WorldWideScience

Sample records for greater leaf succulence

  1. Monosaccharide analysis of succulent leaf tissue in Aloe

    DEFF Research Database (Denmark)

    Grace, Olwen Megan; Dzajic, Amra; Jäger, Anna

    2013-01-01

    in the genus Aloe using a predictive phylogenetic approach. Methodology – Monosaccharide composition was assessed in 31species, representing the morphological and taxonomic diversity of Aloe sensu stricto. Leaf mesophyll polysaccharides were partially hydrolysed in a trifluoroacetic acid (TFA)-SilA assay......Introduction – The succulent leaf mesophyll in Aloe species supports a burgeoning natural products industry, particularly in Africa. Comparative data necessary to prioritise species with economic potential have been lacking. Objective – To survey leaf mesophyll monosaccharide composition....... Oximes and trimethylsilyl ether products were detected by GC-MS. Constituent monosaccharides accounting for the greatest variation among species were identified by principal component analysis. Two plant DNA barcoding regions were sequenced in 28 of the sampled species and the resulting maximum...

  2. Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera

    DEFF Research Database (Denmark)

    Grace, Olwen Megan; Buerki, Sven; Symonds, Matthew RE

    2015-01-01

    Background: Aloe vera supports a substantial global trade yet its wild origins, and explanations for its popularity over 500 related Aloe species in one of the world’s largest succulent groups, have remained uncertain. We developed an explicit phylogenetic framework to explore links between...... the rich traditions of medicinal use and leaf succulence in aloes. Results: The phylogenetic hypothesis clarifies the origins of Aloe vera to the Arabian Peninsula at the northernmost limits of the range for aloes. The genus Aloe originated in southern Africa ~16 million years ago and underwent two major...... succulence among aloes has yielded new explanations for the extraordinary market dominance of Aloe vera. The industry preference for Aloe vera appears to be due to its proximity to important historic trade routes, and early introduction to trade and cultivation. Well-developed succulent leaf mesophyll tissue...

  3. Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of Aloe vera.

    Science.gov (United States)

    Grace, Olwen M; Buerki, Sven; Symonds, Matthew R E; Forest, Félix; van Wyk, Abraham E; Smith, Gideon F; Klopper, Ronell R; Bjorå, Charlotte S; Neale, Sophie; Demissew, Sebsebe; Simmonds, Monique S J; Rønsted, Nina

    2015-02-26

    Aloe vera supports a substantial global trade yet its wild origins, and explanations for its popularity over 500 related Aloe species in one of the world's largest succulent groups, have remained uncertain. We developed an explicit phylogenetic framework to explore links between the rich traditions of medicinal use and leaf succulence in aloes. The phylogenetic hypothesis clarifies the origins of Aloe vera to the Arabian Peninsula at the northernmost limits of the range for aloes. The genus Aloe originated in southern Africa ~16 million years ago and underwent two major radiations driven by different speciation processes, giving rise to the extraordinary diversity known today. Large, succulent leaves typical of medicinal aloes arose during the most recent diversification ~10 million years ago and are strongly correlated to the phylogeny and to the likelihood of a species being used for medicine. A significant, albeit weak, phylogenetic signal is evident in the medicinal uses of aloes, suggesting that the properties for which they are valued do not occur randomly across the branches of the phylogenetic tree. Phylogenetic investigation of plant use and leaf succulence among aloes has yielded new explanations for the extraordinary market dominance of Aloe vera. The industry preference for Aloe vera appears to be due to its proximity to important historic trade routes, and early introduction to trade and cultivation. Well-developed succulent leaf mesophyll tissue, an adaptive feature that likely contributed to the ecological success of the genus Aloe, is the main predictor for medicinal use among Aloe species, whereas evolutionary loss of succulence tends to be associated with losses of medicinal use. Phylogenetic analyses of plant use offer potential to understand patterns in the value of global plant diversity.

  4. COMPARATIVE HAEMOSTATIC EFFICACY OF SUCCULENT LEAF EXTRACTS AND LATEX OF SOME WOUND HEALING PLANTS ON FRESH WOUND OF RABBIT

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2015-06-01

    Full Text Available Ethnomedicinal report of haemostatic activity of six medicinal plants was validated by a study of the effect of succulent leaf extract of plant parts on the punch wound of rabbit for the first time. It was found that the succulent leave extracts of Artemisia nilagirica (Clarke, Barleria lupulina Lindl., Blumea lacera Dc., Croton bonplandianum Baill, Glinus lotoides Lin. and Mikania scandens (L Willd. can induce haemostasis in fresh wounds as compared to automatic haemostasis (120.00 ±2.91 seconds. The fresh leave extract of Mikania scandens took 25.00 ±1.87 seconds for haemostatic activity. Artemisia nilagirica (35.00 ± 1.50 seconds, Barleria lupulina (30.00 ±2.34 seconds, Blumea lacera (38.00 ±1.87 seconds, Glinus lotoides (35.00 ±2.29 seconds are having better action than Croton bonplandianum (leaf extract, which took 40.00 ±2.69 seconds time for haemostasis. The latex collected from the wounded small branches of living Croton bonplandianum plant is having highest efficacy in causing haemostasis (10.00 ±1.22 seconds, better than the positive control of Tincture Ferric per Chloride (13.00 ±2.54 seconds. The dermal toxicity study reveals that the application of the fresh plant extract on the skin of rat failed to produce any detrimental effect. The plant extracts collected from succulent plant leaves and particularly the latex collected from the living Croton bonplandianum Baill. plant can be used as haemostatic agents.

  5. Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production.

    Science.gov (United States)

    Jones, Richard W

    2016-01-01

    When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana) after Agrobacterium infiltration, difficulties arise due to the thin leaf structure. Thick leaved succulents, Kalanchoe blossfeldiana and Hylotelephium telephium, were tested as alternatives. A xyloglucanase, as well as a xyloglucanase inhibitor protein was successfully produced. Published by Elsevier B.V.

  6. Drought, climate change and vegetation response in the succulent karoo, South Africa

    Directory of Open Access Journals (Sweden)

    M. T. Hoffman

    2009-12-01

    Full Text Available For the winter-rainfall region of South Africa, the frequency of drought is predicted to increase over the next 100 years, with dire consequences for the vegetation of this biodiversity hotspot. We analysed historical 20th century rainfall records for six rainfall stations within the succulent karoo biome to determine if the signal of increasing drought frequency is already apparent, and whether mean annual rainfall is decreasing. We found no evidence for a decrease either in mean annual rainfall or in the incidence of drought, as measured by the Standardised Precipitation Index (SPI over the 20th century. Evidence points to a drying trend from 1900–1950 while no significant trend in rainfall and drought was found at most stations from 1951–2000. In a second analysis we synthesised the information concerning the response of adult succulent karoo biome plants and seedlings to extended drought conditions. General findings are that responses to drought differ between species, and that longevity is an important life history trait related to drought survival. Growth form is a poor predictor of drought response across the biome. There was a range of responses to drought among adult plants of various growth forms, and among non-succulent seedlings. Leaf-succulent seedlings, however, exhibited phenomenal drought resistance, the majority surviving drought long after all the experimentally comparative non-succulent seedlings had died. Our synthesis showed that previous studies on the impact of drought on succulent karoo biome plants differ greatly in terms of their location, sampling design, measured values and plant responses. A suite of coordinated long-term field observations, experiments and models are therefore needed to assess the response of succulent karoo biome species to key drought events as they occur over time and to integrate this information into conservation planning.

  7. Movement of Water from Old to Young Leaves in Three Species of Succulents

    Science.gov (United States)

    RABAS, A. R.; MARTIN, C. E.

    2003-01-01

    A hypothetical adaptive response of succulent plants to drought‐stress is the redistribution of water from old to young leaves. We examined the effects of possible movement of water from old to young leaves in three succulent species, Carpobrotus edulis (weak CAM‐inducible), Kalanchoe tubiflora (CAM) and Sedum spectabile (possibly a CAM‐cycler or CAM‐inducible). Old leaves were removed from plants, and photosynthesis, transpiration, f. wt : d. wt ratios, diurnal acid fluctuations, stomatal conductance and internal CO2 concentrations of the remaining young leaves were measured during drought‐stress. Comparison was made with plants retaining old leaves. There was no evidence that water moved from old to young leaves during drought‐stress as previously hypothesized. Only in drought‐stressed plants of K. tubiflora, were photosynthetic and transpiration rates of young leaves greater on shoots with old leaves removed compared with attached. There was a trend in all species for greater fluctuations in acidity in young leaves on shoots that lacked older leaves. For two of the three species studied, the f. wt : d. wt ratios of young leaves were greater under drought‐stress, on shoots with old leaves removed than with them attached. Absence of old leaves may reduce competition for water with young leaves, which consequently have higher water content and greater photosynthetic rates. PMID:12907468

  8. Сhlorenchyma in stem of succulent plants from the genus Euphorbia L. (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    S.О. Kalashnyk

    2015-05-01

    Full Text Available The necessity of photosynthesis execution by stems causes the structural and functional changes in plants. The stems of majority of succulent plants of the genus Euphorbia L. are covered only with the epidermis for a long time. In plants of some species the palisade parenchyma can appear which can be considered as a secondary or consequential tool to perform photosynthesis function by their stems. The anatomical structure of green annual stems of 23 Euphorbia species was examined. For 12 of them the palisade parenchyma has been established. The palisade parenchyma in the stem differs from such in the leaf by cells form and size as well as cells arrangement. The presence or absence of palisade parenchyma in the primary cortex indicates the level of specialization of stem tissues to perform the assimilation function. As the degree of development of palisade parenchyma depends on the amount of solar radiation, the presence and number of palisade parenchyma does not directly confirm the adaptation to the growth in conditions of a certain degree of aridity. Its appearance is could be caused also by growth under high insolation. Undoubtedly, appearance of palisade parenchyma in the stems of stem-succulent plants is correlated with reduction of leaves and probably is consequence of this.

  9. Tolerance of combined submergence and salinity in the halophytic stem-succulent Tecticornia pergranulata

    DEFF Research Database (Denmark)

    Colmer, T D; Vos, H; Pedersen, Ole

    2009-01-01

    pergranulata subsp. pergranulata (syn. Halosarcia pergranulata subsp. pergranulata). Growth and total sugars in succulent stems were assessed as a function of time after submergence. Underwater net photosynthesis, dark respiration, total sugars, glycinebetaine, Na(+), Cl(-) and K(+), in succulent stems, were...... assessed in a NaCl dose-response experiment. KEY RESULTS: Submerged plants ceased to grow, and tissue sugars declined. Photosynthesis by succulent stems was reduced markedly when underwater, as compared with in air. Capacity for underwater net photosynthesis (P(N)) was not affected by 10-400 mM Na......Cl, but it was reduced by 30 % at 800 mM. Dark respiration, underwater, increased in succulent stems at 200-800 mM NaCl, as compared with those at 10 mM NaCl. On an ethanol-insoluble dry mass basis, K(+) concentration in succulent stems of submerged plants was equal to that in drained controls, across all Na...

  10. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species.

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2010-01-01

    The water-accumulating leaves of crassulacean acid metabolism plants belonging to five different families were investigated for the presence of biominerals by infrared spectroscopic and microscopic analyses. Spectroscopic results revealed that the mineral present in succulent species of Agavaceae, Aizoaceae, and Asphodelaceae was calcium oxalate monohydrate (whewellite, CaC2O4 x H2O). Crystals were predominantly found as raphides or solitary crystals of various morphologies. However, representative Crassulaceae members and a succulent species of Asteraceae did not show the presence of biominerals. Overall, these results suggest no correlation between calcium oxalate generation and crassulacean acid metabolism in succulent plants.

  11. Pollination and seed dispersal in the endangered succulent ...

    African Journals Online (AJOL)

    The dwarf succulent euphorbia Euphorbia brevitorta (Euphorbiaceae) is a localized and potentially threatened endemic species with limited distributed across rocky grasslands in central and southern Kenya. The pollination ecology and seed dispersal of E. brevitorta was investigated by direct observation. Euphorbia ...

  12. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata

    DEFF Research Database (Denmark)

    Pedersen, Ole; Vos, Harrie; Colmer, Timothy David

    2006-01-01

    This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged...... the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial...... pressure of O2 (pO2) in the succulent stem was 23.2 kPa (i.e. ~10% above that in the air), while in the roots, it was 6.2-9.8 kPa. Upon sunset, the pO2 in the succulent stems declined within 1 h to below detection, but then showed some fluctuations with the pO2 increasing to at most 2.5 kPa during...

  13. Tritium turnover in succulent plants

    International Nuclear Information System (INIS)

    Krishnamoorthy, T.M.; Gogate, S.S.; Soman, S.D.

    1977-01-01

    Measurements of turnover rates for tissue free water tritium (TFWT) and tissue bound tritium (TBT) were carried out in three succulent plants, Opuntia sp., E. Trigona and E. Mili using tritiated water as tracer. The estimated half-times were 52, 57.5 and 80 days for TFWT and 212, 318 and 132 days for TBT in the stems of the above plants respectively. Opuntia sp. showed significant incorporation of TBT, 10% of TFWT on weight basis, while the other two plants showed lesser incorporation, 2-3% of TFWT. However, the leaves of E. Mili indicated the same level of fixation of TBT as the stem of Opuntia sp. (author)

  14. Vegetation of the Hantam-Tanqua-Roggeveld subregion, South Africa Part 2: Succulent Karoo Biome related vegetation

    Directory of Open Access Journals (Sweden)

    Helga van der Merwe

    2009-03-01

    Full Text Available The Hantam-Tanqua-Roggeveld subregion lies within the Succulent Karoo Hotspot that stretches along the western side of the Republic of South Africa and Namibia. This project, carried out to document the botanical diversity in the Hantam-Tanqua-Roggeveld subregion, was part of a project identified as a priority during the SKEP (Succulent Karoo Ecosystem Programme initiative in this Hotspot. Botanical surveys were conducted in an area covering over three million hectares. Satellite images of the area and topocadastral, land type and geology maps were used to stratify the area into relatively homogeneous units. An analysis of the floristic data of 390 sample plots identified two major floristic units, i.e. the Fynbos Biome related vegetation and the Succulent Karoo Biome related vegetation. A description of the vegetation related to the Succulent Karoo Biome is presented in this article. Seven associations, 16 subassociations and several mosaic vegetation units, consisting of more than one vegetation unit, were identified and mapped. Various threats to the vegetation in the region were identified during the survey and are briefly discussed.

  15. Predicting the extent of succulent thicket under current and future ...

    African Journals Online (AJOL)

    Using data from the distribution records of the facultative CAM succulent shrub Portulacaria afra, and high resolution climate response surfaces, we developed a spatially explicit model of the potential distribution of the species in the Thicket Biome of the eastern and southern Cape, South Africa. The resultant map shows a ...

  16. Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers.

    Science.gov (United States)

    Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco

    2007-05-01

    Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.

  17. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  18. Maternal habitat affects germination requirements of Anabasis setifera, a succulent shrub of the Arabian deserts

    Directory of Open Access Journals (Sweden)

    Ali El-Keblawy

    2016-03-01

    Full Text Available The effects of maternal habitat on light and temperature requirements during germination were assessed for the succulent desert shrub Anabasis setifera. Seeds were collected from the Mediterranean habitats of Egypt and the hyper-arid subtropical habitats of the United Arab Emirates (UAE. Seeds from the two populations were germinated in three temperature treatments in both a light/dark regime and continuous darkness. Seeds from the Egyptian population germinated significantly greater and faster than those of UAE. Seeds stored for four months at room temperatures have little dormancy and germinate at wide range of temperatures and light conditions, but seeds stored four months in the natural habitat lost their ability to germinate and rotted 10 days after incubation. The germination response to temperature depended on the habitat type. Seeds of the Egyptian population attained a significantly greater germination at lower temperatures, compared with seeds from the UAE population, but there was no difference in germination between the two populations at higher temperatures. Germination of A. setifera was very fast; most seeds germinated within four days. These results reflect the adaptive strategy of germination in both populations, and may help explain the wide distribution of this species in different climatic regions.

  19. KERAGAMAN DAN ANALISIS KEKERABATAN Hoya spp. BERTIPE DAUN NON SUKULEN BERDASARKAN KARAKTER ANATOMI DAUN

    Directory of Open Access Journals (Sweden)

    Aldi Rahman Hakim

    2013-01-01

    Full Text Available Hoya spp. (Apocynaceae: Asclepiadoideae has differences in leaf type, there are succulent and non succulent leaf types.  Anatomical structure of Hoya spp. leaf has not been widely studied, especially for the non succulent type. The aims of this research were to explore the diversity and relationship of non succulent Hoya, based on leaf anatomical characters represented by eight species i.e. H. bandaensis, H. campanulata, H. chlorantha, H. cilliata, H. coriacea, H. coronaria, H. densifolia and H. multiflora. Hoya leaf anatomical characters were observed on the paradermal and transversal section and analyzed by using IBM SPSS version 19 sotfware for cluster analysis. According to the paradermal observation, stomata were present at lower surface (hypostomatic for all species, and amphistomatic (both surface for H. densifolia.  The type of stomata is cyclocytic for all species. Clustered stomata were found in H. coriacea.  Observation on transversal section showed that all of species has the normal structure i.e cuticula, upper and lower epidermis, palisade parenchyma and spongy parenchyma with the variation in the layer thickness.  The cluster analysis resulted four groups at distance scale 19. Each group has specific characters. The first group has trichomes on both sides of the leaf surface. The second group has amphistomatic stomatal. The third group has thin leaves. The fourth group has the widest stomata.

  20. VALIDATION AND THERAPEUTIC USE OF SUCCULENT PLANT PARTS - OPENING OF A NEW HORIZON OF ALTERNATIVE MEDICINE

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2016-06-01

    Full Text Available The history of use of plants for medicinal purposes is very old. In the ancient civilizations, the crude plant parts were mostly used in such purposes. In the ongoing research, solvent extracted parts of the plants are validated for their reported efficacy with an intention to identify the active principles for production of those at a large scale to use them commercially as medicines. This contemporary method may be added with validation of reported medicinal plants at their fresh, succulent form with all the available principles within them. The validated medicinal plants may be used in many purposes after performing studies related with toxicity, dose etc. Organic animal farms may be created by using fresh inputs of the added medicinal plant garden, replacing the inorganic medicines. Commercialization of succulent medicinal plant part extracts may be performed by export oriented agro-medicine business with the assistance of different cooling systems.

  1. Will a decreasing winter rainfall cause a shift in Succulent Karoo boundaries? Evidence from competition and vegetation-change analyses.

    CSIR Research Space (South Africa)

    Shiponeni, NN

    2008-09-01

    Full Text Available The ecotone between the Namaqualand shrublands (Succulent Karoo biome) and Bushmanland Arid Grassland (Nama-Karoo biome) is characterised by transitional (ecotonal) physiognomy (grassland-shrubland mosaic, and grass and shrubs intermingling in arid...

  2. Humidity-dependent wound sealing in succulent leaves of Delosperma cooperi - An adaptation to seasonal drought stress.

    Science.gov (United States)

    Speck, Olga; Schlechtendahl, Mark; Borm, Florian; Kampowski, Tim; Speck, Thomas

    2018-01-01

    During evolution, plants evolved various reactions to wounding. Fast wound sealing and subsequent healing represent a selective advantage of particular importance for plants growing in arid habitats. An effective self-sealing function by internal deformation has been found in the succulent leaves of Delosperma cooperi. After a transversal incision, the entire leaf bends until the wound is closed. Our results indicate that the underlying sealing principle is a combination of hydraulic shrinking and swelling as the main driving forces and growth-induced mechanical pre-stresses in the tissues. Hydraulic effects were measured in terms of the relative bending angle over 55 minutes under various humidity conditions. The higher the relative air humidity, the lower the bending angle. Negative bending angles were found when a droplet of liquid water was applied to the wound. The statistical analysis revealed highly significant differences of the single main effects such as "humidity conditions in the wound region" and "time after wounding" and their interaction effect. The centripetal arrangement of five tissue layers with various thicknesses and significantly different mechanical properties might play an additional role with regard to mechanically driven effects. Injury disturbs the mechanical equilibrium, with pre-stresses leading to internal deformation until a new equilibrium is reached. In the context of self-sealing by internal deformation, the highly flexible wide-band tracheids, which form a net of vascular bundles, are regarded as paedomorphic tracheids, which are specialised to prevent cell collapse under drought stress and allow for building growth-induced mechanical pre-stresses.

  3. Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome.

    Science.gov (United States)

    Hernández-Hernández, Tania; Brown, Joseph W; Schlumpberger, Boris O; Eguiarte, Luis E; Magallón, Susana

    2014-06-01

    Succulent plants are widely distributed, reaching their highest diversity in arid and semi-arid regions. Their origin and diversification is thought to be associated with a global expansion of aridity. We test this hypothesis by investigating the tempo and pattern of Cactaceae diversification. Our results contribute to the understanding of the evolution of New World Succulent Biomes. We use the most taxonomically complete dataset currently available for Cactaceae. We estimate divergence times and utilize Bayesian and maximum likelihood methods that account for nonrandom taxonomic sampling, possible extinction scenarios and phylogenetic uncertainty to analyze diversification rates, and evolution of growth form and pollination syndrome. Cactaceae originated shortly after the Eocene-Oligocene global drop in CO2 , and radiation of its richest genera coincided with the expansion of aridity in North America during the late Miocene. A significant correlation between growth form and pollination syndrome was found, as well as a clear state dependence between diversification rate, and pollination and growth-form evolution. This study suggests a complex picture underlying the diversification of Cactaceae. It not only responded to the availability of new niches resulting from aridification, but also to the correlated evolution of novel growth forms and reproductive strategies. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  5. Effects of leaf movement on leaf temperature, transpiration and radiation interception in soybean under water stress conditions

    International Nuclear Information System (INIS)

    Isoda, A.; Wang, P.

    2001-01-01

    Varietal differences in leaf movement were examined in terms of radiation interception, leaf temperature and transpiration under water stressed conditions. Five cultivars (Qindou 7232, Gaofei 16, Dongnong 87 - 138, 8285 - 8 and 8874) were grown in a concrete frame field in Xinjiang, China. Irrigation treatments (irrigation and no irrigation) were made from the flowering to the pod filling stage. A leaflet in the uppermost layer of the canopy was restrained horizontally. Leaf temperatures, transpiration rate (stem sap flow rate of the main stem per unit leaf area) and intercepted radiation of each leaflet were measured. There were greater varietal differences in leaf movement, leaf temperature and transpiration rate. Leaf temperature seemed to be adjusted by leaf movement and transpiration. The extent to which is adjusted by leaf movement and transpiration differed among the cultivars; leaf temperature was influenced mainly by leaf movement for Gaofei 16 and Dongnong 87 - 138, mainly by transpiration for Qindou 7232 and 8874, and by both for 8285 - 8. Intercepted radiation in the upper two layers of the canopy (20 cm from the uppermost) was greater in the irrigated plot, although the mean values of total leaflets of the irrigated plot were not different as compared to the non-irrigated plot. Although paraheliotropic leaf movement decreased radiation interception, it offers some possibilities for the improvement in radiation penetration within a dense canopy. Cumulated amount of transpiration during a day was compared between the restrained-leaf and the non-leaf-restrained plants in 8874. Paraheliotropic leaf movement reduced water loss by 23% in the irrigated and 71% in the non-irrigated plots

  6. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  7. Digital Knowledge of Kenyan Succulent Flora and Priorities for Future Inventory and Documentation

    Directory of Open Access Journals (Sweden)

    Emily Wabuyele

    2016-07-01

    Full Text Available Biodiversity inventory in Kenya has been ongoing for about a century and a half, coinciding with the arrival of naturalists from Europe, America, and elsewhere outside Africa. Since the first collections in the mid-to-late 1800s, there has been a steady increase of plant surveys, frequency of inventory, and discovery of new species that have considerably increased knowledge of faunal and floristic elements. However, as in all other countries, such historical biological collection activities are more often than not, ad hoc, resulting in gaps in knowledge of species and their habitats. While Kenya is relatively rich botanically, with a succulent flora of about 428 taxa, it is apparent that the list is understated owing to, among other factors, difficulty of preparing herbarium material and restricted access to some sites. This study investigated completeness of geographic knowledge of succulent plants in Kenya, with the aim of establishing species distribution patterns and identifying gaps that will guide and justify priority setting for future work on the group. Species data were filtered from the general BRAHMS database at the East African Herbarium and cleaned via an iterative series of inspections and visualizations designed to detect and document inconsistencies in taxonomic concepts, geographic coordinates, and dates of collection. Eight grid squares fulfilled criteria for completeness of inventory: one in the city of Mombasa, one in the Kulal–Nyiro complex, one in Garissa, one in Baringo, and four grid squares in the Nairobi–Nakuru–Laikipia area. Poorly-known areas, mostly in the west, north, and north-eastern regions of the country, were extremely isolated from well-known sites, both geographically and environmentally. These localities should be prioritised for future inventory as they are likely to yield species new to science, species new to the national flora, and/or contribute new knowledge on habitats. To avoid inconsistencies

  8. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  9. Evolutionary history of a keystone pollinator parallels the biome occupancy of angiosperms in the Greater Cape Floristic Region.

    Science.gov (United States)

    de Jager, Marinus L; Ellis, Allan G

    2017-02-01

    The Greater Cape Floristic Region (GCFR) in South Africa has been extensively investigated for its phenomenal angiosperm diversity. A key emergent pattern is the occurrence of older plant lineages in the southern Fynbos biome and younger lineages in the northern Succulent Karoo biome. We know practically nothing, however, about the evolutionary history of the animals that pollinate this often highly-specialized flora. In this study, we explore the evolutionary history of an important GCFR fly pollinator, Megapalpus capensis, and ask whether it exhibits broadly congruent genetic structuring and timing of diversification to flowering plants within these biomes. We find that the oldest M. capensis lineages originated in Fynbos during the Miocene, while younger Succulent Karoo lineages diverged in the Pliocene and correspond to the proposed age of this recent biome. A strong signature of population expansion is also recovered for flies in this arid biome, consistent with recent colonization. Our first investigation into the evolutionary history of GCFR pollinators thus supports a recent origin of the SK biome, as inferred from angiosperm phylogenies, and suggests that plants and pollinators may have co-diverged within this remarkable area. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Leaf micromorphology of Kalanchoë laciniata (Crassulaceae

    Directory of Open Access Journals (Sweden)

    Emilia Brzezicka

    2015-05-01

    Full Text Available The main aim of the work was to characterize morphology and anatomy of succulent leaves. Morphological and anatomical studies conducted on succulent leaves of Kalanchoë laciniata. The anatomy of leaves where studied with the use of light microscopy. This species belongs to the family Crassulaceae and it demonstrates the presence of adaptive traits which are necessary to survive and allow them inhabit in dry environment. Family Crassulaceae occur on arid and semiarid areas, among the rocks, on the sandy areas and in the mountains. Anatomical studies show that leaves of K. laciniata possess a water storage tissue and mesophyll does not consist of palisade and spongy parenchyma. K. laciniata like the other species belonging to family Crassulaceae present physiological and morphological adaptations.

  11. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  12. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  13. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  14. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  15. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits

    Directory of Open Access Journals (Sweden)

    Chen Xiaoping

    2015-01-01

    Full Text Available Plants not only improve air quality by adsorbing particulate matter (PM on leaf surfaces but can also be affected by their accumulation. In this study, a field investigation was performed in Wuhan, China, into the relationship between seven leaf traits and the accumulation of three different sizes of PM (PM11, PM2.5 and PM0.2 on leaves. The retention abilities of plant leaves with respect to the three sizes of PM differed significantly at different sites and species. The average PM retention capabilities of plant leaves and specific leaf area (SLA were significantly greater in a seriously polluted area, whereas the average values of chlorophyll a (Chl a, chlorophyll b (Chl b, total chlorophyll, carotenoid, pH and relative water content (RWC were greater at the control site. SLA significantly positively correlated with the size of PM, but Chl a, Chl b, total chlorophyll, RWC significantly negatively correlated with the size of PM, whereas the pH did not correlate significantly with the the PM fractions. Additionally, SLA was found to be affected by large particles (PM11, p<0.01; PM2.5 had a more obvious effect on plant leaf traits than the other PM (p<0.05. Overall, the findings from this study provide useful information regarding the selection of plants to reduce atmospheric pollution.

  16. Does shoot water status limit leaf expansion of nitrogen-deprived barley?

    Science.gov (United States)

    Dodd, I C; Munns, Rana; Passioura, J B

    2002-08-01

    The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.

  17. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    Science.gov (United States)

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  18. Acclimatization and leaf anatomy of micropropagated fig plantlets

    Directory of Open Access Journals (Sweden)

    Chrystiane Fráguas Chirinéa

    2012-12-01

    Full Text Available The survival of micropropagated plants during and after acclimatization is a limiting process to plant establishment. There is little information on how the anatomy of vegetative organs of Ficus carica can be affected by culture conditions and acclimatization. The present research aimed to study the effects of time on culture medium and substrates during the acclimatization of fig tree plantlets produced in vitro, characterizing some leaf anatomy aspects of plantlets cultured in vitro and of fig trees produced in field. Plantlets previously multiplied in vitro were separated and transferred into Wood Plant Medium (WPM where they were kept for 0, 15, 30, 45 and 60 days. Different substrates were tested and studies on leaf anatomy were performed in order to compare among plantlets grown in vitro, plantlets under 20, 40 and 60 days of acclimatization, and field grown plants. Keeping plantlets for 30 days in WPM allowed better development in Plantmax during acclimatization. Field grown plants presented higher number of stomata, greater epicuticular wax thickness and greater leaf tissue production compared to in vitro ones. The leaf tissues of in vitro plantlets show little differentiation and have great stomata number compared with acclimatized plants, which reduce the number of stomata during the acclimatization process.

  19. Anatomy of myxospermic diaspores of selected species in the Succulent Karoo, Namaqualand, South Africa

    Directory of Open Access Journals (Sweden)

    H. F. Makouate

    2012-12-01

    Full Text Available Environmental conditions encountered in arid ecosystems differ vastly from those in more mesic ecosystems. Dispersal strategies in arid environments reflect these differences and many mechanisms have evolved that restrict or hinder dispersal. Myxospermy is a trait developed by plant species from arid regions to restrict diaspore dispersal by means of an anchorage mechanism. Several of the abundant plant species in Namaqualand, within the arid Succulent Karoo Biome, display myxospermy. Diaspores of these species produce copious amounts of mucilage when they are moistened and are anchored to the soil once the mucilage dries out again. This study investigated the origin of the mucilaginous layer of 12 species anatomically, using both light and scanning electron microscopy. The mucilage production of the species investigated could best be grouped into three types: 1, epidermal and sub-epidermal cells of seeds and achenes; 2, specialized tissue in wings or the pappus of achenes; and 3, mucilage excreting hairs. Previous systems for classifying the different types of mucilage production did not recognize the mucilaginous nature of wings or a pappus. A short note on the composition of the mucilage is included.

  20. Identification of ISSR Primers

    African Journals Online (AJOL)

    identify those that condition the broad succulent leaf preferred by consumers. These genotypes could be valuable sources of genetic diversity that can be used in the development of improved cultivars for commercialization (Odiaka, 2005). Molecular methods are modern tools which assist in a better understanding of ...

  1. Leaf biomechanics as a potential tool to predict feeding preferences ...

    African Journals Online (AJOL)

    Leaves of geophyte food plants were fleshy and succulent with a low failure load and tensile strength. Leaves of food plant grasses had significantly higher failure loads and tensile strengths compared to leaves of food plant geophytes. In non food plants there was no signifi cant difference in failure load between grasses ...

  2. Variability in leaf optical properties among 26 species from a broad range of habitats

    International Nuclear Information System (INIS)

    Knapp, A.K.; Carter, G.A.

    1998-01-01

    Leaves from 26 species with growth forms from annual herbs to trees were collected from open, intermediate, and shaded understory habitats in Mississippi and Kansas, USA. Leaf optical properties including reflectance, transmittance, and absorptance in visible and near infrared (NIR) wavelengths were measured along with leaf thickness and specific leaf mass (SLM). These leaf properties and internal light scattering have been reported to vary with light availability in studies that have focused on a limited number of species. Our objective was to determine whether these patterns in leaf optics and light availability were consistent when a greater number of species were evaluated. Leaf thickness and SLM varied by tenfold among species sampled, but within-habitat variance was high. Although there was a strong trend toward thicker leaves in open habitats, only SLM was significantly greater in open vs. understory habitats. In contrast, leaf optical properties were strikingly similar among habitats. Reflectance and reflectance/transmittance in the NIR were used to estimate internal light scattering and there were strong relationships (r2 0.65) between these optical properties and leaf thickness. We concluded that leaf thickness, which did not vary consistently among habitats, was the best predictor of NIR reflectance and internal light scattering. However, because carbon allocation to leaves was lower in understory species (low SLM) yet gross optical properties were similar among all habitats, the energy investment by shade leaves required to achieve optical equivalence with sun leaves was lower. Differences in leaf longevity and growth form within a habitat may help explain the lack of consistent patterns in leaf optics as the number of species sampled increases

  3. Measured and modelled leaf and stand-scale productivity across a soil moisture gradient and a severe drought.

    Science.gov (United States)

    Wright, J K; Williams, M; Starr, G; McGee, J; Mitchell, R J

    2013-02-01

    Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil-plant-atmosphere (SPA) model to leaf and stand-scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. V(cmax) and J(max)) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ∼23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co-limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought-tolerant behaviour that contrasted with mesic trees' drought-avoidance behaviour. © 2012 Blackwell Publishing Ltd.

  4. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  5. Influence of leaf retention on cutting propagation of Lavandula dentata L.

    Directory of Open Access Journals (Sweden)

    Claudine Maria de Bona

    2010-08-01

    Full Text Available Vegetative propagation of lavender offers several advantages over sexual propagation, among them crop homogeneity and yield of higher quality essential oil. However, Lavandula species have been propagated mostly by seeds and are said to be recalcitrant to rooting when propagated by cuttings. During cutting propagation, one of the important variables that influence the rooting capacity of cuttings is the leaf retention. The objective of this work was to evaluate the influence of leaf retention on rooting of L. dentata cuttings. Apical cuttings of L. dentata of 10 cm in length, keeping approximately 1/3, 1/2 or 2/3 of their leaves were planted in commercial substrate Plantmax HT® under intermittent mist. After two months, averages of root number, length of the longest root, root fresh and dry weights, and the survival percentage were evaluated. Root length and fresh weight were statistically greater with 2/3 of leaf retention and when fewer leaves were kept on the cuttings, lower means of root dry weight was observed. Under the conditions applied in this study, greater leaf retention was better for rooting of L. dentata cuttings.

  6. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  7. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  8. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    Science.gov (United States)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  9. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L. Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their

  10. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  11. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    Science.gov (United States)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  12. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  13. Bacterial leaf rot of Aloe vera L., caused byErwinia chrysanthemi biovar 3

    NARCIS (Netherlands)

    Laat, de P.C.A.; Verhoeven, J.T.W.; Danse, J.D.

    1994-01-01

    A severe attack of the bacteriumErwinia chrysantemi biovar 3 on the succulentAloe vera on the Carribean island of Aruba is described. Biochemical and pathological characteristics of strains are presented, including results of successful inoculation experiments onAloe vera. This is the first report

  14. The effects of leaf litter nutrient pulses on Alliaria petiolata performance

    Directory of Open Access Journals (Sweden)

    Robert W. Heckman

    2015-08-01

    Full Text Available Nutrient pulses can facilitate species establishment and spread in new habitats, particularly when one species more effectively uses that nutrient pulse. Biological differences in nutrient acquisition between native and exotic species may facilitate invasions into a variety of habitats including deciduous forest understories. Alliaria petiolata (Bieb. Cavara & Grande is an important invader of deciduous forest understories throughout much of North America. These understory communities contain many species which perform the majority of their growth and reproduction before canopy closure in spring. Because A. petiolata is a wintergreen biennial that can be active during autumn and winter, it may utilize nutrients released from decaying leaf litter before its competitors. To investigate this we manipulated the timing of leaf litter addition (fall or spring and experimentally simulated the nutrient pulse from decaying leaves using artificial fertilizer. To determine whether A. petiolata affected the abundance of understory competitors, we also removed A. petiolata from one treatment. A. petiolata that received early nutrients exhibited greater growth. Treatments receiving fall leaf litter or artificial nutrients had greater A. petiolata adult biomass than plots receiving spring nutrient additions (leaf litter or artificial nutrients. However, fall leaf litter addition had no effect on the richness of competitor species. Thus, wintergreen phenology may contribute to the spread of A. petiolata through deciduous forest understories, but may not explain community-level impacts of A. petiolata in deciduous forests.

  15. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  16. Generality of leaf trait relationships: A test across six biomes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, P.B. [Univ. of Minnesota, Saint Paul, MN (United States). Dept. of Forest Resources; Ellsworth, D.S. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Walters, M.B. [Michigan State Univ., East Lansing, MI (United States). Dept. of Forestry; Vose, J.M. [Forest Service, Otto, NC (United States). Coweeta Hydrological Lab.; Gresham, C. [Clemson Univ., Georgetown, SC (United States). Baruch Forest Inst.; Volin, J.C. [Florida Atlantic Univ., Davie, FL (United States). Div. of Science; Bowman, W.D. [Inst. of Arctic and Alpine Research, Boulder, CO (United States). Mountain Research Station]|[Univ. of Colorado, Boulder, CO (United States). Dept. of Evolutionary, Population, and Organismic Biology

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  17. Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.

    Science.gov (United States)

    Markelz, R J Cody; Lai, Lisa X; Vosseler, Lauren N; Leakey, Andrew D B

    2014-04-01

    Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration have been attributed to reduced demand for energy for protein turnover assumed to result from lower leaf N content. Arabidopsis thaliana was grown in ambient (370 ppm) and elevated (750 ppm) [CO2 ] with limiting and ample N availabilities. The stimulation of leaf dark respiration was attenuated in limiting N (+12%) compared with ample N supply (+30%). This response was associated with smaller stimulation of photosynthetic CO2 uptake, but not interactive effects of elevated CO2 and N supply on leaf protein, amino acids or specific leaf area. Elevated [CO2 ] also resulted in greater abundance of transcripts for many components of the respiratory pathway. A greater transcriptional response to elevated [CO2 ] was observed in ample N supply at midday versus midnight, consistent with reports that protein synthesis is greatest during the day. Greater foliar expression of respiratory genes under elevated [CO2 ] has now been observed in diverse herbaceous species, suggesting a widely conserved response. © 2013 John Wiley & Sons Ltd.

  18. How Does Temperature Impact Leaf Size and Shape in Four Woody Dicot Species? Testing the Assumptions of Leaf Physiognomy-Climate Models

    Science.gov (United States)

    McKee, M.; Royer, D. L.

    2017-12-01

    The physiognomy (size and shape) of fossilized leaves has been used to reconstruct the mean annual temperature of ancient environments. Colder temperatures often select for larger and more abundant leaf teeth—serrated edges on leaf margins—as well as a greater degree of leaf dissection. However, to be able to accurately predict paleotemperature from the morphology of fossilized leaves, leaves must be able to react quickly and in a predictable manner to changes in temperature. We examined the extent to which temperature affects leaf morphology in four tree species: Carpinus caroliniana, Acer negundo, Ilex opaca, and Ostrya virginiana. Saplings of these species were grown in two growth cabinets under contrasting temperatures (17 and 25 °C). Compared to the cool treatment, in the warm treatment Carpinus caroliniana leaves had significantly fewer leaf teeth and a lower ratio of total number of leaf teeth to internal perimeter; and Acer negundo leaves had a significantly lower feret diameter ratio (a measure of leaf dissection). In addition, a two-way ANOVA tested the influence of temperature and species on leaf physiognomy. This analysis revealed that all plants, regardless of species, tended to develop more highly dissected leaves with more leaf teeth in the cool treatment. Because the cabinets maintained equivalent moisture, humidity, and CO2 concentration between the two treatments, these results demonstrate that these species could rapidly adapt to changes in temperature. However, not all of the species reacted identically to temperature changes. For example, Acer negundo, Carpinus caroliniana, and Ostrya virginiana all had a higher number of total teeth in the cool treatment compared to the warm treatment, but the opposite was true for Ilex opaca. Our work questions a fundamental assumption common to all models predicting paleotemperature from the physiognomy of fossilized leaves: a given climate will inevitably select for the same leaf physiognomy

  19. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  20. CO2 and temperature effects on leaf area production in two annual plant species

    International Nuclear Information System (INIS)

    Ackerly, D.D.; Coleman, J.S.; Morse, S.R.; Bazzaz, F.A.

    1992-01-01

    The authors studied leaf area production in two annual plant species, Abutilon theophrasti and Amaranthus retroflexus, under three day/night temperature regimes and two concentrations of carbon dioxide. The production of whole-plant leaf area during the first 30 d of growth was analyzed in terms of the leaf initiation rate, leaf expansion, individual leaf area, and, in Amaranthus, production of branch leaves. Temperature and CO 2 influenced leaf area production through effects on the rate of development, determined by the production of nodes on the main stem, and through shifts in the relationship between whole-plant leaf area and the number of main stem nodes. In Abutilon, leaf initiation rate was highest at 38 degree, but area of individual leaves was greatest at 28 degree. Total leaf area was greatly reduced at 18 degree due to slow leaf initiation rates. Elevated CO 2 concentration increased leaf initiation rate at 28 degree, resulting in an increase in whole-part leaf area. In Amaranthus, leaf initiation rate increased with temperature, and was increased by elevated CO 2 at 28 degree. Individual leaf area was greatest at 28 degree, and was increased by elevated CO 2 at 28 degree but decreased at 38 degree. Branch leaf area displayed a similar response to CO 2 , butt was greater at 38 degree. Overall, wholeplant leaf area was slightly increased at 38 degree relative to 28 degree, and elevated CO 2 levels resulted in increased leaf area at 28 degree but decreased leaf area at 38 degree

  1. The growth and survival of plants in urban green roofs in a dry climate.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-04-01

    Green roofs as one of the components of water-sensitive urban design have become widely used in recent years. This paper describes performance monitoring of four prototype-scale experimental green roofs in a northern suburb of Adelaide, South Australia, undertaken over a 1-year period. Four species of indigenous Australian ground cover and grass species comprising Carpobrotus rossii, Lomandra longifolia 'Tanika,' Dianella caerula 'Breeze' and Myoporum parvifolium were planted in extensive and intensive green roof configurations using two different growing media. The first medium consisted of crushed brick, scoria, coir fibre and composted organics while the second comprised scoria, composted pine bark and hydro-cell flakes. Plant growth indices including vertical and horizontal growth rate, leaf succulence, shoot and root biomasses, water use efficiency and irrigation regimes were studied during a 12-month period. The results showed that the succulent species, C. rossii, can best tolerate the hot, dry summer conditions of South Australia, and this species showed a 100% survival rate and had the maximum horizontal growth rate, leaf succulence, shoot biomass and water use efficiency. All of the plants in the intensive green roofs with the crushed brick mix media survived during the term of this study. It was shown that stormwater can be used as a source of irrigation water for green roofs during 8 months of the year in Adelaide. However, supplementary irrigation is required for some of the plants over a full annual cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive.

    Science.gov (United States)

    Rosati, Adolfo; Paoletti, Andrea; Al Hariri, Raeed; Famiani, Franco

    2018-02-14

    The amount of shoot stem (i.e., woody part of the shoot) dry matter per unit shoot leaf dry matter (i.e., the shoot wood to leaf biomass ratio) has been reported to be lower in short shoots than in long ones, and this is related to the greater and earlier ability of short shoots to export carbon. This is important in fruit trees, since the greater and earlier carbon export ability of shoots with a lower wood to leaf biomass ratio improves fruit production. This ratio may vary with cultivars, training systems or plant age, but no study has previously investigated the possible effect of fruit production. In this study on two olive cultivars (i.e., Arbequina, with low growth rate, and Frantoio, with high growth rate) subject to different fruit production treatments, we found that at increasing fruit production, shoot length and shoot wood to leaf biomass ratio were proportionally reduced in the new shoots growing at the same time as the fruit. Specifically, fruit production proportionally reduced total new-shoot biomass, length, leaf area and average shoot length. With decreasing shoot length, shoot diameter, stem mass, internode length, individual leaf area and shoot wood to leaf biomass ratio also decreased. This may be viewed as a plant strategy to better support fruit growth in the current year, given the greater and earlier ability of short shoots to export carbon. Moreover, at the whole-tree level, the percentage of total tree biomass production invested in leaves was closely correlated with branching density, which differed significantly across cultivars. By branching more, Arbequina concentrates more shoots (thus leaves) per unit of wood (trunk, branches and root) mass, decreasing wood to leaf biomass ratio at the whole-tree level. Therefore, while, at the shoot level, shoot length determines shoot wood to leaf biomass ratio, at the canopy level branching density is also an important determinant of whole-tree wood to leaf biomass ratio. Whole-tree wood to leaf

  3. A COMPARATIVE STUDY OF EXTRACT OF SUCCULENT LEAVES OF LIVING PLANT WITH METHANOLIC AND AQUEOUS EXTRACT OF BERLERIA LUPULINA LINDL. AGAINST PATHOGENIC MICROBES BY DISC DIFFUSION AND SPECTROPHOTOMETRY

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2014-12-01

    Full Text Available Berleria lupulina Lindl. was evaluated for its reported antimicrobial activity in a novel way. The extract of succulent leaves collected from living plant was studied along with conventional methanolic and watery extracts made from the dry leaves of the plant. The extracts were tested on three pathogenic bacteria and the antimicrobial activity was tested both by conventional single disc diffusion method and a novel Spectrophotometric method. In disc diffusion study, it was found that the methanolic extract (100 mg/ml. and 200 mg/ ml. diluted in 70% of methanol and extract of succulent leaves can induce 12 mm, 13 mm and 14 mm diameter zone of inhibition comparable with 24 mm of Ceftriaxone against Escherichia coli. The zone of inhibition against Staphylococcus aureus were 13 mm, 14 mm, 15 mm and 25 mm and against Salmonella enteritides were 12 mm, 14 mm, 15 mm and 28 mm correspondingly. The watery extract made from the dry plant and the methanolic extract diluted in water failed to induce any inhibition in growth of the organisms. In spectrophotometric study, the methanolic extract showed antimicrobial efficacy in the concentration of 10 mg/ml. or above against Salmonella enteritides and Staphylococcus aureus. But against Escherichia coli, effective control was found in 20 mg/ml concentration. The fresh extract of the plant showed antimicrobial efficacy in the concentration of 16.5%. The anti microbial efficacy above that concentration cannot be detected in the available spectrophotometrical method for presence of color material in that fresh extract.

  4. Inhibitory activities of Moringa oleifera leaf extract against α-glucosidase enzyme in vitro

    Science.gov (United States)

    Natsir, H.; Wahab, A. W.; Laga, A.; Arif, A. R.

    2018-03-01

    Alpha-glucosidase is a key enzyme in the final process of breaking carbohydrates into glucose. Inhibition of α-glucosidase affected more absorption of glucose, so it can reduce hyperglycemia condition. The aims of this study is to determine the effectiveness of inhibition wet and dried Moringa oleifera leaf extract through α-glucosidase activity in vitro. The effectiveness study of inhibition on the activity of α-glucosidase enzyme obtained from white glutinous rice (Oryza sativa glutinosa) was carried out using wet and dried kelor leaf extract of 13% (w/v) with 10 mM α-D-glucopyranoside (PNPG) substrate. A positive control used 1% acarbose and substrate without addition of extract was a negative control. Inhibitory activity was measured using spectrophotometers at a wavelength of 400 nm. The result showed that the inhibition activity against α-glucosidase enzyme of dried leaf extract, wet leaf extract and acarbose was 81,39%, 83,94%, and 95,4%, respectively on pH 7,0. The effectiveness inhibition of the wet Moringa leaf extract was greater than the dried leaf extract. The findings suggest that M. oleifera leaf has the potential to be developed as an alternative food therapy for diabetics.

  5. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  6. Metabolic responses and β-carotene production by the unicellular green alga Dunaliella salina exposed to leaf extracts

    Directory of Open Access Journals (Sweden)

    Alireza Einali

    Full Text Available ABSTRACT The present work investigated the effects of aqueous extracts of eucalyptus ( Eucalyptus globulus and elderberry ( Sambucus ebulus leaves on β-carotene productivity in Dunaliella salina, a green microalga. Leaf extracts from eucalyptus have greater amounts of phenolics and flavonoids, as well as greater ferric reducing antioxidant potential than elderberry. The extracts of both species greatly inhibited growth of algal suspensions. However, chlorophyll and β-carotene concentration increased in cells treated with leaf extracts, and the highest values were detected in 1 % eucalyptus and 2 % elderberry extracts. Fresh weight, total sugar, and protein content significantly increased following exposure of cells to different doses of leaf extracts. However, in doses containing more than 2 % eucalyptus, the upward trend for total sugar and protein ceased and remained statistically unchanged. These results suggest that metabolic modifications enable D. salina cells to tolerate the stress induced by the leaf extracts through allocating carbon flux to the synthesis of osmolytes and putative antioxidant molecules (e.g. sugars and β-carotene. Therefore, the use of leaf extracts holds potential to be a promising and effective way to improve D. salina cultivation for β-carotene production and other biotechnological and industrial applications.

  7. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  8. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  9. Plant Communities Suitable for Green Roofs in Arid Regions

    Directory of Open Access Journals (Sweden)

    Rachel Gioannini

    2018-05-01

    Full Text Available In extensive green roof settings, plant communities can be more robust than monocultures. In addition, native plants might be hardier and more ecologically sound choices than non-native plants in green roof systems. The objectives of this research were to (1 compare the performance of plant communities with that of monocultures and (2 compare the growth of natives to non-natives in a simulated green roof setting. We conducted a two-year experiment at an outdoor site in a desert environment using four plant morphological types (groundcover, forb, succulent and grass. Native plants selected were Chrysactinia mexicana, Melampodium leucanthum, Euphorbia antisyphilitica, and Nassella tenuissima, and non-natives were Delosperma nubigenum, Stachys byzantina, Sedum kamtschiaticum and Festuca glauca. Plants were assigned randomly to either monoculture or community and grown in 1 m × 1 m custom-built trays filled with 15 cm of a proprietary blend of 50/20/30 lightweight aggregate/sand/compost (by volume. Native forb, Melampodium, in community had greater coverage for four of the five measurements in the first year over native forb in monoculture and non-native forb regardless of setting. Native forb coverage was also greater than non-native forb for three of the four measurements in year 2, regardless of setting. Coverage of native grass was significantly greater than non-native grasses throughout the experiment. Coverage was also greater for eight of nine measurements for native succulent over non-natives succulent. However, non-native groundcover coverage was significantly greater than native groundcover for seven of nine measurements. On 1 November 2016, relative water content (RWC for succulents (p = 0.0424 was greatest for native Euphorbia in monoculture at 88%. Native Euphorbia also had greater RWC than non-native Sedum on 4 April 2017 (78% and 4 July 2017 (80%. However, non-native Sedum had greater root length (6548 cm, root dry weight (12.1 g

  10. Host Phenology and Leaf Effects on Susceptibility of California Bay Laurel to Phytophthora ramorum.

    Science.gov (United States)

    Johnston, Steven F; Cohen, Michael F; Torok, Tamas; Meentemeyer, Ross K; Rank, Nathan E

    2016-01-01

    Spread of the plant pathogen Phytophthora ramorum, causal agent of the forest disease sudden oak death, is driven by a few competent hosts that support spore production from foliar lesions. The relationship between traits of a principal foliar host, California bay laurel (Umbellularia californica), and susceptibility to P. ramorum infection were investigated with multiple P. ramorum isolates and leaves collected from multiple trees in leaf-droplet assays. We examined whether susceptibility varies with season, leaf age, or inoculum position. Bay laurel susceptibility was highest during spring and summer and lowest in winter. Older leaves (>1 year) were more susceptible than younger ones (8 to 11 months). Susceptibility was greater at leaf tips and edges than the middle of the leaf. Leaf surfaces wiped with 70% ethanol were more susceptible to P. ramorum infection than untreated leaf surfaces. Our results indicate that seasonal changes in susceptibility of U. californica significantly influence P. ramorum infection levels. Thus, in addition to environmental variables such as temperature and moisture, variability in host plant susceptibility contributes to disease establishment of P. ramorum.

  11. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  12. Sugarbeet leaf spot disease (Cercospora beticola Sacc.)dagger.

    Science.gov (United States)

    Weiland, John; Koch, Georg

    2004-05-01

    SUMMARY Leaf spot disease caused by Cercospora beticola Sacc. is the most destructive foliar pathogen of sugarbeet worldwide. In addition to reducing yield and quality of sugarbeet, the control of leaf spot disease by extensive fungicide application incurs added costs to producers and repeatedly has selected for fungicide-tolerant C. beticola strains. The genetics and biochemistry of virulence have been examined less for C. beticola as compared with the related fungi C. nicotianae, C. kikuchii and C. zeae-maydis, fungi to which the physiology of C. beticola is often compared. C. beticola populations generally are not characterized as having race structure, although a case of race-specific resistance in sugarbeet to C. beticola has been reported. Resistance currently implemented in the field is quantitatively inherited and exhibits low to medium heritability. Cercospora beticola Sacc.; Kingdom Fungi, Subdivision Deuteromycetes, Class Hyphomycetes, Order Hyphales, Genus Cercospora. Circular, brown to red delimited spots with ashen-grey centre, 0.5-6 mm diameter; dark brown to black stromata against grey background; pale brown unbranched sparingly septate conidiophores, hyaline acicular conidia, multiseptate, from 2.5 to 4 microm wide and 50-200 microm long. Propagative on Beta vulgaris and most species of Beta. Reported on members of the Chenopodiaceae and on Amaranthus. Disease symptoms: Infected leaves and petioles of B. vulgaris exhibit numerous circular leaf spots that coalesce in severe cases causing complete leaf collapse. Dark specks within a grey spot centre are characteristic for the disease. Older leaves exhibit a greater number of lesions with larger spot diameter. During the latter stage of severe epiphytotics, new leaf growth can be seen emerging from the plant surrounded by prostrate, collapsed leaves. Fungicides in the benzimidazole and triazole class as well as organotin derivatives and strobilurins have successfully been used to control Cercospora

  13. In vitro growth and leaf anatomy of Cattleya walkeriana (Gardner, 1839 grown in natural ventilation system

    Directory of Open Access Journals (Sweden)

    Adriano Bortolotti da Silva

    2014-12-01

    Full Text Available Natural ventilation system facilitates gaseous exchanges in in vitro plants promoting changes in the leaf tissue, which can be evaluated through the leaf anatomy, and it allows a cultivation closer to the photoautrophic micropropagation. The objective of this work was to evaluate the effects on in vitro growth and on the leaf anatomy of Cattleya walkeriana grown in natural and conventional ventilation system with different concentrations of sucrose (0; 15; 30 and 45 L-1 combined with different cultivation systems (conventional micropropagation and natural ventilation system. The culture medium was composed of MS salts, solidified with 7 g L-1 of agar and pH adjusted to 5.8. Forty milliliters of culture medium were distributed in 250 mL flasks, autoclaved at 120 ºC for 20 minutes. The greater plant growth, as well as the greater thickness of the mesophyll was observed with the use of 20 g L-1 sucrose in natural ventilation system. Plants grown in natural ventilation system showed a thicker leaf mesophyll, which is directly related to photoautotrophic crops. The natural ventilation system induced more elliptical stomata and probably more functional formats.

  14. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  15. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  16. Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry.

    Science.gov (United States)

    Pengelly, Jasper J L; Sirault, Xavier R R; Tazoe, Youshi; Evans, John R; Furbank, Robert T; von Caemmerer, Susanne

    2010-09-01

    In C(4) plants, acclimation to growth at low irradiance by means of anatomical and biochemical changes to leaf tissue is considered to be limited by the need for a close interaction and coordination between bundle sheath and mesophyll cells. Here differences in relative growth rate (RGR), gas exchange, carbon isotope discrimination, photosynthetic enzyme activity, and leaf anatomy in the C(4) dicot Flaveria bidentis grown at a low (LI; 150 micromol quanta m(2) s(-1)) and medium (MI; 500 micromol quanta m(2) s(-1)) irradiance and with a 12 h photoperiod over 36 d were examined. RGRs measured using a 3D non-destructive imaging technique were consistently higher in MI plants. Rates of CO(2) assimilation per leaf area measured at 1500 micromol quanta m(2) s(-1) were higher for MI than LI plants but did not differ on a mass basis. LI plants had lower Rubisco and phosphoenolpyruvate carboxylase activities and chlorophyll content on a leaf area basis. Bundle sheath leakiness of CO(2) (phi) calculated from real-time carbon isotope discrimination was similar for MI and LI plants at high irradiance. phi increased at lower irradiances, but more so in MI plants, reflecting acclimation to low growth irradiance. Leaf thickness and vein density were greater in MI plants, and mesophyll surface area exposed to intercellular airspace (S(m)) and bundle sheath surface area per unit leaf area (S(b)) measured from leaf cross-sections were also both significantly greater in MI compared with LI leaves. Both mesophyll and bundle sheath conductance to CO(2) diffusion were greater in MI compared with LI plants. Despite being a C(4) species, F. bidentis is very plastic with respect to growth irradiance.

  17. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  18. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  19. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream.

    Science.gov (United States)

    Uieda, V S; Carvalho, E M

    2015-05-01

    Through a manipulative experiment, the colonization of leaf litter by invertebrates was investigated in two sections of a tropical stream (spatial scale) that differed in function of the canopy cover, one with the presence (closed area) and another without riparian vegetation (open area), during one month of the dry and one of the wet season (temporal scale). The work aimed to verify differences related to four variables: season, canopy cover, leaf type and leaf condition. Litter bags containing arboreal and herbaceous leaves (leaf type variable), non-conditioned and preconditioned (leaf condition variable) were placed at the bottom of the stream in each area (canopy cover variable) and season (dry and wet), and removed after 13-day colonization. The analysis of the remaining litter dry mass per leaf bag emphasizes differences related mainly to seasonality, canopy cover and leaf type, although leaf condition was also important when combined with those three factors. Comparing the abundance of invertebrates per treatment, there was a tendency of high predominance of Chironomidae during the dry season and greater taxa diversity and evenness during the wet season, when the water flow increase could alter the availability of microhabitats for local fauna. Even though canopy cover alone was not a significant source of variation in the abundance of invertebrates, the results showed a tendency of a combined effect of canopy cover with seasonality and leaf condition.

  20. Explicit nonlinear finite element geometric analysis of parabolic leaf springs under various loads.

    Science.gov (United States)

    Kong, Y S; Omar, M Z; Chua, L B; Abdullah, S

    2013-01-01

    This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE) method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  1. Explicit Nonlinear Finite Element Geometric Analysis of Parabolic Leaf Springs under Various Loads

    Directory of Open Access Journals (Sweden)

    Y. S. Kong

    2013-01-01

    Full Text Available This study describes the effects of bounce, brake, and roll behavior of a bus toward its leaf spring suspension systems. Parabolic leaf springs are designed based on vertical deflection and stress; however, loads are practically derived from various modes especially under harsh road drives or emergency braking. Parabolic leaf springs must sustain these loads without failing to ensure bus and passenger safety. In this study, the explicit nonlinear dynamic finite element (FE method is implemented because of the complexity of experimental testing A series of load cases; namely, vertical push, wind-up, and suspension roll are introduced for the simulations. The vertical stiffness of the parabolic leaf springs is related to the vehicle load-carrying capability, whereas the wind-up stiffness is associated with vehicle braking. The roll stiffness of the parabolic leaf springs is correlated with the vehicle roll stability. To obtain a better bus performance, two new parabolic leaf spring designs are proposed and simulated. The stress level during the loadings is observed and compared with its design limit. Results indicate that the newly designed high vertical stiffness parabolic spring provides the bus a greater roll stability and a lower stress value compared with the original design. Bus safety and stability is promoted, as well as the load carrying capability.

  2. Analgesic, anti-inflmmatory and antipyretic activities of methanolic leaf extract of Maerua crassifolia

    Directory of Open Access Journals (Sweden)

    Godwin Christian Akuodor

    2016-03-01

    Full Text Available Objective: To investigate the the analgesic, anti-inflammatory and antipyretic activities of the methanolic leaf extract of Maerua crassifolia in mice and rats. Methods: Acetic acid-induced writhing and tail immersion methods were used to assess analgesic activity, while xylene and carrageenan-induced paw oedema methods were used to evaluate the anti-inflammatory effect of the leaf extract. Yeast and amphetamine-induced pyrexia were used to investigate the antipyretic activity. The phytochemical analysis and oral acute toxicity of the methanolic leaf extract of Maerua crassifolia were also evaluated. Results: The leaf extract (100, 200, and 400 mg/kg showed a dose dependent and significant (P < 0.05 inhibition of pain in acetic acid-induced writhing and tail immersion tests. The extract also produced significant (P < 0.05 anti-inflammatory activity in both paradigms. A significant (P < 0.05 reduction in hyperpyrexia was also observed with the leaf extract. The phytochemical screening revealed the presence of alkaloids, flavonoids, terpenoids, tannins, steroids, resins, saponins and cardiac glycosides. The oral median lethal dose of the leaf extract was estimated to be greater than 5 000 mg/kg in rats. Conclusions: The findings confirmed its ethnomedical use in the treatment of pains and feverish conditions.

  3. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  4. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    Science.gov (United States)

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  5. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  6. Early Autumn Senescence in Red Maple (Acer rubrum L.) Is Associated with High Leaf Anthocyanin Content.

    Science.gov (United States)

    Anderson, Rachel; Ryser, Peter

    2015-08-05

    Several theories exist about the role of anthocyanins in senescing leaves. To elucidate factors contributing to variation in autumn leaf anthocyanin contents among individual trees, we analysed anthocyanins and other leaf traits in 27 individuals of red maple (Acer rubrum L.) over two growing seasons in the context of timing of leaf senescence. Red maple usually turns bright red in the autumn, but there is considerable variation among the trees. Leaf autumn anthocyanin contents were consistent between the two years of investigation. Autumn anthocyanin content strongly correlated with degree of chlorophyll degradation mid to late September, early senescing leaves having the highest concentrations of anthocyanins. It also correlated positively with leaf summer chlorophyll content and dry matter content, and negatively with specific leaf area. Time of leaf senescence and anthocyanin contents correlated with soil pH and with canopy openness. We conclude that the importance of anthocyanins in protection of leaf processes during senescence depends on the time of senescence. Rather than prolonging the growing season by enabling a delayed senescence, autumn anthocyanins in red maple in Ontario are important when senescence happens early, possibly due to the higher irradiance and greater danger of oxidative damage early in the season.

  7. Leaf phenotypic variation and developmental instability in relation to different light regimes

    Directory of Open Access Journals (Sweden)

    Henrique Venâncio

    2016-06-01

    Full Text Available ABSTRACT For pioneer plants, shaded habitats represent a stressful condition, where sunlight exposure is below the optimum level and so leaves expand in order to intercept a greater amount of light. We investigated changes in both phenotypic variation and stress of Bauhinia brevipes in sunny and shaded microhabitats. Leaf area was used as a measure of phenotypic variation, whereas leaf asymmetry (difference between right and left sides of leaves, was used as a measure of stress. We hypothesized an increase in leaf area and stress in shaded locations, which might indicate that B. brevipes was compensating for low light absorption, and elevated levels of stress, respectively. Plants in the sun fitted a fluctuating asymmetry pattern (normal distribution of right minus left sides, while shaded plants were clearly antisymmetric (bimodal distribution of leaf side differences. Leaf asymmetry and area were 5% and 26.8% higher in plants in the shade compared to plants in the sun, respectively. These results were expected since B. brevipes is found predominantly in open areas; so sunlight exposure is important for its development. The presence of antisymmetry is rare in studies of developmental instability, and here it might indicate higher stress compared to plants with fluctuating asymmetry.

  8. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  9. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  10. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf,Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    X.Z.WANG; P.S.CURTIS; 等

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston,Michigan,USA,to study the effects of soil fertility and CO2 on leaf,sdtem and root dark respiration (Rd) of Populus tremuloides.Overall,area-based daytime leaf Rd(Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil,but not in low-fertility soil.Mass-based leaf Rd(Rdm) was overall greater for high-than for low-fertility soil grown trees at elevated,but not at ambient CO2 .Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2,nor was stem Rda ,which ranged from 1.0 to 1.4μmol m-2s-1 in the spring and 3.5 to 4.5μmol m-2s-1 in the summer.Root Rda was significantly higher in high-than in low-fertiliy soil,but was unaffected by CO2.Since biomass production of P.tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged,we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2.Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  11. Effects of Soil Fertility and Atmospheric CO2 Enrichment on Leaf, Stem and Root Dark Respiration of Populus tremuloides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An open-top chamber experiment was conducted at the University of Michigan Biological Station near Pellston, Michigan, USA, to study the effects of soil fertility and CO2 on leaf, stem and root dark respiration (Rd) of Populus tremuloides. Overall, area-based daytime leaf Rd (Rda) was significantly greater at elevated than at ambient CO2 in high-fertility soil, but not in low-fertility soil. Mass-based leaf Rd (Rdm) was overall greater for high- than for low-fertility soil grown trees at elevated, but not at ambient CO2. Nighttime leaf Rda and Rdm were unaffected by soil fertility or CO2, nor was stem Rda, which ranged from 1.0 to 1.4 μmol m-2 s-1 in the spring and 3.5 to 4.5 μmol m-2 s-1 in the summer. Root Rda was significantly higher in high- than in low-fertility soil, but was unaffected by CO2. Since biomass production of P. tremuloides will be significantly greater at elevated CO2 while specific Rd will either increase or remain unchanged, we predict that carbon loss to the atmosphere through respiration from this ecologically important species would increase at higher CO2. Soil fertility would also interact with elevated CO2 in affecting the carbon flow in the plant-soil-air system.

  12. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2014-02-01

    Leaf mass per area (LMA, g m(-2)) is an essential trait for modeling canopy function due to its strong association with photosynthesis, respiration and leaf nitrogen. Leaf mass per area, which is influenced by both leaf thickness and density (LMA = thickness × density), generally increases from the bottom to the top of tree canopies, yet the mechanisms behind this universal pattern are not yet resolved. For decades, the light environment was assumed to be the most influential driver of within-canopy variation in LMA, yet recent evidence has shown hydrostatic gradients to be more important in upper canopy positions, especially in tall evergreen trees in temperate and tropical forests. The aim of this study was to disentangle the importance of various environmental drivers on vertical LMA gradients in a mature sugar maple (Acer saccharum Marshall) forest. We compared LMA, leaf density and leaf thickness relationships with height, light and predawn leaf water potential (ΨPre) within a closed and an exposed canopy to assess leaf morphological traits at similar heights but different light conditions. Contrary to our expectations and recent findings in the literature, we found strong evidence that light was the primary driver of vertical gradients in leaf morphology. At similar heights (13-23 m), LMA was greater within the exposed canopy than the closed canopy, and light had a stronger influence over LMA compared with ΨPre. Light also had a stronger influence over both leaf thickness and density compared with ΨPre; however, the increase in LMA within both canopy types was primarily due to increasing leaf thickness with increasing light availability. This study provides strong evidence that canopy structure and crown exposure, in addition to height, should be considered as a parameter for determining vertical patterns in LMA and modeling canopy function.

  13. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  14. Effects of feeding different proportions of silver leaf desmodium (Dismodium uncinatum) with banana (Musa paradisiaca) leaf on nutrient utilization in Horro sheep fed a basal diet of natural grass hay.

    Science.gov (United States)

    Chali, Diriba; Nurfeta, Ajebu; Banerjee, Sandip; Eik, Lars Olav

    2018-03-02

    The objective was to evaluate feed intake, digestibility, body weight change and carcass characteristics of sheep fed a basal diet of hay supplemented with banana leaves and silver leaf desmodium. Thirty yearling lambs with an average initial body weight of 15.85 ± 1.6 kg were grouped into six blocks of five rams in each block. The treatments were: hay alone (T1), hay + 100% banana leaf (T2), hay + 67% banana leaf + 33% desmodium leaf (T3), hay + 33% banana leaf + 67% desmodium leaf (T4) and hay + 100% desmodium leaf (T5). Three hundred grams of treatment diets were offered daily on as fed basis. The feeding and digestibility trial lasted for 84 and 7 days, respectively, followed by carcass evaluation. The total dry matter (DM) intake for T3, T4 and T5 were greater (P T4 > T3 > T2 > T1. Rams lambs receiving supplementary diets had higher (P<0.05) DM, OM, CP, neutral detergent fiber and acid detergent fiber digestibility compared with the control diet. The empty body weight and slaughter weight was highest (P<0.05) in rams receiving T3, T4 and T5 diets. The average daily gain and feed conversion efficiency was highest (P<0.05) in rams receiving the supplementary diets. The DP on the basis of hot carcass weight linearly increased with increasing levels of desmodium. Rams reared on supplementary diet had higher (P<0.05) rib eye area compared with the control diet. In conclusion, when banana leaf is used as a supplement to poor quality grass, better response was obtained when fed in combination with desmodium.

  15. Factors that affect leaf extracellular ascorbic acid content and redox status

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O.; Fiscus, E.L. [North Carolina State Univ., United States dept. og Agriculture-Agricultural Research Service and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2003-01-01

    Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean (Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol{sup 1} ozone) or exposed to elevated ozone (71 nmol mol{sup 1} ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00-08:00 h) or in the afternoon (13:00-15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g{sup 1} FW maximum) relative to sensitive S156 (160 nmol g1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81-0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01-0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status. (au)

  16. Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species.

    Science.gov (United States)

    Falster, Daniel S; Reich, Peter B; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2012-01-01

    • Co-occurring species often differ in their leaf lifespan (LL) and it remains unclear how such variation is maintained in a competitive context. Here we test the hypothesis that leaves of long-LL species yield a greater return in carbon (C) fixed per unit C or nutrient invested by the plant than those of short-LL species. • For 10 sympatric woodland species, we assessed three-dimensional shoot architecture, canopy openness, leaf photosynthetic light response, leaf dark respiration and leaf construction costs across leaf age sequences. We then used the YPLANT model to estimate light interception and C revenue along the measured leaf age sequences. This was done under a series of simulations that incorporated the potential covariates of LL in an additive fashion. • Lifetime return in C fixed per unit C, N or P invested increased with LL in all simulations. • In contrast to other recent studies, our results show that extended LL confers a fundamental economic advantage by increasing a plant's return on investment in leaves. This suggests that time-discounting effects, that is, the compounding of income that arises from quick reinvestment of C revenue, are key in allowing short-LL species to succeed in the face of this economic handicap. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  17. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  19. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  20. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  1. Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems

    Science.gov (United States)

    Nahar, Kamrun; Hasanuzzaman, Mirza; Alam, Md. Mahabub; Fujita, Masayuki

    2015-01-01

    Drought is considered one of the most acute environmental stresses presently affecting agriculture. We studied the role of exogenous glutathione (GSH) in conferring drought stress tolerance in mung bean (Vigna radiata L. cv. Binamoog-1) seedlings by examining the antioxidant defence and methylglyoxal (MG) detoxification systems and physiological features. Six-day-old seedlings were exposed to drought stress (−0.7 MPa), induced by polyethylene glycol alone and in combination with GSH (1 mM) for 24 and 48 h. Drought stress decreased seedling dry weight and leaf area; resulted in oxidative stress as evidenced by histochemical detection of hydrogen peroxide (H2O2) and O2⋅− in the leaves; increased lipid peroxidation (malondialdehyde), reactive oxygen species like H2O2 content and O2⋅− generation rate and lipoxygenase activity; and increased the MG level. Drought decreased leaf succulence, leaf chlorophyll and relative water content (RWC); increased proline (Pro); decreased ascorbate (AsA); increased endogenous GSH and glutathione disulfide (GSSG) content; decreased the GSH/GSSG ratio; increased ascorbate peroxidase and glutathione S-transferase activities; and decreased the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase. The activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) increased due to drought stress. In contrast to drought stress alone, exogenous GSH enhanced most of the components of the antioxidant and glyoxalase systems in drought-affected mung bean seedlings at 24 h, but GSH did not significantly affect AsA, Pro, RWC, leaf succulence and the activities of Gly I and DHAR after 48 h of stress. Thus, exogenous GSH supplementation with drought significantly enhanced the antioxidant components and successively reduced oxidative damage, and GSH up-regulated the glyoxalase system and reduced MG toxicity, which played a significant role in improving the physiological features and drought

  2. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  3. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  4. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents.

    Science.gov (United States)

    Rowland, Lucy; Zaragoza-Castells, Joana; Bloomfield, Keith J; Turnbull, Matthew H; Bonal, Damien; Burban, Benoit; Salinas, Norma; Cosio, Eric; Metcalfe, Daniel J; Ford, Andrew; Phillips, Oliver L; Atkin, Owen K; Meir, Patrick

    2017-05-01

    Leaf dark respiration (R dark ) represents an important component controlling the carbon balance in tropical forests. Here, we test how nitrogen (N) and phosphorus (P) affect R dark and its relationship with photosynthesis using three widely separated tropical forests which differ in soil fertility. R dark was measured on 431 rainforest canopy trees, from 182 species, in French Guiana, Peru and Australia. The variation in R dark was examined in relation to leaf N and P content, leaf structure and maximum photosynthetic rates at ambient and saturating atmospheric CO 2 concentration. We found that the site with the lowest fertility (French Guiana) exhibited greater rates of R dark per unit leaf N, P and photosynthesis. The data from Australia, for which there were no phylogenetic overlaps with the samples from the South American sites, yielded the most distinct relationships of R dark with the measured leaf traits. Our data indicate that no single universal scaling relationship accounts for variation in R dark across this large biogeographical space. Variability between sites in the absolute rates of R dark and the R dark  : photosynthesis ratio were driven by variations in N- and P-use efficiency, which were related to both taxonomic and environmental variability. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Jonathan P Green

    Full Text Available Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates and abundance of specialist lepidopteran (Pieris rapae and hemipteran (Brevicoryne brassicae herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.

  6. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  7. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  8. Water Relations and Photosynthesis of a Desert CAM Plant, Agave deserti1

    Science.gov (United States)

    Nobel, Park S.

    1976-01-01

    The water relations and photosynthesis of Agave deserti Engelm., a plant exhibiting Crassulacean acid metabolism, were measured in the Colorado desert. Although no natural stomatal opening of A. deserti occurred in the summer of 1975, it could be induced by watering. The resistance for water vapor diffusion from a leaf (RWV) became less than 20 sec cm−1 when the soil water potential at 10 cm became greater than −3 bars, as would occur after a 7-mm rainfall. As a consequence of its shallow root system (mean depth of 8 cm), A. deserti responded rapidly to the infrequent rains, and the succulent nature of its leaves allowed stomatal opening to continue for up to 8 days after the soil became drier than the plant. When the leaf temperature at night was increased from 5 to 20 C, RWV increased 5-fold, emphasizing the importance of cool nighttime temperatures for gas exchange by this plant. Although most CO2 uptake occurred at night, a secondary light-dependent rise in CO2 influx generally occurred after dawn. The transpiration ratio (mass of water transpired/mass of CO2 fixed) had extremely low values of 18 for a winter day, and approximately 25 for an entire year. PMID:16659721

  9. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition

    Science.gov (United States)

    Santiago, L. S.; Silvera, K.; Andrade, J. L.; Dawson, T. E.

    2017-11-01

    Tropical dry forests (TDFs) undergo a substantial dry season in which plant species must endure several months of drought. Although TDFs support a diverse array of plant growth forms, it is not clear how they vary in mechanisms for coping with seasonal drought. We measured organic tissue stable isotopic composition of carbon (δ13C) and nitrogen (δ15N) across six plant growth forms including epiphytes, terrestrial succulents, trees, shrubs, herbs, and vines, and oxygen (δ18O) of four growth forms, to distinguish among patterns of resource acquisition and evaluate mechanisms for surviving annual drought in a lowland tropical dry forest in Yucatan, Mexico. Terrestrial succulent and epiphyte δ13C was around -14‰, indicating photosynthesis through the Crassulacean acid metabolism pathway, and along with one C4 herb were distinct from mean values of all other growth forms, which were between -26 and -29‰ indicating C3 photosynthesis. Mean tissue δ15N across epiphytes was -4.95‰ and was significantly lower than all other growth forms, which had values around +3‰. Tissue N concentration varied significantly among growth forms with epiphytes and terrestrial succulents having significantly lower values of about 1% compared to trees, shrubs, herbs and vines, which were around 3%. Tissue C concentration was highest in trees, shrubs and vines, intermediate in herbs and epiphytes and lowest in terrestrial succulents. δ18O did not vary among growth forms. Overall, our results suggest several water-saving aspects of resource acquisition, including the absolute occurrence of CAM photosynthesis in terrestrial succulents and epiphytes, high concentrations of leaf N in some species, which may facilitate CO2 drawdown by photosynthetic enzymes for a given stomatal conductance, and potentially diverse N sources ranging from atmospheric N in epiphytes with extremely depleted δ15N values, and a large range of δ15N values among trees, many of which are legumes and dry season

  10. Correlation of epiphyllous bud differentiation with foliar senescence in crassulacean succulent Kalanchoe pinnata as revealed by thidiazuron and ethrel application.

    Science.gov (United States)

    Jaiswal, Sarita; Sawhney, Sudhir

    2006-05-01

    Leaves of Kalanchoe pinnata have crenate margins with each notch bearing a dormant bud competent to develop into a healthy plantlet. Leaf detachment is a common signal for inducing two contrastingly different leaf-based processes, i.e. epiphyllous bud development into plantlet and foliar senescence. To investigate differentiation of bud and its correlation, if any, with foliar senescence, thidiazuron (TDZ), having cytokinin activity and ethrel (ETH), an ethylene releasing compound, were employed. The experimental system was comprised of marginal leaf discs, each harbouring an epiphyllous bud. Most of the growth characteristics of plantlet developing from the epiphyllous bud were significantly inhibited by TDZ but promoted by ETH. The two regulators modulated senescence in a manner different for leaf discs and plantlet leaves. Thus, TDZ caused a complete retention whereas ETH a complete loss of chlorophyll in the leaf discs. In contrast, the former resulted in a complete depletion of chlorophyll from the plantlet leaves producing an albino effect, while the latter reduced it by 50% only. In combined dispensation of the two regulators, the effect of TDZ was expressed in majority of responses studied. The results presented in this investigation clearly show that the foliar processes of epiphyllous bud differentiation and senescence are interlinked as TDZ that delayed senescence inhibited epiphyllous bud differentiation and ETH that hastened senescence promoted it. A working hypothesis to interpret responsiveness of the disc-bud composite on lines of a source-sink duo, has been proposed.

  11. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  12. Genetic control of the angular leaf spot reaction in common bean leaves and pods

    Directory of Open Access Journals (Sweden)

    Jerônimo Constantino Borel

    2011-12-01

    Full Text Available Information about genetic control of plant reaction to pathogens is essential in plant breeding programs focusing resistance. This study aimed to obtain information about genetic control of the angular leaf spot reaction in leaves and pods from common bean (Phaseolus vulgaris L. line ESAL 686. This line was crossed with cultivars Jalo EEP 558 (resistant, Cornell 49-242 (resistant and Carioca MG (susceptible. Generations F1, F2 and backcrosses (BC11 and BC21 were obtained. In the dry season (2009, parents and respective populations were evaluated for angular leaf spot reaction under field conditions. Disease severity was evaluated on leaves and pods using diagrammatic scales. Severity scores were obtained and mean and variance genetic components were estimated for both. Segregation of F2 generation was analyzed for some crosses. Different genes control angular leaf spot reaction in leaves and pods. Mean and variance components showed predominance of additive effects. Heritability was high, however, was greater on pods than on leaves which indicated that leaf reaction is more influenced by the environment.

  13. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  14. Observation of Muntingia Calabura’s Leaf Extract as Feed Additive for Livestock Diet

    Science.gov (United States)

    Pujaningsih, R. I.; Sulistiyanto, B.; Sumarsih, S.

    2018-02-01

    Using of synthetic antioxidants in feedstuffs continuously can cause negative effect for the livestock. This study observed the constituent compounds of cherry leaf powder using format method of descriptive qualitative. Comparative study was done between young and old leaves to identify the content of antioxidant and antimicrobial. Based on the results of phytochemical tests that have been done, old cherry leaves contain compounds of flavonoids more than young cherry leaves. From the results of this study can be concluded that the results of old cherry leaf isolation using soxhlet extraction has antibacterial power against E. coli bacteria, and S. aureus at concentration of 75% have greater inhibitory ability.

  15. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  16. Leaf anatomical traits of non-arboreal savanna species along a gradient of tree encroachment

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Souza Pinheiro

    2017-10-01

    Full Text Available ABSTRACT In the Brazilian savanna (Cerrado of Brazil, fire suppression has transformed typical savanna formations (TS into forested savanna (FS due to the phenomenon of encroachment. Under encroachment, non-arboreal plants begin to receive less light due to greater tree density and canopy closure. Here we aim to evaluate if leaf anatomical traits of non-arboreal species differ according to the degree of tree encroachment at the Assis Ecological Station - São Paulo, Brazil. To this end, we evaluated leaf tissue thickness and specific leaf area (SLA in representative non-arboreal species occurring along a gradient of tree encroachment. Leaves of TS species showed a trend towards xeromorphism, with traits reported to facilitate survival under high luminosity, such as thick leaves, thick epidermis and mesophyll, and low SLA. In contrast, FS species exhibited mesomorphic leaves, with thin mesophyll and high SLA, which are able to capture diffuse light in denser environments. Thus, non-arboreal understory species with mesomorphic leaf traits should be favored in environments with denser vegetation in contrast to typical savanna species. The results suggest that typical non-arboreal savanna species would not survive under tree encroachment due to the low competitiveness of their leaf anatomical strategies in shady environments.

  17. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  18. Radio-frequency dielectric properties of some tropical African leaf vegetables

    International Nuclear Information System (INIS)

    Laogun, A.A.; Ajayi, N.O.

    1985-03-01

    The variation of the relative permittivity epsilon'sub(r), the loss factor epsilon'' and a.c. conductivity σ with the frequency of an applied electromagnetic field over the range 0.5 to 50 MHz has been studied in the leaf and stem tissues of three tropical vegetables viz - amaranthus, bitter leaf and okra. This is with a view to investigate the molecular structure and dielectric heating characteristics of the leaves and stems in the different vegetables considered. The Cole-Cole plots of the data showed that in all cases, both the stems and leaves exhibited a spread of relaxation times, indicating heterogeneity of structure. In general, the a.c. conductivity and the dielectric energy loss factor also appear to be much larger in the vegetable stems than in the leaves, suggesting that energy dissipation in stems is greater than in the leaves. (author)

  19. Modulation of δ-Aminolevulinic Acid Dehydratase Activity by the Sorbitol-Induced Osmotic Stress in Maize Leaf Segments.

    Science.gov (United States)

    Jain, M; Tiwary, S; Gadre, R

    2018-01-01

    Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.

  20. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  1. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  2. Response of Eustoma Leaf Phenotype and Photosynthetic Performance to LED Light Quality

    Directory of Open Access Journals (Sweden)

    Md Zohurul Kadir Roni

    2017-10-01

    Full Text Available In a controlled environment, light from light-emitting diodes (LEDs has been associated with affecting the leaf characteristics of Eustoma. LEDs help plant growth and development, yet little is known about photosynthetic performance and related anatomical features in the early growth stage of Eustoma leaves. In this study, we examined the effects of blue (B, red (R, and white (W LEDs on the photosynthetic performance of Eustoma leaves, as well as leaf morphology and anatomy including epidermal layer thickness, palisade cells, and stomatal characteristics. Leaves grown under B LEDs were thicker and had a higher chlorophyll content than those grown under the R and W LEDs. Leaves under B LEDs had greater net photosynthetic rates (A, stomatal conductance (gs, and transpiration rates (E, especially at a higher photon flux density (PPFD, that resulted in a decrease in the intercellular CO2 concentration (Ci, than leaves under the W and R LEDs. B LEDs resulted in greater abaxial epidermal layer thickness and palisade cell length and width than the R and W LED treatments. The palisade cells also developed a more cylindrical shape in response to the B LEDs. B LED leaves also showed greater guard cell length, breadth, and area, and stomatal density, than W or R LEDs, which may contribute to increased A, gs and E at higher PPFDs.

  3. Distribution, survivorship and mortality sources in immature stages of the neotropical leaf miner Pachyschelus coeruleipennis Kerremans (Coleoptera: Buprestidae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available Distribution, sources of mortality, and survivorship of immatures was investigated during the reproductive season of the neotropical buprestid leaf miner, Pachyschelus coeruleipennis, that burrows in leaves of Croton floribundus (Euphorbiaceae in SE, Brazil. Immature distribution was investigated by a random sample of 120 shrubs of C. floribundus growing along forest edges. Marked leaves were followed to recorded sources of mortality and survivorship of immature stages. Females lay their eggs preferentially in the young leaves of the host plant, with mines and pupal cells having been found on the middle part of plants. Densities of eggs, active mines, and pupal cells were, respectively, 25 ± 2, 6 ± 1, and 1 ± 0.3 per 100 leaves. Predators and parasitoids accounted for the majority of losses in the immature P. coeruleipennis population. Mortality was 3 times lower in the egg stage than in the last larval instar. Predation rate was greater than parasitism but the latter increased much more during the development of immatures. Survivorship and sources of mortality were different between early and late season sample of leaf-miner immatures. Parasitism rate was greater in the late-season whereas predation was greater in early-season samples. These results are compared with mortality patterns described for other buprestid leaf miners in temperate and tropical regions.

  4. Pharmacognostical Standardization of Upodika- Basella alba L.: An Important Ayurvedic Antidiabetic Plant

    Directory of Open Access Journals (Sweden)

    T R Shantha

    2016-01-01

    Full Text Available Objective: To establish the pharmacognostic standards for the correct identification and standardization of an important Antidiabetic plant described in Ayurveda. Materials and Methods: Standardization was carried out on the leaf and stem of Basella alba L. with the help of the macro-morphological, microscopic, physicochemical and qualitative phytochemical studies. Results: Several specific characters were identified viz. clustered calcium oxalate crystals in the cortex region, absence of trichomes, succulent, thick, mucilaginous, fibrous stem. Rubiaceous type of stomata on both sides of the leaf. Quantitative microscopy along with physicochemical and qualitative phytochemical analysis were also established. Conclusion: The pharmacognostic standards could serve as the reference for the proper identification of the Basella alba L. which is an important anti-diabetic plant described in Ayurveda.

  5. NARROW LEAF 7 controls leaf shape mediated by auxin in rice

    NARCIS (Netherlands)

    Fujino, Kenji; Matsuda, Yasuyuki; Ozawa, Kenjirou; Nishimura, Takeshi; Koshiba, Tomokazu; Fraaije, Marco W.; Sekiguchi, Hiroshi

    Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant

  6. The fifth leaf and spike organs of barley (Hordeum vulgare L.) display different physiological and metabolic responses to drought stress.

    Science.gov (United States)

    Hein, Jordan A; Sherrard, Mark E; Manfredi, Kirk P; Abebe, Tilahun

    2016-11-09

    Photosynthetic organs of the cereal spike (ear) provide assimilate for grain filling, but their response to drought is poorly understood. In this study, we characterized the drought response of individual organs of the barley spike (awn, lemma, and palea) and compared them with a vegetative organ (fifth leaf). Understanding differences in physiological and metabolic responses between the leaf and spike organs during drought can help us develop high yielding cultivars for environments where terminal drought is prevalent. We exposed barley plants to drought by withholding water for 4 days at the grain filling stage and compared changes in: (1) relative water content (RWC), (2) osmotic potential (Ψ s ), (3) osmotic adjustment (OA), (4) gas exchange, and (5) metabolite content between organs. Drought reduced RWC and Ψ s in all four organs, but the decrease in RWC was greater and there was a smaller change in Ψ s in the fifth leaf than the spike organs. We detected evidence of OA in the awn, lemma, and palea, but not in the fifth leaf. Rates of gas exchange declined more rapidly in the fifth leaf than awn during drought. We identified 18 metabolites but, only ten metabolites accumulated significantly during drought in one or more organs. Among these, proline accumulated in all organs during drought while accumulation of the other metabolites varied between organs. This may suggest that each organ in the same plant uses a different set of osmolytes for drought resistance. Our results suggest that photosynthetic organs of the barley spike maintain higher water content, greater osmotic adjustment, and higher rates of gas exchange than the leaf during drought.

  7. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  8. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  9. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  10. Study on creation of an indocalamus leaf flavor

    Directory of Open Access Journals (Sweden)

    Guangyong ZHU

    2015-01-01

    Full Text Available AbstractFlavors represent a small but significant segment of food industry. Sensory characteristics play an important role in the process of consumer acceptance and preference. Indocalamus leaf takes on a pleasant odor and indocalamus leaf flavor can be used in many products. However, indocalamus leaf flavor formula has not been reported. Therefore, developing an indocalamus leaf flavor is of significant interests. Note is a distinct flavor or odor characteristic. This paper concentrates on preparation and creation of indocalamus leaf flavor according to the notes of indocalamus leaf. The notes were obtained by smelling indocalamus leaf, and the results showed that the notes of indocalamus leaf flavor can be classified as: green-leafy note, sweet note, beany note, aldehydic note, waxy note, woody note, roast note, creamy note, and nutty note. According to the notes of indocalamus leaf odor, a typical indocalamus leaf flavor formula was obtained. The indocalamus leaf flavor blended is pleasant, harmonious, and has characteristics of indocalamus leaf odor.

  11. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts

    International Nuclear Information System (INIS)

    Van Kesteren, Z; Janssen, T M; Damen, E; Van Vliet-Vroegindeweij, C

    2012-01-01

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V 95% was reduced by 0.02 using the thin MLC. The V 65% of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V 95% was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains to be proven

  12. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts.

    Science.gov (United States)

    van Kesteren, Z; Janssen, T M; Damen, E; van Vliet-Vroegindeweij, C

    2012-05-21

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V(95%) was reduced by 0.02 using the thin MLC. The V(65%) of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V(95%) was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains

  13. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2.

    Science.gov (United States)

    Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H

    1995-09-01

    Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under

  14. DIFFERENCES IN LEAF GAS EXCHANGE AND LEAF CHARACTERISTICS BETWEEN TWO ALMOND CULTIVARS

    Directory of Open Access Journals (Sweden)

    George D. Nanos

    2013-12-01

    Full Text Available Leaf chlorophyll content, specific leaf weight (SLW, photosynthetic and transpiration rates, stomatal functioning, water use efficiency and quantum yield were assessed during the kernel filling period for two consecutive years in order to understand tissue-centered physiological profile differences between two commercial almond cultivars, ‘Ferragnès’ and ‘Texas’. Similar SLWs were observed on the studied cultivars; however, chlorophyll content, net photosynthetic and transpiration rates and stomatal functioning demonstrated statistically significant differences. In both cultivars, an overall decline in the examined parameters towards fruit maturation (i.e. end of the summer was recorded. ‘Ferragnès’ leaves were found to be more efficient in leaf photosynthesis related performance during kernel filling, when irrigated sufficiently, in comparison to ‘Texas’ leaves. Low average values of leaf conductance during summer in ‘Texas’ leaves revealed its potential for adaptation in cool climates and increased carbon assimilation therein for high kernel yield.

  15. Phytochemical analysis of Andrographis paniculata and Orthosiphon stamineus leaf extracts for their antibacterial and antioxidant potential.

    Science.gov (United States)

    Malahubban, M; Alimon, A R; Sazili, A Q; Fakurazi, S; Zakry, F A

    2013-09-01

    Leaves of Andrographis paniculata and Orthosiphon stamineus were extracted with water, ethanol, methanol and chloroform to assess their potential as antibacterial and antioxidant agents. High performance liquid chromatography analysis showed that the methanolic extracts of A. paniculata and O. stamineus leaves gave the highest amounts of andrographolide and rosmarinic acid, respectively. These leaf extracts exhibited antimicrobial and antioxidant activities and, at the highest concentration tested (200 mg/mL), showed greater inhibitory effects against the Gram positive bacteria Bacillus cereus and Staphylococcus aureus than 10% acetic acid. Andrographis paniculata and O. stamineus methanolic and ethanolic leaf extracts also showed the strongest antioxidant activity as compared with the other extracts tested. The bioactive compounds present in these leaf extracts have the potential to be developed into natural antibacterial and antioxidant agents that may have applications in animal and human health.

  16. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    Science.gov (United States)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  17. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  18. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  19. Evaluation of some varieties and breeding lines of tomato (Lycopersison sp) against tomato yellow leaf curl disease in the Greater Accra Region (Ghana)

    International Nuclear Information System (INIS)

    Kusi-Adjei, R.

    2011-01-01

    A series of experiments were conducted to evaluate ten (10) tomato varieties and breeding lines against tomato yellow leaf curl virus disease in Ghana. The research was undertaken at the research farm of the Biotechnology and Nuclear Agriculture Research Institute of the Ghana Atomic Energy Commission. Ten tomato varieties and breeding lines were evaluated in the field under natural whitefly inoculation in insect-proof cages. The field trial was done in the dry season from October, 2010 to February, 2011 and wet season from March, 2011 to July, 2011. Plants in the fields and in the cage exhibited varied symptoms such as leaf curling, leaf yellowing and reduced leaf sizes. Assessment of disease incidence and symptom severity using a four point scale (0-4) showed that, in the field there was higher disease incidence in the dry season as compared to the wet season. This was attributed to the higher number of whiteflies in the dry season as demonstrated through a whitefly population survey conducted in the field. Differences among means for disease incidence and whitefly surveys on the ten tomato varieties and breeding lines were statistically significant (p≤ 0.05). Wild Tomato (Solanum pimpinellifollium) and two hybrids, Wosowoso x Wild Tomato and Cherry Red x Wild Tomato exhibited signs of resistance in the field and did not show any symptoms of TYLCV disease symptoms. All the commercial varieties were highly susceptible and showed severe symptoms. Evaluation of fruit yield in the field revealed that the commercial variety Tomato Advanta had the heaviest fruit weight (42 g/ fruit) whilst Wosowoso had the highest total fruit yield (5.74 t/ha) in the wet season. Wild Tomato and the hybrids produced higher number of fruits compared to the commercial varieties. There were highly significant differences in the means of number of fruits, fruit weight (g) and total fruit yield (t/ha) among the ten tomato varieties and breeding lines in both the wet and dry seasons

  20. Impact of leaf motion constraints on IMAT plan quality, deliver accuracy, and efficiency

    International Nuclear Information System (INIS)

    Chen Fan; Rao Min; Ye Jinsong; Shepard, David M.; Cao Daliang

    2011-01-01

    Purpose: Intensity modulated arc therapy (IMAT) is a radiation therapy delivery technique that combines the efficiency of arc based delivery with the dose painting capabilities of intensity modulated radiation therapy (IMRT). A key challenge in developing robust inverse planning solutions for IMAT is the need to account for the connectivity of the beam shapes as the gantry rotates from one beam angle to the next. To overcome this challenge, inverse planning solutions typically impose a leaf motion constraint that defines the maximum distance a multileaf collimator (MLC) leaf can travel between adjacent control points. The leaf motion constraint ensures the deliverability of the optimized plan, but it also impacts the plan quality, the delivery accuracy, and the delivery efficiency. In this work, the authors have studied leaf motion constraints in detail and have developed recommendations for optimizing the balance between plan quality and delivery efficiency. Methods: Two steps were used to generate optimized IMAT treatment plans. The first was the direct machine parameter optimization (DMPO) inverse planning module in the Pinnacle 3 planning system. Then, a home-grown arc sequencer was applied to convert the optimized intensity maps into deliverable IMAT arcs. IMAT leaf motion constraints were imposed using limits of between 1 and 30 mm/deg. Dose distributions were calculated using the convolution/superposition algorithm in the Pinnacle 3 planning system. The IMAT plan dose calculation accuracy was examined using a finer sampling calculation and the quality assurance verification. All plans were delivered on an Elekta Synergy with an 80-leaf MLC and were verified using an IBA MatriXX 2D ion chamber array inserted in a MultiCube solid water phantom. Results: The use of a more restrictive leaf motion constraint (less than 1-2 mm/deg) results in inferior plan quality. A less restrictive leaf motion constraint (greater than 5 mm/deg) results in improved plan quality

  1. Exogenous Methyl Jasmonate Treatment Increases Glucosinolate Biosynthesis and Quinone Reductase Activity in Kale Leaf Tissue

    Science.gov (United States)

    Ku, Kang-Mo; Jeffery, Elizabeth H.; Juvik, John A.

    2014-01-01

    Methyl jasmonate (MeJA) spray treatments were applied to the kale varieties ‘Dwarf Blue Curled Vates’ and ‘Red Winter’ in replicated field plantings in 2010 and 2011 to investigate alteration of glucosinolate (GS) composition in harvested leaf tissue. Aqueous solutions of 250 µM MeJA were sprayed to saturation on aerial plant tissues four days prior to harvest at commercial maturity. The MeJA treatment significantly increased gluconasturtiin (56%), glucobrassicin (98%), and neoglucobrassicin (150%) concentrations in the apical leaf tissue of these genotypes over two seasons. Induction of quinone reductase (QR) activity, a biomarker for anti-carcinogenesis, was significantly increased by the extracts from the leaf tissue of these two cultivars. Extracts of apical leaf tissues had greater MeJA mediated increases in phenolics, glucosinolate concentrations, GS hydrolysis products, and QR activity than extracts from basal leaf tissue samples. The concentration of the hydrolysis product of glucoraphanin, sulforphane was significantly increased in apical leaf tissue of the cultivar ‘Red Winter’ in both 2010 and 2011. There was interaction between exogenous MeJA treatment and environmental conditions to induce endogenous JA. Correlation analysis revealed that indole-3-carbanol (I3C) generated from the hydrolysis of glucobrassicin significantly correlated with QR activity (r = 0.800, Pkale leaf tissues of both cultivars in 2011. Correlation analysis of these results indicated that sulforaphane, NI3C, neoascorbigen, I3C, and diindolylmethane were all significantly correlated with QR activity. Thus, increased QR activity may be due to combined increases in phenolics (quercetin and kaempferol) and GS hydrolysis product concentrations rather than by individual products alone. PMID:25084454

  2. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2017-01-01

    Specific leaf area (SLA), which is defined as the leaf area per unit of dry leaf mass is an important component when assessing functional diversity and plays a key role in ecosystem modeling, linking plant carbon and water cycles as well as quantifying plant physiological processes. However, studies

  3. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  4. Repeated exposure to enhanced UV-B radiation in successive generations increases developmental instability (leaf fluctuating asymmetry) in a desert annual

    International Nuclear Information System (INIS)

    Midgley, G.F.; Wand, S.J.E.; Musil, C.F.

    1998-01-01

    Populations of the desert annual Dimorphotheca sinuata, derived from a common seed stock, were exposed concurrently over four successive generations to either ambient (representing no stratospheric ozone depletion) or elevated (representing 20% stratospheric ozone depletion) UV-B levels during their complete life cycle. Leaf fluctuating asymmetry (FA) was measured in populations of plants grown from seeds of selected generations which had experienced different UV-B exposure histories, and from seeds collected from a wild population of this species which grows in a naturally enhanced UV-B environment. These measured plants had been grown in a greenhouse under essentially UV-B-free conditions. Leaf FA was significantly increased by greater numbers of enhanced UV-B exposures in the parentage of the seed. There was a linear to exponential dose–response relationship between number of UV-B exposure iterations in seed parentage and leaf FA, suggesting that damage to DNA caused by UV-B exposure during plant development may not be fully repaired, and thus be inherited by offspring and accumulated over successive generations in this species. Leaf FA of plants grown from seed from the wild population was not significantly greater than that of control plants whose parentage experienced only ambient UV-B exposures, although this negative result may have been due to low sampling intensity and measurement resolution, and the relatively low UV-B enhancement experienced by the wild population. We conclude that leaf FA may constitute a relatively sensitive yet inexpensive means of quantifying UV-B damage to plants. (author)

  5. Leaf Serration in Seedlings of Hetero blastic Woody Species Enhance Plasticity and Performance in Gaps But Not in the Under story

    International Nuclear Information System (INIS)

    Gamage, H.K.; Gamage, H.K.

    2010-01-01

    Leaf heteroblasty refers to dramatic ontogenetic changes in leaf size and shape, in contrast to homoblasty that exhibits little change, between seedling and adult stages. This study examined whether the plasticity in leaf morphology of heteroblastic species would be an advantage for their survival and growth over homoblastic congeners to changes in light. Two congeneric pairs of homoblastic (Hoheria lyallii, Aristotelia serrata) and heteroblastic species (H. sexstylosa, A. fruticosa) were grown for 18 months in canopy gap and forest understory sites in a temperate rainforest in New Zealand. Heteroblastic species that initially had serrated leaves reduced leaf serration in the understory, but increased in the gaps. Heteroblastic species also produced thicker leaves and had higher stomatal pore area (density x aperture length), maximum photosynthetic rate, survival, and greater biomass allocation to shoots than homoblastic relatives in the gaps. Findings indicate that increased leaf serration in heteroblastic species is an advantage over homoblastic congeners in high light.

  6. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  7. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Science.gov (United States)

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  8. Prophylactic effect of paw-paw leaf and bitter leaf extracts on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (ANOVA) and significant means separated using FLSD = LSD procedure as outlined in Obi (2002). RESULTS AND DISCUSSION. In pre-soaking, paw-paw leaf (PL) extract had no significant effect (P > 0.05) on the disease incidence at. 50% anthesis. Bitter leaf (BL) extract had a high signifi- cant effect (P ...

  9. LCE: leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2017-11-01

    Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (V cmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (J max ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (V pmax ), and leaf dark respiration (R d ). The raw net photosynthesis by intercellular CO 2 (A/C i ) data used to calculate V cmax , J max , and V pmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical

  10. Small-scale variations in leaf shape under anthropogenic disturbance in dioecious forest forb mercurialis perennis: A geometric morphometric examination

    Directory of Open Access Journals (Sweden)

    Vujić Vukica

    2016-01-01

    Full Text Available Plants are exposed to increasing levels of diverse human activities that have profound effects on their overall morphology and, specifically, on leaf morphology. Anthropogenic disturbances in urban and suburban forest recreational sites are attracting growing research interest. To explore the persisting recreational impact on leaf shape and size, we conducted a field study on the dioecious forb Mercurialis perennis L. (Euphorbiaceae, typical for undisturbed understory communities. We selected adjacent sites in a suburban forest, which experience contrasting regimes of disturbance by human trampling under otherwise concordant natural conditions. Patterns of leaf shape and size variation and putative sex-specific response to disturbance were analyzed using a geometric morphometric approach. In addition to leaf-level data, plant height, internode and leaf number were analyzed to explore the same response at the whole-plant level. The results show significant variations associated with disturbance at both levels: plants growing under a heavy disturbance regime had shorter stems with a greater number of wider and shorter leaves. Significant differences between sites were also found for leaf size, with larger leaves observed in an undisturbed site. The effects of sex and sex x site interaction on leaf size and shape were nonsignificant, pointing to the absence of sexual dimorphism and sex-specific response to disturbance. Contrary to leaf shape and size, all three analyzed shoot traits showed highly significant sexual dimorphism, with male plants being higher and having higher leaf and internode count. [Projekat Ministarstva nauke Republike Srbije, br. 173025

  11. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes.

    Science.gov (United States)

    Hendrix, D L; Huber, S C

    1986-06-01

    In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.

  12. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    Science.gov (United States)

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  13. Using Leaf Samples to Establish a Library of Tropical Leaf Fingerprints

    Science.gov (United States)

    Ngo, P.; Nguyen, R.; Anderson, C.; Weiss, P.

    2010-12-01

    Variation in leaf chemistry is directly expressed in spectroscopic patterns of tropical canopies. The goal of the Spectranomics project is to explore this variation in the hopes of developing a method to measure tropical forest diversity remotely from airborne or space-bound spectroscopy in the future. We analyzed tomato leaves for various chemical compositions to better understand the Spectranomics approach to quantifying chemical data of tropical species. We also compared our data to standard data in each analysis. Our results allow us to give the tomato leaves a chemical signature in which we are able to use to compare to other leaf samples. Using this process, we are able to create a library of leaf signatures and document the variety of tree species in tropical forests around the world.

  14. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats.

    Science.gov (United States)

    Nasiry, Davood; Khalatbary, Ali Reza; Ahmadvand, Hassan; Talebpour Amiri, Fereshteh; Akbari, Esmaeil

    2017-10-02

    Oxidative stress has a pivotal role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complications of diabetes mellitus. There is accumulating evidence that Juglans regia L. (GRL) leaf extract, a rich source of phenolic components, has hypoglycemic and antioxidative properties. This study aimed to determine the protective effects of Juglans regia L. leaf extract against streptozotocin-induced diabetic neuropathy in rat. The DPN rat model was generated by intraperitoneal injection of a single 55 mg/kg dose of streptozotocin (STZ). A subset of the STZ-induced diabetic rats intragastically administered with GRL leaf extract (200 mg/kg/day) before or after the onset of neuropathy, whereas other diabetic rats received only isotonic saline as the same volume of GRL leaf extract. To evaluate the effects of GRL leaf extract on the diabetic neuropathy various parameters, including histopathology and immunohistochemistry of apoptotic and inflammatory factors were assessed along with nociceptive and biochemical assessments. Degeneration of the sciatic nerves which was detected in the STZ-diabetic rats attenuated after GRL leaf extract administration. Greater caspase-3, COX-2, and iNOS expression could be detected in the STZ-diabetic rats, which were significantly attenuated after GRL leaf extract administration. Also, attenuation of lipid peroxidation and nociceptive response along with improved antioxidant status in the sciatic nerve of diabetic rats were detected after GRL leaf extract administration. In other word, GRL leaf extract ameliorated the behavioral and structural indices of diabetic neuropathy even after the onset of neuropathy, in addition to blood sugar reduction. Our results suggest that GRL leaf extract exert preventive and curative effects against STZ-induced diabetic neuropathy in rats which might be due to its antioxidant, anti-inflammatory, and antiapoptotic properties. Protection against

  16. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    International Nuclear Information System (INIS)

    Burkey, Kent O.; Neufeld, Howard S.; Souza, Lara; Chappelka, Arthur H.; Davison, Alan W.

    2006-01-01

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 μmol g -1 fresh weight) than crown-beard (2-4 μmol g -1 fresh weight) or cutleaf coneflower (0.5-2 μmol g -1 fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g -1 fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity

  17. 7 CFR 30.2 - Leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf...

  18. 7 CFR 29.3035 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  19. 7 CFR 29.3526 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  20. 7 CFR 29.3034 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  1. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  2. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  3. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  4. Effect of water availability on tolerance of leaf damage in tall morning glory, Ipomoea purpurea

    Science.gov (United States)

    Atala, Cristian; Gianoli, Ernesto

    2009-03-01

    Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.

  5. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    Science.gov (United States)

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  6. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  7. 7 CFR 29.1030 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  8. 7 CFR 29.3527 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  9. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    Science.gov (United States)

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  10. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  11. Ozone sensitivity of Fagus sylvatica and Fraxinus excelsior young trees in relation to leaf structure and foliar ozone uptake

    International Nuclear Information System (INIS)

    Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo; Pancrazi, Marica; Ballarin-Denti, Antonio

    2003-01-01

    The difference in ozone sensitivity between Fagus sylvatica and Fraxinus exclesior is explained by their different stomatal ozone uptake and by their different foliar structure. - During the summer of 2001, 2-year-old Fraxinus excelsior and Fagus sylvatica plants were subjected to ozone-rich environmental conditions at the Regional Forest Nursery at Curno (Northern Italy). Atmospheric ozone concentrations and stomatal conductance were measured, in order to calculate the foliar fluxes by means of a one-dimensional model. The foliar structure of both species was examined (thickness of the lamina and of the individual tissues, leaf mass per area, leaf density) and chlorophyll a fluorescence was determined as a response parameter. Stomatal conductance was always greater in Fraxinus excelsior, as was ozone uptake, although the highest absorption peaks did not match the peaks of ozone concentration in the atmosphere. The foliar structure can help explain this phenomenon: Fraxinus excelsior has a thicker mesophyll than Fagus sylvatica (indicating a greater photosynthesis potential) and a reduced foliar density. This last parameter, related to the apoplastic fraction, suggests a greater ability to disseminate the gases within the leaf as well as a greater potential detoxifying capacity. As foliar symptoms spread, the parameters relating to chlorophyll a fluorescence also change. PI (Performance Index, Strasser, A., Srivastava, A., Tsimilli-Michael, M., 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus, M., Pathre, U., Mohanty, P., (Eds.) Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis, London, UK, pp. 445-483.) has proved to be a more suitable index than Fv/Fm (Quantum Yield Efficiency) to record the onset of stress conditions

  12. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2017-10-01

    A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support

  13. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  14. Ozone induced leaf loss and decreased leaf production of European Holly (Ilex aquifolium L.) over multiple seasons

    International Nuclear Information System (INIS)

    Ranford, Jonathan; Reiling, Kevin

    2007-01-01

    European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g s ), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l -1 O 3 added for 7 h d -1 over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons. - Ozone significantly alters Ilex aquifolium leaf production and loss over multiple seasons

  15. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes

    International Nuclear Information System (INIS)

    Willming, Morgan M.; Maul, Jonathan D.

    2016-01-01

    Fungicides in aquatic environments can impact non-target bacterial and fungal communities and the invertebrate detritivores responsible for the decomposition of allochthonous organic matter. Additionally, in some aquatic systems daily water temperature fluctuations may influence these processes and alter contaminant toxicity, but such temperature fluctuations are rarely examined in conjunction with contaminants. In this study, the shredding amphipod Hyalella azteca was exposed to the fungicide pyraclostrobin in three experiments. Endpoints included mortality, organism growth, and leaf processing. One experiment was conducted at a constant temperature (23 °C), a fluctuating temperature regime (18–25 °C) based on field-collected data from the S. Llano River, Texas, or an adjusted fluctuating temperature regime (20–26 °C) based on possible climate change predictions. Pyraclostrobin significantly reduced leaf shredding and increased H. azteca mortality at concentrations of 40 μg/L or greater at a constant 23 °C and decreased leaf shredding at concentrations of 15 μg/L or greater in the fluctuating temperatures. There was a significant interaction between temperature treatment and pyraclostrobin concentration on H. azteca mortality, body length, and dry mass under direct aqueous exposure conditions. In an indirect exposure scenario in which only leaf material was exposed to pyraclostrobin, H. azteca did not preferentially feed on or avoid treated leaf disks compared to controls. This study describes the influence of realistic temperature variation on fungicide toxicity to shredding invertebrates, which is important for understanding how future alterations in daily temperature regimes due to climate change may influence the assessment of ecological risk of contaminants in aquatic ecosystems. - Highlights: • Pyraclostrobin was directly toxic to Hyalella azteca and reduced leaf processing. • Indirect exposure via leaf material did not change H

  16. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  17. Impact of Leaf Removal, Applied Before and After Flowering, on Anthocyanin, Tannin, and Methoxypyrazine Concentrations in 'Merlot' (Vitis vinifera L.) Grapes and Wines.

    Science.gov (United States)

    Sivilotti, Paolo; Herrera, Jose Carlos; Lisjak, Klemen; Baša Česnik, Helena; Sabbatini, Paolo; Peterlunger, Enrico; Castellarin, Simone Diego

    2016-06-08

    The development and accumulation of secondary metabolites in grapes determine wine color, taste, and aroma. This study aimed to investigate the effect of leaf removal before flowering, a practice recently introduced to reduce cluster compactness and Botrytis rot, on anthocyanin, tannin, and methoxypyrazine concentrations in 'Merlot' grapes and wines. Leaf removal before flowering was compared with leaf removal after flowering and an untreated control. No effects on tannin and anthocyanin concentrations in grapes were observed. Both treatments reduced levels of 3-isobutyl-2-methoxypyrazine (IBMP) in the grapes and the derived wines, although the after-flowering treatment did so to a greater degree in the fruit specifically. Leaf removal before flowering can be used to reduce cluster compactness, Botrytis rot, and grape and wine IBMP concentration and to improve wine color intensity but at the expense of cluster weight and vine yield. Leaf removal after flowering accomplishes essentially the same results without loss of yield.

  18. Impact of elephant on two woody trees, Boscia oleoides and Pappea capensis, in an arid thicket-Nama Karoo mosaic, Greater Addo Elephant National Park

    Directory of Open Access Journals (Sweden)

    Marietjie Landman

    2014-11-01

    Full Text Available Despite extensive evidence of the influences of elephant on woody trees in savannah habitats, effects on trees in the succulent thickets of the Eastern Cape are relatively poorly described. Our study investigates the role and intensity of elephant impacts on Pappea capensis and the relatively rare Boscia oleoides in an arid thicket-Nama Karoo mosaic habitat of the Greater Addo Elephant National Park. We show that roughly 19% of the B. oleoides and nearly half of the P. capensis individuals recorded showed signs of elephant impact. Elephant often toppled our study trees, and where these individuals were uprooted, mortalities occurred: B. oleoides ~ 44% of the impacted trees (4 individuals; P. capensis ~ 22% of the impacted trees (29 individuals. Conservation implications: Whilst this study is restricted by limited spatial and temporal replication, P. capensis mortalities caused by elephant occurred at a rate exceeding that of other processes. Our results provide insight into the severity of the measured changes and the need to reduce the impacts. However, it would be critically important to establish the specific driver of elephant–tree interactions before any management intervention is implemented.

  19. Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens

    Directory of Open Access Journals (Sweden)

    Mohd. Sayeed Akthar

    2014-09-01

    Full Text Available Objective: To investigate the antimicrobial activity of leaf extract of Piper nigrum (P. nigrum and Cassia didymobotyra (C. didymobotyra (aqueous, methanol, ethanol and petroleum ether against the food borne pathogenic bacteria [Staphylococcus aureus (S. aureus, Escherichia coli (E. coli, Salmonella typhimurium and Pseudomonas aeruginosa] and fungi [Aspergillus spp. and Candida albicans (C. albicans] and also to investigate the presence of various phytochemicals in the leaf extracts of tested plants. Methods: The antimicrobial activity was determined by disc diffusion method. Minimum inhibitory concentration (MIC, minimum bactericidal and fungicidal concentration were determined by serial dilution method. Results: Methanol leaf extract of test plants exhibited greater antimicrobial activity against the selected bacterial and fungal strains. The MIC results showed that ethanol, methanol and petroleum ether leaf extract of P. nigrum inhibited the growth of S. aureus and E. coli at concentration of 12.5 mg/mL. While, ethanol and methanol leaf extracts of C. didymobotyra inhibited the growth of S. aureus at concentration of 6.25 mg/mL. The MIC values for ethanol, methanol and petroleum ether leaf extract of P. nigrum inhibited the growth of C. albicans at concentration of 25.0 mg/mL. While, it was reported that at concentration of 12.5 mg/mL methanol leaf extract of P. nigrum was against the Aspergillus spp. The MIC values of methanol leaf extract of C. didymobotyra inhibited the growth of C. albicans and Aspergillus spp. at concentration of 12.5 mg/mL and 6.25 mg/mL, respectively. The minimum bactericidal concentration of ethanol, methanol leaf extract of P. nigrum for E. coli and ethanol, methanol leaf extract of C. didymobotyra for S. aureus was recorded at concentration 12.5 mg/mL. The minimum fungicidal concentration of ethanol and methanol leaf extract of P. nigrum and C. didymobotyra on C. albicans was recorded at concentration of 25.0 mg

  20. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  1. Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, Kent O. [Plant Science Research Unit, USDA-ARS and North Carolina State University, 3127 Ligon Street, Raleigh, NC 27607 (United States)]. E-mail: koburkey@unity.ncsu.edu; Neufeld, Howard S. [Appalachian State University, Boone, NC (United States); Souza, Lara [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN (United States); Chappelka, Arthur H. [Auburn University, Auburn, AL (United States); Davison, Alan W. [University of Newcastle, Newcastle, England (United Kingdom)

    2006-10-15

    Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 {mu}mol g{sup -1} fresh weight) than crown-beard (2-4 {mu}mol g{sup -1} fresh weight) or cutleaf coneflower (0.5-2 {mu}mol g{sup -1} fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g{sup -1} fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity. - Wildflower species exhibit differences in ascorbic acid content and redox status that affect ozone sensitivity.

  2. Leaf gas exchange and yield of three upland rice cultivars

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Félix Alvarez

    2015-03-01

    Full Text Available Studies of physiological parameters associated with crop performance and growth in different groups of upland rice (Oryza sativa L. may support plant breeding programs. We evaluated the role of gas exchange rates and dry matter accumulation (DMA as traits responsible for yields in a traditional (cv. ‘Caiapó’, intermediate (cv. ‘Primavera’ and modern (cv. ‘Maravilha’ upland rice cultivars. Leaf gas exchange rates, DMA, leaf area index (LAI, harvest indexes (HI and yield components were measured on these genotypes in the field, under sprinkler irrigation. Panicles per m2 and DMA at flowering (FL and heading, as well as CO2 assimilation rates (A were similar across these cultivars. The highest yield was found in ‘Primavera’, which may be explained by (i a two-fold higher HI compared to the other cultivars, (ii greater rates of DMA during spikelet formation and grain-filling, as well as (iii a slow natural decrease of A in this cultivar, at the end of the season (between FL and maturation.

  3. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  4. Direct and indirect toxicity of the fungicide pyraclostrobin to Hyalella azteca and effects on leaf processing under realistic daily temperature regimes.

    Science.gov (United States)

    Willming, Morgan M; Maul, Jonathan D

    2016-04-01

    Fungicides in aquatic environments can impact non-target bacterial and fungal communities and the invertebrate detritivores responsible for the decomposition of allochthonous organic matter. Additionally, in some aquatic systems daily water temperature fluctuations may influence these processes and alter contaminant toxicity, but such temperature fluctuations are rarely examined in conjunction with contaminants. In this study, the shredding amphipod Hyalella azteca was exposed to the fungicide pyraclostrobin in three experiments. Endpoints included mortality, organism growth, and leaf processing. One experiment was conducted at a constant temperature (23 °C), a fluctuating temperature regime (18-25 °C) based on field-collected data from the S. Llano River, Texas, or an adjusted fluctuating temperature regime (20-26 °C) based on possible climate change predictions. Pyraclostrobin significantly reduced leaf shredding and increased H. azteca mortality at concentrations of 40 μg/L or greater at a constant 23 °C and decreased leaf shredding at concentrations of 15 μg/L or greater in the fluctuating temperatures. There was a significant interaction between temperature treatment and pyraclostrobin concentration on H. azteca mortality, body length, and dry mass under direct aqueous exposure conditions. In an indirect exposure scenario in which only leaf material was exposed to pyraclostrobin, H. azteca did not preferentially feed on or avoid treated leaf disks compared to controls. This study describes the influence of realistic temperature variation on fungicide toxicity to shredding invertebrates, which is important for understanding how future alterations in daily temperature regimes due to climate change may influence the assessment of ecological risk of contaminants in aquatic ecosystems. Copyright © 2016. Published by Elsevier Ltd.

  5. 7 CFR 30.31 - Classification of leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  6. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  7. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  8. [Effects of mixed decomposition of Populus simonii and other tree species leaf litters on soil properties in Loess Plateau].

    Science.gov (United States)

    Li, Qian; Liu, Zeng-Wen; Du, Liang-Zhen

    2012-03-01

    In this study, the leaf litters of Populus simonii and other 11 tree species were put into soil separately or in mixture after grinding, and incubated in laboratory to analyze the effects of their decomposition on soil properties and the interactions between the litters decomposition. The decomposition of each kind of the leaf litters in soil increased the soil urease, dehydrogenase, and phosphatase activities and the soil organic matter and available N contents markedly, but had greater differences in the effects on the soil available P content and CEC. The decomposition of the leaf litters of Caragana microphylla and of Amorpha fruticosa showed obvious effects in improving soil properties. The decomposition of the mixed leaf litters of P. simonii and Pinus tabulaeformis, Platycladus orientalis, Robinia pseudoacacia, or Ulmus pumila showed interactive promotion effects on the abundance of soil microbes, and that of the mixed leaf litters of P. simonii and P. orientalis or C. microphylla showed interactive promotion effects on the soil organic matter, available P, and available K contents and soil CEC but interactive inhibition effects on the activities of most of the soil enzymes tested. The decomposition of the mixed leaf litters of P. simonii and Larix principis-rupprechtii showed interactive promotion effects on the activities of most of the soil enzymes and soil nutrient contents, while that of the mixed leaf litters of P. simonii and P. sylvestris var. mongolica showed interactive inhibition effects. Overall, the decomposition of the mixed leaf litters of P. simo- nii and U. pumila, P. tabulaeformis, L. principis-rupprechtii, or R. pseudoacacia could improve soil quality, but the mixed leaf litters of P. simonii and P. orientalis, C. microphylla, P. sylvestris var. mongolica, Hippophae rhamnoides, or A. fruticosa showed an interactive inhibition effect during their decomposition.

  9. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana.

    Science.gov (United States)

    Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin

    2017-01-01

    The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 ( srr1 - 1 ). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.

  10. Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy.

    Directory of Open Access Journals (Sweden)

    Hu Yang

    Full Text Available A Soil-Plant Analysis Development (SPAD chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009 using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha(-1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves.

  11. Alpha-glucosidase Inhibitory and Antioxidant Potential of Antidiabetic Herb Alternanthera sessilis: Comparative Analyses of Leaf and Callus Solvent Fractions.

    Science.gov (United States)

    Chai, Tsun-Thai; Khoo, Chee-Siong; Tee, Chong-Siang; Wong, Fai-Chu

    2016-01-01

    Alternanthera sessilis is a medicinal herb which is consumed as vegetable and used as traditional remedies of various ailments in Asia and Africa. This study aimed to investigate the antiglucosidase and antioxidant activity of solvent fractions of A. sessilis leaf and callus. Leaf and callus methanol extracts were fractionated to produce hexane, chloroform, ethyl acetate, butanol, and water fractions. Antiglucosidase and 1,1-diphenyl-2-picrylhydrazyl scavenging activities as well as total phenolic (TP), total flavonoid (TF), and total coumarin (TC) contents were evaluated. Lineweaver-Burk plot analysis was performed on leaf and callus fractions with the strongest antiglucosidase activity. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractions. Callus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12 μg/mL) activity, respectively, among callus fractions. LEF and CEF were identified as noncompetitive and competitive α-glucosidase inhibitors, respectively. LEF and CEF had greater antiglucosidase activity than acarbose. Leaf fractions had higher phytochemical contents than callus fractions. LEF had the highest TP, TF, and TC contents. Antiglucosidase and antioxidant activities of leaf fractions correlated with phytochemical contents. LEF had potent antiglucosidase activity and concurrent antioxidant activity. CEF had the highest antiglucosidase activity among all fractions. Callus culture is a promising tool for enhancing production of potent α-glucosidase inhibitors. Leaf ethyl acetate fraction (LEF) had the strongest antiglucosidase (EC 50 0.55 mg/mL) and radical scavenging (EC 50 10.81 μg/mL) activity among leaf fractionsCallus ethyl acetate fraction (CEF) and chloroform fraction had the highest antiglucosidase (EC 50 0.25 mg/mL) and radical scavenging (EC 50 34.12

  12. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  13. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  14. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  15. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    1998-01-01

    Literature reports show little effect of nitrogen supply on radiation use efficiency in potato and in other dicotyledonous C3 species. This paper tests the hypothesis that potato reduces leaf size rather than leaf nitrogen concentration and photosynthetic capacity when nitrogen is in short supply.

  16. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles.

    Science.gov (United States)

    Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.

  17. Leaf Area Estimation Models for Ginger ( Zingibere officinale Rosc ...

    African Journals Online (AJOL)

    The study was carried out to develop leaf area estimation models for three cultivars (37/79, 38/79 and 180/73) and four accessions (29/86, 30/86, 47/86 and 52/86) of ginger. Significant variations were observed among the tested genotypes in leaf length (L), leaf width (W) and actual leaf area (ALA). Leaf area was highly ...

  18. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae.

    Science.gov (United States)

    Males, Jamie; Griffiths, Howard

    2018-01-01

    Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C 3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  19. Leaf Composition of American Bur-Reed (Sparganium americanum Nutt.) to Determine Pesticide Mitigation Capability.

    Science.gov (United States)

    Alsharekh, Anfal; Swatzell, Lucinda J; Moore, Matthew T

    2018-04-01

    American bur-reed (Sparganium americanum Nutt.), a common aquatic plant in the middle and eastern United States and Canada, is often located in water-retaining drainage areas. The purpose of this study was to determine the leaf composition of S. americanum, paying attention to the cuticular waxes and the epidermis, and its ability to sorb pesticides. S. americanum leaves (n = 100) were collected in both early (June) and late (August) summer. Transverse sections of S. americanum were stained and studied with brightfield and fluorescence microscopy to estimate the structural and chemical nature of the leaf tissues cross sections. Mean total lipid content in early summer leaf samples (1.47 ± 0.83 mg mL -1 ) was significantly greater (alpha 0.05) than late summer leaves (0.15 ± 0.36 mg mL -1 ). In vitro analysis of epidermal peel permeability exposed to atrazine and malathion determined little to no sorption by the plant. Therefore, the structure of S. americanum leaves suggest this species does not have the capacity of sorbing these pesticides from runoff water.

  20. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  1. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  2. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    Science.gov (United States)

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  3. Response of the leaf photosynthetic rate to available nitrogen in erect panicle-type rice (Oryza sativa L. cultivar, Shennong265

    Directory of Open Access Journals (Sweden)

    Chihiro Urairi

    2016-07-01

    Full Text Available Increasing the yield of rice per unit area is important because of the demand from the growing human population in Asia. A group of varieties called erect panicle-type rice (EP achieves very high yields under conditions of high nitrogen availability. Little is known, however, regarding the leaf photosynthetic capacity of EP, which may be one of the physiological causes of high yield. We analyzed the factors contributing to leaf photosynthetic rate (Pn and leaf mesophyll anatomy of Nipponbare, Takanari, and Shennong265 (a EP type rice cultivar varieties subjected to different nitrogen treatments. In the field experiment, Pn of Shennong265 was 33.8 μmol m−2 s−1 in the high-N treatment, and was higher than that of the other two cultivars because of its high leaf nitrogen content (LNC and a large number of mesophyll cells between the small vascular bundles per unit length. In Takanari, the relatively high value of Pn (31.5 μmol m−2 s−1 was caused by the high stomatal conductance (gs; .72 mol m−2 s−1 in the high-N treatment. In the pot experiment, the ratio of Pn/Ci to LNC, which may reflect mesophyll conductance (gm, was 20–30% higher in Nipponbare than in Takanari or Shennong265 in the high N availability treatment. The photosynthetic performance of Shennong265 might be improved by introducing the greater ratio of Pn/Ci to LNC found in Nipponbare and greater stomatal conductance found in Takanari.

  4. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  5. Inter-annual variation in the response of leaf-out onset to soil moisture increase in a teak plantation in northern Thailand.

    Science.gov (United States)

    Yoshifuji, Natsuko; Igarashi, Yasunori; Tanaka, Nobuaki; Tanaka, Katsunori; Sato, Takanori; Tantasirin, Chatchai; Suzuki, Masakazu

    2014-11-01

    To understand the impact of inter-annual climate change on vegetation-atmosphere mass and energy exchanges, it has become necessary to explore changes in leaf-out onset in response to climatic fluctuations. We examined the response of leaf-out and transpiration onset dates to soil moisture in a teak plantation in northern Thailand based on a 12-year leaf area index and sap flow measurements. The date of leaf-out and transpiration onset varied between years by up to 40 days, and depended on the initial date when the relative extractable water in a soil layer of 0-0.6 m (Θ) was greater than 0.2 being consistent with our previous results. Our new finding is that the delay in leaf-out and transpiration onset relative to the initial date when Θ > 0.2 increases linearly as the initial date on which Θ > 0.2 becomes earlier. The delay spans about 20 days in years when Θ > 0.2 occurs in March (the late dry season)-much earlier than usual because of heavy pre-monsoon rainfalls-while there is little delay in years when Θ > 0.2 occurs in May. This delay indicates the influence of additional factors on leaf-out onset, which controls the delay in the response of leaf-out to soil moisture increase. The results increased our knowledge about the pattern and extent of the changes in leaf phenology that occur in response to the inter-annual climate variation in tropical regions, where, in particular, such research is needed.

  6. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  7. Corrosion resistance of API 5L grade B steel with taro leaf (Colocasia esculenta) addition as corrosion inhibitor in HCl 0.1 M

    Science.gov (United States)

    Lestari, Yulinda; Priyotomo, Gadang

    2018-05-01

    Taro leaf (Colocasia esculenta) has the potential to be used as a corrosion inhibitor because it has a substance called polyphenol that binds to the hydroxyl group and essential amino acids. Taro leaf extract is taken by maceration method. In this study, the specimen was steel API 5L grade B that would measured the corosivity in 0.1 M HCl solution + taro leaf extract with a specific concentration (in ppm). Tests conducted by FTIR method taro leaves, potentiodynamic polarization (Tafel) and Electrochemical Impedance Spectroscopy (EIS). Based on the results revealed that there is a phenolic group in taro leaves, which has polyphenol content 0.053 % (mg/100 mg). The optimum composition of taro leaf extract is 4000 ppm which generate corrosion rate value of 30.22 mpy and efficiency inhibitor performance of 72.7 %. In this study, the Kads value of taro leaf extract ranged from 0.885 to greater than Kads value of ginger extract in hydrochloric acid solution. The high Kads values indicate a more efficient process of adsorption and better value of inhibition efficiency.

  8. Correlation of Aquaporins and Transmembrane Solute Transporters Revealed by Genome-Wide Analysis in Developing Maize Leaf

    Directory of Open Access Journals (Sweden)

    Xun Yue

    2012-01-01

    Full Text Available Aquaporins are multifunctional membrane channels that facilitate the transmembrane transport of water and solutes. When transmembrane mineral nutrient transporters exhibit the same expression patterns as aquaporins under diverse temporal and physiological conditions, there is a greater probability that they interact. In this study, genome-wide temporal profiling of transcripts analysis and coexpression network-based approaches are used to examine the significant specificity correlation of aquaporins and transmembrane solute transporters in developing maize leaf. The results indicate that specific maize aquaporins are related to specific transmembrane solute transporters. The analysis demonstrates a systems-level correlation between aquaporins, nutrient transporters, and the homeostasis of mineral nutrients in developing maize leaf. Our results provide a resource for further studies into the physiological function of these aquaporins.

  9. Leaf-cutting ant attack in initial pine plantations and growth of defoliated plants

    Directory of Open Access Journals (Sweden)

    Mariane Aparecida Nickele

    2012-07-01

    Full Text Available The objective of this work was to evaluate the natural attack by Acromyrmex crassispinus in initial Pinus taeda plantations without control measures against ants, as well as the effect of defoliation in seedlings of P. taeda. Evaluations of the attack of leaf-cutting ants on P. taeda plantations were done monthly in the first six months, then 9 and 12 months after planting. The percentages of plants that were naturally attacked by ants were registered. The effect of defoliation was evaluated by artificial defoliation, simulating the natural patterns of attack by A. crassispinus on P. taeda seedlings. The natural attack of A. crassispinus was greater during the first months after planting, being more intense in the first 30 days. Artificial defoliation indicated that there were no significant losses in diameter and height in plants with less than 75% defoliation. However, there were significant losses in diameter and height in plants with 100% defoliation, independently of the cut of the apical meristem, and also plant death. The control of leaf-cutting ants in P. taeda plantings, in which A. crassispinus is the most frequent leaf-cutting ant, should be intense only at the beginning of planting, since the most severe attacks occur during this time.

  10. Differential effects of lichens versus liverworts epiphylls on host leaf traits in the tropical montane rainforest, Hainan Island, China.

    Science.gov (United States)

    Zhou, Lingyan; Liu, Fude; Yang, Wenjie; Liu, Hong; Shao, Hongbo; Wang, Zhongsheng; An, Shuqing

    2014-01-01

    Epiphylls widely colonize vascular leaves in moist tropical forests. Understanding the effects of epiphylls on leaf traits of host plants is critical for understanding ecological function of epiphylls. A study was conducted in a rain forest to investigate leaf traits of the host plants Photinia prunifolia colonized with epiphyllous liverworts and foliicolous lichens as well as those of uncolonized leaves. Our results found that the colonization of lichens significantly decreased leaf water content (LWC), chlorophyll (Chl) a and a + b content, and Chl a/b of P. prunifolia but increased Chl b content, while that of liverworts did not affect them as a whole. The variations of net photosynthetic rates (P n ) among host leaves colonized with different coverage of lichens before or after removal treatment (a treatment to remove epiphylls from leaf surface) were greater than that colonized with liverworts. The full cover of lichens induced an increase of light compensation point (LCP) by 21% and a decrease of light saturation point (LSP) by 54% for their host leaves, whereas that of liverworts displayed contrary effects. Compared with the colonization of liverworts, lichens exhibited more negative effects on the leaf traits of P. prunifolia in different stages of colonization. The results suggest that the responses of host leaf traits to epiphylls are affected by the epiphyllous groups and coverage, which are also crucial factors in assessing ecofunctions of epiphylls in tropical forests.

  11. Silicon Conversion From Bamboo Leaf Silica By Magnesiothermic Reduction for Development of Li-ion Baterry Anode

    Directory of Open Access Journals (Sweden)

    Silviana Silviana

    2018-01-01

    Full Text Available Silicon (Si is a promising alternative material for the anode Lithium ion Battery (LIB. Si has a large theoretical capacity about 3579 mA hg-1, ten times greater than the commercial graphite anode (372 mA hg-1. Bamboo is a source of organic silica (bio-silica. Most part biogenetic content of SiO2 is obtained in bamboo leaves. This paper aims to investigate the synthesis nano Si from bamboo leaves through magnesiothermic reduction after silica extraction using sol–gel method and to observe nano Si of bamboo leaf as mixed material for lithium ion baterry. Silica and silicon content was determined using XRF. Silica product has 96,3 wt. % yield of extraction from bamboo leaf, while silicon yield was obtained 61.2 wt. %. The XRD pattern revealed that silica and silicon product were amourphous. The extracted silica and silicon from bambo leaf has spherical shape and agglomerated form. As anoda material for LIB, silicon product achieved 0,002 mAh capacity for 22 cycle.

  12. Effect of supplemental ultraviolet radiation on the concentration of phytonutrients in green and red leaf lettuce (Lactuca sativa) cultivars

    Science.gov (United States)

    Britz, Steven; Caldwell, Charles; Mirecki, Roman; Slusser, James; Gao, Wei

    2005-08-01

    Eight cultivars each of red and green leaf lettuce were raised in a greenhouse with supplemental UV radiation, either UV-A (wavelengths greater than ca. 315 nm) or UV-A+UV-B (wavelengths greater than ca. 290 nm; 6.4 kJ m-2 daily biologically effective UV-B), or no supplemental UV (controls). Several phytonutrients were analyzed in leaf flours to identify lines with large differences in composition and response to UV-B. Red leaf lettuce had higher levels of phenolic acid esters, flavonols and anthocyanins than green lines. Both green and red lines exposed to UV-B for 9 days showed 2-3-fold increases in flavonoids compared to controls, but only 45% increases in phenolic acid esters, suggesting these compounds may be regulated by different mechanisms. There were large differences between cultivars in levels of phenolic compounds under control conditions and also large differences in UV-B effects. Among red varieties, cv. Galactic was notable for high levels of phenolics and a large response to UV-B. Among green varieties, cvs. Black-Seeded Simpson and Simpson Elite had large increases in phenolics with UV-B exposure. Photosynthetic pigments were also analyzed. Green leaf lettuce had high levels of pheophytin, a chlorophyll degradation product. Total chlorophylls (including pheophytin) were much lower in green compared to red varieties. Lutein, a carotenoid, was similar for green and red lines. Total chlorophylls and lutein increased 2-fold under supplemental UV-B in green lines but decreased slightly under UV-B in red lines. Lettuce appears to be a valuable crop to use to study phytochemical-environment interactions.

  13. The Nissan LEAF electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2011-07-01

    The need for CO{sub 2} reduction as a countermeasure to global warming, and to move away from our dependence on fossil fuels as a countermeasure to energy security are urgent issues. One of the ultimate goals to achieving these targets is to develop a 'Zero emission car' such as an electric vehicle or a fuel cell vehicle, along with the manufacturing of clean energy. Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. Sales of the Nissan LEAF started in North America, Europe and Japan in 2010, with plans to sell it globally by 2012. In order to achieve an improved driving range, power performance and drivability performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and reducer. Moreover, the Nissan LEAF has the capability of a 3.3kW AC charge and a 50kW DC quick charge. This presentation will introduce the features of the electric powertrain adopted for Nissan LEAF. (orig.)

  14. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non

  15. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    Science.gov (United States)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit

  16. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green.

    Science.gov (United States)

    Terashima, Ichiro; Fujita, Takashi; Inoue, Takeshi; Chow, Wah Soon; Oguchi, Riichi

    2009-04-01

    The literature and our present examinations indicate that the intra-leaf light absorption profile is in most cases steeper than the photosynthetic capacity profile. In strong white light, therefore, the quantum yield of photosynthesis would be lower in the upper chloroplasts, located near the illuminated surface, than that in the lower chloroplasts. Because green light can penetrate further into the leaf than red or blue light, in strong white light, any additional green light absorbed by the lower chloroplasts would increase leaf photosynthesis to a greater extent than would additional red or blue light. Based on the assessment of effects of the additional monochromatic light on leaf photosynthesis, we developed the differential quantum yield method that quantifies efficiency of any monochromatic light in white light. Application of this method to sunflower leaves clearly showed that, in moderate to strong white light, green light drove photosynthesis more effectively than red light. The green leaf should have a considerable volume of chloroplasts to accommodate the inefficient carboxylation enzyme, Rubisco, and deliver appropriate light to all the chloroplasts. By using chlorophylls that absorb green light weakly, modifying mesophyll structure and adjusting the Rubisco/chlorophyll ratio, the leaf appears to satisfy two somewhat conflicting requirements: to increase the absorptance of photosynthetically active radiation, and to drive photosynthesis efficiently in all the chloroplasts. We also discuss some serious problems that are caused by neglecting these intra-leaf profiles when estimating whole leaf electron transport rates and assessing photoinhibition by fluorescence techniques.

  17. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    Science.gov (United States)

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  18. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  19. Leaf anatomical changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii and Pinus ponderosa exposed to enhanced ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Nagel, L.M.; Bassman, J.H.; Edwards, G.E.; Robberecht, R.; Franceshi, V.R.

    1998-01-01

    Leaf anatomical characteristics are important in determining the degree of injury sustained when plants are exposed to natural and enhanced levels of ultraviolet-B (UV-B) radiation (280–320 nm). The degree to which leaf anatomy can adapt to the increasing levels of UV-B radiation reaching the earth's surface is poorly understood in most tree species. We examined four tree species, representing a wide range of leaf anatomical characteristics, to determine responses of leaf area, specific leaf weight, and leaf tissue parameters after exposure to ambient and enhanced levels of UV-B radiation. Seedlings were grown in a greenhouse with photosynthetically active radiation of 39 mol m −2 day −1 and under one of three daily irradiances of biologically effective UV-B radiation (UV-BBE) supplied for 10 h per day: (1) approximate ambient level received at Pullman, Washington on June 21 (1 x ); two times ambient (2 x ), or three times ambient (3 x ). We hypothesized the response of each species to UV-B radiation would be related to inherent anatomical differences. We found that the conifers responded anatomically to nearly an equal degree as the broad-leaved trees, but that different tissues were involved. Populus trichocarpa, an indeterminate broadleaf species, showed significantly thicker palisade parenchyma in recently mature leaves at the 3 x level and in older leaves under the 2 x level. In addition, individual leaf area was generally greater with increased UV-B irradiance. Quercus rubra, a semi-determinate broadleaf species, exhibited significantly thicker palisade parenchyma at the 2 x and 3 x levels as compared to controls. Psuedotsuga menziesii, an evergreen coniferous species with bifacially flattened needles, and Pinus ponderosa, an evergreen coniferous species with a complete hypodermis, showed no significant change in leaf area or specific leaf weight under enhanced UV-B radiation. Epidermal thickness was unchanged in P. menziesii. However, P. ponderosa

  20. 7 CFR 29.3528 - Leaf surface.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...

  1. Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension.

    Science.gov (United States)

    Pfeifer, Johannes; Mielewczik, Michael; Friedli, Michael; Kirchgessner, Norbert; Walter, Achim

    2018-01-01

    Present-day high-resolution leaf growth measurements provide exciting insights into diel (24-h) leaf growth rhythms and their control by the circadian clock, which match photosynthesis with oscillating environmental conditions. However, these methods are based on measurements of leaf area or elongation and neglect diel changes of leaf thickness. In contrast, the influence of various environmental stress factors to which leaves are exposed to during growth on the final leaf thickness has been studied extensively. Yet, these studies cannot elucidate how variation in leaf area and thickness are simultaneously regulated and influenced on smaller time scales. Only few methods are available to measure the thickness of young, growing leaves non-destructively. Therefore, we evaluated X-ray computed tomography to simultaneously and non-invasively record diel changes and growth of leaf thickness and area. Using conventional imaging and X-ray computed tomography leaf area, thickness and volume growth of young soybean leaves were simultaneously and non-destructively monitored at three cardinal time points during night and day for a period of 80 h under non-stressful growth conditions. Reference thickness measurements on paperboards were in good agreement to CT measurements. Comparison of CT with leaf mass data further proved the consistency of our method. Exploratory analysis showed that measurements were accurate enough for recording and analyzing relative diel changes of leaf thickness, which were considerably different to those of leaf area. Relative growth rates of leaf area were consistently positive and highest during 'nights', while diel changes in thickness fluctuated more and were temporarily negative, particularly during 'evenings'. The method is suitable for non-invasive, accurate monitoring of diel variation in leaf volume. Moreover, our results indicate that diel rhythms of leaf area and thickness show some similarity but are not tightly coupled. These

  2. What Is a Leaf? An Online Tutorial and Tests

    Science.gov (United States)

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  3. Isotopic niche variation in a higher trophic level ectotherm: highlighting the role of succulent plants in desert food webs.

    Directory of Open Access Journals (Sweden)

    Miguel Delibes

    Full Text Available Stable isotope analysis of animal tissues allows description of isotopic niches, whose axes in an n-dimensional space are the isotopic ratios, compared to a standard, of different isotope systems (e.g. δ(13C, δ(15N. Isotopic niches are informative about where an animal, population or species lives and about what it consumes. Here we describe inter- and intrapopulation isotopic niche (bidimensional δ(13C-δ(15N space of the Orange-throated whiptail (Aspidoscelis hyperythra, an arthropodivorous small lizard, in ten localities of Baja California Sur (Mexico. These localities range from extreme arid to subtropical conditions. Between 13 and 20 individuals were sampled at each locality and 1 cm of tail-tip was collected for isotope analysis. As expected, interpopulation niche width variation was much larger than intrapopulation one. Besides, isotopic variation was not related to age, sex or individual size of lizards. This suggests geographic variation of the isotopic niche was related to changes in the basal resources that fuel the trophic web at each locality. The position of Bayesian isotope ellipses in the δ-space indicated that whiptails in more arid localities were enriched in 13C, suggesting most of the carbon they ingested came from CAM succulent plants (cacti, agaves and in minor degree in C4 grasses. Contrarily, whiptails in subtropical areas were depleted in 13C, as they received more carbon from C3 scrubs and trees. Localities closer to sea-level tended to be enriched in 15N, but a clear influence of marine subsidies was detected only at individual level. The study contributes to identify the origin and pathways through which energy flows across the trophic webs of North American deserts.

  4. Isotopic Niche Variation in a Higher Trophic Level Ectotherm: Highlighting the Role of Succulent Plants in Desert Food Webs

    Science.gov (United States)

    Delibes, Miguel; Blazquez, Ma Carmen; Fedriani, Jose Maria; Granados, Arsenio; Soriano, Laura; Delgado, Antonio

    2015-01-01

    Stable isotope analysis of animal tissues allows description of isotopic niches, whose axes in an n-dimensional space are the isotopic ratios, compared to a standard, of different isotope systems (e.g. δ13C, δ15N). Isotopic niches are informative about where an animal, population or species lives and about what it consumes. Here we describe inter- and intrapopulation isotopic niche (bidimensional δ13C-δ15N space) of the Orange-throated whiptail (Aspidoscelis hyperythra), an arthropodivorous small lizard, in ten localities of Baja California Sur (Mexico). These localities range from extreme arid to subtropical conditions. Between 13 and 20 individuals were sampled at each locality and 1 cm of tail-tip was collected for isotope analysis. As expected, interpopulation niche width variation was much larger than intrapopulation one. Besides, isotopic variation was not related to age, sex or individual size of lizards. This suggests geographic variation of the isotopic niche was related to changes in the basal resources that fuel the trophic web at each locality. The position of Bayesian isotope ellipses in the δ-space indicated that whiptails in more arid localities were enriched in 13C, suggesting most of the carbon they ingested came from CAM succulent plants (cacti, agaves) and in minor degree in C4 grasses. Contrarily, whiptails in subtropical areas were depleted in 13C, as they received more carbon from C3 scrubs and trees. Localities closer to sea-level tended to be enriched in 15N, but a clear influence of marine subsidies was detected only at individual level. The study contributes to identify the origin and pathways through which energy flows across the trophic webs of North American deserts. PMID:25973609

  5. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Young, L; Yang, F [University of Washington, Seattle, WA (United States)

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber and EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.

  6. Modeling the leaf angle dynamics in rice plant.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available The leaf angle between stem and sheath (SSA is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  7. Screening Study of Leaf Terpene Concentration of 75 Borneo Rainforest Plant Species: Relationships with Leaf Elemental Concentrations and Morphology

    Directory of Open Access Journals (Sweden)

    Jordi Sardans

    2015-01-01

    Full Text Available Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo. Terpene compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds were determined across the species, and out of these only linalool oxide and (E- g -bisabolene had phylogenetic signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf elemental composition. Functions such as temperature protection, radiation protection or signaling and communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions among multiple species.

  8. Whole Plant and Leaf Steady State Gas Exchange during Ethylene Exposure in Xanthium strumarium L.

    Science.gov (United States)

    Woodrow, L; Jiao, J; Tsujita, M J; Grodzinski, B

    1989-05-01

    The effects of ethylene evolved from ethephon on leaf and whole plant photosynthesis in Xanthium strumarium L. were examined. Ethylene-induced epinasty reduced light interception by the leaves of ethephon treated plants by up to 60%. Gas exchange values of individual, attached leaves under identical assay conditions were not inhibited even after 36 hours of ethylene exposure, although treated leaves required a longer induction period to achieve steady state photosynthesis. The speed of translocation of recently fixed (11)C-assimilate movement was not seriously impaired following ethephon treatment; however, a greater proportion of the assimilate was partitioned downward toward the roots. Within 24 hours of ethephon treatment, the whole plant net carbon exchange rate expressed on a per plant basis or a leaf area basis had dropped by 35%. The apparent inhibition of net carbon exchange rate was reversed by physically repositioning the leaves with respect to the light source. Ethylene exposure also inhibited expansion of young leaves which was partially reversed when the leaves were repositioned. The data indicated that ethylene indirectly affected net C gain and plant growth through modification of light interception and altered sink demand without directly inhibiting leaf photosynthesis.

  9. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  10. Compositional Variation and Bioactivity of the Leaf Essential Oil of Montanoa guatemalensis from Monteverde, Costa Rica: A Preliminary Investigation

    Directory of Open Access Journals (Sweden)

    Victoria D. Flatt

    2015-11-01

    Full Text Available Background: Montanoa guatemalensis is a small to medium-sized tree in the Asteraceae that grows in Central America from Mexico south through Costa Rica. There have been no previous investigations on the essential oil of this tree. Methods: The leaf essential oils of M. guatemalensis were obtained from different individual trees growing in Monteverde, Costa Rica, in two different years, and were analyzed by gas chromatography—mass spectrometry. Results: The leaf oils from 2008 were rich in sesquiterpenoids, dominated by α-selinene, β-selinene, and cyclocolorenone, with lesser amounts of the monoterpenes α-pinene and limonene. In contrast, the samples from 2009 showed no α- or β-selinene, but large concentrations of trans-muurola-4(14,5-diene, β-cadinene, and cyclocolorenone, along with greater concentrations of α-pinene and limonene. The leaf oils were screened for cytotoxic and antimicrobial activities and did show selective cytotoxic activity on MDA-MB-231 breast tumor cells. Conclusion: M. guatemalensis leaf oil, rich in cyclocolorenone, α-selinene, and β-selinene, showed selective in vitro cytotoxic activity to MDA-MB-231 cells. The plant may be a good source of cyclocolorenone.

  11. 77 FR 59558 - Sulfentrazone; Pesticide Tolerances

    Science.gov (United States)

    2012-09-28

    ... hay; wheat grain; wheat straw; and cowpea, succulent. The human health risk assessment used to support... Tolerances in/on: Rhubarb, Turnip Roots and Tops, Sunflower Subgroup 20B, Succulent Cowpea, Succulent Lima...

  12. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    Science.gov (United States)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  13. Leaf-jams - A new and unique leaf deposit in the ephemeral Hoanib River, NW Namibia: Origin and plant taphonomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Christa-Ch. [University of Vienna, Department of Palaeontology, Palaeobotany Studies Group, Althanstrasse 14, 1090, Vienna (Austria); Rice, A. Hugh N. [University of Vienna, Department of Geodynamics and Sedimentology, Althanstrasse 14, 1090, Vienna (Austria)

    2010-08-01

    This paper documents a previously unrecorded type of leaf deposit, comprising essentially monospecific linear accumulations of Colophospermum mopane leaves on a point bar of the ephemeral Hoanib River, NW Namibia. In these 'leaf-jams', leaf laminae stand on edge, orientated more-or-less normal to bedding. Leaf-jams, which formed upstream of cobbles, clumps of grass and sticks wedged against the former two, were orientated subparallel to the adjacent meandering river-bed, such that over the 40 m of their occurrence, their mean azimuth changed by 59 anticlockwise downstream. The longest leaf-jam was 50 cm and contained approximately 500 leaves, as well as grass culms, twigs (C. mopane, Tamarix usneoides and unidentified) and medium- to fine-grained sand and silt. Individual leaf-jams were partially buried in the point bar sediments up to a depth of 3 cm. Leaf-jam formation occurred in the austral summer of 2006, during the waning stage of a major flood caused by anomalous tropical to extra-tropical storms. Their monospecifity is due to the overwhelming preponderance of the zonal taxon C. mopane in the catchment area, although the Khowarib Gorge contains a quite diverse azonal plant association due to the presence of a permanent water-seep. During leaf-jam formation, the water depth was less than the height of the cobbles (0.1 m), with stream flow-rates competent to transport medium-grained sand (velocity estimated at 0.5 m s{sup -} {sup 1}). Leaves must have been partially or fully waterlogged to inhibit buoyancy forces tending to lift them out of the developing leaf-jams, which propagated upstream in a manner comparable to longitudinal bars in a braided river. If fossilised, such deposits would probably lead to a very biased interpretation of the composition of the surrounding flora; the correct interpretation would be the one least favoured by palaeobotanists. (author)

  14. Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus two summer annuals.

    Science.gov (United States)

    Cohu, Christopher M; Muller, Onno; Adams, William W; Demmig-Adams, Barbara

    2014-09-01

    Acclimation of foliar features to cool temperature and high light was characterized in winter (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0 and ecotypes from Sweden and Italy) versus summer (Helianthus annuus L. cv. Soraya; Cucurbita pepo L. cv. Italian Zucchini Romanesco) annuals. Significant relationships existed among leaf dry mass per area, photosynthesis, leaf thickness and palisade mesophyll thickness. While the acclimatory response of the summer annuals to cool temperature and/or high light levels was limited, the winter annuals increased the number of palisade cell layers, ranging from two layers under moderate light and warm temperature to between four and five layers under cool temperature and high light. A significant relationship was also found between palisade tissue thickness and either cross-sectional area or number of phloem cells (each normalized by vein density) in minor veins among all four species and growth regimes. The two winter annuals, but not the summer annuals, thus exhibited acclimatory adjustments of minor vein phloem to cool temperature and/or high light, with more numerous and larger phloem cells and a higher maximal photosynthesis rate. The upregulation of photosynthesis in winter annuals in response to low growth temperature may thus depend on not only (1) a greater volume of photosynthesizing palisade tissue but also (2) leaf veins containing additional phloem cells and presumably capable of exporting a greater volume of sugars from the leaves to the rest of the plant. © 2014 Scandinavian Plant Physiology Society.

  15. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  16. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Science.gov (United States)

    van Huysen, Tiff L.; Harmon, Mark E.; Perakis, Steven S.; Chen, Hua

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7–20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  17. Decomposition and nitrogen dynamics of (15)N-labeled leaf, root, and twig litter in temperate coniferous forests.

    Science.gov (United States)

    van Huysen, Tiff L; Harmon, Mark E; Perakis, Steven S; Chen, Hua

    2013-12-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using (15)N-labeled litter from Acer macrophyllum, Picea sitchensis, and Pseudotsuga menziesii. Mass loss for leaf litter was similar between the two sites, while root and twig litter exhibited greater mass loss in the Coast Range. Mass loss was greatest from leaves and roots, and species differences in mass loss were more prominent in the Coast Range. All litter types and species mineralized N early in the decomposition process; only A. macrophyllum leaves exhibited a net N immobilization phase. There were no site differences with respect to litter N dynamics despite differences in site N availability, and litter N mineralization patterns were species-specific. For multiple litter × species combinations, the difference between gross and net N mineralization was significant, and gross mineralization was 7-20 % greater than net mineralization. The mineralization results suggest that initial litter chemistry may be an important driver of litter N dynamics. Our study demonstrates that greater amounts of N are cycling through these systems than may be quantified by only measuring net mineralization and challenges current leaf-based biogeochemical theory regarding patterns of N immobilization and mineralization.

  18. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  19. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.

    Science.gov (United States)

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2017-04-01

    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Characterizing the drivers of seedling leaf gas exchange responses to warming and altered precipitation: indirect and direct effects.

    Science.gov (United States)

    Smith, Nicholas G; Pold, Grace; Goranson, Carol; Dukes, Jeffrey S

    2016-01-01

    Anthropogenic forces are projected to lead to warmer temperatures and altered precipitation patterns globally. The impact of these climatic changes on the uptake of carbon by the land surface will, in part, determine the rate and magnitude of these changes. However, there is a great deal of uncertainty in how terrestrial ecosystems will respond to climate in the future. Here, we used a fully factorial warming (four levels) by precipitation (three levels) manipulation experiment in an old-field ecosystem in the northeastern USA to examine the impact of climatic changes on leaf carbon exchange in five species of deciduous tree seedlings. We found that photosynthesis generally increased in response to increasing precipitation and decreased in response to warming. Respiration was less sensitive to the treatments. The net result was greater leaf carbon uptake in wetter and cooler conditions across all species. Structural equation modelling revealed the primary pathway through which climate impacted leaf carbon exchange. Net photosynthesis increased with increasing stomatal conductance and photosynthetic enzyme capacity (V cmax ), and decreased with increasing respiration of leaves. Soil moisture and leaf temperature at the time of measurement most heavily influenced these primary drivers of net photosynthesis. Leaf respiration increased with increasing soil moisture, leaf temperature, and photosynthetic supply of substrates. Counter to the soil moisture response, respiration decreased with increasing precipitation amount, indicating that the response to short- (i.e. soil moisture) versus long-term (i.e. precipitation amount) water stress differed, possibly as a result of changes in the relative amounts of growth and maintenance demand for respiration over time. These data (>500 paired measurements of light and dark leaf gas exchange), now publicly available, detail the pathways by which climate can impact leaf gas exchange and could be useful for testing assumptions in

  1. 7 CFR 29.2277 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  2. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Control of Growth Efficiency in Young Plantation Loblolly Pine and Sweetgum through Irrigation and Fertigation Enhancement of Leaf Carbon Gain; FINAL

    International Nuclear Information System (INIS)

    L. Samuelson

    1999-01-01

    The overall objective of this study was to determine if growth efficiency of young plantation loblolly pine and sweetgum can be maintained by intensive forest management and whether increased carbon gain is the mechanism controlling growth efficiency response to resource augmentation. Key leaf physiological processes were examined over two growing seasons in response to irrigation, fertigation (irrigation with a fertilizer solution), and fertigation plus pest control (pine only). Although irrigation improved leaf net photosynthesis in pine and decreased stomatal sensitivity to vapor pressure deficit in sweetgum, no consistent physiological responses to fertigation were detected in either species. After 4 years of treatment, a 3-fold increase in woody net primary productivity was observed in both species in response to fertigation. Trees supplemented with fertigation and fertigation plus pest control exhibited the largest increases in growth and biomass. Furthermore, growth efficiency was maintained by fertigation and fertigation plus pest control, despite large increases in crown development and self-shading. Greater growth in response to intensive culture was facilitated by significant gains in leaf mass and whole tree carbon gain rather than detectable increases in leaf level processes. Growth efficiency was not maintained by significant increases in leaf level carbon gain but was possibly influenced by changes in carbon allocation to root versus shoot processes

  4. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  5. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  6. Phosphorus uptake by decomposing leaf detritus: effect of microbial biomass and activity

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, P J; Elwood, J W; Newbold, J D; Webster, J R; Ferren, L A; Perkins, R E

    1984-12-01

    The dominant energy source in small woodland streams is the allochthonous input of leaves. Utilization of this energy source by stream biota establishes the patterns of secondary productivity and nutrient uptake in these ecosystems. Although leaf inputs support much of the production of macroinvertebrates and higher consumers in streams, microbes are the critical link between these organisms and the leaf resource, much of which is undigestible by higher organisms. A number of studies have indicated that stream macroinvertebrates preferentially select leaves with greater levels of microbial activity. Rates of microbial activity associated with decomposing leaves were shown to be dependent on the supply of P in one woodland stream. In other streams, leaf decomposition has been shown to be nutrient limited as well. Thus, as in many other ecosystems, maintenance of high levels of production in streams is dependent on retention and efficient recycling of nutrients. Uptake of P by microbes colonizing leaves is an important mechanism for nutrient retention in small woodland streams. In these systems, numerous debris collections efficiently retard downstream movement of particulate materials, especially decomposing leaves. Uptake of dissolved, easily transportable forms of P by microbes attached to decomposing leaves increases P retention in streams. The more rapid the rate of P uptake onto decomposing leaves for a given P supply, the shorter the P uptake length and the more times an atom of P is utilized within a given stream reach. In this study the authors examined the temporal patterns of P uptake during the early stages of leaf decomposition in streams. Patterns of P uptake were compared to patterns of other measurements of microbial activity to identify the effect of microbial succession or conditioning of leaves on P uptake. 22 references, 1 figure, 2 tables.

  7. Foraging on individual leaves by an intracellular feeding insect is not associated with leaf biomechanical properties or leaf orientation.

    Directory of Open Access Journals (Sweden)

    Justin Fiene

    Full Text Available Nearly all herbivorous arthropods make foraging-decisions on individual leaves, yet systematic investigations of the adaptive significance and ecological factors structuring these decisions are rare with most attention given to chewing herbivores. This study investigated why an intracellular feeding herbivore, Western flower thrips (WFT Frankliniella occidentalis Pergande, generally avoids feeding on the adaxial leaf surface of cotton cotyledons. WFT showed a significant aversion to adaxial-feeding even when excised-cotyledons were turned up-side (abaxial-side 'up', suggesting that negative-phototaxis was not a primary cause of thrips foraging patterns. No-choice bioassays in which individual WFT females were confined to either the abaxial or adaxial leaf surface showed that 35% fewer offspring were produced when only adaxial feeding was allowed, which coincided with 32% less plant feeding on that surface. To test the hypothesis that leaf biomechanical properties inhibited thrips feeding on the adaxial surface, we used a penetrometer to measure two variables related to the 'toughness' of each leaf surface. Neither variable negatively co-varied with feeding. Thus, while avoiding the upper leaf surface was an adaptive foraging strategy, the proximate cause remains to be elucidated, but is likely due, in part, to certain leaf properties that inhibit feeding.

  8. 7 CFR 29.2278 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ...

  9. 7 CFR 29.2529 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  10. Inheritance of okra leaf type in different genetic backgrounds and its ...

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... discontinuous variation for leaf shape in F2 generations of three crosses .... Variable classes in leaf types (a) Normal leaf (b) Okra leaf (c) Sub-okra leaf. ..... insect pests on different isogenic lines of cotton variety H-777. J.

  11. Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana.

    Science.gov (United States)

    Veenendaal, Elmar M; Mantlana, Khanyisa B; Pammenter, Norman W; Weber, Piet; Huntsman-Mapila, Phillipa; Lloyd, Jon

    2008-03-01

    We investigated differences in physiological and morphological traits between the tall and short forms of mopane (Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Léonard) trees growing near Maun, Botswana on a Kalahari sandveld overlying an impermeable calcrete duricrust. We sought to determine if differences between the two physiognomic types are attributable to the way they exploit available soil water. The tall form, which was located on deeper soil than the short form (5.5 versus 1.6 m), had a lower leaf:fine root biomass ratio (1:20 versus 1:6), but a similar leaf area index (0.9-1.0). Leaf nitrogen concentrations varied between 18 and 27 mg g(-1) and were about 20% higher in the tall form than in the short form. Maximum net assimilation rates (A sat) occurred during the rainy seasons (March-April 2000 and January-February 2001) and were similar in the tall and short forms (15-22 micromol m(-2) s(-1)) before declining to less than 10 micromol m(-2) s(-1) at the end of the rainy season in late April. As the dry season progressed, A sat, soil water content, predawn leaf water potential (Psi pd) and leaf nitrogen concentration declined rapidly. Before leaf abscission, Psi pd was more negative in the short form (-3.4 MPa) than in the tall form (-2.7 MPa) despite the greater availability of soil water beneath the short form trees. This difference appeared attributable to differences in root depth and density between the physiognomic types. Stomatal regulation of water use and carbon assimilation differed between years, with the tall form having a consistently more conservative water-use strategy as the dry season progressed than the short form.

  12. Waiting for the Leaf; Warten auf den Leaf

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jan

    2012-01-15

    Nissan will be the first manufacturer to launch an electric vehicle of the VW Golf category in the German market. With a mileage of about 170 km and a roomy passenger compartment, the Leaf promises much comfort. In the US market, it was launched two years ago. Was it worth while waiting for?.

  13. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.

  14. A finger leaf design for dual layer MLCs

    International Nuclear Information System (INIS)

    Cui Weijie; Dai Jianrong

    2010-01-01

    Objective: To introduce a finger leaf design that is applied to dual layer MLCs. Methods: An optimization model was firstly constructed to describe the problem of determining leaf end shapes,and the corresponding problems were then solved by the simplex search method or the simulated annealing technique. Optimal parameters for arc shapes of leaf end projections were obtained, and a comparison was done between optimized MLCs and conventional MLCs in terms of field conformity. The optimization process was based on 634 target fields selected from the patient data base of a treatment planning system. Areas of these fields ranged from 20.0 to 602.7 cm with a mean and its standard deviation of (125.7 ± 0.0) cm 2 . Results: The optimized leaf end shapes projected to the isocenter plane were semicircles. With the finger leaf design, the total area of discrepancy regions between MLC fields and target fields was reduced by 32.3%. Conclusions: The finger leaf design improves the conformity of the MLC shaped fields to the desired target fields. (authors)

  15. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  16. Whole Plant and Leaf Steady State Gas Exchange during Ethylene Exposure in Xanthium strumarium L. 1

    Science.gov (United States)

    Woodrow, Lorna; Jiao, Jirong; Tsujita, M. James; Grodzinski, Bernard

    1989-01-01

    The effects of ethylene evolved from ethephon on leaf and whole plant photosynthesis in Xanthium strumarium L. were examined. Ethylene-induced epinasty reduced light interception by the leaves of ethephon treated plants by up to 60%. Gas exchange values of individual, attached leaves under identical assay conditions were not inhibited even after 36 hours of ethylene exposure, although treated leaves required a longer induction period to achieve steady state photosynthesis. The speed of translocation of recently fixed 11C-assimilate movement was not seriously impaired following ethephon treatment; however, a greater proportion of the assimilate was partitioned downward toward the roots. Within 24 hours of ethephon treatment, the whole plant net carbon exchange rate expressed on a per plant basis or a leaf area basis had dropped by 35%. The apparent inhibition of net carbon exchange rate was reversed by physically repositioning the leaves with respect to the light source. Ethylene exposure also inhibited expansion of young leaves which was partially reversed when the leaves were repositioned. The data indicated that ethylene indirectly affected net C gain and plant growth through modification of light interception and altered sink demand without directly inhibiting leaf photosynthesis. Images Figure 1 PMID:16666773

  17. 7 CFR 29.2530 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of...

  18. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  19. Models for leaf area estimation in dwarf pigeon pea by leaf dimensions

    Directory of Open Access Journals (Sweden)

    Rafael Vieira Pezzini

    2018-03-01

    Full Text Available ABSTRACT This study aims to determine the most suitable model to estimate the leaf area of dwarf pigeon pea in function of the leaf central leaflet dimension. Six samplings of 200 leaves were performed in the first experiment, at 36, 42, 50, 56, 64, and 72 days after emergence (DAE. In the second experiment, seven samplings of 200 leaves were performed at 29, 36, 43, 49, 57, 65, and 70 DAE, totaling 2600 leaves. The length (L and width (W of the central leaflet were measured in all leaves composed by left, central, and right leaflets, the product of length times width (LW was calculated, and the leaf area (Y – sum of left, central, and right leaflet areas was determined by digital images. Linear, power, quadratic, and cubic models of Y as function of L, W, and LW were built using data from the second experiment. Leaves from the first experiment were used to validate the models. In dwarf pigeon pea, the linear (Ŷ = – 0.4088 + 1.6669x, R2 = 0.9790 is preferable, but power (Ŷ = 1.6097x1.0065, R2 = 0.9766, quadratic (Ŷ = – 0.3625 + 1.663x + 0.00007x2, R2 = 0.9790, and cubic (Ŷ = 0.7216 + 1.522x + 0.005x2 – 5E–05x3, R2 = 0.9791 models in function of LW are also suitable to estimate the leaf area obtained by digital images. The power model (Ŷ = 5.2508x1.7868, R2 = 0.95 based on the central leaflet width is less laborious because requires only one variable, but it presents accuracy reduction.

  20. Leveraging multiple datasets for deep leaf counting

    OpenAIRE

    Dobrescu, Andrei; Giuffrida, Mario Valerio; Tsaftaris, Sotirios A

    2017-01-01

    The number of leaves a plant has is one of the key traits (phenotypes) describing its development and growth. Here, we propose an automated, deep learning based approach for counting leaves in model rosette plants. While state-of-the-art results on leaf counting with deep learning methods have recently been reported, they obtain the count as a result of leaf segmentation and thus require per-leaf (instance) segmentation to train the models (a rather strong annotation). Instead, our method tre...

  1. Resistance in winter barley against Ramularia leaf spot

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus Lund

    Ramularia leaf spot is an emerging disease in barley caused by R. collo-cygni. At present little is known about the resistance mechanisms carried out by the host plant to avoid disease development. Nor is the lifecycle of the fungus or its populations structure fully understood. To gain insight....... fulvum-tomato and S. tritici-wheat in order to find modelsystems to enhance interpretation of results from R. collo-cygni-barley interaction. Results from the mapping showed that resistance to Ramularia leaf spot is controlled by a number of QTL’s, some of which co-locate with other physiological traits....... The populations further segregated for physiological leaf spots, a phenomenon related to the leaf damage imposed by Rubellin, although, resistance to physiological leafspots appeared to come from the Ramularia leaf spot susceptible parent. The toxin assay further supported this result as the genotypes susceptible...

  2. Effect of Puccinia silphii on Yield Components and Leaf Physiology in Silphium integrifolium: Lessons for the Domestication of a Perennial Oilseed Crop

    Directory of Open Access Journals (Sweden)

    M. Kathryn Turner

    2018-03-01

    Full Text Available New crops with greater capacity for delivering ecosystem services are needed to increase agricultural sustainability. However, even in these crops, seed yield is usually the main criteria for grain domestication. This focus on yield can cause unintended structural and functional changes. Leaves of selected plants tend to be more vulnerable to infection, which can reduce performance, assimilates, and ultimately yield. Our objectives were to determine the impact of rust (caused by Puccinia silphii on yield and leaf function in selected Silphium integrifolium (Asteraceae plants. We tested the effect of a fungicide treatment on rust severity and yield, compared the rust infection of individuals in a population selected for yield, and related this to chemical changes at the leaf level. We also estimated heritability for rust resistance. We found that productivity indicators (head number and weight, leaf weight and leaf processes (photosynthetic capacity, water use efficiency were reduced when silphium leaves and stems were more heavily infected by P. silphii. Leaf resin content increased when susceptible plants were infected. Fungicide treatments were effective at reducing rust infection severity, but were ineffective at preventing yield losses. We propose that disease resistance should be included early in the selection process of new perennial crops.

  3. Antimicrobial and toxicological evaluation of ethanol leaf extract of Salacia lehmbachii

    Directory of Open Access Journals (Sweden)

    Essien Augustine Dick

    2017-12-01

    Full Text Available The leaves of Salacia lehmbachii are used ethnomedically across Africa for the treatment of different diseases its antimicrobial activity as well as toxicological profile were evaluated. Antimicrobial activity against clinical strains of Pseudomonas aeruginosa, Salmonella typhi, Staphylococus aureus, Shigella species, Eschericha coli and Proteus mirabilis were compared with Gentamycin. Toxicological investigation was determined by administering 100 mg/kg, 200 mg/kg and 400 mg/kg of the ethanol leaf extract to male Wistar rats for 21 days with distilled water as control. Hematological and biochemical parameters as well as the vital organs were examined. The ethanol extract inhibited the growth of P. aeruginosa, S. typhi, S. aureus, Shigella species, E. coli and P. mirabilis to varying extents. The LD50 in rats was greater than 5000 mg/kg. Toxicological evaluation of the extract did not produce any significant effect on hematological and biochemical parameters and vital organs in rats. S. lehmbachii ethanol leaf extract did not demonstrate antimicrobial activity against selected microorganisms. Neither did it show any non-toxic effect on the parameters investigated in rats. Thus the extract can be considered safe when administered orally.

  4. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  5. Dynamic extrafloral nectar production: the timing of leaf damage affects the defensive response in Senna mexicana var. chapmanii (Fabaceae).

    Science.gov (United States)

    Jones, Ian M; Koptur, Suzanne

    2015-01-01

    • Extrafloral nectar (EFN) mediates food for protection mutualisms between plants and defensive insects. Understanding sources of variation in EFN production is important because such variations may affect the number and identity of visitors and the effectiveness of plant defense. We investigated the influence of plant developmental stage, time of day, leaf age, and leaf damage on EFN production in Senna mexicana var. chapmanii. The observed patterns of variation in EFN production were compared with those predicted by optimal defense theory.• Greenhouse experiments with potted plants were conducted to determine how plant age, time of day, and leaf damage affected EFN production. A subsequent field study was conducted to determine how leaf damage, and the resulting increase in EFN production, affected ant visitation in S. chapmanii.• More nectar was produced at night and by older plants. Leaf damage resulted in increased EFN production, and the magnitude of the response was greater in plants damaged in the morning than those damaged at night. Damage to young leaves elicited a stronger defensive response than damage to older leaves, in line with optimal defense theory. Damage to the leaves of S. chapmanii also resulted in significantly higher ant visitation in the field.• Extrafloral nectar is an inducible defense in S. chapmanii. Developmental variations in its production support the growth differentiation balance hypothesis, while within-plant variations and damage responses support optimal defense theory. © 2015 Botanical Society of America, Inc.

  6. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    Science.gov (United States)

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  7. Consequences of leaf calibration errors on IMRT delivery

    International Nuclear Information System (INIS)

    Sastre-Padro, M; Welleweerd, J; Malinen, E; Eilertsen, K; Olsen, D R; Heide, U A van der

    2007-01-01

    IMRT treatments using multi-leaf collimators may involve a large number of segments in order to spare the organs at risk. When a large proportion of these segments are small, leaf positioning errors may become relevant and have therapeutic consequences. The performance of four head and neck IMRT treatments under eight different cases of leaf positioning errors has been studied. Systematic leaf pair offset errors in the range of ±2.0 mm were introduced, thus modifying the segment sizes of the original IMRT plans. Thirty-six films were irradiated with the original and modified segments. The dose difference and the gamma index (with 2%/2 mm criteria) were used for evaluating the discrepancies between the irradiated films. The median dose differences were linearly related to the simulated leaf pair errors. In the worst case, a 2.0 mm error generated a median dose difference of 1.5%. Following the gamma analysis, two out of the 32 modified plans were not acceptable. In conclusion, small systematic leaf bank positioning errors have a measurable impact on the delivered dose and may have consequences for the therapeutic outcome of IMRT

  8. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    This study investigated the effects of repetitive applications of herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the Müsküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water ...

  9. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    Energy Technology Data Exchange (ETDEWEB)

    Glowacka, K; Adhikari, S; Peng, JH; Gifford, J; Juvik, JA; Long, SP; Sacks, EJ

    2014-09-08

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chilling treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.

  10. Variação temporal de características morfológicas de folhas em dez espécies do Parque Nacional da Restinga de Jurubatiba, Macaé, RJ, Brasil Temporal variation of morphological leaf traits in ten species from Restinga of Jurubatiba National Park, Macaé, Rio de Janeiro State, Brazil

    Directory of Open Access Journals (Sweden)

    Bruno Henrique Pimentel Rosado

    2007-09-01

    Full Text Available Ordenar espécies em relação a um contínuo de variação de características foliares pode ser útil para inferir sobre a suscetibilidade de uma comunidade a alterações na disponibilidade de recursos e/ou condições ambientais ao longo do tempo. Dez espécies lenhosas de restinga foram acompanhadas quanto à variação temporal de atributos morfológicos foliares. Folhas de dez espécies de restinga foram coletadas nos meses de fevereiro, abril e agosto ao longo de três anos para caracterização da variação temporal da massa de folha por unidade de área (MFA, suculência (SUC, espessura (ESP e densidade (DEN. As espécies apresentaram uma tendência de valores mais elevados para as características estudadas nos meses mais secos. A partir da comparação sazonal e interanual da MFA, SUC, ESP e DEN sugerimos que a natureza das respostas das plantas à heterogeneidade temporal na disponibilidade de água foi convergente, independentemente do padrão fenológico de produção foliar e filogenia. Portanto, a similaridade observada entre as espécies na dinâmica temporal dos atributos foliares indica a disponibilidade hídrica como um fator determinante para o sucesso na ocupação das planícies arenosas costeiras do norte fluminense.Ranking species in relation to a continuum of leaf-trait variation can be useful to infer community susceptibility to changes in resource availability and/or environmental conditions over time. Leaves of ten woody restinga species were sampled in February, April and August over a period of 3 years to characterize temporal variability of leaf mass per area (LMA, succulence (SUC, thickness (THI and density (DEN. The species showed a trend toward higher leaf-trait values in dry months during the three-year study. Based on seasonal and interannual comparison of LMA, SUC, THI and DEN we suggest that plant responses to temporal heterogeneity in water availability were convergent, independent of leaf phenological

  11. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  12. Predicting tropical plant physiology from leaf and canopy spectroscopy.

    Science.gov (United States)

    Doughty, Christopher E; Asner, Gregory P; Martin, Roberta E

    2011-02-01

    A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO(2) saturated photosynthesis (A(max)), respiration (R), leaf transmittance and reflectance spectra (400-2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r(2) = 0.74, root mean square error (RMSE) = 2.9 μmol m(-2) s(-1))] followed by R (r(2) = 0.48), and A(max) (r(2) = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m(-2) s(-1)) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  13. The Effect of Leaf Stacking on Leaf Reflectance and Vegetation Indices Measured by Contact Probe during the Season

    Czech Academy of Sciences Publication Activity Database

    Neuwirthová, E.; Lhotáková, Z.; Albrechtová, Jana

    2017-01-01

    Roč. 17, č. 6 (2017), s. 1-23, č. článku 1202. ISSN 1424-8220 Institutional support: RVO:67985939 Keywords : broadleaved trees * leaf optical properties * leaf traits Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.677, year: 2016

  14. BOREAS TE-9 NSA Leaf Chlorophyll Density

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  15. Silver nano fabrication using leaf disc of Passiflora foetida Linn

    Science.gov (United States)

    Lade, Bipin D.; Patil, Anita S.

    2017-06-01

    The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.

  16. Reading the Leaves: A Comparison of Leaf Rank and Automated Areole Measurement for Quantifying Aspects of Leaf Venation

    Directory of Open Access Journals (Sweden)

    Walton A. Green

    2014-08-01

    Full Text Available The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation.

  17. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas

    2012-01-01

    The aim of this study was to evaluate the extent to which water use efficiency (WUE) at leaf scale can be used to assess WUE at canopy scale, leaf WUE being assumed to be a constant function of vapor pressure deficit and to thus not be dependent upon other environmental factors or varying leaf...... properties. Leaf WUE and its variability and dependencies were assessed using leafgas-exchange measurements obtained during two growing seasons, 1999 and 2000, at the Soroe beech forest study site on Zealand in Denmark. It was found that the VPD-normalized leaf WUE, WUEnormleaf, although dependent...

  18. Betel leaf in stoma care.

    Science.gov (United States)

    Banu, Tahmina; Talukder, Rupom; Chowdhury, Tanvir Kabir; Hoque, Mozammel

    2007-07-01

    Construction of a stoma is a common procedure in pediatric surgical practice. For care of these stomas, commercially available devices such as ostomy bag, either disposable or of longer duration are usually used. These are expensive, particularly in countries like Bangladesh, and proper-sized ones are not always available. We have found an alternative for stoma care, betel leaf, which is suitable for Bangladeshis. We report the outcome of its use. After construction of stoma, at first zinc oxide paste was applied on the peristomal skin. A betel leaf with shiny, smooth surface outwards and rough surface inwards was put over the stoma with a hole made in the center according to the size of stoma. Another intact leaf covers the stomal opening. When bowel movement occurs, the overlying intact leaf was removed and the fecal matter was washed away from both. The leaves were reused after cleaning. Leaves were changed every 2 to 3 days. From June 1998 to December 2005, in the department of pediatric surgery, Chittagong Medical College and Hospital, Chittagong, Bangladesh, a total of 623 patients had exteriorization of bowel. Of this total, 495 stomas were cared for with betel leaves and 128 with ostomy bags. Of 623 children, 287 had sigmoid colostomy, 211 had transverse colostomy, 105 had ileostomy, and 20 had jejunostomy. Of the 495 children under betel leaf stoma care, 13 patients (2.6%) developed skin excoriation. There were no allergic reactions. Of the 128 patients using ostomy bag, 52 (40.65%) had skin excoriation. Twenty-four (18.75%) children developed some allergic reactions to adhesive. Monthly costs for betel leaves were 15 cents (10 BDT), whereas ostomy bags cost about US$24. In the care of stoma, betel leaves are cheap, easy to handle, nonirritant, and nonallergic.

  19. Method for continuous measurement of export from a leaf

    International Nuclear Information System (INIS)

    Geiger, D.R.; Fondy, B.R.

    1979-01-01

    Export of labeled material derived by continuous photosynthesis in 14 CO 2 was monitored with a Geiger-Mueller detector positioned next to an exporting leaf blade. Rate of export of labeled material was calculated from the difference between rates of retention and net photosynthesis of labeled carbon for the observed leaf. Given certain conditions, including nearly constant distribution of labeled material among minor veins and various types of cells, count rate data for the source leaf can be coverted to rate of export of carbon. Changes in counting efficiency resulting from changes in leaf water status can be corrected for with data from a transducer which measures leaf thickness. Export data agreed with data obtained by monitoring the arrival of 14 C in the sink region; isolated leaves gave values near zero for export of labeled carbon from a given leaf on an intact plant. The technique detects changes in export with a resolution of 10 to 20 minutes

  20. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    Science.gov (United States)

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. ANXIOLYTIC ACTIVITY OF OCIMUM SANCTUM LEAF EXTRACT

    OpenAIRE

    Chattopadhyay, R.R.

    1994-01-01

    The anxiolytic activity of Ocimum sanctum leaf extract was studied in mice. O.sanctum leaf extract produced significant anxiolytic activity in plus – maze and open field behaviour test models. The effect was compared with diazepam, a standard antianxiety drug.

  2. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    Science.gov (United States)

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  3. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  4. Does leaf chemistry differentially affect breakdown in tropical versus temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...

  5. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion.

    Science.gov (United States)

    Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B

    2007-04-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.

  6. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    Energy Technology Data Exchange (ETDEWEB)

    Wuytack, Tatiana, E-mail: tatiana.wuytack@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Wuyts, Karen, E-mail: karen.wuyts@ugent.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Van Dongen, Stefan, E-mail: stefan.vandongen@ua.ac.be [Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Baeten, Lander, E-mail: lander.baeten@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Kardel, Fatemeh, E-mail: fatemeh.kardel@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode, Melle (Belgium); Samson, Roeland, E-mail: roeland.samson@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2011-10-15

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO{sub x} and O{sub 3} concentrations had only a marginal influence. The influence of SO{sub 2} concentration was negligible. Although our data analysis suggests a relationship between SLA and NO{sub x}/O{sub 3} concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: > Leaf characteristics of white willow as possible bio-indicators for air quality. > Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. > Shadow increases specific leaf area. > NO{sub x} and O{sub 3} change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO{sub x} and decreasing O{sub 3} concentration, while leaf asymmetry did not respond to air pollution

  7. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    International Nuclear Information System (INIS)

    Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland

    2011-01-01

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO x and O 3 concentrations had only a marginal influence. The influence of SO 2 concentration was negligible. Although our data analysis suggests a relationship between SLA and NO x /O 3 concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: → Leaf characteristics of white willow as possible bio-indicators for air quality. → Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. → Shadow increases specific leaf area. → NO x and O 3 change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO x and decreasing O 3 concentration, while leaf asymmetry did not respond to air pollution

  8. Use of NAP gene to manipulate leaf senescence in plants

    Science.gov (United States)

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  9. Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: a meta-analysis.

    Science.gov (United States)

    Lee, Marissa R; Bernhardt, Emily S; van Bodegom, Peter M; Cornelissen, J Hans C; Kattge, Jens; Laughlin, Daniel C; Niinemets, Ülo; Peñuelas, Josep; Reich, Peter B; Yguel, Benjamin; Wright, Justin P

    2017-01-01

    Many exotic species have little apparent impact on ecosystem processes, whereas others have dramatic consequences for human and ecosystem health. There is growing evidence that invasions foster eutrophication. We need to identify species that are harmful and systems that are vulnerable to anticipate these consequences. Species' traits may provide the necessary insights. We conducted a global meta-analysis to determine whether plant leaf and litter functional traits, and particularly leaf and litter nitrogen (N) content and carbon: nitrogen (C : N) ratio, explain variation in invasive species' impacts on soil N cycling. Dissimilarity in leaf and litter traits among invaded and noninvaded plant communities control the magnitude and direction of invasion impacts on N cycling. Invasions that caused the greatest increases in soil inorganic N and mineralization rates had a much greater litter N content and lower litter C : N in the invaded than the reference community. Trait dissimilarities were better predictors than the trait values of invasive species alone. Quantifying baseline community tissue traits, in addition to those of the invasive species, is critical to understanding the impacts of invasion on soil N cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    Science.gov (United States)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  11. Timing and duration of autumn leaf development in Sweden

    Science.gov (United States)

    Bolmgren, Kjell

    2014-05-01

    The growing season is changing in both ends and autumn phases seem to be responding in more diverse ways than spring events. Indeed, we know little about autumn leaf phenological strategies and how they are correlated with fitness components or ecosystem properties, and how they vary between species and over bioclimatic gradients. In this study more than 10 000 students were involved in observing autumn leaf development at 378 sites all over Sweden (55-68°N). They followed an image based observation protocol classifying autumn leaf development into five levels, from summer green (level 0) to 100% autumn leaf colored (level 4) canopy. In total, they submitted almost 12 000 observations between August 9 and November 15. 75% of the observations were made on the common species of Populus tremula, Betula pendula/pubescens and Sorbus aucuparia. The expected (negative) correlation between latitude and start of leaf senescence (level 2) was found in Populus and Betula, but not in Sorbus. The duration of the leaf senescence period, defined as the period between 1/3 (level 2) and 100% (level 4) of the canopy autumn leaf colored, was negatively correlated with latitude in Populus and Betula, but not in Sorbus. There was also a strong (negative) correlation of the start (level 2) and the duration of the leaf senescence in the early senescing Sorbus and Betula, while this effect was weaker in the late senescing Populus.

  12. Leaf size indices and structure of the peat swamp forest

    Directory of Open Access Journals (Sweden)

    L.G. Aribal

    2017-12-01

    Full Text Available Leaf size indices of the tree species in the peatland of Agusan del Sur in Mindanao in Philippines was examined to deduce the variation of forest structure and observed forest zonation.  Using raunkiaer and webb’s leaf size classification, the leaf morphometrics of seven tree species consistently found on the established sampling plots were determined.  The species includes Ternstroemia philippinensis Merr., Polyscias aherniana Merr. Lowry and G.M. Plunkett, Calophyllum sclerophyllum Vesque, Fagraea racemosa Jack, Ilex cymosa Blume, Syzygium tenuirame (Miq. Merr. and Tristaniopsis micrantha Merr. Peter G.Wilson and J.T.Waterh.The LSI were correlated against the variables of the peat physico-chemical properties (such as bulk density, acrotelm thickness, peat depth, total organic carbon, nitrogen, phosphorus, and potassium, pH; water (pH, ammonium, nitrate, phosphate; and leaf tissue elements (nitrogen, phosphorus and potassium.  Result showed a decreasing leaf size indices and a three leaf size category consisting of mesophyllous, mesophyllous-notophyllous and microphyllous were observed which corresponds to the structure of vegetation i.e., from the tall-pole forest having the biggest average leaf area of 6,142.29 mm2 to the pygmy forest with average leaf area of 1,670.10 mm2.  Such decreased leaf size indices were strongly correlated to soil nitrogen, acrotelm thickness, peat depth, phosphate in water, nitrogen and phosphorus in the plant tissue.

  13. Evaluation of two methods of predicting MLC leaf positions using EPID measurements

    International Nuclear Information System (INIS)

    Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew

    2006-01-01

    In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg

  14. Climatic Controls on Leaf Nitrogen Content and Implications for Biochemical Modeling.

    Science.gov (United States)

    Tcherednichenko, I. A.; White, M.; Bastidas, L.

    2007-12-01

    Leaf nitrogen (N) content, expressed as percent total nitrogen per unit of leaf dry mass, is a widely used parameter in biochemical modeling, due mainly to its role as a potentially limiting factor for photosynthesis. The amount of nitrogen, however, does not occur in a fixed amount in every leaf, but rather varies continuously with the leaf life cycle, in constant response to soil-root-stem-leaf-climate interactions and demand for growth. Moreover, while broad data on leaf N has become available it is normally measured under ambient conditions with consequent difficulty for distinguishing between genetic and time specific environmental effects. In the present work we: 1) Investigate the theoretical variation of leaf mass, specific heat capacity and leaf thickness of full sun-expanded leaves as a regulatory mechanism to ensure thermal survival along with long-term climatic radiation/temperature gradient; and discuss nitrogen and carbon controls on leaf thickness. 2) Based on possible states of partition between nitrogenous and non-nitrogenous components of a leaf we further derive probability density functions (PDFs) of nitrogen and carbon content and assess the effect of water and nutrient uptake on the PDFs. 3) Translate the results to spatially explicit representation over the conterminous USA at 1 km spatial resolution by providing maximum potential values of leaf N of fully expanded leaf optimally suited for long term climatic averages values and soils conditions. Implications for potential presence of inherently slow/fast growing species are discussed along with suitability of results for use by biochemical models.

  15. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    Science.gov (United States)

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL

  16. Antioxidant Activity and Cytotoxicity of the Leaf and Bark Extracts of ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant potential and cytotoxicity of the leaf and bark extracts of Tarchonanathus campharatus.. Methods: The antioxidant activity of the aqueous leaf extract (Aq LF), methanol leaf extract (MET LF), dichloromethane leaf extract (DCM LF), methanol bark extract (MET BK), dichloromethane bark ...

  17. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  18. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  19. Leaf area prediction models for Tsuga canadensis in Maine

    Science.gov (United States)

    Laura S. Kenefic; R.S. Seymour

    1999-01-01

    Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...

  20. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    Evaluation of SAR effects on budding, flowering, leaf abscission and pollen development revealed that ... Keywords: Simulated acid rain, Helianthus annuus, flowering, leaf abscission, pollen germination, sunflower. ... HOW TO USE AJOL.

  1. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.

  2. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community.

    Science.gov (United States)

    Reyes-García, C; Mejia-Chang, M; Griffiths, H

    2012-02-01

    • Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. • Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. • The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. • Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  3. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2004-02-07

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  4. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay; Li, Jonathan

    2004-01-01

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  5. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  6. Leaf micromorphology of some Phyllanthus L. species (Phyllanthaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Solihani, N. S., E-mail: noorsolihani@gmail.com; Noraini, T., E-mail: norainitalip@gmail.com [School of Environmental and Natural Resource Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Azahana, A., E-mail: bell-azahana@yahoo.com [Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang (Malaysia); Nordahlia, A. S., E-mail: nordahlia@frim.gov.my [Forest Research Institute of Malaysia, 52109 Kepong, Selangor (Malaysia)

    2015-09-25

    Comparative leaf micromorphological study was conducted of five chosen Phyllanthus L. (Phyllanthaceae) species, namely P. acidus L., P. elegans Wall. ex Müll. Arg., P. emblica L., P. urinaria L. and P. pulcher Wall. ex Müll. Arg. The objective of this study is to identify the leaf micromorphological characteristics that can be used in species identification. The procedures involve examination under scanning electron microscope. Findings of this study have demonstrated variations in the leaf micromorphological characteristics such as in the types of waxes present on adaxial and abaxial epidermis surfaces, in the stomata and types of trichome. Common character present in all species studied are the presence of a thin film layer and buttress-like waxes on epidermal leaf surfaces. Diagnostics characters found in this study are the presence of papilla in P. elegens, amphistomatic stomata in P. urinaria and flaky waxes in P. pulcher. The result of this study has shown that leaf micromorphological characters have some taxonomic significance and can be used in identification of species in the genus Phyllanthus.

  7. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  8. Antibacterial Activity of Vernonia amygdalina Leaf Extracts against ...

    African Journals Online (AJOL)

    ADOWIE PERE

    (Bitter leaf), Allium sativum (Garlic), O. gratissimum. (Scent leaf) ... complex active components that are useful ... hydroxide was added. .... KEY: CPX-Ciprofloxacin, Ro-Rocephin, St-Streptomycin, AU-Augmentin, SXT-Septrin, SP- Sparfloxacin, ...

  9. Estimation of leaf area in tropical maize

    NARCIS (Netherlands)

    Elings, A.

    2000-01-01

    Leaf area development of six tropical maize cultivars grown in 1995 and 1996 in several tropical environments in Mexico (both favourable and moisture-and N-limited) was observed and analysed. First, the validity of a bell-shaped curve describing the area of individual leaves as a function of leaf

  10. Effects of microhabitat on leaf traits in Digitalis grandiflora L. (Veronicaceae growing at forest edge and interior

    Directory of Open Access Journals (Sweden)

    Kołodziejek J.

    2014-01-01

    Full Text Available The morphological, anatomical and biochemical traits of the leaves of yellow foxglove (Digitalis grandiflora Mill. from two microhabitats, forest interior (full shade under oak canopy and forest edge (half shade near shrubs, were studied. The microhabitats differed in the mean levels of available light, but did not differ in soil moisture. The mean level of light in the forest edge microhabitat was significantly higher than in the forest interior. Multivariate ANOVA was used to test the effects of microhabitat. Comparison of the available light with soil moisture revealed that both factors significantly influenced the morphological and anatomical variables of D. grandiflora. Leaf area, mass, leaf mass per area (LMA, surface area per unit dry mass (SLA, density and thickness varied greatly between leaves exposed to different light regimes. Leaves that developed in the shade were larger and thinner and had a greater SLA than those that developed in the half shade. In contrast, at higher light irradiances, at the forest edge, leaves tended to be thicker, with higher LMA and density. Stomatal density was higher in the half-shade leaves than in the full-shade ones. LMA was correlated with leaf area and mass and to a lesser extent with thickness and density in the forest edge microsite. The considerable variations in leaf density and thickness recorded here confirm the very high variation in cell size and amounts of structural tissue within species. The leaf plasticity index (PI was the highest for the morphological leaf traits as compared to the anatomical and biochemical ones. The nitrogen content was higher in the “half-shade leaves” than in the “shade leaves”. Denser leaves corresponded to lower nitrogen (N contents. The leaves of plants from the forest edge had more potassium (K than leaves of plants from the forest interior on an area basis but not on a dry mass basis; the reverse was true for phosphorus.

  11. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Science.gov (United States)

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  12. TALE and Shape: How to Make a Leaf Different.

    Science.gov (United States)

    Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna

    2013-05-06

    The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.

  13. Simple models for predicting leaf area of mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    Maryam Ghoreishi

    2012-01-01

    Full Text Available Mango (Mangifera indica L., one of the most popular tropical fruits, is cultivated in a considerable part of southern Iran. Leaf area is a valuable parameter in mango research, especially plant physiological and nutrition field. Most of available methods for estimating plant leaf area are difficult to apply, expensive and destructive which could in turn destroy the canopy and consequently make it difficult to perform further tests on the same plant. Therefore, a non-destructive method which is simple, inexpensive, and could yield an accurate estimation of leaf area will be a great benefit to researchers. A regression analysis was performed in order to determine the relationship between the leaf area and leaf width, leaf length, dry and fresh weight. For this purpose 50 mango seedlings of local selections were randomly took from a nursery in the Hormozgan province, and different parts of plants were separated in laboratory. Leaf area was measured by different method included leaf area meter, planimeter, ruler (length and width and the fresh and dry weight of leaves were also measured. The best regression models were statistically selected using Determination Coefficient, Maximum Error, Model Efficiency, Root Mean Square Error and Coefficient of Residual Mass. Overall, based on regression equation, a satisfactory estimation of leaf area was obtained by measuring the non-destructive parameters, i.e. number of leaf per seedling, length of the longest and width of widest leaf (R2 = 0.88 and also destructive parameters, i.e. dry weight (R2 = 0.94 and fresh weight (R2= 0.94 of leaves.

  14. Effects of leaf age within growth stages of pepper and sorghum plants on leaf thickness, water, chlorophyll, and light reflectance. [in spectral vegetation discrimination

    Science.gov (United States)

    Gausman, H. W.; Cardenas, R.; Berumen, A.

    1974-01-01

    Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.

  15. Impaired photosynthesis and increased leaf construction costs may induce floral stress during episodes of global warming over macroevolutionary timescales.

    Science.gov (United States)

    Haworth, Matthew; Belcher, Claire M; Killi, Dilek; Dewhirst, Rebecca A; Materassi, Alessandro; Raschi, Antonio; Centritto, Mauro

    2018-04-18

    Global warming events have coincided with turnover of plant species at intervals in Earth history. As mean global temperatures rise, the number, frequency and duration of heat-waves will increase. Ginkgo biloba was grown under controlled climatic conditions at two different day/night temperature regimes (25/20 °C and 35/30 °C) to investigate the impact of heat stress. Photosynthetic CO 2 -uptake and electron transport were reduced at the higher temperature, while rates of respiration were greater; suggesting that the carbon balance of the leaves was adversely affected. Stomatal conductance and the potential for evaporative cooling of the leaves was reduced at the higher temperature. Furthermore, the capacity of the leaves to dissipate excess energy was also reduced at 35/30 °C, indicating that photo-protective mechanisms were no longer functioning effectively. Leaf economics were adversely affected by heat stress, exhibiting an increase in leaf mass per area and leaf construction costs. This may be consistent with the selective pressures experienced by fossil Ginkgoales during intervals of global warming such as the Triassic - Jurassic boundary or Early Eocene Climatic Optimum. The physiological and morphological responses of the G. biloba leaves were closely interrelated; these relationships may be used to infer the leaf economics and photosynthetic/stress physiology of fossil plants.

  16. Drivers of leaf carbon exchange capacity across biomes at the continental scale.

    Science.gov (United States)

    Smith, Nicholas G; Dukes, Jeffrey S

    2018-04-29

    Realistic representations of plant carbon exchange processes are necessary to reliably simulate biosphere-atmosphere feedbacks. These processes are known to vary over time and space, though the drivers of the underlying rates are still widely debated in the literature. Here, we measured leaf carbon exchange in >500 individuals of 98 species from the neotropics to high boreal biomes to determine the drivers of photosynthetic and dark respiration capacity. Covariate abiotic (long- and short-term climate) and biotic (plant type, plant size, ontogeny, water status) data were used to explore significant drivers of temperature-standardized leaf carbon exchange rates. Using model selection, we found the previous week's temperature and soil moisture at the time of measurement to be a better predictor of photosynthetic capacity than long-term climate, with the combination of high recent temperatures and low soil moisture tending to decrease photosynthetic capacity. Non-trees (annual and perennials) tended to have greater photosynthetic capacity than trees, and, within trees, adults tended to have greater photosynthetic capacity than juveniles, possibly as a result of differences in light availability. Dark respiration capacity was less responsive to the assessed drivers than photosynthetic capacity, with rates best predicted by multi-year average site temperature alone. Our results suggest that, across large spatial scales, photosynthetic capacity quickly adjusts to changing environmental conditions, namely light, temperature, and soil moisture. Respiratory capacity is more conservative and most responsive to longer-term conditions. Our results provide a framework for incorporating these processes into large-scale models and a dataset to benchmark such models. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel eSchnaubelt

    2013-11-01

    Full Text Available Reduced glutathione (GSH is an abundant low molecular weight plant thiol. It fulfils multiple functions in plant biology, many of which remain poorly characterised. A phenomics approach was therefore used to investigate the effects of glutathione homeostasis on growth and stress tolerance in Arabidopsis thaliana. Rosette leaf area was compared in mutants that are either defective in GSH synthesis (cad2, pad2 and rax1 or the export of γ-glutamyl cysteine and GSH from the chloroplast (clt and in wild type plants under standard growth conditions and following exposure to a range of abiotic stress treatments, including oxidative stress, water stress and high salt. In the absence of stress, the GSH synthesis mutants had a significantly lower leaf area than the wild type. Conversely, the clt mutant has a greater leaf area and a significantly reduced lateral root density than the wild type. These findings demonstrate that cellular glutathione homeostasis exerts an influence on root architecture and on rosette area. An impaired capacity to synthesise GSH or a specific depletion of the cytosolic GSH pool did not adversely affect leaf area in plants exposed to short term abiotic stress. However, the negative effects of long term exposure to oxidative stress and high salt on leaf area were less marked in the GSH synthesis mutants than the wild type. These findings demonstrate the importance of cellular glutathione homeostasis in the regulation of plant growth under optimal and stress conditions.

  18. A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Schnaubelt, Daniel; Schulz, Philipp; Hannah, Matthew A; Yocgo, Rosita E; Foyer, Christine H

    2013-01-01

    Reduced glutathione (GSH) is an abundant low molecular weight plant thiol. It fulfills multiple functions in plant biology, many of which remain poorly characterized. A phenomics approach was therefore used to investigate the effects of glutathione homeostasis on growth and stress tolerance in Arabidopsis thaliana. Rosette leaf area was compared in mutants that are either defective in GSH synthesis (cad2, pad2, and rax1) or the export of γ-glutamylcysteine and GSH from the chloroplast (clt) and in wild-type plants under standard growth conditions and following exposure to a range of abiotic stress treatments, including oxidative stress, water stress, and high salt. In the absence of stress, the GSH synthesis mutants had a significantly lower leaf area than the wild type. Conversely, the clt mutant has a greater leaf area and a significantly reduced lateral root density than the wild type. These findings demonstrate that cellular glutathione homeostasis exerts an influence on root architecture and on rosette area. An impaired capacity to synthesize GSH or a specific depletion of the cytosolic GSH pool did not adversely affect leaf area in plants exposed to short-term abiotic stress. However, the negative effects of long-term exposure to oxidative stress and high salt on leaf area were less marked in the GSH synthesis mutants than the wild type. These findings demonstrate the importance of cellular glutathione homeostasis in the regulation of plant growth under optimal and stress conditions.

  19. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-03-01

    Full Text Available Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.

  1. Leaf surface anatomy in some woody plants from northeastern Mexico

    International Nuclear Information System (INIS)

    Maiti, R.; Rodriguez, H.G.; Balboa, P.C.R.; Kumari, A

    2016-01-01

    Studies on leaf surface anatomy of woody plants and its significance are rare. The present study was undertaken in the Forest Science Faculty Experimental Research Station, UANL, Mexico, with objectives to determine the variability in leaf surface anatomy in the woody plants of the Tamaulipan thornscrub and its utility in taxonomy and possible adaptation to the prevailing semiarid conditions. The results show the presence of large variability in several leaf anatomical traits viz., waxy leaf surface, type of stomata, its size, and distribution. The species have been classified on the basis of various traits which can be used in species delimitation and adaptation to the semiarid condition such as waxy leaf surface, absence sparse stomata on the leaf surface, sunken stomata. The species identified as better adapters to semi-arid environments on the basis of the presence and absence of stomata on both adaxial and abaxial surface viz., Eysenhardtia texana, Parkinsonia texana, Gymnosperma glutinosum, Celtis laevigata, Condalia hookeri and Karwinskia humboldtiana. (author)

  2. Antibacterial activity, chemical composition, and cytotoxicity of leaf?s essential oil from brazilian pepper tree (schinus terebinthifolius, raddi)

    OpenAIRE

    Silva, A.B.; Silva, T.; Franco, E.S.; Rabelo, S.A.; Lima, E.R.; Mota, R.A.; da C?mara, C.A.G.; Pontes-Filho, N.T.; Lima-Filho, J.V.

    2010-01-01

    The antibacterial potential of leaf?s essential oil (EO) from Brazilian pepper tree (Schinus terebinthifolius Raddi) against staphylococcal isolates from dogs with otitis externa was evaluated. The minimum inhibitory concentration of EO ranged from 78.1 to 1,250 ?g/mL. The oil was analyzed by GC and GC/MS and cytotoxicity tests were carried out with laboratory animals.

  3. Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2016-01-01

    Leaf dry matter content (LDMC) and specific leaf area (SLA) are two important traits in measuring biodiversity. To use remote sensing for the estimation of these traits, it is essential to understand the underlying factors that influence their relationships with canopy reflectance. The effect of

  4. [Effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone of western Sichuan, China].

    Science.gov (United States)

    Xu, Zhen-feng; Hu, Ting-xing; Zhang, Li; Zhang, Yuan-bin; Xian, Jun-ren; Wang, Kai-yun

    2009-01-01

    By using open-top chamber (OTC), the effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone of Western Sichuan were studied. The results showed that comparing with the control, the mean air temperature at 1.2 m above the ground throughout S. eriostachya growth season in OTC increased by 2.9 degrees C, while the soil temperature at the depth of 5 cm only increased by 0.4 degrees C. The temperature increase in OTC made S. eriostachya budding advanced and defoliation postponed obviously, and the leaf life-span longer. The leaf and branch growth rates as well as the specific leaf area in OTC increased obviously, whereas the leaf nitrogen concentration decreased significantly. In OTC, the stomata conductance, net photosynthetic rate, photorespiration, and dark respiration rate of S. eriostachya all exhibited an increasing trend. It was suggested that S. eriostachya had stronger capability to adapt to warming, and, under the background of future global climate change, the elevation of S. eriostachya distribution in the timberline ecotone would be likely to ascend.

  5. Litterfall and Leaf Area Index in the CONECOFOR Permanent Monitoring Plots

    Directory of Open Access Journals (Sweden)

    Andrea CUTINI

    2002-09-01

    Full Text Available Forest canopies are more sensitive and react more promptly to abiotic and biotic disturbances than other stand structural components. Monitoring crown and canopy characteristics is therefore a crucial issue for intensive and continuous monitoring programs of forest ecosystem status. These observations formed the basis for the measurement of annual litter production and leaf area index (LAI in the Italian permanent monitoring plots (CONECOFOR program established within the EC-UN/ECE program "Intensive Monitoring (Level II of Forest Ecosystems". Preliminary results after three years of observation are presented. The low value of within plot mean relative standard deviation (20.8 ± 1.9% of litter production, which in any case never exceeded 30%, accounted for the good sampling error and accuracy of the chosen method, which seems to be accurate enough to detect changes in litter production through the years. The higher inconsistency of the amount of woody and fruits fractions over the years demonstrated the greater reliability of leaf fraction or, on the other hand, of LAI compared to total litter. Mean values of annual leaf-litter and total litter production and LAI were rather high in comparison with data reported in literature for similar stands, and reflected both a medium-high productivity and a juvenile phase in the development of the selected stands on average. Focusing on changes in litter production through the years, statistical analysis on a sub-sample of plots showed the existence of significant differences both in leaf litter and total litter production. These findings seem to attribute to the "year" factor a driving role in determining changes in litter production and LAI. Temporal intermittence in data collection, together with the shortness of the monitoring period, make it difficult to speculate or arrive at definitive conclusions on changes in litter production due to time-dependent factors. The importance of having a complete

  6. Effects of canopy light distribution characteristics and leaf nitrogen content on efficiency of radiation use in dry matter accumulation of soybean [Glycine max] cultivars

    International Nuclear Information System (INIS)

    Shiraiwa, T.; Hashikawa, U.; Taka, S.; Sakai, A.

    1994-01-01

    The amount of dry matter produced per photosynthetically active radiation (PAR) intercepted by the canopy (EPAR) and factors which might affect EPAR were determined for various soybean cultivars, and their relationships were also analyzed in two field experiments. In 1989 and 1990, 11 cultivars and 27 cultivars respectively, were grown on an experimental field in shiga Prefectural Junior College. Changes of intercepted PAR, top dry matter weight, light extinction coefficient (KPAR), nitrogen content per leaf area (SLN) and nitrogen accumulation in the top (1990 only) were measured. EPAR averaged for all the cultivars was 2.48g MJ(-1) in both years and its coefficient of variance among cultivars was +- 9% in 1989 and +- 17% in 1990. In general, recent cultivars showed greater EPAR than older ones. The correlation coefficients between SLN and EPAR were 0.548 in 1989 and 0.651-- in 1990, while there was no correlation between KPAR and EPAR. Since SLN showed close correlation with SLW (r = 0.954 in 1989, r = 0.170-- in 1990), the difference in EPAR between old and new cultivars was considered to be attributable mainly to the improved leaf morphological trait and consequently greater leaf photosynthesis of newer cultivars. SLN further correlated with total top nitrogen content (r = 0.736-- in 1990) thus seemed to be limited by nitrogen accumulation

  7. Penumbra measurements of BeamModulatorTM multi leaf collimator

    International Nuclear Information System (INIS)

    Lu Xiaoguang; Wang Yunlai; Huo Xiaoqing; Sha Xiangyan; Miao Xiongfei

    2010-01-01

    Objective: To evaluate the penumbra of a new multileaf collimator equipped with Elekta Synergy accelerator. Methods: The penumbra were derived from beam profiles measured in air and water using PinPoint ion chamber with PTW MP3 water phantom. Variations of penumbra with X-ray beam energy, depth in water, and leaf position were investigated. Results: The penumbra in air for 6 MV X-ray was 2 mm less than that at depth of maximal dose in water. The penumbra of leaf side was 1 mm less than that of the leaf end. The penumbra had close relationship with beam energy, depth in water and leaf position. penumbra increased with beam quality and water depth. The leaf position had great influence on the penumbra. Conclusions: The penumbra of the multileaf collimator is related to its original design and radiation delivery technique. Special considerations should be taken into during treatment planning. Regular measurement should be performed to guarantee the delivery quality. (authors)

  8. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: implications for leaf wax reproduction and plant physiology.

    Science.gov (United States)

    Gao, Li; Huang, Yongsong

    2013-06-01

    Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.

  9. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE IN DIFFERENT CANOPY HEIGHTS.

    Directory of Open Access Journals (Sweden)

    Marinês Ferreira Pires

    2015-03-01

    Full Text Available Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were used for anatomical and biometrical analysis. For the anatomical analysis, leaves were fixed in FAA and stored in ethanol 70% and further submitted to transversal and paradermical sections. Slides were photomicrographed and image analysis was performed in UTHSCSA-Imagetool. For biometrical analysis leaf area, length, width, dry mass and specific leaf area were evaluated. The leaflets exhibited single layer epidermis, anomocytic and ciclocytic stomata, isobilateral mesophyll, subepidermal parenchyma layer in both adaxial and abaxial faces of epidermis, secretory vessels and lamellar collenchyma in midrib and leaf border. Leaf anatomy modifications occurred in cuticle and mesophyll thickness, vascular system, phloem thickness, and stomatal density in accordance with leaf canopy position. Leaves were smaller and with reduced leaf area at higher canopy positions. S. molle leaf anatomy is different from other species within Schinus genre with modifications under different environmental and physiological modifications promoted by its canopy height.

  10. The effect of glyphosate on import into a sink leaf of sugar beet

    International Nuclear Information System (INIS)

    Shieh, Wenjang; Geiger, D.R.

    1990-01-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying 14 CO 2 to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying 14 C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves

  11. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. 7 CFR 29.1162 - Leaf (B Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf (B Group). 29.1162 Section 29.1162 Agriculture... INSPECTION Standards Grades § 29.1162 Leaf (B Group). This group consists of leaves normally grown at or above the midportion of the stalk. Leaves of the B group have a pointed tip, tend to fold, usually are...

  13. Temperature-sensitive leaf color mutation in rice

    International Nuclear Information System (INIS)

    Shu Qingyao; Liu Guifu; Xia Yingwu

    1996-01-01

    Studies on the leaf color appearance of 4 chlorophyll-deficient mutation lines both in field and in phytotron were carried out. The mutation lines were induced by 60 Co gamma rays, and showed that white or yellow leaves at seedling stage were quite different from their-parent 2177 S, a thermal sensitive genie male sterile line and any other rice materials. The temperature had great influence on the expression of leaf color at seedling stage in the mutation lines. the leaf color was white at 30∼35 degree C for the lines W 4 and W 11 . The chlorophyll content of 1.5-leaf-age seedlings was 0.0219 and 0.0536 mg/g FW respectively for W 4 and W 11 at 35 degree C. When the temperature dropped to 20∼25 degree C, the seedlings showed yellow or yellowish and the chlorophyll content reached to 0.2410 and 0.3431 mg/g FW at 25 degree C, respectively. However, the responses to temperature for W 17 and W 25 were just the opposite. They were white at 20∼25 degree C, but appeared greenish at 30∼35 degree C. The chlorophyll content increased from 0.0813 and 0.0172 mg/g FW at 25 degree C to 1.0570 and 1.1367 mg/g FW at 35 degree C for the lines W 1 -7 and W 25 , respectively. The parent line 2177 S showed normal green and the chlorophyll content was between 2.108 and 2.118 mg/g FW. The W 11 is exception, which showed yellow to light green in lifetime, and all the mutation lines could convert to normal green after the extension of the fourth leaf. The chlorophyll content of 3.5-leaf-age W 4 and W 17 seedlings grown under 25 degree C reached to 2.2190 and 1.993 mg/g FW, which was about 86. 6% and 81.1% of that of 2177 S at the same stage. When grown at the temperature bellow 20 degree C, W 25 maintained white and could not changed into green after the 4th leaf extension, and showed a conditional lethal status

  14. Diallel analysis of leaf disease resistance in inbred Brazilian popcorn cultivars.

    Science.gov (United States)

    Vieira, R A; Scapim, C A; Moterle, L M; Tessmann, D J; Conrado, T V; Amaral Júnior, A T

    2009-12-01

    We estimated general and specific combining abilities and examined resistance to northern leaf blight (Exserohilum turcicum) and to gray leaf spot (Cercospora zeae-maydis) in a set of nine inbred popcorn lines. These inbreds were crossed in a complete diallel scheme without reciprocals, which produced 36 F(1) hybrids. Two experiments with a square lattice design and three replications were conducted during the 2008/2009 crop season, in Maringá, PR, Brazil. The severity of northern leaf blight and gray leaf spot was assessed under natural infestation conditions. Data were examined by individual and joint analysis of variance. Individual and joint Griffing's diallel analyses were carried out for adjusted means. General combining ability and specific combining ability were significant (P < 0.10) by the F-test for northern leaf blight and gray leaf spot infestation levels. This denotes that additive and non-additive gene effects both contributed to resistance to these diseases, but that the additive gene effects were more important. Among the inbred lines, P(8) and P(9) gave the highest resistance to northern leaf blight, and P(3) and P(4.3) gave the highest resistance to gray leaf spot. The hybrids P(7.4) x P(8) and P(4.3) x P(9) could be exploited by reciprocal recurrent selection to provide genotypes with both northern leaf blight and gray leaf spot resistance. Significant interaction between general combining ability and crop season (P < 0.10) denotes the importance of environment, even though the disease levels in the hybrids were quite consistent.

  15. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Directory of Open Access Journals (Sweden)

    Michael P Donovan

    Full Text Available Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  16. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Science.gov (United States)

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  17. Piper betel leaf: a reservoir of potential xenohormetic nutraceuticals with cancer-fighting properties.

    Science.gov (United States)

    Gundala, Sushma R; Aneja, Ritu

    2014-05-01

    Plants contain a much greater diversity of bioactive compounds than any man-made chemical library. Heart-shaped Piper betel leaves are magnificent reservoirs of phenolic compounds with antiproliferative, antimutagenic, antibacterial, and antioxidant properties. Widely consumed in South Asian countries, the glossy leaf contains a multitude of biophenolics such as hydroxychavicol, eugenol, chavibetol, and piperols. Convincing data underscore the remarkable chemotherapeutic and chemopreventive potential of betel leaves against a variety of cancer types. The leaf constituents modulate an extensive array of signaling molecules such as transcription factors as well as reactive oxygen species (ROS) to control multiple nodes of various cellular proliferation and death pathways. Herein, we provide an overall perspective on the cancer-fighting benefits of the phenolic phytochemicals in betel leaves and a comprehensive overview of the mechanisms responsive to dose-driven ROS-mediated signaling cascades conscripted by bioactive phenolics to confer chemotherapeutic and chemopreventive advantages. Intriguingly, these ROS-triggered responses are contextual and may either elicit a protective xenohormetic antioxidant response to premalignant cells to constitute a chemopreventive effect or generate a curative chemotherapeutic response by pro-oxidatively augmenting the constitutively elevated ROS levels in cancer cells to tip the balance in favor of selective apoptosis induction in cancer cells while sparing normal ones. In conclusion, this review provides an update on how distinct ROS levels exist in normal versus cancer cells and how these levels can be strategically modulated and exploited for therapeutic gains. We emphasize the yet untapped potential of the evergreen vine, betel leaf, for chemopreventive and chemotherapeutic management of cancer.

  18. Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing

    Science.gov (United States)

    Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian

    2017-04-01

    Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13

  19. Fire ants protect mealybugs against their natural enemies by utilizing the leaf shelters constructed by the leaf roller Sylepta derogata.

    Directory of Open Access Journals (Sweden)

    Aiming Zhou

    Full Text Available The importance of mutualism is receiving more attention in community ecology. In this study, the fire ant Solenopsis invicta was found to take advantage of the shelters constructed by the leaf roller Sylepta derogata to protect mealybugs (Phenacoccus solenopsis against their natural enemies. This protective effect of fire ant tending on the survival of mealybugs in shelters was observed when enemies and leaf rollers were simultaneously present. Specifically, fire ants moved the mealybugs inside the shelters produced by S. derogata on enemy-infested plants. Compared with that in plants without ants, the survival of mealybugs in shelters in the presence of natural enemies in plants with ants markedly improved. Both the protection of ants and the shelters provided by leaf rollers did not affect the survival of mealybugs in the absence of enemies in plants. Ants and leaf rollers significantly improved the survival of mealybugs in predator-infested plants, whereas no such improvement was observed in parasitoid-infested ones.

  20. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    Science.gov (United States)

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic

  1. Effects of an ultraviolet-visible rays translation film on growth of leaf or root vegetables

    International Nuclear Information System (INIS)

    Hamamoto, H.; Ueno, K.; Yamazaki, K.

    2008-01-01

    A new film that absorbs ultraviolet radiation (UV) and fluoresces red light was tested as a rain shelter for the cultivation of turnip (Brassica rapa L.), spinach (Spinacia oleracea L.), and Welsh onion (Allium fistulosum L.). The effect of this UV-visible ray translation film on various growth parameters (height, fresh and dry weight, leaf area and leaf sheath diameter) was compared with those under normal clear film, new UV-cut film, and used UV-cut film respectively. The transmissivity of UV was about 70% for the normal clear film, about 20% for the UV-visible ray translation film and used UV-cut film, and about 10% for the new UV-cut film. The transmissivity of photosynthetically active radiation (PAR) was about 90% for the normal clear film and the new UV-cut film, and about 80% for the used UV-cut film, while the mean transmissivity of PAR was about 80% for the UV-visible ray translation film, with about 60% transmissivity of blue radiation and over 90% of red radiation. The UV-visible ray translation film did not promote the growth of turnip roots but did significantly promote the growth of spinaches and Welsh onions compared with the normal clear film. The UV-visible ray translation film cover promoted the growth of spinaches and Welsh onions to a similar or greater extent compared to the new UV-cut film and also to a greater extent compared to the used UV-cut film

  2. Theoretical analysis of radiation field penumbra from a multi leaf collimator

    International Nuclear Information System (INIS)

    Li Shidong; Boyer, Arthur; Findley, David; Mok, Ed

    1996-01-01

    Purpose/Objective: Analysis and measurement of the difference between the light field and the radiation field of the multi leaf collimator (MLC) leaves that are constructed with curved ends. Material and Methods: A Varian MLC with curved leaf ends was installed on a Clinac 2300 C/D. The leaves were 6.13 cm deep (dimension in beam direction) and were located 53.9 cm from the x-ray target. The leaf ends had an 8 cm radius of curvature. A relation was derived using three dimensional geometry predicting the location of the light field edge relative to the geometric projection of the tip of the curved leaf end. This is a nonlinear relationship because the shadow of the leaf is generated by different points along the leaf end surface as the leaf moves across the field. The theoretical edge of the radiation fluence for a point source was taken to be located along the projection of a chord whose length was 1 Half-Value Thickness (HVT). The chords having projection points across the light field edge were computed using an analytical solution. The radiation transmission through the leaf end was then estimated. The HVT used for tungsten alloy, the leaf material, was 0.87 cm and 0.94 cm for the 6 MV and 15 MV photon beams, respectively. The location of the projection of the 1 HVT chord at a distance of 100 cm from x-ray target was also a nonlinear function of the projection of the leaf tip. Results: The displacement of the light field edge relative to the projection of the leaf tip varies from 0 mm when the leaf tip projects to the central axis, to approximately 3.2 mm for a 20 cm half-field width. The light field edge was always displaced into the unblocked area. The displacement of the projection of the 1 HVT chord relative to the projection of the leaf tip varies from 0.3 mm on the central axis to 3.0 mm for a 20 cm half-field width. The projection of 1 HVT chord was deviated from the light field edge by only 0.3 mm which would be slightly increased to 0.4 mm on decreasing

  3. Short Communication: The developmentt of a leaf tensilmeter for in ...

    African Journals Online (AJOL)

    The development of a portable leaf tensilmeter for the in situ measurement of leaf tensile strength is described. Tensile strength is determined by the distortion of strain gauges on modified stripping pliers which are used to break leaf blades. The output is displayed via an analogue chip through a liquid crystal display.

  4. Plant traits and environment: floating leaf blade production and turnover of waterlilies.

    Science.gov (United States)

    Klok, Peter F; van der Velde, Gerard

    2017-01-01

    Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba , Nuphar lutea , Nymphaea candida . The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/B max ) of the three species ranged from 1.35-2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94-4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53-0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba , may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  5. Incomplete resistance to coffee leaf rust (Hemileia vastatrix)

    NARCIS (Netherlands)

    Eskes, A.B.

    1983-01-01

    Incomplete resistance to coffee leaf rust ( Hemileia vastatrix ) may be of value in obtaining durable resistance, which is of great importance for the perennial coffee crop. Methods were developed to assess incomplete resistance to coffee leaf rust by using illustrated scales

  6. cassava brown streak disease effects on leaf metabolites

    African Journals Online (AJOL)

    USER

    Plate 1. Progression of CBSD in cassava leaves with scores 1= leaf from clean plant, no CBSD, 2 = Mild CBSD leaf veinal ... absorb the excess water, after which they were rolled ..... to low carbon dioxide exchange, as observed in sugar cane ...

  7. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity

    International Nuclear Information System (INIS)

    Elagoez, Vahram; Han, Susan S.; Manning, William J.

    2006-01-01

    Bush bean (Phaseolus vulgaris L.) lines 'S156' (O 3 -sensitive)/'R123' (O 3 -tolerant) and cultivars 'BBL 290' (O 3 -sensitive)/'BBL 274' (O 3 -tolerant) were used to study the effects of O 3 on stomatal conductance (g s ), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O 3 and plasticity of stomatal properties in response to O 3 . Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O 3 sensitivity and g s : while 'S156' had higher g s rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. G s rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O 3 -tolerant counterparts. Exposure to O 3 in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O 3 -sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O 3 concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O 3 concentrations (30 ppb). Exposure to O 3 eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O 3 and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O 3 has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This appeared to be more evident in O 3 -sensitive cultivars. - O 3 has the potential to affect stomatal development and the presence of different control mechanisms on each leaf surface is confirmed

  8. Leaf gas exchange of mature bottomland oak trees

    Science.gov (United States)

    Rico M. Gazal; Mark E. Kubiske; Kristina F. Connor

    2009-01-01

    We determined how changes in environmental moisture affected leaf gas exchange in Nuttall (Quercus texana Buckley), overcup (Q. lyrata Walt.), and dominant and codominant swamp chestnut (Q. michauxii Nutt.) oak trees in Mississippi and Louisiana. We used canopy access towers to measure leaf level gas...

  9. Leaf area estimation of cassava from linear dimensions

    Directory of Open Access Journals (Sweden)

    SAMARA ZANETTI

    2017-08-01

    Full Text Available ABSTRACT The objective of this study was to determine predictor models of leaf area of cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of cassava cultivar IAC 576-70.

  10. Leaf cuticles as mediators of environmental influences: new developments in the use of isolated cuticles

    International Nuclear Information System (INIS)

    Scherbatskoy, T.

    1994-01-01

    Isolated leaf cuticles have been used in our research to characterize trans-cuticular ion diffusion rates under various environmental treatments and to measure cuticular attenuation of solar radiation. These studies have been conducted to understand better the role of the leaf cuticle as a protective barrier against potential environmental stressors including acid rain, ozone and ultraviolet radiation. These studies provide examples of a variety of current research uses for isolated leaf cuticles. Ion permeability coefficients and exchange rates in isolated cuticles of Acer, Prunus and Citrus species have been studied using several experimental approaches, including measurement of adsorption kinetics, electrical potential and conductance, and perfusion rates. Measured electrical (diffusion) potentials under KCl gradients across isolated cuticles are positive, indicating greater cation permeability. Electrical potentials (and permeability coefficients) vary with ionic strength and pH, and affect the driving force for ion diffusion through cuticles. Ion permeability in cuticles of Prunus serotina foliage was affected by experimental exposure to ozone and ultraviolet treatments. These studies indicate that cuticle permeability properties can be significantly altered by environmental factors. These and related studies on the ion exchange kinetics of Acer saccharum leaf cuticles suggest that foliar ''leaching'' is dominated by cuticle surface exchange mechanisms, with the magnitude of cuticular ion permeation being relatively small. In working with various hardwood species, we observed that the success rate for cuticle isolation varies with tree species and time of year. Scanning electron micrographs of inner cuticle surfaces indicate that the effects of enzymatic digestion could vary with exposure time, possibly affecting transport properties of isolated cuticles. Experimental work to test this in Citrus, however, showed no significant effect of isolation time on

  11. Sorption of lead from aqueous solutions by spent tea leaf | Yoshita ...

    African Journals Online (AJOL)

    Pb) from solution. The Pb removal by the spent tea leaf adsorbent depended on pretreatment of spent tea leaf, adsorption contact time and adsorbent dosage. The optimum pretreatment conditions were confirmed to be that tea leaf was ground ...

  12. Leaf appearance rate and final main stem leaf number as affected by temperature and photoperiod in cereals grown in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Ezio Riggi

    2017-09-01

    Full Text Available In the present study, a two-year field trial was carried out with the aim to evaluate daylength and air temperature effects on leaf appearance and related rates in two durum wheat (Triticum durum Desf., two bread wheat (Triticum aestivum L. and two barley (Hordeum vulgare L. cultivars, using six different sowing dates (SD. Significant effects of SD on final main stem leaf number (FLN, thermal leaf appearance rate (TLAR, daily leaf appearance rate (DLAR and phyllochron (PhL were found. Cultivars resulted inversely correlated to mean air temperature in the interval emergence - fifth leaf full expansion (E-V. Linear response of leaf number over days after sowing was shown for all SD and cultivars, with R2 higher than 0.95. FLN linearly decreased from the first to the last SD for durum wheat, while more variable behaviour was observed in bread wheat. TLAR and DLAR showed a linear increment of the rate from the first to the last SD in durum wheat, while did not for bread wheat and barley. PhL in durum wheat decreased from the first to the last SD. Barley and bread wheat showed the highest values on those SDs which did not reach flowering. The increase of TLAR was affected by photoperiod and photothermal units in durum wheat, while by temperatures only in barley and bread wheat. Present results might find practical application in the improvement of phenology simulation models for durum wheat, bread wheat and barley grown in Mediterranean area in absence of water and nutrient stress.

  13. Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less

    Directory of Open Access Journals (Sweden)

    MC. Souza

    Full Text Available Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA of Vernonia ferruginea using the length (L and width (W leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2. Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.

  14. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes.

    Science.gov (United States)

    Vincent, Gregoire

    2006-02-01

    The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.

  15. Linkage between canopy water storage and drop size distributions of leaf drips

    Science.gov (United States)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu

    2013-04-01

    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  16. Plant traits and environment: floating leaf blade production and turnover of waterlilies

    Directory of Open Access Journals (Sweden)

    Peter F. Klok

    2017-04-01

    Full Text Available Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L. Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  17. Effects of combination of leaf resources on competition in container mosquito larvae.

    Science.gov (United States)

    Reiskind, M H; Zarrabi, A A; Lounibos, L P

    2012-08-01

    Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.

  18. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs.

    Science.gov (United States)

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-03-31

    In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.

  19. 7 CFR 29.2662 - Heavy Leaf (B Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Heavy Leaf (B Group). 29.2662 Section 29.2662 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2662 Heavy Leaf (B Group). This group consists of leaves...

  20. Coconut leaf bioactivity toward generalist maize insect pests

    Science.gov (United States)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  1. Nutritive evaluation of Telfairia occidentalis leaf protein concentrate ...

    African Journals Online (AJOL)

    Leaf meal (LM), leaf proteins concentrate (LPC) and LPC residues from Telfairia occidentalis were produced, chemically characterized and the protein quality of the LPC evaluated using rats. Five infant weaning foods were formulated using varying combinations of T. occidentalis LPC and soybean meal. These foods were ...

  2. Peach leaf responses to soil and cement dust pollution.

    Science.gov (United States)

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  3. Evaluating a tobacco leaf humidification system involving nebulisation

    Directory of Open Access Journals (Sweden)

    Néstor Enrique Cerquera Peña

    2010-05-01

    Full Text Available A tobacco leaf humidifying system involving nebulisation was designned, implemented and evaluated; it had a system for monitoring and recording environmental conditions thereby producing an environment having more homogeneous relative humidity, ensuring better water use, better control of relative humidity and better control in managing cured tobacco leaf moisture content, thereby leading to a consequent improvement in final product quality. 55% to 75% relative humidity and 4 to 6 hour working ranges were obtained to en- sure leaf humidification reached 16% humidity on a wet basis. Two new designs are proposed for the conditioning stage regarding this conditioning chamber’s operational management, based on the results and field observations, which would allow better leaf management, thereby avoiding the risk of losses due to manipulation and over-humidification. This work strengthens research in the field of tobacco pos- tharvest technology, complementing other research projects which have been carried out in Colombia.

  4. Neofusicoccum luteum associated with leaf necrosis and fruit rot of olives in New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    V. Sergeeva

    2009-09-01

    Full Text Available Neofusicoccum luteum is reported for the first time from olives (Olea europaea, causing fruit rot and leaf necrosis. Affected fruits initially became brown with pycnidia developing on the surface, later drying out and becoming mummified. The fungus was shown to be pathogenic on both fruits and leaves. The association of Botryosphaeriaceae with rotting olive fruits in Mediterranean regions and in New South Wales, Australia indicates that these fungi play a significant role in fruit rots of olives and deserve greater attention.

  5. Morfoanatomia foliar de microorquídeas de Ornithocephalus Hook. e Psygmorchis Dodson & Dressler Leaf anatomy of micro-orchids of Ornithocephalus Hook. and Psygmorchis Dodson & Dressler

    Directory of Open Access Journals (Sweden)

    Rayza Carla Lopes Della Colleta

    2008-12-01

    Full Text Available Analisou-se a morfoanatomia foliar de Ornithocephalus bicornis Lindl. ex Benth., Ornithocephalus myrticola Lindl., Psygmorchis pusilla (L. e Psygmorchis glossomystax (Rchb. f., a fim de identificar caracteres de valor taxonômico e significado ecológico. Folhas expandidas foram coletadas na região de Alta Floresta, MT. As amostras foram incluídas em metacrilato, cortadas em micrótomo de mesa e corados com azul de toluidina. As lâminas foram montadas em resina sintética ou gelatina glicerinada. Epidermes foliares foram dissociadas e testes histoquímicos aplicados. As plantas observadas neste estudo são epífitas, carnosas e não apresentam pseudobulbos. A epiderme é uniestratificada e delgada com exceção de O. bicornis que é espessa, apresentando cutícula delgada e lisa. As espécies estudadas apresentam folhas anfiestomáticas com os estômatos presentes no mesmo nível das células epidérmicas. Os estômatos geralmente são anomocíticos e tetracíticos em O. myrticola, P. pusilla e P. glossomystax. Em O. bicornis ocorrem tetracítico, anisocítico e actinocítico. As células-guarda são de paredes periclinais espessas e as câmaras subestomática são pequenas, exceto em P. pusilla. Com exceção de O. bicornis, o mesofilo das espécies é heterogêneo, sendo constituído de diferentes tipos de parênquima. Os feixes vasculares são colaterais. As espécies foram consideradas mesófilas.Leaf anatomy of O. bicornis Lindl. ex Benth., O. myrticola Lindl., P. pusilla (L. and P. glossomystax (Rchb. f. was analyzed to identify valuable taxonomic and ecological traits. Expanded leaves were collected in the Alta Floresta, Mato Grosso State, region. Leaf samples embedded in methacrylate were cut with a table microtome and stained with toluidine blue. Slides were mounted in synthetic resin or in glycerin gelatin. Leaf tissues were dissociated and histochemical tests applied. Plants observed in this study are succulent epiphytes without

  6. Responses of rubber leaf phenology to climatic variations in Southwest China

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  7. Phenotypic characterization and inheritance of two foliar mutants in pea (Pisum Sativum L.): 'Reduced leaf size' and 'Orange leaf'

    International Nuclear Information System (INIS)

    Naidenova, N.; Vassilevska-Ivanova, R.; Tcekova, Z.

    2003-01-01

    Two foliar pea (Pisum sativum L.) mutants characterized by reduced leaf size (2/978) and orange leaf (2/1409 M) were established. Both mutants were described morphologically and their productivity potential , pollen viability and inheritance of the mutant traits were evaluated. The mutant 2/978 was identified after irradiation of dry seeds from cv Borek with 15 Gy fast neutrons and was related to the leaf mutation 'rogue'. Reciprocal crosses between mutant 2/978 and cv Borel were executed, and F 1 and F 2 generations were analyzed. The altered leaf trait was presented in all F 1 plants suggesting a dominant character. F 2 segregation data indicated that the trait was controlled by a single dominant gene. The mutant 2/1409M originated from the mutant 2/978 after irradiation with 50 Gy γ-rays. The main mutant's phenotypic characteristic was the orange-yellow coloration of leaves and plants. After of series of crosses it was established that induced chlorophyll mutation is monogenic, recessive and both mutant traits are independently inherited. Two mutants could be used as appropriate plant material for genetic and biological investigations

  8. Hyperbolic projections of siemens 3d-mlc leaf paths

    International Nuclear Information System (INIS)

    Menzies, N.

    2004-01-01

    Full text: The Siemens Primus linear accelerator has the option of being fitted with a multi-leaf collimator (3D-MLC) that is marketed as having 'double focus', to achieve a constant dose penumbra for all leaf settings. This is achieved by moving the leaves through arcs (similar to some conventional collimator jaws), as well as shaping the leaf side-faces as divergent planes from the x-ray source. One consequence of the mechanical design of the 3D-MLC is that as individual leaves are moved, their projections from the light / x-ray source to the treatment plane follow paths that are hyperbolic, as shown in the figure below. (The eccentricity of the hyperbola is a function of leaf number / distance from centre.) The trajectories of the MLC leaves were modelled (in a spreadsheet) using geometrical projections of the MLC leaves to the treatment plane, with construction details provided in Siemens documentation. The results were checked against the image of the leaf in the linac light field. This problem belongs to the class of conic sections in mathematics, where the intersection of a plane with both nappes of a double right circular cone results in a hyperbola. The good agreement between the model and the light field image provided confirmation of the MLC construction details. AS/NZS 4434.1:1996 (reproduced from IEC 976:1989) provides specifications for maximum deviation from orthogonality of adjacent edges, which can be interpreted for MLC collimators to parallelism of the direction of leaf travel and the adjacent collimator edge (e.g. Elekta ATS). However for the Siemens 'double focused' MLC, it is demonstrated that the geometrical construction of the MLC militates against the leaf image being used for this kind of test. It is also demonstrated that at last one commercial treatment planning system models the Siemens leaf trajectories linearly. The clinical significance of the error in this model is shown to be negligible. Copyright (2004) Australasian College of

  9. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results.

    Science.gov (United States)

    Ota, Masakazu; Kwamena, Nana-Owusua A; Mihok, Steve; Korolevych, Volodymyr

    2017-11-01

    Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models

  10. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  11. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    Science.gov (United States)

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Computer aided FEA simulation of EN45A parabolic leaf spring

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2013-04-01

    Full Text Available This paper describes computer aided finite element analysis of parabolic leaf spring. The present work is an improvement in design of EN45A parabolic leaf spring used by a light commercial automotive vehicle. Development of a leaf spring is a long process which requires lots of test to validate the design and manufacturing variables. A three-layer parabolic leaf spring of EN45A has been taken for this work. The thickness of leaves varies from center to the outer side following a parabolic pattern. These leaf springs are designed to become lighter, but also provide a much improved ride to the vehicle through a reduction on interleaf friction. The CAD modeling of parabolic leaf spring has been done in CATIA V5 and for analysis the model is imported in ANSYS-11 workbench. The finite element analysis (FEA of the leaf spring has been carried out by initially discretizing the model into finite number of elements and nodes and then applying the necessary boundary conditions. Maximum displacement, directional displacement, equivalent stress and weight of the assembly are the output targets of this analysis for comparison & validation of the work.

  13. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae).

    Science.gov (United States)

    Edwards, Erika J

    2006-01-01

    Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits - mid-day leaf water potentials and photosynthetic water use efficiency - correlated with estimates of moisture regime. In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation.

  14. The leaf phenophase of deciduous species altered by land pavements

    Science.gov (United States)

    Chen, Yuanyuan; Wang, Xiaoke; Jiang, Bo; Li, Li

    2018-02-01

    It has been widely reported that the urban environment alters leaf and flowering phenophases; however, it remains unclear if land pavement is correlated with these alterations. In this paper, two popular deciduous urban trees in northern China, ash (Fraxinus chinensis) and maple (Acer truncatum), were planted in pervious and impervious pavements at three spacings (0.5 m × 0.5 m, 1.0 m × 1.0 m, and 2.0 m × 2.0 m apart). The beginning and end dates of the processes of leaf budburst and senescence were recorded in spring and fall of 2015, respectively. The results show that leaf budburst and senescence were significantly advanced in pavement compared to non-pavement lands. The date of full leaf budburst was earlier by 0.7-9.3 days for ash and by 0.3-2.3 days for maple under pavements than non-pavements, respectively. As tree spacing increases, the advanced days of leaf budburst became longer. Our results clearly indicate that alteration of leaf phenophases is attributed to land pavement, which should be taken into consideration in urban planning and urban plant management.

  15. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    Science.gov (United States)

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  16. Natural Pineapple Leaf Fibre Extraction On Josapine And Morris

    OpenAIRE

    Mazalan Muhammad Firdaus; Yusof Yusri

    2017-01-01

    The pineapple’s leaf plant contains approximately 2.5% to 3.5% of strong white silky fibres. These fibres are useful and can be extracted from the leaves. There are a few ways to extract the fibre such as hand scrapping and by extraction machine. The objective of this research is to study the quality of fibre extraction by using different age of pineapple leaf. Next, the study aims to compare the quality of Josapine and Morris pineapple leaf with tensile test. Fibre yield percentage are calcu...

  17. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting.

    Science.gov (United States)

    Garrett, Ryan W; Carlson, Katherine A; Goggans, Matthew Scott; Nesson, Michael H; Shepard, Christopher A; Schofield, Robert M S

    2016-01-01

    Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants.

  18. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  19. Evaluation of leaf energy dissipation by the Photochemical Reflectance

    Science.gov (United States)

    Raddi, S.; Magnani, F.

    Starting from the early paper by Heber (1969), several studies have demonstrated a subtle shift in leaf spectroscopic characteristics (both absorbance and reflectance) in response to rapid changes in environmental conditions. More recent work, briefly reviewed here, has also demonstrated the existence of two components in the maked peak centered at 505-540 nm: an irreversible component, attributed to the interconversion of leaf xanthophylls, and a reversible component at slightly longer wavelengths, resulting from conformational changes induced by the buildup of a pH gradient across the thylakoid membrane associated with photosynthetic electron transport. Both processes (xanthophyll de-epoxidation and conformational changes) are known to contribute to the dissipation of excess energy in Photosystem II (PSII). Leaf spectroscopy could therefore provide a powerful non-invasive tool for the determination of leaf photosynthetic processes. This led to the development of the normalized spectral index PRI (Photochemical Reflectance Index; Gamon, Penuelas &Field 1992; Gamon, Serrano &Surfus 1997), which relates the functional signal at 531 nm to a reference signal at 570 nm. The index has been found to track diurnal changes in xanthophyll de-epoxidation state, radiation use efficiency and fluorescence in response to light, both at the leaf and more recently at the canopy level. A common relationship has also beenreported across species and functional types, although such a generality has not always been confirmed. Recent reports (Stylinski et al. 2000) have also hinted of a possible link between PRI and leaf photosynthetic potential, possibly through the correlation between xanthophyll content and electron transport machinery in the chloroplast. Such a link, if confirmed, could prove very useful for the remote sensing and modelling ofvegetation. Some of these open questions were addressed in the present study. The correlation between leaf function and reflectance was

  20. Translational researches on leaf senescence for enhancing plant productivity and quality.

    Science.gov (United States)

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01

    Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission

    Science.gov (United States)

    Lee, G.; Sen, B.; Ross, F.; Sokol, D.

    2016-12-01

    Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.

  2. Butterfly Learning and the Diversification of Plant Leaf Shape

    Directory of Open Access Journals (Sweden)

    Denise Dalbosco Dell'aglio

    2016-07-01

    Full Text Available Visual cues are important for insects to find flowers and host plants. It has been proposed that the diversity of leaf shape in Passiflora vines could be a result of negative frequency dependent selection driven by visual searching behavior among their butterfly herbivores. Here we tested the hypothesis that Heliconius butterflies use leaf shape as a cue to initiate approach towards a host plant. We first tested for the ability to recognize shapes using a food reward conditioning experiment. Butterflies showed an innate preference for flowers with three and five petals. However, they could be trained to increase the frequency of visits to a non-preferred flower with two petals, indicating an ability to learn to associate shape with a reward. Next we investigated shape learning specifically in the context of oviposition by conditioning females to lay eggs on two shoots associated with different artificial leaf shapes: their own host plant, Passiflora biflora, and a lanceolate non-biflora leaf shape. The conditioning treatment had a significant effect on the approach of butterflies to the two leaf shapes, consistent with a role for shape learning in oviposition behavior. This study is the first to show that Heliconius butterflies use shape as a cue for feeding and oviposition, and can learn shape preference for both flowers and leaves. This demonstrates the potential for Heliconius to drive negative frequency dependent selection on the leaf shape of their Passiflora host plants.

  3. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  4. Ecophysiological function of leaf 'windows' in Lithops species - 'Living Stones' that grow underground.

    Science.gov (United States)

    Martin, C E; Brandmeyer, E A; Ross, R D

    2013-01-01

    Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Guerra, Mauro; Carvalho, Maria Luisa [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Universidade Nova de Lisboa, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Gac, Agnes le [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Universidade Nova de Lisboa, Departamento de Conservacao e Restauro, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2014-09-15

    In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (∝1573-1603) and two screens belonging to the early Edo period (∝1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs. (orig.)

  6. Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence

    International Nuclear Information System (INIS)

    Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta; Guerra, Mauro; Carvalho, Maria Luisa; Gac, Agnes le

    2014-01-01

    In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (∝1573-1603) and two screens belonging to the early Edo period (∝1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs. (orig.)

  7. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  8. Novel fungal disease in complex leaf-cutting ant societies

    DEFF Research Database (Denmark)

    Hughes, David Peter; Evans, Harry C.; Hywel-Jones, Nigel

    2009-01-01

    1. The leaf-cutting ants practise an advanced system of mycophagy where they grow a fungus as a food source. As a consequence of parasite threats to their crops, they have evolved a system of morphological, behavioural, and chemical defences, particularly against fungal pathogens (mycopathogens). 2....... Specific fungal diseases of the leaf-cutting ants themselves have not been described, possibly because broad spectrum anti-fungal defences against mycopathogens have reduced their susceptibility to entomopathogens. 3. Using morphological and molecular tools, the present study documents three rare infection...... events of Acromyrmex and Atta leaf-cutting ants by Ophiocordyceps fungi, agenus of entomopathogens that is normally highly specific in its host choice. 4. As leaf-cutting ants have been intensively studied, the absence of prior records of Ophiocordyceps suggests that these infections may be a novel event...

  9. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development.

    Science.gov (United States)

    Chen, Yigen; Poland, Therese M

    2009-07-01

    Biotic and abiotic environmental factors affect plant nutritional quality and defensive compounds that confer plant resistance to herbivory. Influence of leaf age, light availability, and girdling on foliar nutrition and defense of green ash (Fraxinus pennsylvanica Marsh) was examined in this study. Longevity of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), adults reared on green ash foliage subjected to these factors was assayed. Mature leaves generally were more nutritious with greater amino acids and a greater ratio of protein to non-structural carbohydrate (P:C) than young leaves, in particular when trees were grown in shade. On the other hand, mature leaves had lower amounts of trypsin and chymotrypsin inhibitors, and total phenolics compared to young leaves. Lower defense of mature leaves alone, or along with higher nutritional quality may lead to increased survival and longevity of emerald ash borer feeding on mature leaves. Sunlight reduced amino acids and P:C ratio, irrespective of leaf age and girdling, and elevated total protein of young foliage, but not protein of mature leaves. Sunlight also dramatically increased all investigated defensive compounds of young, but not mature leaves. Girdling reduced green ash foliar nutrition, especially, of young leaves grown in shade and of mature leaves grown in sun. However emerald ash borer performance did not differ when fed leaves from trees grown in sun or shade, or from girdled or control trees. One explanation is that emerald ash borer reared on lower nutritional quality food may compensate for nutrient deficiency by increasing its consumption rate. The strong interactions among leaf age, light intensity, and girdling on nutrition and defense highlight the need for caution when interpreting data without considering possible interactions.

  10. Radioprotection of Swiss albino mice by Adhatoda vesica leaf extract

    International Nuclear Information System (INIS)

    Kumar, A.

    2003-01-01

    Full text: The radioprotective role of aqueous extract of Adhatoda vesica leaf extract against radiation induced hematological alterations in peripheral blood of Swiss albino mice was studied at various post-irradiation intervals between 6 hrs to 30 days. Oral administration of Adhatoda vesica leaf extract (800 mg / kg body weight) prior to whole-body irradiation showed a significant protection in terms of survival percentage and hematological parameters. Mice exposed to radiation (8 Gy) without Adhatoda vesica leaf extract pre-treatment exhibited signs of radiation sickness like anorexia, lethargicity, ruffled hairs and diarrhoea and such animals died within 26 days post-irradiation. The dose reduction factor (DRF=1.6) for Adhatoda vesica leaf extract was calculated from LD50/30 values. A significant decline in hematological constituents (RBCs, WBCs, Hb and Hct) was evident till day 15, at later period of observation (day 15 onwards), no animals could survive from control group whereas, in Adhatoda vesica leaf extract pre-treated irradiated group, a gradual recovery was noted in the hematological values. However, these hematological values remained significantly below the normal even till day 30. A significant decrease in GSH was recorded in control animals. Experimental animals showed a significant increase in GSH content (blood as well as liver) with respect to control, but such values remained below normal. A significant increase in TBARS level in liver and serum was evident in control animals. Although, no significant difference was noticed in such levels in normal and Adhatoda vesica leaf extract treated animals. But, a significant decrease was registered in Adhatoda vesica leaf extract pretreated irradiated animals. The results from the present study suggest that Adhatoda vesica leaf extract has radioprotective role in stimulating/protecting the hematopoietic system thereby enhancing the survival and increasing the hematological constituents in peripheral

  11. Leaf and stem morphoanatomy of Petiveria alliacea.

    Science.gov (United States)

    Duarte, M R; Lopes, J F

    2005-12-01

    Petiveria alliacea is a perennial herb native to the Amazonian region and used in traditional medicine for different purposes, such as diuretic, antispasmodic and anti-inflammatory. The morphoanatomical characterization of the leaf and stem was carried out, in order to contribute to the medicinal plant identification. The plant material was fixed, freehand sectioned and stained either with toluidine blue or astra blue and basic fuchsine. Microchemical tests were also applied. The leaf is simple, alternate and elliptic. The blade exhibits paracytic stomata on the abaxial side, non-glandular trichomes and dorsiventral mesophyll. The midrib is biconvex and the petiole is plain-convex, both traversed by collateral vascular bundles adjoined with sclerenchymatic caps. The stem, in incipient secondary growth, presents epidermis, angular collenchyma, starch sheath and collateral vascular organization. Several prisms of calcium oxalate are seen in the leaf and stem.

  12. 7 CFR 29.2438 - Thin Leaf (C Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves... body than those of the B group, and show little or no ground injury. Choice- and fine-quality tobacco...

  13. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of leaves normally grown at or above the midportion of the stalk. Leaves of the H group show a high degree...

  14. Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth?

    Science.gov (United States)

    Sides, Colby B; Enquist, Brian J; Ebersole, James J; Smith, Marielle N; Henderson, Amanda N; Sloat, Lindsey L

    2014-01-01

    Darwin first proposed that species with larger ecological breadth have greater phenotypic variation. We tested this hypothesis by comparing intraspecific variation in specific leaf area (SLA) to species' local elevational range and by assessing how external (abiotic) filters may influence observed differences in ecological breadth among species. Understanding the patterns of individual variation within and between populations will help evaluate differing hypotheses for structuring of communities and distribution of species. We selected 21 species with varying elevational ranges and compared the coefficient of variation of SLA for each species against its local elevational range. We examined the influence of external filters on local trait composition by determining if intraspecific changes in SLA with elevation have the same direction and similar rates of change as the change in community mean SLA value. In support of Darwin's hypothesis, we found a positive relationship between species' coefficient of variation for SLA with species' local elevational range. Intraspecific changes in SLA had the same sign, but generally lower magnitude than the community mean SLA. The results indicate that wide-ranging species are indeed characterized by greater intraspecific variation and that species' phenotypes shift along environmental gradients in the same direction as the community phenotypes. However, across species, the rate of intraspecific trait change, reflecting plastic and/or adaptive changes across populations, is limited and prevents species from adjusting to environmental gradients as quickly as interspecific changes resulting from community assembly.

  15. Determining past leaf-out times of New England's deciduous forests from herbarium specimens.

    Science.gov (United States)

    Everill, Peter H; Primack, Richard B; Ellwood, Elizabeth R; Melaas, Eli K

    2014-08-01

    • There is great interest in studying leaf-out times of temperate forests because of the importance of leaf-out in controlling ecosystem processes, especially in the face of a changing climate. Remote sensing and modeling, combined with weather records and field observations, are increasing our knowledge of factors affecting variation in leaf-out times. Herbarium specimens represent a potential new source of information to determine whether the variation in leaf-out times observed in recent decades is comparable to longer time frames over past centuries.• Here we introduce the use of herbarium specimens as a method for studying long-term changes in leaf-out times of deciduous trees. We collected historical leaf-out data for the years 1834-2008 from common deciduous trees in New England using 1599 dated herbarium specimens with young leaves.• We found that leaf-out dates are strongly affected by spring temperature, with trees leafing out 2.70 d earlier for each degree C increase in mean April temperature. For each degree C increase in local temperature, trees leafed out 2.06 d earlier. Additionally, the mean response of leaf-out dates across all species and sites over time was 0.4 d earlier per decade. Our results are of comparable magnitude to results from studies using remote sensing and direct field observations.• Across New England, mean leaf-out dates varied geographically in close correspondence with those observed in studies using satellite data. This study demonstrates that herbarium specimens can be a valuable source of data on past leaf-out times of deciduous trees. © 2014 Botanical Society of America, Inc.

  16. A sensitive hydrogen peroxide sensor based on leaf-like silver

    International Nuclear Information System (INIS)

    Meng, Zuchao; Zhang, Mingyin; Zhang, Hongfang; Zheng, Jianbin

    2014-01-01

    A novel non-enzymatic hydrogen peroxide sensor based on leaf-like silver was constructed. The leaf-like silver was synthesized on the surface of L-cysteine (L-cys) by electrodeposition. Scanning electron microscopy and electrochemical techniques were used to characterize the leaf-like silver nanoparticles. The sensor showed high electrocatalytic activity towards the reduction of hydrogen peroxide. A wide linear range of 2.5–1.5 mM with a low detection limit of 0.7 µM was obtained. Excellent electrocatalytic activity, large surface-to-volume ratio and efficient electron transport properties of leaf-like silver have enabled stable and highly sensitive performance for the non-enzymatic hydrogen peroxide sensor. (paper)

  17. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    Science.gov (United States)

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  18. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression

    Directory of Open Access Journals (Sweden)

    Robert M. Augé

    2016-07-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER, stomatal conductance (gs and transpiration rate (E has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen: phosphorus ratio and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28% and 26%, respectively. Carbon exchange rate has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  19. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  20. 7 CFR 29.2437 - Heavy Leaf (B Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Heavy Leaf (B Group). 29.2437 Section 29.2437... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2437 Heavy Leaf (B Group). This group consists of leaves..., are heavier in body than those of the X or C groups, and show no ground injury. Choice- and fine...

  1. The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake

    Science.gov (United States)

    Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.

    2017-12-01

    Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; pmake an important step towards improving the accuracy of global carbon budgets.

  2. Leaf shape responds to temperature but not CO2 in Acer rubrum.

    Science.gov (United States)

    Royer, Dana L

    2012-01-01

    The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO(2) concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO(2) has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO(2) conditions. The CO(2) treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate.

  3. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  4. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    Science.gov (United States)

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  5. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  6. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    Directory of Open Access Journals (Sweden)

    Anne eMaillard

    2015-05-01

    Full Text Available Higher plants have to cope with fluctuating mineral resource availability. However strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare and tree species (Quercus robur, Populus nigra, Alnus glutinosa grown under field conditions were harvested regularly during their life span and analysed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize to 90% (wheat, other macronutrients (K-P-S-Mg were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu or increased by nutrient deficiency (K-P-Mg while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  7. Biophysical constraints on leaf expansion in a tall conifer.

    Science.gov (United States)

    Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian

    2008-01-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...

  8. Effect of enhanced UV-B radiation of adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple

    International Nuclear Information System (INIS)

    Gordon, D.C.; Percy, K.E.; Riding, R.T.

    1998-01-01

    Sugar maple (Acer saccharum [Marsh.]) seedlings were exposed to UV-B BE ranging from 0.61 kJ m -2 d -1 to 12.48 kJ m -2 d -1 . Increasing UV-B intensity was associated with changes in micromorphological characteristics of the adaxial leaf surface. In vivo incorporation of [1- 14 C] acetate into sugar maple adaxial leaf surface epicuticular wax indicated (p<0.05) a UV-B sensitivity threshold at or near 6.2 kJ m -2 d -1 . Exposure to dosages greater than 6.2 kJ m -2 d -1 resulted in a significant (p<0.05) decrease in wax biosynthesis. The proportion of [1- 14 C] acetate incorporated into each of the different epicuticular wax classes changed with increasing UV-B. Incorporation of [1- 14 C] acetate into alkyl esters decreased while incorporation into alkanes increased with increasing UV-B dose. The effects of enhanced UV-B dose recorded in this experiment may have implications for cuticle function. (author)

  9. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  10. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    Science.gov (United States)

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Elagoez, Vahram [Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 (United States)]. E-mail: velagoz@nsm.umass.edu; Han, Susan S. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2006-04-15

    Bush bean (Phaseolus vulgaris L.) lines 'S156' (O{sub 3}-sensitive)/'R123' (O{sub 3}-tolerant) and cultivars 'BBL 290' (O{sub 3}-sensitive)/'BBL 274' (O{sub 3}-tolerant) were used to study the effects of O{sub 3} on stomatal conductance (g {sub s}), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O{sub 3} and plasticity of stomatal properties in response to O{sub 3}. Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O{sub 3} sensitivity and g {sub s}: while 'S156' had higher g {sub s} rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. G {sub s} rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O{sub 3}-tolerant counterparts. Exposure to O{sub 3} in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O{sub 3}-sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O{sub 3} concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O{sub 3} concentrations (30 ppb). Exposure to O{sub 3} eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O{sub 3} and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O{sub 3} has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This

  12. Induced leaf variations in faba bean

    International Nuclear Information System (INIS)

    Yasin, M.

    1996-01-01

    The frequency and spectrum of M2 chlorophyll and other leaf mutations after gamma ray, ethyl methane sulfonate (EMS) and nitrous oxide (N2O) seed treatment in two varieties of faba bean were studied. In general, cv JV1 was more sensitive and EMS treatment was most effective. The frequency of chlorina-type mutations was higher than that of xantha and chlorotica type chlorophyll mutations. The highest frequency of variations was observed in leaflet texture, followed by arrangement, shape and size in both varieties. The use of these leaf mutations in formulating an ideotype of Vicia faba L. are discussed

  13. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems

    NARCIS (Netherlands)

    Hemminga, M.A.; Marbà, N.; Stapel, J.

    1999-01-01

    Efficient nutrient resorption from senescing leaves, and extended leaf life spans are important strategies in order to conserve nutrients for plants in general. Despite the fact that seagrasses often grow in oligotrophic waters, these conservation strategies are not strongly developed in seagrasses.

  14. Ozone and sulphur dioxide effects on leaf water potential of Petunia

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Three cultivars of Petunia hydrida Vilm., of differing ozone visible injury sensitivity, were exposed to 40 parts per hundred million (pphm) ozone and/or 80 pphm SO/sub 2/ for 4 h to study the relationships of leaf water potential, pollutant exposure, and cultivar sensitivity. Ozone substantially decreased leaf water potential in cv White Cascade but not in cv Capri or White Magic. Sulphur dioxide did not affect leaf water potential but delayed ozone-induced changes. Cultivar sensitivity to ozone-induced changes in leaf water potential was not related to cultivar sensitivity to ozone-induced visible injury.

  15. Developmental light level affects growth, morphology, and leaf physiology of young carambola trees

    International Nuclear Information System (INIS)

    Marler, T.E.; Schaffer, B.; Crane, J.H.

    1994-01-01

    Growth and leaf physiology responses of container-grown 'Arkin' carambola (Averrhoa carambola L.) trees to long-term exposure of approximately 25%, approximately 50%, or 100% sunlight were studied in four experiments in Guam and Florida. Shading increased rachis length and leaflet area, and decreased leaflet thickness. Shaded trees also had a more horizontal branch orientation. Shading reduced dark respiration (Rd) and light compensation and saturation points but increased chlorophyll concentration and N-use efficiency. Light-saturated net CO2 assimilation (A) was not affected by developmental light level. Trees in full sun had smaller total leaf area, canopy diameter, and shoot:root ratio and exhibited leaflet movement to avoid direct solar radiation. Also, trees grown in 100% sunlight had a more vertical branch orientation and greater stomatal density than shaded trees. The ratio of variable to maximum fluorescence (Fv/Fm) declined during midday in 100% sunlight trees. This pattern was accompanied by a midday suppression of A in 100% sunlight-grown trees in Guam. 'Arkin' carambola trees exposed to approximately 25%, approximately 50%, or 100% sunlight for up to 39 weeks exhibited physiological and morphological adaptations that resulted in similar growth. These results indicate that carambola efficiently adapts to different developmental light intensities

  16. Ozone exposure affects leaf wettability and tree water balance

    NARCIS (Netherlands)

    Schreuder, M.D.J.; Hove, van L.W.A.; Brewer, C.A.

    2001-01-01

    Relatively little is known about the influences of growing-season background ozone (O3) concentrations on leaf cuticles and foliar water loss. Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer,

  17. Comparative antimicrobial activities of aloe vera gel and leaf ...

    African Journals Online (AJOL)

    The comparative antimicrobial activities of the gel and leaf of Aloe vera were tested against Staphylococcus aureus, Pseudomonas aeruginosa, Trichophyton mentagraphytes, T. schoeleinii, Microsporium canis and Candida albicans. Ethanol was used for the extraction of the leaf after obtaining the gel from it. Antimicrobial ...

  18. Soil Characteristics, Microbial Compostion of Plot, Leaf Count and ...

    African Journals Online (AJOL)

    Soil Characteristics, Microbial Compostion of Plot, Leaf Count and Sprout Studies of Cocoyam ( Colocasia [Schott] and Xanthosoma [Schott], Araceae) Collected in Edo State, ... Science, Technology and Arts Research Journal ... Government Areas (LGA) in Edo state and describe them based on leaf count and sprout

  19. GOLD IS EARNED FROM THE PRODUCTION OF THAI GOLD LEAF

    Directory of Open Access Journals (Sweden)

    Dirk Bax

    2010-06-01

    Full Text Available Thai people like to cover sacred objects or things dear to them with gold leaf.. Statues of Buddha are sometimes covered with so many layers of gold leaf that they become formless figures, that can hardly be recognized. Portraits of beloved ancestors, statues of elephants and grave tombs are often covered with gold leaf. If one considers the number of Thai people and the popularity of the habit, the amount of gold involved could be considerable.

  20. Climate controls photosynthetic capacity more than leaf nitrogen contents

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  1. DETERMINATION OF LEAF AREA AND PLANT COVER BY USING DIGITAL IMAGE PROCESSING

    OpenAIRE

    LŐKE, ZS.; SOÓS, G.

    2002-01-01

    The development of different crop models, and crop simulation models in particular, pointed out the importance of quantifying the exact value of the leaf area. To measure the leaf size of plants of pinnatifid form, automatic, portable leaf area meters are necessary. In most places these instruments are not available to measure the assimilatory surface size of crops with special leaf shapes. Any cheap and effective method, that could replace the application of expensive portable area meters co...

  2. Seasonal variation of diet and faeces composition of Black Rhinoceros Diceros Bicornis in the Addo Elephant National Park

    Directory of Open Access Journals (Sweden)

    A.J Hall-Martin

    1982-11-01

    Full Text Available The feeding habits of black rhinoceros were studied in the Addo Elephant National Park, Republic of South Africa, using the "feeding track" method and recording bites taken. A total sample of 59 feeding tracks, 5 540 plants and 17 191 bites were recorded from June 1976 to March 1977. The rhino fed largely on woody shrubs but also took forbs, grass and succulent plants. During dry periods the rhino were selecting succulent plants with a high moisture content rather than woody plants. A total of 111 plant species were utilized. During dry months the feeding rate was greater than wet months. Physical analysis of faeces composition confirmed conclusions drawn from observations. Chemical analyses of faeces indicated that mean crude protein values varied with rainfall and herbage quality, ash values were strongly influenced by the intake of plant roots and dust during dry periods, acid detergent fibre was highest during unfavourable periods and low during favourable periods.

  3. Seasonal variation of diet and faeces composition of Black Rhinoceros Diceros Bicornis in the Addo Elephant National Park

    Directory of Open Access Journals (Sweden)

    A.J Hall-Martin

    1982-12-01

    Full Text Available The feeding habits of black rhinoceros were studied in the Addo Elephant National Park, Republic of South Africa, using the "feeding track" method and recording bites taken. A total sample of 59 feeding tracks, 5 540 plants and 17 191 bites were recorded from June 1976 to March 1977. The rhino fed largely on woody shrubs but also took forbs, grass and succulent plants. During dry periods the rhino were selecting succulent plants with a high moisture content rather than woody plants. A total of 111 plant species were utilized. During dry months the feeding rate was greater than wet months. Physical analysis of faeces composition confirmed conclusions drawn from observations. Chemical analyses of faeces indicated that mean crude protein values varied with rainfall and herbage quality, ash values were strongly influenced by the intake of plant roots and dust during dry periods, acid detergent fibre was highest during unfavourable periods and low during favourable periods.

  4. Red Guava Leaf Harvesting Impact on Flavonoid Optimation in Different Growth Phases

    Directory of Open Access Journals (Sweden)

    MUNIF GHULAMAHDI

    2011-06-01

    Full Text Available Harvesting process is a critical time to identify the quality of raw material for traditional medicine. The time and harvesting techniques, drying process after harvesting, and processing to make the simplicia, are the crucial role to make the good quality of the natural product. On the other hand, there is a lack of general understanding and appreciation about the processes involved in governing shoot and tree growth and development, i.e. red guava. The research objective was to evaluate the influence of leaf harvesting and growth phases on red guava for flavonoid production as antioxidant. Randomized factorial block design in time were laid out with two factors and followed by Duncan’s multiple range test. The treatments were the amount of leaf harvested on tertiary branches (0, 25, 50, and 100% and growth phases of the plant (vegetative and generative. Leaf harvesting 25% on tertiary branches significantly increased the leaf number (766.3 tree-1 and the number of new quarternary branches, decreasing leaf area index (LAI and leaf dry weight at the end of the experiment (22 weeks of observation/WO. The highest leaf dry weight (156.94 g tree-1 and LAI (0.47 was found in harvesting 25% tertiary branches. Harvesting 100% leaf on tertiary branches in vegetative phase significantly produced the lowest flavonoid production (7.82 g tree-1. The result suggested that flavonoid production from red guava leaves should be done by harvesting 50% leaf on tertiary branches in generative phase can be used to produce the highest flavonoid (89.90 g tree-1.

  5. Variable depth recursion algorithm for leaf sequencing

    International Nuclear Information System (INIS)

    Siochi, R. Alfredo C.

    2007-01-01

    The processes of extraction and sweep are basic segmentation steps that are used in leaf sequencing algorithms. A modified version of a commercial leaf sequencer changed the way that the extracts are selected and expanded the search space, but the modification maintained the basic search paradigm of evaluating multiple solutions, each one consisting of up to 12 extracts and a sweep sequence. While it generated the best solutions compared to other published algorithms, it used more computation time. A new, faster algorithm selects one extract at a time but calls itself as an evaluation function a user-specified number of times, after which it uses the bidirectional sweeping window algorithm as the final evaluation function. To achieve a performance comparable to that of the modified commercial leaf sequencer, 2-3 calls were needed, and in all test cases, there were only slight improvements beyond two calls. For the 13 clinical test maps, computation speeds improved by a factor between 12 and 43, depending on the constraints, namely the ability to interdigitate and the avoidance of the tongue-and-groove under dose. The new algorithm was compared to the original and modified versions of the commercial leaf sequencer. It was also compared to other published algorithms for 1400, random, 15x15, test maps with 3-16 intensity levels. In every single case the new algorithm provided the best solution

  6. Somatic embryogenesis and plant regeneration from leaf explants of ...

    African Journals Online (AJOL)

    An attempt was made to study the somatic embryogenesis and plant regeneration from the in vitro leaf explants of Rumex vesicarius L. a renowned medicinal plant, which belongs to polygonaceae family. Effective in vitro regeneration of R. vesicarius was achieved via young leaf derived somatic embryo cultures.

  7. Phytochemical constituents and ethnobotany of the leaf extract of ...

    African Journals Online (AJOL)

    The phytochemical screening and ethno botanical importance of the leaf of Vernonia amygdalina Del. were investigated. The secondary metabolites in the leaf were identified to establish a relationship between them and their therapeutic properties. The leaves were sun dried, pulverized and sieved. The resulting powdered ...

  8. Effect of drought stress on leaf soluble sugar content, leaf rolling index and relative water content of proso millet (Panicum miliaceum L. genotypes

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available With respect to water shortage in arid and semi- arid regions, the study about drought stress effects on crop plants and selection of resistance cultivars, are among the most important goals in the agricultural researches. In order to examine drought stress effects on millet, an experiment was conducted in Birjand and Sarbisheh, simultaneously. In this experiment, five irrigation treatments (well-watered, drought stress in vegetative stage, in ear emergence stage, in seed filling stage and in vegetative and seed filling stage and five proso millet genotypes (Native, K-C-M.2, K-C-M.4, K-C-M.6 and K-C-M.9 were compared in a split plot design along with three replications. Drought stress increased grain protein content, leaf rolling index and soluble sugars concentration and decreased seed germination and leaf RWC. Although seed protein content and germination percentage of genotypes were not significantly different, there were some differences among leaf rolling index, RWC and soluble sugar content of these genotypes. The results of this study indicated that leaf sugar content, RWC and leaf rolling index can not be considered as the only parameters for selection of high yield genotypes. Therefore, it is recommended that some other factors should also be used apart from the above mentioned ones.

  9. Monitoring leaf photosynthesis with canopy spectral reflectance in rice

    International Nuclear Information System (INIS)

    Tian, Y.; Zhu, Y.; Cao, W.

    2005-01-01

    We determined the quantitative relationships between leaf photosynthetic characteristics (LPC) and canopy spectral reflectance under different water supply and nitrogen application rates in rice plants. The responses of reflectance at red radiation (680 nm) to different water contents and N rates were parallel to those of leaf net photosynthetic rate (PN). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red) to PN of different leaf positions and layers indicated that the top two full leaves were the best positions for quantitative monitoring of PN with remote sensing technique, and the index R(810,680) was the best ratio index for evaluating LPC. Testing of the models with independent data sets indicated that R(810,680) could well estimate PN of the top two leaves and canopy leaf photosynthetic potential. Hence R(810,680) can be used to monitor LPC in rice under diverse growing conditions

  10. Primate numts and reticulate evolution of capped and golden leaf ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    A recent phylogenetic study of langurs and leaf monkeys of South Asia suggested a reticulate evolution of capped and golden leaf ..... Accordingly, transversions were weighted .... lineages. Most taxonomic schemes published till date place.

  11. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest

    Science.gov (United States)

    Yang, Xi; Tang, Jianwu; Mustard, John F.

    2014-03-01

    Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.

  12. Leaf rust of cultivated barley: pathology and control.

    Science.gov (United States)

    Park, Robert F; Golegaonkar, Prashant G; Derevnina, Lida; Sandhu, Karanjeet S; Karaoglu, Haydar; Elmansour, Huda M; Dracatos, Peter M; Singh, Davinder

    2015-01-01

    Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.

  13. Leaf, stem bark and fruit anatomy of zanthoxylum armatum dc. (rutaceae)

    International Nuclear Information System (INIS)

    Barkatullah, A.; Ibrar, M.; Jelani, G.; Ahmad, I.

    2014-01-01

    Zanthoxylum armatum DC. (Rutaceae) is an important medicinal plant. The present study deals with anatomical exploration of the leaf, stem bark and fruit of this plant. Leaf of Z. armatum is bifacial, compound and punctate with glabrous surfaces having a single layer of epidermis and palisade mesophyll. The leaf has a Palisade ratio ranged from 6.00 to 9.00 (8.2 +- 0.32). Vein islets and vein termination number were 14-21 (16.8 +- 0.64) and 17-21 (19.1 +- 0.43) per mm2 respectively. The vein-islets were quite distinct with squaresh, elongated, polygonal or irregular in shape bounding many forked and unforked vascular branches. Adaxial surface of Z. armatum leaf midrib was planoconvex while the abaxial surface was semicircular in appearance. The diagnostic feature of the leaf was the complete absence of any kind of trichomes or any other appendages. The leaf showed prominent oil cavities. Nine types of stomata with different frequencies and other dimensions were observed. Brachparatetracytic stomata was the most frequent stoma (80%) followed by actinostephanocytic (40%) and then straucytic and brachyparacytic (30%) each. Hemiparacytic and stomatal cluster were the rarely occurring stomata (10% each) present on the lower epidermis of the leaf. Stomatal cluster, which is considered to be a special leaf epidermal feature and reported only in few genera of vascular plants, was also recorded in this plant. Bark and fruit anatomy of Z. armatum showed different tissue arrangement. The seed was non endospermic and contains an elongated embryo. The present study will be helpful in the phylogeny and taxonomic description of this important medicinal plant. (author)

  14. Brief communication: effect of coca-leaf chewing on salivary progesterone assays.

    Science.gov (United States)

    Vitzthum, V J; von Dornum, M; Ellison, P T

    1993-12-01

    Although there is evidence for reduced fertility in Andean and Himalayan populations at higher altitudes, factors other than hypoxia may be primarily responsible. A valuable approach in the investigation of these fertility determinants is the use of salivary steroid assays. However, coca-leaf chewing--a ubiquitous practice among high altitude Andean populations--has negative consequences for the accurate measurement of ovarian steroids. This report evaluates the effects of coca-leaf chewing on assays of salivary progesterone. Study participants include naive and habitual users of coca leaf from La Paz and El Alto, Bolivia. Approximately 300 saliva samples were collected immediately before, during, and after coca-leaf chewing. The series includes samples with and without the alkaloid enhancer typically used by coca-leaf chewers. Coca chewing produces false salivary progesterone values that mimic luteal phase values. On the basis of this study, an appropriate protocol is developed for the collection of salivary samples in coca-leaf chewing populations. These results verify the feasibility of salivary assays, even for very difficult field conditions, and highlight the necessity of establishing suitable collection procedures before full field implementation of saliva sampling.

  15. Variation of leaf margin serration in Populus nigra of industrial dumps

    Directory of Open Access Journals (Sweden)

    Yu. A. Shtirs

    2017-07-01

    Full Text Available The variability of leaf margin serration of Populus nigra L. in conditions of industrial dumps (coal mines dumps and overburden dumps and city park is estimated. The value of this indicator is in the range from 1.25 to 1.76 and significantly increases along the gradient: coal mines dumps – overburden dumps – city park. From the number of selected gradations of P. nigra leaf blades, the gradation with values of 1.45-1.55 is most pronounced according to the analyzed index for industrial dumps, for the park – with the values of 1.55-1.65. The degree of serration of edge leaf blade is characterized by low values of variation – coefficient of variation is less than 10.0%. We registered the significant positive correlation between the average values of leaf margin serration and the length of P. nigra leaf blade.

  16. Cassava brown streak disease effects on leaf metabolites and ...

    African Journals Online (AJOL)

    Cassava brown streak disease effects on leaf metabolites and pigment accumulation. ... Total reducing sugar and starch content also dropped significantly (-30 and -60%, respectively), much as NASE 14 maintained a relatively higher amount of carbohydrates. Leaf protein levels were significantly reduced at a rate of 0.07 ...

  17. Effect Of Walnut Leaf, Coriander And Pomegranate On Blood ...

    African Journals Online (AJOL)

    Mechanism of most of herbal used for diabetes mellitus treatment has not been well defined. This study was performed to investigate hypoglycemic effect of walnut leaf (Juglans regia L.), coriander leaf (Coriandrum sativum L.) or pomegranate seed (Punica granatum L.), and their possible role on pancreatic tissue. Diabetes ...

  18. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  19. 76 FR 69732 - Pesticide Products; Receipt of Applications To Register New Uses

    Science.gov (United States)

    2011-11-09

    ... formulation into end-use herbicide products used on cowpea, succulent (Tennessee only); crop subgroup 20B.... Active Ingredient: Sulfentrazone. Proposed Uses: For use on cowpea, succulent (Tennessee only); crop...

  20. Habitat Modification by the Leaf-Cutter Ant, Atta cephalotes, and Patterns of Leaf-Litter Arthropod Communities.

    Science.gov (United States)

    Wells, Rachel L; Murphy, Serena K; Moran, Matthew D

    2017-12-08

    Ecosystem engineers are profoundly important in many biological communities. A Neotropical taxonomic group considered to have engineering effects is the Formicidae (ants). Leaf-cutter ants (LCAs), in particular, which form extensive colonies of millions of individuals, can be important ecosystem engineers in these environments. While the effects of LCAs on plant community structure and soil chemistry are well-studied, their effects on consumers are poorly understood. Therefore, we examined the indirect effects of the LCA Atta cephalotes L. on the leaf-litter arthropod community. We compared abundance and diversity patterns at ant nests to areas distant from nests, utilizing both a factorial design and gradient analysis for both nocturnal and diurnal arthropods. We found that arthropod abundance and diversity was significantly lower for multiple taxonomic groups and trophic levels near leaf-cutter nests, and this pattern was strongest at night. Exceptions to this pattern included two morphospecies of Collembola that were more abundant on nests, suggesting some specialization for these species. For the gradient analysis, abundance increased exponentially for most groups of arthropods. However, for the dominant arthropod species, the amphipod Cerrorchestia hyloraina Lindeman, a quadratic function was the best fit curvilinear model for abundance. It appeared that C. hyloraina had maximal abundance at the transition between nest site and less disturbed forest. These results indicate that LCA activity has a strong effect on the leaf-litter arthropod community, adding to spatial heterogeneity within neotropical forests. These effects may translate into changes in important ecological processes such as nutrient cycling and food web function. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Estimativa da área foliar de Crambe abyssinica por discos foliares e por fotos digitais Estimate leaf area of Crambe abyssinica for leaf discs and digital photos

    Directory of Open Access Journals (Sweden)

    Marcos Toebe

    2010-02-01

    Full Text Available A área foliar é importante na determinação do crescimento e desenvolvimento das culturas agrícolas. Assim, os objetivos do trabalho foram comparar os métodos de discos foliares e de fotos digitais na estimativa da área foliar de Crambe abyssinica e modelar a área foliar em função do comprimento (C, da largura (L e ou do produto comprimento vezes largura (CxL de diferentes tamanhos de folhas. Para isso, em 308 folhas, foram determinados a área foliar, o comprimento, a largura e o produto comprimento vezes largura por meio dos métodos de discos foliares e de fotos digitais. Em seguida, foram comparados os métodos por meio do coeficiente de correlação linear entre a área foliar. A seguir, em cada método, modelou-se a área foliar (Y em função do C, da L e do CxL, por meio dos modelos: linear, linear simples, quadrático, geométrico e exponencial. Os coeficientes de correlação linear de Pearson e de Spearman entre a área foliar dos métodos de discos foliares e de fotos digitais foram de 0,9917 e 0,9889, respectivamente, o que revela métodos concordantes. Em ambos os métodos, os modelos quadráticos e geométricos apresentaram os melhores coeficientes de determinação da área foliar em função do comprimento e da largura das folhas. A largura da folha é a variável que melhor estima a área foliar. O método de fotos digitais pode ser utilizado para estimar a área foliar de crambe.Leaf area is important in determining the growth and development of agricultural crops. The aim of this study was to compare the methods of leaf discs and digital photos in estimating leaf area of Crambe abyssinica, and model leaf area according to length (C, width (L and/ or the product of length width (CxL for different sizes of leaves. For this, in 308 leaves it was determined the leaf area, length, width and the product of length width using the methods of leaf discs and digital photos. Then the methods were compared using the linear

  2. Performance of broiler chickens fed on Moringa oleifera leaf meal ...

    African Journals Online (AJOL)

    Performance of broiler chickens fed on Moringa oleifera leaf meal ... This exploratory study was conducted to investigate the effect of Moringa oleifera leaf meal ... ratio were evaluated for the individual replicate of each dietary treatment.

  3. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree

    Directory of Open Access Journals (Sweden)

    Agustina Ventre-Lespiaucq

    2018-05-01

    Full Text Available Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees (Psidium guajava L. growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of

  4. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype

    Directory of Open Access Journals (Sweden)

    Viktoriya Coneva

    2018-03-01

    Full Text Available Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.

  5. Outside-xylem pathways, not xylem embolism, drive leaf hydraulic decline with dehydration

    Science.gov (United States)

    Leaf hydraulic supply is crucial to enable the maintenance of open stomata for CO2 capture and plant growth. During drought-induced leaf dehydration, the capacity for water flow through the leaf (Kleaf) declines, a phenomenon surprisingly attributed for the past fifty years solely to the formation o...

  6. Formation of adventitious roots on green leaf cuttings of Phaseolus vulgaris L.

    NARCIS (Netherlands)

    Oppenoorth, Johanna Margriet

    1980-01-01

    n this thesis the development of adventitious roots on green leaf cuttings of Phaseolus vulgaris L. is studies. The use of green leaf cuttings has the advantage that the leaf blade provides the developing roots inthe petiole with all the nutrients required, a disadvantage is that the composition of

  7. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  8. Mueller matrix of a dicot leaf

    Science.gov (United States)

    Vanderbilt, Vern C.; Daughtry, Craig S. T.

    2012-06-01

    A better understanding of the information contained in the spectral, polarized bidirectional reflectance and transmittance of leaves may lead to improved techniques for identifying plant species in remotely sensed imagery as well as better estimates of plant moisture and nutritional status. Here we report an investigation of the optical polarizing properties of several leaves of one species, Cannabis sativa, represented by a 3x3 Mueller matrix measured over the wavelength region 400-2,400 nm. Our results support the hypothesis that the leaf surface alters the polarization of incident light - polarizing off nadir, unpolarized incident light, for example - while the leaf volume tends to depolarized incident polarized light.

  9. Comparison of dosimetric properties of three commercial multi leaf collimator systems

    International Nuclear Information System (INIS)

    Hoever, K.H.; Hesse, B.M.; Haering, P.; Rhein, B.; Bannach, B.; Doll, T.; Doerner, K.J.

    1996-01-01

    Purpose: The dosimetric properties of different designs of multi leaf collimators used for the generation of irregular fields will be measured and compared with each other. Using multi leaf collimators is a practical method of achieving conformal therapy. The use for complex conformal treatment fields to be given in either in static or dynamic mode depends much on the leaf end penumbra and the leaf side penumbra as well as the transmission through the leafs. Penumbra and leakage caused by the leaves therefore are of special interest in this intercomparison. Material and Methods: To investigate the dosimetric properties of three multi leaf collimators of different technical design, measurements have been taken at two different facilities. Until now, comparative measurements have been performed for the following devices. The new Siemens double focusing MLC with 29 opposite leaf pairs, installed at the Mevatron Experimental in the German Cancer Research Center, Heidelberg. The energy used was 15 MV and 6 MV. The Philips quasi-double focusing MLC with 40 opposite leaf pairs, installed at the SL25 in the University Duesseldorf. The leaves move in a plane rather than on a circular arc and have rounded ends to reduce penumbra. The energy used was 25 MV and 6 MV. The Leibinger non-focusing micro-MLC with 40 opposite leaf pairs. This MLC was specially designed for stereotactic irradiation of the brain. The comparative study is to be continued and extended to involve additional devices in the future. Both, the film densitometry and a newly designed ten-bit Beam Imaging System BIS-710 developed by Wellhoefer company were used. The BIS-710 was developed especially for quantitative dose measuring, whereas most of the existing Portal Imaging Systems are used for image display only. The BIS-710 contains a camera for 10-bit digital data output. The size of each of the 512 x 512 detector elements is 0.6 mm x 0.6 mm Results: Measurements taken with the BIS-710 and with film

  10. Effect of temperature on accumulation of chlorophylls and leaf ...

    African Journals Online (AJOL)

    White young shoots from albino tea cultivars have high level of amino acids and are rare and valuable materials for processing green tea. The effects of temperature on leaf colour, accumulation of chlorophylls and leaf ultrastructures of an albino tea cultivar 'Xiaxueya' were investigated. The study showed that the shoot ...

  11. Antimicrobial activity of the aqueous, methanol and chloroform leaf ...

    African Journals Online (AJOL)

    The minimum inhibitory concentration (MIC) of methanol leaf extract show least activity against Yersinia enterocolitica and Pseudomonas aeruginosa (MIC = 100 mg/ml) and higher activity of MIC at 50 mg/ml against the other bacterial test organisms. The chloroform leaf extract MIC of 100 mg/ml had least activity against ...

  12. Genome organization of Tobacco leaf curl Zimbabwe virus, a new, distinct monopartite begomovirus associated with subgenomic defective DNA molecules.

    Science.gov (United States)

    Paximadis, M; Rey, M E

    2001-12-01

    The complete DNA A of the begomovirus Tobacco leaf curl Zimbabwe virus (TbLCZWV) was sequenced: it comprises 2767 nucleotides with six major open reading frames encoding proteins with molecular masses greater than 9 kDa. Full-length TbLCZWV DNA A tandem dimers, cloned in binary vectors (pBin19 and pBI121) and transformed into Agrobacterium tumefaciens, were systemically infectious upon agroinoculation of tobacco and tomato. Efforts to identify a DNA B component were unsuccessful. These findings suggest that TbLCZWV is a new member of the monopartite group of begomoviruses. Phylogenetic analysis identified TbLCZWV as a distinct begomovirus with its closest relative being Chayote mosaic virus. Abutting primer PCR amplified ca. 1300 bp molecules, and cloning and sequencing of two of these molecules revealed them to be subgenomic defective DNA molecules originating from TbLCZWV DNA A. Variable symptom severity associated with tobacco leaf curl disease and TbLCZWV is discussed.

  13. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  14. Leaf gas exchange and nutrient use efficiency help explain the distribution of two Neotropical mangroves under contrasting flooding and salinity

    Science.gov (United States)

    Cardona-Olarte, Pablo; Krauss, Ken W.; Twilley, Robert R.

    2013-01-01

    Rhizophora mangle and Laguncularia racemosa co-occur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1) were simulated over 10 months. Assimilation (A), stomatal conductance (gw), intercellular CO2 concentration (Ci), instantaneous photosynthetic water use efficiency (PWUE), and photosynthetic nitrogen use efficiency (PNUE) were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and stomatal conductance and gw, accordingly, had greater intercellular CO2 (calculated) during measurements. Both species maintained similar capacities for assimilation at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  15. Leaf Gas Exchange and Nutrient Use Efficiency Help Explain the Distribution of Two Neotropical Mangroves under Contrasting Flooding and Salinity

    Directory of Open Access Journals (Sweden)

    Pablo Cardona-Olarte

    2013-01-01

    Full Text Available Rhizophora mangle and Laguncularia racemosa cooccur along many intertidal floodplains in the Neotropics. Their patterns of dominance shift along various gradients, coincident with salinity, soil fertility, and tidal flooding. We used leaf gas exchange metrics to investigate the strategies of these two species in mixed culture to simulate competition under different salinity concentrations and hydroperiods. Semidiurnal tidal and permanent flooding hydroperiods at two constant salinity regimes (10 g L−1 and 40 g L−1 were simulated over 10 months. Assimilation (A, stomatal conductance (gw, intercellular CO2 concentration (Ci, instantaneous photosynthetic water use efficiency (PWUE, and photosynthetic nitrogen use efficiency (PNUE were determined at the leaf level for both species over two time periods. Rhizophora mangle had significantly higher PWUE than did L. racemosa seedlings at low salinities; however, L. racemosa had higher PNUE and gw and, accordingly, had greater intercellular CO2 (calculated during measurements. Both species maintained similar capacities for A at 10 and 40 g L−1 salinity and during both permanent and tidal hydroperiod treatments. Hydroperiod alone had no detectable effect on leaf gas exchange. However, PWUE increased and PNUE decreased for both species at 40 g L−1 salinity compared to 10 g L−1. At 40 g L−1 salinity, PNUE was higher for L. racemosa than R. mangle with tidal flooding. These treatments indicated that salinity influences gas exchange efficiency, might affect how gases are apportioned intercellularly, and accentuates different strategies for distributing leaf nitrogen to photosynthesis for these two species while growing competitively.

  16. Increasing leaf longevity and disease resistance by altering salicylic acid catabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Susheng; Zhang, Kewei

    2018-01-23

    The present invention relates to a transgenic plant having an altered level of salicylic acid 3-hydroxylase ("S3H") protein, compared to that of a non-transgenic plant, where the transgenic plant displays an altered leaf senescence phenotype, relative to a non-transgenic plant. The present invention relates to a mutant plant comprising an inactivated gene encoding S3H protein, where the mutant plant displays a premature or precocious leaf senescence phenotype, relative to a non-mutant plant. The present invention also relates to methods for promoting premature or precocious leaf senescence in a plant, delaying leaf senescence in a plant, and making a mutant plant having a decreased level of S3H protein compared to that of a non-mutant plant, where the mutant plant displays a premature or precocious leaf senescence phenotype relative to a non-mutant plant. The present invention also relates to inducing or promoting pathogen resistance in plants.

  17. Evaluation of Jacaranda mimosifolia T. (Stans) leaf meal as ...

    African Journals Online (AJOL)

    The economic benefit analysis indicated that as the leaf meal increased in the diets the cost of production of the broilers decreased. Jacaranda leaf meal could be best utilized at 5.0% level of inclusion though the 7.5% levels broilers attained market size in a recorded time. Animal Production Research Advances Vol.

  18. Quantitative study of Xanthosoma violaceum leaf surfaces using RIMAPS and variogram techniques.

    Science.gov (United States)

    Favret, Eduardo A; Fuentes, Néstor O; Molina, Ana M

    2006-08-01

    Two new imaging techniques (rotated image with maximum averaged power spectrum (RIMAPS) and variogram) are presented for the study and description of leaf surfaces. Xanthosoma violaceum was analyzed to illustrate the characteristics of both techniques. Both techniques produce a quantitative description of leaf surface topography. RIMAPS combines digitized images rotation with Fourier transform, and it is used to detect patterns orientation and characteristics of surface topography. Variogram relates the mathematical variance of a surface with the area of the sample window observed. It gives the typical scale lengths of the surface patterns. RIMAPS detects the morphological variations of the surface topography pattern between fresh and dried (herbarium) samples of the leaf. The variogram method finds the characteristic dimensions of the leaf microstructure, i.e., cell length, papillae diameter, etc., showing that there are not significant differences between dry and fresh samples. The results obtained show the robustness of RIMAPS and variogram analyses to detect, distinguish, and characterize leaf surfaces, as well as give scale lengths. Both techniques are tools for the biologist to study variations of the leaf surface when different patterns are present. The use of RIMAPS and variogram opens a wide spectrum of possibilities by providing a systematic, quantitative description of the leaf surface topography.

  19. Seasonal Canopy Temperatures for Normal and Okra Leaf Cotton under Variable Irrigation in the Field

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-11-01

    Full Text Available Temperature affects a number of physiological factors in plants and is related to water use, yield and quality in many crop species. Seasonal canopy temperature, measured with infrared thermometers, is often used in conjunction with environmental factors (e.g., air temperature, humidity, solar radiation to assess crop stress and management actions in cotton. Normal and okra leaf shapes in cotton have been associated with differences in water use and canopy temperature. The okra leaf shape in cotton is generally expected to result in lower water use and lower canopy temperatures, relative to normal leaf, under water deficits. In this study canopy temperatures were monitored in okra and normal leaf varieties for a growing season at four irrigation levels. Differences in canopy temperature (<2 °C were measured between the two leaf shapes. As irrigation levels increased, canopy temperature differences between the leaf shapes declined. At the lowest irrigation level, when differences in sensible energy exchanges due to the okra leaf shape would be enhanced, the canopy temperature of the okra leaf was warmer than the normal leaf. This suggests that varietal differences that are not related to leaf shape may have more than compensated for leaf shape differences in the canopy temperature.

  20. Herbivory mitigation through increased water-use efficiency in a leaf-mining moth-apple tree relationship.

    Science.gov (United States)

    Pincebourde, Sylvain; Frak, Ela; Sinoquet, Hervé; Regnard, Jean Luc; Casas, Jérôme

    2006-12-01

    Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.

  1. Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L. genotypes

    Directory of Open Access Journals (Sweden)

    Lingyun Yuan

    2017-06-01

    Full Text Available Heat stress is a major environmental stress that limits plant growth and yield worldwide. The present study was carried out to explore the physiological mechanism of heat tolerant to provide the theoretical basis for heat-tolerant breeding. The changes of leaf morphology, anatomy, nitrogen assimilation, and carbohydrate metabolism in two wucai genotypes (WS-1, heat tolerant; WS-6, heat sensitive grown under heat stress (40°C/30°C for 7 days were investigated. Our results showed that heat stress hampered the plant growth and biomass accumulation in certain extent in WS-1 and WS-6. However, the inhibition extent of WS-1 was significantly smaller than WS-6. Thickness of leaf lamina, upper epidermis, and palisade mesophyll were increased by heat in WS-1, which might be contributed to the higher assimilation of photosynthates. During nitrogen assimilation, WS-1 possessed the higher nitrogen-related metabolic enzyme activities, including nitrate reductase (NR, glutamine synthetase (GS, glutamate synthase (GOGAT, and glutamate dehydrogenase (GDH, which were reflected by higher photosynthetic nitrogen-use efficiency (PNUE with respect to WS-6. The total amino acids level had no influence in WS-1, whereas it was reduced in WS-6 by heat. And the proline contents of both wucai genotypes were all increased to respond the heat stress. Additionally, among all treatments, the total soluble sugar content of WS-1 by heat got the highest level, including higher contents of sucrose, fructose, and starch than those of WS-6. Moreover, the metabolism efficiency of sucrose to starch in WS-1 was greater than WS-6 under heat stress, proved by higher activities of sucrose phosphate synthase (SPS, sucrose synthase (SuSy, acid invertase (AI, and amylase. These results demonstrated that leaf anatomical alterations resulted in higher nitrogen and carbon assimilation in heat-tolerant genotype WS-1, which exhibited a greater performance to resist heat stress.

  2. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves

    Science.gov (United States)

    Bowman, William D.

    1989-01-01

    Measurements of leaf spectral reflectance, the components of water potential, and leaf gas exchanges as a function of leaf water content were made to evaluate the use of NIR reflectance as an indicator of plant water status. Significant correlations were determined between spectral reflectance at 810 nm, 1665 nm, and 2210 nm and leaf relative water content, total water potential, and turgor pressure. However, the slopes of these relationships were relatively shallow and, when evaluated over the range of leaf water contents in which physiological activity occurs (e.g., photosynthesis), had lower r-squared values, and some relationships were not statistically significant. NIR reflectance varied primarily as a function of leaf water content, and not independently as a function of turgor pressure, which is a sensitive indicator of leaf water status. The limitations of this approach to measuring plant water stress are discussed.

  3. Identification among morphologically similar Argyreia (Convolvulaceae) based on leaf anatomy and phenetic analyses.

    Science.gov (United States)

    Traiperm, Paweena; Chow, Janene; Nopun, Possathorn; Staples, G; Swangpol, Sasivimon C

    2017-12-01

    The genus Argyreia Lour. is one of the species-rich Asian genera in the family Convolvulaceae. Several species complexes were recognized in which taxon delimitation was imprecise, especially when examining herbarium materials without fully developed open flowers. The main goal of this study is to investigate and describe leaf anatomy for some morphologically similar Argyreia using epidermal peeling, leaf and petiole transverse sections, and scanning electron microscopy. Phenetic analyses including cluster analysis and principal component analysis were used to investigate the similarity of these morpho-types. Anatomical differences observed between the morpho-types include epidermal cell walls and the trichome types on the leaf epidermis. Additional differences in the leaf and petiole transverse sections include the epidermal cell shape of the adaxial leaf blade, the leaf margins, and the petiole transverse sectional outline. The phenogram from cluster analysis using the UPGMA method represented four groups with an R value of 0.87. Moreover, the important quantitative and qualitative leaf anatomical traits of the four groups were confirmed by the principal component analysis of the first two components. The results from phenetic analyses confirmed the anatomical differentiation between the morpho-types. Leaf anatomical features regarded as particularly informative for morpho-type differentiation can be used to supplement macro morphological identification.

  4. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Dong Zhou

    2016-01-01

    Full Text Available Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  5. Antimicrobial compounds from leaf extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata.

    Science.gov (United States)

    Rahman, M M; Ahmad, S H; Mohamed, M T M; Ab Rahman, M Z

    2014-01-01

    The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15 mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested.

  6. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy

    Science.gov (United States)

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator. PMID:27110274

  7. Lateral Penumbra Modelling Based Leaf End Shape Optimization for Multileaf Collimator in Radiotherapy.

    Science.gov (United States)

    Zhou, Dong; Zhang, Hui; Ye, Peiqing

    2016-01-01

    Lateral penumbra of multileaf collimator plays an important role in radiotherapy treatment planning. Growing evidence has revealed that, for a single-focused multileaf collimator, lateral penumbra width is leaf position dependent and largely attributed to the leaf end shape. In our study, an analytical method for leaf end induced lateral penumbra modelling is formulated using Tangent Secant Theory. Compared with Monte Carlo simulation and ray tracing algorithm, our model serves well the purpose of cost-efficient penumbra evaluation. Leaf ends represented in parametric forms of circular arc, elliptical arc, Bézier curve, and B-spline are implemented. With biobjective function of penumbra mean and variance introduced, genetic algorithm is carried out for approximating the Pareto frontier. Results show that for circular arc leaf end objective function is convex and convergence to optimal solution is guaranteed using gradient based iterative method. It is found that optimal leaf end in the shape of Bézier curve achieves minimal standard deviation, while using B-spline minimum of penumbra mean is obtained. For treatment modalities in clinical application, optimized leaf ends are in close agreement with actual shapes. Taken together, the method that we propose can provide insight into leaf end shape design of multileaf collimator.

  8. The action spectrum in chloroplast translocation in multilayer leaf cells

    Directory of Open Access Journals (Sweden)

    Zbigniew Lechowski

    2015-01-01

    Full Text Available By measurement of light transmittance through a leaf as criterion of chloroplast translocation, the action spectrum of Ajuga reptans was established. In the spectrum obtained, a correction was introduced for leaf autoabsorption calculated on the basis of the Beer-Lambert law. The action spectrum has two maxima: at λ= 375 nm and λ= 481 nm. The range above 502 nm has no significant effect on chloroplast translocation. Comparison with other objects examined demonstrated that in multilayer leaf cells riboflavin seems also to be a photoreceptor active in this process.

  9. Study on the Excretion Behaviour in Romanian Black and White Primiparous Cows. Number of Defecations

    Directory of Open Access Journals (Sweden)

    Silvia Erina

    2012-10-01

    Full Text Available The study was carried out on 9 Romanian Black and White cows in their first hundred days of lactation. The aim ofthis study was to measure the main aspects that characterized the excretion behaviour (defecation of the cows in 24hours that were divided into 3 day periods: 07:00-14:00 (I1, 14:00-2:001 (I2, 21:00-07:00 (I3. During theexperiments, the following defecation behaviour aspects were determined: total number of defecations, number ofdefecations in the three intervals, number of defecations according to administration order of forages (fibroussucculentsand succulents-fibrous. Data was computed by ANOVA/MANOVA. Results showed that the differencesbetween intervals I1-I2 and I1-I3 were statistically very significant (p< 0.01. In fibrous – succulent order thedefecation were 0.69 higher than in succulent- fibrous order (p< 0.01. Total number of defecation resulted bysumming the defecation from the three intervals, was 14.67 in the first administration order (fibrous-succulent and12.61 in the second administration order (succulent-fibrous.

  10. Molecular mapping and improvement of leaf rust resistance in wheat breeding lines.

    Science.gov (United States)

    Tsilo, Toi J; Kolmer, James A; Anderson, James A

    2014-08-01

    Leaf rust, caused by Puccinia triticina, is the most common and widespread disease of wheat (Triticum aestivum) worldwide. Deployment of host-plant resistance is one of the strategies to reduce losses due to leaf rust disease. The objective of this study was to map genes for adult-plant resistance to leaf rust in a recombinant inbred line (RIL) population originating from MN98550-5/MN99394-1. The mapping population of 139 RILs and five checks were evaluated in 2005, 2009, and 2010 in five environments. Natural infection occurred in the 2005 trials and trials in 2009 and 2010 were inoculated with leaf rust. Four quantitative trait loci (QTL) on chromosomes 2BS, 2DS, 7AL, and 7DS were detected. The QTL on 2BS explained up to 33.6% of the phenotypic variation in leaf rust response, whereas the QTL on 2DS, 7AL, and 7DS explained up to 15.7, 8.1, and 34.2%, respectively. Seedling infection type tests conducted with P. triticina races BBBD and SBDG confirmed that the QTL on 2BS and 2DS were Lr16 and Lr2a, respectively, and these genes were expressed in the seedling and field plot tests. The Lr2a gene mapped at the same location as Sr6. The QTL on 7DS was Lr34. The QTL on 7AL is a new QTL for leaf rust resistance. The joint effects of all four QTL explained 74% of the total phenotypic variation in leaf rust severity. Analysis of different combinations of QTL showed that the RILs containing all four or three of the QTL had the lowest average leaf rust severity in all five environments. Deployment of these QTL in combination or with other effective genes will lead to successful control of leaf rust.

  11. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Science.gov (United States)

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  12. Is dried paw-paw leaf a psychoactive substance | Olley | IFE ...

    African Journals Online (AJOL)

    ... pattern as well as effects of drug abuse and dependence among Nigerians, the use ... agreed that dried paw-paw leaf could produce the same effects as cannabis, ... 53.3% agreed that dried paw-paw leaf could be dangerous to ones health.

  13. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume

    Directory of Open Access Journals (Sweden)

    Kaifeng Ma

    2018-01-01

    Full Text Available Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume. We used amplified fragment length polymorphism (AFLP and methylation-sensitive amplified polymorphism (MSAP techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80% was detected in 96 accessions of P. mume. And the relative hemi-methylation level (15.77% was higher than the relative full methylation level (14.03%. The epigenetic diversity (I∗ = 0.575, h∗ = 0.393 was higher than the genetic diversity (I = 0.484, h = 0.319. The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.

  14. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume.

    Science.gov (United States)

    Ma, Kaifeng; Sun, Lidan; Cheng, Tangren; Pan, Huitang; Wang, Jia; Zhang, Qixiang

    2018-01-01

    Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume . We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P . mume . And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity ( I ∗ = 0.575, h ∗ = 0.393) was higher than the genetic diversity ( I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.

  15. Value of Bitter Leaf ( Vernonia amygdalina ) Meal as Feed ...

    African Journals Online (AJOL)

    A 28-day feeding trial was conducted to evaluate the effect of bitter leaf (Vernonia amygdalina) leaf meal as feed ingredient on the performance, feed cost and carcass and organ weights of finisher broilers. The leaves were air dried under room temperature, ground and sieved through a 3 mm mesh to produce the meal.

  16. Phyllotaxis involves auxin drainage through leaf primordia

    DEFF Research Database (Denmark)

    Deb, Yamini; Marti, Dominik; Frenz, Martin

    2015-01-01

    The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport...... of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis...

  17. Pressure Actuated Leaf Seals for Improved Turbine Shaft Sealing

    Science.gov (United States)

    Grondahl, Clayton

    2006-01-01

    This presentation introduces a shaft seal in which leaf seal elements are constructed from slotted shim material formed and layered into a frusto-conical assembly. Limited elastic deflection of seal leaves with increasing system pressure close large startup clearance to a small, non-contacting, steady state running clearance. At shutdown seal elements resiliently retract as differential seal pressure diminishes. Large seal clearance during startup and shutdown provides a mechanism for rub avoidance. Minimum operating clearance improves performance and non-contacting operation promises long seal life. Design features of this seal, sample calculations at differential pressures up to 2400 psid and benefit comparison with brush and labyrinth seals is documented in paper, AIAA 2005 3985, presented at the Advanced Seal Technology session of the Joint Propulsion Conference in Tucson this past July. In this presentation use of bimetallic leaf material will be discussed. Frictional heating of bimetallic leaf seals during a seal rub can relieve the rub condition to some extent with a change in seal shape. Improved leaf seal rub tolerance is expected with bimetallic material.

  18. Anatomy of leaf and stem of Erythrina velutina

    Directory of Open Access Journals (Sweden)

    Márcia M. B. da Silva

    2013-04-01

    Full Text Available Erythrina velutina Willd., Fabaceae, known as "mulungu", is a tree of tropical regions, as northeastern Brazil. Its bark is used in folk medicine as tranquilizer, sedative and insomnia. This study aimed to characterize the stem and leaf anatomy and to provide subsidies to quality control of the plant drug due to its wide use in folk medicine as well as its differentiation from other species with the same popular name. Samples were collected at Cuité, in Paraíba State, Brazil, fixed in FAA50, semipermanent slides were made, following usual procedures in plant anatomy. The stem shows a cylindrical contour, covered by a uniseriate epidermis covered by a thickened cuticle. It shows claviform glandular and branched trichomes with uniseriate stalk. Secretory cavities are into the phloem. The leaf epidermis has branched and glandular trichomes and anisocytic and paracytic stomata, on both sides, with predominance of branched trichomes and stomata on abaxial surface. Secretory cavities in stem and leaf, types of trichomes and stomata, its location and distribution constitute diagnostic characters for this specie. The structural characterization of the stem and leaf allows its distinction from other ones of this genus, ensuring safety for commercial pharmacological uses, allowing certification of the authenticity of raw material.

  19. Anatomy of leaf and stem of Erythrina velutina

    Directory of Open Access Journals (Sweden)

    Márcia M. B. da Silva

    2013-02-01

    Full Text Available Erythrina velutina Willd., Fabaceae, known as "mulungu", is a tree of tropical regions, as northeastern Brazil. Its bark is used in folk medicine as tranquilizer, sedative and insomnia. This study aimed to characterize the stem and leaf anatomy and to provide subsidies to quality control of the plant drug due to its wide use in folk medicine as well as its differentiation from other species with the same popular name. Samples were collected at Cuité, in Paraíba State, Brazil, fixed in FAA50, semipermanent slides were made, following usual procedures in plant anatomy. The stem shows a cylindrical contour, covered by a uniseriate epidermis covered by a thickened cuticle. It shows claviform glandular and branched trichomes with uniseriate stalk. Secretory cavities are into the phloem. The leaf epidermis has branched and glandular trichomes and anisocytic and paracytic stomata, on both sides, with predominance of branched trichomes and stomata on abaxial surface. Secretory cavities in stem and leaf, types of trichomes and stomata, its location and distribution constitute diagnostic characters for this specie. The structural characterization of the stem and leaf allows its distinction from other ones of this genus, ensuring safety for commercial pharmacological uses, allowing certification of the authenticity of raw material.

  20. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  1. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  2. Growth Performance of Clarias Gariepinus Fed Soaked Moringa Oleifera Leaf Meal

    OpenAIRE

    Ayegba, E. O

    2016-01-01

    The present study evaluates the nutritional potential of soaked-dried Moringa oleifera leaf meal in the diet of Clarias gariepinus. Four isonitrogenous (35% crude protein) diets were formulated with Moringa leaf replacing soybean meal at 0%, 10%, 20% and 30%. Result obtained revealed declined in weight gain, specific growth rate, feed conversion efficiency, protein efficiency ratio and apparent net protein utilization as dietary replacement of Moringa leaf meal increased beyond 10%. It is con...

  3. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    Science.gov (United States)

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  4. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  5. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species.

    Science.gov (United States)

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias

    2017-08-01

    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  6. Calcium oxalate druses affect leaf optical properties in selenium-treated Fagopyrum tataricum.

    Science.gov (United States)

    Golob, Aleksandra; Stibilj, Vekoslava; Nečemer, Marijan; Kump, Peter; Kreft, Ivan; Hočevar, Anja; Gaberščik, Alenka; Germ, Mateja

    2018-03-01

    Plants of the genus Fagopyrum contain high levels of crystalline calcium oxalate (CaOx) deposits, or druses, that can affect the leaf optical properties. As selenium has been shown to modify the uptake and accumulation of metabolically important elements such as calcium, we hypothesised that the numbers of druses can be altered by selenium treatment, and this would affect the leaf optical properties. Tartary buckwheat (Fagopyrum tataricum Gaertn.) was grown outdoors in an experimental field. At the beginning of flowering, plants were foliarly sprayed with sodium selenate solution at 10 mg selenium L -1 or only with water. Plant morphological, biochemical, physiological and optical properties were examined, along with leaf elemental composition and content. Se spraying did not affect leaf biochemical and functional properties. However, it increased leaf thickness and the contents of Se in the leaves, and decreased the density of calcium oxalate druses in the leaves. Except Se content, Se spraying did not affect contents of other elements in leaves, including total calcium per dry mass of leaf tissue. Redundancy analysis showed that of all parameters tested, only the calcium oxalate druses parameters were significant in explaining the variability of the leaf reflectance and transmittance spectra. The density of CaOx druses positively correlated with the reflectance in the blue, green, yellow and UV-B regions of the spectrum, while the area of CaOx druses per mm 2 of leaf transection area positively correlated with the transmittance in the green and yellow regions of the spectrum. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ephemeroptera, Plecoptera and Trichoptera (Insecta) Abundance, Diversity and Role in Leaf Litter Breakdown in Tropical Headwater River.

    Science.gov (United States)

    Ab Hamid, Suhaila; Md Rawi, Che Salmah

    2017-07-01

    Leaf litter decomposition in a tropical stream was examined in two types of leaf packs; single species leaf packs of Pometia pinnata and two species leaf packs of equal combination of Pometia pinnata and Dolichandrone spathacea leaves. Both leaf packs were immersed in a river and weekly examined for remains of decomposed leaves and presence of EPT. In the control leaf packs, leaves in the two species leaf packs treatments decomposed within 35 days, faster than in single species leaf packs which decomposed after 42 days. In the presence of EPT, the leaf breakdown took 28 days in two species and 35 days for single species leaf packs. Higher abundance of EPT was observed in single species leaf packs but its diversity was higher in two species leaf packs. Litter breakdown in the stream was faster in the presence of EPT and softer leaves of D. spathacea with higher nitrogen content underwent faster decomposition and sustained higher numbers of EPT.

  8. Identification of new SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water stressed condition.

    Science.gov (United States)

    Barakat, Mohamed N; Saleh, Mohamed; Al-Doss, Abdullah A; Moustafa, Khaled A; Elshafei, Adel A; Al-Qurainy, Fahed H

    2015-03-01

    Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.

  9. How well can spectroscopy predict leaf morphological traits in the seasonal neotropical savannas?

    Science.gov (United States)

    Streher, A. S.; McGill, B.; Morellato, P.; Silva, T. S. F.

    2017-12-01

    Variations in foliar morphological traits, quantified as leaf mass per area (LMA, g m-2) and leaf dry matter content (LDMC, g g-1), correspond to a tradeoff between investments in leaf construction costs and leaf life span. Leaf spectroscopy, the acquisition of reflected radiation along contiguous narrow spectral bands from leaves, has shown the potential to link leaf optical properties with a range of foliar traits. However, our knowledge is still limited on how well leaf traits from plants with different life forms and deciduousness strategies can be predicted from spectroscopy. To understand the relationships between leaf traits and optical properties, we investigated: 1) What are the spectral regions associated with leaf morphological traits? 2) How generalizable an optical trait model is across different life forms and leaf strategies? Five locations across cerrado and campo rupestre vegetation in Brazil were sampled during the growing season in 2017. Triplicate mature sun leaves were harvested from plants encompassing different life forms (grasses, perennial herbs, shrubs and trees), comprising 1650 individuals growing over a wide range of environmental conditions. For each individual, we determined LDMC and LMA, and took 30 spectral leaf measurements from 400 to 2500nm, using a spectrometer. We used the Random Forests (RF) algorithm to predict both morphological traits from leaf reflectance, and performed feature selection with a backward stepwise method, progressively removing variables with small importance at each iteration. Model performance was evaluated by using 10-fold cross-validation. LDMC values ranged from 0.12 to 0.67 g g-1, while LMA varied between 41.78 and 562 g m-2. The spectral bands that best explained trait variation were found within the SWIR, around 1397 nm for LDMC, and 2279 nm for LMA. Our general model explained 55.28% of LDMC variance and 55.64% of LMA variation, and the mean RMSE for the predicted values were 0.004 g g-1 and 36.99 g

  10. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer

    International Nuclear Information System (INIS)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-01-01

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v max while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information. (note)

  11. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer.

    Science.gov (United States)

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.

  12. Suppressors of RNA silencing encoded by tomato leaf curl

    Indian Academy of Sciences (India)

    Whitefly-transmitted begomoviruses infecting tomato crop code for five different proteins, ORF AC4, ORF AC2 and ORF AV2 in DNA-A component, ORF BV1 in DNA-B ... In the present study suppressor function of ORF C1 of three betasatellites Tomato leaf curl Bangalore betasatellite ToLCBB-[IN:Hess:08], Cotton leaf curl ...

  13. A meta-analysis of leaf nitrogen distribution within plant canopies

    NARCIS (Netherlands)

    Hikosaka, Kouki; Anten, Niels P.R.; Borjigidai, Almaz; Kamiyama, Chiho; Sakai, Hidemitsu; Hasegawa, Toshihiro; Oikawa, Shimpei; Iio, Atsuhiro; Watanabe, Makoto; Koike, Takayoshi; Nishina, Kazuya; Ito, Akihiko

    2016-01-01

    Background and aims Leaf nitrogen distribution in the plant canopy is an important determinant for canopy photosynthesis. Although the gradient of leaf nitrogen is formed along light gradients in the canopy, its quantitative variations among species and environmental responses remain unknown.

  14. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica.

    Science.gov (United States)

    Marias, Danielle E; Meinzer, Frederick C; Still, Christopher

    2017-02-01

    Given future climate predictions of increased temperature, and frequency and intensity of heat waves in the tropics, suitable habitat to grow ecologically, economically, and socially valuable Coffea arabica is severely threatened. We investigated how leaf age and heat stress duration impact recovery from heat stress in C. arabica . Treated plants were heated in a growth chamber at 49°C for 45 or 90 min. Physiological recovery was monitored in situ using gas exchange, chlorophyll fluorescence (the ratio of variable to maximum fluorescence, F V / F M ), and leaf nonstructural carbohydrate (NSC) on mature and expanding leaves before and 2, 15, 25, and 50 days after treatment. Regardless of leaf age, the 90-min treatment resulted in greater F V / F M reduction 2 days after treatment and slower recovery than the 45-min treatment. In both treatments, photosynthesis of expanding leaves recovered more slowly than in mature leaves. Stomatal conductance ( g s ) decreased in expanding leaves but did not change in mature leaves. These responses led to reduced intrinsic water-use efficiency with increasing heat stress duration in both age classes. Based on a leaf energy balance model, aftereffects of heat stress would be exacerbated by increases in leaf temperature at low g s under full sunlight where C. arabica is often grown, but also under partial sunlight. Starch and total NSC content of the 45-min group significantly decreased 2 days after treatment and then accumulated 15 and 25 days after treatment coinciding with recovery of photosynthesis and F V / F M . In contrast, sucrose of the 90-min group accumulated at day 2 suggesting that phloem transport was inhibited. Both treatment group responses contrasted with control plant total NSC and starch, which declined with time associated with subsequent flower and fruit production. No treated plants produced flowers or fruits, suggesting that short duration heat stress can lead to crop failure.

  15. Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain.

    Science.gov (United States)

    Medeiros, Juliana S; Tomeo, Nicholas J; Hewins, Charlotte R; Rosenthal, David M

    2016-08-01

    We investigated the effects of historic soil chemistry changes associated with acid rain, i.e., reduced soil pH and a shift from nitrogen (N)- to phosphorus (P)-limitation, on the coordination of leaf water demand and xylem hydraulic supply traits in two co-occurring temperate tree species differing in growth rate. Using a full-factorial design (N × P × pH), we measured leaf nutrient content, water relations, leaf-level and canopy-level gas exchange, total biomass and allocation, as well as stem xylem anatomy and hydraulic function for greenhouse-grown saplings of fast-growing Acer rubrum (L.) and slow-growing Quercus alba (L.). We used principle component analysis to characterize trait coordination. We found that N-limitation, but not P-limitation, had a significant impact on plant water relations and hydraulic coordination of both species. Fast-growing A. rubrum made hydraulic adjustments in response to N-limitation, but trait coordination was variable within treatments and did not fully compensate for changing allocation across N-availability. For slow-growing Q. alba, N-limitation engendered more strict coordination of leaf and xylem traits, resulting in similar leaf water content and hydraulic function across all treatments. Finally, low pH reduced the propensity of both species to adjust leaf water relations and xylem anatomical traits in response to nutrient manipulations. Our data suggest that a shift from N- to P-limitation has had a negative impact on the water relations and hydraulic function of A. rubrum to a greater extent than for Q. alba We suggest that current expansion of A. rubrum populations could be tempered by acidic N-deposition, which may restrict it to more mesic microsites. The disruption of hydraulic acclimation and coordination at low pH is emphasized as an interesting area of future study. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Atikya Farjana

    2014-09-01

    Full Text Available Objective: To determine antibacterial activity of water, oil and methanol extracts of guava (Psidium guajava, green tea (Camellia sinensis, neem (Azadirachta indica and marigold (Calendula officinalis against different species of bacteria, Pseudomonas spp., Vibrio cholerae, Vibrio parahaemolyticus (V. parahaemolyticus, Klebsiella spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus (S. aureus. Methods: Antibacterial activity of plant extracts was measured by agar well diffusion method. Results: Boiled water extracts of guava leaf showed the largest zone of inhibition (22 mm against V. parahaemolyticus. Water extracts of green tea leaf at boiling and room temperature showed 17.5 mm and 19 mm zone of inhibitions against V. parahaemolyticus and S. aureus, respectively. Boiled water extract of neem leaf showed moderate zone of inhibition against Escherichia coli (10 mm and Klebsiella spp. (11 mm. Water and oil extracts of marigold leaf at both boiling and room temperature did not show any zone of inhibition against any of the tested microorganisms. Methanol extracts of both guava and green tea leaves showed same zone of inhibition against Pseudomonus spp. (18 mm. Methanol extract of neem leaf showed antibacterial acitivity against Klebsiella spp. (16 mm and Vibrio cholerae (14 mm and that of marigold leaf showed antimicrobial activity against S. aureus (18 mm and Klebsiella spp. (12 mm. Conclusions: The results from the study suggest that the leaves of guava, green tea, neem and marigold show anibacterial activity against different bacterial species. They could be used as alternatives to common antimicrobial agents for treatment of bacterial infections.

  17. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-05-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno

  18. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-01-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno

  19. An insect countermeasure impacts plant physiology: midrib vein cutting, defoliation and leaf photosynthesis.

    Science.gov (United States)

    Delaney, Kevin J; Higley, Leon G

    2006-07-01

    One type of specialised herbivory receiving little study even though its importance has frequently been mentioned is vein cutting. We examined how injury to a leaf's midrib vein impairs gas exchange, whether impairment occurs downstream or upstream from injury, duration of impairment, compared the severity of midrib injury with non-midrib defoliation, and modelled how these two leaf injuries affect whole-leaf photosynthesis. Leaf gas exchange response to midrib injury was measured in five Asclepiadaceae (milkweed), one Apocynaceae (dogbane), one Polygonaceae and one Fabaceae species, which have been observed or reported to have midrib vein cutting injury in their habitats. Midrib vein injury impaired several leaf gas exchange parameters, but only downstream (distal) from the injury location. The degree of gas exchange impairment from midrib injury was usually more severe than from manually imposed and actual insect defoliation (non-midrib), where partial recovery occurred after 28 d in one milkweed species. Non-midrib tissue defoliation reduced whole-leaf photosynthetic activity mostly by removing photosynthetically active tissue, while midrib injury was most severe as the injury location came closer to the petiole. Midrib vein cutting has been suggested to have evolved as a countermeasure to deactivate induced leaf latex or cardenolide defences of milkweeds and dogbanes, yet vein cutting effects on leaf physiology seem more severe than the non-midrib defoliation the defences evolved to deter.

  20. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    Science.gov (United States)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.