WorldWideScience

Sample records for greater classification accuracy

  1. Expected Classification Accuracy

    Directory of Open Access Journals (Sweden)

    Lawrence M. Rudner

    2005-08-01

    Full Text Available Every time we make a classification based on a test score, we should expect some number..of misclassifications. Some examinees whose true ability is within a score range will have..observed scores outside of that range. A procedure for providing a classification table of..true and expected scores is developed for polytomously scored items under item response..theory and applied to state assessment data. A simplified procedure for estimating the..table entries is also presented.

  2. Classification Accuracy Is Not Enough

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    2013-01-01

    A recent review of the research literature evaluating music genre recognition (MGR) systems over the past two decades shows that most works (81\\%) measure the capacity of a system to recognize genre by its classification accuracy. We show here, by implementing and testing three categorically...

  3. Strategies to Increase Accuracy in Text Classification

    NARCIS (Netherlands)

    D. Blommesteijn (Dennis)

    2014-01-01

    htmlabstractText classification via supervised learning involves various steps from processing raw data, features extraction to training and validating classifiers. Within these steps implementation decisions are critical to the resulting classifier accuracy. This paper contains a report of the

  4. Classification Accuracy Increase Using Multisensor Data Fusion

    Science.gov (United States)

    Makarau, A.; Palubinskas, G.; Reinartz, P.

    2011-09-01

    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to

  5. 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox.

    Directory of Open Access Journals (Sweden)

    Francisco J Valverde-Albacete

    Full Text Available The most widely spread measure of performance, accuracy, suffers from a paradox: predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy. Despite optimizing classification error rate, high accuracy models may fail to capture crucial information transfer in the classification task. We present evidence of this behavior by means of a combinatorial analysis where every possible contingency matrix of 2, 3 and 4 classes classifiers are depicted on the entropy triangle, a more reliable information-theoretic tool for classification assessment. Motivated by this, we develop from first principles a measure of classification performance that takes into consideration the information learned by classifiers. We are then able to obtain the entropy-modulated accuracy (EMA, a pessimistic estimate of the expected accuracy with the influence of the input distribution factored out, and the normalized information transfer factor (NIT, a measure of how efficient is the transmission of information from the input to the output set of classes. The EMA is a more natural measure of classification performance than accuracy when the heuristic to maximize is the transfer of information through the classifier instead of classification error count. The NIT factor measures the effectiveness of the learning process in classifiers and also makes it harder for them to "cheat" using techniques like specialization, while also promoting the interpretability of results. Their use is demonstrated in a mind reading task competition that aims at decoding the identity of a video stimulus based on magnetoencephalography recordings. We show how the EMA and the NIT factor reject rankings based in accuracy, choosing more meaningful and interpretable classifiers.

  6. Accuracy assessment between different image classification ...

    African Journals Online (AJOL)

    What image classification does is to assign pixel to a particular land cover and land use type that has the most similar spectral signature. However, there are possibilities that different methods or algorithms of image classification of the same data set could produce appreciable variant results in the sizes, shapes and areas of ...

  7. Can Automatic Classification Help to Increase Accuracy in Data Collection?

    Directory of Open Access Journals (Sweden)

    Frederique Lang

    2016-09-01

    Full Text Available Purpose: The authors aim at testing the performance of a set of machine learning algorithms that could improve the process of data cleaning when building datasets. Design/methodology/approach: The paper is centered on cleaning datasets gathered from publishers and online resources by the use of specific keywords. In this case, we analyzed data from the Web of Science. The accuracy of various forms of automatic classification was tested here in comparison with manual coding in order to determine their usefulness for data collection and cleaning. We assessed the performance of seven supervised classification algorithms (Support Vector Machine (SVM, Scaled Linear Discriminant Analysis, Lasso and elastic-net regularized generalized linear models, Maximum Entropy, Regression Tree, Boosting, and Random Forest and analyzed two properties: accuracy and recall. We assessed not only each algorithm individually, but also their combinations through a voting scheme. We also tested the performance of these algorithms with different sizes of training data. When assessing the performance of different combinations, we used an indicator of coverage to account for the agreement and disagreement on classification between algorithms. Findings: We found that the performance of the algorithms used vary with the size of the sample for training. However, for the classification exercise in this paper the best performing algorithms were SVM and Boosting. The combination of these two algorithms achieved a high agreement on coverage and was highly accurate. This combination performs well with a small training dataset (10%, which may reduce the manual work needed for classification tasks. Research limitations: The dataset gathered has significantly more records related to the topic of interest compared to unrelated topics. This may affect the performance of some algorithms, especially in their identification of unrelated papers. Practical implications: Although the

  8. River reach classification for the Greater Mekong Region at high spatial resolution

    Science.gov (United States)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  9. Impacts of land use/cover classification accuracy on regional climate simulations

    Science.gov (United States)

    Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.

    2007-03-01

    Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.

  10. IMPACTS OF PATCH SIZE AND LANDSCAPE HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY

    Science.gov (United States)

    Impacts of Patch Size and Landscape Heterogeneity on Thematic Image Classification Accuracy. Currently, most thematic accuracy assessments of classified remotely sensed images oily account for errors between the various classes employed, at particular pixels of interest, thu...

  11. Convolutional Neural Network Achieves Human-level Accuracy in Music Genre Classification

    OpenAIRE

    Dong, Mingwen

    2018-01-01

    Music genre classification is one example of content-based analysis of music signals. Traditionally, human-engineered features were used to automatize this task and 61% accuracy has been achieved in the 10-genre classification. However, it's still below the 70% accuracy that humans could achieve in the same task. Here, we propose a new method that combines knowledge of human perception study in music genre classification and the neurophysiology of the auditory system. The method works by trai...

  12. ASSESSMENT OF LANDSCAPE CHARACTERISTICS ON THEMATIC IMAGE CLASSIFICATION ACCURACY

    Science.gov (United States)

    Landscape characteristics such as small patch size and land cover heterogeneity have been hypothesized to increase the likelihood of misclassifying pixels during thematic image classification. However, there has been a lack of empirical evidence, to support these hypotheses. This...

  13. Toward accountable land use mapping: Using geocomputation to improve classification accuracy and reveal uncertainty

    NARCIS (Netherlands)

    Beekhuizen, J.; Clarke, K.C.

    2010-01-01

    The classification of satellite imagery into land use/cover maps is a major challenge in the field of remote sensing. This research aimed at improving the classification accuracy while also revealing uncertain areas by employing a geocomputational approach. We computed numerous land use maps by

  14. Gene masking - a technique to improve accuracy for cancer classification with high dimensionality in microarray data.

    Science.gov (United States)

    Saini, Harsh; Lal, Sunil Pranit; Naidu, Vimal Vikash; Pickering, Vincel Wince; Singh, Gurmeet; Tsunoda, Tatsuhiko; Sharma, Alok

    2016-12-05

    High dimensional feature space generally degrades classification in several applications. In this paper, we propose a strategy called gene masking, in which non-contributing dimensions are heuristically removed from the data to improve classification accuracy. Gene masking is implemented via a binary encoded genetic algorithm that can be integrated seamlessly with classifiers during the training phase of classification to perform feature selection. It can also be used to discriminate between features that contribute most to the classification, thereby, allowing researchers to isolate features that may have special significance. This technique was applied on publicly available datasets whereby it substantially reduced the number of features used for classification while maintaining high accuracies. The proposed technique can be extremely useful in feature selection as it heuristically removes non-contributing features to improve the performance of classifiers.

  15. Estimated accuracy of classification of defects detected in welded joints by radiographic tests

    International Nuclear Information System (INIS)

    Siqueira, M.H.S.; De Silva, R.R.; De Souza, M.P.V.; Rebello, J.M.A.; Caloba, L.P.; Mery, D.

    2004-01-01

    This work is a study to estimate the accuracy of classification of the main classes of weld defects detected by radiography test, such as: undercut, lack of penetration, porosity, slag inclusion, crack or lack of fusion. To carry out this work non-linear pattern classifiers were developed, using neural networks, and the largest number of radiographic patterns as possible was used as well as statistical inference techniques of random selection of samples with and without repositioning (bootstrap) in order to estimate the accuracy of the classification. The results pointed to an estimated accuracy of around 80% for the classes of defects analyzed. (author)

  16. Estimated accuracy of classification of defects detected in welded joints by radiographic tests

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, M.H.S.; De Silva, R.R.; De Souza, M.P.V.; Rebello, J.M.A. [Federal Univ. of Rio de Janeiro, Dept., of Metallurgical and Materials Engineering, Rio de Janeiro (Brazil); Caloba, L.P. [Federal Univ. of Rio de Janeiro, Dept., of Electrical Engineering, Rio de Janeiro (Brazil); Mery, D. [Pontificia Unversidad Catolica de Chile, Escuela de Ingenieria - DCC, Dept. de Ciencia de la Computacion, Casilla, Santiago (Chile)

    2004-07-01

    This work is a study to estimate the accuracy of classification of the main classes of weld defects detected by radiography test, such as: undercut, lack of penetration, porosity, slag inclusion, crack or lack of fusion. To carry out this work non-linear pattern classifiers were developed, using neural networks, and the largest number of radiographic patterns as possible was used as well as statistical inference techniques of random selection of samples with and without repositioning (bootstrap) in order to estimate the accuracy of the classification. The results pointed to an estimated accuracy of around 80% for the classes of defects analyzed. (author)

  17. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    Science.gov (United States)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  18. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery

    Directory of Open Access Journals (Sweden)

    Chinsu Lin

    2015-05-01

    Full Text Available Changes of Land Use and Land Cover (LULC affect atmospheric, climatic, and biological spheres of the earth. Accurate LULC map offers detail information for resources management and intergovernmental cooperation to debate global warming and biodiversity reduction. This paper examined effects of pansharpening and atmospheric correction on LULC classification. Object-Based Support Vector Machine (OB-SVM and Pixel-Based Maximum Likelihood Classifier (PB-MLC were applied for LULC classification. Results showed that atmospheric correction is not necessary for LULC classification if it is conducted in the original multispectral image. Nevertheless, pansharpening plays much more important roles on the classification accuracy than the atmospheric correction. It can help to increase classification accuracy by 12% on average compared to the ones without pansharpening. PB-MLC and OB-SVM achieved similar classification rate. This study indicated that the LULC classification accuracy using PB-MLC and OB-SVM is 82% and 89% respectively. A combination of atmospheric correction, pansharpening, and OB-SVM could offer promising LULC maps from WorldView-2 multispectral and panchromatic images.

  19. The Sample Size Influence in the Accuracy of the Image Classification of the Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomaz C. e C. da Costa

    2004-12-01

    Full Text Available Landuse/landcover maps produced by classification of remote sensing images incorporate uncertainty. This uncertainty is measured by accuracy indices using reference samples. The size of the reference sample is defined by approximation by a binomial function without the use of a pilot sample. This way the accuracy are not estimated, but fixed a priori. In case of divergency between the estimated and a priori accuracy the error of the sampling will deviate from the expected error. The size using pilot sample (theorically correct procedure justify when haven´t estimate of accuracy for work area, referent the product remote sensing utility.

  20. Conceptual Scoring and Classification Accuracy of Vocabulary Testing in Bilingual Children

    Science.gov (United States)

    Anaya, Jissel B.; Peña, Elizabeth D.; Bedore, Lisa M.

    2018-01-01

    Purpose: This study examined the effects of single-language and conceptual scoring on the vocabulary performance of bilingual children with and without specific language impairment. We assessed classification accuracy across 3 scoring methods. Method: Participants included Spanish-English bilingual children (N = 247) aged 5;1 (years;months) to…

  1. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    Science.gov (United States)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  2. Assessing the Accuracy and Consistency of Language Proficiency Classification under Competing Measurement Models

    Science.gov (United States)

    Zhang, Bo

    2010-01-01

    This article investigates how measurement models and statistical procedures can be applied to estimate the accuracy of proficiency classification in language testing. The paper starts with a concise introduction of four measurement models: the classical test theory (CTT) model, the dichotomous item response theory (IRT) model, the testlet response…

  3. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    Science.gov (United States)

    Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda Geiser; Gretchen G. Moisen

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by...

  4. Boosted classification trees result in minor to modest improvement in the accuracy in classifying cardiovascular outcomes compared to conventional classification trees

    Science.gov (United States)

    Austin, Peter C; Lee, Douglas S

    2011-01-01

    Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181

  5. Impacts of Sample Design for Validation Data on the Accuracy of Feedforward Neural Network Classification

    Directory of Open Access Journals (Sweden)

    Giles M. Foody

    2017-08-01

    Full Text Available Validation data are often used to evaluate the performance of a trained neural network and used in the selection of a network deemed optimal for the task at-hand. Optimality is commonly assessed with a measure, such as overall classification accuracy. The latter is often calculated directly from a confusion matrix showing the counts of cases in the validation set with particular labelling properties. The sample design used to form the validation set can, however, influence the estimated magnitude of the accuracy. Commonly, the validation set is formed with a stratified sample to give balanced classes, but also via random sampling, which reflects class abundance. It is suggested that if the ultimate aim is to accurately classify a dataset in which the classes do vary in abundance, a validation set formed via random, rather than stratified, sampling is preferred. This is illustrated with the classification of simulated and remotely-sensed datasets. With both datasets, statistically significant differences in the accuracy with which the data could be classified arose from the use of validation sets formed via random and stratified sampling (z = 2.7 and 1.9 for the simulated and real datasets respectively, for both p < 0.05%. The accuracy of the classifications that used a stratified sample in validation were smaller, a result of cases of an abundant class being commissioned into a rarer class. Simple means to address the issue are suggested.

  6. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions

    Directory of Open Access Journals (Sweden)

    Quentin Noirhomme

    2014-01-01

    Full Text Available Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, we simulated classification results of generated random data to assess the influence of the cross-validation scheme on the significance of results. Distributions built from classification of random data with cross-validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross-validation was further illustrated on real-data from a brain–computer interface experiment in patients with disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could discriminate significantly between idiopathic Parkinson's disease patients and healthy subjects according to the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased estimation of significance and false positive or negative results. In our view, permutation testing is thus recommended for clinical application of classification with cross-validation.

  7. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions.

    Science.gov (United States)

    Noirhomme, Quentin; Lesenfants, Damien; Gomez, Francisco; Soddu, Andrea; Schrouff, Jessica; Garraux, Gaëtan; Luxen, André; Phillips, Christophe; Laureys, Steven

    2014-01-01

    Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, we simulated classification results of generated random data to assess the influence of the cross-validation scheme on the significance of results. Distributions built from classification of random data with cross-validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross-validation was further illustrated on real-data from a brain-computer interface experiment in patients with disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could discriminate significantly between idiopathic Parkinson's disease patients and healthy subjects according to the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased estimation of significance and false positive or negative results. In our view, permutation testing is thus recommended for clinical application of classification with cross-validation.

  8. Influence of different topographic correction strategies on mountain vegetation classification accuracy in the Lancang Watershed, China

    Science.gov (United States)

    Zhang, Zhiming; de Wulf, Robert R.; van Coillie, Frieke M. B.; Verbeke, Lieven P. C.; de Clercq, Eva M.; Ou, Xiaokun

    2011-01-01

    Mapping of vegetation using remote sensing in mountainous areas is considerably hampered by topographic effects on the spectral response pattern. A variety of topographic normalization techniques have been proposed to correct these illumination effects due to topography. The purpose of this study was to compare six different topographic normalization methods (Cosine correction, Minnaert correction, C-correction, Sun-canopy-sensor correction, two-stage topographic normalization, and slope matching technique) for their effectiveness in enhancing vegetation classification in mountainous environments. Since most of the vegetation classes in the rugged terrain of the Lancang Watershed (China) did not feature a normal distribution, artificial neural networks (ANNs) were employed as a classifier. Comparing the ANN classifications, none of the topographic correction methods could significantly improve ETM+ image classification overall accuracy. Nevertheless, at the class level, the accuracy of pine forest could be increased by using topographically corrected images. On the contrary, oak forest and mixed forest accuracies were significantly decreased by using corrected images. The results also showed that none of the topographic normalization strategies was satisfactorily able to correct for the topographic effects in severely shadowed areas.

  9. Assessing the accuracy of weather radar to track intense rain cells in the Greater Lyon area, France

    Science.gov (United States)

    Renard, Florent; Chapon, Pierre-Marie; Comby, Jacques

    2012-01-01

    The Greater Lyon is a dense area located in the Rhône Valley in the south east of France. The conurbation counts 1.3 million inhabitants and the rainfall hazard is a great concern. However, until now, studies on rainfall over the Greater Lyon have only been based on the network of rain gauges, despite the presence of a C-band radar located in the close vicinity. Consequently, the first aim of this study was to investigate the hydrological quality of this radar. This assessment, based on comparison of radar estimations and rain-gauges values concludes that the radar data has overall a good quality since 2006. Given this good accuracy, this study made a next step and investigated the characteristics of intense rain cells that are responsible of the majority of floods in the Greater Lyon area. Improved knowledge on these rainfall cells is important to anticipate dangerous events and to improve the monitoring of the sewage system. This paper discusses the analysis of the ten most intense rainfall events in the 2001-2010 period. Spatial statistics pointed towards straight and linear movements of intense rainfall cells, independently on the ground surface conditions and the topography underneath. The speed of these cells was found nearly constant during a rainfall event, but depend from event to ranges on average from 25 to 66 km/h.

  10. Accuracy of automated classification of major depressive disorder as a function of symptom severity.

    Science.gov (United States)

    Ramasubbu, Rajamannar; Brown, Matthew R G; Cortese, Filmeno; Gaxiola, Ismael; Goodyear, Bradley; Greenshaw, Andrew J; Dursun, Serdar M; Greiner, Russell

    2016-01-01

    Growing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic classifiers. Forty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in the study. Based on depression severity as determined by the Hamilton Rating Scale for Depression (HRSD), MDD patients were sorted into three groups: mild to moderate depression (HRSD 14-19), severe depression (HRSD 20-23), and very severe depression (HRSD ≥ 24). We collected functional magnetic resonance imaging (fMRI) data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We use each of these six datasets with linear support vector machine (SVM) binary classifiers for identifying individuals as patients or controls. The resting-state fMRI data showed statistically significant classification accuracy only for the very severe depression group (accuracy 66%, p = 0.012 corrected), while mild to moderate (accuracy 58%, p = 1.0 corrected) and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the automated classifier performed at chance in all three severity groups. Binary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.

  11. Using spectrotemporal indices to improve the fruit-tree crop classification accuracy

    Science.gov (United States)

    Peña, M. A.; Liao, R.; Brenning, A.

    2017-06-01

    This study assesses the potential of spectrotemporal indices derived from satellite image time series (SITS) to improve the classification accuracy of fruit-tree crops. Six major fruit-tree crop types in the Aconcagua Valley, Chile, were classified by applying various linear discriminant analysis (LDA) techniques on a Landsat-8 time series of nine images corresponding to the 2014-15 growing season. As features we not only used the complete spectral resolution of the SITS, but also all possible normalized difference indices (NDIs) that can be constructed from any two bands of the time series, a novel approach to derive features from SITS. Due to the high dimensionality of this "enhanced" feature set we used the lasso and ridge penalized variants of LDA (PLDA). Although classification accuracies yielded by the standard LDA applied on the full-band SITS were good (misclassification error rate, MER = 0.13), they were further improved by 23% (MER = 0.10) with ridge PLDA using the enhanced feature set. The most important bands to discriminate the crops of interest were mainly concentrated on the first two image dates of the time series, corresponding to the crops' greenup stage. Despite the high predictor weights provided by the red and near infrared bands, typically used to construct greenness spectral indices, other spectral regions were also found important for the discrimination, such as the shortwave infrared band at 2.11-2.19 μm, sensitive to foliar water changes. These findings support the usefulness of spectrotemporal indices in the context of SITS-based crop type classifications, which until now have been mainly constructed by the arithmetic combination of two bands of the same image date in order to derive greenness temporal profiles like those from the normalized difference vegetation index.

  12. Improvement of User's Accuracy Through Classification of Principal Component Images and Stacked Temporal Images

    Institute of Scientific and Technical Information of China (English)

    Nilanchal Patel; Brijesh Kumar Kaushal

    2010-01-01

    The classification accuracy of the various categories on the classified remotely sensed images are usually evaluated by two different measures of accuracy, namely, producer's accuracy (PA) and user's accuracy (UA). The PA of a category indicates to what extent the reference pixels of the category are correctly classified, whereas the UA ora category represents to what extent the other categories are less misclassified into the category in question. Therefore, the UA of the various categories determines the reliability of their interpretation on the classified image and is more important to the analyst than the PA. The present investigation has been performed in order to determine ifthere occurs improvement in the UA of the various categories on the classified image of the principal components of the original bands and on the classified image of the stacked image of two different years. We performed the analyses using the IRS LISS Ⅲ images of two different years, i.e., 1996 and 2009, that represent the different magnitude of urbanization and the stacked image of these two years pertaining to Ranchi area, Jharkhand, India, with a view to assessing the impacts of urbanization on the UA of the different categories. The results of the investigation demonstrated that there occurs significant improvement in the UA of the impervious categories in the classified image of the stacked image, which is attributable to the aggregation of the spectral information from twice the number of bands from two different years. On the other hand, the classified image of the principal components did not show any improvement in the UA as compared to the original images.

  13. Speed and accuracy of facial expression classification in avoidant personality disorder: a preliminary study.

    Science.gov (United States)

    Rosenthal, M Zachary; Kim, Kwanguk; Herr, Nathaniel R; Smoski, Moria J; Cheavens, Jennifer S; Lynch, Thomas R; Kosson, David S

    2011-10-01

    The aim of this preliminary study was to examine whether individuals with avoidant personality disorder (APD) could be characterized by deficits in the classification of dynamically presented facial emotional expressions. Using a community sample of adults with APD (n = 17) and non-APD controls (n = 16), speed and accuracy of facial emotional expression recognition was investigated in a task that morphs facial expressions from neutral to prototypical expressions (Multi-Morph Facial Affect Recognition Task; Blair, Colledge, Murray, & Mitchell, 2001). Results indicated that individuals with APD were significantly more likely than controls to make errors when classifying fully expressed fear. However, no differences were found between groups in the speed to correctly classify facial emotional expressions. The findings are some of the first to investigate facial emotional processing in a sample of individuals with APD and point to an underlying deficit in processing social cues that may be involved in the maintenance of APD.

  14. A COMPARISON OF HAZE REMOVAL ALGORITHMS AND THEIR IMPACTS ON CLASSIFICATION ACCURACY FOR LANDSAT IMAGERY

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available The quality of Landsat images in humid areas is considerably degraded by haze in terms of their spectral response pattern, which limits the possibility of their application in using visible and near-infrared bands. A variety of haze removal algorithms have been proposed to correct these unsatisfactory illumination effects caused by the haze contamination. The purpose of this study was to illustrate the difference of two major algorithms (the improved homomorphic filtering (HF and the virtual cloud point (VCP for their effectiveness in solving spatially varying haze contamination, and to evaluate the impacts of haze removal on land cover classification. A case study with exploiting large quantities of Landsat TM images and climates (clear and haze in the most humid areas in China proved that these haze removal algorithms both perform well in processing Landsat images contaminated by haze. The outcome of the application of VCP appears to be more similar to the reference images compared to HF. Moreover, the Landsat image with VCP haze removal can improve the classification accuracy effectively in comparison to that without haze removal, especially in the cloudy contaminated area

  15. Accuracy of the all patient refined diagnosis related groups classification system in congenital heart surgery.

    Science.gov (United States)

    Parnell, Aimee S; Shults, Justine; Gaynor, J William; Leonard, Mary B; Dai, Dingwei; Feudtner, Chris

    2014-02-01

    Administrative data are increasingly used to evaluate clinical outcomes and quality of care in pediatric congenital heart surgery (CHS) programs. Several published analyses of large pediatric administrative data sets have relied on the All Patient Refined Diagnosis Related Groups (APR-DRG, version 24) diagnostic classification system. The accuracy of this classification system for patients undergoing CHS is unclear. We performed a retrospective cohort study of all 14,098 patients 0 to 5 years of age undergoing any of six selected congenital heart operations, ranging in complexity from isolated closure of a ventricular septal defect to single-ventricle palliation, at 40 tertiary-care pediatric centers in the Pediatric Health Information Systems database between 2007 and 2010. Assigned APR-DRGs (cardiac versus noncardiac) were compared using χ2 or Fisher's exact tests between those patients admitted during the first day of life versus later and between those receiving extracorporeal membrane oxygenation support versus those not. Recursive partitioning was used to assess the greatest determinants of APR-DRG type in the model. Every patient admitted on day 1 of life was assigned to a noncardiac APR-DRG (pDRG (pDRG experienced a significantly increased mortality (pDRG coding has systematic misclassifications, which may result in inaccurate reporting of CHS case volumes and mortality. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Completeness and accuracy of data transfer of routine maternal health services data in the greater Accra region

    NARCIS (Netherlands)

    Amoakoh-Coleman, Mary; Kayode, Gbenga A.; Brown-Davies, Charles; Agyepong, Irene Akua; Grobbee, DE; Klipstein-Grobusch, Kerstin; Ansah, Evelyn K.

    2015-01-01

    Background: High quality routine health system data is essential for tracking progress towards attainment of the Millennium Development Goals 4 & 5. This study aimed to determine the completeness and accuracy of transfer of routine maternal health service data at health facility, district and

  17. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C.

    Science.gov (United States)

    Boursier, Jérôme; Bertrais, Sandrine; Oberti, Frédéric; Gallois, Yves; Fouchard-Hubert, Isabelle; Rousselet, Marie-Christine; Zarski, Jean-Pierre; Calès, Paul

    2011-11-30

    Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts) and blood tests, Metavir fibrosis (FM) stage accuracy was 64.4% in local pathologists vs. 82.2% (p blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55) and FibroMeter3G (0.14 ± 0.37, p blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%), Fibroscan: 64.9% (50.7%), FibroMeter2G: 68.7% (68.2%), FibroMeter3G: 77.1% (83.4%), p fibrosis classification of the best-performing blood test outperforms liver biopsy read by a local pathologist, i.e., in clinical practice; however, the classification precision is apparently lesser. This detailed classification accuracy is much lower than that of significant fibrosis with Fibroscan and even Fibrotest but higher with FibroMeter3G. FibroMeter classification accuracy was significantly higher than those of other non-invasive tests. Finally, for hepatitis C evaluation in clinical practice, fibrosis degree can be evaluated using an accurate blood test.

  18. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    Science.gov (United States)

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.

  19. Improving the Classification Accuracy for Near-Infrared Spectroscopy of Chinese Salvia miltiorrhiza Using Local Variable Selection

    Directory of Open Access Journals (Sweden)

    Lianqing Zhu

    2018-01-01

    Full Text Available In order to improve the classification accuracy of Chinese Salvia miltiorrhiza using near-infrared spectroscopy, a novel local variable selection strategy is thus proposed. Combining the strengths of the local algorithm and interval partial least squares, the spectra data have firstly been divided into several pairs of classes in sample direction and equidistant subintervals in variable direction. Then, a local classification model has been built, and the most proper spectral region has been selected based on the new evaluation criterion considering both classification error rate and best predictive ability under the leave-one-out cross validation scheme for each pair of classes. Finally, each observation can be assigned to belong to the class according to the statistical analysis of classification results of the local classification model built on selected variables. The performance of the proposed method was demonstrated through near-infrared spectra of cultivated or wild Salvia miltiorrhiza, which are collected from 8 geographical origins in 5 provinces of China. For comparison, soft independent modelling of class analogy and partial least squares discriminant analysis methods are, respectively, employed as the classification model. Experimental results showed that classification performance of the classification model with local variable selection was obvious better than that without variable selection.

  20. Measurement Properties and Classification Accuracy of Two Spanish Parent Surveys of Language Development for Preschool-Age Children

    Science.gov (United States)

    Guiberson, Mark; Rodriguez, Barbara L.

    2010-01-01

    Purpose: To describe the concurrent validity and classification accuracy of 2 Spanish parent surveys of language development, the Spanish Ages and Stages Questionnaire (ASQ; Squires, Potter, & Bricker, 1999) and the Pilot Inventario-III (Pilot INV-III; Guiberson, 2008a). Method: Forty-eight Spanish-speaking parents of preschool-age children…

  1. Accuracy Analysis Comparison of Supervised Classification Methods for Anomaly Detection on Levees Using SAR Imagery

    Directory of Open Access Journals (Sweden)

    Ramakalavathi Marapareddy

    2017-10-01

    Full Text Available This paper analyzes the use of a synthetic aperture radar (SAR imagery to support levee condition assessment by detecting potential slide areas in an efficient and cost-effective manner. Levees are prone to a failure in the form of internal erosion within the earthen structure and landslides (also called slough or slump slides. If not repaired, slough slides may lead to levee failures. In this paper, we compare the accuracy of the supervised classification methods minimum distance (MD using Euclidean and Mahalanobis distance, support vector machine (SVM, and maximum likelihood (ML, using SAR technology to detect slough slides on earthen levees. In this work, the effectiveness of the algorithms was demonstrated using quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory’s (JPL’s uninhabited aerial vehicle synthetic aperture radar (UAVSAR. The study area is a section of the lower Mississippi River valley in the Southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.

  2. Increasing accuracy of vehicle detection from conventional vehicle detectors - counts, speeds, classification, and travel time.

    Science.gov (United States)

    2014-09-01

    Vehicle classification is an important traffic parameter for transportation planning and infrastructure : management. Length-based vehicle classification from dual loop detectors is among the lowest cost : technologies commonly used for collecting th...

  3. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  4. Bagging Approach for Increasing Classification Accuracy of CART on Family Participation Prediction in Implementation of Elderly Family Development Program

    Directory of Open Access Journals (Sweden)

    Wisoedhanie Widi Anugrahanti

    2017-06-01

    Full Text Available Classification and Regression Tree (CART was a method of Machine Learning where data exploration was done by decision tree technique. CART was a classification technique with binary recursive reconciliation algorithms where the sorting was performed on a group of data collected in a space called a node / node into two child nodes (Lewis, 2000. The aim of this study was to predict family participation in Elderly Family Development program based on family behavior in providing physical, mental, social care for the elderly. Family involvement accuracy using Bagging CART method was calculated based on 1-APER value, sensitivity, specificity, and G-Means. Based on CART method, classification accuracy was obtained 97,41% with Apparent Error Rate value 2,59%. The most important determinant of family behavior as a sorter was society participation (100,00000, medical examination (98,95988, providing nutritious food (68.60476, establishing communication (67,19877 and worship (57,36587. To improved the stability and accuracy of CART prediction, used CART Bootstrap Aggregating (Bagging with 100% accuracy result. Bagging CART classifies a total of 590 families (84.77% were appropriately classified into implement elderly Family Development program class.

  5. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques.

    Science.gov (United States)

    Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A

    2018-05-01

    This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p  ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p  ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data

    Science.gov (United States)

    Gajda, Agnieszka; Wójtowicz-Nowakowska, Anna

    2013-04-01

    A comparison of the accuracy of pixel based and object based classifications of integrated optical and LiDAR data Land cover maps are generally produced on the basis of high resolution imagery. Recently, LiDAR (Light Detection and Ranging) data have been brought into use in diverse applications including land cover mapping. In this study we attempted to assess the accuracy of land cover classification using both high resolution aerial imagery and LiDAR data (airborne laser scanning, ALS), testing two classification approaches: a pixel-based classification and object-oriented image analysis (OBIA). The study was conducted on three test areas (3 km2 each) in the administrative area of Kraków, Poland, along the course of the Vistula River. They represent three different dominating land cover types of the Vistula River valley. Test site 1 had a semi-natural vegetation, with riparian forests and shrubs, test site 2 represented a densely built-up area, and test site 3 was an industrial site. Point clouds from ALS and ortophotomaps were both captured in November 2007. Point cloud density was on average 16 pt/m2 and it contained additional information about intensity and encoded RGB values. Ortophotomaps had a spatial resolution of 10 cm. From point clouds two raster maps were generated: intensity (1) and (2) normalised Digital Surface Model (nDSM), both with the spatial resolution of 50 cm. To classify the aerial data, a supervised classification approach was selected. Pixel based classification was carried out in ERDAS Imagine software. Ortophotomaps and intensity and nDSM rasters were used in classification. 15 homogenous training areas representing each cover class were chosen. Classified pixels were clumped to avoid salt and pepper effect. Object oriented image object classification was carried out in eCognition software, which implements both the optical and ALS data. Elevation layers (intensity, firs/last reflection, etc.) were used at segmentation stage due to

  7. A simulated Linear Mixture Model to Improve Classification Accuracy of Satellite Data Utilizing Degradation of Atmospheric Effect

    Directory of Open Access Journals (Sweden)

    WIDAD Elmahboub

    2005-02-01

    Full Text Available Researchers in remote sensing have attempted to increase the accuracy of land cover information extracted from remotely sensed imagery. Factors that influence the supervised and unsupervised classification accuracy are the presence of atmospheric effect and mixed pixel information. A linear mixture simulated model experiment is generated to simulate real world data with known end member spectral sets and class cover proportions (CCP. The CCP were initially generated by a random number generator and normalized to make the sum of the class proportions equal to 1.0 using MATLAB program. Random noise was intentionally added to pixel values using different combinations of noise levels to simulate a real world data set. The atmospheric scattering error is computed for each pixel value for three generated images with SPOT data. Accuracy can either be classified or misclassified. Results portrayed great improvement in classified accuracy, for example, in image 1, misclassified pixels due to atmospheric noise is 41 %. Subsequent to the degradation of atmospheric effect, the misclassified pixels were reduced to 4 %. We can conclude that accuracy of classification can be improved by degradation of atmospheric noise.

  8. Land cover classification accuracy from electro-optical, X, C, and L-band Synthetic Aperture Radar data fusion

    Science.gov (United States)

    Hammann, Mark Gregory

    The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted

  9. Comparison of accuracy of fibrosis degree classifications by liver biopsy and non-invasive tests in chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Boursier Jérôme

    2011-11-01

    Full Text Available Abstract Background Non-invasive tests have been constructed and evaluated mainly for binary diagnoses such as significant fibrosis. Recently, detailed fibrosis classifications for several non-invasive tests have been developed, but their accuracy has not been thoroughly evaluated in comparison to liver biopsy, especially in clinical practice and for Fibroscan. Therefore, the main aim of the present study was to evaluate the accuracy of detailed fibrosis classifications available for non-invasive tests and liver biopsy. The secondary aim was to validate these accuracies in independent populations. Methods Four HCV populations provided 2,068 patients with liver biopsy, four different pathologist skill-levels and non-invasive tests. Results were expressed as percentages of correctly classified patients. Results In population #1 including 205 patients and comparing liver biopsy (reference: consensus reading by two experts and blood tests, Metavir fibrosis (FM stage accuracy was 64.4% in local pathologists vs. 82.2% (p -3 in single expert pathologist. Significant discrepancy (≥ 2FM vs reference histological result rates were: Fibrotest: 17.2%, FibroMeter2G: 5.6%, local pathologists: 4.9%, FibroMeter3G: 0.5%, expert pathologist: 0% (p -3. In population #2 including 1,056 patients and comparing blood tests, the discrepancy scores, taking into account the error magnitude, of detailed fibrosis classification were significantly different between FibroMeter2G (0.30 ± 0.55 and FibroMeter3G (0.14 ± 0.37, p -3 or Fibrotest (0.84 ± 0.80, p -3. In population #3 (and #4 including 458 (359 patients and comparing blood tests and Fibroscan, accuracies of detailed fibrosis classification were, respectively: Fibrotest: 42.5% (33.5%, Fibroscan: 64.9% (50.7%, FibroMeter2G: 68.7% (68.2%, FibroMeter3G: 77.1% (83.4%, p -3 (p -3. Significant discrepancy (≥ 2 FM rates were, respectively: Fibrotest: 21.3% (22.2%, Fibroscan: 12.9% (12.3%, FibroMeter2G: 5.7% (6

  10. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    Science.gov (United States)

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples

  11. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    OpenAIRE

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spec...

  12. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    Science.gov (United States)

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain–computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided. PMID:28790910

  13. Hybrid Brain-Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review.

    Science.gov (United States)

    Hong, Keum-Shik; Khan, Muhammad Jawad

    2017-01-01

    In this article, non-invasive hybrid brain-computer interface (hBCI) technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG), due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS), electromyography (EMG), electrooculography (EOG), and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features) relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain-computer interface (BCI) accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP) and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  14. Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review

    Directory of Open Access Journals (Sweden)

    Keum-Shik Hong

    2017-07-01

    Full Text Available In this article, non-invasive hybrid brain–computer interface (hBCI technologies for improving classification accuracy and increasing the number of commands are reviewed. Hybridization combining more than two modalities is a new trend in brain imaging and prosthesis control. Electroencephalography (EEG, due to its easy use and fast temporal resolution, is most widely utilized in combination with other brain/non-brain signal acquisition modalities, for instance, functional near infrared spectroscopy (fNIRS, electromyography (EMG, electrooculography (EOG, and eye tracker. Three main purposes of hybridization are to increase the number of control commands, improve classification accuracy and reduce the signal detection time. Currently, such combinations of EEG + fNIRS and EEG + EOG are most commonly employed. Four principal components (i.e., hardware, paradigm, classifiers, and features relevant to accuracy improvement are discussed. In the case of brain signals, motor imagination/movement tasks are combined with cognitive tasks to increase active brain–computer interface (BCI accuracy. Active and reactive tasks sometimes are combined: motor imagination with steady-state evoked visual potentials (SSVEP and motor imagination with P300. In the case of reactive tasks, SSVEP is most widely combined with P300 to increase the number of commands. Passive BCIs, however, are rare. After discussing the hardware and strategies involved in the development of hBCI, the second part examines the approaches used to increase the number of control commands and to enhance classification accuracy. The future prospects and the extension of hBCI in real-time applications for daily life scenarios are provided.

  15. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  16. IMPACTS OF PATCH SIZE AND LAND COVER HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY

    Science.gov (United States)

    Landscape characteristics such as small patch size and land cover heterogeneity have been hypothesized to increase the likelihood of miss-classifying pixels during thematic image classification. However, there has been a lack of empirical evidence to support these hypotheses,...

  17. Accuracy of automated classification of major depressive disorder as a function of symptom severity

    Directory of Open Access Journals (Sweden)

    Rajamannar Ramasubbu, MD, FRCPC, MSc

    2016-01-01

    Conclusions: Binary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.

  18. Impact of geometry and viewing angle on classification accuracy of 2D based analysis of dysmorphic faces.

    Science.gov (United States)

    Vollmar, Tobias; Maus, Baerbel; Wurtz, Rolf P; Gillessen-Kaesbach, Gabriele; Horsthemke, Bernhard; Wieczorek, Dagmar; Boehringer, Stefan

    2008-01-01

    Digital image analysis of faces has been demonstrated to be effective in a small number of syndromes. In this paper we investigate several aspects that help bringing these methods closer to clinical application. First, we investigate the impact of increasing the number of syndromes from 10 to 14 as compared to an earlier study. Second, we include a side-view pose into the analysis and third, we scrutinize the effect of geometry information. Picture analysis uses a Gabor wavelet transform, standardization of landmark coordinates and subsequent statistical analysis. We can demonstrate that classification accuracy drops from 76% for 10 syndromes to 70% for 14 syndromes for frontal images. Including side-views achieves an accuracy of 76% again. Geometry performs excellently with 85% for combined poses. Combination of wavelets and geometry for both poses increases accuracy to 93%. In conclusion, a larger number of syndromes can be handled effectively by means of image analysis.

  19. Improvement of the classification accuracy in discriminating diabetic retinopathy by multifocal electroretinogram analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The multifocal electroretinogram (mfERG) is a newly developed electrophysiological technique. In this paper, a classification method is proposed for early diagnosis of the diabetic retinopathy using mfERG data. MfERG records were obtained from eyes of healthy individuals and patients with diabetes at different stages. For each mfERG record, 103 local responses were extracted. Amplitude value of each point on all the mfERG local responses was looked as one potential feature to classify the experimental subjects. Feature subsets were selected from the feature space by comparing the inter-intra distance. Based on the selected feature subset, Fisher's linear classifiers were trained. And the final classification decision of the record was made by voting all the classifiers' outputs. Applying the method to classify all experimental subjects, very low error rates were achieved. Some crucial properties of the diabetic retinopathy classification method are also discussed.

  20. The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs.

    Science.gov (United States)

    Pulley, Simon; Foster, Ian; Collins, Adrian L

    2017-06-01

    The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis

  1. Multispectral imaging burn wound tissue classification system: a comparison of test accuracies between several common machine learning algorithms

    Science.gov (United States)

    Squiers, John J.; Li, Weizhi; King, Darlene R.; Mo, Weirong; Zhang, Xu; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2016-03-01

    The clinical judgment of expert burn surgeons is currently the standard on which diagnostic and therapeutic decisionmaking regarding burn injuries is based. Multispectral imaging (MSI) has the potential to increase the accuracy of burn depth assessment and the intraoperative identification of viable wound bed during surgical debridement of burn injuries. A highly accurate classification model must be developed using machine-learning techniques in order to translate MSI data into clinically-relevant information. An animal burn model was developed to build an MSI training database and to study the burn tissue classification ability of several models trained via common machine-learning algorithms. The algorithms tested, from least to most complex, were: K-nearest neighbors (KNN), decision tree (DT), linear discriminant analysis (LDA), weighted linear discriminant analysis (W-LDA), quadratic discriminant analysis (QDA), ensemble linear discriminant analysis (EN-LDA), ensemble K-nearest neighbors (EN-KNN), and ensemble decision tree (EN-DT). After the ground-truth database of six tissue types (healthy skin, wound bed, blood, hyperemia, partial injury, full injury) was generated by histopathological analysis, we used 10-fold cross validation to compare the algorithms' performances based on their accuracies in classifying data against the ground truth, and each algorithm was tested 100 times. The mean test accuracy of the algorithms were KNN 68.3%, DT 61.5%, LDA 70.5%, W-LDA 68.1%, QDA 68.9%, EN-LDA 56.8%, EN-KNN 49.7%, and EN-DT 36.5%. LDA had the highest test accuracy, reflecting the bias-variance tradeoff over the range of complexities inherent to the algorithms tested. Several algorithms were able to match the current standard in burn tissue classification, the clinical judgment of expert burn surgeons. These results will guide further development of an MSI burn tissue classification system. Given that there are few surgeons and facilities specializing in burn care

  2. Improving ECG classification accuracy using an ensemble of neural network modules.

    Directory of Open Access Journals (Sweden)

    Mehrdad Javadi

    Full Text Available This paper illustrates the use of a combined neural network model based on Stacked Generalization method for classification of electrocardiogram (ECG beats. In conventional Stacked Generalization method, the combiner learns to map the base classifiers' outputs to the target data. We claim adding the input pattern to the base classifiers' outputs helps the combiner to obtain knowledge about the input space and as the result, performs better on the same task. Experimental results support our claim that the additional knowledge according to the input space, improves the performance of the proposed method which is called Modified Stacked Generalization. In particular, for classification of 14966 ECG beats that were not previously seen during training phase, the Modified Stacked Generalization method reduced the error rate for 12.41% in comparison with the best of ten popular classifier fusion methods including Max, Min, Average, Product, Majority Voting, Borda Count, Decision Templates, Weighted Averaging based on Particle Swarm Optimization and Stacked Generalization.

  3. Greater-than-Class C low-level waste characterization. Appendix G: Evaluation of potential for greater-than-Class C classification of irradiated hardware generated by utility-operated reactors

    International Nuclear Information System (INIS)

    Cline, J.E.

    1991-08-01

    This study compiles and evaluates data from many sources to expand a base of data from which to estimate the activity concentrations and volumes of greater-than-Class C low-level waste that the Department of Energy will receive from the commercial power industry. Sources of these data include measurements of irradiated hardware made by or for the utilities that was classified for disposal in commercial burial sites, measurements of neutron flux in the appropriate regions of the reactor pressure vessel, analyses of elemental constituents of the particular structural material used for the components, and the activation analysis calculations done for hardware. Evaluations include results and assumptions in the activation analyses. Sections of this report and the appendices present interpretation of data and the classification definitions and requirements

  4. Linear Discriminant Analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli.

    Directory of Open Access Journals (Sweden)

    Hendrik eMandelkow

    2016-03-01

    Full Text Available Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI. However, conventional fMRI analysis based on statistical parametric mapping (SPM and the general linear model (GLM is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA, have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN, Gaussian Naïve Bayes (GNB, and (regularised Linear Discriminant Analysis (LDA in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s. The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  5. Use of the Diabetes Prevention Trial-Type 1 Risk Score (DPTRS) for improving the accuracy of the risk classification of type 1 diabetes.

    Science.gov (United States)

    Sosenko, Jay M; Skyler, Jay S; Mahon, Jeffrey; Krischer, Jeffrey P; Greenbaum, Carla J; Rafkin, Lisa E; Beam, Craig A; Boulware, David C; Matheson, Della; Cuthbertson, David; Herold, Kevan C; Eisenbarth, George; Palmer, Jerry P

    2014-04-01

    OBJECTIVE We studied the utility of the Diabetes Prevention Trial-Type 1 Risk Score (DPTRS) for improving the accuracy of type 1 diabetes (T1D) risk classification in TrialNet Natural History Study (TNNHS) participants. RESEARCH DESIGN AND METHODS The cumulative incidence of T1D was compared between normoglycemic individuals with DPTRS values >7.00 and dysglycemic individuals in the TNNHS (n = 991). It was also compared between individuals with DPTRS values 7.00 among those with dysglycemia and those with multiple autoantibodies in the TNNHS. DPTRS values >7.00 were compared with dysglycemia for characterizing risk in Diabetes Prevention Trial-Type 1 (DPT-1) (n = 670) and TNNHS participants. The reliability of DPTRS values >7.00 was compared with dysglycemia in the TNNHS. RESULTS The cumulative incidence of T1D for normoglycemic TNNHS participants with DPTRS values >7.00 was comparable to those with dysglycemia. Among those with dysglycemia, the cumulative incidence was much higher (P 7.00 than for those with values 7.00). Dysglycemic individuals in DPT-1 were at much higher risk for T1D than those with dysglycemia in the TNNHS (P 7.00. The proportion in the TNNHS reverting from dysglycemia to normoglycemia at the next visit was higher than the proportion reverting from DPTRS values >7.00 to values <7.00 (36 vs. 23%). CONCLUSIONS DPTRS thresholds can improve T1D risk classification accuracy by identifying high-risk normoglycemic and low-risk dysglycemic individuals. The 7.00 DPTRS threshold characterizes risk more consistently between populations and has greater reliability than dysglycemia.

  6. Basic visual dysfunction allows classification of patients with schizophrenia with exceptional accuracy.

    Science.gov (United States)

    González-Hernández, J A; Pita-Alcorta, C; Padrón, A; Finalé, A; Galán, L; Martínez, E; Díaz-Comas, L; Samper-González, J A; Lencer, R; Marot, M

    2014-10-01

    Basic visual dysfunctions are commonly reported in schizophrenia; however their value as diagnostic tools remains uncertain. This study reports a novel electrophysiological approach using checkerboard visual evoked potentials (VEP). Sources of spectral resolution VEP-components C1, P1 and N1 were estimated by LORETA, and the band-effects (BSE) on these estimated sources were explored in each subject. BSEs were Z-transformed for each component and relationships with clinical variables were assessed. Clinical effects were evaluated by ROC-curves and predictive values. Forty-eight patients with schizophrenia (SZ) and 55 healthy controls participated in the study. For each of the 48 patients, the three VEP components were localized to both dorsal and ventral brain areas and also deviated from a normal distribution. P1 and N1 deviations were independent of treatment, illness chronicity or gender. Results from LORETA also suggest that deficits in thalamus, posterior cingulum, precuneus, superior parietal and medial occipitotemporal areas were associated with symptom severity. While positive symptoms were more strongly related to sensory processing deficits (P1), negative symptoms were more strongly related to perceptual processing dysfunction (N1). Clinical validation revealed positive and negative predictive values for correctly classifying SZ of 100% and 77%, respectively. Classification in an additional independent sample of 30 SZ corroborated these results. In summary, this novel approach revealed basic visual dysfunctions in all patients with schizophrenia, suggesting these visual dysfunctions represent a promising candidate as a biomarker for schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Classification

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  8. Classification

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    This article presents and discusses definitions of the term “classification” and the related concepts “Concept/conceptualization,”“categorization,” “ordering,” “taxonomy” and “typology.” It further presents and discusses theories of classification including the influences of Aristotle...... and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly...

  9. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    Science.gov (United States)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  10. Classification Accuracy of a Wearable Activity Tracker for Assessing Sedentary Behavior and Physical Activity in 3–5-Year-Old Children

    Directory of Open Access Journals (Sweden)

    Wonwoo Byun

    2018-03-01

    Full Text Available This study examined the accuracy of the Fitbit activity tracker (FF for quantifying sedentary behavior (SB and varying intensities of physical activity (PA in 3–5-year-old children. Twenty-eight healthy preschool-aged children (Girls: 46%, Mean age: 4.8 ± 1.0 years wore the FF and were directly observed while performing a set of various unstructured and structured free-living activities from sedentary to vigorous intensity. The classification accuracy of the FF for measuring SB, light PA (LPA, moderate-to-vigorous PA (MVPA, and total PA (TPA was examined calculating Pearson correlation coefficients (r, mean absolute percent error (MAPE, Cohen’s kappa (k, sensitivity (Se, specificity (Sp, and area under the receiver operating curve (ROC-AUC. The classification accuracies of the FF (ROC-AUC were 0.92, 0.63, 0.77 and 0.92 for SB, LPA, MVPA and TPA, respectively. Similarly, values of kappa, Se, Sp and percentage of correct classification were consistently high for SB and TPA, but low for LPA and MVPA. The FF demonstrated excellent classification accuracy for assessing SB and TPA, but lower accuracy for classifying LPA and MVPA. Our findings suggest that the FF should be considered as a valid instrument for assessing time spent sedentary and overall physical activity in preschool-aged children.

  11. Diagnostic performance of whole brain volume perfusion CT in intra-axial brain tumors: Preoperative classification accuracy and histopathologic correlation

    International Nuclear Information System (INIS)

    Xyda, Argyro; Haberland, Ulrike; Klotz, Ernst; Jung, Klaus; Bock, Hans Christoph; Schramm, Ramona; Knauth, Michael; Schramm, Peter

    2012-01-01

    Background: To evaluate the preoperative diagnostic power and classification accuracy of perfusion parameters derived from whole brain volume perfusion CT (VPCT) in patients with cerebral tumors. Methods: Sixty-three patients (31 male, 32 female; mean age 55.6 ± 13.9 years), with MRI findings suspected of cerebral lesions, underwent VPCT. Two readers independently evaluated VPCT data. Volumes of interest (VOIs) were marked circumscript around the tumor according to maximum intensity projection volumes, and then mapped automatically onto the cerebral blood volume (CBV), flow (CBF) and permeability Ktrans perfusion datasets. A second VOI was placed in the contra lateral cortex, as control. Correlations among perfusion values, tumor grade, cerebral hemisphere and VOIs were evaluated. Moreover, the diagnostic power of VPCT parameters, by means of positive and negative predictive value, was analyzed. Results: Our cohort included 32 high-grade gliomas WHO III/IV, 18 low-grade I/II, 6 primary cerebral lymphomas, 4 metastases and 3 tumor-like lesions. Ktrans demonstrated the highest sensitivity, specificity and positive predictive value, with a cut-off point of 2.21 mL/100 mL/min, for both the comparisons between high-grade versus low-grade and low-grade versus primary cerebral lymphomas. However, for the differentiation between high-grade and primary cerebral lymphomas, CBF and CBV proved to have 100% specificity and 100% positive predictive value, identifying preoperatively all the histopathologically proven high-grade gliomas. Conclusion: Volumetric perfusion data enable the hemodynamic assessment of the entire tumor extent and provide a method of preoperative differentiation among intra-axial cerebral tumors with promising diagnostic accuracy.

  12. The Effects of Point or Polygon Based Training Data on RandomForest Classification Accuracy of Wetlands

    Directory of Open Access Journals (Sweden)

    Jennifer Corcoran

    2015-04-01

    Full Text Available Wetlands are dynamic in space and time, providing varying ecosystem services. Field reference data for both training and assessment of wetland inventories in the State of Minnesota are typically collected as GPS points over wide geographical areas and at infrequent intervals. This status-quo makes it difficult to keep updated maps of wetlands with adequate accuracy, efficiency, and consistency to monitor change. Furthermore, point reference data may not be representative of the prevailing land cover type for an area, due to point location or heterogeneity within the ecosystem of interest. In this research, we present techniques for training a land cover classification for two study sites in different ecoregions by implementing the RandomForest classifier in three ways: (1 field and photo interpreted points; (2 fixed window surrounding the points; and (3 image objects that intersect the points. Additional assessments are made to identify the key input variables. We conclude that the image object area training method is the most accurate and the most important variables include: compound topographic index, summer season green and blue bands, and grid statistics from LiDAR point cloud data, especially those that relate to the height of the return.

  13. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the accuracy of random forest classification of wetlands in northern Minnesota

    Science.gov (United States)

    Corcoran, Jennifer M.; Knight, Joseph F.; Gallant, Alisa L.

    2013-01-01

    Wetland mapping at the landscape scale using remotely sensed data requires both affordable data and an efficient accurate classification method. Random forest classification offers several advantages over traditional land cover classification techniques, including a bootstrapping technique to generate robust estimations of outliers in the training data, as well as the capability of measuring classification confidence. Though the random forest classifier can generate complex decision trees with a multitude of input data and still not run a high risk of over fitting, there is a great need to reduce computational and operational costs by including only key input data sets without sacrificing a significant level of accuracy. Our main questions for this study site in Northern Minnesota were: (1) how does classification accuracy and confidence of mapping wetlands compare using different remote sensing platforms and sets of input data; (2) what are the key input variables for accurate differentiation of upland, water, and wetlands, including wetland type; and (3) which datasets and seasonal imagery yield the best accuracy for wetland classification. Our results show the key input variables include terrain (elevation and curvature) and soils descriptors (hydric), along with an assortment of remotely sensed data collected in the spring (satellite visible, near infrared, and thermal bands; satellite normalized vegetation index and Tasseled Cap greenness and wetness; and horizontal-horizontal (HH) and horizontal-vertical (HV) polarization using L-band satellite radar). We undertook this exploratory analysis to inform decisions by natural resource managers charged with monitoring wetland ecosystems and to aid in designing a system for consistent operational mapping of wetlands across landscapes similar to those found in Northern Minnesota.

  14. The accuracy of International Classification of Diseases coding for dental problems not associated with trauma in a hospital emergency department.

    Science.gov (United States)

    Figueiredo, Rafael L F; Singhal, Sonica; Dempster, Laura; Hwang, Stephen W; Quinonez, Carlos

    2015-01-01

    Emergency department (ED) visits for nontraumatic dental conditions (NTDCs) may be a sign of unmet need for dental care. The objective of this study was to determine the accuracy of the International Classification of Diseases codes (ICD-10-CA) for ED visits for NTDC. ED visits in 2008-2099 at one hospital in Toronto were identified if the discharge diagnosis in the administrative database system was an ICD-10-CA code for a NTDC (K00-K14). A random sample of 100 visits was selected, and the medical records for these visits were reviewed by a dentist. The description of the clinical signs and symptoms were evaluated, and a diagnosis was assigned. This diagnosis was compared with the diagnosis assigned by the physician and the code assigned to the visit. The 100 ED visits reviewed were associated with 16 different ICD-10-CA codes for NTDC. Only 2 percent of these visits were clearly caused by trauma. The code K0887 (toothache) was the most frequent diagnostic code (31 percent). We found 43.3 percent disagreement on the discharge diagnosis reported by the physician, and 58.0 percent disagreement on the code in the administrative database assigned by the abstractor, compared with what it was suggested by the dentist reviewing the chart. There are substantial discrepancies between the ICD-10-CA diagnosis assigned in administrative databases and the diagnosis assigned by a dentist reviewing the chart retrospectively. However, ICD-10-CA codes can be used to accurately identify ED visits for NTDC. © 2015 American Association of Public Health Dentistry.

  15. Assessment of fatty degeneration of the gluteal muscles in patients with THA using MRI: reliability and accuracy of the Goutallier and quartile classification systems.

    Science.gov (United States)

    Engelken, Florian; Wassilew, Georgi I; Köhlitz, Torsten; Brockhaus, Sebastian; Hamm, Bernd; Perka, Carsten; Diederichs, und Gerd

    2014-01-01

    The purpose of this study was to quantify the performance of the Goutallier classification for assessing fatty degeneration of the gluteus muscles from magnetic resonance (MR) images and to compare its performance to a newly proposed system. Eighty-four hips with clinical signs of gluteal insufficiency and 50 hips from asymptomatic controls were analyzed using a standard classification system (Goutallier) and a new scoring system (Quartile). Interobserver reliability and intraobserver repeatability were determined, and accuracy was assessed by comparing readers' scores with quantitative estimates of the proportion of intramuscular fat based on MR signal intensities (gold standard). The existing Goutallier classification system and the new Quartile system performed equally well in assessing fatty degeneration of the gluteus muscles, both showing excellent levels of interrater and intrarater agreement. While the Goutallier classification system has the advantage of being widely known, the benefit of the Quartile system is that it is based on more clearly defined grades of fatty degeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Analyzing the diagnostic accuracy of the causes of spinal pain at neurology hospital in accordance with the International Classification of Diseases

    Directory of Open Access Journals (Sweden)

    I. G. Mikhailyuk

    2014-01-01

    Full Text Available Spinal pain is of great socioeconomic significance as it is widely prevalent and a common cause of disability. However, the diagnosis of its true causes frequently leads to problems. A study has been conducted to evaluate the accuracy of a clinical diagnosis and its coding in conformity with the International Classification of Diseases. The diagnosis of vertebral osteochondrosis and the hypodiagnosis of nonspecific and nonvertebrogenic pain syndromes have been found to be unreasonably widely used. Ways to solve these problems have been proposed, by applying approaches to diagnosing the causes of spinal pain in accordance with international practice.

  17. Classification Accuracy of MMPI-2 Validity Scales in the Detection of Pain-Related Malingering: A Known-Groups Study

    Science.gov (United States)

    Bianchini, Kevin J.; Etherton, Joseph L.; Greve, Kevin W.; Heinly, Matthew T.; Meyers, John E.

    2008-01-01

    The purpose of this study was to determine the accuracy of "Minnesota Multiphasic Personality Inventory" 2nd edition (MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, & Kaemmer, 1989) validity indicators in the detection of malingering in clinical patients with chronic pain using a hybrid clinical-known groups/simulator design. The…

  18. Can we improve accuracy and reliability of MRI interpretation in children with optic pathway glioma? Proposal for a reproducible imaging classification

    Energy Technology Data Exchange (ETDEWEB)

    Lambron, Julien; Frampas, Eric; Toulgoat, Frederique [University Hospital, Department of Radiology, Nantes (France); Rakotonjanahary, Josue [University Hospital, Department of Pediatric Oncology, Angers (France); University Paris Diderot, INSERM CIE5 Robert Debre Hospital, Assistance Publique-Hopitaux de Paris (AP-HP), Paris (France); Loisel, Didier [University Hospital, Department of Radiology, Angers (France); Carli, Emilie de; Rialland, Xavier [University Hospital, Department of Pediatric Oncology, Angers (France); Delion, Matthieu [University Hospital, Department of Neurosurgery, Angers (France)

    2016-02-15

    Magnetic resonance (MR) images from children with optic pathway glioma (OPG) are complex. We initiated this study to evaluate the accuracy of MR imaging (MRI) interpretation and to propose a simple and reproducible imaging classification for MRI. We randomly selected 140 MRIs from among 510 MRIs performed on 104 children diagnosed with OPG in France from 1990 to 2004. These images were reviewed independently by three radiologists (F.T., 15 years of experience in neuroradiology; D.L., 25 years of experience in pediatric radiology; and J.L., 3 years of experience in radiology) using a classification derived from the Dodge and modified Dodge classifications. Intra- and interobserver reliabilities were assessed using the Bland-Altman method and the kappa coefficient. These reviews allowed the definition of reliable criteria for MRI interpretation. The reviews showed intraobserver variability and large discrepancies among the three radiologists (kappa coefficient varying from 0.11 to 1). These variabilities were too large for the interpretation to be considered reproducible over time or among observers. A consensual analysis, taking into account all observed variabilities, allowed the development of a definitive interpretation protocol. Using this revised protocol, we observed consistent intra- and interobserver results (kappa coefficient varying from 0.56 to 1). The mean interobserver difference for the solid portion of the tumor with contrast enhancement was 0.8 cm{sup 3} (limits of agreement = -16 to 17). We propose simple and precise rules for improving the accuracy and reliability of MRI interpretation for children with OPG. Further studies will be necessary to investigate the possible prognostic value of this approach. (orig.)

  19. Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: which window setting is better?

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Roh-Eul [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Goo, Jin Mo; Park, Chang Min [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of); Hwang, Eui Jin; Yoon, Soon Ho; Lee, Chang Hyun [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Ahn, Soyeon [Seoul National University Bundang Hospital, Medical Research Collaborating Center, Seongnam-si (Korea, Republic of)

    2017-04-15

    To compare interobserver agreements among multiple readers and accuracy for the assessment of solid components in subsolid nodules between the lung and mediastinal window settings. Seventy-seven surgically resected nodules with solid components smaller than 8 mm were included in this study. In both lung and mediastinal windows, five readers independently assessed the presence and size of solid component. Bootstrapping was used to compare the interobserver agreement between the two window settings. Imaging-pathology correlation was performed to evaluate the accuracy. There were no significant differences in the interobserver agreements between the two windows for both identification (lung windows, k = 0.51; mediastinal windows, k = 0.57) and measurements (lung windows, ICC = 0.70; mediastinal windows, ICC = 0.69) of solid components. The incidence of false negative results for the presence of invasive components and the median absolute difference between the solid component size and the invasive component size were significantly higher on mediastinal windows than on lung windows (P < 0.001 and P < 0.001, respectively). The lung window setting had a comparable reproducibility but a higher accuracy than the mediastinal window setting for nodule classifications and solid component measurements in subsolid nodules. (orig.)

  20. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    Science.gov (United States)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  1. Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload

    Directory of Open Access Journals (Sweden)

    Justin Ronald Estepp

    2015-03-01

    Full Text Available The passive brain-computer interface (pBCI framework has been shown to be a very promising construct for assessing cognitive and affective state in both individuals and teams. There is a growing body of work that focuses on solving the challenges of transitioning pBCI systems from the research laboratory environment to practical, everyday use. An interesting issue is what impact methodological variability may have on the ability to reliably identify (neurophysiological patterns that are useful for state assessment. This work aimed at quantifying the effects of methodological variability in a pBCI design for detecting changes in cognitive workload. Specific focus was directed toward the effects of replacing electrodes over dual sessions (thus inducing changes in placement, electromechanical properties, and/or impedance between the electrode and skin surface on the accuracy of several machine learning approaches in a binary classification problem. In investigating these methodological variables, it was determined that the removal and replacement of the electrode suite between sessions does not impact the accuracy of a number of learning approaches when trained on one session and tested on a second. This finding was confirmed by comparing to a control group for which the electrode suite was not replaced between sessions. This result suggests that sensors (both neurological and peripheral may be removed and replaced over the course of many interactions with a pBCI system without affecting its performance. Future work on multi-session and multi-day pBCI system use should seek to replicate this (lack of effect between sessions in other tasks, temporal time courses, and data analytic approaches while also focusing on non-stationarity and variable classification performance due to intrinsic factors.

  2. Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload.

    Science.gov (United States)

    Estepp, Justin R; Christensen, James C

    2015-01-01

    The passive brain-computer interface (pBCI) framework has been shown to be a very promising construct for assessing cognitive and affective state in both individuals and teams. There is a growing body of work that focuses on solving the challenges of transitioning pBCI systems from the research laboratory environment to practical, everyday use. An interesting issue is what impact methodological variability may have on the ability to reliably identify (neuro)physiological patterns that are useful for state assessment. This work aimed at quantifying the effects of methodological variability in a pBCI design for detecting changes in cognitive workload. Specific focus was directed toward the effects of replacing electrodes over dual sessions (thus inducing changes in placement, electromechanical properties, and/or impedance between the electrode and skin surface) on the accuracy of several machine learning approaches in a binary classification problem. In investigating these methodological variables, it was determined that the removal and replacement of the electrode suite between sessions does not impact the accuracy of a number of learning approaches when trained on one session and tested on a second. This finding was confirmed by comparing to a control group for which the electrode suite was not replaced between sessions. This result suggests that sensors (both neurological and peripheral) may be removed and replaced over the course of many interactions with a pBCI system without affecting its performance. Future work on multi-session and multi-day pBCI system use should seek to replicate this (lack of) effect between sessions in other tasks, temporal time courses, and data analytic approaches while also focusing on non-stationarity and variable classification performance due to intrinsic factors.

  3. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules

    Science.gov (United States)

    Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong

    2018-02-01

    This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p  >  0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.

  4. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests

    Directory of Open Access Journals (Sweden)

    Santana Isabel

    2011-08-01

    Full Text Available Abstract Background Dementia and cognitive impairment associated with aging are a major medical and social concern. Neuropsychological testing is a key element in the diagnostic procedures of Mild Cognitive Impairment (MCI, but has presently a limited value in the prediction of progression to dementia. We advance the hypothesis that newer statistical classification methods derived from data mining and machine learning methods like Neural Networks, Support Vector Machines and Random Forests can improve accuracy, sensitivity and specificity of predictions obtained from neuropsychological testing. Seven non parametric classifiers derived from data mining methods (Multilayer Perceptrons Neural Networks, Radial Basis Function Neural Networks, Support Vector Machines, CART, CHAID and QUEST Classification Trees and Random Forests were compared to three traditional classifiers (Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logistic Regression in terms of overall classification accuracy, specificity, sensitivity, Area under the ROC curve and Press'Q. Model predictors were 10 neuropsychological tests currently used in the diagnosis of dementia. Statistical distributions of classification parameters obtained from a 5-fold cross-validation were compared using the Friedman's nonparametric test. Results Press' Q test showed that all classifiers performed better than chance alone (p Conclusions When taking into account sensitivity, specificity and overall classification accuracy Random Forests and Linear Discriminant analysis rank first among all the classifiers tested in prediction of dementia using several neuropsychological tests. These methods may be used to improve accuracy, sensitivity and specificity of Dementia predictions from neuropsychological testing.

  5. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece.

    Science.gov (United States)

    Karagiannidis, A; Kontogianni, St; Logothetis, D

    2013-02-01

    The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in. Crown Copyright © 2012. Published by Elsevier Ltd

  6. The accuracy of echocardiography versus surgical and pathological classification of patients with ruptured mitral chordae tendineae: a large study in a Chinese cardiovascular center

    Science.gov (United States)

    2011-01-01

    Background The accuracy of echocardiography versus surgical and pathological classification of patients with ruptured mitral chordae tendineae (RMCT) has not yet been investigated with a large study. Methods Clinical, hemodynamic, surgical, and pathological findings were reviewed for 242 patients with a preoperative diagnosis of RMCT that required mitral valvular surgery. Subjects were consecutive in-patients at Fuwai Hospital in 2002-2008. Patients were evaluated by thoracic echocardiography (TTE) and transesophageal echocardiography (TEE). RMCT cases were classified by location as anterior or posterior, and classified by degree as partial or complete RMCT, according to surgical findings. RMCT cases were also classified by pathology into four groups: myxomatous degeneration, chronic rheumatic valvulitis (CRV), infective endocarditis and others. Results Echocardiography showed that most patients had a flail mitral valve, moderate to severe mitral regurgitation, a dilated heart chamber, mild to moderate pulmonary artery hypertension and good heart function. The diagnostic accuracy for RMCT was 96.7% for TTE and 100% for TEE compared with surgical findings. Preliminary experiments demonstrated that the sensitivity and specificity of diagnosing anterior, posterior and partial RMCT were high, but the sensitivity of diagnosing complete RMCT was low. Surgical procedures for RMCT depended on the location of ruptured chordae tendineae, with no relationship between surgical procedure and complete or partial RMCT. The echocardiographic characteristics of RMCT included valvular thickening, extended subvalvular chordae, echo enhancement, abnormal echo or vegetation, combined with aortic valve damage in the four groups classified by pathology. The incidence of extended subvalvular chordae in the myxomatous group was higher than that in the other groups, and valve thickening in combination with AV damage in the CRV group was higher than that in the other groups. Infective

  7. Administrative database concerns: accuracy of International Classification of Diseases, Ninth Revision coding is poor for preoperative anemia in patients undergoing spinal fusion.

    Science.gov (United States)

    Golinvaux, Nicholas S; Bohl, Daniel D; Basques, Bryce A; Grauer, Jonathan N

    2014-11-15

    Cross-sectional study. To objectively evaluate the ability of International Classification of Diseases, Ninth Revision (ICD-9) codes, which are used as the foundation for administratively coded national databases, to identify preoperative anemia in patients undergoing spinal fusion. National database research in spine surgery continues to rise. However, the validity of studies based on administratively coded data, such as the Nationwide Inpatient Sample, are dependent on the accuracy of ICD-9 coding. Such coding has previously been found to have poor sensitivity to conditions such as obesity and infection. A cross-sectional study was performed at an academic medical center. Hospital-reported anemia ICD-9 codes (those used for administratively coded databases) were directly compared with the chart-documented preoperative hematocrits (true laboratory values). A patient was deemed to have preoperative anemia if the preoperative hematocrit was less than the lower end of the normal range (36.0% for females and 41.0% for males). The study included 260 patients. Of these, 37 patients (14.2%) were anemic; however, only 10 patients (3.8%) received an "anemia" ICD-9 code. Of the 10 patients coded as anemic, 7 were anemic by definition, whereas 3 were not, and thus were miscoded. This equates to an ICD-9 code sensitivity of 0.19, with a specificity of 0.99, and positive and negative predictive values of 0.70 and 0.88, respectively. This study uses preoperative anemia to demonstrate the potential inaccuracies of ICD-9 coding. These results have implications for publications using databases that are compiled from ICD-9 coding data. Furthermore, the findings of the current investigation raise concerns regarding the accuracy of additional comorbidities. Although administrative databases are powerful resources that provide large sample sizes, it is crucial that we further consider the quality of the data source relative to its intended purpose.

  8. Relative significance of heat transfer processes to quantify tradeoffs between complexity and accuracy of energy simulations with a building energy use patterns classification

    Science.gov (United States)

    Heidarinejad, Mohammad

    This dissertation develops rapid and accurate building energy simulations based on a building classification that identifies and focuses modeling efforts on most significant heat transfer processes. The building classification identifies energy use patterns and their contributing parameters for a portfolio of buildings. The dissertation hypothesis is "Building classification can provide minimal required inputs for rapid and accurate energy simulations for a large number of buildings". The critical literature review indicated there is lack of studies to (1) Consider synoptic point of view rather than the case study approach, (2) Analyze influence of different granularities of energy use, (3) Identify key variables based on the heat transfer processes, and (4) Automate the procedure to quantify model complexity with accuracy. Therefore, three dissertation objectives are designed to test out the dissertation hypothesis: (1) Develop different classes of buildings based on their energy use patterns, (2) Develop different building energy simulation approaches for the identified classes of buildings to quantify tradeoffs between model accuracy and complexity, (3) Demonstrate building simulation approaches for case studies. Penn State's and Harvard's campus buildings as well as high performance LEED NC office buildings are test beds for this study to develop different classes of buildings. The campus buildings include detailed chilled water, electricity, and steam data, enabling to classify buildings into externally-load, internally-load, or mixed-load dominated. The energy use of the internally-load buildings is primarily a function of the internal loads and their schedules. Externally-load dominated buildings tend to have an energy use pattern that is a function of building construction materials and outdoor weather conditions. However, most of the commercial medium-sized office buildings have a mixed-load pattern, meaning the HVAC system and operation schedule dictate

  9. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    Science.gov (United States)

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  10. Effect of greater trochanteric epiphysiodesis after femoral varus osteotomy for lateral pillar classification B and B/C border Legg-Calvé-Perthes disease: A retrospective observational study.

    Science.gov (United States)

    Kwon, Keun-Sang; Wang, Sung Il; Lee, Ju-Hyung; Moon, Young Jae; Kim, Jung Ryul

    2017-08-01

    This is a retrospective observational study. Greater trochanteric epiphysiodesis (GTE) has been recommended to prevent Trendelenburg gait and limitation of the hip joint motion due to trochanteric overgrowth after femoral varus osteotomy (FVO) in Legg-Calvé-Perthes disease (LCPD). However, capital femoral physeal arrest frequently occurs in patients with severe disease (lateral pillar C), so GTE might not be as effective in these patients. The aim of this study was to compare trochanteric growth inhibition due to GTE after FVO between 2 age groups (8 years) in patients with lateral pillar B and B/C border LCPD and evaluate the effectiveness of GTE compared with the normal, unaffected hip.This study included 19 children with lateral pillar B and B/C border LCPD in 1 leg who underwent FVO followed by GTE. Of the 19 children, 9 underwent GTE before the age of 8 years and 10 underwent GTE after 8 years of age. On radiographs taken at the immediate postoperative period and at skeletal maturity, the articulo-trochanteric distance (ATD), center-trochanteric distance (CTD), and neck-shaft angle (NSA) were compared between the 2 age groups. The amount of correction was compared between groups. The contralateral, unaffected hip was used as a control for trochanteric growth. The patients were clinically evaluated with Iowa hip score at the final follow-up.There was no significant difference between the 2 age groups in terms of time to GTE, length of follow-up, or lateral pillar classification. In the affected hip, the amount of correction of the ATD, CTD, and NSA was significantly greater in patients  8 years. However, in the unaffected hip, the change in the ATD, CTD, and NSA did not differ significantly between the 2 groups.We suggest that FVO followed by GTE for lateral pillar B and B/C border LCPD in patients under the age of 8 years can affect growth of the greater trochanter. However, effective growth inhibition due to GTE was not achieved after 8 years of age.

  11. Scale Issues Related to the Accuracy Assessment of Land Use/Land Cover Maps Produced Using Multi-Resolution Data: Comments on “The Improvement of Land Cover Classification by Thermal Remote Sensing”. Remote Sens. 2015, 7(7, 8368–8390

    Directory of Open Access Journals (Sweden)

    Brian A. Johnson

    2015-10-01

    Full Text Available Much remote sensing (RS research focuses on fusing, i.e., combining, multi-resolution/multi-sensor imagery for land use/land cover (LULC classification. In relation to this topic, Sun and Schulz [1] recently found that a combination of visible-to-near infrared (VNIR; 30 m spatial resolution and thermal infrared (TIR; 100–120 m spatial resolution Landsat data led to more accurate LULC classification. They also found that using multi-temporal TIR data alone for classification resulted in comparable (and in some cases higher classification accuracies to the use of multi-temporal VNIR data, which contrasts with the findings of other recent research [2]. This discrepancy, and the generally very high LULC accuracies achieved by Sun and Schulz (up to 99.2% overall accuracy for a combined VNIR/TIR classification result, can likely be explained by their use of an accuracy assessment procedure which does not take into account the multi-resolution nature of the data. Sun and Schulz used 10-fold cross-validation for accuracy assessment, which is not necessarily inappropriate for RS accuracy assessment in general. However, here it is shown that the typical pixel-based cross-validation approach results in non-independent training and validation data sets when the lower spatial resolution TIR images are used for classification, which causes classification accuracy to be overestimated.

  12. A New Classification Approach Based on Multiple Classification Rules

    OpenAIRE

    Zhongmei Zhou

    2014-01-01

    A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when t...

  13. Diagnosing multibacillary leprosy: A comparative evaluation of diagnostic accuracy of slit-skin smear, bacterial index of granuloma and WHO operational classification

    Directory of Open Access Journals (Sweden)

    Bhushan Premanshu

    2008-01-01

    Full Text Available Background: In view of the relatively poor performance of skin smears WHO adopted a purely clinical operational classification, however the poor specificity of operational classification leads to overdiagnosis and unwarranted overtreatment while the poor sensitivity leads to underdiagnosis of multibacillary (MB cases with inadequate treatment. Bacilli are more frequently and abundantly demonstrated in tissue sections. Aims and Methods: We compared WHO classification, slit-skin smears (SSS and demonstration of bacilli in biopsies (bacterial index of granuloma or BIG with regards to their efficacy in correctly identifying multibacillary cases. The tests were done on 141 patients and were evaluated for their ability to diagnose true MB leprosy using detailed statistical analysis. Results: A total of 76 patients were truly MB with either positive smears, BIG positivity or with a typical histology of BB, BL or LL. Amongst these 76 true-MB patients, WHO operational classification correctly identified multibacillary status in 56 (73.68%, and SSS in 43 (56.58%, while BIG correctly identified 65 (85.53% true-MB cases. Conclusion: BIG was most sensitive and effective of the three methods especially in paucilesional patients. We suggest adding estimation of bacterial index of granuloma in the diagnostic workup of paucilesional patients.

  14. Analysis of spatial distribution of land cover maps accuracy

    Science.gov (United States)

    Khatami, R.; Mountrakis, G.; Stehman, S. V.

    2017-12-01

    Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain

  15. Latent classification models

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2005-01-01

    parametric family ofdistributions.  In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... classification model, and wedemonstrate empirically that the accuracy of the proposed model issignificantly higher than the accuracy of other probabilisticclassifiers....

  16. Automated Decision Tree Classification of Corneal Shape

    Science.gov (United States)

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification

  17. Research the Impacts of Classification Accuracy after Orthorectification with Different Grid Density DSM/DEM%不同格网密度的DSM/DEM对影像分类精度的影响研究

    Institute of Scientific and Technical Information of China (English)

    刘晓宏; 雷兵; 谭海; 郭建华

    2017-01-01

    DSM/DEM elevation data are used as assistant data to eliminate or limit deformation of terrain in orthorectification without control points .However , the grid density of DSM/DEM has different effect on subsequent processing , such as image classification . Based on this problem , we apply ChinaDSM 15 m DSM, ASTER GDEM 30 m DEM and SRTM 90 m DEM to do orthorectification on ZY-3 image.Then, classifying the orthorectified image by support vector machines (SVM), and comparing the classification accura-cy.It is shown that the classification accuracy after ChinaDSM 15 m DSM orthorectificated , with the same resample method ,is better than ASTER GDEM 30 m DEM and SRTM 90 m DEM.%在无控制点的卫星影像正射校正中,大多采用DSM/DEM数据作为辅助数据来消除或限制因地形起伏引起的形变,然而经不同格网密度的DSM/DEM正射校正后的影像对后续处理会产生不同程度的影响,如对地物分类精度产生影响.针对这一问题,本文分别采用不同的DSM/DEM数据(ChinaDSM 15 m、ASTER GDEM 30 m和SRTM 90 m)对资源三号影像进行正射校正,然后对正射校正后影像利用支持向量机进行分类,比较正射校正后影像结果的分类精度.结果表明:在相同重采样方法下,影像经ChinaDSM 15 m DSM正射校正后结果的分类精度优于ASTER GDEM 30 m DEM和SRTM 90 m DEM.

  18. Enhancing the Classification Accuracy of IP Geolocation

    Science.gov (United States)

    2013-10-01

    accurately identify the geographic location of Internet devices has signficant implications for online- advertisers, application developers , network...Real Media, Comedy Central, Netflix and Spotify) and target advertising (e.g., Google). More re- cently, IP geolocation techniques have been deployed...distance to delay function and how they triangulate the position of the target. Statistical Geolocation [14] develops a joint probability density

  19. Greater autonomy at work

    NARCIS (Netherlands)

    Houtman, I.L.D.

    2004-01-01

    In the past 10 years, workers in the Netherlands increasingly report more decision-making power in their work. This is important for an economy in recession and where workers face greater work demands. It makes work more interesting, creates a healthier work environment, and provides opportunities

  20. Automatic classification of blank substrate defects

    Science.gov (United States)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.

  1. Radar transmitter classification using non-stationary signal classifier

    CSIR Research Space (South Africa)

    Du Plessis, MC

    2009-07-01

    Full Text Available support vector machine which is applied to the radar pulse's time-frequency representation. The time-frequency representation is refined using particle swarm optimization to increase the classification accuracy. The classification accuracy is tested...

  2. Classifying Classifications

    DEFF Research Database (Denmark)

    Debus, Michael S.

    2017-01-01

    This paper critically analyzes seventeen game classifications. The classifications were chosen on the basis of diversity, ranging from pre-digital classification (e.g. Murray 1952), over game studies classifications (e.g. Elverdam & Aarseth 2007) to classifications of drinking games (e.g. LaBrie et...... al. 2013). The analysis aims at three goals: The classifications’ internal consistency, the abstraction of classification criteria and the identification of differences in classification across fields and/or time. Especially the abstraction of classification criteria can be used in future endeavors...... into the topic of game classifications....

  3. Towards secondary fingerprint classification

    CSIR Research Space (South Africa)

    Msiza, IS

    2011-07-01

    Full Text Available an accuracy figure of 76.8%. This small difference between the two figures is indicative of the validity of the proposed secondary classification module. Keywords?fingerprint core; fingerprint delta; primary classifi- cation; secondary classification I..., namely, the fingerprint core and the fingerprint delta. Forensically, a fingerprint core is defined as the innermost turning point where the fingerprint ridges form a loop, while the fingerprint delta is defined as the point where these ridges form a...

  4. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  5. More features, greater connectivity.

    Science.gov (United States)

    Hunt, Sarah

    2015-09-01

    Changes in our political infrastructure, the continuing frailties of our economy, and a stark growth in population, have greatly impacted upon the perceived stability of the NHS. Healthcare teams have had to adapt to these changes, and so too have the technologies upon which they rely to deliver first-class patient care. Here Sarah Hunt, marketing co-ordinator at Aid Call, assesses how the changing healthcare environment has affected one of its fundamental technologies - the nurse call system, argues the case for wireless such systems in terms of what the company claims is greater adaptability to changing needs, and considers the ever-wider range of features and functions available from today's nurse call equipment, particularly via connectivity with both mobile devices, and ancillaries ranging from enuresis sensors to staff attack alert 'badges'.

  6. Greater oil investment opportunities

    International Nuclear Information System (INIS)

    Arenas, Ismael Enrique

    1997-01-01

    Geologically speaking, Colombia is a very attractive country for the world oil community. According to this philosophy new and important steps are being taken to reinforce the oil sector: Expansion of the exploratory frontier by including a larger number of sedimentary areas, and the adoption of innovative contracting instruments. Colombia has to offer, Greater economic incentives for the exploration of new areas to expand the exploratory frontier, stimulation of exploration in areas with prospectivity for small fields. Companies may offer Ecopetrol a participation in production over and above royalties, without it's participating in the investments and costs of these fields, more favorable conditions for natural gas seeking projects, in comparison with those governing the terms for oil

  7. Analysis and Evaluation of IKONOS Image Fusion Algorithm Based on Land Cover Classification

    Institute of Scientific and Technical Information of China (English)

    Xia; JING; Yan; BAO

    2015-01-01

    Different fusion algorithm has its own advantages and limitations,so it is very difficult to simply evaluate the good points and bad points of the fusion algorithm. Whether an algorithm was selected to fuse object images was also depended upon the sensor types and special research purposes. Firstly,five fusion methods,i. e. IHS,Brovey,PCA,SFIM and Gram-Schmidt,were briefly described in the paper. And then visual judgment and quantitative statistical parameters were used to assess the five algorithms. Finally,in order to determine which one is the best suitable fusion method for land cover classification of IKONOS image,the maximum likelihood classification( MLC) was applied using the above five fusion images. The results showed that the fusion effect of SFIM transform and Gram-Schmidt transform were better than the other three image fusion methods in spatial details improvement and spectral information fidelity,and Gram-Schmidt technique was superior to SFIM transform in the aspect of expressing image details. The classification accuracy of the fused image using Gram-Schmidt and SFIM algorithms was higher than that of the other three image fusion methods,and the overall accuracy was greater than 98%. The IHS-fused image classification accuracy was the lowest,the overall accuracy and kappa coefficient were 83. 14% and 0. 76,respectively. Thus the IKONOS fusion images obtained by the Gram-Schmidt and SFIM were better for improving the land cover classification accuracy.

  8. Bosniak classification system

    DEFF Research Database (Denmark)

    Graumann, Ole; Osther, Susanne Sloth; Karstoft, Jens

    2016-01-01

    BACKGROUND: The Bosniak classification was originally based on computed tomographic (CT) findings. Magnetic resonance (MR) and contrast-enhanced ultrasonography (CEUS) imaging may demonstrate findings that are not depicted at CT, and there may not always be a clear correlation between the findings...... at MR and CEUS imaging and those at CT. PURPOSE: To compare diagnostic accuracy of MR, CEUS, and CT when categorizing complex renal cystic masses according to the Bosniak classification. MATERIAL AND METHODS: From February 2011 to June 2012, 46 complex renal cysts were prospectively evaluated by three...... readers. Each mass was categorized according to the Bosniak classification and CT was chosen as gold standard. Kappa was calculated for diagnostic accuracy and data was compared with pathological results. RESULTS: CT images found 27 BII, six BIIF, seven BIII, and six BIV. Forty-three cysts could...

  9. Convolutional neural network with transfer learning for rice type classification

    Science.gov (United States)

    Patel, Vaibhav Amit; Joshi, Manjunath V.

    2018-04-01

    Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.

  10. Land cover mapping of Greater Mesoamerica using MODIS data

    Science.gov (United States)

    Giri, Chandra; Jenkins, Clinton N.

    2005-01-01

    A new land cover database of Greater Mesoamerica has been prepared using moderate resolution imaging spectroradiometer (MODIS, 500 m resolution) satellite data. Daily surface reflectance MODIS data and a suite of ancillary data were used in preparing the database by employing a decision tree classification approach. The new land cover data are an improvement over traditional advanced very high resolution radiometer (AVHRR) based land cover data in terms of both spatial and thematic details. The dominant land cover type in Greater Mesoamerica is forest (39%), followed by shrubland (30%) and cropland (22%). Country analysis shows forest as the dominant land cover type in Belize (62%), Cost Rica (52%), Guatemala (53%), Honduras (56%), Nicaragua (53%), and Panama (48%), cropland as the dominant land cover type in El Salvador (60.5%), and shrubland as the dominant land cover type in Mexico (37%). A three-step approach was used to assess the quality of the classified land cover data: (i) qualitative assessment provided good insight in identifying and correcting gross errors; (ii) correlation analysis of MODIS- and Landsat-derived land cover data revealed strong positive association for forest (r2 = 0.88), shrubland (r2 = 0.75), and cropland (r2 = 0.97) but weak positive association for grassland (r2 = 0.26); and (iii) an error matrix generated using unseen training data provided an overall accuracy of 77.3% with a Kappa coefficient of 0.73608. Overall, MODIS 500 m data and the methodology used were found to be quite useful for broad-scale land cover mapping of Greater Mesoamerica.

  11. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  12. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases...... the accuracy at the same time. The test example is classified using simpler and smaller model. The training examples in a particular cluster share the common vocabulary. At the time of clustering, we do not take into account the labels of the training examples. After the clusters have been created......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...

  13. Analyzing thematic maps and mapping for accuracy

    Science.gov (United States)

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by

  14. Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Martin Längkvist

    2016-04-01

    Full Text Available The availability of high-resolution remote sensing (HRRS data has opened up the possibility for new interesting applications, such as per-pixel classification of individual objects in greater detail. This paper shows how a convolutional neural network (CNN can be applied to multispectral orthoimagery and a digital surface model (DSM of a small city for a full, fast and accurate per-pixel classification. The predicted low-level pixel classes are then used to improve the high-level segmentation. Various design choices of the CNN architecture are evaluated and analyzed. The investigated land area is fully manually labeled into five categories (vegetation, ground, roads, buildings and water, and the classification accuracy is compared to other per-pixel classification works on other land areas that have a similar choice of categories. The results of the full classification and segmentation on selected segments of the map show that CNNs are a viable tool for solving both the segmentation and object recognition task for remote sensing data.

  15. Experimental study on multi-sub-classifier for land cover classification: a case study in Shangri-La, China

    Science.gov (United States)

    Wang, Yan-ying; Wang, Jin-liang; Wang, Ping; Hu, Wen-yin; Su, Shao-hua

    2015-12-01

    High accuracy remote sensed image classification technology is a long-term and continuous pursuit goal of remote sensing applications. In order to evaluate single classification algorithm accuracy, take Landsat TM image as data source, Northwest Yunnan as study area, seven types of land cover classification like Maximum Likelihood Classification has been tested, the results show that: (1)the overall classification accuracy of Maximum Likelihood Classification(MLC), Artificial Neural Network Classification(ANN), Minimum Distance Classification(MinDC) is higher, which is 82.81% and 82.26% and 66.41% respectively; the overall classification accuracy of Parallel Hexahedron Classification(Para), Spectral Information Divergence Classification(SID), Spectral Angle Classification(SAM) is low, which is 37.29%, 38.37, 53.73%, respectively. (2) from each category classification accuracy: although the overall accuracy of the Para is the lowest, it is much higher on grasslands, wetlands, forests, airport land, which is 89.59%, 94.14%, and 89.04%, respectively; the SAM, SID are good at forests classification with higher overall classification accuracy, which is 89.8% and 87.98%, respectively. Although the overall classification accuracy of ANN is very high, the classification accuracy of road, rural residential land and airport land is very low, which is 10.59%, 11% and 11.59% respectively. Other classification methods have their advantages and disadvantages. These results show that, under the same conditions, the same images with different classification methods to classify, there will be a classifier to some features has higher classification accuracy, a classifier to other objects has high classification accuracy, and therefore, we may select multi sub-classifier integration to improve the classification accuracy.

  16. Recursive Cluster Elimination (RCE for classification and feature selection from gene expression data

    Directory of Open Access Journals (Sweden)

    Showe Louise C

    2007-05-01

    Full Text Available Abstract Background Classification studies using gene expression datasets are usually based on small numbers of samples and tens of thousands of genes. The selection of those genes that are important for distinguishing the different sample classes being compared, poses a challenging problem in high dimensional data analysis. We describe a new procedure for selecting significant genes as recursive cluster elimination (RCE rather than recursive feature elimination (RFE. We have tested this algorithm on six datasets and compared its performance with that of two related classification procedures with RFE. Results We have developed a novel method for selecting significant genes in comparative gene expression studies. This method, which we refer to as SVM-RCE, combines K-means, a clustering method, to identify correlated gene clusters, and Support Vector Machines (SVMs, a supervised machine learning classification method, to identify and score (rank those gene clusters for the purpose of classification. K-means is used initially to group genes into clusters. Recursive cluster elimination (RCE is then applied to iteratively remove those clusters of genes that contribute the least to the classification performance. SVM-RCE identifies the clusters of correlated genes that are most significantly differentially expressed between the sample classes. Utilization of gene clusters, rather than individual genes, enhances the supervised classification accuracy of the same data as compared to the accuracy when either SVM or Penalized Discriminant Analysis (PDA with recursive feature elimination (SVM-RFE and PDA-RFE are used to remove genes based on their individual discriminant weights. Conclusion SVM-RCE provides improved classification accuracy with complex microarray data sets when it is compared to the classification accuracy of the same datasets using either SVM-RFE or PDA-RFE. SVM-RCE identifies clusters of correlated genes that when considered together

  17. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    various classification modes (decision trees, rulesets, boosting, softening thresholds) regarding the classification accuracy and the time required to create the classifier. We showed how to use our VBS tool to obtain per-flow, per-application, and per-content statistics of traffic in computer networks...

  18. Churn classification model for local telecommunication company ...

    African Journals Online (AJOL)

    ... model based on the Rough Set Theory to classify customer churn. The results of the study show that the proposed Rough Set classification model outperforms the existing models and contributes to significant accuracy improvement. Keywords: customer churn; classification model; telecommunication industry; data mining;

  19. Diagnosis of periodontal diseases using different classification ...

    African Journals Online (AJOL)

    The codes created for risk factors, periodontal data, and radiographically bone loss were formed as a matrix structure and regarded as inputs for the classification unit. A total of six periodontal conditions was the outputs of the classification unit. The accuracy of the suggested methods was compared according to their ...

  20. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  1. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  2. Classification of the financial sustainability of health insurance beneficiaries through data mining techniques

    Directory of Open Access Journals (Sweden)

    Sílvia Maria Dias Pedro Rebouças

    2016-09-01

    Full Text Available Advances in information technologies have led to the storage of large amounts of data by organizations. An analysis of this data through data mining techniques is important support for decision-making. This article aims to apply techniques for the classification of the beneficiaries of an operator of health insurance in Brazil, according to their financial sustainability, via their sociodemographic characteristics and their healthcare cost history. Beneficiaries with a loss ratio greater than 0.75 are considered unsustainable. The sample consists of 38875 beneficiaries, active between the years 2011 and 2013. The techniques used were logistic regression and classification trees. The performance of the models was compared to accuracy rates and receiver operating Characteristic curves (ROC curves, by determining the area under the curves (AUC. The results showed that most of the sample is composed of sustainable beneficiaries. The logistic regression model had a 68.43% accuracy rate with AUC of 0.7501, and the classification tree obtained 67.76% accuracy and an AUC of 0.6855. Age and the type of plan were the most important variables related to the profile of the beneficiaries in the classification. The highlights with regard to healthcare costs were annual spending on consultation and on dental insurance.

  3. The Study of Land Use Classification Based on SPOT6 High Resolution Data

    OpenAIRE

    Wu Song; Jiang Qigang

    2016-01-01

    A method is carried out to quick classification extract of the type of land use in agricultural areas, which is based on the spot6 high resolution remote sensing classification data and used of the good nonlinear classification ability of support vector machine. The results show that the spot6 high resolution remote sensing classification data can realize land classification efficiently, the overall classification accuracy reached 88.79% and Kappa factor is 0.8632 which means that the classif...

  4. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  5. Deep Learning for ECG Classification

    Science.gov (United States)

    Pyakillya, B.; Kazachenko, N.; Mikhailovsky, N.

    2017-10-01

    The importance of ECG classification is very high now due to many current medical applications where this problem can be stated. Currently, there are many machine learning (ML) solutions which can be used for analyzing and classifying ECG data. However, the main disadvantages of these ML results is use of heuristic hand-crafted or engineered features with shallow feature learning architectures. The problem relies in the possibility not to find most appropriate features which will give high classification accuracy in this ECG problem. One of the proposing solution is to use deep learning architectures where first layers of convolutional neurons behave as feature extractors and in the end some fully-connected (FCN) layers are used for making final decision about ECG classes. In this work the deep learning architecture with 1D convolutional layers and FCN layers for ECG classification is presented and some classification results are showed.

  6. Accuracies Of Optical Processors For Adaptive Optics

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  7. Efficient Fingercode Classification

    Science.gov (United States)

    Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  8. Differential Classification of Dementia

    Directory of Open Access Journals (Sweden)

    E. Mohr

    1995-01-01

    Full Text Available In the absence of biological markers, dementia classification remains complex both in terms of characterization as well as early detection of the presence or absence of dementing symptoms, particularly in diseases with possible secondary dementia. An empirical, statistical approach using neuropsychological measures was therefore developed to distinguish demented from non-demented patients and to identify differential patterns of cognitive dysfunction in neurodegenerative disease. Age-scaled neurobehavioral test results (Wechsler Adult Intelligence Scale—Revised and Wechsler Memory Scale from Alzheimer's (AD and Huntington's (HD patients, matched for intellectual disability, as well as normal controls were used to derive a classification formula. Stepwise discriminant analysis accurately (99% correct distinguished controls from demented patients, and separated the two patient groups (79% correct. Variables discriminating between HD and AD patient groups consisted of complex psychomotor tasks, visuospatial function, attention and memory. The reliability of the classification formula was demonstrated with a new, independent sample of AD and HD patients which yielded virtually identical results (classification accuracy for dementia: 96%; AD versus HD: 78%. To validate the formula, the discriminant function was applied to Parkinson's (PD patients, 38% of whom were classified as demented. The validity of the classification was demonstrated by significant PD subgroup differences on measures of dementia not included in the discriminant function. Moreover, a majority of demented PD patients (65% were classified as having an HD-like pattern of cognitive deficits, in line with previous reports of the subcortical nature of PD dementia. This approach may thus be useful in classifying presence or absence of dementia and in discriminating between dementia subtypes in cases of secondary or coincidental dementia.

  9. Transporter Classification Database (TCDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Transporter Classification Database details a comprehensive classification system for membrane transport proteins known as the Transporter Classification (TC)...

  10. A Semisupervised Cascade Classification Algorithm

    Directory of Open Access Journals (Sweden)

    Stamatis Karlos

    2016-01-01

    Full Text Available Classification is one of the most important tasks of data mining techniques, which have been adopted by several modern applications. The shortage of enough labeled data in the majority of these applications has shifted the interest towards using semisupervised methods. Under such schemes, the use of collected unlabeled data combined with a clearly smaller set of labeled examples leads to similar or even better classification accuracy against supervised algorithms, which use labeled examples exclusively during the training phase. A novel approach for increasing semisupervised classification using Cascade Classifier technique is presented in this paper. The main characteristic of Cascade Classifier strategy is the use of a base classifier for increasing the feature space by adding either the predicted class or the probability class distribution of the initial data. The classifier of the second level is supplied with the new dataset and extracts the decision for each instance. In this work, a self-trained NB∇C4.5 classifier algorithm is presented, which combines the characteristics of Naive Bayes as a base classifier and the speed of C4.5 for final classification. We performed an in-depth comparison with other well-known semisupervised classification methods on standard benchmark datasets and we finally reached to the point that the presented technique has better accuracy in most cases.

  11. [Autoerotic fatalities in Greater Dusseldorf].

    Science.gov (United States)

    Hartung, Benno; Hellen, Florence; Borchard, Nora; Huckenbeck, Wolfgang

    2011-01-01

    Autoerotic fatalities in the Greater Dusseldorf area correspond to the relevant medicolegal literature. Our results included exclusively young to middle-aged, usually single men who were found dead in their city apartments. Clothing and devices used showed a great variety. Women's or fetish clothing and complex shackling or hanging devices were disproportionately frequent. In most cases, death occurred due to hanging or ligature strangulation. There was no increased incidence of underlying psychiatric disorders. In most of the deceased no or at least no remarkable alcohol intoxication was found. Occasionally, it may be difficult to reliably differentiate autoerotic accidents, accidents occurring in connection with practices of bondage & discipline, dominance & submission (BDSM) from natural death, suicide or homicide.

  12. Planning for greater confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1985-01-01

    A report that provides guidance for planning for greater-confinement disposal (GCD) of low-level radioactive waste is being prepared. The report addresses procedures for selecting a GCD technology and provides information for implementing these procedures. The focus is on GCD; planning aspects common to GCD and shallow-land burial are covered by reference. Planning procedure topics covered include regulatory requirements, waste characterization, benefit-cost-risk assessment and pathway analysis methodologies, determination of need, waste-acceptance criteria, performance objectives, and comparative assessment of attributes that support these objectives. The major technologies covered include augered shafts, deep trenches, engineered structures, hydrofracture, improved waste forms, and high-integrity containers. Descriptive information is provided, and attributes that are relevant for risk assessment and operational requirements are given. 10 refs., 3 figs., 2 tabs

  13. Effect of e-learning program on risk assessment and pressure ulcer classification - A randomized study.

    Science.gov (United States)

    Bredesen, Ida Marie; Bjøro, Karen; Gunningberg, Lena; Hofoss, Dag

    2016-05-01

    Pressure ulcers (PUs) are a problem in health care. Staff competency is paramount to PU prevention. Education is essential to increase skills in pressure ulcer classification and risk assessment. Currently, no pressure ulcer learning programs are available in Norwegian. Develop and test an e-learning program for assessment of pressure ulcer risk and pressure ulcer classification. Forty-four nurses working in acute care hospital wards or nursing homes participated and were assigned randomly into two groups: an e-learning program group (intervention) and a traditional classroom lecture group (control). Data was collected immediately before and after training, and again after three months. The study was conducted at one nursing home and two hospitals between May and December 2012. Accuracy of risk assessment (five patient cases) and pressure ulcer classification (40 photos [normal skin, pressure ulcer categories I-IV] split in two sets) were measured by comparing nurse evaluations in each of the two groups to a pre-established standard based on ratings by experts in pressure ulcer classification and risk assessment. Inter-rater reliability was measured by exact percent agreement and multi-rater Fleiss kappa. A Mann-Whitney U test was used for continuous sum score variables. An e-learning program did not improve Braden subscale scoring. For pressure ulcer classification, however, the intervention group scored significantly higher than the control group on several of the categories in post-test immediately after training. However, after three months there were no significant differences in classification skills between the groups. An e-learning program appears to have a greater effect on the accuracy of pressure ulcer classification than classroom teaching in the short term. For proficiency in Braden scoring, no significant effect of educational methods on learning results was detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. GLOBAL LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PROSUCTS

    Directory of Open Access Journals (Sweden)

    K. Fukue

    2016-06-01

    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  15. An Investigation to Improve Classifier Accuracy for Myo Collected Data

    Science.gov (United States)

    2017-02-01

    Bad Samples Effect on Classification Accuracy 7 5.1 Naïve Bayes (NB) Classifier Accuracy 7 5.2 Logistic Model Tree (LMT) 10 5.3 K-Nearest Neighbor...gesture, pitch feature, user 06. All samples exhibit reversed movement...20 Fig. A-2 Come gesture, pitch feature, user 14. All samples exhibit reversed movement

  16. Assessment Of Accuracies Of Remote-Sensing Maps

    Science.gov (United States)

    Card, Don H.; Strong, Laurence L.

    1992-01-01

    Report describes study of accuracies of classifications of picture elements in map derived by digital processing of Landsat-multispectral-scanner imagery of coastal plain of Arctic National Wildlife Refuge. Accuracies of portions of map analyzed with help of statistical sampling procedure called "stratified plurality sampling", in which all picture elements in given cluster classified in stratum to which plurality of them belong.

  17. Gender classification under extended operating conditions

    Science.gov (United States)

    Rude, Howard N.; Rizki, Mateen

    2014-06-01

    Gender classification is a critical component of a robust image security system. Many techniques exist to perform gender classification using facial features. In contrast, this paper explores gender classification using body features extracted from clothed subjects. Several of the most effective types of features for gender classification identified in literature were implemented and applied to the newly developed Seasonal Weather And Gender (SWAG) dataset. SWAG contains video clips of approximately 2000 samples of human subjects captured over a period of several months. The subjects are wearing casual business attire and outer garments appropriate for the specific weather conditions observed in the Midwest. The results from a series of experiments are presented that compare the classification accuracy of systems that incorporate various types and combinations of features applied to multiple looks at subjects at different image resolutions to determine a baseline performance for gender classification.

  18. Waste management in Greater Vancouver

    Energy Technology Data Exchange (ETDEWEB)

    Carrusca, K. [Greater Vancouver Regional District, Burnaby, BC (Canada); Richter, R. [Montenay Inc., Vancouver, BC (Canada)]|[Veolia Environmental Services, Vancouver, BC (Canada)

    2006-07-01

    An outline of the Greater Vancouver Regional District (GVRD) waste-to-energy program was presented. The GVRD has an annual budget for solid waste management of $90 million. Energy recovery revenues from solid waste currently exceed $10 million. Over 1,660,00 tonnes of GVRD waste is recycled, and another 280,000 tonnes is converted from waste to energy. The GVRD waste-to-energy facility combines state-of-the-art combustion and air pollution control, and has processed over 5 million tonnes of municipal solid waste since it opened in 1988. Its central location minimizes haul distance, and it was originally sited to utilize steam through sales to a recycle paper mill. The facility has won several awards, including the Solid Waste Association of North America award for best facility in 1990. The facility focuses on continual improvement, and has installed a carbon injection system; an ammonia injection system; a flyash stabilization system; and heat capacity upgrades in addition to conducting continuous waste composition studies. Continuous air emissions monitoring is also conducted at the plant, which produces a very small percentage of the total air emissions in metropolitan Vancouver. The GVRD is now seeking options for the management of a further 500,000 tonnes per year of solid waste, and has received 23 submissions from a range of waste energy technologies which are now being evaluated. It was concluded that waste-to-energy plants can be located in densely populated metropolitan areas and provide a local disposal solution as well as a source of renewable energy. Other GVRD waste reduction policies were also reviewed. refs., tabs., figs.

  19. Acurácia dos achados mamográficos do câncer de mama: correlação da classificação BI-RADS e achados histológicos Accuracy of mammographic findings in breast cancer: correlation between BI-RADS classification and histological findings

    Directory of Open Access Journals (Sweden)

    José Hermes Ribas do Nascimento

    2010-04-01

    Full Text Available OBJETIVO: A proposta deste estudo foi avaliar a acurácia da classificação BI-RADS® na mamografia. Os pontos secundários foram descrever a frequência de apresentação dos diferentes achados mamográficos e avaliar a concordância entre observadores. MATERIAIS E MÉTODOS: Os exames de 115 pacientes, encaminhados para core biopsy, foram reavaliados independentemente por dois médicos especialistas, cegados, utilizando a recomendação do BI-RADS. Posteriormente, os exames foram comparados com a histologia. A acurácia da classificação BI-RADS na mamografia foi avaliada. A concordância entre os médicos foi calculada pela estatística kappa (κ de Cohen e as diferenças nos grupos de comparação foram analisadas com teste qui-quadrado. RESULTADOS: Esta pesquisa demonstrou que a acurácia mamográfica oscilou de 75% a 62% na diferenciação entre lesões benignas de malignas com o uso do BI-RADS. Houve importante concordância na descrição das margens dos nódulos (κ= 0,66. Baixa concordância foi identificada na descrição dos contornos (formas dos nódulos (κ= 0,40 e na descrição das calcificações, tanto em relação à sua distribuição (κ= 0,24 como também em relação à morfologia (κ= 0,36. CONCLUSÃO: O presente estudo demonstrou que o método é acurado na diferenciação de lesões benignas de malignas. A concordância foi fraca na análise das calcificações quanto a morfologia e distribuição, no entanto, identificou-se elevação progressiva dos valores preditivos positivos nas subcategorias 4.OBJECTIVE: The present study was aimed at evaluating the BI-RADS® classification accuracy in mammography. Additionally, the frequency of different findings was described and the interobserver agreement was evaluated. MATERIALS AND METHODS: Mammographic images of 115 patients were independently and blindly reviewed by two specialists in compliance with BI-RADS recommendations, and later compared with histological data. The

  20. An automated cirrus classification

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Goren, Tom; Klocke, Daniel; Brueck, Matthias

    2018-05-01

    Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using reanalysis and satellite data, cirrus clouds are separated into four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back-trajectory-based analysis, it is shown that these observation-based regimes can provide extra information on the cloud-scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mechanisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processes.

  1. Transportation Modes Classification Using Sensors on Smartphones

    Directory of Open Access Journals (Sweden)

    Shih-Hau Fang

    2016-08-01

    Full Text Available This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.

  2. The effects of shadow removal on across-date settlement type classification of quickbird images

    CSIR Research Space (South Africa)

    Luus, FPS

    2012-07-01

    Full Text Available QuickBird imagery acquired on separate dates may have significant differences in viewing- and illumination geometries, which can negatively impact across-date settlement type classification accuracy. The effect of cast shadows on classification...

  3. Classification in context

    DEFF Research Database (Denmark)

    Mai, Jens Erik

    2004-01-01

    This paper surveys classification research literature, discusses various classification theories, and shows that the focus has traditionally been on establishing a scientific foundation for classification research. This paper argues that a shift has taken place, and suggests that contemporary...... classification research focus on contextual information as the guide for the design and construction of classification schemes....

  4. Classification of the web

    DEFF Research Database (Denmark)

    Mai, Jens Erik

    2004-01-01

    This paper discusses the challenges faced by investigations into the classification of the Web and outlines inquiries that are needed to use principles for bibliographic classification to construct classifications of the Web. This paper suggests that the classification of the Web meets challenges...... that call for inquiries into the theoretical foundation of bibliographic classification theory....

  5. Target Price Accuracy

    Directory of Open Access Journals (Sweden)

    Alexander G. Kerl

    2011-04-01

    Full Text Available This study analyzes the accuracy of forecasted target prices within analysts’ reports. We compute a measure for target price forecast accuracy that evaluates the ability of analysts to exactly forecast the ex-ante (unknown 12-month stock price. Furthermore, we determine factors that explain this accuracy. Target price accuracy is negatively related to analyst-specific optimism and stock-specific risk (measured by volatility and price-to-book ratio. However, target price accuracy is positively related to the level of detail of each report, company size and the reputation of the investment bank. The potential conflicts of interests between an analyst and a covered company do not bias forecast accuracy.

  6. [Implementation of cytology images classification--the Bethesda 2001 System--in a group of screened women from Podlaskie region--effect evaluation].

    Science.gov (United States)

    Zbroch, Tomasz; Knapp, Paweł Grzegorz; Knapp, Piotr Andrzej

    2007-09-01

    Increasing knowledge concerning carcinogenesis within cervical epithelium has forced us to make continues modifications of cytology classification of the cervical smears. Eventually, new descriptions of the submicroscopic cytomorphological abnormalities have enabled the implementation of Bethesda System which was meant to take place of the former Papanicolaou classification although temporarily both are sometimes used simultaneously. The aim of this study was to compare results of these two classification systems in the aspect of diagnostic accuracy verified by further tests of the diagnostic algorithm for the cervical lesion evaluation. The study was conducted in the group of women selected from general population, the criteria being the place of living and cervical cancer age risk group, in the consecutive periods of mass screening in Podlaski region. The performed diagnostic tests have been based on the commonly used algorithm, as well as identical laboratory and methodological conditions. Performed assessment revealed comparable diagnostic accuracy of both analyzing classifications, verified by histological examination, although with marked higher specificity for dysplastic lesions with decreased number of HSIL results and increased diagnosis of LSILs. Higher number of performed colposcopies and biopsies were an additional consequence of TBS classification. Results based on Bethesda System made it possible to find the sources and reasons of abnormalities with much greater precision, which enabled causing agent treatment. Two evaluated cytology classification systems, although not much different, depicted higher potential of TBS and better, more effective communication between cytology laboratory and gynecologist, making reasonable implementation of The Bethesda System in the daily cytology screening work.

  7. The decision tree approach to classification

    Science.gov (United States)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  8. Hazard classification methodology

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  9. Video genre classification using multimodal features

    Science.gov (United States)

    Jin, Sung Ho; Bae, Tae Meon; Choo, Jin Ho; Ro, Yong Man

    2003-12-01

    We propose a video genre classification method using multimodal features. The proposed method is applied for the preprocessing of automatic video summarization or the retrieval and classification of broadcasting video contents. Through a statistical analysis of low-level and middle-level audio-visual features in video, the proposed method can achieve good performance in classifying several broadcasting genres such as cartoon, drama, music video, news, and sports. In this paper, we adopt MPEG-7 audio-visual descriptors as multimodal features of video contents and evaluate the performance of the classification by feeding the features into a decision tree-based classifier which is trained by CART. The experimental results show that the proposed method can recognize several broadcasting video genres with a high accuracy and the classification performance with multimodal features is superior to the one with unimodal features in the genre classification.

  10. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, Steven [Univ. of Washington, Seattle, WA (United States)

    2018-01-15

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robust principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.

  11. Cloud field classification based on textural features

    Science.gov (United States)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes

  12. Classification of Urinary Calculi using Feed-Forward Neural Networks

    African Journals Online (AJOL)

    NJD

    Genetic algorithms were used for optimization of neural networks and for selection of the ... Urinary calculi, infrared spectroscopy, classification, neural networks, variable ..... note that the best accuracy is obtained for whewellite, weddellite.

  13. A method to incorporate uncertainty in the classification of remote sensing images

    OpenAIRE

    Gonçalves, Luísa M. S.; Fonte, Cidália C.; Júlio, Eduardo N. B. S.; Caetano, Mario

    2009-01-01

    The aim of this paper is to investigate if the incorporation of the uncertainty associated with the classification of surface elements into the classification of landscape units (LUs) increases the results accuracy. To this end, a hybrid classification method is developed, including uncertainty information in the classification of very high spatial resolution multi-spectral satellite images, to obtain a map of LUs. The developed classification methodology includes the following...

  14. Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity

    Science.gov (United States)

    Paneque-Gálvez, Jaime; Mas, Jean-François; Moré, Gerard; Cristóbal, Jordi; Orta-Martínez, Martí; Luz, Ana Catarina; Guèze, Maximilien; Macía, Manuel J.; Reyes-García, Victoria

    2013-08-01

    Land use/cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land use/cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims at establishing an efficient classification approach to accurately map all broad land use/cover classes in a large, heterogeneous tropical area, as a basis for further studies (e.g., land use/cover change, deforestation and forest degradation). Specifically, we first compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbor and four different support vector machines - SVM), and hybrid (unsupervised-supervised) classifiers, using hard and soft (fuzzy) accuracy assessments. We then assess, using the maximum likelihood algorithm, what textural indices from the gray-level co-occurrence matrix lead to greater classification improvements at the spatial resolution of Landsat imagery (30 m), and rank them accordingly. Finally, we use the textural index that provides the most accurate classification results to evaluate whether its usefulness varies significantly with the classifier used. We classified imagery corresponding to dry and wet seasons and found that SVM classifiers outperformed all the rest. We also found that the use of some textural indices, but particularly homogeneity and entropy, can significantly improve classifications. We focused on the use of the homogeneity index, which has so far been neglected in land use/cover classification efforts, and found that this index along with reflectance bands significantly increased the overall accuracy of all the classifiers, but particularly of SVM. We observed that improvements in producer's and user's accuracies through the inclusion of homogeneity were different

  15. Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data

    Directory of Open Access Journals (Sweden)

    Sarah J. Graves

    2016-02-01

    Full Text Available Mapping species through classification of imaging spectroscopy data is facilitating research to understand tree species distributions at increasingly greater spatial scales. Classification requires a dataset of field observations matched to the image, which will often reflect natural species distributions, resulting in an imbalanced dataset with many samples for common species and few samples for less common species. Despite the high prevalence of imbalanced datasets in multiclass species predictions, the effect on species prediction accuracy and landscape species abundance has not yet been quantified. First, we trained and assessed the accuracy of a support vector machine (SVM model with a highly imbalanced dataset of 20 tropical species and one mixed-species class of 24 species identified in a hyperspectral image mosaic (350–2500 nm of Panamanian farmland and secondary forest fragments. The model, with an overall accuracy of 62% ± 2.3% and F-score of 59% ± 2.7%, was applied to the full image mosaic (23,000 ha at a 2-m resolution to produce a species prediction map, which suggested that this tropical agricultural landscape is more diverse than what has been presented in field-based studies. Second, we quantified the effect of class imbalance on model accuracy. Model assessment showed a trend where species with more samples were consistently over predicted while species with fewer samples were under predicted. Standardizing sample size reduced model accuracy, but also reduced the level of species over- and under-prediction. This study advances operational species mapping of diverse tropical landscapes by detailing the effect of imbalanced data on classification accuracy and providing estimates of tree species abundance in an agricultural landscape. Species maps using data and methods presented here can be used in landscape analyses of species distributions to understand human or environmental effects, in addition to focusing conservation

  16. Diagnosing Eyewitness Accuracy

    OpenAIRE

    Russ, Andrew

    2015-01-01

    Eyewitnesses frequently mistake innocent people for the perpetrator of an observed crime. Such misidentifications have led to the wrongful convictions of many people. Despite this, no reliable method yet exists to determine eyewitness accuracy. This thesis explored two new experimental methods for this purpose. Chapter 2 investigated whether repetition priming can measure prior exposure to a target and compared this with observers’ explicit eyewitness accuracy. Across three experiments slower...

  17. Random forests for classification in ecology

    Science.gov (United States)

    Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J.

    2007-01-01

    Classification procedures are some of the most widely used statistical methods in ecology. Random forests (RF) is a new and powerful statistical classifier that is well established in other disciplines but is relatively unknown in ecology. Advantages of RF compared to other statistical classifiers include (1) very high classification accuracy; (2) a novel method of determining variable importance; (3) ability to model complex interactions among predictor variables; (4) flexibility to perform several types of statistical data analysis, including regression, classification, survival analysis, and unsupervised learning; and (5) an algorithm for imputing missing values. We compared the accuracies of RF and four other commonly used statistical classifiers using data on invasive plant species presence in Lava Beds National Monument, California, USA, rare lichen species presence in the Pacific Northwest, USA, and nest sites for cavity nesting birds in the Uinta Mountains, Utah, USA. We observed high classification accuracy in all applications as measured by cross-validation and, in the case of the lichen data, by independent test data, when comparing RF to other common classification methods. We also observed that the variables that RF identified as most important for classifying invasive plant species coincided with expectations based on the literature. ?? 2007 by the Ecological Society of America.

  18. Unsupervised classification of variable stars

    Science.gov (United States)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  19. Combined Kernel-Based BDT-SMO Classification of Hyperspectral Fused Images

    Directory of Open Access Journals (Sweden)

    Fenghua Huang

    2014-01-01

    Full Text Available To solve the poor generalization and flexibility problems that single kernel SVM classifiers have while classifying combined spectral and spatial features, this paper proposed a solution to improve the classification accuracy and efficiency of hyperspectral fused images: (1 different radial basis kernel functions (RBFs are employed for spectral and textural features, and a new combined radial basis kernel function (CRBF is proposed by combining them in a weighted manner; (2 the binary decision tree-based multiclass SMO (BDT-SMO is used in the classification of hyperspectral fused images; (3 experiments are carried out, where the single radial basis function- (SRBF- based BDT-SMO classifier and the CRBF-based BDT-SMO classifier are used, respectively, to classify the land usages of hyperspectral fused images, and genetic algorithms (GA are used to optimize the kernel parameters of the classifiers. The results show that, compared with SRBF, CRBF-based BDT-SMO classifiers display greater classification accuracy and efficiency.

  20. Use of information criterion for classification of measurement data ...

    African Journals Online (AJOL)

    ... measurement data for the purpose of identification and authentication of users during online network activity. The proposed method increases the accuracy of classification of signals in authorization systems. Keywords: analysis and classification of signals, identification and authentications of user, access control system ...

  1. A computer method for spectral classification

    International Nuclear Information System (INIS)

    Appenzeller, I.; Zekl, H.

    1978-01-01

    The authors describe the start of an attempt to improve the accuracy of spectroscopic parallaxes by evaluating spectroscopic temperature and luminosity criteria such as those of the MK classification spectrograms which were analyzed automatically by means of a suitable computer program. (Auth.)

  2. On music genre classification via compressive sampling

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    2013-01-01

    Recent work \\cite{Chang2010} combines low-level acoustic features and random projection (referred to as ``compressed sensing'' in \\cite{Chang2010}) to create a music genre classification system showing an accuracy among the highest reported for a benchmark dataset. This not only contradicts previ...

  3. Data preprocessing techniques for classification without discrimination

    NARCIS (Netherlands)

    Kamiran, F.; Calders, T.G.K.

    2012-01-01

    Recently, the following Discrimination-Aware Classification Problem was introduced: Suppose we are given training data that exhibit unlawful discrimination; e.g., toward sensitive attributes such as gender or ethnicity. The task is to learn a classifier that optimizes accuracy, but does not have

  4. MULTI-TEMPORAL CLASSIFICATION AND CHANGE DETECTION USING UAV IMAGES

    Directory of Open Access Journals (Sweden)

    S. Makuti

    2018-05-01

    Full Text Available In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV, textural features (GLCM and 3D geometric features. For classification purposes Conditional Random Field (CRF has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.

  5. SAW Classification Algorithm for Chinese Text Classification

    OpenAIRE

    Xiaoli Guo; Huiyu Sun; Tiehua Zhou; Ling Wang; Zhaoyang Qu; Jiannan Zang

    2015-01-01

    Considering the explosive growth of data, the increased amount of text data’s effect on the performance of text categorization forward the need for higher requirements, such that the existing classification method cannot be satisfied. Based on the study of existing text classification technology and semantics, this paper puts forward a kind of Chinese text classification oriented SAW (Structural Auxiliary Word) algorithm. The algorithm uses the special space effect of Chinese text where words...

  6. Classification for Inconsistent Decision Tables

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2016-01-01

    Decision trees have been used widely to discover patterns from consistent data set. But if the data set is inconsistent, where there are groups of examples with equal values of conditional attributes but different labels, then to discover the essential patterns or knowledge from the data set is challenging. Three approaches (generalized, most common and many-valued decision) have been considered to handle such inconsistency. The decision tree model has been used to compare the classification results among three approaches. Many-valued decision approach outperforms other approaches, and M_ws_entM greedy algorithm gives faster and better prediction accuracy.

  7. Classification for Inconsistent Decision Tables

    KAUST Repository

    Azad, Mohammad

    2016-09-28

    Decision trees have been used widely to discover patterns from consistent data set. But if the data set is inconsistent, where there are groups of examples with equal values of conditional attributes but different labels, then to discover the essential patterns or knowledge from the data set is challenging. Three approaches (generalized, most common and many-valued decision) have been considered to handle such inconsistency. The decision tree model has been used to compare the classification results among three approaches. Many-valued decision approach outperforms other approaches, and M_ws_entM greedy algorithm gives faster and better prediction accuracy.

  8. Learning features for tissue classification with the classification restricted Boltzmann machine

    DEFF Research Database (Denmark)

    van Tulder, Gijs; de Bruijne, Marleen

    2014-01-01

    Performance of automated tissue classification in medical imaging depends on the choice of descriptive features. In this paper, we show how restricted Boltzmann machines (RBMs) can be used to learn features that are especially suited for texture-based tissue classification. We introduce the convo...... outperform conventional RBM-based feature learning, which is unsupervised and uses only a generative learning objective, as well as often-used filter banks. We show that a mixture of generative and discriminative learning can produce filters that give a higher classification accuracy....

  9. Similarity-dissimilarity plot for visualization of high dimensional data in biomedical pattern classification.

    Science.gov (United States)

    Arif, Muhammad

    2012-06-01

    In pattern classification problems, feature extraction is an important step. Quality of features in discriminating different classes plays an important role in pattern classification problems. In real life, pattern classification may require high dimensional feature space and it is impossible to visualize the feature space if the dimension of feature space is greater than four. In this paper, we have proposed a Similarity-Dissimilarity plot which can project high dimensional space to a two dimensional space while retaining important characteristics required to assess the discrimination quality of the features. Similarity-dissimilarity plot can reveal information about the amount of overlap of features of different classes. Separable data points of different classes will also be visible on the plot which can be classified correctly using appropriate classifier. Hence, approximate classification accuracy can be predicted. Moreover, it is possible to know about whom class the misclassified data points will be confused by the classifier. Outlier data points can also be located on the similarity-dissimilarity plot. Various examples of synthetic data are used to highlight important characteristics of the proposed plot. Some real life examples from biomedical data are also used for the analysis. The proposed plot is independent of number of dimensions of the feature space.

  10. Overlay accuracy fundamentals

    Science.gov (United States)

    Kandel, Daniel; Levinski, Vladimir; Sapiens, Noam; Cohen, Guy; Amit, Eran; Klein, Dana; Vakshtein, Irina

    2012-03-01

    Currently, the performance of overlay metrology is evaluated mainly based on random error contributions such as precision and TIS variability. With the expected shrinkage of the overlay metrology budget to DBO (1st order diffraction based overlay). It is demonstrated that the sensitivity of DBO to overlay mark asymmetry is larger than the sensitivity of imaging overlay. Finally, we show that a recently developed measurement quality metric serves as a valuable tool for improving overlay metrology accuracy. Simulation results demonstrate that the accuracy of imaging overlay can be improved significantly by recipe setup optimized using the quality metric. We conclude that imaging overlay metrology, complemented by appropriate use of measurement quality metric, results in optimal overlay accuracy.

  11. Classification of ASKAP Vast Radio Light Curves

    Science.gov (United States)

    Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.

    2012-01-01

    The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.

  12. Efficacy of hidden markov model over support vector machine on multiclass classification of healthy and cancerous cervical tissues

    Science.gov (United States)

    Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Pratiher, Sawon; Mukherjee, Sukanya; Barman, Ritwik; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2018-02-01

    In this paper, a comparative study between SVM and HMM has been carried out for multiclass classification of cervical healthy and cancerous tissues. In our study, the HMM methodology is more promising to produce higher accuracy in classification.

  13. Improving shuffler assay accuracy

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1995-01-01

    Drums of uranium waste should be disposed of in an economical and environmentally sound manner. The most accurate possible assays of the uranium masses in the drums are required for proper disposal. The accuracies of assays from a shuffler are affected by the type of matrix material in the drums. Non-hydrogenous matrices have little effect on neutron transport and accuracies are very good. If self-shielding is known to be a minor problem, good accuracies are also obtained with hydrogenous matrices when a polyethylene sleeve is placed around the drums. But for those cases where self-shielding may be a problem, matrices are hydrogenous, and uranium distributions are non-uniform throughout the drums, the accuracies are degraded. They can be greatly improved by determining the distributions of the uranium and then applying correction factors based on the distributions. This paper describes a technique for determining uranium distributions by using the neutron count rates in detector banks around the waste drum and solving a set of overdetermined linear equations. Other approaches were studied to determine the distributions and are described briefly. Implementation of this correction is anticipated on an existing shuffler next year

  14. Greater trochanteric pain syndrome diagnosis and treatment.

    Science.gov (United States)

    Mallow, Michael; Nazarian, Levon N

    2014-05-01

    Lateral hip pain, or greater trochanteric pain syndrome, is a commonly seen condition; in this article, the relevant anatomy, epidemiology, and evaluation strategies of greater trochanteric pain syndrome are reviewed. Specific attention is focused on imaging of this syndrome and treatment techniques, including ultrasound-guided interventions. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery.

    Science.gov (United States)

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Hetrick, Scott

    2011-01-01

    This research aims to improve land-cover classification accuracy in a moist tropical region in Brazil by examining the use of different remote sensing-derived variables and classification algorithms. Different scenarios based on Landsat Thematic Mapper (TM) spectral data and derived vegetation indices and textural images, and different classification algorithms - maximum likelihood classification (MLC), artificial neural network (ANN), classification tree analysis (CTA), and object-based classification (OBC), were explored. The results indicated that a combination of vegetation indices as extra bands into Landsat TM multispectral bands did not improve the overall classification performance, but the combination of textural images was valuable for improving vegetation classification accuracy. In particular, the combination of both vegetation indices and textural images into TM multispectral bands improved overall classification accuracy by 5.6% and kappa coefficient by 6.25%. Comparison of the different classification algorithms indicated that CTA and ANN have poor classification performance in this research, but OBC improved primary forest and pasture classification accuracies. This research indicates that use of textural images or use of OBC are especially valuable for improving the vegetation classes such as upland and liana forest classes having complex stand structures and having relatively large patch sizes.

  16. Land Cover Classification Using ALOS Imagery For Penang, Malaysia

    International Nuclear Information System (INIS)

    Sim, C K; Abdullah, K; MatJafri, M Z; Lim, H S

    2014-01-01

    This paper presents the potential of integrating optical and radar remote sensing data to improve automatic land cover mapping. The analysis involved standard image processing, and consists of spectral signature extraction and application of a statistical decision rule to identify land cover categories. A maximum likelihood classifier is utilized to determine different land cover categories. Ground reference data from sites throughout the study area are collected for training and validation. The land cover information was extracted from the digital data using PCI Geomatica 10.3.2 software package. The variations in classification accuracy due to a number of radar imaging processing techniques are studied. The relationship between the processing window and the land classification is also investigated. The classification accuracies from the optical and radar feature combinations are studied. Our research finds that fusion of radar and optical significantly improved classification accuracies. This study indicates that the land cover/use can be mapped accurately by using this approach

  17. The importance of spatial accuracy in characterizing stand types ...

    African Journals Online (AJOL)

    This study assessed the potential use of Landsat 7 ETM+ (15 and 30 m spatial resolutions) images to estimate forest stand attributes such as development stages, crown closure and stand types. The study evaluates the performance of spatial and image classification accuracies between Landsat images (15 and 30 m ...

  18. Asteroid taxonomic classifications

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    This paper reports on three taxonomic classification schemes developed and applied to the body of available color and albedo data. Asteroid taxonomic classifications according to two of these schemes are reproduced

  19. Use of UAV-Borne Spectrometer for Land Cover Classification

    Directory of Open Access Journals (Sweden)

    Sowmya Natesan

    2018-04-01

    Full Text Available Unmanned aerial vehicles (UAV are being used for low altitude remote sensing for thematic land classification using visible light and multi-spectral sensors. The objective of this work was to investigate the use of UAV equipped with a compact spectrometer for land cover classification. The UAV platform used was a DJI Flamewheel F550 hexacopter equipped with GPS and Inertial Measurement Unit (IMU navigation sensors, and a Raspberry Pi processor and camera module. The spectrometer used was the FLAME-NIR, a near-infrared spectrometer for hyperspectral measurements. RGB images and spectrometer data were captured simultaneously. As spectrometer data do not provide continuous terrain coverage, the locations of their ground elliptical footprints were determined from the bundle adjustment solution of the captured images. For each of the spectrometer ground ellipses, the land cover signature at the footprint location was determined to enable the characterization, identification, and classification of land cover elements. To attain a continuous land cover classification map, spatial interpolation was carried out from the irregularly distributed labeled spectrometer points. The accuracy of the classification was assessed using spatial intersection with the object-based image classification performed using the RGB images. Results show that in homogeneous land cover, like water, the accuracy of classification is 78% and in mixed classes, like grass, trees and manmade features, the average accuracy is 50%, thus, indicating the contribution of hyperspectral measurements of low altitude UAV-borne spectrometers to improve land cover classification.

  20. On the Accuracy of Language Trees

    Science.gov (United States)

    Pompei, Simone; Loreto, Vittorio; Tria, Francesca

    2011-01-01

    Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it. PMID:21674034

  1. On the accuracy of language trees.

    Directory of Open Access Journals (Sweden)

    Simone Pompei

    Full Text Available Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic features or characters for many different languages: a set of parallel corpora whose compilation represents a paramount achievement in linguistics. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve

  2. Hand eczema classification

    DEFF Research Database (Denmark)

    Diepgen, T L; Andersen, Klaus Ejner; Brandao, F M

    2008-01-01

    of the disease is rarely evidence based, and a classification system for different subdiagnoses of hand eczema is not agreed upon. Randomized controlled trials investigating the treatment of hand eczema are called for. For this, as well as for clinical purposes, a generally accepted classification system...... A classification system for hand eczema is proposed. Conclusions It is suggested that this classification be used in clinical work and in clinical trials....

  3. LDA boost classification: boosting by topics

    Science.gov (United States)

    Lei, La; Qiao, Guo; Qimin, Cao; Qitao, Li

    2012-12-01

    AdaBoost is an efficacious classification algorithm especially in text categorization (TC) tasks. The methodology of setting up a classifier committee and voting on the documents for classification can achieve high categorization precision. However, traditional Vector Space Model can easily lead to the curse of dimensionality and feature sparsity problems; so it affects classification performance seriously. This article proposed a novel classification algorithm called LDABoost based on boosting ideology which uses Latent Dirichlet Allocation (LDA) to modeling the feature space. Instead of using words or phrase, LDABoost use latent topics as the features. In this way, the feature dimension is significantly reduced. Improved Naïve Bayes (NB) is designed as the weaker classifier which keeps the efficiency advantage of classic NB algorithm and has higher precision. Moreover, a two-stage iterative weighted method called Cute Integration in this article is proposed for improving the accuracy by integrating weak classifiers into strong classifier in a more rational way. Mutual Information is used as metrics of weights allocation. The voting information and the categorization decision made by basis classifiers are fully utilized for generating the strong classifier. Experimental results reveals LDABoost making categorization in a low-dimensional space, it has higher accuracy than traditional AdaBoost algorithms and many other classic classification algorithms. Moreover, its runtime consumption is lower than different versions of AdaBoost, TC algorithms based on support vector machine and Neural Networks.

  4. Classification with support hyperplanes

    NARCIS (Netherlands)

    G.I. Nalbantov (Georgi); J.C. Bioch (Cor); P.J.F. Groenen (Patrick)

    2006-01-01

    textabstractA new classification method is proposed, called Support Hy- perplanes (SHs). To solve the binary classification task, SHs consider the set of all hyperplanes that do not make classification mistakes, referred to as semi-consistent hyperplanes. A test object is classified using

  5. Standard classification: Physics

    International Nuclear Information System (INIS)

    1977-01-01

    This is a draft standard classification of physics. The conception is based on the physics part of the systematic catalogue of the Bayerische Staatsbibliothek and on the classification given in standard textbooks. The ICSU-AB classification now used worldwide by physics information services was not taken into account. (BJ) [de

  6. Remote Sensing Image Classification Based on Stacked Denoising Autoencoder

    Directory of Open Access Journals (Sweden)

    Peng Liang

    2017-12-01

    Full Text Available Focused on the issue that conventional remote sensing image classification methods have run into the bottlenecks in accuracy, a new remote sensing image classification method inspired by deep learning is proposed, which is based on Stacked Denoising Autoencoder. First, the deep network model is built through the stacked layers of Denoising Autoencoder. Then, with noised input, the unsupervised Greedy layer-wise training algorithm is used to train each layer in turn for more robust expressing, characteristics are obtained in supervised learning by Back Propagation (BP neural network, and the whole network is optimized by error back propagation. Finally, Gaofen-1 satellite (GF-1 remote sensing data are used for evaluation, and the total accuracy and kappa accuracy reach 95.7% and 0.955, respectively, which are higher than that of the Support Vector Machine and Back Propagation neural network. The experiment results show that the proposed method can effectively improve the accuracy of remote sensing image classification.

  7. The Influence of DEM Quality on Mapping Accuracy of Coniferous- and Deciduous-Dominated Forest Using TerraSAR‑X Images

    Directory of Open Access Journals (Sweden)

    Gerald Kändler

    2012-03-01

    Full Text Available Climate change is a factor that largely contributes to the increase of forest areas affected by natural damages. Therefore, the development of methodologies for forest monitoring and rapid assessment of affected areas is required. Space-borne synthetic aperture radar (SAR imagery with high resolution is now available for large-scale forest mapping and forest monitoring applications. However, a correct interpretation of SAR images requires an adequate preprocessing of the data consisting of orthorectification and radiometric calibration. The resolution and quality of the digital elevation model (DEM used as reference is crucial for this purpose. Therefore, the primary aim of this study was to analyze the influence of the DEM quality used in the preprocessing of the SAR data on the mapping accuracy of forest types. In order to examine TerraSAR-X images to map forest dominated by deciduous and coniferous trees, High Resolution SpotLight images were acquired for two study sites in southern Germany. The SAR images were preprocessed with a Shuttle Radar Topography Mission (SRTM DEM (resolution approximately 90 m, an airborne laser scanning (ALS digital terrain model (DTM (5 m resolution, and an ALS digital surface model (DSM (5 m resolution. The orthorectification of the SAR images using high resolution ALS DEMs was found to be important for the reduction of errors in pixel location and to increase the classification accuracy of forest types. SAR images preprocessed with ALS DTMs resulted in the highest classification accuracies, with kappa coefficients of 0.49 and 0.41, respectively. SAR images preprocessed with ALS DTMs resulted in greater accuracy than those preprocessed with ALS DSMs in most cases. The classification accuracy of forest types using SAR images preprocessed with the SRTM DEM was fair, with kappa coefficients of 0.23 and 0.32, respectively.Analysis of the radar backscatter indicated that sample plots dominated by coniferous trees

  8. Concept Mapping Improves Metacomprehension Accuracy among 7th Graders

    Science.gov (United States)

    Redford, Joshua S.; Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2012-01-01

    Two experiments explored concept map construction as a useful intervention to improve metacomprehension accuracy among 7th grade students. In the first experiment, metacomprehension was marginally better for a concept mapping group than for a rereading group. In the second experiment, metacomprehension accuracy was significantly greater for a…

  9. Classification of refrigerants; Classification des fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document was made from the US standard ANSI/ASHRAE 34 published in 2001 and entitled 'designation and safety classification of refrigerants'. This classification allows to clearly organize in an international way the overall refrigerants used in the world thanks to a codification of the refrigerants in correspondence with their chemical composition. This note explains this codification: prefix, suffixes (hydrocarbons and derived fluids, azeotropic and non-azeotropic mixtures, various organic compounds, non-organic compounds), safety classification (toxicity, flammability, case of mixtures). (J.S.)

  10. New Classification for Heart Failure with Mildly Reduced Ejection Fraction; Greater clarity or more confusion?

    Directory of Open Access Journals (Sweden)

    Sunil Nadar

    2017-03-01

    Full Text Available The latest European Society of Cardiology (ESC guidelines for the diagnosis and management of heart failure include a new patient group for those with heart failure with mildly reduced ejection fraction (HFmrEF. By defining this group of patients as a separate entity, the ESC hope to encourage more research focusing on patients with HFmrEF. Previously, patients with this condition were caught between two classifications—heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. Hopefully, the inclusion of new terminology will not increase confusion, but rather aid our understanding of heart failure, a complex clinical syndrome.

  11. Geoid undulation accuracy

    Science.gov (United States)

    Rapp, Richard H.

    1993-01-01

    The determination of the geoid and equipotential surface of the Earth's gravity field, has long been of interest to geodesists and oceanographers. The geoid provides a surface to which the actual ocean surface can be compared with the differences implying information on the circulation patterns of the oceans. For use in oceanographic applications the geoid is ideally needed to a high accuracy and to a high resolution. There are applications that require geoid undulation information to an accuracy of +/- 10 cm with a resolution of 50 km. We are far from this goal today but substantial improvement in geoid determination has been made. In 1979 the cumulative geoid undulation error to spherical harmonic degree 20 was +/- 1.4 m for the GEM10 potential coefficient model. Today the corresponding value has been reduced to +/- 25 cm for GEM-T3 or +/- 11 cm for the OSU91A model. Similar improvements are noted by harmonic degree (wave-length) and in resolution. Potential coefficient models now exist to degree 360 based on a combination of data types. This paper discusses the accuracy changes that have taken place in the past 12 years in the determination of geoid undulations.

  12. Fuzzy set classifier for waste classification tracking

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1992-01-01

    We have developed an expert system based on fuzzy logic theory to fuse the data from multiple sensors and make classification decisions for objects in a waste reprocessing stream. Fuzzy set theory has been applied in decision and control applications with some success, particularly by the Japanese. We have found that the fuzzy logic system is rather easy to design and train, a feature that can cut development costs considerably. With proper training, the classification accuracy is quite high. We performed several tests sorting radioactive test samples using a gamma spectrometer to compare fuzzy logic to more conventional sorting schemes

  13. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Hu, Z W; Zhang, S; Yu, X Y; Wang, X S

    2014-01-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  14. Classification, disease, and diagnosis.

    Science.gov (United States)

    Jutel, Annemarie

    2011-01-01

    Classification shapes medicine and guides its practice. Understanding classification must be part of the quest to better understand the social context and implications of diagnosis. Classifications are part of the human work that provides a foundation for the recognition and study of illness: deciding how the vast expanse of nature can be partitioned into meaningful chunks, stabilizing and structuring what is otherwise disordered. This article explores the aims of classification, their embodiment in medical diagnosis, and the historical traditions of medical classification. It provides a brief overview of the aims and principles of classification and their relevance to contemporary medicine. It also demonstrates how classifications operate as social framing devices that enable and disable communication, assert and refute authority, and are important items for sociological study.

  15. Accounting for taxonomic distance in accuracy assessment of soil class predictions

    NARCIS (Netherlands)

    Rossiter, David G.; Zeng, Rong; Zhang, Gan Lin

    2017-01-01

    Evaluating the accuracy of allocation to classes in monothetic hierarchical soil classification systems, including the World Reference Base for Soil Classification, US Soil Taxonomy, and Chinese Soil Taxonomy, is poorly-served by binomial methods (correct/incorrect allocation per evaluation

  16. Classification of titanium dioxide

    International Nuclear Information System (INIS)

    Macias B, L.R.; Garcia C, R.M.; Maya M, M.E.; Ita T, A. De; Palacios G, J.

    2002-01-01

    In this work the X-ray diffraction (XRD), Scanning Electron Microscopy (Sem) and the X-ray Dispersive Energy Spectroscopy techniques are used with the purpose to achieve a complete identification of phases and mixture of phases of a crystalline material as titanium dioxide. The problem for solving consists of being able to distinguish a sample of titanium dioxide being different than a titanium dioxide pigment. A standard sample of titanium dioxide with NIST certificate is used, which indicates a purity of 99.74% for the TiO 2 . The following way is recommended to proceed: a)To make an analysis by means of X-ray diffraction technique to the sample of titanium dioxide pigment and on the standard of titanium dioxide waiting not find differences. b) To make a chemical analysis by the X-ray Dispersive Energy Spectroscopy via in a microscope, taking advantage of the high vacuum since it is oxygen which is analysed and if it is concluded that the aluminium oxide appears in a greater proportion to 1% it is established that is a titanium dioxide pigment, but if it is lesser then it will be only titanium dioxide. This type of analysis is an application of the nuclear techniques useful for the tariff classification of merchandise which is considered as of difficult recognition. (Author)

  17. The dimensional accuracy of the sintered billets

    Directory of Open Access Journals (Sweden)

    Чингиз Ариф оглы Алиев

    2016-01-01

    Full Text Available The article presents the results of assessing the impact of the behaviour stability of the components included in the compositions and process parameters of their production, on the dimensional accuracy of workpieces. It was found that by increasing the amount of oxide in the composition is greater compaction of the sintered billet in the process of heat treatment. This also increases the density of all components of the composition

  18. Simultaneous bilateral isolated greater trochanter fracture

    Directory of Open Access Journals (Sweden)

    Maruti Kambali

    2013-01-01

    Full Text Available A 48-year-old woman sustained simultaneous isolated bilateral greater trochanteric fracture, following a road traffic accident. The patient presented to us 1 month after the injury. She presented with complaints of pain in the left hip and inability to walk. Roentgenograms revealed displaced comminuted bilateral greater trochanter fractures. The fracture of the left greater trochanter was reduced and fixed internally using the tension band wiring technique. The greater trochanter fracture on the right side was asymptomatic and was managed conservatively. The patient regained full range of motion and use of her hips after a postoperative follow-up of 6 months. Isolated fractures of the greater trochanter are unusual injuries. Because of their relative rarity and the unsettled controversy regarding their etiology and pathogenesis, several methods of treatment have been advocated. Furthermore, the reports of this particular type of injury are not plentiful and the average textbook coverage afforded to this entity is limited. In our study we discuss the mechanism of injury and the various treatment options available.

  19. Quality-Oriented Classification of Aircraft Material Based on SVM

    Directory of Open Access Journals (Sweden)

    Hongxia Cai

    2014-01-01

    Full Text Available The existing material classification is proposed to improve the inventory management. However, different materials have the different quality-related attributes, especially in the aircraft industry. In order to reduce the cost without sacrificing the quality, we propose a quality-oriented material classification system considering the material quality character, Quality cost, and Quality influence. Analytic Hierarchy Process helps to make feature selection and classification decision. We use the improved Kraljic Portfolio Matrix to establish the three-dimensional classification model. The aircraft materials can be divided into eight types, including general type, key type, risk type, and leveraged type. Aiming to improve the classification accuracy of various materials, the algorithm of Support Vector Machine is introduced. Finally, we compare the SVM and BP neural network in the application. The results prove that the SVM algorithm is more efficient and accurate and the quality-oriented material classification is valuable.

  20. Integrating Globality and Locality for Robust Representation Based Classification

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2014-01-01

    Full Text Available The representation based classification method (RBCM has shown huge potential for face recognition since it first emerged. Linear regression classification (LRC method and collaborative representation classification (CRC method are two well-known RBCMs. LRC and CRC exploit training samples of each class and all the training samples to represent the testing sample, respectively, and subsequently conduct classification on the basis of the representation residual. LRC method can be viewed as a “locality representation” method because it just uses the training samples of each class to represent the testing sample and it cannot embody the effectiveness of the “globality representation.” On the contrary, it seems that CRC method cannot own the benefit of locality of the general RBCM. Thus we propose to integrate CRC and LRC to perform more robust representation based classification. The experimental results on benchmark face databases substantially demonstrate that the proposed method achieves high classification accuracy.

  1. The Improvement of Land Cover Classification by Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Liya Sun

    2015-06-01

    Full Text Available Land cover classification has been widely investigated in remote sensing for agricultural, ecological and hydrological applications. Landsat images with multispectral bands are commonly used to study the numerous classification methods in order to improve the classification accuracy. Thermal remote sensing provides valuable information to investigate the effectiveness of the thermal bands in extracting land cover patterns. k-NN and Random Forest algorithms were applied to both the single Landsat 8 image and the time series Landsat 4/5 images for the Attert catchment in the Grand Duchy of Luxembourg, trained and validated by the ground-truth reference data considering the three level classification scheme from COoRdination of INformation on the Environment (CORINE using the 10-fold cross validation method. The accuracy assessment showed that compared to the visible and near infrared (VIS/NIR bands, the time series of thermal images alone can produce comparatively reliable land cover maps with the best overall accuracy of 98.7% to 99.1% for Level 1 classification and 93.9% to 96.3% for the Level 2 classification. In addition, the combination with the thermal band improves the overall accuracy by 5% and 6% for the single Landsat 8 image in Level 2 and Level 3 category and provides the best classified results with all seven bands for the time series of Landsat TM images.

  2. On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis

    Directory of Open Access Journals (Sweden)

    Asriyanti Indah Pratiwi

    2018-01-01

    Full Text Available Sentiment analysis in a movie review is the needs of today lifestyle. Unfortunately, enormous features make the sentiment of analysis slow and less sensitive. Finding the optimum feature selection and classification is still a challenge. In order to handle an enormous number of features and provide better sentiment classification, an information-based feature selection and classification are proposed. The proposed method reduces more than 90% unnecessary features while the proposed classification scheme achieves 96% accuracy of sentiment classification. From the experimental results, it can be concluded that the combination of proposed feature selection and classification achieves the best performance so far.

  3. Security classification of information

    Energy Technology Data Exchange (ETDEWEB)

    Quist, A.S.

    1993-04-01

    This document is the second of a planned four-volume work that comprehensively discusses the security classification of information. The main focus of Volume 2 is on the principles for classification of information. Included herein are descriptions of the two major types of information that governments classify for national security reasons (subjective and objective information), guidance to use when determining whether information under consideration for classification is controlled by the government (a necessary requirement for classification to be effective), information disclosure risks and benefits (the benefits and costs of classification), standards to use when balancing information disclosure risks and benefits, guidance for assigning classification levels (Top Secret, Secret, or Confidential) to classified information, guidance for determining how long information should be classified (classification duration), classification of associations of information, classification of compilations of information, and principles for declassifying and downgrading information. Rules or principles of certain areas of our legal system (e.g., trade secret law) are sometimes mentioned to .provide added support to some of those classification principles.

  4. Compensatory neurofuzzy model for discrete data classification in biomedical

    Science.gov (United States)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  5. A Novel Classification Technique of Landsat-8 OLI Image-Based Data Visualization: The Application of Andrews’ Plots and Fuzzy Evidential Reasoning

    Directory of Open Access Journals (Sweden)

    Sornkitja Boonprong

    2017-04-01

    Full Text Available Andrews first proposed an equation to visualize the structures within data in 1972. Since then, this equation has been used for data transformation and visualization in a wide variety of fields. However, it has yet to be applied to satellite image data. The effect of unwanted, or impure, pixels occurring in these data varies with their distribution in the image; the effect is greater if impurity pixels are included in a classifier’s training set. Andrews’ curves enable the interpreter to select outlier or impurity data that can be grouped into a new category for classification. This study overcomes the above-mentioned problem and illustrates the novelty of applying Andrews’ plots to satellite image data, and proposes a robust method for classifying the plots that combines Dempster-Shafer theory with fuzzy set theory. In addition, we present an example, obtained from real satellite images, to demonstrate the application of the proposed classification method. The accuracy and robustness of the proposed method are investigated for different training set sizes and crop types, and are compared with the results of two traditional classification methods. We find that outlier data are easily eliminated by examining Andrews’ curves and that the proposed method significantly outperforms traditional methods when considering the classification accuracy.

  6. A high accuracy land use/cover retrieval system

    Directory of Open Access Journals (Sweden)

    Alaa Hefnawy

    2012-03-01

    Full Text Available The effects of spatial resolution on the accuracy of mapping land use/cover types have received increasing attention as a large number of multi-scale earth observation data become available. Although many methods of semi automated image classification of remotely sensed data have been established for improving the accuracy of land use/cover classification during the past 40 years, most of them were employed in single-resolution image classification, which led to unsatisfactory results. In this paper, we propose a multi-resolution fast adaptive content-based retrieval system of satellite images. Through our proposed system, we apply a Super Resolution technique for the Landsat-TM images to have a high resolution dataset. The human–computer interactive system is based on modified radial basis function for retrieval of satellite database images. We apply the backpropagation supervised artificial neural network classifier for both the multi and single resolution datasets. The results show significant improved land use/cover classification accuracy for the multi-resolution approach compared with those from single-resolution approach.

  7. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data

    Science.gov (United States)

    Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.

    2014-08-01

    This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.

  8. [Diagnostic accuracy of malignancy risk index II in post-menopausal women with adnexal tumours].

    Science.gov (United States)

    Treviño-Báez, Joaquín Darío; Cantú-Cruz, Javier Alejandro; Medina-Mercado, Javier; Abundis, Alberto

    2016-01-01

    The purpose of the diagnostic evaluation of adnexal tumours is to exclude the possibility of malignancy. The malignancy risk index II identifies patients at high risk for ovarian cancer. The cut-off value is greater than 200. To evaluate the diagnostic accuracy of malignancy risk index II in post-menopausal women with adnexal tumours in relation to the histopathological results. A total of 138 women with an adnexal mass were studied. The malignancy risk index II was determined in all of them. They were divided into two groups according to the histopathology results; 69 patients with benign tumours and 69 patients with malignant tumours. A diagnostic test type analysis was performed with respect to the results of malignancy risk index II ≤ 200 or greater than this. The percentages and 95% confidence intervals were calculated. The accuracy was 81.8% (75.5-88.3), sensitivity 76.8% (66.9-86.7), specificity 87% (79.1-94.9), with a positive predictive value of 85.5% (76.7-94.3), and a negative predictive value of 78.9% (69.7-88.1). The positive likelihood ratio was 590, and the negative likelihood ratio was 0.266. The malignancy risk index II has good performance in the proper classification of post-menopausal women with adnexal masses, both benign and malignant, with an accuracy of 81.8%. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  9. Deep Recurrent Neural Networks for Supernovae Classification

    Science.gov (United States)

    Charnock, Tom; Moss, Adam

    2017-03-01

    We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.

  10. Greater trochanteric fracture with occult intertrochanteric extension.

    Science.gov (United States)

    Reiter, Michael; O'Brien, Seth D; Bui-Mansfield, Liem T; Alderete, Joseph

    2013-10-01

    Proximal femoral fractures are frequently encountered in the emergency department (ED). Prompt diagnosis is paramount as delay will exacerbate the already poor outcomes associated with these injuries. In cases where radiography is negative but clinical suspicion remains high, magnetic resonance imaging (MRI) is the study of choice as it has the capability to depict fractures which are occult on other imaging modalities. Awareness of a particular subset of proximal femoral fractures, namely greater trochanteric fractures, is vital for both radiologists and clinicians since it has been well documented that they invariably have an intertrochanteric component which may require surgical management. The detection of intertrochanteric or cervical extension of greater trochanteric fractures has been described utilizing MRI but is underestimated with both computed tomography (CT) and bone scan. Therefore, if MRI is unavailable or contraindicated, the diagnosis of an isolated greater trochanteric fracture should be met with caution. The importance of avoiding this potential pitfall is demonstrated in the following case of an elderly woman with hip pain and CT demonstrating an isolated greater trochanteric fracture who subsequently returned to the ED with a displaced intertrochanteric fracture.

  11. Butterfly valves: greater use in power plants

    International Nuclear Information System (INIS)

    McCoy, M.

    1975-01-01

    Improvements in butterfly valves, particularly in the areas of automatic control and leak tightness are described. The use of butterfly valves in nuclear power plants is discussed. These uses include service in component cooling, containment cooling, and containment isolation. The outlook for further improvements and greater uses is examined. (U.S.)

  12. Greater Somalia, the never-ending dream?

    DEFF Research Database (Denmark)

    Zoppi, Marco

    2015-01-01

    This paper provides an historical analysis of the concept of Greater Somalia, the nationalist project that advocates the political union of all Somali-speaking people, including those inhabiting areas in current Djibouti, Ethiopia and Kenya. The Somali territorial unification project of “lost...

  13. Classification of Flotation Frothers

    Directory of Open Access Journals (Sweden)

    Jan Drzymala

    2018-02-01

    Full Text Available In this paper, a scheme of flotation frothers classification is presented. The scheme first indicates the physical system in which a frother is present and four of them i.e., pure state, aqueous solution, aqueous solution/gas system and aqueous solution/gas/solid system are distinguished. As a result, there are numerous classifications of flotation frothers. The classifications can be organized into a scheme described in detail in this paper. The frother can be present in one of four physical systems, that is pure state, aqueous solution, aqueous solution/gas and aqueous solution/gas/solid system. It results from the paper that a meaningful classification of frothers relies on choosing the physical system and next feature, trend, parameter or parameters according to which the classification is performed. The proposed classification can play a useful role in characterizing and evaluation of flotation frothers.

  14. Gas Classification Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-01

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP). PMID:29316723

  15. Gas Classification Using Deep Convolutional Neural Networks.

    Science.gov (United States)

    Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin

    2018-01-08

    In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).

  16. Rough set classification based on quantum logic

    Science.gov (United States)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  17. The Performance of EEG-P300 Classification using Backpropagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Arjon Turnip

    2013-12-01

    Full Text Available Electroencephalogram (EEG recordings signal provide an important function of brain-computer communication, but the accuracy of their classification is very limited in unforeseeable signal variations relating to artifacts. In this paper, we propose a classification method entailing time-series EEG-P300 signals using backpropagation neural networks to predict the qualitative properties of a subject’s mental tasks by extracting useful information from the highly multivariate non-invasive recordings of brain activity. To test the improvement in the EEG-P300 classification performance (i.e., classification accuracy and transfer rate with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis (BLDA. Finally, the result of the experiment showed that the average of the classification accuracy was 97% and the maximum improvement of the average transfer rate is 42.4%, indicating the considerable potential of the using of EEG-P300 for the continuous classification of mental tasks.

  18. Ontologies vs. Classification Systems

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2009-01-01

    What is an ontology compared to a classification system? Is a taxonomy a kind of classification system or a kind of ontology? These are questions that we meet when working with people from industry and public authorities, who need methods and tools for concept clarification, for developing meta...... data sets or for obtaining advanced search facilities. In this paper we will present an attempt at answering these questions. We will give a presentation of various types of ontologies and briefly introduce terminological ontologies. Furthermore we will argue that classification systems, e.g. product...... classification systems and meta data taxonomies, should be based on ontologies....

  19. Automotive System for Remote Surface Classification.

    Science.gov (United States)

    Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail

    2017-04-01

    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.

  20. The effect of storage temperature on the accuracy of a cow-side test for ketosis

    OpenAIRE

    Hubbard, Jennifer; LeBlanc, Stephen; Duffield, Todd; Bagg, Randal; Dubuc, Jocelyn

    2010-01-01

    The objective of this study was to assess the effect of storage conditions on the accuracy of a milk test strip for ketosis. Storage at 21°C for up to 18 wk had little effect on accuracy for diagnosis and classification of subclinical ketosis.

  1. The effect of storage temperature on the accuracy of a cow-side test for ketosis

    Science.gov (United States)

    Hubbard, Jennifer; LeBlanc, Stephen; Duffield, Todd; Bagg, Randal; Dubuc, Jocelyn

    2010-01-01

    The objective of this study was to assess the effect of storage conditions on the accuracy of a milk test strip for ketosis. Storage at 21°C for up to 18 wk had little effect on accuracy for diagnosis and classification of subclinical ketosis. PMID:20676298

  2. 7 CFR 27.97 - Ascertaining the accuracy of price quotations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Ascertaining the accuracy of price quotations. 27.97... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Price Quotations and Differences § 27.97 Ascertaining the accuracy of price quotations. The buyers and sellers of...

  3. Crop Type Classification Using Vegetation Indices of RapidEye Imagery

    Science.gov (United States)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.; Esetlili, M. T.; Kurucu, Y.

    2014-09-01

    Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.

  4. Older and Younger Adults’ Accuracy in Discerning Health and Competence in Older and Younger Faces

    Science.gov (United States)

    Zebrowitz, Leslie A.; Franklin, Robert G.; Boshyan, Jasmine; Luevano, Victor; Agrigoroaei, Stefan; Milosavljevic, Bosiljka; Lachman, Margie E.

    2015-01-01

    We examined older and younger adults’ accuracy judging the health and competence of faces. Accuracy differed significantly from chance and varied with face age but not rater age. Health ratings were more accurate for older than younger faces, with the reverse for competence ratings. Accuracy was greater for low attractive younger faces, but not for low attractive older faces. Greater accuracy judging older faces’ health was paralleled by greater validity of attractiveness and looking older as predictors of their health. Greater accuracy judging younger faces’ competence was paralleled by greater validity of attractiveness and a positive expression as predictors of their competence. Although the ability to recognize variations in health and cognitive ability is preserved in older adulthood, the effects of face age on accuracy and the different effects of attractiveness across face age may alter social interactions across the life span. PMID:25244467

  5. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach

    Directory of Open Access Journals (Sweden)

    Benjamin W. Heumann

    2011-11-01

    Full Text Available Mangroves provide valuable ecosystem goods and services such as carbon sequestration, habitat for terrestrial and marine fauna, and coastal hazard mitigation. The use of satellite remote sensing to map mangroves has become widespread as it can provide accurate, efficient, and repeatable assessments. Traditional remote sensing approaches have failed to accurately map fringe mangroves and true mangrove species due to relatively coarse spatial resolution and/or spectral confusion with landward vegetation. This study demonstrates the use of the new Worldview-2 sensor, Object-based image analysis (OBIA, and support vector machine (SVM classification to overcome both of these limitations. An exploratory spectral separability showed that individual mangrove species could not be spectrally separated, but a distinction between true and associate mangrove species could be made. An OBIA classification was used that combined a decision-tree classification with the machine-learning SVM classification. Results showed an overall accuracy greater than 94% (kappa = 0.863 for classifying true mangroves species and other dense coastal vegetation at the object level. There remain serious challenges to accurately mapping fringe mangroves using remote sensing data due to spectral similarity of mangrove and associate species, lack of clear zonation between species, and mixed pixel effects, especially when vegetation is sparse or degraded.

  6. A Comparative Analysis of Classification Algorithms on Diverse Datasets

    Directory of Open Access Journals (Sweden)

    M. Alghobiri

    2018-04-01

    Full Text Available Data mining involves the computational process to find patterns from large data sets. Classification, one of the main domains of data mining, involves known structure generalizing to apply to a new dataset and predict its class. There are various classification algorithms being used to classify various data sets. They are based on different methods such as probability, decision tree, neural network, nearest neighbor, boolean and fuzzy logic, kernel-based etc. In this paper, we apply three diverse classification algorithms on ten datasets. The datasets have been selected based on their size and/or number and nature of attributes. Results have been discussed using some performance evaluation measures like precision, accuracy, F-measure, Kappa statistics, mean absolute error, relative absolute error, ROC Area etc. Comparative analysis has been carried out using the performance evaluation measures of accuracy, precision, and F-measure. We specify features and limitations of the classification algorithms for the diverse nature datasets.

  7. Customer and performance rating in QFD using SVM classification

    Science.gov (United States)

    Dzulkifli, Syarizul Amri; Salleh, Mohd Najib Mohd; Leman, A. M.

    2017-09-01

    In a classification problem, where each input is associated to one output. Training data is used to create a model which predicts values to the true function. SVM is a popular method for binary classification due to their theoretical foundation and good generalization performance. However, when trained with noisy data, the decision hyperplane might deviate from optimal position because of the sum of misclassification errors in the objective function. In this paper, we introduce fuzzy in weighted learning approach for improving the accuracy of Support Vector Machine (SVM) classification. The main aim of this work is to determine appropriate weighted for SVM to adjust the parameters of learning method from a given set of noisy input to output data. The performance and customer rating in Quality Function Deployment (QFD) is used as our case study to determine implementing fuzzy SVM is highly scalable for very large data sets and generating high classification accuracy.

  8. Utilization of wind energy in greater Hanover

    International Nuclear Information System (INIS)

    Sahling, U.

    1993-01-01

    Since the beginning of the Eighties, the association of communities of Greater Hanover has dealt intensively with energy and ecopolitical questions in the scope of regional planning. Renewable energy sources play a dominant role in this context. This brochure is the third contribution to the subject ''Energy policy and environmental protection''. Experts as well as possibly interested parties are addressed especially. For all 8 contributions contained, separate entries have been recorded in this database. (BWI) [de

  9. Small cities face greater impact from automation

    OpenAIRE

    Frank, Morgan R.; Sun, Lijun; Cebrian, Manuel; Youn, Hyejin; Rahwan, Iyad

    2017-01-01

    The city has proven to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: How will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across U.S. urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content su...

  10. Rational kernels for Arabic Root Extraction and Text Classification

    Directory of Open Access Journals (Sweden)

    Attia Nehar

    2016-04-01

    Full Text Available In this paper, we address the problems of Arabic Text Classification and root extraction using transducers and rational kernels. We introduce a new root extraction approach on the basis of the use of Arabic patterns (Pattern Based Stemmer. Transducers are used to model these patterns and root extraction is done without relying on any dictionary. Using transducers for extracting roots, documents are transformed into finite state transducers. This document representation allows us to use and explore rational kernels as a framework for Arabic Text Classification. Root extraction experiments are conducted on three word collections and yield 75.6% of accuracy. Classification experiments are done on the Saudi Press Agency dataset and N-gram kernels are tested with different values of N. Accuracy and F1 report 90.79% and 62.93% respectively. These results show that our approach, when compared with other approaches, is promising specially in terms of accuracy and F1.

  11. The Greater Sekhukhune-CAPABILITY outreach project.

    Science.gov (United States)

    Gregersen, Nerine; Lampret, Julie; Lane, Tony; Christianson, Arnold

    2013-07-01

    The Greater Sekhukhune-CAPABILITY Outreach Project was undertaken in a rural district in Limpopo, South Africa, as part of the European Union-funded CAPABILITY programme to investigate approaches for capacity building for the translation of genetic knowledge into care and prevention of congenital disorders. Based on previous experience of a clinical genetic outreach programme in Limpopo, it aimed to initiate a district clinical genetic service in Greater Sekhukhune to gain knowledge and experience to assist in the implementation and development of medical genetic services in South Africa. Implementing the service in Greater Sekhukhune was impeded by a developing staff shortage in the province and pressure on the health service from the existing HIV/AIDS and TB epidemics. This situation underscores the need for health needs assessment for developing services for the care and prevention of congenital disorders in middle- and low-income countries. However, these impediments stimulated the pioneering of innovate ways to offer medical genetic services in these circumstances, including tele-teaching of nurses and doctors, using cellular phones to enhance clinical care and adapting and assessing the clinical utility of a laboratory test, QF-PCR, for use in the local circumstances.

  12. Operational technology for greater confinement disposal

    International Nuclear Information System (INIS)

    Dickman, P.T.; Vollmer, A.T.; Hunter, P.H.

    1984-12-01

    Procedures and methods for the design and operation of a greater confinement disposal facility using large-diameter boreholes are discussed. It is assumed that the facility would be located at an operating low-level waste disposal site and that only a small portion of the wastes received at the site would require greater confinement disposal. The document is organized into sections addressing: facility planning process; facility construction; waste loading and handling; radiological safety planning; operations procedures; and engineering cost studies. While primarily written for low-level waste management site operators and managers, a detailed economic assessment section is included that should assist planners in performing cost analyses. Economic assessments for both commercial and US government greater confinement disposal facilities are included. The estimated disposal costs range from $27 to $104 per cubic foot for a commercial facility and from $17 to $60 per cubic foot for a government facility. These costs are based on average site preparation, construction, and waste loading costs for both contact- and remote-handled wastes. 14 figures, 22 tables

  13. Textural features for image classification

    Science.gov (United States)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  14. Assessment of the thematic accuracy of land cover maps

    DEFF Research Database (Denmark)

    Høhle, Joachim

    2015-01-01

    were applied (‘Decision Tree’ and ‘Support Vector Machine’) using only two attributes (height above ground and normalized difference vegetation index) which both are derived from the images. The assessment of the thematic accuracy applied a stratified design and was based on accuracy measures...... methods perform equally for five classes. Trees are classified with a much better accuracy and a smaller confidence interval by means of the decision tree method. Buildings are classified by both methods with an accuracy of 99% (95% CI: 95%-100%) using independent 3D checkpoints. The average width......Several land cover maps are generated from aerial imagery and assessed by different approaches. The test site is an urban area in Europe for which six classes (‘building’, ‘hedge and bush’, ‘grass’, ‘road and parking lot’, ‘tree’, ‘wall and car port’) had to be derived. Two classification methods...

  15. Classification of radiological procedures

    International Nuclear Information System (INIS)

    1989-01-01

    A classification for departments in Danish hospitals which use radiological procedures. The classification codes consist of 4 digits, where the first 2 are the codes for the main groups. The first digit represents the procedure's topographical object and the second the techniques. The last 2 digits describe individual procedures. (CLS)

  16. Colombia: Territorial classification

    International Nuclear Information System (INIS)

    Mendoza Morales, Alberto

    1998-01-01

    The article is about the approaches of territorial classification, thematic axes, handling principles and territorial occupation, politician and administrative units and administration regions among other topics. Understanding as Territorial Classification the space distribution on the territory of the country, of the geographical configurations, the human communities, the political-administrative units and the uses of the soil, urban and rural, existent and proposed

  17. Munitions Classification Library

    Science.gov (United States)

    2016-04-04

    members of the community to make their own additions to any, or all, of the classification libraries . The next phase entailed data collection over less......Include area code) 04/04/2016 Final Report August 2014 - August 2015 MUNITIONS CLASSIFICATION LIBRARY Mr. Craig Murray, Parsons Dr. Thomas H. Bell, Leidos

  18. Recursive automatic classification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, E V; Dorofeyuk, A A

    1982-03-01

    A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.

  19. Library Classification 2020

    Science.gov (United States)

    Harris, Christopher

    2013-01-01

    In this article the author explores how a new library classification system might be designed using some aspects of the Dewey Decimal Classification (DDC) and ideas from other systems to create something that works for school libraries in the year 2020. By examining what works well with the Dewey Decimal System, what features should be carried…

  20. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  1. Voice based gender classification using machine learning

    Science.gov (United States)

    Raahul, A.; Sapthagiri, R.; Pankaj, K.; Vijayarajan, V.

    2017-11-01

    Gender identification is one of the major problem speech analysis today. Tracing the gender from acoustic data i.e., pitch, median, frequency etc. Machine learning gives promising results for classification problem in all the research domains. There are several performance metrics to evaluate algorithms of an area. Our Comparative model algorithm for evaluating 5 different machine learning algorithms based on eight different metrics in gender classification from acoustic data. Agenda is to identify gender, with five different algorithms: Linear Discriminant Analysis (LDA), K-Nearest Neighbour (KNN), Classification and Regression Trees (CART), Random Forest (RF), and Support Vector Machine (SVM) on basis of eight different metrics. The main parameter in evaluating any algorithms is its performance. Misclassification rate must be less in classification problems, which says that the accuracy rate must be high. Location and gender of the person have become very crucial in economic markets in the form of AdSense. Here with this comparative model algorithm, we are trying to assess the different ML algorithms and find the best fit for gender classification of acoustic data.

  2. A comparative evaluation of sequence classification programs

    Directory of Open Access Journals (Sweden)

    Bazinet Adam L

    2012-05-01

    Full Text Available Abstract Background A fundamental problem in modern genomics is to taxonomically or functionally classify DNA sequence fragments derived from environmental sampling (i.e., metagenomics. Several different methods have been proposed for doing this effectively and efficiently, and many have been implemented in software. In addition to varying their basic algorithmic approach to classification, some methods screen sequence reads for ’barcoding genes’ like 16S rRNA, or various types of protein-coding genes. Due to the sheer number and complexity of methods, it can be difficult for a researcher to choose one that is well-suited for a particular analysis. Results We divided the very large number of programs that have been released in recent years for solving the sequence classification problem into three main categories based on the general algorithm they use to compare a query sequence against a database of sequences. We also evaluated the performance of the leading programs in each category on data sets whose taxonomic and functional composition is known. Conclusions We found significant variability in classification accuracy, precision, and resource consumption of sequence classification programs when used to analyze various metagenomics data sets. However, we observe some general trends and patterns that will be useful to researchers who use sequence classification programs.

  3. Genome-Wide Comparative Gene Family Classification

    Science.gov (United States)

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  4. CLASSIFICATION BY USING MULTISPECTRAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    C. T. Liao

    2012-07-01

    Full Text Available Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  5. Classification by Using Multispectral Point Cloud Data

    Science.gov (United States)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  6. DOE LLW classification rationale

    International Nuclear Information System (INIS)

    Flores, A.Y.

    1991-01-01

    This report was about the rationale which the US Department of Energy had with low-level radioactive waste (LLW) classification. It is based on the Nuclear Regulatory Commission's classification system. DOE site operators met to review the qualifications and characteristics of the classification systems. They evaluated performance objectives, developed waste classification tables, and compiled dose limits on the waste. A goal of the LLW classification system was to allow each disposal site the freedom to develop limits to radionuclide inventories and concentrations according to its own site-specific characteristics. This goal was achieved with the adoption of a performance objectives system based on a performance assessment, with site-specific environmental conditions and engineered disposal systems

  7. Constructing criticality by classification

    DEFF Research Database (Denmark)

    Machacek, Erika

    2017-01-01

    " in the bureaucratic practice of classification: Experts construct material criticality in assessments as they allot information on the materials to the parameters of the assessment framework. In so doing, they ascribe a new set of connotations to the materials, namely supply risk, and their importance to clean energy......, legitimizing a criticality discourse.Specifically, the paper introduces a typology delineating the inferences made by the experts from their produced recommendations in the classification of rare earth element criticality. The paper argues that the classification is a specific process of constructing risk....... It proposes that the expert bureaucratic practice of classification legitimizes (i) the valorisation that was made in the drafting of the assessment framework for the classification, and (ii) political operationalization when enacted that might have (non-)distributive implications for the allocation of public...

  8. Meditation experience predicts introspective accuracy.

    Directory of Open Access Journals (Sweden)

    Kieran C R Fox

    Full Text Available The accuracy of subjective reports, especially those involving introspection of one's own internal processes, remains unclear, and research has demonstrated large individual differences in introspective accuracy. It has been hypothesized that introspective accuracy may be heightened in persons who engage in meditation practices, due to the highly introspective nature of such practices. We undertook a preliminary exploration of this hypothesis, examining introspective accuracy in a cross-section of meditation practitioners (1-15,000 hrs experience. Introspective accuracy was assessed by comparing subjective reports of tactile sensitivity for each of 20 body regions during a 'body-scanning' meditation with averaged, objective measures of tactile sensitivity (mean size of body representation area in primary somatosensory cortex; two-point discrimination threshold as reported in prior research. Expert meditators showed significantly better introspective accuracy than novices; overall meditation experience also significantly predicted individual introspective accuracy. These results suggest that long-term meditators provide more accurate introspective reports than novices.

  9. A Novel Vehicle Classification Using Embedded Strain Gauge Sensors

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2008-11-01

    Full Text Available Abstract: This paper presents a new vehicle classification and develops a traffic monitoring detector to provide reliable vehicle classification to aid traffic management systems. The basic principle of this approach is based on measuring the dynamic strain caused by vehicles across pavement to obtain the corresponding vehicle parameters – wheelbase and number of axles – to then accurately classify the vehicle. A system prototype with five embedded strain sensors was developed to validate the accuracy and effectiveness of the classification method. According to the special arrangement of the sensors and the different time a vehicle arrived at the sensors one can estimate the vehicle’s speed accurately, corresponding to the estimated vehicle wheelbase and number of axles. Because of measurement errors and vehicle characteristics, there is a lot of overlap between vehicle wheelbase patterns. Therefore, directly setting up a fixed threshold for vehicle classification often leads to low-accuracy results. Using the machine learning pattern recognition method to deal with this problem is believed as one of the most effective tools. In this study, support vector machines (SVMs were used to integrate the classification features extracted from the strain sensors to automatically classify vehicles into five types, ranging from small vehicles to combination trucks, along the lines of the Federal Highway Administration vehicle classification guide. Test bench and field experiments will be introduced in this paper. Two support vector machines classification algorithms (one-against-all, one-against-one are used to classify single sensor data and multiple sensor combination data. Comparison of the two classification method results shows that the classification accuracy is very close using single data or multiple data. Our results indicate that using multiclass SVM-based fusion multiple sensor data significantly improves

  10. Tweet-based Target Market Classification Using Ensemble Method

    Directory of Open Access Journals (Sweden)

    Muhammad Adi Khairul Anshary

    2016-09-01

    Full Text Available Target market classification is aimed at focusing marketing activities on the right targets. Classification of target markets can be done through data mining and by utilizing data from social media, e.g. Twitter. The end result of data mining are learning models that can classify new data. Ensemble methods can improve the accuracy of the models and therefore provide better results. In this study, classification of target markets was conducted on a dataset of 3000 tweets in order to extract features. Classification models were constructed to manipulate the training data using two ensemble methods (bagging and boosting. To investigate the effectiveness of the ensemble methods, this study used the CART (classification and regression tree algorithm for comparison. Three categories of consumer goods (computers, mobile phones and cameras and three categories of sentiments (positive, negative and neutral were classified towards three target-market categories. Machine learning was performed using Weka 3.6.9. The results of the test data showed that the bagging method improved the accuracy of CART with 1.9% (to 85.20%. On the other hand, for sentiment classification, the ensemble methods were not successful in increasing the accuracy of CART. The results of this study may be taken into consideration by companies who approach their customers through social media, especially Twitter.

  11. Greater happiness for a greater number: Is that possible in Austria?

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    2011-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time the happiness of the great number could not be measured

  12. Greater happiness for a greater number: Is that possible? If so how? (Arabic)

    NARCIS (Netherlands)

    R. Veenhoven (Ruut); E. Samuel (Emad)

    2012-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time, the happiness of the great number could not be

  13. Greater happiness for a greater number: Is that possible in Germany?

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    2009-01-01

    textabstractWhat is the final goal of public policy? Jeremy Bentham (1789) would say: greater happiness for a greater number. He thought of happiness as subjective enjoyment of life; in his words as “the sum of pleasures and pains”. In his time the Happiness of the great number could not be measured

  14. Prediction of customer behaviour analysis using classification algorithms

    Science.gov (United States)

    Raju, Siva Subramanian; Dhandayudam, Prabha

    2018-04-01

    Customer Relationship management plays a crucial role in analyzing of customer behavior patterns and their values with an enterprise. Analyzing of customer data can be efficient performed using various data mining techniques, with the goal of developing business strategies and to enhance the business. In this paper, three classification models (NB, J48, and MLPNN) are studied and evaluated for our experimental purpose. The performance measures of the three classifications are compared using three different parameters (accuracy, sensitivity, specificity) and experimental results expose J48 algorithm has better accuracy with compare to NB and MLPNN algorithm.

  15. Use of multivariate analysis to improve the accuracy of radionuclide angiography with stress in detecting coronary artery disease in men

    International Nuclear Information System (INIS)

    Greenberg, P.S.; Bible, M.; Ellestad, M.H.; Berge, R.; Johnson, K.; Hayes, M.

    1983-01-01

    A multivariate analysis (MVA) system was derived retrospectively from a population of 76 males with coronary artery disease and 18 control subjects. Posterior probabilities were then derived from such a system prospectively in a new male population of 11 subjects with normal coronary arteries and hemodynamics and 63 patients with coronary artery disease. The sensitivity was 84% compared to that for change in ejection fraction (delta EF) greater than or equal to 5 criterion of 71% (p less than 0.01), the specificity was 91% compared to 73% for the delta EF greater than or equal to 5 criterion (p greater than 0.05), and the correct classification rate was 85% compared to 72% for the delta EF greater than or equal to 5 criterion (p less than 0.01). The significant variables were: change in EF with exercise, percent maximal heart rate, change in end-diastolic volume (delta EDV) with exercise, change in R wave, and exercise duration. Application of the multivariate approach to radionuclide imaging with stress, including both exercise and nuclear parameters, significantly improved the diagnostic accuracy of the test and allowed for a probability statement concerning the likelihood of disease

  16. Laser measuring scanners and their accuracy limits

    Science.gov (United States)

    Jablonski, Ryszard

    1993-09-01

    Scanning methods have gained the greater importance for some years now due to a short measuring time and wide range of application in flexible manufacturing processes. This paper is a summing up of the autho?s creative scientific work in the field of measuring scanners. The research conducted allowed to elaborate the optimal configurations of measuring systems based on the scanning method. An important part of the work was the analysis of a measuring scanner - as a transducer of an angle rotation into the linear displacement which resulted in obtaining its much higher accuracy and finally in working out a measuring scanner eliminating the use of an additional reference standard. The completion of the work is an attempt to determine an attainable accuracy limit of scanning measurement of both length and angle. Using a high stability deflector and a corrected scanning lens one can obtain the angle determination over 30 (or 2 mm) to an accuracy 0 (or 0 tm) when the measuring rate is 1000 Hz or the range d60 (4 mm) with accuracy 0 " (0 jim) and measurement frequency 6 Hz.

  17. High-accuracy user identification using EEG biometrics.

    Science.gov (United States)

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  18. Search for greater stability in nuclear regulation

    International Nuclear Information System (INIS)

    Asselstine, J.K.

    1985-01-01

    The need for greater stability in nuclear regulation is discussed. Two possible approaches for dealing with the problems of new and rapidly changing regulatory requirements are discussed. The first approach relies on the more traditional licensing reform initiatives that have been considered off and on for the past decade. The second approach considers a new regulator philosophy aimed at the root causes of the proliferation of new safety requirements that have been imposed in recent years. For the past few years, the concepts of deregulation and regulatory reform have been in fashion in Washington, and the commercial nuclear power program has not remained unaffected. Many look to these concepts to provide greater stability in the regulatory program. The NRC, the nuclear industry and the administration have all been avidly pursuing regulatory reform initiatives, which take the form of both legislative and administrative proposals. Many of these proposals look to the future, and, if adopted, would have little impact on currently operating nuclear power plants or plants now under construction

  19. Greater Sudbury fuel efficient driving handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Reducing the amount of fuel that people use for personal driving saves money, improves local air quality, and reduces personal contributions to climate change. This handbook was developed to be used as a tool for a fuel efficient driving pilot program in Greater Sudbury in 2009-2010. Specifically, the purpose of the handbook was to provide greater Sudbury drivers with information on how to drive and maintain their personal vehicles in order to maximize fuel efficiency. The handbook also provides tips for purchasing fuel efficient vehicles. It outlines the benefits of fuel maximization, with particular reference to reducing contributions to climate change; reducing emissions of air pollutants; safe driving; and money savings. Some tips for efficient driving are to avoid aggressive driving; use cruise control; plan trips; and remove excess weight. Tips for efficient winter driving are to avoid idling to warm up the engine; use a block heater; remove snow and ice; use snow tires; and check tire pressure. The importance of car maintenance and tire pressure was emphasized. The handbook also explains how fuel consumption ratings are developed by vehicle manufacturers. refs., figs.

  20. Women at greater risk of HIV infection.

    Science.gov (United States)

    Mahathir, M

    1997-04-01

    Although many people believe that mainly men get infected with HIV/AIDS, women are actually getting infected at a faster rate than men, especially in developing countries, and suffer more from the adverse impact of AIDS. As of mid-1996, the Joint UN Program on AIDS estimated that more than 10 million of the 25 million adults infected with HIV since the beginning of the epidemic are women. The proportion of HIV-positive women is growing, with almost half of the 7500 new infections daily occurring among women. 90% of HIV-positive women live in a developing country. In Asia-Pacific, 1.4 million women have been infected with HIV out of an estimated total 3.08 million adults from the late 1970s until late 1994. Biologically, women are more vulnerable than men to infection because of the greater mucus area exposed to HIV during penile penetration. Women under age 17 years are at even greater risk because they have an underdeveloped cervix and low vaginal mucus production. Concurrent sexually transmitted diseases increase the risk of HIV transmission. Women's risk is also related to their exposure to gender inequalities in society. The social and economic pressures of poverty exacerbate women's risk. Prevention programs are discussed.

  1. Assessing Measures of Order Flow Toxicity via Perfect Trade Classification

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bondarenko, Oleg

    . The VPIN metric involves decomposing volume into active buys and sells. We use the best-bid-offer (BBO) files from the CME Group to construct (near) perfect trade classification measures for the E-mini S&P 500 futures contract. We investigate the accuracy of the ELO Bulk Volume Classification (BVC) scheme...... systematic classification errors that are correlated with trading volume and return volatility. When controlling for trading intensity and volatility, the BVC-VPIN measure has no incremental predictive power for future volatility. We conclude that VPIN is not suitable for measuring order flow imbalances....

  2. Asynchronous data-driven classification of weapon systems

    International Nuclear Information System (INIS)

    Jin, Xin; Mukherjee, Kushal; Gupta, Shalabh; Ray, Asok; Phoha, Shashi; Damarla, Thyagaraju

    2009-01-01

    This communication addresses real-time weapon classification by analysis of asynchronous acoustic data, collected from microphones on a sensor network. The weapon classification algorithm consists of two parts: (i) feature extraction from time-series data using symbolic dynamic filtering (SDF), and (ii) pattern classification based on the extracted features using the language measure (LM) and support vector machine (SVM). The proposed algorithm has been tested on field data, generated by firing of two types of rifles. The results of analysis demonstrate high accuracy and fast execution of the pattern classification algorithm with low memory requirements. Potential applications include simultaneous shooter localization and weapon classification with soldier-wearable networked sensors. (rapid communication)

  3. Classification of right-hand grasp movement based on EMOTIV Epoc+

    Science.gov (United States)

    Tobing, T. A. M. L.; Prawito, Wijaya, S. K.

    2017-07-01

    Combinations of BCT elements for right-hand grasp movement have been obtained, providing the average value of their classification accuracy. The aim of this study is to find a suitable combination for best classification accuracy of right-hand grasp movement based on EEG headset, EMOTIV Epoc+. There are three movement classifications: grasping hand, relax, and opening hand. These classifications take advantage of Event-Related Desynchronization (ERD) phenomenon that makes it possible to differ relaxation, imagery, and movement state from each other. The combinations of elements are the usage of Independent Component Analysis (ICA), spectrum analysis by Fast Fourier Transform (FFT), maximum mu and beta power with their frequency as features, and also classifier Probabilistic Neural Network (PNN) and Radial Basis Function (RBF). The average values of classification accuracy are ± 83% for training and ± 57% for testing. To have a better understanding of the signal quality recorded by EMOTIV Epoc+, the result of classification accuracy of left or right-hand grasping movement EEG signal (provided by Physionet) also be given, i.e.± 85% for training and ± 70% for testing. The comparison of accuracy value from each combination, experiment condition, and external EEG data are provided for the purpose of value analysis of classification accuracy.

  4. Classification across gene expression microarray studies

    Directory of Open Access Journals (Sweden)

    Kuner Ruprecht

    2009-12-01

    Full Text Available Abstract Background The increasing number of gene expression microarray studies represents an important resource in biomedical research. As a result, gene expression based diagnosis has entered clinical practice for patient stratification in breast cancer. However, the integration and combined analysis of microarray studies remains still a challenge. We assessed the potential benefit of data integration on the classification accuracy and systematically evaluated the generalization performance of selected methods on four breast cancer studies comprising almost 1000 independent samples. To this end, we introduced an evaluation framework which aims to establish good statistical practice and a graphical way to monitor differences. The classification goal was to correctly predict estrogen receptor status (negative/positive and histological grade (low/high of each tumor sample in an independent study which was not used for the training. For the classification we chose support vector machines (SVM, predictive analysis of microarrays (PAM, random forest (RF and k-top scoring pairs (kTSP. Guided by considerations relevant for classification across studies we developed a generalization of kTSP which we evaluated in addition. Our derived version (DV aims to improve the robustness of the intrinsic invariance of kTSP with respect to technologies and preprocessing. Results For each individual study the generalization error was benchmarked via complete cross-validation and was found to be similar for all classification methods. The misclassification rates were substantially higher in classification across studies, when each single study was used as an independent test set while all remaining studies were combined for the training of the classifier. However, with increasing number of independent microarray studies used in the training, the overall classification performance improved. DV performed better than the average and showed slightly less variance. In

  5. Classification of parotidectomy: a proposed modification to the European Salivary Gland Society classification system.

    Science.gov (United States)

    Wong, Wai Keat; Shetty, Subhaschandra

    2017-08-01

    Parotidectomy remains the mainstay of treatment for both benign and malignant lesions of the parotid gland. There exists a wide range of possible surgical options in parotidectomy in terms of extent of parotid tissue removed. There is increasing need for uniformity of terminology resulting from growing interest in modifications of the conventional parotidectomy. It is, therefore, of paramount importance for a standardized classification system in describing extent of parotidectomy. Recently, the European Salivary Gland Society (ESGS) proposed a novel classification system for parotidectomy. The aim of this study is to evaluate this system. A classification system proposed by the ESGS was critically re-evaluated and modified to increase its accuracy and its acceptability. Modifications mainly focused on subdividing Levels I and II into IA, IB, IIA, and IIB. From June 2006 to June 2016, 126 patients underwent 130 parotidectomies at our hospital. The classification system was tested in that cohort of patient. While the ESGS classification system is comprehensive, it does not cover all possibilities. The addition of Sublevels IA, IB, IIA, and IIB may help to address some of the clinical situations seen and is clinically relevant. We aim to test the modified classification system for partial parotidectomy to address some of the challenges mentioned.

  6. Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production

    Science.gov (United States)

    Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.

    2017-11-01

    To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.

  7. Application of support vector machine for classification of multispectral data

    International Nuclear Information System (INIS)

    Bahari, Nurul Iman Saiful; Ahmad, Asmala; Aboobaider, Burhanuddin Mohd

    2014-01-01

    In this paper, support vector machine (SVM) is used to classify satellite remotely sensed multispectral data. The data are recorded from a Landsat-5 TM satellite with resolution of 30x30m. SVM finds the optimal separating hyperplane between classes by focusing on the training cases. The study area of Klang Valley has more than 10 land covers and classification using SVM has been done successfully without any pixel being unclassified. The training area is determined carefully by visual interpretation and with the aid of the reference map of the study area. The result obtained is then analysed for the accuracy and visual performance. Accuracy assessment is done by determination and discussion of Kappa coefficient value, overall and producer accuracy for each class (in pixels and percentage). While, visual analysis is done by comparing the classification data with the reference map. Overall the study shows that SVM is able to classify the land covers within the study area with a high accuracy

  8. Classification of movement disorders.

    Science.gov (United States)

    Fahn, Stanley

    2011-05-01

    The classification of movement disorders has evolved. Even the terminology has shifted, from an anatomical one of extrapyramidal disorders to a phenomenological one of movement disorders. The history of how this shift came about is described. The history of both the definitions and the classifications of the various neurologic conditions is then reviewed. First is a review of movement disorders as a group; then, the evolving classifications for 3 of them--parkinsonism, dystonia, and tremor--are covered in detail. Copyright © 2011 Movement Disorder Society.

  9. Small cities face greater impact from automation.

    Science.gov (United States)

    Frank, Morgan R; Sun, Lijun; Cebrian, Manuel; Youn, Hyejin; Rahwan, Iyad

    2018-02-01

    The city has proved to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: how will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across US urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content substitutions. We demonstrate that large cities exhibit increased occupational and skill specialization due to increased abundance of managerial and technical professions. These occupations are not easily automatable, and, thus, reduce the potential impact of automation in large cities. Our results pass several robustness checks including potential errors in the estimation of occupational automation and subsampling of occupations. Our study provides the first empirical law connecting two societal forces: urban agglomeration and automation's impact on employment. © 2018 The Authors.

  10. Small cities face greater impact from automation

    Science.gov (United States)

    Sun, Lijun; Cebrian, Manuel; Rahwan, Iyad

    2018-01-01

    The city has proved to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: how will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across US urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content substitutions. We demonstrate that large cities exhibit increased occupational and skill specialization due to increased abundance of managerial and technical professions. These occupations are not easily automatable, and, thus, reduce the potential impact of automation in large cities. Our results pass several robustness checks including potential errors in the estimation of occupational automation and subsampling of occupations. Our study provides the first empirical law connecting two societal forces: urban agglomeration and automation's impact on employment. PMID:29436514

  11. Planning for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1984-01-01

    This contribution is a progress report for preparation of a document that will summarize procedures and technical information needed to plan for and implement greater-confinement disposal (GCD) of low-level radioactive waste. Selection of a site and a facility design (Phase I), and construction, operation, and extended care (Phase II) will be covered in the document. This progress report is limited to Phase I. Phase I includes determination of the need for GCD, design alternatives, and selection of a site and facility design. Alternative designs considered are augered shafts, deep trenches, engineered structures, high-integrity containers, hydrofracture, and improved waste form. Design considerations and specifications, performance elements, cost elements, and comparative advantages and disadvantages of the different designs are covered. Procedures are discussed for establishing overall performance objectives and waste-acceptance criteria, and for comparative assessment of the performance and cost of the different alternatives. 16 references

  12. Greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Gilbert, T.L.; Luner, C.; Merry-Libby, P.A.; Meshkov, N.K.; Yu, C.

    1985-01-01

    Low-level radioactive waste (LLW) includes a broad spectrum of different radionuclide concentrations, half-lives, and hazards. Standard shallow-land burial practice can provide adequate protection of public health and safety for most LLW. A small volume fraction (approx. 1%) containing most of the activity inventory (approx. 90%) requires specific measures known as greater-confinement disposal (GCD). Different site characteristics and different waste characteristics - such as high radionuclide concentrations, long radionuclide half-lives, high radionuclide mobility, and physical or chemical characteristics that present exceptional hazards - lead to different GCD facility design requirements. Facility design alternatives considered for GCD include the augered shaft, deep trench, engineered structure, hydrofracture, improved waste form, and high-integrity container. Selection of an appropriate design must also consider the interplay between basic risk limits for protection of public health and safety, performance characteristics and objectives, costs, waste-acceptance criteria, waste characteristics, and site characteristics

  13. Planning for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Luner, C.; Meshkov, N.K.; Trevorrow, L.E.; Yu, C.

    1984-01-01

    This contribution is a progress report for preparation of a document that will summarize procedures and technical information needed to plan for and implement greater-confinement disposal (GCD) of low-level radioactive waste. Selection of a site and a facility design (Phase I), and construction, operation, and extended care (Phase II) will be covered in the document. This progress report is limited to Phase I. Phase I includes determination of the need for GCD, design alternatives, and selection of a site and facility design. Alternative designs considered are augered shafts, deep trenches, engineered structures, high-integrity containers, hydrofracture, and improved waste form. Design considerations and specifications, performance elements, cost elements, and comparative advantages and disadvantages of the different designs are covered. Procedures are discussed for establishing overall performance objecties and waste-acceptance criteria, and for comparative assessment of the performance and cost of the different alternatives. 16 refs

  14. Bacteria classification using Cyranose 320 electronic nose

    Directory of Open Access Journals (Sweden)

    Gardner Julian W

    2002-10-01

    Full Text Available Abstract Background An electronic nose (e-nose, the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds. Method Linear Principal Component Analysis (PCA method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM and Self Organizing Map (SOM network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP, Probabilistic Neural network (PNN and Radial basis function network (RBF, were used to classify the six bacteria classes. Results A [6 × 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network. Conclusion This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

  15. Scaling and allometry in the building geometries of Greater London

    Science.gov (United States)

    Batty, M.; Carvalho, R.; Hudson-Smith, A.; Milton, R.; Smith, D.; Steadman, P.

    2008-06-01

    Many aggregate distributions of urban activities such as city sizes reveal scaling but hardly any work exists on the properties of spatial distributions within individual cities, notwithstanding considerable knowledge about their fractal structure. We redress this here by examining scaling relationships in a world city using data on the geometric properties of individual buildings. We first summarise how power laws can be used to approximate the size distributions of buildings, in analogy to city-size distributions which have been widely studied as rank-size and lognormal distributions following Zipf [ Human Behavior and the Principle of Least Effort (Addison-Wesley, Cambridge, 1949)] and Gibrat [ Les Inégalités Économiques (Librarie du Recueil Sirey, Paris, 1931)]. We then extend this analysis to allometric relationships between buildings in terms of their different geometric size properties. We present some preliminary analysis of building heights from the Emporis database which suggests very strong scaling in world cities. The data base for Greater London is then introduced from which we extract 3.6 million buildings whose scaling properties we explore. We examine key allometric relationships between these different properties illustrating how building shape changes according to size, and we extend this analysis to the classification of buildings according to land use types. We conclude with an analysis of two-point correlation functions of building geometries which supports our non-spatial analysis of scaling.

  16. Diagnostic Accuracy Comparison of Artificial Immune Algorithms for Primary Headaches

    Directory of Open Access Journals (Sweden)

    Ufuk Çelik

    2015-01-01

    Full Text Available The present study evaluated the diagnostic accuracy of immune system algorithms with the aim of classifying the primary types of headache that are not related to any organic etiology. They are divided into four types: migraine, tension, cluster, and other primary headaches. After we took this main objective into consideration, three different neurologists were required to fill in the medical records of 850 patients into our web-based expert system hosted on our project web site. In the evaluation process, Artificial Immune Systems (AIS were used as the classification algorithms. The AIS are classification algorithms that are inspired by the biological immune system mechanism that involves significant and distinct capabilities. These algorithms simulate the specialties of the immune system such as discrimination, learning, and the memorizing process in order to be used for classification, optimization, or pattern recognition. According to the results, the accuracy level of the classifier used in this study reached a success continuum ranging from 95% to 99%, except for the inconvenient one that yielded 71% accuracy.

  17. Evidence for cultural dialects in vocal emotion expression: acoustic classification within and across five nations.

    Science.gov (United States)

    Laukka, Petri; Neiberg, Daniel; Elfenbein, Hillary Anger

    2014-06-01

    The possibility of cultural differences in the fundamental acoustic patterns used to express emotion through the voice is an unanswered question central to the larger debate about the universality versus cultural specificity of emotion. This study used emotionally inflected standard-content speech segments expressing 11 emotions produced by 100 professional actors from 5 English-speaking cultures. Machine learning simulations were employed to classify expressions based on their acoustic features, using conditions where training and testing were conducted on stimuli coming from either the same or different cultures. A wide range of emotions were classified with above-chance accuracy in cross-cultural conditions, suggesting vocal expressions share important characteristics across cultures. However, classification showed an in-group advantage with higher accuracy in within- versus cross-cultural conditions. This finding demonstrates cultural differences in expressive vocal style, and supports the dialect theory of emotions according to which greater recognition of expressions from in-group members results from greater familiarity with culturally specific expressive styles.

  18. Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization

    Science.gov (United States)

    Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun

    2016-01-01

    Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656

  19. Land-Use and Land-Cover Mapping Using a Gradable Classification Method

    Directory of Open Access Journals (Sweden)

    Keigo Kitada

    2012-05-01

    Full Text Available Conventional spectral-based classification methods have significant limitations in the digital classification of urban land-use and land-cover classes from high-resolution remotely sensed data because of the lack of consideration given to the spatial properties of images. To recognize the complex distribution of urban features in high-resolution image data, texture information consisting of a group of pixels should be considered. Lacunarity is an index used to characterize different texture appearances. It is often reported that the land-use and land-cover in urban areas can be effectively classified using the lacunarity index with high-resolution images. However, the applicability of the maximum-likelihood approach for hybrid analysis has not been reported. A more effective approach that employs the original spectral data and lacunarity index can be expected to improve the accuracy of the classification. A new classification procedure referred to as “gradable classification method” is proposed in this study. This method improves the classification accuracy in incremental steps. The proposed classification approach integrates several classification maps created from original images and lacunarity maps, which consist of lacnarity values, to create a new classification map. The results of this study confirm the suitability of the gradable classification approach, which produced a higher overall accuracy (68% and kappa coefficient (0.64 than those (65% and 0.60, respectively obtained with the maximum-likelihood approach.

  20. Comparing Features for Classification of MEG Responses to Motor Imagery.

    Directory of Open Access Journals (Sweden)

    Hanna-Leena Halme

    Full Text Available Motor imagery (MI with real-time neurofeedback could be a viable approach, e.g., in rehabilitation of cerebral stroke. Magnetoencephalography (MEG noninvasively measures electric brain activity at high temporal resolution and is well-suited for recording oscillatory brain signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In order to provide accurate feedback to the subject, the most relevant MI-related features should be extracted from MEG data. In this study, we evaluated several MEG signal features for discriminating between left- and right-hand MI and between MI and rest.MEG was measured from nine healthy participants imagining either left- or right-hand finger tapping according to visual cues. Data preprocessing, feature extraction and classification were performed offline. The evaluated MI-related features were power spectral density (PSD, Morlet wavelets, short-time Fourier transform (STFT, common spatial patterns (CSP, filter-bank common spatial patterns (FBCSP, spatio-spectral decomposition (SSD, and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also compared four classifiers applied to single trials using 5-fold cross-validation for evaluating the classification accuracy and its possible dependence on the classification algorithm. In addition, we estimated the inter-session left-vs-right accuracy for each subject.The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7% and MI-vs-rest (mean 81.3% classification. CSP+Morlet yielded the best mean accuracy in inter-session left-vs-right classification (mean 69.1%. There were large inter-subject differences in classification accuracy, and the level of the 20-Hz suppression correlated significantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had only a minor effect on the results.We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Feature extraction

  1. Update on diabetes classification.

    Science.gov (United States)

    Thomas, Celeste C; Philipson, Louis H

    2015-01-01

    This article highlights the difficulties in creating a definitive classification of diabetes mellitus in the absence of a complete understanding of the pathogenesis of the major forms. This brief review shows the evolving nature of the classification of diabetes mellitus. No classification scheme is ideal, and all have some overlap and inconsistencies. The only diabetes in which it is possible to accurately diagnose by DNA sequencing, monogenic diabetes, remains undiagnosed in more than 90% of the individuals who have diabetes caused by one of the known gene mutations. The point of classification, or taxonomy, of disease, should be to give insight into both pathogenesis and treatment. It remains a source of frustration that all schemes of diabetes mellitus continue to fall short of this goal. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Learning Apache Mahout classification

    CERN Document Server

    Gupta, Ashish

    2015-01-01

    If you are a data scientist who has some experience with the Hadoop ecosystem and machine learning methods and want to try out classification on large datasets using Mahout, this book is ideal for you. Knowledge of Java is essential.

  3. CLASSIFICATION OF VIRUSES

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. CLASSIFICATION OF VIRUSES. On basis of morphology. On basis of chemical composition. On basis of structure of genome. On basis of mode of replication. Notes:

  4. Pitch Based Sound Classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Hansen, Lars Kai; Kjems, U

    2006-01-01

    A sound classification model is presented that can classify signals into music, noise and speech. The model extracts the pitch of the signal using the harmonic product spectrum. Based on the pitch estimate and a pitch error measure, features are created and used in a probabilistic model with soft......-max output function. Both linear and quadratic inputs are used. The model is trained on 2 hours of sound and tested on publicly available data. A test classification error below 0.05 with 1 s classification windows is achieved. Further more it is shown that linear input performs as well as a quadratic......, and that even though classification gets marginally better, not much is achieved by increasing the window size beyond 1 s....

  5. 78 FR 68983 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-11-18

    ...-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing... regulations to allow for the addition of an optional cotton futures classification procedure--identified and... response to requests from the U.S. cotton industry and ICE, AMS will offer a futures classification option...

  6. Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Péter Burai

    2015-02-01

    Full Text Available Alkali landscapes hold an extremely fine-scale mosaic of several vegetation types, thus it seems challenging to separate these classes by remote sensing. Our aim was to test the applicability of different image classification methods of hyperspectral data in this complex situation. To reach the highest classification accuracy, we tested traditional image classifiers (maximum likelihood classifier—MLC, machine learning algorithms (support vector machine—SVM, random forest—RF and feature extraction (minimum noise fraction (MNF-transformation on training datasets of different sizes. Digital images were acquired from an AISA EAGLE II hyperspectral sensor of 128 contiguous bands (400–1000 nm, a spectral sampling of 5 nm bandwidth and a ground pixel size of 1 m. For the classification, we established twenty vegetation classes based on the dominant species, canopy height, and total vegetation cover. Image classification was applied to the original and MNF (minimum noise fraction transformed dataset with various training sample sizes between 10 and 30 pixels. In order to select the optimal number of the transformed features, we applied SVM, RF and MLC classification to 2–15 MNF transformed bands. In the case of the original bands, SVM and RF classifiers provided high accuracy irrespective of the number of the training pixels. We found that SVM and RF produced the best accuracy when using the first nine MNF transformed bands; involving further features did not increase classification accuracy. SVM and RF provided high accuracies with the transformed bands, especially in the case of the aggregated groups. Even MLC provided high accuracy with 30 training pixels (80.78%, but the use of a smaller training dataset (10 training pixels significantly reduced the accuracy of classification (52.56%. Our results suggest that in alkali landscapes, the application of SVM is a feasible solution, as it provided the highest accuracies compared to RF and MLC

  7. Hyperspectral image classification using Support Vector Machine

    International Nuclear Information System (INIS)

    Moughal, T A

    2013-01-01

    Classification of land cover hyperspectral images is a very challenging task due to the unfavourable ratio between the number of spectral bands and the number of training samples. The focus in many applications is to investigate an effective classifier in terms of accuracy. The conventional multiclass classifiers have the ability to map the class of interest but the considerable efforts and large training sets are required to fully describe the classes spectrally. Support Vector Machine (SVM) is suggested in this paper to deal with the multiclass problem of hyperspectral imagery. The attraction to this method is that it locates the optimal hyper plane between the class of interest and the rest of the classes to separate them in a new high-dimensional feature space by taking into account only the training samples that lie on the edge of the class distributions known as support vectors and the use of the kernel functions made the classifier more flexible by making it robust against the outliers. A comparative study has undertaken to find an effective classifier by comparing Support Vector Machine (SVM) to the other two well known classifiers i.e. Maximum likelihood (ML) and Spectral Angle Mapper (SAM). At first, the Minimum Noise Fraction (MNF) was applied to extract the best possible features form the hyperspectral imagery and then the resulting subset of the features was applied to the classifiers. Experimental results illustrate that the integration of MNF and SVM technique significantly reduced the classification complexity and improves the classification accuracy.

  8. River floodplain vegetation classification using multi-temporal high-resolution colour infrared UAV imagery.

    NARCIS (Netherlands)

    van Iersel, W.K.; Straatsma, M.W.; Addink, E.A.; Middelkoop, H.

    2016-01-01

    To evaluate floodplain functioning, monitoring of its vegetation is essential. Although airborne imagery is widely applied for this purpose, classification accuracy (CA) remains low for grassland (< 88%) and herbaceous vegetation (<57%) due to the spectral and structural similarity of these

  9. An Object-Oriented Classification Method on High Resolution Satellite Data

    National Research Council Canada - National Science Library

    Xiaoxia, Sun; Jixian, Zhang; Zhengjun, Liu

    2004-01-01

    .... Thereby only the spectral information is used for the classification. High spatial resolution sensors involves a general increase of spatial information and the accuracy of results may decrease on a per-pixel basis...

  10. Supernova Photometric Lightcurve Classification

    Science.gov (United States)

    Zaidi, Tayeb; Narayan, Gautham

    2016-01-01

    This is a preliminary report on photometric supernova classification. We first explore the properties of supernova light curves, and attempt to restructure the unevenly sampled and sparse data from assorted datasets to allow for processing and classification. The data was primarily drawn from the Dark Energy Survey (DES) simulated data, created for the Supernova Photometric Classification Challenge. This poster shows a method for producing a non-parametric representation of the light curve data, and applying a Random Forest classifier algorithm to distinguish between supernovae types. We examine the impact of Principal Component Analysis to reduce the dimensionality of the dataset, for future classification work. The classification code will be used in a stage of the ANTARES pipeline, created for use on the Large Synoptic Survey Telescope alert data and other wide-field surveys. The final figure-of-merit for the DES data in the r band was 60% for binary classification (Type I vs II).Zaidi was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  11. Urban acid deposition in Greater Manchester

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Longhurst, J.W.S.; Gee, D.R.; Hare, S.E. (Manchester Polytechnic, Manchester (UK). Acid Rain Information Centre)

    1989-08-01

    Data are presented from a monitoring network of 18 bulk precipitation collectors and one wet-only collector in the urban area of Greater Manchester, in the north west of England. Weekly samples were analysed for all the major ions in precipitation along with gaseous nitrogen dioxide concentrations from diffusion tubes. Statistical analysis of the data shows significant spatial variation of non marine sulphate, nitrate, ammonium, acidity and calcium concentrations, and nitrogen dioxide concentrations. Calcium is thought to be responsible for the buffering of acidity and is of local origin. Wet deposition is the likely removal process for calcium in the atmosphere and probably by below cloud scavenging. Nitrate and ammonium concentrations and depositions show close spatial, temporal and statistical association. Examination of high simultaneous episodes of nitrate and ammonium deposition shows that these depositions cannot be explained in terms of trajectories and it is suggested that UK emissions of ammonia may be important. Statistical analysis of the relationships between nitrate and ammonium depositions, concentrations and precipitation amount suggest that ammonia from mesoscale sources reacts reversibly with nitric acid aerosol and is removed by below cloud scavenging. High episodes of the deposition of non marine sulphate are difficult to explain by trajectory analysis alone, perhaps suggesting local sources. In a comparison between wet deposition and bulk deposition, it was shown that only 15.2% of the non marine sulphur was dry deposited to the bulk precipitation collector. 63 refs., 86 figs., 31 tabs.

  12. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    Science.gov (United States)

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among

  13. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    Science.gov (United States)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  14. On the classification techniques in data mining for microarray data classification

    Science.gov (United States)

    Aydadenta, Husna; Adiwijaya

    2018-03-01

    Cancer is one of the deadly diseases, according to data from WHO by 2015 there are 8.8 million more deaths caused by cancer, and this will increase every year if not resolved earlier. Microarray data has become one of the most popular cancer-identification studies in the field of health, since microarray data can be used to look at levels of gene expression in certain cell samples that serve to analyze thousands of genes simultaneously. By using data mining technique, we can classify the sample of microarray data thus it can be identified with cancer or not. In this paper we will discuss some research using some data mining techniques using microarray data, such as Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5, and simulation of Random Forest algorithm with technique of reduction dimension using Relief. The result of this paper show performance measure (accuracy) from classification algorithm (SVM, ANN, Naive Bayes, kNN, C4.5, and Random Forets).The results in this paper show the accuracy of Random Forest algorithm higher than other classification algorithms (Support Vector Machine (SVM), Artificial Neural Network (ANN), Naive Bayes, k-Nearest Neighbor (kNN), and C4.5). It is hoped that this paper can provide some information about the speed, accuracy, performance and computational cost generated from each Data Mining Classification Technique based on microarray data.

  15. Remotely Sensed Estimation of Net Primary Productivity (NPP and Its Spatial and Temporal Variations in the Greater Khingan Mountain Region, China

    Directory of Open Access Journals (Sweden)

    Qiang Zhu

    2017-07-01

    Full Text Available We improved the CASA model based on differences in the types of land use, the values of the maximum light use efficiency, and the calculation methods of solar radiation. Then, the parameters of the model were examined and recombined into 16 cases. We estimated the net primary productivity (NPP using the NDVI3g dataset, meteorological data, and vegetation classification data from the Greater Khingan Mountain region, China. We assessed the accuracy and temporal-spatial distribution characteristics of NPP in the Greater Khingan Mountain region from 1982 to 2013. Based on a comparison of the results of the 16 cases, we found that different values of maximum light use efficiency affect the estimation more than differences in the fraction of photosynthetically active radiation (FPAR. However, the FPARmax and the constant Tε2 values did not show marked effects. Different schemes were used to assess different model combinations. Models using a combination of parameters established by scholars from China and the United States produced different results and had large errors. These ideas are meaningful references for the estimation of NPP in other regions. The results reveal that the annual average NPP in the Greater Khingan Mountain region was 760 g C/m2·a in 1982–2013 and that the inter-annual fluctuations were not dramatic. The NPP estimation results of the 16 cases exhibit an increasing trend. In terms of the spatial distribution of the changes, the model indicated that the values in 75% of this area seldom or never increased. Prominent growth occurred in the areas of Taipingling, Genhe, and the Oroqen Autonomous Banner. Notably, NPP decreased in the southeastern region of the Greater Khingan Mountains, the Hulunbuir Pasture Land, and Holingol.

  16. Sparse Detector Imaging Sensor with Two-Class Silhouette Classification

    Directory of Open Access Journals (Sweden)

    David Russomanno

    2008-12-01

    Full Text Available This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99% with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios.

  17. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-05-01

    Full Text Available This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs. Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  18. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.

    Science.gov (United States)

    Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong

    2018-05-24

    This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  19. Test Expectancy Affects Metacomprehension Accuracy

    Science.gov (United States)

    Thiede, Keith W.; Wiley, Jennifer; Griffin, Thomas D.

    2011-01-01

    Background: Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and…

  20. Diabetes classification using a redundancy reduction preprocessor

    Directory of Open Access Journals (Sweden)

    Áurea Celeste Ribeiro

    Full Text Available Introduction Diabetes patients can benefit significantly from early diagnosis. Thus, accurate automated screening is becoming increasingly important due to the wide spread of that disease. Previous studies in automated screening have found a maximum accuracy of 92.6%. Methods This work proposes a classification methodology based on efficient coding of the input data, which is carried out by decreasing input data redundancy using well-known ICA algorithms, such as FastICA, JADE and INFOMAX. The classifier used in the task to discriminate diabetics from non-diaibetics is the one class support vector machine. Classification tests were performed using noninvasive and invasive indicators. Results The results suggest that redundancy reduction increases one-class support vector machine performance when discriminating between diabetics and nondiabetics up to an accuracy of 98.47% while using all indicators. By using only noninvasive indicators, an accuracy of 98.28% was obtained. Conclusion The ICA feature extraction improves the performance of the classifier in the data set because it reduces the statistical dependence of the collected data, which increases the ability of the classifier to find accurate class boundaries.

  1. APPLICATION OF SENSOR FUSION TO IMPROVE UAV IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    S. Jabari

    2017-08-01

    Full Text Available Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan camera along with either a colour camera or a four-band multi-spectral (MS camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC. We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  2. Application of Sensor Fusion to Improve Uav Image Classification

    Science.gov (United States)

    Jabari, S.; Fathollahi, F.; Zhang, Y.

    2017-08-01

    Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  3. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform

    International Nuclear Information System (INIS)

    Minhas, Fayyaz-ul-Amir Afsar; Arif, Muhammad

    2008-01-01

    This paper presents a robust technique for the classification of six types of heartbeats through an electrocardiogram (ECG). Features extracted from the QRS complex of the ECG using a wavelet transform along with the instantaneous RR-interval are used for beat classification. The wavelet transform utilized for feature extraction in this paper can also be employed for QRS delineation, leading to reduction in overall system complexity as no separate feature extraction stage would be required in the practical implementation of the system. Only 11 features are used for beat classification with the classification accuracy of ∼99.5% through a KNN classifier. Another main advantage of this method is its robustness to noise, which is illustrated in this paper through experimental results. Furthermore, principal component analysis (PCA) has been used for feature reduction, which reduces the number of features from 11 to 6 while retaining the high beat classification accuracy. Due to reduction in computational complexity (using six features, the time required is ∼4 ms per beat), a simple classifier and noise robustness (at 10 dB signal-to-noise ratio, accuracy is 95%), this method offers substantial advantages over previous techniques for implementation in a practical ECG analyzer

  4. AN OBJECT-BASED METHOD FOR CHINESE LANDFORM TYPES CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. Ding

    2016-06-01

    Full Text Available Landform classification is a necessary task for various fields of landscape and regional planning, for example for landscape evaluation, erosion studies, hazard prediction, et al. This study proposes an improved object-based classification for Chinese landform types using the factor importance analysis of random forest and the gray-level co-occurrence matrix (GLCM. In this research, based on 1km DEM of China, the combination of the terrain factors extracted from DEM are selected by correlation analysis and Sheffield's entropy method. Random forest classification tree is applied to evaluate the importance of the terrain factors, which are used as multi-scale segmentation thresholds. Then the GLCM is conducted for the knowledge base of classification. The classification result was checked by using the 1:4,000,000 Chinese Geomorphological Map as reference. And the overall classification accuracy of the proposed method is 5.7% higher than ISODATA unsupervised classification, and 15.7% higher than the traditional object-based classification method.

  5. Automatic Genre Classification of Musical Signals

    Science.gov (United States)

    Barbedo, Jayme Garcia sArnal; Lopes, Amauri

    2006-12-01

    We present a strategy to perform automatic genre classification of musical signals. The technique divides the signals into 21.3 milliseconds frames, from which 4 features are extracted. The values of each feature are treated over 1-second analysis segments. Some statistical results of the features along each analysis segment are used to determine a vector of summary features that characterizes the respective segment. Next, a classification procedure uses those vectors to differentiate between genres. The classification procedure has two main characteristics: (1) a very wide and deep taxonomy, which allows a very meticulous comparison between different genres, and (2) a wide pairwise comparison of genres, which allows emphasizing the differences between each pair of genres. The procedure points out the genre that best fits the characteristics of each segment. The final classification of the signal is given by the genre that appears more times along all signal segments. The approach has shown very good accuracy even for the lowest layers of the hierarchical structure.

  6. Web Page Classification Method Using Neural Networks

    Science.gov (United States)

    Selamat, Ali; Omatu, Sigeru; Yanagimoto, Hidekazu; Fujinaka, Toru; Yoshioka, Michifumi

    Automatic categorization is the only viable method to deal with the scaling problem of the World Wide Web (WWW). In this paper, we propose a news web page classification method (WPCM). The WPCM uses a neural network with inputs obtained by both the principal components and class profile-based features (CPBF). Each news web page is represented by the term-weighting scheme. As the number of unique words in the collection set is big, the principal component analysis (PCA) has been used to select the most relevant features for the classification. Then the final output of the PCA is combined with the feature vectors from the class-profile which contains the most regular words in each class before feeding them to the neural networks. We have manually selected the most regular words that exist in each class and weighted them using an entropy weighting scheme. The fixed number of regular words from each class will be used as a feature vectors together with the reduced principal components from the PCA. These feature vectors are then used as the input to the neural networks for classification. The experimental evaluation demonstrates that the WPCM method provides acceptable classification accuracy with the sports news datasets.

  7. Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

    Science.gov (United States)

    Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha

    2011-01-01

    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin. PMID:22163894

  8. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    Science.gov (United States)

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  9. Enhancement of ELM by Clustering Discrimination Manifold Regularization and Multiobjective FOA for Semisupervised Classification

    OpenAIRE

    Qing Ye; Hao Pan; Changhua Liu

    2015-01-01

    A novel semisupervised extreme learning machine (ELM) with clustering discrimination manifold regularization (CDMR) framework named CDMR-ELM is proposed for semisupervised classification. By using unsupervised fuzzy clustering method, CDMR framework integrates clustering discrimination of both labeled and unlabeled data with twinning constraints regularization. Aiming at further improving the classification accuracy and efficiency, a new multiobjective fruit fly optimization algorithm (MOFOA)...

  10. Accuracy of 11-year-olds selfreported school lunch consumption

    DEFF Research Database (Denmark)

    Lyng, Nina

    accuracy differ by the lunch format consumed (Paper III) Material and methods The study was conducted as a cross-sectional dietary reporting study. The population consisted of 11-year-old children from three public schools in Copenhagen. The study was conducted on two consecutive days and assessed...... in general. Objectives The aim of the present thesis was to assess food level reporting accuracy in Danish 11-year-old children’s self-reported school lunch consumption, and the aim was operationalized in following objectives. 1- To identify food items clustering by lunch format (Preliminary analyses) 2......- To assess reporting accuracy in relation to gender and self-reported methods (Paper I) 3- To address aspects of reporting inaccuracy from intrusions by food group, against different objective measures, and classification of intrusions in stretches and confabulations (Paper II) 4- To assess how reporting...

  11. Classification of visualization exudates fundus images results using ...

    African Journals Online (AJOL)

    The kernel function settings; linear, polynomial, quadratic and RBF have an effect on the classification results. For SVM1, the best parameter in classifying pixels is linear kernel function. The visualization results using CAC and radar chart are classified using ts accuracy. It has proven to discriminated exudates and non ...

  12. Modified DCTNet for audio signals classification

    Science.gov (United States)

    Xian, Yin; Pu, Yunchen; Gan, Zhe; Lu, Liang; Thompson, Andrew

    2016-10-01

    In this paper, we investigate DCTNet for audio signal classification. Its output feature is related to Cohen's class of time-frequency distributions. We introduce the use of adaptive DCTNet (A-DCTNet) for audio signals feature extraction. The A-DCTNet applies the idea of constant-Q transform, with its center frequencies of filterbanks geometrically spaced. The A-DCTNet is adaptive to different acoustic scales, and it can better capture low frequency acoustic information that is sensitive to human audio perception than features such as Mel-frequency spectral coefficients (MFSC). We use features extracted by the A-DCTNet as input for classifiers. Experimental results show that the A-DCTNet and Recurrent Neural Networks (RNN) achieve state-of-the-art performance in bird song classification rate, and improve artist identification accuracy in music data. They demonstrate A-DCTNet's applicability to signal processing problems.

  13. Scalable Packet Classification with Hash Tables

    Science.gov (United States)

    Wang, Pi-Chung

    In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.

  14. SQL based cardiovascular ultrasound image classification.

    Science.gov (United States)

    Nandagopalan, S; Suryanarayana, Adiga B; Sudarshan, T S B; Chandrashekar, Dhanalakshmi; Manjunath, C N

    2013-01-01

    This paper proposes a novel method to analyze and classify the cardiovascular ultrasound echocardiographic images using Naïve-Bayesian model via database OLAP-SQL. Efficient data mining algorithms based on tightly-coupled model is used to extract features. Three algorithms are proposed for classification namely Naïve-Bayesian Classifier for Discrete variables (NBCD) with SQL, NBCD with OLAP-SQL, and Naïve-Bayesian Classifier for Continuous variables (NBCC) using OLAP-SQL. The proposed model is trained with 207 patient images containing normal and abnormal categories. Out of the three proposed algorithms, a high classification accuracy of 96.59% was achieved from NBCC which is better than the earlier methods.

  15. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  16. Classification of scintigrams on the base of an automatic analysis

    International Nuclear Information System (INIS)

    Vidyukov, V.I.; Kasatkin, Yu.N.; Kal'nitskaya, E.F.; Mironov, S.P.; Rotenberg, E.M.

    1980-01-01

    The stages of drawing a discriminative system based on self-education for an automatic analysis of scintigrams have been considered. The results of the classification of 240 scintigrams of the liver into ''normal'', ''diffuse lesions'', ''focal lesions'' have been evaluated by medical experts and computer. The accuracy of the computerized classification was 91.7%, that of the experts-85%. The automatic analysis methods of scintigrams of the liver have been realized using the specialized MDS system of data processing. The quality of the discriminative system has been assessed on 125 scintigrams. The accuracy of the classification is equal to 89.6%. The employment of the self-education; methods permitted one to single out two subclasses depending on the severity of diffuse lesions

  17. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    Directory of Open Access Journals (Sweden)

    Taha H. Rassem

    2014-01-01

    Full Text Available Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP and the Completed Local Binary Count (CLBC, have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP is proposed to be more robust to noise than LBP, however, the latter’s weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  18. Link prediction boosted psychiatry disorder classification for functional connectivity network

    Science.gov (United States)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  19. Multisensor multiresolution data fusion for improvement in classification

    Science.gov (United States)

    Rubeena, V.; Tiwari, K. C.

    2016-04-01

    The rapid advancements in technology have facilitated easy availability of multisensor and multiresolution remote sensing data. Multisensor, multiresolution data contain complementary information and fusion of such data may result in application dependent significant information which may otherwise remain trapped within. The present work aims at improving classification by fusing features of coarse resolution hyperspectral (1 m) LWIR and fine resolution (20 cm) RGB data. The classification map comprises of eight classes. The class names are Road, Trees, Red Roof, Grey Roof, Concrete Roof, Vegetation, bare Soil and Unclassified. The processing methodology for hyperspectral LWIR data comprises of dimensionality reduction, resampling of data by interpolation technique for registering the two images at same spatial resolution, extraction of the spatial features to improve classification accuracy. In the case of fine resolution RGB data, the vegetation index is computed for classifying the vegetation class and the morphological building index is calculated for buildings. In order to extract the textural features, occurrence and co-occurence statistics is considered and the features will be extracted from all the three bands of RGB data. After extracting the features, Support Vector Machine (SVMs) has been used for training and classification. To increase the classification accuracy, post processing steps like removal of any spurious noise such as salt and pepper noise is done which is followed by filtering process by majority voting within the objects for better object classification.

  20. Supervised Classification in the Presence of Misclassified Training Data: A Monte Carlo Simulation Study in the Three Group Case

    Directory of Open Access Journals (Sweden)

    Jocelyn E Bolin

    2014-02-01

    Full Text Available Statistical classification of phenomena into observed groups is very common in the social and behavioral sciences. Statistical classification methods, however, are affected by the characteristics of the data under study. Statistical classification can be further complicated by initial misclassification of the observed groups. The purpose of this study is to investigate the impact of initial training data misclassification on several statistical classification and data mining techniques. Misclassification conditions in the three-group case will be simulated and results will be presented in terms of overall as well as subgroup classification accuracy. Results show decreased classification accuracy as sample size, group separation and group size ratio decrease and as misclassification percentage increases with random forests demonstrating the highest accuracy across conditions.

  1. Algorithms exploiting ultrasonic sensors for subject classification

    Science.gov (United States)

    Desai, Sachi; Quoraishee, Shafik

    2009-09-01

    space. The algorithm developed and described will provide utility to an underused sensor modality for human intrusion detection because of the current high-rate of generated false alarms. The active ultrasonic sensor coupled in a multi-modal sensor suite with binary, less descriptive sensors like seismic devices realizing a greater accuracy rate for detection of persons of interest for homeland purposes.

  2. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  3. Bosniak Classification system

    DEFF Research Database (Denmark)

    Graumann, Ole; Osther, Susanne Sloth; Karstoft, Jens

    2014-01-01

    Background: The Bosniak classification is a diagnostic tool for the differentiation of cystic changes in the kidney. The process of categorizing renal cysts may be challenging, involving a series of decisions that may affect the final diagnosis and clinical outcome such as surgical management....... Purpose: To investigate the inter- and intra-observer agreement among experienced uroradiologists when categorizing complex renal cysts according to the Bosniak classification. Material and Methods: The original categories of 100 cystic renal masses were chosen as “Gold Standard” (GS), established...... to the calculated weighted κ all readers performed “very good” for both inter-observer and intra-observer variation. Most variation was seen in cysts catagorized as Bosniak II, IIF, and III. These results show that radiologists who evaluate complex renal cysts routinely may apply the Bosniak classification...

  4. Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling.

    Science.gov (United States)

    Zhou, Fuqun; Zhang, Aining

    2016-10-25

    Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their vast volume and information redundancy. This challenge will be greater when Sentinel 2-3 data become available. Another challenge that researchers face is the lack of in-situ data for supervised modelling, especially for time-series data analysis. In this study, we attempt to tackle the two important issues with a case study of land cover mapping using CCRS 10-day MODIS composites with the help of Random Forests' features: variable importance, outlier identification. The variable importance feature is used to analyze and select optimal subsets of time-series MODIS imagery for efficient land cover mapping, and the outlier identification feature is utilized for transferring sample data available from one year to an adjacent year for supervised classification modelling. The results of the case study of agricultural land cover classification at a regional scale show that using only about a half of the variables we can achieve land cover classification accuracy close to that generated using the full dataset. The proposed simple but effective solution of sample transferring could make supervised modelling possible for applications lacking sample data.

  5. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... exchanging experiences about constructions fulfilling different classes, reducing trade barriers, and finally increasing the sound insulation of dwellings.......Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...

  6. Minimum Error Entropy Classification

    CERN Document Server

    Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A

    2013-01-01

    This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

  7. Classification of iconic images

    OpenAIRE

    Zrianina, Mariia; Kopf, Stephan

    2016-01-01

    Iconic images represent an abstract topic and use a presentation that is intuitively understood within a certain cultural context. For example, the abstract topic “global warming” may be represented by a polar bear standing alone on an ice floe. Such images are widely used in media and their automatic classification can help to identify high-level semantic concepts. This paper presents a system for the classification of iconic images. It uses a variation of the Bag of Visual Words approach wi...

  8. Casemix classification systems.

    Science.gov (United States)

    Fetter, R B

    1999-01-01

    The idea of using casemix classification to manage hospital services is not new, but has been limited by available technology. It was not until after the introduction of Medicare in the United States in 1965 that serious attempts were made to measure hospital production in order to contain spiralling costs. This resulted in a system of casemix classification known as diagnosis related groups (DRGs). This paper traces the development of DRGs and their evolution from the initial version to the All Patient Refined DRGs developed in 1991.

  9. Test expectancy affects metacomprehension accuracy.

    Science.gov (United States)

    Thiede, Keith W; Wiley, Jennifer; Griffin, Thomas D

    2011-06-01

    Theory suggests that the accuracy of metacognitive monitoring is affected by the cues used to judge learning. Researchers have improved monitoring accuracy by directing attention to more appropriate cues; however, this is the first study to more directly point students to more appropriate cues using instructions regarding tests and practice tests. The purpose of the present study was to examine whether the accuracy metacognitive monitoring was affected by the nature of the test expected. Students (N= 59) were randomly assigned to one of two test expectancy groups (memory vs. inference). Then after reading texts, judging learning, completed both memory and inference tests. Test performance and monitoring accuracy were superior when students received the kind of test they had been led to expect rather than the unexpected test. Tests influence students' perceptions of what constitutes learning. Our findings suggest that this could affect how students prepare for tests and how they monitoring their own learning. ©2010 The British Psychological Society.

  10. Information gathering for CLP classification

    Directory of Open Access Journals (Sweden)

    Ida Marcello

    2011-01-01

    Full Text Available Regulation 1272/2008 includes provisions for two types of classification: harmonised classification and self-classification. The harmonised classification of substances is decided at Community level and a list of harmonised classifications is included in the Annex VI of the classification, labelling and packaging Regulation (CLP. If a chemical substance is not included in the harmonised classification list it must be self-classified, based on available information, according to the requirements of Annex I of the CLP Regulation. CLP appoints that the harmonised classification will be performed for carcinogenic, mutagenic or toxic to reproduction substances (CMR substances and for respiratory sensitisers category 1 and for other hazard classes on a case-by-case basis. The first step of classification is the gathering of available and relevant information. This paper presents the procedure for gathering information and to obtain data. The data quality is also discussed.

  11. The paradox of atheoretical classification

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2016-01-01

    A distinction can be made between “artificial classifications” and “natural classifications,” where artificial classifications may adequately serve some limited purposes, but natural classifications are overall most fruitful by allowing inference and thus many different purposes. There is strong...... support for the view that a natural classification should be based on a theory (and, of course, that the most fruitful theory provides the most fruitful classification). Nevertheless, atheoretical (or “descriptive”) classifications are often produced. Paradoxically, atheoretical classifications may...... be very successful. The best example of a successful “atheoretical” classification is probably the prestigious Diagnostic and Statistical Manual of Mental Disorders (DSM) since its third edition from 1980. Based on such successes one may ask: Should the claim that classifications ideally are natural...

  12. Automatic classification of hyperactive children: comparing multiple artificial intelligence approaches.

    Science.gov (United States)

    Delavarian, Mona; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Dibajnia, Parvin

    2011-07-12

    Automatic classification of different behavioral disorders with many similarities (e.g. in symptoms) by using an automated approach will help psychiatrists to concentrate on correct disorder and its treatment as soon as possible, to avoid wasting time on diagnosis, and to increase the accuracy of diagnosis. In this study, we tried to differentiate and classify (diagnose) 306 children with many similar symptoms and different behavioral disorders such as ADHD, depression, anxiety, comorbid depression and anxiety and conduct disorder with high accuracy. Classification was based on the symptoms and their severity. With examining 16 different available classifiers, by using "Prtools", we have proposed nearest mean classifier as the most accurate classifier with 96.92% accuracy in this research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Progressive Classification Using Support Vector Machines

    Science.gov (United States)

    Wagstaff, Kiri; Kocurek, Michael

    2009-01-01

    An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user

  14. Forecast Accuracy Uncertainty and Momentum

    OpenAIRE

    Bing Han; Dong Hong; Mitch Warachka

    2009-01-01

    We demonstrate that stock price momentum and earnings momentum can result from uncertainty surrounding the accuracy of cash flow forecasts. Our model has multiple information sources issuing cash flow forecasts for a stock. The investor combines these forecasts into an aggregate cash flow estimate that has minimal mean-squared forecast error. This aggregate estimate weights each cash flow forecast by the estimated accuracy of its issuer, which is obtained from their past forecast errors. Mome...

  15. Semantic Document Image Classification Based on Valuable Text Pattern

    Directory of Open Access Journals (Sweden)

    Hossein Pourghassem

    2011-01-01

    Full Text Available Knowledge extraction from detected document image is a complex problem in the field of information technology. This problem becomes more intricate when we know, a negligible percentage of the detected document images are valuable. In this paper, a segmentation-based classification algorithm is used to analysis the document image. In this algorithm, using a two-stage segmentation approach, regions of the image are detected, and then classified to document and non-document (pure region regions in the hierarchical classification. In this paper, a novel valuable definition is proposed to classify document image in to valuable or invaluable categories. The proposed algorithm is evaluated on a database consisting of the document and non-document image that provide from Internet. Experimental results show the efficiency of the proposed algorithm in the semantic document image classification. The proposed algorithm provides accuracy rate of 98.8% for valuable and invaluable document image classification problem.

  16. Simple Fully Automated Group Classification on Brain fMRI

    International Nuclear Information System (INIS)

    Honorio, J.; Goldstein, R.; Samaras, D.; Tomasi, D.; Goldstein, R.Z.

    2010-01-01

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

  17. Simple Fully Automated Group Classification on Brain fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Honorio, J.; Goldstein, R.; Honorio, J.; Samaras, D.; Tomasi, D.; Goldstein, R.Z.

    2010-04-14

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

  18. Virtual Satellite Construction and Application for Image Classification

    International Nuclear Information System (INIS)

    Su, W G; Su, F Z; Zhou, C H

    2014-01-01

    Nowadays, most remote sensing image classification uses single satellite remote sensing data, so the number of bands and band spectral width is consistent. In addition, observed phenomenon such as land cover have the same spectral signature, which causes the classification accuracy to decrease as different data have unique characteristic. Therefore, this paper analyzes different optical remote sensing satellites, comparing the spectral differences and proposes the ideas and methods to build a virtual satellite. This article illustrates the research on the TM, HJ-1 and MODIS data. We obtained the virtual band X 0 through these satellites' bands combined it with the 4 bands of a TM image to build a virtual satellite with five bands. Based on this, we used these data for image classification. The experimental results showed that the virtual satellite classification results of building land and water information were superior to the HJ-1 and TM data respectively

  19. Social Power Increases Interoceptive Accuracy

    Directory of Open Access Journals (Sweden)

    Mehrad Moeini-Jazani

    2017-08-01

    Full Text Available Building on recent psychological research showing that power increases self-focused attention, we propose that having power increases accuracy in perception of bodily signals, a phenomenon known as interoceptive accuracy. Consistent with our proposition, participants in a high-power experimental condition outperformed those in the control and low-power conditions in the Schandry heartbeat-detection task. We demonstrate that the effect of power on interoceptive accuracy is not explained by participants’ physiological arousal, affective state, or general intention for accuracy. Rather, consistent with our reasoning that experiencing power shifts attentional resources inward, we show that the effect of power on interoceptive accuracy is dependent on individuals’ chronic tendency to focus on their internal sensations. Moreover, we demonstrate that individuals’ chronic sense of power also predicts interoceptive accuracy similar to, and independent of, how their situationally induced feeling of power does. We therefore provide further support on the relation between power and enhanced perception of bodily signals. Our findings offer a novel perspective–a psychophysiological account–on how power might affect judgments and behavior. We highlight and discuss some of these intriguing possibilities for future research.

  20. Efficient HIK SVM learning for image classification.

    Science.gov (United States)

    Wu, Jianxin

    2012-10-01

    Histograms are used in almost every aspect of image processing and computer vision, from visual descriptors to image representations. Histogram intersection kernel (HIK) and support vector machine (SVM) classifiers are shown to be very effective in dealing with histograms. This paper presents contributions concerning HIK SVM for image classification. First, we propose intersection coordinate descent (ICD), a deterministic and scalable HIK SVM solver. ICD is much faster than, and has similar accuracies to, general purpose SVM solvers and other fast HIK SVM training methods. We also extend ICD to the efficient training of a broader family of kernels. Second, we show an important empirical observation that ICD is not sensitive to the C parameter in SVM, and we provide some theoretical analyses to explain this observation. ICD achieves high accuracies in many problems, using its default parameters. This is an attractive property for practitioners, because many image processing tasks are too large to choose SVM parameters using cross-validation.

  1. Schizophrenia classification using functional network features

    Science.gov (United States)

    Rish, Irina; Cecchi, Guillermo A.; Heuton, Kyle

    2012-03-01

    This paper focuses on discovering statistical biomarkers (features) that are predictive of schizophrenia, with a particular focus on topological properties of fMRI functional networks. We consider several network properties, such as node (voxel) strength, clustering coefficients, local efficiency, as well as just a subset of pairwise correlations. While all types of features demonstrate highly significant statistical differences in several brain areas, and close to 80% classification accuracy, the most remarkable results of 93% accuracy are achieved by using a small subset of only a dozen of most-informative (lowest p-value) correlation features. Our results suggest that voxel-level correlations and functional network features derived from them are highly informative about schizophrenia and can be used as statistical biomarkers for the disease.

  2. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    Science.gov (United States)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  3. Clinical value of 64-slice spiral CT for classification of femoral neck fracture

    International Nuclear Information System (INIS)

    Zhu Jiangtao; Gong Jianping; Cai Wu; Zhu Jianbing; Chen Guangqiang; Qian Minghui

    2011-01-01

    Objective: To evaluate the clinical application of 64-slice spiral CT for classification of femoral neck fracture. Methods: The survey was comprised of 46 patients with femoral neck fractures detected with plain radiographs and CT images. Cases were randomly presented in 2 formats: plain radiographs and CT. Garden classification was queried. Modification of garden classification (nondisplaced vs displaced) was taken to compare with plain radiographs and CT in the study. Results: The results of classification for plain radiographs were 2 cases of Garden Ⅰ, 10 cases of Ⅱ, 22 cases of Ⅲ, and 12 cases of Ⅳ. Those for CT were 1 cases of Garden Ⅰ, 4 cases of Ⅱ, 26 cases of Ⅲ, and 15 cases of Ⅳ. CT improved the accuracy of Garden Classification (P<0.05). Conclusion: Garden classification using CT images shows good conformation with results of surgery. 64-Slic CT is better plain radiographs for Garden classification of femoral neck fracture. (authors)

  4. An evaluation of sampling and full enumeration strategies for Fisher Jenks classification in big data settings

    Science.gov (United States)

    Rey, Sergio J.; Stephens, Philip A.; Laura, Jason R.

    2017-01-01

    Large data contexts present a number of challenges to optimal choropleth map classifiers. Application of optimal classifiers to a sample of the attribute space is one proposed solution. The properties of alternative sampling-based classification methods are examined through a series of Monte Carlo simulations. The impacts of spatial autocorrelation, number of desired classes, and form of sampling are shown to have significant impacts on the accuracy of map classifications. Tradeoffs between improved speed of the sampling approaches and loss of accuracy are also considered. The results suggest the possibility of guiding the choice of classification scheme as a function of the properties of large data sets.

  5. Integrating human and machine intelligence in galaxy morphology classification tasks

    Science.gov (United States)

    Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl

    2018-06-01

    Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.

  6. Ecosystem classification, Chapter 2

    Science.gov (United States)

    M.J. Robin-Abbott; L.H. Pardo

    2011-01-01

    The ecosystem classification in this report is based on the ecoregions developed through the Commission for Environmental Cooperation (CEC) for North America (CEC 1997). Only ecosystems that occur in the United States are included. CEC ecoregions are described, with slight modifications, below (CEC 1997) and shown in Figures 2.1 and 2.2. We chose this ecosystem...

  7. The classification of phocomelia.

    Science.gov (United States)

    Tytherleigh-Strong, G; Hooper, G

    2003-06-01

    We studied 24 patients with 44 phocomelic upper limbs. Only 11 limbs could be grouped in the classification system of Frantz and O' Rahilly. The non-classifiable limbs were further studied and their characteristics identified. It is confirmed that phocomelia is not an intercalary defect.

  8. Principles for ecological classification

    Science.gov (United States)

    Dennis H. Grossman; Patrick Bourgeron; Wolf-Dieter N. Busch; David T. Cleland; William Platts; G. Ray; C. Robins; Gary Roloff

    1999-01-01

    The principal purpose of any classification is to relate common properties among different entities to facilitate understanding of evolutionary and adaptive processes. In the context of this volume, it is to facilitate ecosystem stewardship, i.e., to help support ecosystem conservation and management objectives.

  9. Mimicking human texture classification

    NARCIS (Netherlands)

    Rogowitz, B.E.; van Rikxoort, Eva M.; van den Broek, Egon; Pappas, T.N.; Schouten, Theo E.; Daly, S.J.

    2005-01-01

    In an attempt to mimic human (colorful) texture classification by a clustering algorithm three lines of research have been encountered, in which as test set 180 texture images (both their color and gray-scale equivalent) were drawn from the OuTex and VisTex databases. First, a k-means algorithm was

  10. Classification, confusion and misclassification

    African Journals Online (AJOL)

    The classification of objects and phenomena in science and nature has fascinated academics since Carl Linnaeus, the Swedish botanist and zoologist, created his binomial description of living things in the 1700s and probably long before in accounts of others in textbooks long since gone. It must have concerned human ...

  11. Classifications in popular music

    NARCIS (Netherlands)

    van Venrooij, A.; Schmutz, V.; Wright, J.D.

    2015-01-01

    The categorical system of popular music, such as genre categories, is a highly differentiated and dynamic classification system. In this article we present work that studies different aspects of these categorical systems in popular music. Following the work of Paul DiMaggio, we focus on four

  12. Shark Teeth Classification

    Science.gov (United States)

    Brown, Tom; Creel, Sally; Lee, Velda

    2009-01-01

    On a recent autumn afternoon at Harmony Leland Elementary in Mableton, Georgia, students in a fifth-grade science class investigated the essential process of classification--the act of putting things into groups according to some common characteristics or attributes. While they may have honed these skills earlier in the week by grouping their own…

  13. Text document classification

    Czech Academy of Sciences Publication Activity Database

    Novovičová, Jana

    č. 62 (2005), s. 53-54 ISSN 0926-4981 R&D Projects: GA AV ČR IAA2075302; GA AV ČR KSK1019101; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : document representation * categorization * classification Subject RIV: BD - Theory of Information

  14. Classification in Medical Imaging

    DEFF Research Database (Denmark)

    Chen, Chen

    Classification is extensively used in the context of medical image analysis for the purpose of diagnosis or prognosis. In order to classify image content correctly, one needs to extract efficient features with discriminative properties and build classifiers based on these features. In addition...... on characterizing human faces and emphysema disease in lung CT images....

  15. Improving Student Question Classification

    Science.gov (United States)

    Heiner, Cecily; Zachary, Joseph L.

    2009-01-01

    Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This paper analyzes 411 questions from an introductory Java programming course by reducing the natural…

  16. NOUN CLASSIFICATION IN ESAHIE

    African Journals Online (AJOL)

    The present work deals with noun classification in Esahie (Kwa, Niger ... phonological information influences the noun (form) class system of Esahie. ... between noun classes and (grammatical) Gender is interrogated (in the light of ..... the (A) argument6 precedes the verb and the (P) argument7 follows the verb in a simple.

  17. Dynamic Latent Classification Model

    DEFF Research Database (Denmark)

    Zhong, Shengtong; Martínez, Ana M.; Nielsen, Thomas Dyhre

    as possible. Motivated by this problem setting, we propose a generative model for dynamic classification in continuous domains. At each time point the model can be seen as combining a naive Bayes model with a mixture of factor analyzers (FA). The latent variables of the FA are used to capture the dynamics...

  18. Classification of myocardial infarction

    DEFF Research Database (Denmark)

    Saaby, Lotte; Poulsen, Tina Svenstrup; Hosbond, Susanne Elisabeth

    2013-01-01

    The classification of myocardial infarction into 5 types was introduced in 2007 as an important component of the universal definition. In contrast to the plaque rupture-related type 1 myocardial infarction, type 2 myocardial infarction is considered to be caused by an imbalance between demand...

  19. Event Classification using Concepts

    NARCIS (Netherlands)

    Boer, M.H.T. de; Schutte, K.; Kraaij, W.

    2013-01-01

    The semantic gap is one of the challenges in the GOOSE project. In this paper a Semantic Event Classification (SEC) system is proposed as an initial step in tackling the semantic gap challenge in the GOOSE project. This system uses semantic text analysis, multiple feature detectors using the BoW

  20. Using the PDD Behavior Inventory as a Level 2 Screener: A Classification and Regression Trees Analysis

    Science.gov (United States)

    Cohen, Ira L.; Liu, Xudong; Hudson, Melissa; Gillis, Jennifer; Cavalari, Rachel N. S.; Romanczyk, Raymond G.; Karmel, Bernard Z.; Gardner, Judith M.

    2016-01-01

    In order to improve discrimination accuracy between Autism Spectrum Disorder (ASD) and similar neurodevelopmental disorders, a data mining procedure, Classification and Regression Trees (CART), was used on a large multi-site sample of PDD Behavior Inventory (PDDBI) forms on children with and without ASD. Discrimination accuracy exceeded 80%,…

  1. Crowdsourcing as a novel technique for retinal fundus photography classification: analysis of images in the EPIC Norfolk cohort on behalf of the UK Biobank Eye and Vision Consortium.

    Science.gov (United States)

    Mitry, Danny; Peto, Tunde; Hayat, Shabina; Morgan, James E; Khaw, Kay-Tee; Foster, Paul J

    2013-01-01

    Crowdsourcing is the process of outsourcing numerous tasks to many untrained individuals. Our aim was to assess the performance and repeatability of crowdsourcing for the classification of retinal fundus photography. One hundred retinal fundus photograph images with pre-determined disease criteria were selected by experts from a large cohort study. After reading brief instructions and an example classification, we requested that knowledge workers (KWs) from a crowdsourcing platform classified each image as normal or abnormal with grades of severity. Each image was classified 20 times by different KWs. Four study designs were examined to assess the effect of varying incentive and KW experience in classification accuracy. All study designs were conducted twice to examine repeatability. Performance was assessed by comparing the sensitivity, specificity and area under the receiver operating characteristic curve (AUC). Without restriction on eligible participants, two thousand classifications of 100 images were received in under 24 hours at minimal cost. In trial 1 all study designs had an AUC (95%CI) of 0.701(0.680-0.721) or greater for classification of normal/abnormal. In trial 1, the highest AUC (95%CI) for normal/abnormal classification was 0.757 (0.738-0.776) for KWs with moderate experience. Comparable results were observed in trial 2. In trial 1, between 64-86% of any abnormal image was correctly classified by over half of all KWs. In trial 2, this ranged between 74-97%. Sensitivity was ≥ 96% for normal versus severely abnormal detections across all trials. Sensitivity for normal versus mildly abnormal varied between 61-79% across trials. With minimal training, crowdsourcing represents an accurate, rapid and cost-effective method of retinal image analysis which demonstrates good repeatability. Larger studies with more comprehensive participant training are needed to explore the utility of this compelling technique in large scale medical image analysis.

  2. Observation versus classification in supervised category learning.

    Science.gov (United States)

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  3. Trait Perception Accuracy and Acquaintance Within Groups: Tracking Accuracy Development.

    Science.gov (United States)

    Brown, Jill A; Bernieri, Frank

    2017-05-01

    Previous work on trait perception has evaluated accuracy at discrete stages of relationships (e.g., strangers, best friends). A relatively limited body of literature has investigated changes in accuracy as acquaintance within a dyad or group increases. Small groups of initially unacquainted individuals spent more than 30 hr participating in a wide range of activities designed to represent common interpersonal contexts (e.g., eating, traveling). We calculated how accurately each participant judged others in their group on the big five traits across three distinct points within the acquaintance process: zero acquaintance, after a getting-to-know-you conversation, and after 10 weeks of interaction and activity. Judgments of all five traits exhibited accuracy above chance levels after 10 weeks. An examination of the trait rating stability revealed that much of the revision in judgments occurred not over the course of the 10-week relationship as suspected, but between zero acquaintance and the getting-to-know-you conversation.

  4. Face classification using electronic synapses

    Science.gov (United States)

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H.-S. Philip; Qian, He

    2017-05-01

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  5. Effectiveness of Multivariate Time Series Classification Using Shapelets

    Directory of Open Access Journals (Sweden)

    A. P. Karpenko

    2015-01-01

    Full Text Available Typically, time series classifiers require signal pre-processing (filtering signals from noise and artifact removal, etc., enhancement of signal features (amplitude, frequency, spectrum, etc., classification of signal features in space using the classical techniques and classification algorithms of multivariate data. We consider a method of classifying time series, which does not require enhancement of the signal features. The method uses the shapelets of time series (time series shapelets i.e. small fragments of this series, which reflect properties of one of its classes most of all.Despite the significant number of publications on the theory and shapelet applications for classification of time series, the task to evaluate the effectiveness of this technique remains relevant. An objective of this publication is to study the effectiveness of a number of modifications of the original shapelet method as applied to the multivariate series classification that is a littlestudied problem. The paper presents the problem statement of multivariate time series classification using the shapelets and describes the shapelet–based basic method of binary classification, as well as various generalizations and proposed modification of the method. It also offers the software that implements a modified method and results of computational experiments confirming the effectiveness of the algorithmic and software solutions.The paper shows that the modified method and the software to use it allow us to reach the classification accuracy of about 85%, at best. The shapelet search time increases in proportion to input data dimension.

  6. NEW CLASSIFICATION OF ECOPOLICES

    Directory of Open Access Journals (Sweden)

    VOROBYOV V. V.

    2016-09-01

    Full Text Available Problem statement. Ecopolices are the newest stage of the urban planning. They have to be consideredsuchas material and energy informational structures, included to the dynamic-evolutionary matrix netsofex change processes in the ecosystems. However, there are not made the ecopolice classifications, developing on suchapproaches basis. And this determined the topicality of the article. Analysis of publications on theoretical and applied aspects of the ecopolices formation showed, that the work on them is managed mainly in the context of the latest scientific and technological achievements in the various knowledge fields. These settlements are technocratic. They are connected with the morphology of space, network structures of regional and local natural ecosystems, without independent stability, can not exist without continuous man support. Another words, they do not work in with an ecopolices idea. It is come to a head for objective, symbiotic searching of ecopolices concept with the development of their classifications. Purpose statement is to develop the objective evidence for ecopolices and to propose their new classification. Conclusion. On the base of the ecopolices classification have to lie an elements correlation idea of their general plans and men activity type according with natural mechanism of accepting, reworking and transmission of material, energy and information between geo-ecosystems, planet, man, ecopolices material part and Cosmos. New ecopolices classification should be based on the principles of multi-dimensional, time-spaced symbiotic clarity with exchange ecosystem networks. The ecopolice function with this approach comes not from the subjective anthropocentric economy but from the holistic objective of Genesis paradigm. Or, otherwise - not from the Consequence, but from the Cause.

  7. 78 FR 54970 - Cotton Futures Classification: Optional Classification Procedure

    Science.gov (United States)

    2013-09-09

    ... Service 7 CFR Part 27 [AMS-CN-13-0043] RIN 0581-AD33 Cotton Futures Classification: Optional Classification Procedure AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY: The... optional cotton futures classification procedure--identified and known as ``registration'' by the U.S...

  8. Real-time, resource-constrained object classification on a micro-air vehicle

    Science.gov (United States)

    Buck, Louis; Ray, Laura

    2013-12-01

    A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.

  9. Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks

    Science.gov (United States)

    Beck, Melanie Renee

    The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo

  10. Accuracy of rainfall measurement for scales of hydrological interest

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a 'true value' of rainfall against which the 2 km radar grid and a single 'typical gauge' estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the 'true catchment rainfall' and the accuracy of a radar estimate (an area-weighted average of radar pixel values and a single 'typical gauge' estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000 considers the accuracy of rainfall estimates obtained using raingauge and radar in combination. Keywords: rainfall, accuracy, raingauge, radar

  11. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    Science.gov (United States)

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  12. Comparison Effectiveness of Pixel Based Classification and Object Based Classification Using High Resolution Image In Floristic Composition Mapping (Study Case: Gunung Tidar Magelang City)

    Science.gov (United States)

    Ardha Aryaguna, Prama; Danoedoro, Projo

    2016-11-01

    Developments of analysis remote sensing have same way with development of technology especially in sensor and plane. Now, a lot of image have high spatial and radiometric resolution, that's why a lot information. Vegetation object analysis such floristic composition got a lot advantage of that development. Floristic composition can be interpreted using a lot of method such pixel based classification and object based classification. The problems for pixel based method on high spatial resolution image are salt and paper who appear in result of classification. The purpose of this research are compare effectiveness between pixel based classification and object based classification for composition vegetation mapping on high resolution image Worldview-2. The results show that pixel based classification using majority 5×5 kernel windows give the highest accuracy between another classifications. The highest accuracy is 73.32% from image Worldview-2 are being radiometric corrected level surface reflectance, but for overall accuracy in every class, object based are the best between another methods. Reviewed from effectiveness aspect, pixel based are more effective then object based for vegetation composition mapping in Tidar forest.

  13. 32 CFR 2700.22 - Classification guides.

    Science.gov (United States)

    2010-07-01

    ... SECURITY INFORMATION REGULATIONS Derivative Classification § 2700.22 Classification guides. OMSN shall... direct derivative classification, shall identify the information to be protected in specific and uniform...

  14. Texture classification of vegetation cover in high altitude wetlands zone

    International Nuclear Information System (INIS)

    Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu

    2014-01-01

    The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data

  15. Sensor Data Acquisition and Processing Parameters for Human Activity Classification

    Directory of Open Access Journals (Sweden)

    Sebastian D. Bersch

    2014-03-01

    Full Text Available It is known that parameter selection for data sampling frequency and segmentation techniques (including different methods and window sizes has an impact on the classification accuracy. For Ambient Assisted Living (AAL, no clear information to select these parameters exists, hence a wide variety and inconsistency across today’s literature is observed. This paper presents the empirical investigation of different data sampling rates, segmentation techniques and segmentation window sizes and their effect on the accuracy of Activity of Daily Living (ADL event classification and computational load for two different accelerometer sensor datasets. The study is conducted using an ANalysis Of VAriance (ANOVA based on 32 different window sizes, three different segmentation algorithm (with and without overlap, totaling in six different parameters and six sampling frequencies for nine common classification algorithms. The classification accuracy is based on a feature vector consisting of Root Mean Square (RMS, Mean, Signal Magnitude Area (SMA, Signal Vector Magnitude (here SMV, Energy, Entropy, FFTPeak, Standard Deviation (STD. The results are presented alongside recommendations for the parameter selection on the basis of the best performing parameter combinations that are identified by means of the corresponding Pareto curve.

  16. Proposal of new classification of femoral trochanteric fracture by three-dimensional computed tomography and relationship to usual plain X-ray classification.

    Science.gov (United States)

    Shoda, Etsuo; Kitada, Shimpei; Sasaki, Yu; Hirase, Hitoshi; Niikura, Takahiro; Lee, Sang Yang; Sakurai, Atsushi; Oe, Keisuke; Sasaki, Takeharu

    2017-01-01

    Classification of femoral trochanteric fractures is usually based on plain X-ray findings using the Evans, Jensen, or AO/OTA classification. However, complications such as nonunion and cut out of the lag screw or blade are seen even in stable fracture. This may be due to the difficulty of exact diagnosis of fracture pattern in plain X-ray. Computed tomography (CT) may provide more information about the fracture pattern, but such data are scarce. In the present study, it was performed to propose a classification system for femoral trochanteric fractures using three-dimensional CT (3D-CT) and investigate the relationship between this classification and conventional plain X-ray classification. Using three-dimensional (3D)-CT, fractures were classified as two, three, or four parts using combinations of the head, greater trochanter, lesser trochanter, and shaft. We identified five subgroups of three-part fractures according to the fracture pattern involving the greater and lesser trochanters. In total, 239 femoral trochanteric fractures (45 men, 194 women; average age, 84.4 years) treated in four hospitals were classified using our 3D-CT classification. The relationship between this 3D-CT classification and the AO/OTA, Evans, and Jensen X-ray classifications was investigated. In the 3D-CT classification, many fractures exhibited a large oblique fragment of the greater trochanter including the lesser trochanter. This fracture type was recognized as unstable in the 3D-CT classification but was often classified as stable in each X-ray classification. It is difficult to evaluate fracture patterns involving the greater trochanter, especially large oblique fragments including the lesser trochanter, using plain X-rays. The 3D-CT shows the fracture line very clearly, making it easy to classify the fracture pattern.

  17. Diagnostic accuracy in virtual dermatopathology

    DEFF Research Database (Denmark)

    Mooney, E.; Kempf, W.; Jemec, G.B.E.

    2012-01-01

    Background Virtual microscopy is used for teaching medical students and residents and for in-training and certification examinations in the United States. However, no existing studies compare diagnostic accuracy using virtual slides and photomicrographs. The objective of this study was to compare...... diagnostic accuracy of dermatopathologists and pathologists using photomicrographs vs. digitized images, through a self-assessment examination, and to elucidate assessment of virtual dermatopathology. Methods Forty-five dermatopathologists and pathologists received a randomized combination of 15 virtual...... slides and photomicrographs with corresponding clinical photographs and information in a self-assessment examination format. Descriptive data analysis and comparison of groups were performed using a chi-square test. Results Diagnostic accuracy in dermatopathology using virtual dermatopathology...

  18. EEG BASED COGNITIVE WORKLOAD CLASSIFICATION DURING NASA MATB-II MULTITASKING

    Directory of Open Access Journals (Sweden)

    Sushil Chandra

    2015-06-01

    Full Text Available The objective of this experiment was to determine the best possible input EEG feature for classification of the workload while designing load balancing logic for an automated operator. The input features compared in this study consisted of spectral features of Electroencephalography, objective scoring and subjective scoring. Method utilizes to identify best EEG feature as an input in Neural Network Classifiers for workload classification, to identify channels which could provide classification with the highest accuracy and for identification of EEG feature which could give discrimination among workload level without adding any classifiers. The result had shown Engagement Index is the best feature for neural network classification.

  19. A system for heart sounds classification.

    Directory of Open Access Journals (Sweden)

    Grzegorz Redlarski

    Full Text Available The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases - one of the major causes of death around the globe - a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability.

  20. Advanced Steel Microstructural Classification by Deep Learning Methods.

    Science.gov (United States)

    Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank

    2018-02-01

    The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

  1. Classification of Strawberry Fruit Shape by Machine Learning

    Science.gov (United States)

    Ishikawa, T.; Hayashi, A.; Nagamatsu, S.; Kyutoku, Y.; Dan, I.; Wada, T.; Oku, K.; Saeki, Y.; Uto, T.; Tanabata, T.; Isobe, S.; Kochi, N.

    2018-05-01

    Shape is one of the most important traits of agricultural products due to its relationships with the quality, quantity, and value of the products. For strawberries, the nine types of fruit shape were defined and classified by humans based on the sampler patterns of the nine types. In this study, we tested the classification of strawberry shapes by machine learning in order to increase the accuracy of the classification, and we introduce the concept of computerization into this field. Four types of descriptors were extracted from the digital images of strawberries: (1) the Measured Values (MVs) including the length of the contour line, the area, the fruit length and width, and the fruit width/length ratio; (2) the Ellipse Similarity Index (ESI); (3) Elliptic Fourier Descriptors (EFDs), and (4) Chain Code Subtraction (CCS). We used these descriptors for the classification test along with the random forest approach, and eight of the nine shape types were classified with combinations of MVs + CCS + EFDs. CCS is a descriptor that adds human knowledge to the chain codes, and it showed higher robustness in classification than the other descriptors. Our results suggest machine learning's high ability to classify fruit shapes accurately. We will attempt to increase the classification accuracy and apply the machine learning methods to other plant species.

  2. Deep Multi-Task Learning for Tree Genera Classification

    Science.gov (United States)

    Ko, C.; Kang, J.; Sohn, G.

    2018-05-01

    The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.

  3. IAEA Classification of Uranium Deposits

    International Nuclear Information System (INIS)

    Bruneton, Patrice

    2014-01-01

    Classifications of uranium deposits follow two general approaches, focusing on: • descriptive features such as the geotectonic position, the host rock type, the orebody morphology, …… : « geologic classification »; • or on genetic aspects: « genetic classification »

  4. Classification of Osteogenesis Imperfecta revisited

    NARCIS (Netherlands)

    van Dijk, F. S.; Pals, G.; van Rijn, R. R.; Nikkels, P. G. J.; Cobben, J. M.

    2010-01-01

    In 1979 Sillence proposed a classification of Osteogenesis Imperfecta (OI) in OI types I, II, III and IV. In 2004 and 2007 this classification was expanded with OI types V-VIII because of distinct clinical features and/or different causative gene mutations. We propose a revised classification of OI

  5. The future of general classification

    DEFF Research Database (Denmark)

    Mai, Jens Erik

    2013-01-01

    Discusses problems related to accessing multiple collections using a single retrieval language. Surveys the concepts of interoperability and switching language. Finds that mapping between more indexing languages always will be an approximation. Surveys the issues related to general classification...... and contrasts that to special classifications. Argues for the use of general classifications to provide access to collections nationally and internationally....

  6. Quantum mechanical calculations to chemical accuracy

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  7. Fast Image Texture Classification Using Decision Trees

    Science.gov (United States)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  8. Improved supervised classification of accelerometry data to distinguish behaviors of soaring birds

    Science.gov (United States)

    Suffredini, Tony; Wessells, Stephen M.; Bloom, Peter H.; Lanzone, Michael; Blackshire, Sheldon; Sridhar, Srisarguru; Katzner, Todd

    2017-01-01

    Soaring birds can balance the energetic costs of movement by switching between flapping, soaring and gliding flight. Accelerometers can allow quantification of flight behavior and thus a context to interpret these energetic costs. However, models to interpret accelerometry data are still being developed, rarely trained with supervised datasets, and difficult to apply. We collected accelerometry data at 140Hz from a trained golden eagle (Aquila chrysaetos) whose flight we recorded with video that we used to characterize behavior. We applied two forms of supervised classifications, random forest (RF) models and K-nearest neighbor (KNN) models. The KNN model was substantially easier to implement than the RF approach but both were highly accurate in classifying basic behaviors such as flapping (85.5% and 83.6% accurate, respectively), soaring (92.8% and 87.6%) and sitting (84.1% and 88.9%) with overall accuracies of 86.6% and 92.3% respectively. More detailed classification schemes, with specific behaviors such as banking and straight flights were well classified only by the KNN model (91.24% accurate; RF = 61.64% accurate). The RF model maintained its accuracy of classifying basic behavior classification accuracy of basic behaviors at sampling frequencies as low as 10Hz, the KNN at sampling frequencies as low as 20Hz. Classification of accelerometer data collected from free ranging birds demonstrated a strong dependence of predicted behavior on the type of classification model used. Our analyses demonstrate the consequence of different approaches to classification of accelerometry data, the potential to optimize classification algorithms with validated flight behaviors to improve classification accuracy, ideal sampling frequencies for different classification algorithms, and a number of ways to improve commonly used analytical techniques and best practices for classification of accelerometry data. PMID:28403159

  9. AUTOMATIC APPROACH TO VHR SATELLITE IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Kupidura

    2016-06-01

    preliminary step of recalculation of pixel DNs to reflectance is required. Thanks to this, the proposed approach is in theory universal, and might be applied to different satellite system images of different acquisition dates. The test data consists of 3 Pleiades images captured on different dates. Research allowed to determine optimal indices values. Using the same parameters, we obtained a very good accuracy of extraction of 5 land cover/use classes: water, low vegetation, bare soil, wooded area and built-up area in all the test images (kappa from 87% to 96%. What constitutes important, even significant changes in parameter values, did not cause a significant declination of classification accuracy, which demonstrates how robust the proposed method is.

  10. [Headache: classification and diagnosis].

    Science.gov (United States)

    Carbaat, P A T; Couturier, E G M

    2016-11-01

    There are many types of headache and, moreover, many people have different types of headache at the same time. Adequate treatment is possible only on the basis of the correct diagnosis. Technically and in terms of content the current diagnostics process for headache is based on the 'International Classification of Headache Disorders' (ICHD-3-beta) that was produced under the auspices of the International Headache Society. This classification is based on a distinction between primary and secondary headaches. The most common primary headache types are the tension type headache, migraine and the cluster headache. Application of uniform diagnostic concepts is essential to come to the most appropriate treatment of the various types of headache.

  11. Classification of hand eczema

    DEFF Research Database (Denmark)

    Agner, T; Aalto-Korte, K; Andersen, K E

    2015-01-01

    BACKGROUND: Classification of hand eczema (HE) is mandatory in epidemiological and clinical studies, and also important in clinical work. OBJECTIVES: The aim was to test a recently proposed classification system of HE in clinical practice in a prospective multicentre study. METHODS: Patients were...... recruited from nine different tertiary referral centres. All patients underwent examination by specialists in dermatology and were checked using relevant allergy testing. Patients were classified into one of the six diagnostic subgroups of HE: allergic contact dermatitis, irritant contact dermatitis, atopic...... system investigated in the present study was useful, being able to give an appropriate main diagnosis for 89% of HE patients, and for another 7% when using two main diagnoses. The fact that more than half of the patients had one or more additional diagnoses illustrates that HE is a multifactorial disease....

  12. Sound classification of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2012-01-01

    National schemes for sound classification of dwellings exist in more than ten countries in Europe, typically published as national standards. The schemes define quality classes reflecting different levels of acoustical comfort. Main criteria concern airborne and impact sound insulation between...... dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...

  13. Music Genre Classification Using MIDI and Audio Features

    Science.gov (United States)

    Cataltepe, Zehra; Yaslan, Yusuf; Sonmez, Abdullah

    2007-12-01

    We report our findings on using MIDI files and audio features from MIDI, separately and combined together, for MIDI music genre classification. We use McKay and Fujinaga's 3-root and 9-leaf genre data set. In order to compute distances between MIDI pieces, we use normalized compression distance (NCD). NCD uses the compressed length of a string as an approximation to its Kolmogorov complexity and has previously been used for music genre and composer clustering. We convert the MIDI pieces to audio and then use the audio features to train different classifiers. MIDI and audio from MIDI classifiers alone achieve much smaller accuracies than those reported by McKay and Fujinaga who used not NCD but a number of domain-based MIDI features for their classification. Combining MIDI and audio from MIDI classifiers improves accuracy and gets closer to, but still worse, accuracies than McKay and Fujinaga's. The best root genre accuracies achieved using MIDI, audio, and combination of them are 0.75, 0.86, and 0.93, respectively, compared to 0.98 of McKay and Fujinaga. Successful classifier combination requires diversity of the base classifiers. We achieve diversity through using certain number of seconds of the MIDI file, different sample rates and sizes for the audio file, and different classification algorithms.

  14. Music Genre Classification Using MIDI and Audio Features

    Directory of Open Access Journals (Sweden)

    Abdullah Sonmez

    2007-01-01

    Full Text Available We report our findings on using MIDI files and audio features from MIDI, separately and combined together, for MIDI music genre classification. We use McKay and Fujinaga's 3-root and 9-leaf genre data set. In order to compute distances between MIDI pieces, we use normalized compression distance (NCD. NCD uses the compressed length of a string as an approximation to its Kolmogorov complexity and has previously been used for music genre and composer clustering. We convert the MIDI pieces to audio and then use the audio features to train different classifiers. MIDI and audio from MIDI classifiers alone achieve much smaller accuracies than those reported by McKay and Fujinaga who used not NCD but a number of domain-based MIDI features for their classification. Combining MIDI and audio from MIDI classifiers improves accuracy and gets closer to, but still worse, accuracies than McKay and Fujinaga's. The best root genre accuracies achieved using MIDI, audio, and combination of them are 0.75, 0.86, and 0.93, respectively, compared to 0.98 of McKay and Fujinaga. Successful classifier combination requires diversity of the base classifiers. We achieve diversity through using certain number of seconds of the MIDI file, different sample rates and sizes for the audio file, and different classification algorithms.

  15. Accuracy requirements in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Buzdar, S. A.; Afzal, M.; Nazir, A.; Gadhi, M. A.

    2013-01-01

    Radiation therapy attempts to deliver ionizing radiation to the tumour and can improve the survival chances and/or quality of life of patients. There are chances of errors and uncertainties in the entire process of radiotherapy that may affect the accuracy and precision of treatment management and decrease degree of conformation. All expected inaccuracies, like radiation dose determination, volume calculation, complete evaluation of the full extent of the tumour, biological behaviour of specific tumour types, organ motion during radiotherapy, imaging, biological/molecular uncertainties, sub-clinical diseases, microscopic spread of the disease, uncertainty in normal tissue responses and radiation morbidity need sound appreciation. Conformity can be increased by reduction of such inaccuracies. With the yearly increase in computing speed and advancement in other technologies the future will provide the opportunity to optimize a greater number of variables and reduce the errors in the treatment planning process. In multi-disciplined task of radiotherapy, efforts are needed to overcome the errors and uncertainty, not only by the physicists but also by radiologists, pathologists and oncologists to reduce molecular and biological uncertainties. The radiation therapy physics is advancing towards an optimal goal that is definitely to improve accuracy where necessary and to reduce uncertainty where possible. (author)

  16. Granular loess classification based

    International Nuclear Information System (INIS)

    Browzin, B.S.

    1985-01-01

    This paper discusses how loess might be identified by two index properties: the granulometric composition and the dry unit weight. These two indices are necessary but not always sufficient for identification of loess. On the basis of analyses of samples from three continents, it was concluded that the 0.01-0.5-mm fraction deserves the name loessial fraction. Based on the loessial fraction concept, a granulometric classification of loess is proposed. A triangular chart is used to classify loess

  17. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  18. CLASSIFICATION OF CRIMINAL GROUPS

    OpenAIRE

    Natalia Romanova

    2013-01-01

    New types of criminal groups are emerging in modern society.  These types have their special criminal subculture. The research objective is to develop new parameters of classification of modern criminal groups, create a new typology of criminal groups and identify some features of their subculture. Research methodology is based on the system approach that includes using the method of analysis of documentary sources (materials of a criminal case), method of conversations with themembers of the...

  19. Decimal Classification Editions

    Directory of Open Access Journals (Sweden)

    Zenovia Niculescu

    2009-01-01

    Full Text Available The study approaches the evolution of Dewey Decimal Classification editions from the perspective of updating the terminology, reallocating and expanding the main and auxilary structure of Dewey indexing language. The comparative analysis of DDC editions emphasizes the efficiency of Dewey scheme from the point of view of improving the informational offer, through basic index terms, revised and developed, as well as valuing the auxilary notations.

  20. Decimal Classification Editions

    OpenAIRE

    Zenovia Niculescu

    2009-01-01

    The study approaches the evolution of Dewey Decimal Classification editions from the perspective of updating the terminology, reallocating and expanding the main and auxilary structure of Dewey indexing language. The comparative analysis of DDC editions emphasizes the efficiency of Dewey scheme from the point of view of improving the informational offer, through basic index terms, revised and developed, as well as valuing the auxilary notations.

  1. 5-HTTLPR modulates the recognition accuracy and exploration of emotional facial expressions

    Directory of Open Access Journals (Sweden)

    Sabrina eBoll

    2014-07-01

    Full Text Available Individual genetic differences in the serotonin transporter-linked polymorphic region (5-HTTLPR have been associated with variations in the sensitivity to social and emotional cues as well as altered amygdala reactivity to facial expressions of emotion. Amygdala activation has further been shown to trigger gaze changes towards diagnostically relevant facial features. The current study examined whether altered socio-emotional reactivity in variants of the 5-HTTLPR promoter polymorphism reflects individual differences in attending to diagnostic features of facial expressions. For this purpose, visual exploration of emotional facial expressions was compared between a low (n=39 and a high (n=40 5-HTT expressing group of healthy human volunteers in an eye tracking paradigm. Emotional faces were presented while manipulating the initial fixation such that saccadic changes towards the eyes and towards the mouth could be identified. We found that the low versus the high 5-HTT group demonstrated greater accuracy with regard to emotion classifications, particularly when faces were presented for a longer duration. No group differences in gaze orientation towards diagnostic facial features could be observed. However, participants in the low 5-HTT group exhibited more and faster fixation changes for certain emotions when faces were presented for a longer duration and overall face fixation times were reduced for this genotype group. These results suggest that the 5-HTT gene influences social perception by modulating the general vigilance to social cues rather than selectively affecting the pre-attentive detection of diagnostic facial features.

  2. Comparison between Possibilistic c-Means (PCM and Artificial Neural Network (ANN Classification Algorithms in Land use/ Land cover Classification

    Directory of Open Access Journals (Sweden)

    Ganchimeg Ganbold

    2017-03-01

    Full Text Available There are several statistical classification algorithms available for landuse/land cover classification. However, each has a certain bias orcompromise. Some methods like the parallel piped approach in supervisedclassification, cannot classify continuous regions within a feature. Onthe other hand, while unsupervised classification method takes maximumadvantage of spectral variability in an image, the maximally separableclusters in spectral space may not do much for our perception of importantclasses in a given study area. In this research, the output of an ANNalgorithm was compared with the Possibilistic c-Means an improvementof the fuzzy c-Means on both moderate resolutions Landsat8 and a highresolution Formosat 2 images. The Formosat 2 image comes with an8m spectral resolution on the multispectral data. This multispectral imagedata was resampled to 10m in order to maintain a uniform ratio of1:3 against Landsat 8 image. Six classes were chosen for analysis including:Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC, the six features reflecteddifferently in the infrared region with wheat producing the brightestpixel values. Signature collection per class was therefore easily obtainedfor all classifications. The output of both ANN and FCM, were analyzedseparately for accuracy and an error matrix generated to assess the qualityand accuracy of the classification algorithms. When you compare theresults of the two methods on a per-class-basis, ANN had a crisperoutput compared to PCM which yielded clusters with pixels especiallyon the moderate resolution Landsat 8 imagery.

  3. Generating Topographic Map Data from Classification Results

    Directory of Open Access Journals (Sweden)

    Joachim Höhle

    2017-03-01

    Full Text Available The use of classification results as topographic map data requires cartographic enhancement and checking of the geometric accuracy. Urban areas are of special interest. The conversion of the classification result into topographic map data of high thematic and geometric quality is subject of this contribution. After reviewing the existing literature on this topic, a methodology is presented. The extraction of point clouds belonging to line segments is solved by the Hough transform. The mathematics for deriving polygons of orthogonal, parallel and general line segments by least squares adjustment is presented. A unique solution for polylines, where the Hough parameters are optimized, is also given. By means of two data sets land cover maps of six classes were produced and then enhanced by the proposed method. The classification used the decision tree method applying a variety of attributes including object heights derived from imagery. The cartographic enhancement is carried out with two different levels of quality. The user’s accuracies for the classes “impervious surface” and “building” were above 85% in the “Level 1” map of Example 1. The geometric accuracy of building corners at the “Level 2” maps is assessed by means of reference data derived from ortho-images. The obtained root mean square errors (RMSE of the generated coordinates (x, y were RMSEx = 1.2 m and RMSEy = 0.7 m (Example 1 and RMSEx = 0.8 m and RMSEy = 1.0 m (Example 2 using 31 and 62 check points, respectively. All processing for Level 1 (raster data could be carried out with a high degree of automation. Level 2 maps (vector data were compiled for the classes “building” and “road and parking lot”. For urban areas with numerous classes and of large size, universal algorithms are necessary to produce vector data fully automatically. The recent progress in sensors and machine learning methods will support the generation of topographic map data of high

  4. Classifications of track structures

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1984-01-01

    When ionizing particles interact with matter they produce random topological structures of primary activations which represent the initial boundary conditions for all subsequent physical, chemical and/or biological reactions. There are two important aspects of research on such track structures, namely their experimental or theoretical determination on one hand and the quantitative classification of these complex structures which is a basic pre-requisite for the understanding of mechanisms of radiation actions. This paper deals only with the latter topic, i.e. the problems encountered in and possible approaches to quantitative ordering and grouping of these multidimensional objects by their degrees of similarity with respect to their efficiency in producing certain final radiation effects, i.e. to their ''radiation quality.'' Various attempts of taxonometric classification with respect to radiation efficiency have been made in basic and applied radiation research including macro- and microdosimetric concepts as well as track entities and stopping power based theories. In this paper no review of those well-known approaches is given but rather an outline and discussion of alternative methods new to this field of radiation research which have some very promising features and which could possibly solve at least some major classification problems

  5. Neuromuscular disease classification system

    Science.gov (United States)

    Sáez, Aurora; Acha, Begoña; Montero-Sánchez, Adoración; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  6. Classification of coefficients of variation in experiments with commercial layers

    Directory of Open Access Journals (Sweden)

    DE Faria Filho

    2010-12-01

    Full Text Available This study aimed at determining a specific classification of coefficients of variation in experiments with commercial layers. Coefficients of variation were collected from papers published in Brazilian journals between 2000 and 2009 for performance, internal egg quality, and eggshell quality parameters. The coefficients of variation of each parameter were classified as low, intermediate, high, and very high according to the ratio between the median and the pseudo-sigma. It was concluded that the parameters used in experiments with commercial layers have a specific classification of coefficients of variation, and that this must be considered to evaluate experimental accuracy.

  7. Acoustic transient classification with a template correlation processor.

    Science.gov (United States)

    Edwards, R T

    1999-10-01

    I present an architecture for acoustic pattern classification using trinary-trinary template correlation. In spite of its computational simplicity, the algorithm and architecture represent a method which greatly reduces bandwidth of the input, storage requirements of the classifier memory, and power consumption of the system without compromising classification accuracy. The linear system should be amenable to training using recently-developed methods such as Independent Component Analysis (ICA), and we predict that behavior will be qualitatively similar to that of structures in the auditory cortex.

  8. Semi-supervised morphosyntactic classification of Old Icelandic.

    Science.gov (United States)

    Urban, Kryztof; Tangherlini, Timothy R; Vijūnas, Aurelijus; Broadwell, Peter M

    2014-01-01

    We present IceMorph, a semi-supervised morphosyntactic analyzer of Old Icelandic. In addition to machine-read corpora and dictionaries, it applies a small set of declension prototypes to map corpus words to dictionary entries. A web-based GUI allows expert users to modify and augment data through an online process. A machine learning module incorporates prototype data, edit-distance metrics, and expert feedback to continuously update part-of-speech and morphosyntactic classification. An advantage of the analyzer is its ability to achieve competitive classification accuracy with minimum training data.

  9. Visualization of Nonlinear Classification Models in Neuroimaging - Signed Sensitivity Maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Schmah, Tanya; Madsen, Kristoffer Hougaard

    2012-01-01

    Classification models are becoming increasing popular tools in the analysis of neuroimaging data sets. Besides obtaining good prediction accuracy, a competing goal is to interpret how the classifier works. From a neuroscientific perspective, we are interested in the brain pattern reflecting...... the underlying neural encoding of an experiment defining multiple brain states. In this relation there is a great desire for the researcher to generate brain maps, that highlight brain locations of importance to the classifiers decisions. Based on sensitivity analysis, we develop further procedures for model...... direction the individual locations influence the classification. We illustrate the visualization procedure on a real data from a simple functional magnetic resonance imaging experiment....

  10. Reflux esophagitis revisited: Prospective analysis of radiologic accuracy

    International Nuclear Information System (INIS)

    Ott, D.J.; Gelfand, D.W.; Wu, W.C.

    1981-01-01

    A prospective radiologic-endoscopic study of the esophagogastric region in 266 patients, including 206 normals and 60 with esophagitis, is reported. The endoscopic classification grading severity of esophagitis was grade 1-normal; grades 2. 3. and 4-mild, moderate, and severe esophagitis, respectively. Radiology detected 22% of patient with mild esophagitis, 83% with moderate esophagitis, and 95% with severe esophagitis. Although hiatal hernia was present in 40% of normals and 89% with esophagitis, absence of radiographic hiatal hernia excluded esophagitis with 95% accuracy. The implications of this study regarding the role of radiology in evaluating patient with suspected reflux esophagitis are discussed. (orig.) [de

  11. Value of multi-slice CT in the classification diagnosis of hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Qian Yi; Zeng Mengsu; Ling Zhiqing; Rao Shengxiang; Liu Yalan

    2008-01-01

    Objective: To evaluate the value of multi-slice CT (MSCT) classification in the assessment of the hilar cholangiocarcinoma resectability. Methods: Thirty patients with surgically and histopathologically proved hilar cholangiocarcinomas who underwent preoperative MSCT and were diagnosed correctly were included in present study. Transverse images and reconstructed MPR images were reviewed for Bismuth-Corlette classification and morphological classification of hilar cholangiocarcinoma. Then MSCT classification was compared with findings of surgery and histopathology. Curative resectabilty of different types according to Bismuth-Corlette classification and morphological classification were analyzed with chi-square test. Results: In 30 cases, the numbers of Type I, II, IIIa, IIIb and IV according to Bismuth-Corlette classification were 1, 3, 4, 5 and 17. Seventeen patients underwent curative resections, among which 1, 2, 1, 4 and 9 belonged to Type I, II, IIIa, IIIb and IV respectively. However, there was no significant difference in curative resectability among different types of Bismuth-Corlette classification (χ 2 = 0.9875, P>0.05). In present study, the accuracy of MSCT in Bismuth-Corlette classification reached 86.7% (26/30). The numbers of periductal infiltrating, mass forming and intraductal growing type were 13, 13 and 4, while 6, 8 and 3 cases of each type underwent curative resections. There was no significant difference in curative resectability among different types of morphological classification (χ 2 =1.2583, P>0.05). The accuracy of MSCT in morphological classification was 100% (30/30) in this study group. Conclusion: MSCT can make accurate diagnosis of Bismuth-Corlette classification and morphological classification, which is helpful in preoperative respectability assessment of hilar cholangiocarcinoma. (authors)

  12. Cadastral Database Positional Accuracy Improvement

    Science.gov (United States)

    Hashim, N. M.; Omar, A. H.; Ramli, S. N. M.; Omar, K. M.; Din, N.

    2017-10-01

    Positional Accuracy Improvement (PAI) is the refining process of the geometry feature in a geospatial dataset to improve its actual position. This actual position relates to the absolute position in specific coordinate system and the relation to the neighborhood features. With the growth of spatial based technology especially Geographical Information System (GIS) and Global Navigation Satellite System (GNSS), the PAI campaign is inevitable especially to the legacy cadastral database. Integration of legacy dataset and higher accuracy dataset like GNSS observation is a potential solution for improving the legacy dataset. However, by merely integrating both datasets will lead to a distortion of the relative geometry. The improved dataset should be further treated to minimize inherent errors and fitting to the new accurate dataset. The main focus of this study is to describe a method of angular based Least Square Adjustment (LSA) for PAI process of legacy dataset. The existing high accuracy dataset known as National Digital Cadastral Database (NDCDB) is then used as bench mark to validate the results. It was found that the propose technique is highly possible for positional accuracy improvement of legacy spatial datasets.

  13. The hidden KPI registration accuracy.

    Science.gov (United States)

    Shorrosh, Paul

    2011-09-01

    Determining the registration accuracy rate is fundamental to improving revenue cycle key performance indicators. A registration quality assurance (QA) process allows errors to be corrected before bills are sent and helps registrars learn from their mistakes. Tools are available to help patient access staff who perform registration QA manually.

  14. Design of a hybrid model for cardiac arrhythmia classification based on Daubechies wavelet transform.

    Science.gov (United States)

    Rajagopal, Rekha; Ranganathan, Vidhyapriya

    2018-06-05

    Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.

  15. CLASS-PAIR-GUIDED MULTIPLE KERNEL LEARNING OF INTEGRATING HETEROGENEOUS FEATURES FOR CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2017-10-01

    Full Text Available In recent years, many studies on remote sensing image classification have shown that using multiple features from different data sources can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL can conveniently be embedded in a variety of characteristics. The conventional combined kernel learned by MKL can be regarded as the compromise of all basic kernels for all classes in classification. It is the best of the whole, but not optimal for each specific class. For this problem, this paper proposes a class-pair-guided MKL method to integrate the heterogeneous features (HFs from multispectral image (MSI and light detection and ranging (LiDAR data. In particular, the one-against-one strategy is adopted, which converts multiclass classification problem to a plurality of two-class classification problem. Then, we select the best kernel from pre-constructed basic kernels set for each class-pair by kernel alignment (KA in the process of classification. The advantage of the proposed method is that only the best kernel for the classification of any two classes can be retained, which leads to greatly enhanced discriminability. Experiments are conducted on two real data sets, and the experimental results show that the proposed method achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms.

  16. Computer-aided diagnosis scheme for histological classification of clustered microcalcifications on magnification mammograms

    International Nuclear Information System (INIS)

    Nakayama, Ryohei; Uchiyama, Yoshikazu; Watanabe, Ryoji; Katsuragawa, Shigehiko; Namba, Kiyoshi; Doi, Kunio

    2004-01-01

    The histological classification of clustered microcalcifications on mammograms can be difficult, and thus often require biopsy or follow-up. Our purpose in this study was to develop a computer-aided diagnosis schemefor identifying the histological classification of clustered microcalcifications on magnification mammograms in order to assist the radiologists' interpretation as a 'second opinion'. Our database consisted of 58 magnification mammograms, which included 35 malignant clustered microcalcifications (9 invasive carcinomas, 12 noninvasive carcinomas of the comedo type, and 14 noninvasive carcinomas of the noncomedo type) and 23 benign clustered microcalcifications (17 mastopathies and 6 fibroadenomas). The histological classifications of all clustered microcalcifications were proved by pathologic diagnosis. The clustered microcalcifications were first segmented by use of a novel filter bank and a thresholding technique. Five objective features on clustered microcalcifications were determined by taking into account subjective features that experienced the radiologists commonly use to identify possible histological classifications. The Bayes decision rule with five objective features was employed for distinguishing between five histological classifications. The classification accuracies for distinguishing between three malignant histological classifications were 77.8% (7/9) for invasive carcinoma, 75.0% (9/12) for noninvasive carcinoma of the comedo type, and 92.9% (13/14) for noninvasive carcinoma of the noncomedo type. The classification accuracies for distinguishing between two benign histological classifications were 94.1% (16/17) for mastopathy, and 100.0% (6/6) for fibroadenoma. This computerized method would be useful in assisting radiologists in their assessments of clustered microcalcifications

  17. Combining diagnostic categories to improve agreement between death certificate and autopsy classifications of cause of death for atomic bomb survivors, 1950-87

    International Nuclear Information System (INIS)

    Carter, R.L.; Ron, E.; Mabuchi, Kiyohiko.

    1993-05-01

    Several investigators have observed less-than-desirable agreement between death certificate diagnoses and autopsy diagnoses for most specific causes of death, and even for some causes grouped by major disease category. Our results from data on 5130 autopsies of members of the Life Span Study cohort of atomic bomb survivors in Hiroshima and Nagasaki conducted prior to September 1987 were equally discouraging. Among diseases with more than 10 cases observed, confirmation rates ranged from 13 % to 97 % and detection rates from 6 % to 90 %. Both rates were greater than 70 % for only 6 of 60 disease categories studied and for only 1 of 16 categories defined by major International Classification of Disease categories (neoplasms). This deficiency suggests cautious interpretation of results from studies based on death certificate diagnoses. To determine whether any groupings of diagnoses might meet acceptable accuracy requirements, we applied a hierarchical clustering method to data from these 5130 cohort members. The resulting classification system had 10 categories: breast cancer; other female cancers; cancers of the digestive organs; cancer of the larynx; leukemia; nasal, ear, or sinus cancer; tongue cancer; external causes; vascular disease; and all other causes. Confirmation and detection rates for each of these categories were at least 66 %. Although the categories are broad, particularly for nonneoplastic diseases, further divisions led to unacceptable accuracy rates for some of the resulting diagnostic groups. Using the derived classification system, there was 72 % agreement overall between death certificate and autopsy diagnoses compared to 53 % agreement for a second system obtained by grouping strictly by major disease category. Eighty-seven percent agreement was observed for a similar classification system with vascular disease grouped with all other nonneoplastic diseases. Further agglomeration achieved very little additional improvement. (J.P.N.)

  18. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Science.gov (United States)

    Zhu, Xiangbin; Qiu, Huiling

    2016-01-01

    Human activity recognition(HAR) from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM) approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP) is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  19. High Accuracy Human Activity Recognition Based on Sparse Locality Preserving Projections.

    Directory of Open Access Journals (Sweden)

    Xiangbin Zhu

    Full Text Available Human activity recognition(HAR from the temporal streams of sensory data has been applied to many fields, such as healthcare services, intelligent environments and cyber security. However, the classification accuracy of most existed methods is not enough in some applications, especially for healthcare services. In order to improving accuracy, it is necessary to develop a novel method which will take full account of the intrinsic sequential characteristics for time-series sensory data. Moreover, each human activity may has correlated feature relationship at different levels. Therefore, in this paper, we propose a three-stage continuous hidden Markov model (TSCHMM approach to recognize human activities. The proposed method contains coarse, fine and accurate classification. The feature reduction is an important step in classification processing. In this paper, sparse locality preserving projections (SpLPP is exploited to determine the optimal feature subsets for accurate classification of the stationary-activity data. It can extract more discriminative activities features from the sensor data compared with locality preserving projections. Furthermore, all of the gyro-based features are used for accurate classification of the moving data. Compared with other methods, our method uses significantly less number of features, and the over-all accuracy has been obviously improved.

  20. Accuracy in Optical Information Processing

    Science.gov (United States)

    Timucin, Dogan Aslan

    Low computational accuracy is an important obstacle for optical processors which blocks their way to becoming a practical reality and a serious challenger for classical computing paradigms. This research presents a comprehensive solution approach to the problem of accuracy enhancement in discrete analog optical information processing systems. Statistical analysis of a generic three-plane optical processor is carried out first, taking into account the effects of diffraction, interchannel crosstalk, and background radiation. Noise sources included in the analysis are photon, excitation, and emission fluctuations in the source array, transmission and polarization fluctuations in the modulator, and photoelectron, gain, dark, shot, and thermal noise in the detector array. Means and mutual coherence and probability density functions are derived for both optical and electrical output signals. Next, statistical models for a number of popular optoelectronic devices are studied. Specific devices considered here are light-emitting and laser diode sources, an ideal noiseless modulator and a Gaussian random-amplitude-transmittance modulator, p-i-n and avalanche photodiode detectors followed by electronic postprocessing, and ideal free-space geometrical -optics propagation and single-lens imaging systems. Output signal statistics are determined for various interesting device combinations by inserting these models into the general formalism. Finally, based on these special-case output statistics, results on accuracy limitations and enhancement in optical processors are presented. Here, starting with the formulation of the accuracy enhancement problem as (1) an optimal detection problem and (2) as a parameter estimation problem, the potential accuracy improvements achievable via the classical multiple-hypothesis -testing and maximum likelihood and Bayesian parameter estimation methods are demonstrated. Merits of using proper normalizing transforms which can potentially stabilize

  1. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  2. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  3. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    Science.gov (United States)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / text-decoration: overline">α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification

  4. Hybrid image classification technique for land-cover mapping in the Arctic tundra, North Slope, Alaska

    Science.gov (United States)

    Chaudhuri, Debasish

    Remotely sensed image classification techniques are very useful to understand vegetation patterns and species combination in the vast and mostly inaccessible arctic region. Previous researches that were done for mapping of land cover and vegetation in the remote areas of northern Alaska have considerably low accuracies compared to other biomes. The unique arctic tundra environment with short growing season length, cloud cover, low sun angles, snow and ice cover hinders the effectiveness of remote sensing studies. The majority of image classification research done in this area as reported in the literature used traditional unsupervised clustering technique with Landsat MSS data. It was also emphasized by previous researchers that SPOT/HRV-XS data lacked the spectral resolution to identify the small arctic tundra vegetation parcels. Thus, there is a motivation and research need to apply a new classification technique to develop an updated, detailed and accurate vegetation map at a higher spatial resolution i.e. SPOT-5 data. Traditional classification techniques in remotely sensed image interpretation are based on spectral reflectance values with an assumption of the training data being normally distributed. Hence it is difficult to add ancillary data in classification procedures to improve accuracy. The purpose of this dissertation was to develop a hybrid image classification approach that effectively integrates ancillary information into the classification process and combines ISODATA clustering, rule-based classifier and the Multilayer Perceptron (MLP) classifier which uses artificial neural network (ANN). The main goal was to find out the best possible combination or sequence of classifiers for typically classifying tundra type vegetation that yields higher accuracy than the existing classified vegetation map from SPOT data. Unsupervised ISODATA clustering and rule-based classification techniques were combined to produce an intermediate classified map which was

  5. POLSAR LAND COVER CLASSIFICATION BASED ON HIDDEN POLARIMETRIC FEATURES IN ROTATION DOMAIN AND SVM CLASSIFIER

    Directory of Open Access Journals (Sweden)

    C.-S. Tao

    2017-09-01

    Full Text Available Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets’ scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy

  6. Land Cover and Land Use Classification with TWOPAC: towards Automated Processing for Pixel- and Object-Based Image Classification

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2012-09-01

    Full Text Available We present a novel and innovative automated processing environment for the derivation of land cover (LC and land use (LU information. This processing framework named TWOPAC (TWinned Object and Pixel based Automated classification Chain enables the standardized, independent, user-friendly, and comparable derivation of LC and LU information, with minimized manual classification labor. TWOPAC allows classification of multi-spectral and multi-temporal remote sensing imagery from different sensor types. TWOPAC enables not only pixel-based classification, but also allows classification based on object-based characteristics. Classification is based on a Decision Tree approach (DT for which the well-known C5.0 code has been implemented, which builds decision trees based on the concept of information entropy. TWOPAC enables automatic generation of the decision tree classifier based on a C5.0-retrieved ascii-file, as well as fully automatic validation of the classification output via sample based accuracy assessment.Envisaging the automated generation of standardized land cover products, as well as area-wide classification of large amounts of data in preferably a short processing time, standardized interfaces for process control, Web Processing Services (WPS, as introduced by the Open Geospatial Consortium (OGC, are utilized. TWOPAC’s functionality to process geospatial raster or vector data via web resources (server, network enables TWOPAC’s usability independent of any commercial client or desktop software and allows for large scale data processing on servers. Furthermore, the components of TWOPAC were built-up using open source code components and are implemented as a plug-in for Quantum GIS software for easy handling of the classification process from the user’s perspective.

  7. Coupling Uncertainties with Accuracy Assessment in Object-Based Slum Detections, Case Study: Jakarta, Indonesia

    NARCIS (Netherlands)

    Pratomo, J.; Kuffer, M.; Martinez, Javier; Kohli, D.

    2017-01-01

    Object-Based Image Analysis (OBIA) has been successfully used to map slums. In general, the occurrence of uncertainties in producing geographic data is inevitable. However, most studies concentrated solely on assessing the classification accuracy and neglecting the inherent uncertainties. Our

  8. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    Science.gov (United States)

    Rudner, Lawrence

    2016-01-01

    In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows…

  9. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks.

    Science.gov (United States)

    Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio

    2010-05-01

    This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.

  10. REAL-TIME INTELLIGENT MULTILAYER ATTACK CLASSIFICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    T. Subbhulakshmi

    2014-01-01

    Full Text Available Intrusion Detection Systems (IDS takes the lion’s share of the current security infrastructure. Detection of intrusions is vital for initiating the defensive procedures. Intrusion detection was done by statistical and distance based methods. A threshold value is used in these methods to indicate the level of normalcy. When the network traffic crosses the level of normalcy then above which it is flagged as anomalous. When there are occurrences of new intrusion events which are increasingly a key part of system security, the statistical techniques cannot detect them. To overcome this issue, learning techniques are used which helps in identifying new intrusion activities in a computer system. The objective of the proposed system designed in this paper is to classify the intrusions using an Intelligent Multi Layered Attack Classification System (IMLACS which helps in detecting and classifying the intrusions with improved classification accuracy. The intelligent multi layered approach contains three intelligent layers. The first layer involves Binary Support Vector Machine classification for detecting the normal and attack. The second layer involves neural network classification to classify the attacks into classes of attacks. The third layer involves fuzzy inference system to classify the attacks into various subclasses. The proposed IMLACS can be able to detect an intrusion behavior of the networks since the system contains a three intelligent layer classification and better set of rules. Feature selection is also used to improve the time of detection. The experimental results show that the IMLACS achieves the Classification Rate of 97.31%.

  11. A Two-Level Sound Classification Platform for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Stelios A. Mitilineos

    2018-01-01

    Full Text Available STORM is an ongoing European research project that aims at developing an integrated platform for monitoring, protecting, and managing cultural heritage sites through technical and organizational innovation. Part of the scheduled preventive actions for the protection of cultural heritage is the development of wireless acoustic sensor networks (WASNs that will be used for assessing the impact of human-generated activities as well as for monitoring potentially hazardous environmental phenomena. Collected sound samples will be forwarded to a central server where they will be automatically classified in a hierarchical manner; anthropogenic and environmental activity will be monitored, and stakeholders will be alarmed in the case of potential malevolent behavior or natural phenomena like excess rainfall, fire, gale, high tides, and waves. Herein, we present an integrated platform that includes sound sample denoising using wavelets, feature extraction from sound samples, Gaussian mixture modeling of these features, and a powerful two-layer neural network for automatic classification. We contribute to previous work by extending the proposed classification platform to perform low-level classification too, i.e., classify sounds to further subclasses that include airplane, car, and pistol sounds for the anthropogenic sound class; bird, dog, and snake sounds for the biophysical sound class; and fire, waterfall, and gale for the geophysical sound class. Classification results exhibit outstanding classification accuracy in both high-level and low-level classification thus demonstrating the feasibility of the proposed approach.

  12. Improving the analysis of near-spectroscopy data with multivariate classification of hemodynamic patterns: a theoretical formulation and validation.

    Science.gov (United States)

    Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin

    2018-04-04

    The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions

  13. TEXT CLASSIFICATION USING NAIVE BAYES UPDATEABLE ALGORITHM IN SBMPTN TEST QUESTIONS

    Directory of Open Access Journals (Sweden)

    Ristu Saptono

    2017-01-01

    Full Text Available Document classification is a growing interest in the research of text mining. Classification can be done based on the topics, languages, and so on. This study was conducted to determine how Naive Bayes Updateable performs in classifying the SBMPTN exam questions based on its theme. Increment model of one classification algorithm often used in text classification Naive Bayes classifier has the ability to learn from new data introduces with the system even after the classifier has been produced with the existing data. Naive Bayes Classifier classifies the exam questions based on the theme of the field of study by analyzing keywords that appear on the exam questions. One of feature selection method DF-Thresholding is implemented for improving the classification performance. Evaluation of the classification with Naive Bayes classifier algorithm produces 84,61% accuracy.

  14. Classification of high resolution imagery based on fusion of multiscale texture features

    International Nuclear Information System (INIS)

    Liu, Jinxiu; Liu, Huiping; Lv, Ying; Xue, Xiaojuan

    2014-01-01

    In high resolution data classification process, combining texture features with spectral bands can effectively improve the classification accuracy. However, the window size which is difficult to choose is regarded as an important factor influencing overall classification accuracy in textural classification and current approaches to image texture analysis only depend on a single moving window which ignores different scale features of various land cover types. In this paper, we propose a new method based on the fusion of multiscale texture features to overcome these problems. The main steps in new method include the classification of fixed window size spectral/textural images from 3×3 to 15×15 and comparison of all the posterior possibility values for every pixel, as a result the biggest probability value is given to the pixel and the pixel belongs to a certain land cover type automatically. The proposed approach is tested on University of Pavia ROSIS data. The results indicate that the new method improve the classification accuracy compared to results of methods based on fixed window size textural classification

  15. DATA CLASSIFICATION WITH NEURAL CLASSIFIER USING RADIAL BASIS FUNCTION WITH DATA REDUCTION USING HIERARCHICAL CLUSTERING

    Directory of Open Access Journals (Sweden)

    M. Safish Mary

    2012-04-01

    Full Text Available Classification of large amount of data is a time consuming process but crucial for analysis and decision making. Radial Basis Function networks are widely used for classification and regression analysis. In this paper, we have studied the performance of RBF neural networks to classify the sales of cars based on the demand, using kernel density estimation algorithm which produces classification accuracy comparable to data classification accuracy provided by support vector machines. In this paper, we have proposed a new instance based data selection method where redundant instances are removed with help of a threshold thus improving the time complexity with improved classification accuracy. The instance based selection of the data set will help reduce the number of clusters formed thereby reduces the number of centers considered for building the RBF network. Further the efficiency of the training is improved by applying a hierarchical clustering technique to reduce the number of clusters formed at every step. The paper explains the algorithm used for classification and for conditioning the data. It also explains the complexities involved in classification of sales data for analysis and decision-making.

  16. Classification of IRAS asteroids

    International Nuclear Information System (INIS)

    Tedesco, E.F.; Matson, D.L.; Veeder, G.J.

    1989-01-01

    Albedos and spectral reflectances are essential for classifying asteroids. For example, classes E, M and P are indistinguishable without albedo data. Colorometric data are available for about 1000 asteroids but, prior to IRAS, albedo data was available for only about 200. IRAS broke this bottleneck by providing albedo data on nearly 2000 asteroids. Hence, excepting absolute magnitudes, the albedo and size are now the most common asteroid physical parameters known. In this chapter the authors present the results of analyses of IRAS-derived asteroid albedos, discuss their application to asteroid classification, and mention several studies which might be done to exploit further this data set

  17. SPORT FOOD ADDITIVE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    I. P. Prokopenko

    2015-01-01

    Full Text Available Correctly organized nutritive and pharmacological support is an important component of an athlete's preparation for competitions, an optimal shape maintenance, fast recovery and rehabilitation after traumas and defatigation. Special products of enhanced biological value (BAS for athletes nutrition are used with this purpose. Easy-to-use energy sources are administered into athlete's organism, yielded materials and biologically active substances which regulate and activate exchange reactions which proceed with difficulties during certain physical trainings. The article presents sport supplements classification which can be used before warm-up and trainings, after trainings and in competitions breaks.

  18. Radioactive facilities classification criteria

    International Nuclear Information System (INIS)

    Briso C, H.A.; Riesle W, J.

    1992-01-01

    Appropriate classification of radioactive facilities into groups of comparable risk constitutes one of the problems faced by most Regulatory Bodies. Regarding the radiological risk, the main facts to be considered are the radioactive inventory and the processes to which these radionuclides are subjected. Normally, operations are ruled by strict safety procedures. Thus, the total activity of the radionuclides existing in a given facility is the varying feature that defines its risk. In order to rely on a quantitative criterion and, considering that the Annual Limits of Intake are widely accepted references, an index based on these limits, to support decisions related to radioactive facilities, is proposed. (author)

  19. A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-11-01

    Full Text Available Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is investigated. For a given hyperspectral image, the principle component analysis (PCA transform is first performed. Then, the first principle component of the input image is segmented into non-overlapping homogeneous regions by using the entropy rate superpixel (ERS algorithm. Next, the local spectral histogram model is applied to each homogeneous region to obtain the corresponding texture features. Because this step is performed within each homogenous region, instead of within a fixed-size image window, the obtained local texture features in the image are more accurate, which can effectively benefit the improvement of classification accuracy. In the following step, a contextual spectral-texture kernel is constructed by combining spectral information in the image and the extracted texture information using the linearity property of the kernel methods. Finally, the classification map is achieved by the support vector machines (SVM classifier using the proposed spectral-texture kernel. Experiments on two benchmark airborne hyperspectral datasets demonstrate that our method can effectively improve classification accuracies, even though only a very limited training sample is available. Specifically, our method can achieve from 8.26% to 15.1% higher in terms of overall accuracy than the traditional SVM classifier. The performance of our method was further compared to several state-of-the-art classification methods of hyperspectral images using objective quantitative measures and a visual qualitative evaluation.

  20. Use of topographic and climatological models in a geographical data base to improve Landsat MSS classification for Olympic National Park

    Science.gov (United States)

    Cibula, William G.; Nyquist, Maurice O.

    1987-01-01

    An unsupervised computer classification of vegetation/landcover of Olympic National Park and surrounding environs was initially carried out using four bands of Landsat MSS data. The primary objective of the project was to derive a level of landcover classifications useful for park management applications while maintaining an acceptably high level of classification accuracy. Initially, nine generalized vegetation/landcover classes were derived. Overall classification accuracy was 91.7 percent. In an attempt to refine the level of classification, a geographic information system (GIS) approach was employed. Topographic data and watershed boundaries (inferred precipitation/temperature) data were registered with the Landsat MSS data. The resultant boolean operations yielded 21 vegetation/landcover classes while maintaining the same level of classification accuracy. The final classification provided much better identification and location of the major forest types within the park at the same high level of accuracy, and these met the project objective. This classification could now become inputs into a GIS system to help provide answers to park management coupled with other ancillary data programs such as fire management.

  1. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    Science.gov (United States)

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  2. Fruit Detachment and Classification Method for Strawberry Harvesting Robot

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2008-11-01

    Full Text Available Fruit detachment and on-line classification is important for the development of harvesting robot. With the specific requriements of robot used for harvesting strawberries growing on the ground, a fruit detachment and classification method is introduced in this paper. OHTA color spaces based image segmentation algorithm is utilized to extract strawberry from background; Principal inertia axis of binary strawberry blob is calculated to give the pose information of fruit. Strawberry is picked selectively according to its ripeness and classified according to its shape feature. Histogram matching based method for fruit shape judgment is introduced firstly. Experiment results show that this method can achieve 93% accuracy of strawberry's stem detection, 90% above accuracy of ripeness and shape quality judgment on black and white background. With the improvement of harvesting mechanism design, this method has application potential in the field operation.

  3. Automatic Task Classification via Support Vector Machine and Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Hyungsik Shin

    2018-01-01

    Full Text Available Automatic task classification is a core part of personal assistant systems that are widely used in mobile devices such as smartphones and tablets. Even though many industry leaders are providing their own personal assistant services, their proprietary internals and implementations are not well known to the public. In this work, we show through real implementation and evaluation that automatic task classification can be implemented for mobile devices by using the support vector machine algorithm and crowdsourcing. To train our task classifier, we collected our training data set via crowdsourcing using the Amazon Mechanical Turk platform. Our classifier can classify a short English sentence into one of the thirty-two predefined tasks that are frequently requested while using personal mobile devices. Evaluation results show high prediction accuracy of our classifier ranging from 82% to 99%. By using large amount of crowdsourced data, we also illustrate the relationship between training data size and the prediction accuracy of our task classifier.

  4. Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network

    Science.gov (United States)

    Pratiwi, A. B.; Damayanti, A.; Miswanto

    2017-07-01

    Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.

  5. Android Malware Classification Using K-Means Clustering Algorithm

    Science.gov (United States)

    Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah

    2017-08-01

    Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.

  6. Fruit Detachment and Classification Method for Strawberry Harvesting Robot

    Directory of Open Access Journals (Sweden)

    Guo Feng

    2008-03-01

    Full Text Available Fruit detachment and on-line classification is important for the development of harvesting robot. With the specific requriements of robot used for harvesting strawberries growing on the ground, a fruit detachment and classification method is introduced in this paper. OHTA color spaces based image segmentation algorithm is utilized to extract strawberry from background; Principal inertia axis of binary strawberry blob is calculated to give the pose information of fruit. Strawberry is picked selectively according to its ripeness and classified according to its shape feature. Histogram matching based method for fruit shape judgment is introduced firstly. Experiment results show that this method can achieve 93% accuracy of strawberry's stem detection, 90% above accuracy of ripeness and shape quality judgment on black and white background. With the improvement of harvesting mechanism design, this method has application potential in the field operation.

  7. A Survey on Sentiment Classification in Face Recognition

    Science.gov (United States)

    Qian, Jingyu

    2018-01-01

    Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.

  8. Radioactive wastes: a proposal to its classification

    International Nuclear Information System (INIS)

    Domenech N, H.; Garcia L, N.; Hernandez S, A.

    1996-01-01

    On the basis of the quantities and the characteristics of the stored radioactive wastes in Cuba and the IAEA system of wastes classification, the concentration activities that would be used as limits for those categories are evaluated. This approach suggests a limit of 10 TBq/m 3 for short lived liquid wastes of Low and Intermediate Level (less than 30 years) and 5 TBq/m 3 for long lived liquid wastes (more than 30 years). For solid wastes the suggested limits are ten times lower. Taking into account the small quantities of arising wastes and to make easy its segregation, collection and disposal, a low level waste sub-classification in three new categories, whether or not they may be direct discharged, is suggested. As lower classification limit, while not specific exemption levels are established in the country, the use of an ALI min fraction is emphasized, meanwhile the total discharged activity will be no greater than 10 MBq or 100 MBq when the discharge occurs over the whole year. (authors). 6 refs., 5 tabs

  9. A Study of Light Level Effect on the Accuracy of Image Processing-based Tomato Grading

    Science.gov (United States)

    Prijatna, D.; Muhaemin, M.; Wulandari, R. P.; Herwanto, T.; Saukat, M.; Sugandi, W. K.

    2018-05-01

    Image processing method has been used in non-destructive tests of agricultural products. Compared to manual method, image processing method may produce more objective and consistent results. Image capturing box installed in currently used tomato grading machine (TEP-4) is equipped with four fluorescence lamps to illuminate the processed tomatoes. Since the performance of any lamp will decrease if its service time has exceeded its lifetime, it is predicted that this will affect tomato classification. The objective of this study was to determine the minimum light levels which affect classification accuracy. This study was conducted by varying light level from minimum and maximum on tomatoes in image capturing boxes and then investigates its effects on image characteristics. Research results showed that light intensity affects two variables which are important for classification, for example, area and color of captured image. Image processing program was able to determine correctly the weight and classification of tomatoes when light level was 30 lx to 140 lx.

  10. Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.

    Science.gov (United States)

    Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck

    2018-04-20

    Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.

  11. Vulnerable land ecosystems classification using spatial context and spectral indices

    Science.gov (United States)

    Ibarrola-Ulzurrun, Edurne; Gonzalo-Martín, Consuelo; Marcello, Javier

    2017-10-01

    Natural habitats are exposed to growing pressure due to intensification of land use and tourism development. Thus, obtaining information on the vegetation is necessary for conservation and management projects. In this context, remote sensing is an important tool for monitoring and managing habitats, being classification a crucial stage. The majority of image classifications techniques are based upon the pixel-based approach. An alternative is the object-based (OBIA) approach, in which a previous segmentation step merges image pixels to create objects that are then classified. Besides, improved results may be gained by incorporating additional spatial information and specific spectral indices into the classification process. The main goal of this work was to implement and assess object-based classification techniques on very-high resolution imagery incorporating spectral indices and contextual spatial information in the classification models. The study area was Teide National Park in Canary Islands (Spain) using Worldview-2 orthoready imagery. In the classification model, two common indices were selected Normalized Difference Vegetation Index (NDVI) and Optimized Soil Adjusted Vegetation Index (OSAVI), as well as two specific Worldview-2 sensor indices, Worldview Vegetation Index and Worldview Soil Index. To include the contextual information, Grey Level Co-occurrence Matrices (GLCM) were used. The classification was performed training a Support Vector Machine with sufficient and representative number of vegetation samples (Spartocytisus supranubius, Pterocephalus lasiospermus, Descurainia bourgaeana and Pinus canariensis) as well as urban, road and bare soil classes. Confusion Matrices were computed to evaluate the results from each classification model obtaining the highest overall accuracy (90.07%) combining both Worldview indices with the GLCM-dissimilarity.

  12. Satellite monitoring of urban sprawl and assessment of its potential environmental impact in the Greater Toronto Area between 1985 and 2005.

    Science.gov (United States)

    Furberg, Dorothy; Ban, Yifang

    2012-12-01

    This research investigates urban sprawl in the Greater Toronto Area (GTA) between 1985 and 2005 and the nature of the resulting landscape fragmentation, particularly with regard to the Oak Ridges Moraine (ORM), an ecologically important area for the region. Six scenes of Landsat TM imagery were acquired in summer of 1985, 1995, and 2005. These images and their texture measures were classified into eight land cover classes with very satisfactory final overall accuracies (93-95 %). Analysis of the classifications indicated that urban areas grew by 20 % between 1985 and 1995 and by 15 % between 1995 and 2005. Landscape fragmentation due to spatio-temporal land cover changes was evaluated using urban compactness indicators and landscape metrics, and results from the latter were used to draw conclusions about probable environmental impact. The indicator results showed that urban proportions increased in nearly all areas outside of the metropolitan center, including on portions of the ORM. The landscape metrics reveal that low density urban areas increased significantly in the GTA between 1985 and 2005, mainly at the expense of agricultural land. The metric results indicate increased vulnerability and exposure to adverse effects for natural and semi-natural land cover through greater contrast and lowered connectivity. The degree of urban perimeter increased around most environmentally significant areas in the region. Changes like these negatively impact species and the regional water supply in the GTA. Further investigation into specific environmental impacts of urban expansion in the region and which areas on the ORM are most at risk is recommended.

  13. Supply chain planning classification

    Science.gov (United States)

    Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans

    2001-10-01

    Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.

  14. Waste classification sampling plan

    International Nuclear Information System (INIS)

    Landsman, S.D.

    1998-01-01

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998

  15. Classification of smooth Fano polytopes

    DEFF Research Database (Denmark)

    Øbro, Mikkel

    A simplicial lattice polytope containing the origin in the interior is called a smooth Fano polytope, if the vertices of every facet is a basis of the lattice. The study of smooth Fano polytopes is motivated by their connection to toric varieties. The thesis concerns the classification of smooth...... Fano polytopes up to isomorphism. A smooth Fano -polytope can have at most vertices. In case of vertices an explicit classification is known. The thesis contains the classification in case of vertices. Classifications of smooth Fano -polytopes for fixed exist only for . In the thesis an algorithm...... for the classification of smooth Fano -polytopes for any given is presented. The algorithm has been implemented and used to obtain the complete classification for ....

  16. Small-scale classification schemes

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2004-01-01

    Small-scale classification schemes are used extensively in the coordination of cooperative work. This study investigates the creation and use of a classification scheme for handling the system requirements during the redevelopment of a nation-wide information system. This requirements...... classification inherited a lot of its structure from the existing system and rendered requirements that transcended the framework laid out by the existing system almost invisible. As a result, the requirements classification became a defining element of the requirements-engineering process, though its main...... effects remained largely implicit. The requirements classification contributed to constraining the requirements-engineering process by supporting the software engineers in maintaining some level of control over the process. This way, the requirements classification provided the software engineers...

  17. Parallel computation for blood cell classification in medical hyperspectral imagery

    International Nuclear Information System (INIS)

    Li, Wei; Wu, Lucheng; Qiu, Xianbo; Ran, Qiong; Xie, Xiaoming

    2016-01-01

    With the advantage of fine spectral resolution, hyperspectral imagery provides great potential for cell classification. This paper provides a promising classification system including the following three stages: (1) band selection for a subset of spectral bands with distinctive and informative features, (2) spectral-spatial feature extraction, such as local binary patterns (LBP), and (3) followed by an effective classifier. Moreover, these three steps are further implemented on graphics processing units (GPU) respectively, which makes the system real-time and more practical. The GPU parallel implementation is compared with the serial implementation on central processing units (CPU). Experimental results based on real medical hyperspectral data demonstrate that the proposed system is able to offer high accuracy and fast speed, which are appealing for cell classification in medical hyperspectral imagery. (paper)

  18. AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA

    International Nuclear Information System (INIS)

    Pichara, Karim; Protopapas, Pavlos

    2013-01-01

    We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same

  19. AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA

    Energy Technology Data Exchange (ETDEWEB)

    Pichara, Karim [Computer Science Department, Pontificia Universidad Católica de Chile, Santiago (Chile); Protopapas, Pavlos [Institute for Applied Computational Science, Harvard University, Cambridge, MA (United States)

    2013-11-10

    We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same.

  20. Classification of urine sediment based on convolution neural network

    Science.gov (United States)

    Pan, Jingjing; Jiang, Cunbo; Zhu, Tiantian

    2018-04-01

    By designing a new convolution neural network framework, this paper breaks the constraints of the original convolution neural network framework requiring large training samples and samples of the same size. Move and cropping the input images, generate the same size of the sub-graph. And then, the generated sub-graph uses the method of dropout, increasing the diversity of samples and preventing the fitting generation. Randomly select some proper subset in the sub-graphic set and ensure that the number of elements in the proper subset is same and the proper subset is not the same. The proper subsets are used as input layers for the convolution neural network. Through the convolution layer, the pooling, the full connection layer and output layer, we can obtained the classification loss rate of test set and training set. In the red blood cells, white blood cells, calcium oxalate crystallization classification experiment, the classification accuracy rate of 97% or more.

  1. A supervised learning rule for classification of spatiotemporal spike patterns.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  2. High accuracy wavelength calibration for a scanning visible spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Filippo; Bell, Ronald E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2010-10-15

    Spectroscopic applications for plasma velocity measurements often require wavelength accuracies {<=}0.2 A. An automated calibration, which is stable over time and environmental conditions without the need to recalibrate after each grating movement, was developed for a scanning spectrometer to achieve high wavelength accuracy over the visible spectrum. This method fits all relevant spectrometer parameters using multiple calibration spectra. With a stepping-motor controlled sine drive, an accuracy of {approx}0.25 A has been demonstrated. With the addition of a high resolution (0.075 arc sec) optical encoder on the grating stage, greater precision ({approx}0.005 A) is possible, allowing absolute velocity measurements within {approx}0.3 km/s. This level of precision requires monitoring of atmospheric temperature and pressure and of grating bulk temperature to correct for changes in the refractive index of air and the groove density, respectively.

  3. Empirical evaluation of data normalization methods for molecular classification.

    Science.gov (United States)

    Huang, Huei-Chung; Qin, Li-Xuan

    2018-01-01

    Data artifacts due to variations in experimental handling are ubiquitous in microarray studies, and they can lead to biased and irreproducible findings. A popular approach to correct for such artifacts is through post hoc data adjustment such as data normalization. Statistical methods for data normalization have been developed and evaluated primarily for the discovery of individual molecular biomarkers. Their performance has rarely been studied for the development of multi-marker molecular classifiers-an increasingly important application of microarrays in the era of personalized medicine. In this study, we set out to evaluate the performance of three commonly used methods for data normalization in the context of molecular classification, using extensive simulations based on re-sampling from a unique pair of microRNA microarray datasets for the same set of samples. The data and code for our simulations are freely available as R packages at GitHub. In the presence of confounding handling effects, all three normalization methods tended to improve the accuracy of the classifier when evaluated in an independent test data. The level of improvement and the relative performance among the normalization methods depended on the relative level of molecular signal, the distributional pattern of handling effects (e.g., location shift vs scale change), and the statistical method used for building the classifier. In addition, cross-validation was associated with biased estimation of classification accuracy in the over-optimistic direction for all three normalization methods. Normalization may improve the accuracy of molecular classification for data with confounding handling effects; however, it cannot circumvent the over-optimistic findings associated with cross-validation for assessing classification accuracy.

  4. Active Learning for Text Classification

    OpenAIRE

    Hu, Rong

    2011-01-01

    Text classification approaches are used extensively to solve real-world challenges. The success or failure of text classification systems hangs on the datasets used to train them, without a good dataset it is impossible to build a quality system. This thesis examines the applicability of active learning in text classification for the rapid and economical creation of labelled training data. Four main contributions are made in this thesis. First, we present two novel selection strategies to cho...

  5. Unsupervised Classification Using Immune Algorithm

    OpenAIRE

    Al-Muallim, M. T.; El-Kouatly, R.

    2012-01-01

    Unsupervised classification algorithm based on clonal selection principle named Unsupervised Clonal Selection Classification (UCSC) is proposed in this paper. The new proposed algorithm is data driven and self-adaptive, it adjusts its parameters to the data to make the classification operation as fast as possible. The performance of UCSC is evaluated by comparing it with the well known K-means algorithm using several artificial and real-life data sets. The experiments show that the proposed U...

  6. A review of supervised object-based land-cover image classification

    Science.gov (United States)

    Ma, Lei; Li, Manchun; Ma, Xiaoxue; Cheng, Liang; Du, Peijun; Liu, Yongxue

    2017-08-01

    Object-based image classification for land-cover mapping purposes using remote-sensing imagery has attracted significant attention in recent years. Numerous studies conducted over the past decade have investigated a broad array of sensors, feature selection, classifiers, and other factors of interest. However, these research results have not yet been synthesized to provide coherent guidance on the effect of different supervised object-based land-cover classification processes. In this study, we first construct a database with 28 fields using qualitative and quantitative information extracted from 254 experimental cases described in 173 scientific papers. Second, the results of the meta-analysis are reported, including general characteristics of the studies (e.g., the geographic range of relevant institutes, preferred journals) and the relationships between factors of interest (e.g., spatial resolution and study area or optimal segmentation scale, accuracy and number of targeted classes), especially with respect to the classification accuracy of different sensors, segmentation scale, training set size, supervised classifiers, and land-cover types. Third, useful data on supervised object-based image classification are determined from the meta-analysis. For example, we find that supervised object-based classification is currently experiencing rapid advances, while development of the fuzzy technique is limited in the object-based framework. Furthermore, spatial resolution correlates with the optimal segmentation scale and study area, and Random Forest (RF) shows the best performance in object-based classification. The area-based accuracy assessment method can obtain stable classification performance, and indicates a strong correlation between accuracy and training set size, while the accuracy of the point-based method is likely to be unstable due to mixed objects. In addition, the overall accuracy benefits from higher spatial resolution images (e.g., unmanned aerial

  7. Evaluation of Callable Bonds: Finite Difference Methods, Stability and Accuracy.

    OpenAIRE

    Buttler, Hans-Jurg

    1995-01-01

    The purpose of this paper is to evaluate numerically the semi-American callable bond by means of finite difference methods. This study implies three results. First, the numerical error is greater for the callable bond price than for the straight bond price, and too large for real applications Secondly, the numerical accuracy of the callable bond price computed for the relevant range of interest rates depends entirely on the finite difference scheme which is chosen for the boundary points. Thi...

  8. A hierarchical approach of hybrid image classification for land use and land cover mapping

    Directory of Open Access Journals (Sweden)

    Rahdari Vahid

    2018-01-01

    Full Text Available Remote sensing data analysis can provide thematic maps describing land-use and land-cover (LULC in a short period. Using proper image classification method in an area, is important to overcome the possible limitations of satellite imageries for producing land-use and land-cover maps. In the present study, a hierarchical hybrid image classification method was used to produce LULC maps using Landsat Thematic mapper TM for the year of 1998 and operational land imager OLI for the year of 2016. Images were classified using the proposed hybrid image classification method, vegetation cover crown percentage map from normalized difference vegetation index, Fisher supervised classification and object-based image classification methods. Accuracy assessment results showed that the hybrid classification method produced maps with total accuracy up to 84 percent with kappa statistic value 0.81. Results of this study showed that the proposed classification method worked better with OLI sensor than with TM. Although OLI has a higher radiometric resolution than TM, the produced LULC map using TM is almost accurate like OLI, which is because of LULC definitions and image classification methods used.

  9. Effects of cognitive training on change in accuracy in inductive reasoning ability.

    Science.gov (United States)

    Boron, Julie Blaskewicz; Turiano, Nicholas A; Willis, Sherry L; Schaie, K Warner

    2007-05-01

    We investigated cognitive training effects on accuracy and number of items attempted in inductive reasoning performance in a sample of 335 older participants (M = 72.78 years) from the Seattle Longitudinal Study. We assessed the impact of individual characteristics, including chronic disease. The reasoning training group showed significantly greater gain in accuracy and number of attempted items than did the comparison group; gain was primarily due to enhanced accuracy. Reasoning training effects involved a complex interaction of gender, prior cognitive status, and chronic disease. Women with prior decline on reasoning but no heart disease showed the greatest accuracy increase. In addition, stable reasoning-trained women with heart disease demonstrated significant accuracy gain. Comorbidity was associated with less change in accuracy. The results support the effectiveness of cognitive training on improving the accuracy of reasoning performance.

  10. Adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique algorithm for tackling binary imbalanced datasets in biomedical data classification.

    Science.gov (United States)

    Li, Jinyan; Fong, Simon; Sung, Yunsick; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L

    2016-01-01

    An imbalanced dataset is defined as a training dataset that has imbalanced proportions of data in both interesting and uninteresting classes. Often in biomedical applications, samples from the stimulating class are rare in a population, such as medical anomalies, positive clinical tests, and particular diseases. Although the target samples in the primitive dataset are small in number, the induction of a classification model over such training data leads to poor prediction performance due to insufficient training from the minority class. In this paper, we use a novel class-balancing method named adaptive swarm cluster-based dynamic multi-objective synthetic minority oversampling technique (ASCB_DmSMOTE) to solve this imbalanced dataset problem, which is common in biomedical applications. The proposed method combines under-sampling and over-sampling into a swarm optimisation algorithm. It adaptively selects suitable parameters for the rebalancing algorithm to find the best solution. Compared with the other versions of the SMOTE algorithm, significant improvements, which include higher accuracy and credibility, are observed with ASCB_DmSMOTE. Our proposed method tactfully combines two rebalancing techniques together. It reasonably re-allocates the majority class in the details and dynamically optimises the two parameters of SMOTE to synthesise a reasonable scale of minority class for each clustered sub-imbalanced dataset. The proposed methods ultimately overcome other conventional methods and attains higher credibility with even greater accuracy of the classification model.

  11. Land use/cover classification in the Brazilian Amazon using satellite images.

    Science.gov (United States)

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant'anna, Sidnei João Siqueira

    2012-09-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data.

  12. Reliability of Oronasal Fistula Classification.

    Science.gov (United States)

    Sitzman, Thomas J; Allori, Alexander C; Matic, Damir B; Beals, Stephen P; Fisher, David M; Samson, Thomas D; Marcus, Jeffrey R; Tse, Raymond W

    2018-01-01

    Objective Oronasal fistula is an important complication of cleft palate repair that is frequently used to evaluate surgical quality, yet reliability of fistula classification has never been examined. The objective of this study was to determine the reliability of oronasal fistula classification both within individual surgeons and between multiple surgeons. Design Using intraoral photographs of children with repaired cleft palate, surgeons rated the location of palatal fistulae using the Pittsburgh Fistula Classification System. Intrarater and interrater reliability scores were calculated for each region of the palate. Participants Eight cleft surgeons rated photographs obtained from 29 children. Results Within individual surgeons reliability for each region of the Pittsburgh classification ranged from moderate to almost perfect (κ = .60-.96). By contrast, reliability between surgeons was lower, ranging from fair to substantial (κ = .23-.70). Between-surgeon reliability was lowest for the junction of the soft and hard palates (κ = .23). Within-surgeon and between-surgeon reliability were almost perfect for the more general classification of fistula in the secondary palate (κ = .95 and κ = .83, respectively). Conclusions This is the first reliability study of fistula classification. We show that the Pittsburgh Fistula Classification System is reliable when used by an individual surgeon, but less reliable when used among multiple surgeons. Comparisons of fistula occurrence among surgeons may be subject to less bias if they use the more general classification of "presence or absence of fistula of the secondary palate" rather than the Pittsburgh Fistula Classification System.

  13. Behavioral state classification in epileptic brain using intracranial electrophysiology

    Science.gov (United States)

    Kremen, Vaclav; Duque, Juliano J.; Brinkmann, Benjamin H.; Berry, Brent M.; Kucewicz, Michal T.; Khadjevand, Fatemeh; Van Gompel, Jamie; Stead, Matt; St. Louis, Erik K.; Worrell, Gregory A.

    2017-04-01

    Objective. Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. Approach. Data from seven patients (age 34+/- 12 , 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1-600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. Main results. Classification accuracy of 97.8  ±  0.3% (normal tissue) and 89.4  ±  0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8  ±  0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1  ±  1.6%). Spectral power in high frequency band features (Ripple (80-250 Hz), Fast Ripple (250-600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy  ⩾90% using a single electrode contact and single spectral feature. Significance. Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.

  14. Optimizing Multiple Kernel Learning for the Classification of UAV Data

    Directory of Open Access Journals (Sweden)

    Caroline M. Gevaert

    2016-12-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are capable of providing high-quality orthoimagery and 3D information in the form of point clouds at a relatively low cost. Their increasing popularity stresses the necessity of understanding which algorithms are especially suited for processing the data obtained from UAVs. The features that are extracted from the point cloud and imagery have different statistical characteristics and can be considered as heterogeneous, which motivates the use of Multiple Kernel Learning (MKL for classification problems. In this paper, we illustrate the utility of applying MKL for the classification of heterogeneous features obtained from UAV data through a case study of an informal settlement in Kigali, Rwanda. Results indicate that MKL can achieve a classification accuracy of 90.6%, a 5.2% increase over a standard single-kernel Support Vector Machine (SVM. A comparison of seven MKL methods indicates that linearly-weighted kernel combinations based on simple heuristics are competitive with respect to computationally-complex, non-linear kernel combination methods. We further underline the importance of utilizing appropriate feature grouping strategies for MKL, which has not been directly addressed in the literature, and we propose a novel, automated feature grouping method that achieves a high classification accuracy for various MKL methods.

  15. Automated Tissue Classification Framework for Reproducible Chronic Wound Assessment

    Directory of Open Access Journals (Sweden)

    Rashmi Mukherjee

    2014-01-01

    Full Text Available The aim of this paper was to develop a computer assisted tissue classification (granulation, necrotic, and slough scheme for chronic wound (CW evaluation using medical image processing and statistical machine learning techniques. The red-green-blue (RGB wound images grabbed by normal digital camera were first transformed into HSI (hue, saturation, and intensity color space and subsequently the “S” component of HSI color channels was selected as it provided higher contrast. Wound areas from 6 different types of CW were segmented from whole images using fuzzy divergence based thresholding by minimizing edge ambiguity. A set of color and textural features describing granulation, necrotic, and slough tissues in the segmented wound area were extracted using various mathematical techniques. Finally, statistical learning algorithms, namely, Bayesian classification and support vector machine (SVM, were trained and tested for wound tissue classification in different CW images. The performance of the wound area segmentation protocol was further validated by ground truth images labeled by clinical experts. It was observed that SVM with 3rd order polynomial kernel provided the highest accuracies, that is, 86.94%, 90.47%, and 75.53%, for classifying granulation, slough, and necrotic tissues, respectively. The proposed automated tissue classification technique achieved the highest overall accuracy, that is, 87.61%, with highest kappa statistic value (0.793.

  16. Deteksi Penyakit Dengue Hemorrhagic Fever dengan Pendekatan One Class Classification

    Directory of Open Access Journals (Sweden)

    Zida Ziyan Azkiya

    2017-10-01

    Full Text Available Two class classification problem maps input into two target classes. In certain cases, training data is available only in the form of a single class, as in the case of Dengue Hemorrhagic Fever (DHF patients, where only data of positive patients is available. In this paper, we report our experiment in building a classification model for detecting DHF infection using One Class Classification (OCC approach. Data from this study is sourced from laboratory tests of patients with dengue fever. The OCC methods compared are One-Class Support Vector Machine and One-Class K-Means. The result shows SVM method obtained precision value = 1.0, recall = 0.993, f-1 score = 0.997, and accuracy of 99.7% while the K-Means method obtained precision value = 0.901, recall = 0.973, f- 1 score = 0.936, and accuracy of 93.3%. This indicates that the SVM method is slightly superior to K-Means for One-Class Classification of DHF patients.

  17. Classification of breast cancer cytological specimen using convolutional neural network

    Science.gov (United States)

    Żejmo, Michał; Kowal, Marek; Korbicz, Józef; Monczak, Roman

    2017-01-01

    The paper presents a deep learning approach for automatic classification of breast tumors based on fine needle cytology. The main aim of the system is to distinguish benign from malignant cases based on microscopic images. Experiment was carried out on cytological samples derived from 50 patients (25 benign cases + 25 malignant cases) diagnosed in Regional Hospital in Zielona Góra. To classify microscopic images, we used convolutional neural networks (CNN) of two types: GoogLeNet and AlexNet. Due to the very large size of images of cytological specimen (on average 200000 × 100000 pixels), they were divided into smaller patches of size 256 × 256 pixels. Breast cancer classification usually is based on morphometric features of nuclei. Therefore, training and validation patches were selected using Support Vector Machine (SVM) so that suitable amount of cell material was depicted. Neural classifiers were tuned using GPU accelerated implementation of gradient descent algorithm. Training error was defined as a cross-entropy classification loss. Classification accuracy was defined as the percentage ratio of successfully classified validation patches to the total number of validation patches. The best accuracy rate of 83% was obtained by GoogLeNet model. We observed that more misclassified patches belong to malignant cases.

  18. Cluster Validity Classification Approaches Based on Geometric Probability and Application in the Classification of Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    LI Jian-Wei

    2014-08-01

    Full Text Available On the basis of the cluster validity function based on geometric probability in literature [1, 2], propose a cluster analysis method based on geometric probability to process large amount of data in rectangular area. The basic idea is top-down stepwise refinement, firstly categories then subcategories. On all clustering levels, use the cluster validity function based on geometric probability firstly, determine clusters and the gathering direction, then determine the center of clustering and the border of clusters. Through TM remote sensing image classification examples, compare with the supervision and unsupervised classification in ERDAS and the cluster analysis method based on geometric probability in two-dimensional square which is proposed in literature 2. Results show that the proposed method can significantly improve the classification accuracy.

  19. Estimating the accuracy of geographical imputation

    Directory of Open Access Journals (Sweden)

    Boscoe Francis P

    2008-01-01

    Full Text Available Abstract Background To reduce the number of non-geocoded cases researchers and organizations sometimes include cases geocoded to postal code centroids along with cases geocoded with the greater precision of a full street address. Some analysts then use the postal code to assign information to the cases from finer-level geographies such as a census tract. Assignment is commonly completed using either a postal centroid or by a geographical imputation method which assigns a location by using both the demographic characteristics of the case and the population characteristics of the postal delivery area. To date no systematic evaluation of geographical imputation methods ("geo-imputation" has been completed. The objective of this study was to determine the accuracy of census tract assignment using geo-imputation. Methods Using a large dataset of breast, prostate and colorectal cancer cases reported to the New Jersey Cancer Registry, we determined how often cases were assigned to the correct census tract using alternate strategies of demographic based geo-imputation, and using assignments obtained from postal code centroids. Assignment accuracy was measured by comparing the tract assigned with the tract originally identified from the full street address. Results Assigning cases to census tracts using the race/ethnicity population distribution within a postal code resulted in more correctly assigned cases than when using postal code centroids. The addition of age characteristics increased the match rates even further. Match rates were highly dependent on both the geographic distribution of race/ethnicity groups and population density. Conclusion Geo-imputation appears to offer some advantages and no serious drawbacks as compared with the alternative of assigning cases to census tracts based on postal code centroids. For a specific analysis, researchers will still need to consider the potential impact of geocoding quality on their results and evaluate

  20. Demystifying the Clinical Diagnosis of Greater Trochanteric Pain Syndrome in Women.

    Science.gov (United States)

    Ganderton, Charlotte; Semciw, Adam; Cook, Jill; Pizzari, Tania

    2017-06-01

    To evaluate the diagnostic accuracy of 10 clinical tests that can be used in the diagnosis of greater trochanteric pain syndrome (GTPS) in women, and to compare these clinical tests to magnetic resonance imaging (MRI) findings. Twenty-eight participants with GTPS (49.5 ± 22.0 years) and 18 asymptomatic participants (mean age ± standard deviation [SD], 52.5 ± 22.8 years) were included. A blinded physiotherapist performed 10 pain provocation tests potentially diagnostic for GTPS-palpation of the greater trochanter, resisted external derotation test, modified resisted external derotation test, standard and modified Ober's tests, Patrick's or FABER test, resisted hip abduction, single-leg stance test, and the resisted hip internal rotation test. A sample of 16 symptomatic and 17 asymptomatic women undertook a hip MRI scan. Gluteal tendons were evaluated and categorized as no pathology, mild tendinosis, moderate tendinosis/partial tear, or full-thickness tear. Clinical test analyses show high specificity, high positive predictive value, low to moderate sensitivity, and negative predictive value for most clinical tests. All symptomatic and 88% of asymptomatic participants had pathological gluteal tendon changes on MRI, from mild tendinosis to full-thickness tear. The study found the Patrick's or FABER test, palpation of the greater trochanter, resisted hip abduction, and the resisted external derotation test to have the highest diagnostic test accuracy for GTPS. Tendon pathology on MRI is seen in both symptomatic and asymptomatic women.

  1. Hierarchical vs non-hierarchical audio indexation and classification for video genres

    Science.gov (United States)

    Dammak, Nouha; BenAyed, Yassine

    2018-04-01

    In this paper, Support Vector Machines (SVMs) are used for segmenting and indexing video genres based on only audio features extracted at block level, which has a prominent asset by capturing local temporal information. The main contribution of our study is to show the wide effect on the classification accuracies while using an hierarchical categorization structure based on Mel Frequency Cepstral Coefficients (MFCC) audio descriptor. In fact, the classification consists in three common video genres: sports videos, music clips and news scenes. The sub-classification may divide each genre into several multi-speaker and multi-dialect sub-genres. The validation of this approach was carried out on over 360 minutes of video span yielding a classification accuracy of over 99%.

  2. Uav-Based Crops Classification with Joint Features from Orthoimage and Dsm Data

    Science.gov (United States)

    Liu, B.; Shi, Y.; Duan, Y.; Wu, W.

    2018-04-01

    Accurate crops classification remains a challenging task due to the same crop with different spectra and different crops with same spectrum phenomenon. Recently, UAV-based remote sensing approach gains popularity not only for its high spatial and temporal resolution, but also for its ability to obtain spectraand spatial data at the same time. This paper focus on how to take full advantages of spatial and spectrum features to improve crops classification accuracy, based on an UAV platform equipped with a general digital camera. Texture and spatial features extracted from the RGB orthoimage and the digital surface model of the monitoring area are analysed and integrated within a SVM classification framework. Extensive experiences results indicate that the overall classification accuracy is drastically improved from 72.9 % to 94.5 % when the spatial features are combined together, which verified the feasibility and effectiveness of the proposed method.

  3. Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification.

    Science.gov (United States)

    Bing, Lu; Wang, Wei

    2017-01-01

    We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of multi-instance learning (MIL). After image enhancement and segmentation, concentric circle is used to extract the global and local features for improving the accuracy in diagnosis and prediction. The classification problem of ultrasound image is converted to sparse representation based MIL problem. Each instance of a bag is represented as a sparse linear combination of all basis vectors in the dictionary, and then the bag is represented by one feature vector which is obtained via sparse representations of all instances within the bag. The sparse and MIL problem is further converted to a conventional learning problem that is solved by relevance vector machine (RVM). Results of single classifiers are combined to be used for classification. Experimental results on the breast cancer datasets demonstrate the superiority of the proposed method in terms of classification accuracy as compared with state-of-the-art MIL methods.

  4. Classification of radioactive waste

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive wastes are generated in a number of different kinds of facilities and arise in a wide range of concentrations of radioactive materials and in a variety of physical and chemical forms. To simplify their management, a number of schemes have evolved for classifying radioactive waste according to the physical, chemical and radiological properties of significance to those facilities managing this waste. These schemes have led to a variety of terminologies, differing from country to country and even between facilities in the same country. This situation makes it difficult for those concerned to communicate with one another regarding waste management practices. This document revises and updates earlier IAEA references on radioactive waste classification systems given in IAEA Technical Reports Series and Safety Series. Guidance regarding exemption of materials from regulatory control is consistent with IAEA Safety Series and the RADWASS documents published under IAEA Safety Series. 11 refs, 2 figs, 2 tab

  5. Nonlinear estimation and classification

    CERN Document Server

    Hansen, Mark; Holmes, Christopher; Mallick, Bani; Yu, Bin

    2003-01-01

    Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data This is due in part to recent advances in data collection and computing technologies As a result, fundamental statistical research is being undertaken in a variety of different fields Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future

  6. Automatic diabetic retinopathy classification

    Science.gov (United States)

    Bravo, María. A.; Arbeláez, Pablo A.

    2017-11-01

    Diabetic retinopathy (DR) is a disease in which the retina is damaged due to augmentation in the blood pressure of small vessels. DR is the major cause of blindness for diabetics. It has been shown that early diagnosis can play a major role in prevention of visual loss and blindness. This work proposes a computer based approach for the detection of DR in back-of-the-eye images based on the use of convolutional neural networks (CNNs). Our CNN uses deep architectures to classify Back-of-the-eye Retinal Photographs (BRP) in 5 stages of DR. Our method combines several preprocessing images of BRP to obtain an ACA score of 50.5%. Furthermore, we explore subproblems by training a larger CNN of our main classification task.

  7. Hospitals with greater diversities of physiologically complex procedures do not achieve greater surgical growth in a market with stable numbers of such procedures.

    Science.gov (United States)

    Dexter, Franklin; Epstein, Richard H; Lubarsky, David A

    2018-05-01

    Although having a large diversity of types of procedures has a substantial operational impact on the surgical suites of hospitals, the strategic importance is unknown. In the current study, we used longitudinal data for all hospitals and patient ages in the State of Florida to evaluate whether hospitals with greater diversity of types of physiologically complex major therapeutic procedures (PCMTP) also had greater rates of surgical growth. Observational cohort study. 1479 combinations of hospitals in the State of Florida and fiscal years, 2008-2015. The types of International Classification of Diseases, Ninth revision, Clinical Modification (ICD-9-CM) procedures studied were PCMT, defined as: a) major therapeutic procedure; b) >7 American Society of Anesthesiologists base units; and c) performed during a hospitalization with a Diagnosis Related Group with a mean length of stay ≥4.0days. The number of procedures of each type of PCMTP commonly performed at each hospital was calculated by taking 1/Herfindahl index (i.e., sum of the squares of the proportions of all procedures of each type of PCMTP). Over the 8 successive years studied, there was no change in the number of PCMTP being performed (Kendall's τ b =-0.014±0.017 [standard error], P=0.44; N=1479 hospital×years). Busier and larger hospitals commonly performed more types of PCMTP, respectively categorized based on performed PCMTP (τ=0.606±0.017, P<0.0001) or hospital beds (τ=0.524±0.017, P<0.0001). There was no association between greater diversity of types of PCMTP commonly performed and greater annual growth in numbers of PCMTP (τ=0.002±0.019, P=0.91; N=1295 hospital×years). Conclusions were the same with multiple sensitivity analyses. Post hoc, it was recognized that hospitals performing a greater diversity of PCMTP were more similar to the aggregate of other hospitals within the same health district (τ=0.550±0.017, P<0.0001). During a period with no overall growth in PCMTP, hospitals with

  8. Technical concept for a greater-confinement-disposal test facility

    International Nuclear Information System (INIS)

    Hunter, P.H.

    1982-01-01

    Greater confinement disposal (GCO) has been defined by the National Low-Level Waste Program as the disposal of low-level waste in such a manner as to provide greater containment of radiation, reduce potential for migration or dispersion or radionuclides, and provide greater protection from inadvertent human and biological intrusions in order to protect the public health and safety. This paper discusses: the need for GCD; definition of GCD; advantages and disadvantages of GCD; relative dose impacts of GCD versus shallow land disposal; types of waste compatible with GCD; objectives of GCD borehole demonstration test; engineering and technical issues; and factors affecting performance of the greater confinement disposal facility

  9. EEG channels reduction using PCA to increase XGBoost's accuracy for stroke detection

    Science.gov (United States)

    Fitriah, N.; Wijaya, S. K.; Fanany, M. I.; Badri, C.; Rezal, M.

    2017-07-01

    In Indonesia, based on the result of Basic Health Research 2013, the number of stroke patients had increased from 8.3 ‰ (2007) to 12.1 ‰ (2013). These days, some researchers are using electroencephalography (EEG) result as another option to detect the stroke disease besides CT Scan image as the gold standard. A previous study on the data of stroke and healthy patients in National Brain Center Hospital (RS PON) used Brain Symmetry Index (BSI), Delta-Alpha Ratio (DAR), and Delta-Theta-Alpha-Beta Ratio (DTABR) as the features for classification by an Extreme Learning Machine (ELM). The study got 85% accuracy with sensitivity above 86 % for acute ischemic stroke detection. Using EEG data means dealing with many data dimensions, and it can reduce the accuracy of classifier (the curse of dimensionality). Principal Component Analysis (PCA) could reduce dimensionality and computation cost without decreasing classification accuracy. XGBoost, as the scalable tree boosting classifier, can solve real-world scale problems (Higgs Boson and Allstate dataset) with using a minimal amount of resources. This paper reuses the same data from RS PON and features from previous research, preprocessed with PCA and classified with XGBoost, to increase the accuracy with fewer electrodes. The specific fewer electrodes improved the accuracy of stroke detection. Our future work will examine the other algorithm besides PCA to get higher accuracy with less number of channels.

  10. Accuracy of a wireless localization system for radiotherapy

    International Nuclear Information System (INIS)

    Balter, James M.; Wright, J. Nelson; Newell, Laurence J.; Friemel, Barry; Dimmer, Steven; Cheng, Yuki; Wong, John; Vertatschitsch, Edward; Mate, Timothy P.

    2005-01-01

    Purpose: A system has been developed for patient positioning based on real-time localization of implanted electromagnetic transponders (beacons). This study demonstrated the accuracy of the system before clinical trials. Methods and materials: We describe the overall system. The localization component consists of beacons and a source array. A rigid phantom was constructed to place the beacons at known offsets from a localization array. Tests were performed at distances of 80 and 270 mm from the array and at positions in the array plane of up to 8 cm offset. Tests were performed in air and saline to assess the effect of tissue conductivity and with multiple transponders to evaluate crosstalk. Tracking was tested using a dynamic phantom creating a circular path at varying speeds. Results: Submillimeter accuracy was maintained throughout all experiments. Precision was greater proximal to the source plane (σx = 0.006 mm, σy = 0.01 mm, σz = 0.006 mm), but continued to be submillimeter at the end of the designed tracking range at 270 mm from the array (σx = 0.27 mm, σy = 0.36 mm, σz = 0.48 mm). The introduction of saline and the use of multiple beacons did not affect accuracy. Submillimeter accuracy was maintained using the dynamic phantom at speeds of up to 3 cm/s. Conclusion: This system has demonstrated the accuracy needed for localization and monitoring of position during treatment

  11. Deep Galaxy: Classification of Galaxies based on Deep Convolutional Neural Networks

    OpenAIRE

    Khalifa, Nour Eldeen M.; Taha, Mohamed Hamed N.; Hassanien, Aboul Ella; Selim, I. M.

    2017-01-01

    In this paper, a deep convolutional neural network architecture for galaxies classification is presented. The galaxy can be classified based on its features into main three categories Elliptical, Spiral, and Irregular. The proposed deep galaxies architecture consists of 8 layers, one main convolutional layer for features extraction with 96 filters, followed by two principles fully connected layers for classification. It is trained over 1356 images and achieved 97.272% in testing accuracy. A c...

  12. A Comparative Study of Feature Selection and Classification Methods for Gene Expression Data

    KAUST Repository

    Abusamra, Heba

    2013-01-01

    Different experiments have been applied to compare the performance of the classification methods with and without performing feature selection. Results revealed the important role of feature selection in classifying gene expression data. By performing feature selection, the classification accuracy can be significantly boosted by using a small number of genes. The relationship of features selected in different feature selection methods is investigated and the most frequent features selected in each fold among all methods for both datasets are evaluated.

  13. Poster abstract: A machine learning approach for vehicle classification using passive infrared and ultrasonic sensors

    KAUST Repository

    Warriach, Ehsan Ullah

    2013-01-01

    This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN-SVM significantly outperforms other algorithms in terms of classification accuracy. We also show that some of these algorithms could run in real time on the prototype system. Copyright © 2013 ACM.

  14. Model for Detection and Classification of DDoS Traffic Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    D. Peraković

    2017-06-01

    Full Text Available Detection of DDoS (Distributed Denial of Service traffic is of great importance for the availability protection of services and other information and communication resources. The research presented in this paper shows the application of artificial neural networks in the development of detection and classification model for three types of DDoS attacks and legitimate network traffic. Simulation results of developed model showed accuracy of 95.6% in classification of pre-defined classes of traffic.

  15. Hazard classification or risk assessment

    DEFF Research Database (Denmark)

    Hass, Ulla

    2013-01-01

    The EU classification of substances for e.g. reproductive toxicants is hazard based and does not to address the risk suchsubstances may pose through normal, or extreme, use. Such hazard classification complies with the consumer's right to know. It is also an incentive to careful use and storage...

  16. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  17. Efficient AUC optimization for classification

    NARCIS (Netherlands)

    Calders, T.; Jaroszewicz, S.; Kok, J.N.; Koronacki, J.; Lopez de Mantaras, R.; Matwin, S.; Mladenic, D.; Skowron, A.

    2007-01-01

    In this paper we show an efficient method for inducing classifiers that directly optimize the area under the ROC curve. Recently, AUC gained importance in the classification community as a mean to compare the performance of classifiers. Because most classification methods do not optimize this

  18. Dewey Decimal Classification: A Quagmire.

    Science.gov (United States)

    Gamaluddin, Ahmad Fouad

    1980-01-01

    A survey of 660 Pennsylvania school librarians indicates that, though there is limited professional interest in the Library of Congress Classification system, Dewey Decimal Classification (DDC) appears to be firmly entrenched. This article also discusses the relative merits of DDC, the need for a uniform system, librarianship preparation, and…

  19. Latent class models for classification

    NARCIS (Netherlands)

    Vermunt, J.K.; Magidson, J.

    2003-01-01

    An overview is provided of recent developments in the use of latent class (LC) and other types of finite mixture models for classification purposes. Several extensions of existing models are presented. Two basic types of LC models for classification are defined: supervised and unsupervised

  20. 45 CFR 601.5 - Derivative classification.

    Science.gov (United States)

    2010-10-01

    ... CLASSIFICATION AND DECLASSIFICATION OF NATIONAL SECURITY INFORMATION § 601.5 Derivative classification. Distinct... 45 Public Welfare 3 2010-10-01 2010-10-01 false Derivative classification. 601.5 Section 601.5... classification guide, need not possess original classification authority. (a) If a person who applies derivative...