this information is not available, a simple measurement protocol is proposed.

  9. Safety of light emitting diodes in toys

    International Nuclear Information System (INIS)

    Higlett, M P; O'Hagan, J B; Khazova, M

    2012-01-01

    Light emitting diodes (LEDs) are increasingly being used in toys. An assessment methodology is described for determining the accessible emission limits for the optical radiation from the toys, which takes account of expected use and reasonably foreseeable misuse of toys. Where data are available, it may be possible to assess the toy from the data sheet alone. If this information is not available, a simple measurement protocol is proposed.

  10. Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes

    Science.gov (United States)

    Fina, Michael Dane

    Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative

  11. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    NARCIS (Netherlands)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were

  12. Effect of inserting of thin Rubrene layer on performance of Organic Light-Emitting Diodes based on Zn(BTz){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tomova, R L; Petrova, P K; Stoycheva-Topalova, R T, E-mail: reni@clf.bas.b [Institute of optical materials and technologies ' Acad. J. Malinowski' , Bulgarian Academy of Sciences, ' Acad. G. Bonchev' str. bl. 109, 1113 Sofia (Bulgaria)

    2010-11-01

    Organic light-emitting diodes (OLEDs) with improved performances are fabricated using a thin (1 nm) yellow-emitting layer of 5,6,11,12-tetraphenylnaphthacene (Rubrene) inserted at different position in green emitting electroluminescent (EL) layer of bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTz){sub 2}) in configuration: ITO/PVK:TPD/ Zn(BTz){sub 2} (x nm)/ Rubrene (1 nm)/ Zn(BTz){sub 2} (75-x nm)/Al, where PVK:TPD is a hole transporting layer of N, N'-bis(3-methylphenyl)-N, N'-diphenylbenzidine (TPD) incorporated in poly(N-vinylcarbazole) (PVK) matrix and Al is a cathode. EL spectra predominantly influenced by Rubrene emission when the doping layer is close to (PVK:TPD)/ Zn(BTz){sub 2} (x{yields} 0-15 nm) and to Zn(BTz){sub 2}/Al (x{yields} 70-75 nm) interfaces and shift toward emission of Zn(BTz){sub 2} increasing the distance of Rubrene from both interfaces (x{yields}35 nm). The same dependence of the EL efficiency on the position of the doping Rubrene layer in the OLED structure was found.

  13. Colloidal quantum dot light-emitting devices

    Directory of Open Access Journals (Sweden)

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.

  14. Nanoengineering of organic light-emitting diodes

    International Nuclear Information System (INIS)

    Lupton, J.M.

    2000-11-01

    This thesis reports nanoengineerging of the emission and transport properties of organic light-emitting diodes (LEDs). This is achieved by a control of the electronic material properties and the photonic device properties. A novel class of conjugated materials for electroluminescence (EL) applications is presented, based on successively branching, or dendritic, materials comprising an emissive core and a shielding dendritic architecture. Exciton localisation at the centre of these dendrimers is observed in both luminescence and absorption. A detailed quantum chemical investigation using an exciton model supports these findings and accurately describes the energies and oscillator strengths of transitions in the core and branches. The dendrimer generation describes the degree of branching and gives a direct measure of the separation and interaction between chromophores. Increasing generation is found to lead to a reduction in red tail emission. This correlates with an increase in operating field and LED efficiency. Dendrimer blends with triplet harvesting dendritic phosphors are also investigated and found to exhibit unique emission properties. A numerical device model is presented, which is used to describe the temperature dependence of single layer polymer LEDs by fitting the field-dependent mobility and the barrier to hole injection. The device model is also used to obtain mobility values for the dendrimer materials, which are in excellent agreement with results obtained from time-of-flight measurements. The dendrimer generation is shown to provide a direct control of hopping mobility, which decreases by two orders of magnitude as the dendrimer generation increases from 0 to 3. The photonic properties and spontaneous emission of an LED are modified by incorporating a periodic wavelength scale microstructure into the emitting film. This is found to double the amount of light emitted with no effect on the device current. An investigation of the angular dependence

  15. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature

    Science.gov (United States)

    Nishizawa, Nozomi; Aoyama, Masaki; Roca, Ronel C.; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-05-01

    We demonstrate arbitrary helicity control of circularly polarized light (CPL) emitted at room temperature from the cleaved side facet of a lateral-type spin-polarized light-emitting diode (spin-LED) with two ferromagnetic electrodes in an antiparallel magnetization configuration. Driving alternate currents through the two electrodes results in polarization switching of CPL with frequencies up to 100 kHz. Furthermore, tuning the current density ratio in the two electrodes enables manipulation of the degree of circular polarization. These results demonstrate arbitrary electrical control of polarization with high speed, which is required for the practical use of lateral-type spin-LEDs as monolithic CPL light sources.

  16. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes.

    Science.gov (United States)

    Xuan, Tongtong; Yang, Xianfeng; Lou, Sunqi; Huang, Junjian; Liu, Yong; Yu, Jinbo; Li, Huili; Wong, Ka-Leung; Wang, Chengxin; Wang, Jing

    2017-10-19

    Inorganic halide perovskite quantum dots (QDs) suffer from problems related to poor water stability and poor thermal stability. Here we developed a simple strategy to synthesize alkyl phosphate (TDPA) coated CsPbBr 3 QDs by using 1-tetradecylphosphonic acid both as the ligand for the CsPbBr 3 QDs and as the precursor for the formation of alkyl phosphate. These QDs not only retain a high photoluminescence quantum yield (PLQY, 68%) and narrow band emission (FHWM ∼ 22 nm) but also exhibit high stability against water and heat. The relative PL intensity of the QDs was maintained at 75% or 59% after being dispersed in water for 5 h or heated to 375 K (100 °C), respectively. Finally, white light-emitting diodes (WLEDs) with a high luminous efficiency of 63 lm W -1 and a wide color gamut (122% of NTSC) were fabricated by using green-emitting CsPbBr 3 /TDPA QDs and red-emitting K 2 SiF 6 :Mn 4+ phosphors as color converters. The luminous efficiency of the WLEDs remained at 90% after working under a relative humidity (RH) of 60% for 15 h, thereby showing promise for use as backlight devices in LCDs.

  17. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    Science.gov (United States)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  18. Stacked white OLED having separate red, green and blue sub-elements

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  19. Solution processed, white emitting tandem organic light-emitting diodes with inverted device architecture.

    Science.gov (United States)

    Höfle, Stefan; Schienle, Alexander; Bernhard, Christoph; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-08-13

    Fully solution processed monochromatic and white-light emitting tandem or multi-photon polymer OLEDs with an inverted device architecture have been realized by employing WO3 /PEDOT:PSS/ZnO/PEI charge carrier generation layers. The luminance of the sub-OLEDs adds up in the stacked device indicating multi-photon emission. The white OLEDs exhibit a CRI of 75. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Assessing the use of Low Voltage UV-light Emitting Miniature LEDs for Marine Biofouling Control

    Science.gov (United States)

    2016-07-01

    of that required to drive traditional UV mercury lamps . Secondly, given their small size and relatively low cost, UV LEDs provide ease of maintenance...UNCLASSIFIED UNCLASSIFIED Assessing the use of Low Voltage UV -light Emitting Miniature LEDs for Marine Biofouling Control Richard...settling organisms. The introduction of miniature UV light emitting diodes ( LEDs ) as a light source enables them to be embedded into thin, flexible

  1. Tunable light extraction efficiency of GaN light emitting diodes by ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Chao, C H; Lin, W H; Lin, C F; Chen, C H; Changjean, C H

    2009-01-01

    We report the influence of ZnO nanorod arrays (NRAs) on the light extraction efficiency of GaN light emitting diodes (LEDs). Our investigation indicates that the output light intensity of the device exhibits a periodic oscillation as a function of the rod length. The variation of light extraction efficiency is caused by the Fabry–Perot resonance of the film composed of the nanorods. The theoretical analysis shows a good agreement with the measurement results. Our study reveals a method to control the output light extraction efficiency of GaN LEDs via a simple solution-based synthesized ZnO NRAs

  2. Proportional green time scheduling for traffic lights

    NARCIS (Netherlands)

    P. Kovacs; Le, T. (Tung); R. Núñez Queija (Rudesindo); Vu, H. (Hai); N. Walton

    2016-01-01

    textabstractWe consider the decentralized scheduling of a large number of urban traffic lights. We investigate factors determining system performance, in particular, the length of the traffic light cycle and the proportion of green time allocated to each junction. We study the effect of the length

  3. γ-glutamyl transpeptidase 1 specifically suppresses green-light avoidance via GABAA receptors in Drosophila.

    Science.gov (United States)

    Liu, Jiangqu; Gong, Zhefeng; Liu, Li

    2014-08-01

    Drosophila larvae innately show light avoidance behavior. Compared with robust blue-light avoidance, larvae exhibit relatively weaker green-light responses. In our previous screening for genes involved in larval light avoidance, compared with control w(1118) larvae, larvae with γ-glutamyl transpeptidase 1 (Ggt-1) knockdown or Ggt-1 mutation were found to exhibit higher percentage of green-light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt-1 in different tissues, we found that Ggt-1 in malpighian tubules was both necessary and sufficient for green-light avoidance. Our results showed that glutamate levels were lower in Ggt-1 null mutants compared with controls. Feeding Ggt-1 null mutants glutamate can normalize green-light avoidance, indicating that high glutamate concentrations suppressed larval green-light avoidance. However, rather than directly, glutamate affected green-light avoidance indirectly through GABA, the level of which was also lower in Ggt-1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green-light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green-light avoidance, which was inhibited in wild-type larvae. © 2014 International Society for Neurochemistry.

  4. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  5. Optimization of freeform lightpipes for light-emitting-diode projectors.

    Science.gov (United States)

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe.

  6. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo

    2010-01-26

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We demonstrate organic light-emitting diodes with solution-processed graphene thin film transparent conductive anodes. The graphene electrodes were deposited on quartz substrates by spincoating of an aqueous dispersion of functionalized graphene, followed by a vacuum anneal step to reduce the sheet resistance. Small molecular weight organic materials and a metal cathode were directly deposited on the graphene anodes, resulting in devices with a performance comparable to control devices on indium-tin-oxide transparent anodes. The outcoupling efficiency of devices on graphene and indium-tin-oxide is nearly identical, in agreement with model predictions. © 2010 American Chemical Society.

  7. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes

    Science.gov (United States)

    Cho, Himchan; Jeong, Su-Hun; Park, Min-Ho; Kim, Young-Hoon; Wolf, Christoph; Lee, Chang-Lyoul; Heo, Jin Hyuck; Sadhanala, Aditya; Myoung, NoSoung; Yoo, Seunghyup; Im, Sang Hyuk; Friend, Richard H.; Lee, Tae-Woo

    2015-12-01

    Organic-inorganic hybrid perovskites are emerging low-cost emitters with very high color purity, but their low luminescent efficiency is a critical drawback. We boosted the current efficiency (CE) of perovskite light-emitting diodes with a simple bilayer structure to 42.9 candela per ampere, similar to the CE of phosphorescent organic light-emitting diodes, with two modifications: We prevented the formation of metallic lead (Pb) atoms that cause strong exciton quenching through a small increase in methylammonium bromide (MABr) molar proportion, and we spatially confined the exciton in uniform MAPbBr3 nanograins (average diameter = 99.7 nanometers) formed by a nanocrystal pinning process and concomitant reduction of exciton diffusion length to 67 nanometers. These changes caused substantial increases in steady-state photoluminescence intensity and efficiency of MAPbBr3 nanograin layers.

  8. White organic light-emitting devices with high color purity and stability

    International Nuclear Information System (INIS)

    Bai, Yajie; Liu, Su; Li, Hairong; Liu, Chunjuan; Wang, Jinshun; Chang, Jinxian

    2014-01-01

    A white organic light-emitting device (WOLED) with dual-emitting layers was presented, in which the blue fluorescent dye 2,5,8,11-terta-tertbutylperylene (TBPe) was doped in 2-methyl-9, 10-di(2-naphthyl)-anthracene (MADN) as a blue-emitting layer, while 5,6,11,12-tetraphenylnaphthacene (rubrene, Rb) was doped in the above-mentioned materials as a yellow-emitting layer. The fabricated monochromatic devices using the blue- and yellow-emitting layer have demonstrated that the direct charge trapping mechanism is the dominant emission mechanism in the yellow OLED. Studies on the WOLEDs with dual-emitting layers have shown that the performances of these devices are strongly susceptible to the thickness of the emitting layer and the stack order of two emitting layers. Structure of ITO(160 nm)/NPB(30 nm)/MADN: 5 wt%TBPe: 3 wt%Rb(10 nm)/MADN: 5 wt%TBPe(20 nm)/BCP (10 nm)/Alq 3 (20 nm)/Al(100 nm) was determined to be the most favorable WOLED. The maximum luminance of 16 000 cd cm −2  at the applied voltage of 13.4 V and Commission International de 1′Eclairage (CIE) coordinates of (0.3263, 0.3437) which is closer to the standard white light (CIE (0.33, 0.33)) than the most recent reported WOLEDs were obtained. Moreover, there is just slight variation of CIE coordinates (ΔCIE x, y = 0.0171, 0.0167; corresponding Δu′v′ = 0.0119) when the current density increases from 10 to 100 mA cm −2 . It reveals that the emissive dopant Rb acts as charge traps to improve electron–hole balance, provides sites for electron–hole recombination and thus makes carriers distribute more evenly in the dual-emitting layers which broaden the recombination zone and improve the stability of the CIE coordinates. (paper)

  9. Investigation of Culicoides spp. preference for light colour and ...

    African Journals Online (AJOL)

    Catches from white and green light were not found to differ significantly and the interaction between light colour and source was not found to be significant. Possible trap development and action thresholds are discussed. Keywords: Culicoides midge vector, African Horse Sickness, light colour, light emitting diodes ...

  10. Non-radiative recombination losses in polymer light-emitting diodes

    NARCIS (Netherlands)

    Kuik, M.; Koster, L. J. A.; Dijkstra, A. G.; Wetzelaer, G. A. H.; Blom, P. W. M.

    We present a quantitative analysis of the loss of electroluminescence in light-emitting diodes (LEDs) based on poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) due to the combination of non-radiative trap-assisted recombination and exciton quenching at the metallic cathode. It is

  11. Liquid metals as electrodes in polymer light emitting diodes

    NARCIS (Netherlands)

    Andersson, G.G.; Gommans, H.H.P.; Denier van der Gon, A.W.; Brongersma, H.H.

    2003-01-01

    We demonstrate that liquid metals can be used as cathodes in light emitting diodes (pLEDs). The main difference between the use of liquid cathodes and evaporated cathodes is the sharpness of the metal–polymer interface. Liquid metal cathodes result in significantly sharper metal–organic interfaces

  12. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Rowse

    Full Text Available We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS to light emitting diode (LED street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes, or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.

  13. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    Science.gov (United States)

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  14. Printing Smart Designs of Light Emitting Devices with Maintained Textile Properties †

    Science.gov (United States)

    Verboven, Inge; Stryckers, Jeroen; Mecnika, Viktorija; Vandevenne, Glen; Jose, Manoj

    2018-01-01

    To maintain typical textile properties, smart designs of light emitting devices are printed directly onto textile substrates. A first approach shows improved designs for alternating current powder electroluminescence (ACPEL) devices. A configuration with the following build-up, starting from the textile substrate, was applied using the screen printing technique: silver (10 µm)/barium titanate (10 µm)/zinc-oxide (10 µm) and poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (10 µm). Textile properties such as flexibility, drapability and air permeability are preserved by implementing a pixel-like design of the printed layers. Another route is the application of organic light emitting devices (OLEDs) fabricated out of following layers, also starting from the textile substrate: polyurethane or acrylate (10–20 µm) as smoothing layer/silver (200 nm)/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (35 nm)/super yellow (80 nm)/calcium/aluminum (12/17 nm). Their very thin nm-range layer thickness, preserving the flexibility and drapability of the substrate, and their low working voltage, makes these devices the possible future in light-emitting wearables. PMID:29438276

  15. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes

    KAUST Repository

    Wu, Junbo; Agrawal, Mukul; Becerril, Héctor A.; Bao, Zhenan; Liu, Zunfeng; Chen, Yongsheng; Peumans, Peter

    2010-01-01

    Theoretical estimates indicate that graphene thin films can be used as transparent electrodes for thin-film devices such as solar cells and organic light-emitting diodes, with an unmatched combination of sheet resistance and transparency. We

  16. A novel red-emitting phosphor for white light-emitting diodes

    International Nuclear Information System (INIS)

    Ren, Fuqiang; Chen, Donghua

    2010-01-01

    A novel red-emitting phosphor of Eu 3+ -activated molybdate was prepared at 850 o C by a modified solid-state reaction. Photoluminescence (PL) results showed that the phosphor can be efficiently excited by UV-visible light from 350 to 550 nm, and exhibited bright red emission at 614 nm. XPS are taken to investigate the structure and compositions of this material. The crystallization and particle sizes of the phosphor have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images show that the grain size of the phosphor is about 30 nm which is in full agreement with the theoretical calculation data from the XRD patterns.

  17. Light-emitting diode street lights reduce last-ditch evasive manoeuvres by moths to bat echolocation calls

    Science.gov (United States)

    Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen

    2015-01-01

    The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558

  18. Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source.

    Science.gov (United States)

    Namikawa, Tsutomu; Fujisawa, Kazune; Munekage, Eri; Iwabu, Jun; Uemura, Sunao; Tsujii, Shigehiro; Maeda, Hiromichi; Kitagawa, Hiroyuki; Fukuhara, Hideo; Inoue, Keiji; Sato, Takayuki; Kobayashi, Michiya; Hanazaki, Kazuhiro

    2018-04-04

    The natural amino acid 5-aminolevulinic acid (ALA) is a protoporphyrin IX (PpIX) precursor and a new-generation photosensitive substance that accumulates specifically in cancer cells. When indocyanine green (ICG) is irradiated with near-infrared (NIR) light, it shifts to a higher energy state and emits infrared light with a longer wavelength than the irradiated NIR light. Photodynamic diagnosis (PDD) using ALA and ICG-based NIR fluorescence imaging has emerged as a new diagnostic technique. Specifically, in laparoscopic examinations for serosa-invading advanced gastric cancer, peritoneal metastases could be detected by ALA-PDD, but not by conventional visible-light imaging. The HyperEye Medical System (HEMS) can visualize ICG fluorescence as color images simultaneously projected with visible light in real time. This ICG fluorescence method is widely applicable, including for intraoperative identification of sentinel lymph nodes, visualization of blood vessels in organ resection, and blood flow evaluation during surgery. Fluorescence navigation by ALA-PDD and NIR using ICG imaging provides good visualization and detection of the target lesions that is not possible with the naked eye. We propose that this technique should be used in fundamental research on the relationship among cellular dynamics, metabolic enzymes, and tumor tissues, and to evaluate clinical efficacy and safety in multicenter cooperative clinical trials.

  19. Determination of illuminants representing typical white light emitting diodes sources

    DEFF Research Database (Denmark)

    Jost, S.; Ngo, M.; Ferrero, A.

    2017-01-01

    is to develop LED-based illuminants that describe typical white LED products based on their Spectral Power Distributions (SPDs). Some of these new illuminants will be recommended in the update of the CIE publication 15 on colorimetry with the other typical illuminants, and among them, some could be used......Solid-state lighting (SSL) products are already in use by consumers and are rapidly gaining the lighting market. Especially, white Light Emitting Diode (LED) sources are replacing banned incandescent lamps and other lighting technologies in most general lighting applications. The aim of this work...... to complement the CIE standard illuminant A for calibration use in photometry....

  20. GreenLight Model 960.

    Science.gov (United States)

    Fernandes, Richard; Carey, Conn; Hynes, James; Papkovsky, Dmitri

    2013-01-01

    The importance of food safety has resulted in a demand for a more rapid, high-throughput method for total viable count (TVC). The industry standard for TVC determination (ISO 4833:2003) is widely used but presents users with some drawbacks. The method is materials- and labor-intensive, requiring multiple agar plates per sample. More importantly, the method is slow, with 72 h typically required for a definitive result. Luxcel Biosciences has developed the GreenLight Model 960, a microtiter plate-based assay providing a rapid high-throughput method of aerobic bacterial load assessment through analysis of microbial oxygen consumption. Results are generated in 1-12 h, depending on microbial load. The mix and measure procedure allows rapid detection of microbial oxygen consumption and equates oxygen consumption to microbial load (CFU/g), providing a simple, sensitive means of assessing the microbial contamination levels in foods (1). As bacteria in the test sample grow and respire, they deplete O2, which is detected as an increase in the GreenLight probe signal above the baseline level (2). The time required to reach this increase in signal can be used to calculate the CFU/g of the original sample, based on a predetermined calibration. The higher the initial microbial load, the earlier this threshold is reached (1).

  1. EPR and optical properties of Eu{sup 2+} and Mn{sup 2+} co-doped MgSrAl{sub 10}O{sub 17} blue–green light emitting powder phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Sivaramaiah, G. [Department of Physics, Government College (M), Kadapa 516 004 (India); Rao, J.L. [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Singh, Pramod K. [Materials Research Laboratory, Sharda University, Greater Noida 201 310 (India); Pathak, M.S. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440 033 (India); Mohapatra, M. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-10-15

    Strong blue–green light emitting MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). Structural characterization of the luminescent material was studied with X-ray diffraction analysis and energy-dispersive X-ray analysis. The absorption spectrum exhibits bands due to Eu{sup 2+} and Mn{sup 3+} ions. The excitation spectrum shows a peak at 337 nm. Upon excitation at 337 nm, the emission spectrum exhibits an intense band centered at 462 nm due to transitions from the 4f{sup 6}5d{sup 1} to the 4f{sup 7} configuration of the Eu{sup 2+} ions, whereas sharp peak at 513 nm attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transition of Mn{sup 2+} ions. The X-band EPR spectra of MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} showed the presence of Eu{sup 2+} and Mn{sup 2+} ions.

  2. Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal-Organic Framework for Fast White-Light Communication.

    Science.gov (United States)

    Wang, Zhiye; Wang, Zi; Lin, Bangjiang; Hu, XueFu; Wei, YunFeng; Zhang, Cankun; An, Bing; Wang, Cheng; Lin, Wenbin

    2017-10-11

    A dye@metal-organic framework (MOF) hybrid was used as a fluorophore in a white-light-emitting diode (WLED) for fast visible-light communication (VLC). The white light was generated from a combination of blue emission of the 9,10-dibenzoate anthracene (DBA) linkers and yellow emission of the encapsulated Rhodamine B molecules. The MOF structure not only prevents dye molecules from aggregation-induced quenching but also efficiently transfers energy to the dye for dual emission. This light-emitting material shows emission lifetimes of 1.8 and 5.3 ns for the blue and yellow components, respectively, which are significantly shorter than the 200 ns lifetime of Y 3 Al 5 O 12 :Ce 3+ in commercial WLEDs. The MOF-WLED device exhibited a modulating frequency of 3.6 MHz for VLC, six times that of commercial WLEDs.

  3. Transparent conductive graphene electrode in GaN-based ultra-violet light emitting diodes.

    Science.gov (United States)

    Kim, Byung-Jae; Mastro, Michael A; Hite, Jennifer; Eddy, Charles R; Kim, Jihyun

    2010-10-25

    We report a graphene-based transparent conductive electrode for use in ultraviolet (UV) GaN light emitting diodes (LEDs). A few-layer graphene (FLG) layer was mechanically deposited. UV light at a peak wavelength of 368 nm was successfully emitted by the FLG layer as transparent contact to p-GaN. The emission of UV light through the thin graphene layer was brighter than through the thick graphene layer. The thickness of the graphene layer was characterized by micro-Raman spectroscopy. Our results indicate that this novel graphene-based transparent conductive electrode holds great promise for use in UV optoelectronics for which conventional ITO is less transparent than graphene.

  4. Increasing the effective absorption of Eu3+-doped luminescent materials towards practical light emitting diodes for illumination applications

    Science.gov (United States)

    van de Haar, Marie Anne; Werner, Jan; Kratz, Nadja; Hilgerink, Tom; Tachikirt, Mohamed; Honold, Jürgen; Krames, Michael R.

    2018-03-01

    White light emitting diodes (LEDs) composed of a blue LED and a green/yellow downconverter material (phosphor) can be very efficient, but the color is often not considered very pleasant. Although the color rendering can be improved by adding a second, red-emitting phosphor, this generally results in significantly reduced efficacy of the device due to the broad emission of available conventional red-emitting phosphors. Trivalent europium is well-known for its characteristic narrow-band emission in the red region, with little radiation outside the eye sensitivity area, making it an ideal candidate for enabling high color quality as well as a high lumen equivalent of radiation from a spectrum point of view. However, a thorough study of the practical potential and challenges of Eu3+ as a red emitter for white LEDs has remained elusive so far due to the low excitation probability in the blue spectral range which is often even considered a fundamental limitation. Here, we show that the absorption in the blue region can be brought into an interesting regime for white LEDs and show that it is possible to increase both the color rendering and efficacy simultaneously using Eu3+ as a red emitter, compared to warm white LEDs comprising conventional materials.

  5. Green light may improve diagnostic accuracy of nailfold capillaroscopy with a simple digital videomicroscope.

    Science.gov (United States)

    Weekenstroo, Harm H A; Cornelissen, Bart M W; Bernelot Moens, Hein J

    2015-06-01

    Nailfold capillaroscopy is a non-invasive and safe technique for the analysis of microangiopathologies. Imaging quality of widely used simple videomicroscopes is poor. The use of green illumination instead of the commonly used white light may improve contrast. The aim of the study was to compare the effect of green illumination with white illumination, regarding capillary density, the number of microangiopathologies, and sensitivity and specificity for systemic sclerosis. Five rheumatologists have evaluated 80 images; 40 images acquired with green light, and 40 images acquired with white light. A larger number of microangiopathologies were found in images acquired with green light than in images acquired with white light. This results in slightly higher sensitivity with green light in comparison with white light, without reducing the specificity. These findings suggest that green instead of white illumination may facilitate evaluation of capillaroscopic images obtained with a low-cost digital videomicroscope.

  6. Contact light-emitting diodes based on vertical ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Panin, G. N. [Dongguk University, Seoul (Korea, Republic of); Russian Academy of Sciences, Chernogolovka, Moscow district (Russian Federation); Cho, H. D.; Lee, S. W.; Kang, T. W. [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    We report vertical contact light-emitting diodes (VCLEDs), that are based on heterojunctions formed by using the point contacts of n-ZnO nanorods (NRs) to the p-type semiconductor substrate and that are fabricated using a new approach to the formation of LEDs (Appl. Phys. Lett. 98, 093110 (2011)). A p-type GaN film grown on a sapphire substrate was used to form n-ZnO NRs/pGaN VCLEDs on a large area of about 4 cm{sup 2}. The VCLEDs emitted a pure blue electroluminescence with high efficiency. Electroluminescence at 470 nm, which is visible to the naked eye, started at small current of about 50 μA and is attributed to the good optical properties of the structurally perfect heterojunctions in the point contacts. The VCLED configuration allows the creation of ZnO/p-GaN nano-LEDs of high density and high-quality with a greatly reduced concentration of nonradiative defects in the active regions. The VCLEDs showed the high brightness of light required for active matrix displays and general solid-state lighting.

  7. Resonant cavity light-emitting diodes based on dielectric passive cavity structures

    Science.gov (United States)

    Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Zschiedrich, L.; Schmidt, F.; Ledentsov, N. N.

    2017-02-01

    A novel design for high brightness planar technology light-emitting diodes (LEDs) and LED on-wafer arrays on absorbing substrates is proposed. The design integrates features of passive dielectric cavity deposited on top of an oxide- semiconductor distributed Bragg reflector (DBR), the p-n junction with a light emitting region is introduced into the top semiconductor λ/4 DBR period. A multilayer dielectric structure containing a cavity layer and dielectric DBRs is further processed by etching into a micrometer-scale pattern. An oxide-confined aperture is further amended for current and light confinement. We study the impact of the placement of the active region into the maximum or minimum of the optical field intensity and study an impact of the active region positioning on light extraction efficiency. We also study an etching profile composed of symmetric rings in the etched passive cavity over the light emitting area. The bottom semiconductor is an AlGaAs-AlAs multilayer DBR selectively oxidized with the conversion of the AlAs layers into AlOx to increase the stopband width preventing the light from entering the semiconductor substrate. The approach allows to achieve very high light extraction efficiency in a narrow vertical angle keeping the reasonable thermal and current conductivity properties. As an example, a micro-LED structure has been modeled with AlGaAs-AlAs or AlGaAs-AlOx DBRs and an active region based on InGaAlP quantum well(s) emitting in the orange spectral range at 610 nm. A passive dielectric SiO2 cavity is confined by dielectric Ta2O5/SiO2 and AlGaAs-AlOx DBRs. Cylindrically-symmetric structures with multiple ring patterns are modeled. It is demonstrated that the extraction coefficient of light to the air can be increased from 1.3% up to above 90% in a narrow vertical angle (full width at half maximum (FWHM) below 20°). For very small oxide-confined apertures 100nm the narrowing of the FWHM for light extraction can be reduced down to 5

  8. Red, green, blue and white light upconversion emission in Yb3+/Tm3+/Ho3+ co-doped tellurite glasses

    International Nuclear Information System (INIS)

    Desirena, H; De la Rosa, E; Meza, O; Salas, P

    2011-01-01

    Several Yb 3+ /Tm 3+ /Ho 3+ co-doped transparent TeO 2 -ZnO-Na 2 O-Yb 2 O 3 -Ho 2 O 3 -Tm 2 O 3 glasses were prepared and luminescence properties were characterized. Simultaneous red, green and blue (RGB) emission were obtained after excitation at 970 nm. Colour emission was tuned from multicolour to white light with colour coordinate (0.32, 0.33) matching very well with the white reference (0.33, 0.33). Changes in colour emission were obtained by varying the intensity ratios between RGB bands that are strongly concentration dependent because of the interaction of co-dopants. The colour tunability, high quality of white light and high intensity of the emitted signal make these transparent glasses excellent candidates for applications in solid-state lighting.

  9. Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: A randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Pariser, David; Loss, Robert; Jarratt, Michael; Abramovits, William; Spencer, James; Geronemus, Roy; Bailin, Philip; Bruce, Suzanne

    2008-10-01

    The use of light-emitting diode light offers practical advantages in photodynamic therapy (PDT) with topical methyl-aminolevulinate (MAL) for management of actinic keratoses (AK). We sought to evaluate the efficacy of MAL PDT using red light-emitting diode light. We conducted a multicenter, double-blind, randomized study. A total of 49 patients with 363 AK lesions had 16.8% MAL cream applied under occlusion for 3 hours, and 47 patients with 360 AK lesions had vehicle cream similarly applied. The lesions were then illuminated (630 nm, light dose 37 J/cm2) with repeated treatment 1 week later. Complete lesion and patient (all lesions showing complete response) response rates were evaluated 3 months after last treatment. MAL PDT was superior (PAK. MAL PDT using red light-emitting diode light is an appropriate treatment alternative for multiple AK lesions.

  10. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    Energy Technology Data Exchange (ETDEWEB)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  11. White light emission and effect of annealing on the Ho3+–Yb3+ codoped BaCa2Al8O15 phosphor

    International Nuclear Information System (INIS)

    Kumari, Astha; Rai, Vineet Kumar

    2015-01-01

    Graphical abstract: The upconversion emission spectra of the Ho 3+ /Yb 3+ doped/codoped BaCa 2 Al 8 O 15 phosphors with different doping concentrations of Ho 3+ /Yb 3+ ions along with UC emission spectrum of the white light emitting phosphor annealed at 800 °C. - Highlights: • BaCa 2 Al 8 O 15 phosphors codoped with Ho 3+ –Yb 3+ have been prepared by combustion method. • Phosphor annealed at 800 °C, illuminate an intense white light upon NIR excitation. • The sample annealed at higher temperatures emits in the pure green region. • The colour emitted persists in the white region even at high pump power density. • Developed phosphor is suitable for making upconverters and WLEDs. - Abstract: The BaCa 2 Al 8 O 15 (BCAO) phosphors codoped with suitable Ho 3+ –Yb 3+ dopant concentration prepared by combustion method illuminate an intense white light upon near infrared diode laser excitation. The structural analysis of the phosphors and the detection of impurity contents have been performed by using the X-Ray Diffraction, FESEM and FTIR analysis. The purity of white light emitted from the sample has been confirmed by the CIE chromaticity diagram. Also, the white light emitted from the sample persists with the variation of pump power density. The phosphors emit upconversion (UC) emission bands in the blue, green and red region (three primary colours required for white light emission) along with one more band in the near infrared region of the electromagnetic spectrum. On annealing the white light emitting sample at higher temperatures, the sample starts to emit green colour and also the intensity of green and red UC emission bands get enhanced largely.

  12. Dr. Harry Whelan With the Light Emitting Diode Probe

    Science.gov (United States)

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  13. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  14. White light emitting device based on single-phase CdS quantum dots

    Science.gov (United States)

    Li, Feng; Nie, Chao; You, Lai; Jin, Xiao; Zhang, Qin; Qin, Yuancheng; Zhao, Feng; Song, Yinglin; Chen, Zhongping; Li, Qinghua

    2018-05-01

    White light emitting diodes (WLEDs) based on quantum dots (QDs) are emerging as robust candidates for white light sources, however they are suffering from the problem of energy loss resulting from the re-absorption and self-absorption among the employed QDs of different peak wavelengths. It still remains a challenging task to construct WLEDs based on single-phase QD emitters. Here, CdS QDs with short synthesis times are introduced to the fabrication of WLEDs. With a short synthesis time, on one hand, CdS QDs with a small diameter with blue emission can be obtained. On the other hand, surface reconstruction barely has time to occur, and the surface is likely defect-ridden, which enables the existence of a broad emission covering the range of green, yellow and red regions. This is essential for the white light emission of CdS QDs, and is very important for WLED applications. The temporal evolution of the PL spectra for CdS QDs was obtained to investigate the influence of growth time on the luminescent properties. The CdS QDs with a growth time of 0.5 min exhibited a colour rendering index (CRI) of 79.5 and a correlated colour temperature (CCT) of 6238 K. With increasing reaction time, the colour coordinates of the CdS QDs will move away from the white light region in the CIE 1931 chromaticity diagram. By integrating the as prepared white light emission CdS QDs with a violet GaN chip, WLEDs were fabricated. The fabricated WLEDs exhibited a CRI of 87.9 and a CCT of 4619 K, which satisfy the demand of general illumination. The luminous flux and the luminous efficiency of the fabricated WLEDs, being less advanced than current commercial white light sources, can be further improved, meaning there is a need for much more in-depth studies on white light emission CdS QDs.

  15. Stacking multiple connecting functional materials in tandem organic light-emitting diodes

    Science.gov (United States)

    Zhang, Tao; Wang, Deng-Ke; Jiang, Nan; Lu, Zheng-Hong

    2017-02-01

    Tandem device is an important architecture in fabricating high performance organic light-emitting diodes and organic photovoltaic cells. The key element in making a high performance tandem device is the connecting materials stack, which plays an important role in electric field distribution, charge generation and charge injection. For a tandem organic light-emitting diode (OLED) with a simple Liq/Al/MoO3 stack, we discovered that there is a significant current lateral spreading causing light emission over an extremely large area outside the OLED pixel when the Al thickness exceeds 2 nm. This spread light emission, caused by an inductive electric field over one of the device unit, limits one’s ability to fabricate high performance tandem devices. To resolve this issue, a new connecting materials stack with a C60 fullerene buffer layer is reported. This new structure permits optimization of the Al metal layer in the connecting stack and thus enables us to fabricate an efficient tandem OLED having a high 155.6 cd/A current efficiency and a low roll-off (or droop) in current efficiency.

  16. Organic light emitting device architecture for reducing the number of organic materials

    Science.gov (United States)

    D'Andrade, Brian [Westampton, NJ; Esler, James [Levittown, PA

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  17. Measurements of reciprocity law failure in green-sensitive X-ray films.

    Science.gov (United States)

    Arnold, B A; Eisenberg, H; Bjärngard, B E

    1978-02-01

    Reciprocity law failure was measured for four brands of medical x-ray films exposed with intensifying screens. Three of the films are green light-sensitized for use in combination with green light-emitting rare-earth screens. These films showed larger reciprocity failure effects than one conventional blue-sensitive film, Dupont Cronex-2. Development conditions had a small effect on reciprocity failure. As part of the investigation, a detector was constructed with a response that accurately monitors the light emission from the double screen-cassette combination over a wide range of x-ray photon energies.

  18. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Huang, Wei; Guo, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wang, Hua, E-mail: wanghua001@tyut.edu.cn [Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology (TYUT), Taiyuan 030024 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2017-04-15

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C{sub 60}) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C{sub 60}/CuPc, CuPc/C{sub 60} and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C{sub 60}/CuPc showed the highest efficiency. It is revealed that the photovoltaic C{sub 60}/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  19. Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture

    International Nuclear Information System (INIS)

    Zhao, Dan; Huang, Wei; Guo, Hao; Wang, Hua; Yu, Junsheng

    2017-01-01

    Highlights: • The photovoltaic effect on the performance of OLEDs was studied. • The device performance with different planar heterojunctions was investigated. • The mechanism relies on the overlap of electroluminescence and absorption spectrum. - Abstract: Organic light-emitting diodes (OLEDs) with planar heterojunction (PHJ) architecture consisting of photovoltaic organic materials of fullerene carbon 60 (C_6_0) and copper (II) phthalocyanine (CuPc) inserted between emitting unit and cathode were constructed, and the photovoltaic effect on OLEDs performance was studied. The electroluminescent (EL) characteristics and mechanism of device performance variation without and with different PHJs (herein including C_6_0/CuPc, CuPc/C_6_0 and CuPc) were systematically investigated in red, green and blue OLEDs. Of the three combinations, OLEDs with C_6_0/CuPc showed the highest efficiency. It is revealed that the photovoltaic C_6_0/CuPc PHJ can absorb part of photons, which are radiated from emission zone, then form excitons, and dissociated into free charges. Consequently, the high device efficiency of OLEDs performance improvement was acquired. This research demonstrates that PHJ consisting of two n- and p-type photovoltaic organic materials could be a promising methodology for high performance OLEDs.

  20. An assessment of ultraviolet radiation components of light emitted ...

    African Journals Online (AJOL)

    An assessment of ultraviolet radiation components of light emitted from electric arc and their possible exposure risks. ... The study of Ultraviolet Radiation has of recent become interesting because of the health hazards it poses to human. Apart from its intensity reaching the earth from the sun, other man-made sources have ...

  1. Atom probe tomography of a commercial light emitting diode

    International Nuclear Information System (INIS)

    Larson, D J; Prosa, T J; Olson, D; Lawrence, D; Clifton, P H; Kelly, T F; Lefebvre, W

    2013-01-01

    The atomic-scale analysis of a commercial light emitting diode device purchased at retail is demonstrated using a local electrode atom probe. Some of the features are correlated with transmission electron microscopy imaging. Subtle details of the structure that are revealed have potential significance for the design and performance of this device

  2. Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescence

    International Nuclear Information System (INIS)

    Zhu, Xiaohua; Zuo, Xiaoxi; Hu, Ruiping; Xiao, Xin; Liang, Yong; Nan, Junmin

    2014-01-01

    A simple and effective chemical synthesis of the photoluminescent nitrogen-doped graphene quantum dots (N-GQDs) biomaterial is reported. Using the hydrothermal treatment of graphene oxide (GO) in the presence of hydrogen peroxide (H 2 O 2 ) and ammonia, the N-GQDs are synthesized through H 2 O 2 exfoliating the GO into nanocrystals with lateral dimensions and ammonia passivating the generated active surface. Then, after a dialytic separation, two water-soluble N-GQDs with average size of about 2.1 nm/6.2 nm, which emit green/khaki luminescence and exhibit excitation dependent/independent photoluminescence (PL) behaviors, are obtained. In addition, it is also demonstrated that these two N-GQDs are stable over a broad pH range and have the upconversion PL property, showing this approach provides a simple and effective method to synthesize the functional N-GQDs. - Highlights: • Nitrogen-doped graphene quantum dots (N-GQDs) are prepared by hydrothermal routine. • Two N-GQDs with different size distribution emit green/khaki photoluminescence. • Two N-GQDs exhibit excitation-dependent/independent photoluminescence behaviors

  3. Manufacturing polymer light emitting diode with high luminance efficiency by solution process

    Science.gov (United States)

    Kim, Miyoung; Jo, SongJin; Yang, Ho Chang; Yoon, Dang Mo; Kwon, Jae-Taek; Lee, Seung-Hyun; Choi, Ju Hwan; Lee, Bum-Joo; Shin, Jin-Koog

    2012-06-01

    While investigating polymer light emitting diodes (polymer-LEDs) fabricated by solution process, surface roughness influences electro-optical (E-O) characteristics. We expect that E-O characteristics such as luminance and power efficiency related to surface roughness and layer thickness of emitting layer with poly-9-Vinylcarbazole. In this study, we fabricated polymer organic light emitting diodes by solution process which guarantees easy, eco-friendly and low cost manufacturing for flexible display applications. In order to obtain high luminescence efficiency, E-O characteristics of these devices by varying parameters for printing process have been investigated. Therefore, we optimized process condition for polymer-LEDs by adjusting annealing temperatures of emission, thickness of emission layer showing efficiency (10.8 cd/A) at 10 mA/cm2. We also checked wavelength dependent electroluminescence spectrum in order to find the correlation between the variation of efficiency and the thickness of the layer.

  4. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  5. Influence of Pre-trimethylindium flow treatment on blue light emitting diode

    International Nuclear Information System (INIS)

    Xu, Bing; Zhao, Jun Liang; Dai, Hai Tao; Wang, Shu Guo; Lin, Ray-Ming; Chu, Fu-Chuan; Huang, Chou-Hsiung; Yu, Sheng-Fu; Sun, Xiao Wei

    2014-01-01

    The effects of Pre-trimethylindium (TMIn) flow treatment prior to quantum well growth on blue light emitting diode properties were investigated. High-resolution X-ray diffraction indicated that Pre-TMIn flow treatment did not change the composition of indium in quantum wells, but influenced electrical and optical properties of blue light emitting diode. Electroluminescence exhibited redshift with increasing TMIn treatment time. Though, the forward voltage became a little larger with longer Pre-TMIn treatment time due to the slight phase separation and indium aggregation, the efficiency droop of the device was improved effectively. - Highlights: • Pre-trimethylindium treatment can lead to longer wavelength. • External quantum efficiency can be improved effectively. • Electrical properties are not decreased using Pre-trimethylindium treatment

  6. Influence of Pre-trimethylindium flow treatment on blue light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bing; Zhao, Jun Liang [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Dai, Hai Tao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Wang, Shu Guo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Lin, Ray-Ming, E-mail: rmlin@mail.cgu.edu.tw [Graduate Institute of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan (China); Chu, Fu-Chuan; Huang, Chou-Hsiung [Graduate Institute of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan (China); Yu, Sheng-Fu [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Sun, Xiao Wei, E-mail: xwsun@sustc.edu.cn [South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2014-01-31

    The effects of Pre-trimethylindium (TMIn) flow treatment prior to quantum well growth on blue light emitting diode properties were investigated. High-resolution X-ray diffraction indicated that Pre-TMIn flow treatment did not change the composition of indium in quantum wells, but influenced electrical and optical properties of blue light emitting diode. Electroluminescence exhibited redshift with increasing TMIn treatment time. Though, the forward voltage became a little larger with longer Pre-TMIn treatment time due to the slight phase separation and indium aggregation, the efficiency droop of the device was improved effectively. - Highlights: • Pre-trimethylindium treatment can lead to longer wavelength. • External quantum efficiency can be improved effectively. • Electrical properties are not decreased using Pre-trimethylindium treatment.

  7. Aggregation in organic light emitting diodes

    Science.gov (United States)

    Meyer, Abigail

    Organic light emitting diode (OLED) technology has great potential for becoming a solid state lighting source. However, there are inefficiencies in OLED devices that need to be understood. Since these inefficiencies occur on a nanometer scale there is a need for structural data on this length scale in three dimensions which has been unattainable until now. Local Electron Atom Probe (LEAP), a specific implementation of Atom Probe Tomography (APT), is used in this work to acquire morphology data in three dimensions on a nanometer scale with much better chemical resolution than is previously seen. Before analyzing LEAP data, simulations were used to investigate how detector efficiency, sample size and cluster size affect data analysis which is done using radial distribution functions (RDFs). Data is reconstructed using the LEAP software which provides mass and position data. Two samples were then analyzed, 3% DCM2 in C60 and 2% DCM2 in Alq3. Analysis of both samples indicated little to no clustering was present in this system.

  8. Enhanced Performance of Bipolar Cascade Light Emitting Diodes by Doping the Aluminum Oxide Apertures

    National Research Council Canada - National Science Library

    Siskaninetz, William

    2004-01-01

    Performance improvements in multiple-stage, single-cavity bipolar cascade light emitting diodes including reduced operating voltages, enhanced light generation, and reduced device heating are obtained...

  9. Recycled Thermal Energy from High Power Light Emitting Diode Light Source.

    Science.gov (United States)

    Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk

    2018-09-01

    In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.

  10. Origins of efficient green light emission in phase-separated InGaN quantum wells

    International Nuclear Information System (INIS)

    Lai, Y-L; Liu, C-P; Lin, Y-H; Hsueh, T-H; Lin, R-M; Lyu, D-Y; Peng, Z-X; Lin, T-Y

    2006-01-01

    Green-light-emitting InGaN/GaN multiple quantum wells (MQWs) with high luminescent efficiency were grown by metalorganic chemical vapour deposition (MOCVD). The microstructure of the sample was studied by high-resolution transmission electron microscopy (HRTEM) and high-resolution x-ray diffraction, while its optical behaviour was analysed in great detail by a variety of photoluminescence methods. Two InGaN-related peaks that were clearly found in the photoluminescence (PL) spectrum are assigned to quasi-quantum dots (516 nm) and the InGaN matrix (450 nm), respectively, due to a strong phase separation observed by HRTEM. Except for the strong indium aggregation regions (511 meV of Stokes shift), slight composition fluctuations were also observed in the InGaN matrix, which were speculated from an 'S-shaped' transition and a Stokes shift of 341 meV. Stronger carrier localization and an internal quantum efficiency of the dot-related emission (21.5%), higher than the InGaN-matrix related emission (7.5%), was demonstrated. Additionally, a shorter lifetime and 'two-component' PL decay were found for the low-indium-content regions (matrix). Thus, the carrier transport process within quantum wells is suggested to drift from the low-In-content matrix to the high-In-content dots, resulting in the enhanced luminescence efficiency of the green light emission

  11. AlGaInN-based ultraviolet light-emitting diodes grown on Si(111)

    International Nuclear Information System (INIS)

    Kipshidze, G.; Kuryatkov, V.; Borisov, B.; Holtz, M.; Nikishin, S.; Temkin, H.

    2002-01-01

    Ultraviolet light-emitting diodes grown on Si(111) by gas-source molecular-beam epitaxy with ammonia are described. The layers are composed of superlattices of AlGaN/GaN and AlN/AlGaInN. The layers are doped n and p type with Si and Mg, respectively. Hole concentration of 4x10 17 cm -3 , with a mobility of 8 cm2/Vs, is measured in Al 0.4 Ga 0.6 N/GaN. We demonstrate effective n- and p-type doping of structures based on AlN/AlGaInN. Light-emitting diodes based on these structures show light emission between 290 and 334 nm

  12. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    Science.gov (United States)

    Rogers, John A.; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2017-05-09

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  13. A Yellow Emitting InGaN/GaN Nanowires-based Light Emitting Diode Grown on Scalable Quartz Substrate

    KAUST Repository

    Prabaswara, Aditya

    2017-05-08

    The first InGaN/GaN nanowires-based yellow (λ = 590 nm) light-emitting diodes on scalable quartz substrates are demonstrated, by utilizing a thin Ti/TiN interlayer to achieve simultaneous substrate conductivity and transparency.

  14. A Yellow Emitting InGaN/GaN Nanowires-based Light Emitting Diode Grown on Scalable Quartz Substrate

    KAUST Repository

    Prabaswara, Aditya; Ng, Tien Khee; Zhao, Chao; Janjua, Bilal; Alyamani, Ahmed; El-desouki, Munir; Ooi, Boon S.

    2017-01-01

    The first InGaN/GaN nanowires-based yellow (λ = 590 nm) light-emitting diodes on scalable quartz substrates are demonstrated, by utilizing a thin Ti/TiN interlayer to achieve simultaneous substrate conductivity and transparency.

  15. Fish scale terrace GaInN/GaN light-emitting diodes with enhanced light extraction

    Science.gov (United States)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Zhao, Liang; Paskova, Tanya; Preble, Edward A.; Wetzel, Christian

    2012-12-01

    Non-planar GaInN/GaN light-emitting diodes were epitaxially grown to exhibit steps for enhanced light emission. By means of a large off-cut of the epitaxial growth plane from the c-plane (0.06° to 2.24°), surface morphologies of steps and inclined terraces that resemble fish scale patterns could controllably be achieved. These patterns penetrate the active region without deteriorating the electrical device performance. We find conditions leading to a large increase in light-output power over the virtually on-axis device and over planar sapphire references. The process is found suitable to enhance light extraction even without post-growth processing.

  16. Chinese aquaculture in light of green growth

    OpenAIRE

    Leilei Zou; Shuolin Huang

    2015-01-01

    Over China’s long history of aquaculture development, great achievements have been made by enhancing aquaculture as the major contributor to aquatic products supply, while lessons have also been learnt that aquaculture has been developing at the cost of environment. Priority is now given to the aquaculture development in the light of green growth, which attaches importance to both environment protection and high productivity. To sustain Chinese aquaculture in a green-growth manner, polices ch...

  17. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2013-01-01

    Light emitting diodes (LEDs) are already used in traffic signals, signage lighting, and automotive applications. However, its ultimate goal is to replace traditional illumination through LED lamps since LED lighting significantly reduces energy consumption and cuts down on carbon-dioxide emission. Despite dramatic advances in LED technologies (e.g., growth, doping and processing technologies), however, there remain critical issues for further improvements yet to be achieved for the realization of solid-state lighting. This book aims to provide the readers with some contemporary LED issues, which have not been comprehensively discussed in the published books and, on which the performance of LEDs is seriously dependent. For example, most importantly, there must be a breakthrough in the growth of high-quality nitride semiconductor epitaxial layers with a low density of dislocations, in particular, in the growth of Al-rich and and In-rich GaN-based semiconductors. The materials quality is directly dependent on th...

  18. Single-crystal perovskite CH3NH3PbBr3 prepared by cast capping method for light-emitting diodes

    Science.gov (United States)

    Nguyen, Van-Cao; Katsuki, Hiroyuki; Sasaki, Fumio; Yanagi, Hisao

    2018-04-01

    In this study, electroluminescence from single crystals of CH3NH3PbBr3 perovskite is explored. The cast capping method was applied to fabricate simple devices with an ITO/CH3NH3PbBr3/ITO structure. The devices showed a low operation voltage of 2 V and a pure green luminescence with full width at half maximum of ∼20 nm. However, the emission occurring at the crystal edges demonstrated blinking with a subsecond time interval, which is similar to the previously reported photoluminescence behavior of nanocrystal perovskites. This electroluminescence blinking may provide new insight into the recombination processes depending on the carrier traps and defects of emission layers in perovskite light-emitting devices.

  19. Chlorinated indium tin oxide electrode by InCl{sub 3} aqueous solution for high-performance organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yun; Wang, Bo; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Zhou, Dong-Ying [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-04-11

    The authors develop a facile and effective method to produce the chlorinated indium tin oxide (Cl-ITO) treated by InCl{sub 3} aqueous solution and UV/ozone. The work function of the Cl-ITO achieved by this treatment is as high as 5.69 eV, which is increased by 1.09 eV compared with that of the regular ITO without any treatment. Further investigation proved that the enhancement of the work function is attributed to the formation of In-Cl bonds on the Cl-ITO surface. Green phosphorescent organic light-emitting devices based on the Cl-ITO electrodes exhibit excellent electroluminescence performance, elongating lifetime due to the improvement in hole injection.

  20. Visible-light electroluminescence in Mn-doped GaAs light-emitting diodes

    International Nuclear Information System (INIS)

    Nam Hai, Pham; Maruo, Daiki; Tanaka, Masaaki

    2014-01-01

    We observed visible-light electroluminescence (EL) due to d-d transitions in light-emitting diodes with Mn-doped GaAs layers (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show two peaks at 1.89 eV and 2.16 eV, which are exactly the same as 4 A 2 ( 4 F) → 4 T 1 ( 4 G) and 4 T 1 ( 4 G) → 6 A 1 ( 6 S) transitions of Mn atoms doped in ZnS. The temperature dependence and the current-density dependence are consistent with the characteristics of d-d transitions. We explain the observed EL spectra by the p-d hybridized orbitals of the Mn d electrons in GaAs

  1. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes

    KAUST Repository

    Yassitepe, Emre; Yang, Zhenyu; Voznyy, Oleksandr; Kim, Younghoon; Walters, Grant; Castañ eda, Juan Andres; Kanjanaboos, Pongsakorn; Yuan, Mingjian; Gong, Xiwen; Fan, Fengjia; Pan, Jun; Hoogland, Sjoerd; Comin, Riccardo; Bakr, Osman; Padilha, Lazaro A.; Nogueira, Ana F.; Sargent, Edward H.

    2016-01-01

    Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light-emitting diodes (LED) are fabricated for the first time with solution-processed polymer-based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross-linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1- xClx)3 PQDs is also reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes

    KAUST Repository

    Yassitepe, Emre

    2016-10-31

    Cesium lead halide perovskite quantum dots (PQDs) have attracted significant interest for optoelectronic applications in view of their high brightness and narrow emission linewidth at visible wavelengths. A remaining challenge is the degradation of PQDs during purification from the synthesis solution. This is attributed to proton transfer between oleic acid and oleylamine surface capping agents that leads to facile ligand loss. Here, a new synthetic method is reported that enhances the colloidal stability of PQDs by capping them solely using oleic acid (OA). Quaternary alkylammonium halides are used as precursors, eliminating the need for oleylamine. This strategy enhances the colloidal stability of OA capped PQDs during purification, allowing us to remove excess organic content in thin films. Inverted red, green, and blue PQD light-emitting diodes (LED) are fabricated for the first time with solution-processed polymer-based hole transport layers due to higher robustness of OA capped PQDs to solution processing. The blue and green LEDs exhibit threefold and tenfold improved external quantum efficiency (EQE), respectively, compared to prior related reports for amine/ammonium capped cross-linked PQDs. The brightest blue LED based on all inorganic CsPb(Br1- xClx)3 PQDs is also reported. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Hongying; Deng, Lingling; Chen, Shufen, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Huang, Wei, E-mail: iamsfchen@njupt.edu.cn, E-mail: wei-huang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 210023 Nanjing (China); Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816 (China)

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  4. Long persistent luminescence property of a novel green emitting SrLaGaO{sub 4}: Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xiaoyan, E-mail: fuxiaoyan@xmut.edu.cn [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing 210044 (China); Zheng, Shenghui [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Shi, Junpeng [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Yuechan [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2017-04-15

    A novel long persistent green emitting phosphor SrLaGaO{sub 4}: Tb{sup 3+} was synthesized via a conventional high temperature solid-state method. The obtained results indicated that the green long persistent emitting was similar to the photoluminescence, originating from the f-f transitions of Tb{sup 3+} centers which were supposed to occupy the random distribution Sr{sup 2+} and La{sup 3+} sites. The duration of green afterglow can be observed in the dark by naked eyes even after more than 3.5 h. The thermoluminescence results revealed that SrLaGaO{sub 4}: Tb{sup 3+} possessed three main traps calculated to be 0.62, 0.68 and 0.77 eV, which were responsible for the long persistent green luminescence. The further structure analysis revealed that the Tb{sup 3+} dopants not only acted as emission centers but also significantly influenced the density of traps, and the trapping centers were postulated nonrandom distribution under the assistance of high temperature, which resulted in the efficient persistent luminescence of Tb{sup 3+}. All the results showed that SrLaGaO{sub 4}: Tb{sup 3+} was a potential long persistent luminescent material.

  5. Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

    Science.gov (United States)

    Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing

    2017-09-01

    Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

  6. Operation of AC Adapters Visualized Using Light-Emitting Diodes

    Science.gov (United States)

    Regester, Jeffrey

    2016-01-01

    A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…

  7. Optoelectronical properties of InGaN quantum well light emitting diodes on semipolar GaN

    Energy Technology Data Exchange (ETDEWEB)

    Rass, Jens; Stascheit, Marcus; Ploch, Simon; Wernicke, Tim; Vogt, Patrick; Kneissl, Michael [Technische Universitaet Berlin, Institute of Solid State Physics, Secretariat EW6-1, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2011-07-01

    The performance of GaN-based light emitting diodes (LEDs) is strongly affected by polarization fields along the c-axis of the crystal. Due to the resulting quantum-confined Stark effect the radiative transition rate is reduced and the emission wavelength is blue-shifted when carriers are injected. By growing the structures on semipolar or nonpolar planes the polarization fields can be significantly reduced or even eliminated. In this work, InGaN single quantum well LEDs have been grown by metal-organic vapor phase epitaxy on different semipolar surfaces such as the (10 anti 11) and (20 anti 21) plane. The optoelectronic properties such as the light output power, the emission wavelength and its shift with injection current as well as the operating voltage have been studied. By employing capacitance-voltage- and current-voltage measurements, the size of the depletion region, the build-in potential, the saturation current and the doping concentrations have been determined. LEDs with emission wavelengths ranging from the violet to the blue and green region are presented and their performance characteristics are compared to LEDs grown on the polar c-plane surface.

  8. Migratory bats respond to artificial green light with positive phototaxis.

    Directory of Open Access Journals (Sweden)

    Christian C Voigt

    Full Text Available Artificial light at night is spreading worldwide at unprecedented rates, exposing strictly nocturnal animals such as bats to a novel anthropogenic stressor. Previous studies about the effect of artificial light on bats focused almost exclusively on non-migratory species, yet migratory animals such as birds are known to be largely affected by light pollution. Thus, we conducted a field experiment to evaluate if bat migration is affected by artificial light at night. In late summer, we presented artificial green light of 520 nm wavelength to bats that were migrating south along the shoreline of the Baltic Sea. Using a light on-off treatment, we observed that the activity of Pipistrellus nathusii and P. pygmaeus, the two most abundant migratory species at our site, increased by more than 50% in the light-on compared to the light-off treatment. We observed an increased number of feeding buzzes during the light-on compared to the light-off treatment for P. nathusii. However, feeding activity was low in general and did not increase disproportionately during the light-on treatment in relation to the overall echolocation call activity of bats. Further, P. nathusii were attracted towards the green light at a distance of about 23 m, which is way beyond the echolocation detection range for insects of Nathusius' bats. We therefore infer that migratory bats were not attracted to artificial green light because of high insect densities, but instead by positive phototaxis. We conclude that artificial light at night may potentially impact bat migration in a yet unrecognized way.

  9. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  10. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China); Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Tieqiang [State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012 (China)

    2016-08-08

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  11. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    International Nuclear Information System (INIS)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu; Zhang, Tieqiang

    2016-01-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  12. Extracting the emitter orientation in organic light-emitting diodes from external quantum efficiency measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Reichardt, Lukas J.; Wehrmeister, Sebastian; Scholz, Bert J.; Mayr, Christian; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Rausch, Andreas F.; Wehlus, Thomas; Reusch, Thilo C. G. [OSRAM OLED GmbH, Wernerwerkstrasse 2, 93049 Regensburg (Germany); Ciarnáin, Rossá Mac; Danz, Norbert [Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena (Germany)

    2014-07-28

    Emitter orientation will play a major role in future applications of organic light-emitting diodes due to its strong impact on the efficiency of the devices. Up to now, determining the orientation of transition dipole moments required elaborate angular-dependent measurements of the light emission pattern. In this paper, we present a simplified and straightforward method to extract the emitter orientation from external quantum efficiency measurements. We demonstrate the validity of the method on three different dye-doped emitting systems.

  13. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  14. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    Science.gov (United States)

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  15. Role of Eu"2"+ on the blue‐green photoluminescence of In_2O_3:Eu"2"+ nanocrystals

    International Nuclear Information System (INIS)

    Devi, Konsam Reenabati; Meetei, Sanoujam Dhiren; Singh, Shougaijam Dorendrajit

    2016-01-01

    Blue‐green light emitting undoped and europium doped indium oxide nanocrystal were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern confirmed the cubic phase of undoped and europium doped samples. Further, transmission electron microscopy (TEM), scanning electron microscopy (SEM) , energy dispersive analysis of X-rays (EDAX), Fourier transform infra-red (FT-IR), photoluminescence (PL), electron paramagnetic resonance (EPR) studies were performed to characterise the samples. PL analysis of the samples is the core of the present research. It includes excitation, emission and CIE (Commission Internationale de l’e´ clairage) studies of the samples. On doping europium to In_2O_3 lattice, ln"3"+ site is substituted by Eu"2"+ thereby increasing the concentration of singly ionized oxygen vacancy and hence blue–green emission from the host is found to increase. Further, this increase in blue–green emission after doping may also be attributed to 4f → 5d transitions of Eu"2"+. However, the blue–green PL emission is found to decrease after an optimum dopant concentration (Eu"2"+ = 4%) due to luminescence and size quenching. CIE co-ordinates of the samples are calculated to know colour of light emitted from the samples. It suggests that this blue–green light emitting In_2O_3: Eu"2"+ nanocrystals may find application in lighting such as in generation of white light. - Highlight: • XRD and TEM study confirms the synthesis of cubic doped and europium doped nanocrystals. • EPR study reveals the doped europium is in + 2 oxidation state. • Enhance PL emission intensity of host material due to increase in singly ionized oxygen vacancy and 4f–5d transitions of Eu"2"+ • CIE co-ordinates suggest the blue–green colour of the samples.

  16. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating

    DEFF Research Database (Denmark)

    Sandstrom, Andreas; Dam, Henrik Friis; Krebs, Frederik C

    2012-01-01

    available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time-and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication...... of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-mu m-thick active material that is doped in situ during operation. It is notable...

  17. Controlling reabsorption effect of bi-color CdSe quantum dots-based white light-emitting diodes

    Science.gov (United States)

    Siao, Cyuan-Bin; Chung, Shu-Ru; Wang, Kuan-Wen

    2017-08-01

    The colloidal semiconductor quantum dots (QDs) have the potentials to be used in white light-emitting diode (WLED) as a down-converting component to replace incandescent lamps, because the traditional WLED composed of Y3Al5O12:Ce3+ (YAG:Ce) phosphor lack of red color emissions and shows low color quality. Among various QDs, CdSe has been extensively studied because it possesses attractive characteristics such as high quantum yields (QYs), narrow emission spectral bandwidth, as well as size-tunable optical characteristics. However, in order to enhance the color rendering index (CRI) of WLED, blending materials with different emission wavelengths has been used frequently. Unfortunately, these procedures are complex and time-consuming, and the emission energy of smaller QDs can be reabsorbed by larger QDs, resulting in decreasing the excitation intensity in yellowish-green region. Therefore, in this study, in order to decrease the reabsorption effect and to simplify the procedures, we have demonstrated a facile thermal pyrolyzed route to prepare bicolor CdSe QDs with dual-wavelengths. The emission wavelengths, particle sizes, and QYs of QDs can be tuned from 537/595 to 537/602 nm, 2.59/3.92 to 2.59/4.01 nm, and 27 to 40 %, for GR1 to 3 samples, respectively when the amount of Se precursor is decreased from 1.5 to 0.75 mmol. Meanwhile, the area ratio of green to red (Ag/Ar) in fluorescence spectra is gradually increased, due to the increase in growth rate, and decrease in nuclei formation in red emission. The GR1, GR2, and GR3 QDs are then encapsulated by convert types to form the LED, in which the QDs are deposited on the blue-emitting InGaN LED chip (λem = 450 nm). After encapsulation, the devices properties of Commission International d'Eclairage (CIE) chromaticity and Ag/Ar area ratio are (0.40, 0.24), 0.28/1, (0.40, 0.31), 0.52/1, and (0.40, 0.38), 1.02/1, respectively for GR1, GR2, and GR3. The results show that the green emission intensity are strongly

  18. Organic light-emitting devices with fullerene/aluminum composite anode

    International Nuclear Information System (INIS)

    Song, Q.L.; Li, C.M.; Wang, M.L.; Sun, X.Y.

    2008-01-01

    Our previous work demonstrates that fullerene/Aluminum (C 60 /Al) can be used as a composite anode in organic solar cells. In this work, we report that an organic light emitting devices (OLEDs) can be made with the C 60 /Al composite anode as well. The OLEDs show comparable current density and brightness to the traditional devices with the indium tin oxide anode

  19. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes

    Science.gov (United States)

    Zou, Chen; Huang, Chun-Ying; Sanehira, Erin M.; Luther, Joseph M.; Lin, Lih Y.

    2017-11-01

    Recently, all-inorganic perovskites such as CsPbBr3 and CsPbI3, have emerged as promising materials for light-emitting applications. While encouraging performance has been demonstrated, the stability issue of the red-emitting CsPbI3 is still a major concern due to its small tolerance factor. Here we report a highly stable CsPbI3 quantum dot (QD) light-emitting diode (LED) with red emission fabricated using an improved purification approach. The device achieved decent external quantum efficiency (EQE) of 0.21% at a bias of 6 V and outstanding operational stability, with a L 70 lifetime (EL intensity decreases to 70% of starting value) of 16 h and 1.5 h under a constant driving voltage of 5 V and 6 V (maximum EQE operation) respectively. Furthermore, the device can work under a higher voltage of 7 V (maximum luminance operation) and retain 50% of its initial EL intensity after 500 s. These findings demonstrate the promise of CsPbI3 QDs for stable red LEDs, and suggest the feasibility for electrically pumped perovskite lasers with further device optimizations.

  20. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle

    1998-01-01

    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr