WorldWideScience

Sample records for great lakes fish

  1. Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.

    Science.gov (United States)

    Sandheinrich, Mark B; Bhavsar, Satyendra P; Bodaly, R A; Drevnick, Paul E; Paul, Eric A

    2011-10-01

    Contamination of fish populations with methylmercury is common in the region of the Laurentian Great Lakes as a result of atmospheric deposition and methylation of inorganic mercury. Using fish mercury monitoring data from natural resource agencies and information on tissue concentrations injurious to fish, we conducted a screening-level risk assessment of mercury to sexually mature female walleye (Sander vitreus), northern pike (Esox lucius), smallmouth bass (Micropterus dolomieu), and largemouth bass (Micropterus salmoides) in the Great Lakes and in interior lakes, impoundments, and rivers of the Great Lakes region. The assessment included more than 43,000 measurements of mercury in fish from more than 2000 locations. Sexually mature female fish that exceeded threshold-effect tissue concentrations of 0.20 μg g(-1) wet weight in the whole body occurred at 8% (largemouth bass) to 43% (walleye) of sites. Fish at 3% to 18% of sites were at risk of injury and exceeded 0.30 μg g(-1) where an alteration in reproduction or survival is predicted to occur. Most fish at increased risk were from interior lakes and impoundments. In the Great Lakes, no sites had sexually mature fish that exceeded threshold-effect concentrations. Results of this screening-level assessment indicate that fish at a substantive number of locations within the Great Lakes region are potentially at risk from methylmercury contamination and would benefit from reduction in mercury concentrations.

  2. Mechanisms driving recruitment variability in fish: comparisons between the Laurentian Great Lakes and marine systems

    Science.gov (United States)

    Pritt, Jeremy J.; Roseman, Edward F.; O'Brien, Timothy P.

    2014-01-01

    In his seminal work, Hjort (in Fluctuations in the great fisheries of Northern Europe. Conseil Parmanent International Pour L'Exploration De La Mar. Rapports et Proces-Verbaux, 20: 1–228, 1914) observed that fish population levels fluctuated widely, year-class strength was set early in life, and egg production by adults could not alone explain variability in year-class strength. These observations laid the foundation for hypotheses on mechanisms driving recruitment variability in marine systems. More recently, researchers have sought to explain year-class strength of important fish in the Laurentian Great Lakes and some of the hypotheses developed for marine fisheries have been transferred to Great Lakes fish. We conducted a literature review to determine the applicability of marine recruitment hypotheses to Great Lakes fish. We found that temperature, interspecific interactions, and spawner effects (abundance, age, and condition of adults) were the most important factors in explaining recruitment variability in Great Lakes fish, whereas relatively fewer studies identified bottom-up trophodynamic factors or hydrodynamic factors as important. Next, we compared recruitment between Great Lakes and Baltic Sea fish populations and found no statistical difference in factors driving recruitment between the two systems, indicating that recruitment hypotheses may often be transferable between Great Lakes and marine systems. Many recruitment hypotheses developed for marine fish have yet to be applied to Great Lakes fish. We suggest that future research on recruitment in the Great Lakes should focus on forecasting the effects of climate change and invasive species. Further, because the Great Lakes are smaller and more enclosed than marine systems, and have abundant fishery-independent data, they are excellent candidates for future hypothesis testing on recruitment in fish.

  3. 2010 Great Lakes Human Health Fish Tissue Study Fish Tissue Data Dictionary

    Science.gov (United States)

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2010 Great Lakes Human Health Fish Tissue Study (GLHHFTS). This document includes the “data dictionary” for Mercury, PFC, PBDE and PCBs.

  4. Predicting Great Lakes fish yields: tools and constraints

    Science.gov (United States)

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  5. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  6. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  7. Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes.

    Science.gov (United States)

    Lepak, Ryan F; Janssen, Sarah E; Yin, Runsheng; Krabbenhoft, David P; Ogorek, Jacob M; DeWild, John F; Tate, Michael T; Holsen, Thomas M; Hurley, James P

    2018-03-06

    Identifying the sources of methylmercury (MeHg) and tracing the transformations of mercury (Hg) in the aquatic food web are important components of effective strategies for managing current and legacy Hg sources. In our previous work, we measured stable isotopes of Hg (δ 202 Hg, Δ 199 Hg, and Δ 200 Hg) in the Laurentian Great Lakes and estimated source contributions of Hg to bottom sediment. Here, we identify isotopically distinct Hg signatures for Great Lakes trout ( Salvelinus namaycush) and walleye ( Sander vitreus), driven by both food-web and water-quality characteristics. Fish contain high values for odd-isotope mass independent fractionation (MIF) with averages ranging from 2.50 (western Lake Erie) to 6.18‰ (Lake Superior) in Δ 199 Hg. The large range in odd-MIF reflects variability in the depth of the euphotic zone, where Hg is most likely incorporated into the food web. Even-isotope MIF (Δ 200 Hg), a potential tracer for Hg from precipitation, appears both disconnected from lake sedimentary sources and comparable in fish among the five lakes. We suggest that similar to the open ocean, water-column methylation also occurs in the Great Lakes, possibly transforming recently deposited atmospheric Hg deposition. We conclude that the degree of photochemical processing of Hg is controlled by phytoplankton uptake rather than by dissolved organic carbon quantity among lakes.

  8. Turbidity as a factor in the decline of Great Lakes fishes with special reference to Lake Erie

    Science.gov (United States)

    Van Oosten, John

    1948-01-01

    Fish live and thrive in water with turbidities that range above 400 p.p.m. and average 200 p.p.m. The waters of the Great Lakes usually are clear except in Lake Erie where the turbidities of the inshore areas averaged 37 p.p.m.; the turbidities of the offshore waters averaged less. Lake Erie waters were no clearer 50 years ago than they are now. In fact, the turbidity values are less now than they were in the earlier years; the annual average of the inshore waters dropped from 44 p.p.m. before 1930 to 32 p.p.m. in 1930 and later, and the April-May values decreased from 72 p.p.m. to 46 p.p.m. Any general decline in the Lake Erie fishes cannot be attributed to increased turbidities. Furthermore, these turbidities averaged well below 100 p.p.m. and, therefore, were too low to affect fishes adversely.

  9. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  10. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  11. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  12. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  13. Artificial reefs and reef restoration in the Laurentian Great Lakes

    Science.gov (United States)

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  14. Status and future of Lake Huron fish communities

    Science.gov (United States)

    Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.

    1995-01-01

    In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.

  15. Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.

    Science.gov (United States)

    Blukacz-Richards, E Agnes; Visha, Ariola; Graham, Matthew L; McGoldrick, Daryl L; de Solla, Shane R; Moore, David J; Arhonditsis, George B

    2017-04-01

    Total mercury levels in aquatic birds and fish communities have been monitored across the Canadian Great Lakes by Environment and Climate Change Canada (ECCC) for the past 42 years (1974-2015). These data (22 sites) were used to examine spatio-temporal variability of mercury levels in herring gull (Larus argentatus) eggs, lake trout (Salvelinus namaycush), walleye (Sander vitreus), and rainbow smelt (Osmerus mordax). Trends were quantified with dynamic linear models, which provided time-variant rates of change of mercury concentrations. Lipid content (in both fish and eggs) and length in fish were used as covariates in all models. For the first three decades, mercury levels in gull eggs and fish declined at all stations. In the 2000s, trends for herring gull eggs reversed at two sites in Lake Erie and two sites in Lake Ontario. Similar trend reversals in the 2000s were observed for lake trout in Lake Superior and at a single station in Lake Ontario. Mercury levels in lake trout continued to slowly decline at all of the remaining stations, except for Lake Huron, where the levels remained stable. A post-hoc Bayesian regression analysis suggests strong trophic interactions between herring gulls and rainbow smelt in Lake Superior and Lake Ontario, but also pinpoints the likelihood of a trophic decoupling in Lake Huron and Lake Erie. Continued monitoring of mercury levels in herring gulls and fish is required to consolidate these trophic shifts and further evaluate their broader implications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. Trends in fishery management of the Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1970-01-01

    Some hope is returning for recovery of the fish stocks of the Great Lakes, which have been outstanding examples of abuse although they are the world's largest and most valuable freshwater fishery resource. The lakes and the fish in them have been under complete jurisdiction of sovereign nations and their subdivisions almost since the settlement of north-central North America, but ironically this control has not prevented their decadence. For the first time in the long history of the Great Lakes fishery, management measures have been taken to meliorate conditions that contributed to earlier difficulties.

  17. Use of Fish Telemetry in Rehabilitation Planning, Management, and Monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J. L.; Boston, C.; Doka, S.; Gorsky, D.; Gustavson, K.; Hondorp, D.; Isermann, D.; Midwood, J. D.; Pratt, T. C.; Rous, A. M.; Withers, J. L.; Krueger, C. C.; Cooke, S. J.

    2017-12-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish-habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  18. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  19. Use of fish telemetry in rehabilitation planning, management, and monitoring in Areas of Concern in the Laurentian Great Lakes

    Science.gov (United States)

    Brooks, J.L.; Boston, C.; Doka, Susan E.; Gorsky, Dimitry; Gustavson, K.; Hondorp, Darryl W.; Isermann, Daniel A.; Midwood, Jonathan D.; Pratt, T.C.; Rous, Andrew M.; Withers, J. L.; Krueger, C.C.; Cooke, S.J.

    2017-01-01

    Freshwater ecosystems provide many ecosystem services; however, they are often degraded as a result of human activity. To address ecosystem degradation in the Laurentian Great Lakes, Canada and the United States of America established the Great Lakes Water Quality Agreement (GLWQA). In 1987, 43 highly polluted and impacted areas were identified under the GLWQA as having one or more of 14 Beneficial Use Impairments (BUIs) to the physical and chemical habitat for fish, wildlife and humans, and were designated as Areas of Concern (AOC). Subnational jurisdictions combined with local stakeholders, with support from federal governments, developed plans to remediate and restore these sites. Biotelemetry (the tracking of animals using electronic tags) provides information on the spatial ecology of fish in the wild relevant to habitat management and stock assessment. Here, seven case studies are presented where biotelemetry data were directly incorporated within the AOC Remedial Action Plan (RAP) process. Specific applications include determining seasonal fish–habitat associations to inform habitat restoration plans, identifying the distribution of pollutant-indicator species to identify exposure risk to contamination sources, informing the development of fish passage facilities to enable fish to access fragmented upstream habitats, and assessing fish use of created or restored habitats. With growing capacity for fish biotelemetry research in the Great Lakes, we discuss the strengths and weaknesses of incorporating biotelemetry into AOC RAP processes to improve the science and practice of restoration and to facilitate the delisting of AOCs.

  20. FishVis, A regional decision support tool for identifying vulnerabilities of riverine habitat and fishes to climate change in the Great Lakes Region

    Science.gov (United States)

    Stewart, Jana S.; Covert, S. Alex; Estes, Nick J.; Westenbroek, Stephen M.; Krueger, Damon; Wieferich, Daniel J.; Slattery, Michael T.; Lyons, John D.; McKenna, James E.; Infante, Dana M.; Bruce, Jennifer L.

    2016-10-13

    Climate change is expected to alter the distributions and community composition of stream fishes in the Great Lakes region in the 21st century, in part as a result of altered hydrological systems (stream temperature, streamflow, and habitat). Resource managers need information and tools to understand where fish species and stream habitats are expected to change under future conditions. Fish sample collections and environmental variables from multiple sources across the United States Great Lakes Basin were integrated and used to develop empirical models to predict fish species occurrence under present-day climate conditions. Random Forests models were used to predict the probability of occurrence of 13 lotic fish species within each stream reach in the study area. Downscaled climate data from general circulation models were integrated with the fish species occurrence models to project fish species occurrence under future climate conditions. The 13 fish species represented three ecological guilds associated with water temperature (cold, cool, and warm), and the species were distributed in streams across the Great Lakes region. Vulnerability (loss of species) and opportunity (gain of species) scores were calculated for all stream reaches by evaluating changes in fish species occurrence from present-day to future climate conditions. The 13 fish species included 4 cold-water species, 5 cool-water species, and 4 warm-water species. Presently, the 4 cold-water species occupy from 15 percent (55,000 kilometers [km]) to 35 percent (130,000 km) of the total stream length (369,215 km) across the study area; the 5 cool-water species, from 9 percent (33,000 km) to 58 percent (215,000 km); and the 4 warm-water species, from 9 percent (33,000 km) to 38 percent (141,000 km).Fish models linked to projections from 13 downscaled climate models projected that in the mid to late 21st century (2046–65 and 2081–2100, respectively) habitats suitable for all 4 cold-water species and 4

  1. Respondent driven sampling in a biomonitoring study of refugees from Burma in Buffalo, New York who eat Great Lakes fish.

    Science.gov (United States)

    Liu, Ming; McCann, Molly; Lewis-Michl, Elizabeth; Hwang, Syni-An

    2018-06-01

    Refugees from Burma who consume fish caught from local waterbodies have increased risk of exposure to environmental contaminants. We used respondent driven sampling (RDS) to sample this hard-to-reach population for the first Biomonitoring of Great Lakes Populations program. In the current study, we examined the interview data and assessed the effectiveness of RDS to sample the unique population. In 2013, we used RDS to sample 205 Burmese refugees and immigrants residing in Buffalo, New York who consumed fish caught from Great Lakes waters. RDS-adjusted population estimates of sociodemographic characteristics, residential history, fish consumption related behaviors, and awareness of fish advisories were obtained. We also examined sample homophily and equilibrium to assess how well the RDS assumptions were met in the study. Our sample was diverse with respect to sex, age, years residing in Buffalo, years lived in a refugee camp, education, employment, and fish consumption behaviors, and each of these variables reached equilibrium by the end of recruitment. Burmese refugees in Buffalo consumed Great Lakes fish throughout the year; a majority of them consumed the fish more than two times per week during summer, and about one third ate local fish more than once per week in winter. An estimated 60% of Burmese refugees in Buffalo had heard about local fish advisories. RDS has the potential to be an effective methodology for sampling refugees and immigrants in conducting biomonitoring and environmental exposure assessment. Due to high fish consumption and limited awareness and knowledge of fish advisories, some refugee and immigrant populations are more susceptible to environmental contaminants. Increased awareness on local fish advisories is needed among these populations. Published by Elsevier GmbH.

  2. Development of DNA-based Identification methods to track the species composition of fish larvae within nearshore areas of the Great Lakes

    Science.gov (United States)

    The ability to track the identity and abundance of larval fish, which are ubiquitous during spawning season, may lead to a greater understanding of fish species distributions in Great Lakes nearshore areas including early-detection of invasive fish species before they become esta...

  3. Mapping Lake Michigan Fish Catch Data

    OpenAIRE

    Wodd, Jacob; Doucette, Jarrod; Höök, Tomas O.

    2014-01-01

    The only Great Lake completely contained in the U.S., Lake Michigan offers an abundance of recreational fishing. This project takes 20 years’ worth of salmonid fish catch data, and uses GIS to organize and visually represent the data in a way that is meaningful and helpful to local fisherman and researchers. Species represented included Brown Trout, Lake Trout, Rainbow Trout, Chinook Salmon, and Coho Salmon. The species are organized by both decadal and yearly spans, as well as catch per t...

  4. Mercury contamination in the Laurentian Great Lakes region: Introduction and overview

    International Nuclear Information System (INIS)

    Wiener, James G.; Evers, David C.; Gay, David A.; Morrison, Heather A.; Williams, Kathryn A.

    2012-01-01

    The Laurentian Great Lakes region of North America contains substantial aquatic resources and mercury-contaminated landscapes, fish, and wildlife. This special issue emanated from a bi-national synthesis of data from monitoring programs and case studies of mercury in the region, here defined as including the Great Lakes, the eight U.S. states bordering the Great Lakes, the province of Ontario, and Lake Champlain. We provide a retrospective overview of the regional mercury problem and summarize new findings from the synthesis papers and case studies that follow. Papers in this issue examine the chronology of mercury accumulation in lakes, the importance of wet and dry atmospheric deposition and evasion to regional mercury budgets, the influence of land–water linkages on mercury contamination of surface waters, the bioaccumulation of methylmercury in aquatic foods webs; and ecological and health risks associated with methylmercury in a regionally important prey fish. - Highlights: ► We describe a bi-national synthesis of Hg data from the Great Lakes region. ► Emission controls have reduced Hg inputs to inland lakes about 20% since the 1980s. ► Wet and dry deposition and evasion are regionally important atmospheric Hg fluxes. ► Land use affects Hg inputs to surface waters and bioaccumulation of methylmercury. ► In some waters, Hg levels in yellow perch pose risks to fish, wildlife, and humans. - A synthesis of Hg data from the Great Lakes region reveals the chronology of contamination; the importance of wet and dry deposition and evasion to Hg budgets; the influence of land–water linkages; bioaccumulation in aquatic foods webs; and risks associated with Hg in an important prey fish.

  5. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    Science.gov (United States)

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  6. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  7. Artificial propagation of coregonines in the management of the Laurentian Great Lakes

    Science.gov (United States)

    Todd, Thomas N.

    1986-01-01

    Numerous stresses caused wide fluctuations in the abundance of Great Lakes coregonine fishes during the last century. State, Provincial, and Federal agencies attempted to bolster these fisheries by stocking more than 32 billion fry of lake whitefish (Coregonus clupeaformis) and 6 billion fry of lake herring (C. artedii) over a period of about 90 years (1870-1960). Propagation efforts were unsuccessful in arresting the decline of these fishes, perhaps because the stocking densities were too low. It appears that stocking densities must exceed 41% of the natural hatch to produce measurable success in a planting program that augments natural reproduction. Stocking of any of the Great Lakes with lake whitefish at these levels would require several billion fry per lake annually. Such a program is too large to be practical and intensified protection of the remaining stocks would be more cost effective. A species such as the shortnose cisco (C. reighardi) which has only a small number of extant individuals, and can therefore be significantly augmented with fewer stocked fish, may be a much better candidate for propagation than is the lake whitefish. Propagation of coregonines in the Great Lakes should be considered only in localities that have little or no natural recruitment and then only for rehabilitation, and only if accompanied by adequate assessment of the performance of the stocked fish.

  8. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    Science.gov (United States)

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  9. Fish impingement at Lake Michigan power plants

    International Nuclear Information System (INIS)

    Sharma, R.K.; Freeman, R.F.; Spigarelli, S.A.

    1976-01-01

    A study was initiated in 1974 to survey the magnitude and to evaluate the impact of fish impingement at 20 power plants on the Great Lakes. Data on impingement rates, site characteristics, intake designs and operational features have been collected and analyzed. Interpretive analyses of these data are in progress. The objectives of this study were: to summarize fish impingement data for Lake Michigan (16/20 plants surveyed are on Lake Michigan); to assess the significance of total and source-related mortalities on populations of forage and predator species; and to expand the assessment of power plant impingement to include all water intakes on Lake Michigan. Data are tabulated

  10. Species succession and sustainability of the Great Lakes fish community

    Science.gov (United States)

    Eshenroder, Randy L.; Burnham-Curtis, Mary K.; Taylor, William W.; Ferreri, C. Paola

    1999-01-01

    This article concentrates on the sustainability of the offshore pelagic and deepwater fish communities that were historically dominated by lake trout (Salvelinus namaycush). The causes of alteration in these fish communities (i.e., overfishing, introductions, and cultural eutrophication) were identified by Loftus and Regier (1972). Here we look at the ecology of these altered communities in relation to sustainability and discuss the need for restoration.

  11. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem

    International Nuclear Information System (INIS)

    Gilbertson, Michael; Carpenter, D.O.

    2004-01-01

    New concerns about the global presence and human health significance of mercury have arisen as a result of recent epidemiological data demonstrating subtle neurological effects from consumption of mercury-contaminated fish. In the Great Lakes Basin, the complexity of the diverse sources, pools, and sinks of mercury and of the pathways of distribution, fate, and biotransformation requires an ecosystem approach to the assessment of exposures of Great Lakes' human populations. Further epidemiological research is needed to verify preliminary indications of harmful effects in people living near the Great Lakes. Great Lakes fish are valuable resources for subsistence nutrition, recreation, and commerce, but the benefits of fish consumption must be balanced by concern for the hazards from the contaminants that they may contain. The efficacy of fish consumption advisories in reducing exposures should continue to be evaluated while planning continues for remedial actions on contaminated sediments from historic industrial activities and for regulatory action to control sources

  12. Progress in understanding the importance of coastal wetland nursery habitat to Great Lakes fisheries support

    Science.gov (United States)

    Great Lakes coastal wetlands provide important habitat for Great Lakes fishes of all life stages. A literature review of ichthyoplankton surveys conducted in Great Lakes coastal wetlands found at least 82 species reported to be captured during the larval stage. Twenty of those sp...

  13. Lake Ontario benthic prey fish assessment, 2015

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.

    2016-01-01

    juvenile Bloater Coregonus hoyi, was captured during the spring bottom trawl survey at 95m (312 ft) near Oswego, NY. This native, deep-water prey fish, last captured in Lake Ontario survey trawls in 1983, is part of an international, collaborative coregonid restoration effort in the Great Lakes.

  14. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  15. Long-Term Variability of Satellite Lake Surface Water Temperatures in the Great Lakes

    Science.gov (United States)

    Gierach, M. M.; Matsumoto, K.; Holt, B.; McKinney, P. J.; Tokos, K.

    2014-12-01

    The Great Lakes are the largest group of freshwater lakes on Earth that approximately 37 million people depend upon for fresh drinking water, food, flood and drought mitigation, and natural resources that support industry, jobs, shipping and tourism. Recent reports have stated (e.g., the National Climate Assessment) that climate change can impact and exacerbate a range of risks to the Great Lakes, including changes in the range and distribution of certain fish species, increased invasive species and harmful algal blooms, declining beach health, and lengthened commercial navigation season. In this study, we will examine the impact of climate change on the Laurentian Great Lakes through investigation of long-term lake surface water temperatures (LSWT). We will use the ATSR Reprocessing for Climate: Lake Surface Water Temperature & Ice Cover (ARC-Lake) product over the period 1995-2012 to investigate individual and interlake variability. Specifically, we will quantify the seasonal amplitude of LSWTs, the first and last appearances of the 4°C isotherm (i.e., an important identifier of the seasonal evolution of the lakes denoting winter and summer stratification), and interpret these quantities in the context of global interannual climate variability such as ENSO.

  16. First evidence of microplastics in the African Great Lakes

    DEFF Research Database (Denmark)

    Biginagwa, Fares John; Mayoma, Bahati Sosthenes; Shashoua, Yvonne

    2016-01-01

    -FTIR) spectroscopy. A variety of polymer types were identified with likely sources being urban waste and consumer use. Although further research is required to fully assess the impact of plastic pollution in this region, our study is the first to report the presence of microplastics in Africa's Great Lakes...... on the southern shore of Lake Victoria. The gastrointestinal tracts of locally fished Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) were examined for plastics. Plastics were confirmed in 20% of fish from each species by Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  17. Changes in depth occupied by Great Lakes lake whitefish populations and the influence of survey design

    Science.gov (United States)

    Rennie, Michael D.; Weidel, Brian C.; Claramunt, Randall M.; Dunlob, Erin S.

    2015-01-01

    Understanding fish habitat use is important in determining conditions that ultimately affect fish energetics, growth and reproduction. Great Lakes lake whitefish (Coregonus clupeaformis) have demonstrated dramatic changes in growth and life history traits since the appearance of dreissenid mussels in the Great Lakes, but the role of habitat occupancy in driving these changes is poorly understood. To better understand temporal changes in lake whitefish depth of capture (Dw), we compiled a database of fishery-independent surveys representing multiple populations across all five Laurentian Great Lakes. By demonstrating the importance of survey design in estimating Dw, we describe a novel method for detecting survey-based bias in Dw and removing potentially biased data. Using unbiased Dw estimates, we show clear differences in the pattern and timing of changes in lake whitefish Dw between our reference sites (Lake Superior) and those that have experienced significant benthic food web changes (lakes Michigan, Huron, Erie and Ontario). Lake whitefish Dw in Lake Superior tended to gradually shift to shallower waters, but changed rapidly in other locations coincident with dreissenid establishment and declines in Diporeia densities. Almost all lake whitefish populations that were exposed to dreissenids demonstrated deeper Dw following benthic food web change, though a subset of these populations subsequently shifted to more shallow depths. In some cases in lakes Huron and Ontario, shifts towards more shallow Dw are occurring well after documented Diporeia collapse, suggesting the role of other drivers such as habitat availability or reliance on alternative prey sources.

  18. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    Science.gov (United States)

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  19. Great Lakes Restoration Initiative Great Lakes Mussel Watch(2009-2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Following the inception of the Great Lakes Restoration Initiative (GLRI) to address the significant environmental issues plaguing the Great Lakes region, the...

  20. Stock discrimination in Great Lakes Walleye using mitochondrial DNA restriction analysis

    International Nuclear Information System (INIS)

    Billington, N.; Hebert, P.D.N.

    1986-01-01

    Over the past two years it has become evident that because of its strict maternal inheritance and rapid rate of evolutionary differentiation, mitochondrial (mt) DNA diversity offers exceptional promise in the discrimination of fish stocks. The current project aims to determine the extent of mt DNA variation among stocks of walleye (Stizostedion vitreum) from the Great Lakes. At this point, mt DNA has been isolated from 68 walleye representing the Thames River stock and a reef breeding stock from western Lake Erie, as well as from individuals of S. canadense, a species which hybridizes with S. vitreum. Mitochondrial DNA was extracted from livers of these fish, purified by CsCl density gradient centrifugation and digested using 20 endonucleases. Polymorphisms were detected with 8 of the enzymes. There was a great deal of variation among fish from both spawning populations, so much so that individual fish could be identified by this technique. No single enzyme allowed discrimination of the two stocks, but restriction pattern variation following Dde I digestion permitted separation of 50% of Lake Erie fish from Thames River stock. Comparison of mt DNA restriction patterns of walleye and sauger showed that two species are easily separable, setting the stage for a more detailed study of hybridization between the taxa

  1. Mercury concentrations in fish from Canadian Great Lakes areas of concern: an analysis of data from the Canadian Department of Environment database

    International Nuclear Information System (INIS)

    Weis, I.M.

    2004-01-01

    The tissue mercury concentrations in six species of fish collected at the 17 Areas of Concern identified by the International Joint Commission on the Canadian side of the Great Lakes were analyzed using an Environment Canada database. A linear increase in mercury concentration with fish length was found, but slopes differed among locations. The temporal pattern over the period 1971-1997 differed across species in fish collected in Lake St. Clair; in at least two species there was evidence of increased mercury concentration during the 1990s that had been suggested in an earlier analysis. Areas of Concern differed significantly in observed tissue concentrations. Differences observed did not consistently parallel expectations associated with the historical presence of chlor-alkali plants in the vicinities of some locations. An attempt to correlate the fish tissue mercury concentration with the frequency of occurrence of infantile cerebral palsy at Areas of Concern was unsuccessful

  2. Milankovitch Modulation of the Ecosystem Dynamics of Fossil Great Lakes

    Science.gov (United States)

    Whiteside, J. H.; Olsen, P. E.; Eglinton, T. I.; Cornet, B.; Huber, P.; McDonald, N. G.

    2008-12-01

    Triassic and Early Jurassic lacustrine deposits of eastern North American rift basins preserve a spectacular record of precession-related Milankovitch forcing in the Pangean tropics. The abundant and well-preserved fossil fish assemblages from these great lakes demonstrate a sequence of cyclical changes that track the permeating hierarchy of climatic cycles. To detail ecosystem processes correlating with succession of fish communities, we measured bulk δ13Corg through a 100 ky series of Early Jurassic climatic precession-forced lake level cycles in the lower Shuttle Meadow Formation of the Hartford rift basin, CT. The deep-water phase of one of these cycles, the Bluff Head bed, has produced thousands of articulated fish. We observe fluctuations in the bulk δ13Corg of the cyclical strata that reflect differing degrees of lake water stratification, nutrient levels, and relative proportion of algal vs. plant derived organic matter that trace fish community changes. We can exclude extrinsic changes in the global exchangeable reservoirs as an origin of this variability because molecule-level δ13C of n-alkanes of plant leaf waxes from the same strata show no such variability. While at higher taxonomic levels the fish communities responded largely by sorting of taxa by environmental forcing, at the species level the holostean genus Semionotus responded by in situ evolution, and ultimately extinction, of a species flock. Fluctuations at the higher frequency, climatic precessional scale are mirrored at lower frequency, eccentricity modulated, scales, all following the lake-level hierarchical pattern. Thus, lacustrine isotopic ratios amplify the Milankovitch climate signal that was already intensified by sequelae of the end-Triassic extinctions. The degree to which the ecological structure of modern lakes responds to similar environmental cyclicity is largely unknown, but we suspect similar patterns and processes within the Neogene history of the East African great lakes

  3. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  4. A National Probabilistic Study of Polybrominated Diphenyl Ethers in Fish from US Lakes and Reservoirs

    Science.gov (United States)

    National estimates were developed for polybrominated diphenyl ethers (PBDEs) in fish from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake) using an unequal probability design. Predator (fillet) and bottom-dweller (w...

  5. Survey of fish impingement at power plants in the United States. Volume I. The Great Lakes

    International Nuclear Information System (INIS)

    Sharma, R.K.; Freeman, R.F. III.

    1977-03-01

    Impingement of fish at cooling-water intakes of 20 power plants located on the Great Lakes has been surveyed and data are presented. Descriptions of site, plant, and intake design and operation are provided. Reports in this volume summarize impingement data for individual plants in tabular and histogram formats. Information was available from differing sources such as the utilities themselves, public documents, regulatory agencies, and others. Thus, the extent of detail in the reports varies greatly from plant to plant. Histogram preparation involved an extrapolation procedure that has inadequacies. The reader is cautioned in the use of information presented in this volume to determine intake-design acceptability or intensity of impacts on ecosystems. No conclusions are presented herein; data comparisons are made in Volume IV

  6. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    Science.gov (United States)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  7. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  8. DECLINE AND EXTINCTION OF LAKE TROUT IN THE GREAT LAKES: CAN BIOLOGICAL INDICATORS HELP DIAGNOSE CAUSES, IDENTIFY REMEDIAL ACTIONS, AND PREDICT FUTURE CONDITIONS?

    Science.gov (United States)

    The lake trout, Salvelinus namaycush, is the predominant top predator native fish species of the Great Lakes. Lake trout are valued for commercial and recreational use in addition to their ecological importance. In the last half of the 20th century, population declines lead to vi...

  9. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    Science.gov (United States)

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  10. Distribution of an invasive aquatic pathogen (viral hemorrhagic septicemia virus) in the Great Lakes and its relationship to shipping

    Science.gov (United States)

    Bain, Mark B.; Cornwell, Emily R.; Hope, Kristine M.; Eckerlin, Geofrey E.; Casey, Rufina N.; Groocock, Geoffrey H.; Getchell, Rodman G.; Bowser, Paul R.; Winton, James R.; Batts, William N.; Cangelosi, Allegra; Casey, James W.

    2010-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus found in fish from oceans of the northern hemisphere and freshwaters of Europe. It has caused extensive losses of cultured and wild fish and has become established in the North American Great Lakes. Large die-offs of wild fish in the Great Lakes due to VHSV have alarmed the public and provoked government attention on the introduction and spread of aquatic animal pathogens in freshwaters. We investigated the relations between VHSV dispersion and shipping and boating activity in the Great Lakes by sampling fish and water at sites that were commercial shipping harbors, recreational boating centers, and open shorelines. Fish and water samples were individually analyzed for VHSV using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and cell culture assays. Of 1,221 fish of 17 species, 55 were VHSV positive with highly varied qRT-PCR titers (1 to 5,950,000 N gene copies). The detections of VHSV in fish and water samples were closely associated and the virus was detected in 21 of 30 sites sampled. The occurrence of VHSV was not related to type of site or shipping related invasion hotspots. Our results indicate that VHSV is widely dispersed in the Great Lakes and is both an enzootic and epizootic pathogen. We demonstrate that pathogen distribution information could be developed quickly and is clearly needed for aquatic ecosystem conservation, management of affected populations, and informed regulation of the worldwide trade of aquatic organisms.

  11. Exposure assessment and initial intervention regarding fish consumption of tribal members of the Upper Great Lakes Region in the United States

    International Nuclear Information System (INIS)

    Dellinger, John A.

    2004-01-01

    The Ojibwe Health Study (OHS) has concluded 10 years of data collection and exposure assessment. Eight hundred and twenty-two participants from tribes in the states of Wisconsin, Michigan, and Minnesota (USA) completed fish consumption and environmental risk perception questionnaires. Many participants provided hair and blood samples for mercury and polychlorinated biphenyl (PCB) residue analyses as body burden indicators of these persistent environmental pollutants. Fish were collected by the tribal organizations and contaminants were analyzed for numerous tribal reports and professional environmental journal articles, these data were used by the Great Lakes Indian Fish and Wildlife Commission to produce tribal-specific geographic information systems maps as part of a public health intervention strategy. These maps are currently available at www.glifwc.org for six Wisconsin tribes that regularly harvest walleye. To determine the health impacts (if any) of pollutants on cancer, diabetes, and reproduction, it was necessary to know the recent trends in key indicators such as cancer mortality ratios and birth gender ratios. The Great Lakes Inter-Tribal Council provided the OHS and each participating tribe in Wisconsin and Michigan with a health profile. Total fish consumption (estimated by recall) for 720 tribal participants was self-reported as 60 g/day, but the highest actual consumption was measured as 11.2 g/day in one of the tribal groups. The highest blood concentrations in tribal participants were 18.6 ppb total serum PCBs and 11.8 ppb total blood mercury. Ninety percent of the participants had less than 3.8 ppb total serum PCBs and 2.6 ppb total blood mercury. Compared to other studies of subsistence fishing populations, these exposures were only moderately elevated and not high enough to warrant widespread restrictions on diets. Furthermore, the benefits of eating a fish diet must be continually emphasized. However, sport fishermen and their families who

  12. Great cormorant (Phalacrocorax carbo predation on pikeperch (Sander lucioperca L. in shallow eutrophic lakes in Poland

    Directory of Open Access Journals (Sweden)

    Traczuk Piotr

    2017-06-01

    Full Text Available Increases in the population abundance of the piscivorous great cormorant (Phalacrocorax carbo has led to conflicts with fisheries. Cormorants are blamed for decreased fish catches in many lakes in Poland. The aim of this paper is to describe to role of pikeperch (Sander lucioperca in the diet of cormorants nesting in a colony on the island in Lake Warnołty. Since the breeding colony is located in the vicinity of Lake OEniardwy, the largest lake in Poland, the cormorants use the resources in this lake. In 2009-2016, 18,432 regurgitated fish were collected, of which 593 were pikeperch. The share of pikeperch among fish collected in 2009-2012 did not exceed 2%, but from 2013 this increased substantially to maximum of 38.2% in 2015. The smallest pikeperch had a standard length of 8.4 cm, and the largest 42.5 cm. Pikeperch mean length differed by year, and the length distribution was close to normal. The sizes of the regurgitated pikeperch indicate that cormorants prey almost exclusively on juvenile specimens. The results of the present study indicate that cormorant predation has a significant impact on pikeperch populations in lakes in the vicinity of the colony, and the great cormorants are possibly a significant factor in the effectiveness of pikeperch management. When planning for the management of fish populations in lakes subjected to cormorant predation pressure, it should be borne in mind that predation by this piscivorous bird species impacts the abundance and size-age structure of fish populations.

  13. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    Science.gov (United States)

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  14. Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region.

    Science.gov (United States)

    Neff, Margaret R; Bhavsar, Satyendra P; Braekevelt, Eric; Arts, Michael T

    2014-12-01

    Fish is often promoted as a healthy part of the human diet due its high content of long chain n-3 polyunsaturated fatty acids (LC-PUFA). Previous studies have shown that cooked fish can have different fatty acid profiles than raw fillets, depending on the cooking method and fish species. In this study, the fatty acid content of broiled, baked or fried skinless, boneless fillets of four fish species from the tributaries of the Great Lakes, or connecting rivers, was compared to fatty acid profiles in raw sections from the same fillet. Cooking treatments had little effect on n-3 fatty acid content; however, fried treatments generally had higher n-6 and MUFA content, which is likely a result of the cooking oil used (canola). Broiling or baking is generally the most healthy option presented in this study, as these methods result in lower levels of less-favourable fatty acids; however, the choice of cooking oil may also influence the overall fatty acid content in cooked fish. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Science.gov (United States)

    2010-02-09

    ...-04] RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes... Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of funding availability; Date... on January 19, 2010. That notice announced the NOAA Great Lakes Habitat Restoration Program Project...

  16. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  17. Great Lakes Environmental Database (GLENDA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  18. Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada's Great Bear Lake.

    Science.gov (United States)

    Harris, L N; Chavarie, L; Bajno, R; Howland, K L; Wiley, S H; Tonn, W M; Taylor, E B

    2015-01-01

    Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change.

  19. Genetic diversity of wild and hatchery lake trout populations: Relevance for management and restoration in the Great Lakes

    Science.gov (United States)

    Page, K.S.; Scribner, K.T.; Burnham-Curtis, M.

    2004-01-01

    The biological diversity of lake trout Salvelinus namaycush in the upper Great Lakes was historically high, consisting of many recognizable morphological types and discrete spawning populations. During the 1950s and 1960s, lake trout populations were extirpated from much of the Great Lakes primarily as a result of overfishing and predation by the parasitic sea lamprey Petromyzon marinus. Investigations of how genetic diversity is partitioned among remnant wild lake trout populations and hatchery broodstocks have been advocated to guide lake trout management and conservation planning. Using microsatellite genetic markers, we estimated measures of genetic diversity and the apportionment of genetic variance among 6 hatchery broodstocks and 10 wild populations representing three morphotypes (lean, humper, and siscowet). Analyses revealed that different hatchery broodstocks and wild populations contributed disproportionally to the total levels of genetic diversity. The genetic affinities of hatchery lake trout reflected the lake basins of origin of the wild source populations. The variance in allele frequency over all sampled extant wild populations was apportioned primarily on the basis of morphotype (??MT = 0.029) and secondarily among geographically dispersed populations within each morphotype (??ST = 0.024). The findings suggest that the genetic divergence reflected in recognized morphotypes and the associated ecological and physiological specialization occurred prior to the partitioning of large proglacial lakes into the Great Lakes or as a consequence of higher contemporary levels of gene flow within than among morphotypes. Information on the relative contributions of different broodstocks to total gene diversity within the regional hatchery program can be used to prioritize the broodstocks to be retained and to guide future stocking strategies. The findings highlight the importance of ecological and phenotypic diversity in Great Lakes fish communities and

  20. Assessment of general health of fishes collected at selected sites in the Great Lakes Basin In 2012

    Science.gov (United States)

    Mazik, Patricia M.; Braham, Ryan P.; Hahn, Cassidy M.; Blazer, Vicki

    2015-01-01

    During the past decade, there has been a substantive increase in the detection of “emerging contaminants”, defined as a new substance, chemical, or metabolite in the environment; or a legacy substance with a newly expanded distribution, altered release, or a newly recognized effect (such as endocrine disruption). Emerging contaminants include substances such as biogenic hormones (human and animal), brominated flame retardants, pharmaceuticals, personal care products, plasticizers, current use pesticides, detergents, and nanoparticles. These contaminants are frequently not regulated or inadequately regulated by state or Federal water quality programs. Information about the toxicity of these substances to fish and wildlife resources is generally limited, compared to more highly regulated contaminants, and some classes have been shown to cause affects (for example feminization of male fish, immunomodulation) that are not evaluated via traditional toxicity testing protocols. As a result, these compounds may pose a substantial, but currently poorly documented threat to aquatic ecosystems. Failure to identify and understand the impacts of these emerging contaminants on fish and wildlife resources may result in deleterious impacts to Great Lakes resources that can result in adverse ecological, economic and recreational consequences.

  1. Status and trends in the fish community of Lake Superior, 2012

    Science.gov (United States)

    Gorman, Owen T.; Evrard, Lori M.; Cholwek, Gary A.; Vinson, Mark

    2012-01-01

    The Great Lakes Science Center has conducted daytime nearshore bottom trawl surveys of Lake Superior (15-80 m bathymetric depth zone) each spring since 1978 and an offshore survey (>80 m) since 2011 to provide long-term trends of relative abundance and biomass of the fish community. In 2012, 72 nearshore and 34 offshore stations were sampled with a 12-m Yankee bottom trawl.

  2. Ecotoxicology of organochlorine chemicals in birds of the Great Lakes

    Science.gov (United States)

    Tillitt, Donald E.; Giesy, John P.

    2013-01-01

    Silent Spring was fulfilled in the United States with passage of environmental legislation such as the Clean Water Act, the Federal Insecticide, Fungicide, and Rodenticide Act, and the Toxic Substance Control Act in the 1970s. Carson's writings, television interviews, and testimony before Congress alerted a nation and the world to the unintended effects of persistent, bioaccumulative chemicals on populations of fish, wildlife, and possibly humans. Her writings in the popular press brought attention to scientific findings that declines in populations of a variety of birds were directly linked to the widespread use of dichlorodiphenyltrichloroethane (DDT) in agriculture, public health, and horticulture. By the 1970s, DDT and other persistent organic pollutants (POPs) were being banned or phased out, and the intent of these regulatory acts became apparent in a number of locations across the United States, including the Great Lakes. Concentrations of DDT and its major product of transformation, dichlorodiphenylchloroethane (DDE), were decreasing in top predators, such as bald eagles (Haliaeetus leucocephalus), osprey (Pandion haliaetus), colonial waterbirds, and other fish-eating wildlife. Eggshell thinning and the associated mortality of bird embryos caused by DDE had decreased in the Great Lakes and elsewhere by the early 1980s.

  3. Satellite lakes as reservoirs of fish species diversity

    OpenAIRE

    Nkalubo, W.; Wandera, S.B.; Namulemo, G.

    2010-01-01

    Satellite lakes and rivers in the Victoria and Kyoga basins provide a sanctuary for endangered native fish species. The structural heterogeneity of macrophyte covering these lakes has made it possible for most of the biodiversity to be kept intact. The Kyoga minor lakes have the highest fish species diversity especially of the haplochromines. Most fish communities of these satellite lakes are composed of native species.

  4. Challenges for Sustainable Use of the Fish Resources from Lake Balkhash, a Fragile Lake in an Arid Ecosystem

    Directory of Open Access Journals (Sweden)

    Steven G. Pueppke

    2018-04-01

    Full Text Available Lake Balkhash is the largest water body in Central Asia. More than three-quarters of its inflow comes from the Ili River, which is under increasing strain due to the diversion of water for energy and food production. Commercial fishing in Lake Balkhash began in 1929 and is currently in a state of crisis. The construction of the Balkhash dam and reservoir in the late 1960s reduced Ili River flows into the lake and upset the natural cycle of spring floods, which greatly reduced spawning and feeding areas for carp (Cyprinus carpio. Carp populations were consequently reduced by more than 90% during the filling of the reservoir and have not recovered, even though the lake’s level subsequently rose. Catches of carp and freshwater bream (Abramis brama orientalis have shown an inverse relationship since the 1960s, and the age structure of freshwater bream is changing. Historically, most captured fish of this species were 4- to 7-years-old, but smaller, 3- to 5-year-old fish have dominated recent catches. The total fish harvest from Lake Balkhash is currently at near historical lows, not just because of environmental factors, but also because of structural changes triggered by the collapse of the Soviet Union. Poaching, government disinterest, lack of enforcement of fishing regulations, and the economic challenges faced by today’s small fishing enterprises all contribute to the problem.

  5. Hierarchical multi-scale classification of nearshore aquatic habitats of the Great Lakes: Western Lake Erie

    Science.gov (United States)

    McKenna, J.E.; Castiglione, C.

    2010-01-01

    Classification is a valuable conservation tool for examining natural resource status and problems and is being developed for coastal aquatic habitats. We present an objective, multi-scale hydrospatial framework for nearshore areas of the Great Lakes. The hydrospatial framework consists of spatial units at eight hierarchical scales from the North American Continent to the individual 270-m spatial cell. Characterization of spatial units based on fish abundance and diversity provides a fish-guided classification of aquatic areas at each spatial scale and demonstrates how classifications may be generated from that framework. Those classification units then provide information about habitat, as well as biotic conditions, which can be compared, contrasted, and hierarchically related spatially. Examples within several representative coastal or open water zones of the Western Lake Erie pilot area highlight potential application of this classification system to management problems. This classification system can assist natural resource managers with planning and establishing priorities for aquatic habitat protection, developing rehabilitation strategies, or identifying special management actions.

  6. Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV isolate from USA

    Directory of Open Access Journals (Sweden)

    Vakharia Vikram N

    2009-10-01

    Full Text Available Abstract Background Viral hemorrhagic septicemia virus (VHSV is a highly contagious viral disease of fresh and saltwater fish worldwide. VHSV caused several large scale fish kills in the Great Lakes area and has been found in 28 different host species. The emergence of VHS in the Great Lakes began with the isolation of VHSV from a diseased muskellunge (Esox masquinongy caught from Lake St. Clair in 2003. VHSV is a member of the genus Novirhabdovirus, within the family Rhabdoviridae. It has a linear single-stranded, negative-sense RNA genome of approximately 11 kbp, with six genes. VHSV replicates in the cytoplasm and produces six monocistronic mRNAs. The gene order of VHSV is 3'-N-P-M-G-NV-L-5'. This study describes molecular characterization of the Great Lakes VHSV strain (MI03GL, and its phylogenetic relationships with selected European and North American isolates. Results The complete genomic sequences of VHSV-MI03GL strain was determined from cloned cDNA of six overlapping fragments, obtained by RT-PCR amplification of genomic RNA. The complete genome sequence of MI03GL comprises 11,184 nucleotides (GenBank GQ385941 with the gene order of 3'-N-P-M-G-NV-L-5'. These genes are separated by conserved gene junctions, with di-nucleotide gene spacers. The first 4 nucleotides at the termini of the VHSV genome are complementary and identical to other novirhadoviruses genomic termini. Sequence homology and phylogenetic analysis show that the Great Lakes virus is closely related to the Japanese strains JF00Ehi1 (96% and KRRV9822 (95%. Among other novirhabdoviruses, VHSV shares highest sequence homology (62% with snakehead rhabdovirus. Conclusion Phylogenetic tree obtained by comparing 48 glycoprotein gene sequences of different VHSV strains demonstrate that the Great Lakes VHSV is closely related to the North American and Japanese genotype IVa, but forms a distinct genotype IVb, which is clearly different from the three European genotypes. Molecular

  7. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  8. Status and trends of prey fish populations in Lake Michigan, 2013

    Science.gov (United States)

    Madenjian, Charles P.; Bunnell, David B.; Desorcie, Timothy J.; Kostich, Melissa Jean; Armenio, Patricia M.; Adams, Jean V.

    2015-01-01

    The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along contour at depths of 9 to 110 m at each of seven index transects. The resulting data on relative abundance, size and age structure, and condition of individual fishes are used to estimate various population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish stocks. All seven established index transects of the survey were completed in 2013. The survey provides relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, lake-wide) for prey fish populations, as well as burbot, yellow perch, and the introduced dreissenid mussels. Lake-wide biomass of alewives in 2013 was estimated at 29 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was more than three times the 2012 estimate. However, the unusually high standard error associated with the 2013 estimate indicated no significant increase in lake-wide biomass between 2012 and 2013. Moreover, the age distribution of alewives remained truncated with no alewife exceeding an age of 5. The population of age-1 and older alewives was dominated (i.e., 88%) by the 2010 and 2012 year-classes. Record low biomass was observed for deepwater sculpin (1.3 kt) and ninespine stickleback (0.004 kt) in 2013, while bloater (1.6 kt) and rainbow smelt (0.2 kt) biomasses remained at low levels. Slimy sculpin lake-wide biomass was 0.32 kt in 2013, marking the fourth consecutive year of a decline. The 2013 biomass of round goby was estimated at 10.9 kt, which represented the peak estimate to date. Burbot lake-wide biomass (0.4 kt in 2013) has remained below 3 kt since 2001. Numeric density of age-0 yellow perch (i.e., fish per ha, which is indicative of a relatively poor year-class. Lake-wide biomass estimate of dreissenid mussels in 2013 was 23.2 kt. Overall, the total

  9. Biological and ecological science for Wisconsin—A Great Lakes and Rivers State

    Science.gov (United States)

    ,

    2018-03-06

    Wisconsin and natural resources go hand-in-hand. Tourism, which generates $19 billion annually and sustains about 200,000 jobs, depends on an abundance of lakes, rivers, shorelines, and woodlands for fishing, hunting, boating, and other outdoor recreation. Rivers and floodplains in the Upper Mississippi Basin, including the Mississippi River, are part of a five-State corridor that generates more than $300 billion annually and sustains millions of manufacturing, tourism, transportation, and agricultural jobs. Wisconsin also is a Great Lakes State with more than 800 miles of shoreline, and the fisheries of lakes Superior and Michigan deliver $185 million annually and provide thousands of jobs.

  10. Fish assemblages in borrow-pit lakes of the Lower Mississippi River

    Science.gov (United States)

    Miranda, Leandro E.; Killgore, K. J.; Hoover, J.J.

    2013-01-01

    Borrow-pit lakes encompass about a third of the lentic water habitats (by area) in the active floodplain of the Lower Mississippi River, yet little is known about their fish assemblages. We investigated whether fish assemblages supported by borrow-pit lakes resembled those in oxbow lakes to help place the ecological relevance of borrow-pit lakes in context with that of natural floodplain lakes. In all, we collected 75 fish species, including 65 species in eight borrow-pit lakes, 52 species in four riverside oxbow lakes, and 44 species in eight landside oxbow lakes. Significant differences in several species richness metrics were evident between borrow-pit lakes and landside oxbow lakes but not between borrow-pit lakes and riverside oxbow lakes. All three lake types differed in fish assemblage composition. Borrow-pit lakes and riverside oxbow lakes tended to include a greater representation of fish species that require access to diverse environments, including lentic, lotic, and palustrine habitats; fish assemblages in landside oxbow lakes included a higher representation of lacustrine species. None of the fish species collected in borrow-pit lakes was federally listed as threatened or endangered, but several were listed as species of special concern by state governments in the region, suggesting that borrow-pit lakes provide habitat for sensitive riverine and wetland fish species. Differences in fish assemblages among borrow-pit lakes were linked to engineered morphologic features, suggesting that diversity in engineering can contribute to diversity in fish assemblages; however, more research is needed to match engineering designs with fish assemblage structures that best meet conservation needs.

  11. Fish mercury levels in lakes - adjusting for Hg and fish-size covariation

    International Nuclear Information System (INIS)

    Sonesten, Lars

    2003-01-01

    Fish-size covariation can be circumvented by regression intercepts of Hg vs. fish length as lake-specific Hg levels. - Accurate estimates of lake-specific mercury levels are vital in assessing the environmental impact on the mercury content in fish. The intercepts of lake-specific regressions of Hg concentration in fish vs. fish length provide accurate estimates when there is a prominent Hg and fish-size covariation. Commonly used regression methods, such as analysis of covariance (ANCOVA) and various standardization techniques are less suitable, since they do not completely remove the fish-size covariation when regression slopes are not parallel. Partial least squares (PLS) regression analysis reveals that catchment area and water chemistry have the strongest influence on the Hg level in fish in circumneutral lakes. PLS is a multivariate projection method that allows biased linear regression analysis of multicollinear data. The method is applicable to statistical and visual exploration of large data sets, even if there are more variables than observations. Environmental descriptors have no significant impact on the slopes of linear regressions of the Hg concentration in perch (Perca fluviatilis L.) vs. fish length, suggesting that the slopes mainly reflect ontogenetic dietary shifts during the perch life span

  12. Land, lake, and fish: Investigation of fish remains from Gesher Benot Ya'aqov (paleo-Lake Hula).

    Science.gov (United States)

    Zohar, Irit; Biton, Rebecca

    2011-04-01

    The question of whether or not pre-modern hominins were responsible for the accumulation of fish remains is discussed through analyses of remains recovered from two lacustrine facies (I-4 and I-5) from Area A of the Acheulian site of Gesher Benot Ya'aqov (GBY) in the Jordan Rift Valley, Israel. The fish remains provide the first glimpse into the naturally accumulated fish assemblage from the fluctuating shores of a lake that had been continually exploited by early hominins some 780,000 years ago. Preliminary analysis of the remains show that thirteen of the seventeen species native to Lake Hula were identified at GBY. These represent three of the five freshwater fish families native to the lake: Cyprinidae (carps), Cichlidae (tilapini, St. Peter's fish), and Clariidae (catfish). From a taphonomical perspective, a significant difference is found between the two lithofacies (Layers I-4 and I-5) in terms of species composition, richness, diversity, and skeleton completeness. It appears that the fish remains recovered from Layer I-4 (clay) are better preserved than those from Layer I-5 (coquina). In both lithofacies, Cyprinidae are highly abundant while Cichlidae and Clariidae are rare and under-represented, especially when compared to the Lake Hula fishery report from the 1950s. All of these identified species may have contributed significantly to the diet of GBY hominins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. PARENTAL CONSUMPTION OF CONTAMINATED SPORT FISH FROM LAKE ONTARIO AND PREDICTED FECUNDABILITY

    Science.gov (United States)

    Wildlife studies suggest that consumption of contaminated fish from the Great Lakes may expose humans to polychlorinated biphenyls and persistent chlorinated pesticides. To assess whether time to pregnancy or fecundability is affected, we conducted a telephone survey in 1993 with...

  14. Macroinvertebrates as indicators of fish absence in naturally fishless lakes

    Science.gov (United States)

    Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.

    2009-01-01

    1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus

  15. Fishing for compliments : man-made lake exceeds expectations

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2010-10-15

    This article discussed the unexpected benefits of the first man-made lake created to compensate for loss of habitat resulting from the construction of an oilsands mine. Wapan Sakahikan Lake appears to be diverting birds from a tailings pond in the vicinity, and more fish species than expected are showing up in the lake. Canadian Natural Resources Limited diverted and dammed the Tar River to make way for an oilsands mine. About 30 people were involved in the design and construction of the lake, which encompasses 80 hectares and is 19 feet deep, with shallower areas to facilitate spawning and the maturation of juvenile fish. Small islands, gravel beds, and an underwater trench for small fish to take shelter were also constructed. Special culverts help keep fish in the lake. A metre-deep layer of clay lines the lake to help prevent mercury contamination. With the aid of the spring melt, it took only three days to fill the lake. Nearby First Nations were consulted regarding the location and fish species to stock. Other oilsands companies are now creating compensation lakes, and what was learned in the creation of Wapan Sakahikan will be shared via the Regional Aquatic Monitoring Program. 1 ref., 1 fig.

  16. Great Lakes rivermouths: a primer for managers

    Science.gov (United States)

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  17. Canada's Response to the Recommendations in the Tenth Biennial Report on Great Lakes Water Quality of the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The Government of Canada and Ontario are currently renegotiating the Canada-Ontario Agreement Respecting the Great Lakes Basin Ecosystem (COA). They are committed to restoring and maintaining the basin's chemical, physical and biological integrity and ensuring that it has a healthy, sustainable future. The COA has established a strategic framework for coordinated federal-provincial responsibilities regarding the Great Lakes basin ecosystem. This document presents responses to the recommendations of the International Joint Commission's (IJC) Tenth Biennial Report on how to improve the performance and effectiveness of government programs such as the Great Lakes Water Quality Agreement. According to the IJC, there are many challenges ahead, including: cleanup of Canadian Areas of Concern; controlling and preventing the further introduction of exotic species; mitigating the impact of rapid urban growth on environmental conditions throughout the basin; and reducing contaminants transported in the atmosphere over long distances to the Great Lakes. This document presented the government's responses to each of the following IJC recommendations regarding remedial action plans, threats to human health with respect to consumption of fish, contaminated sediment, airborne toxic substances, Great Lakes binational toxics strategy, land use, alien invasive species, and information and data management. IJC also recommended that indicators should be reported regarding whether the Great Lakes surface waters are suitable for drinking, swimming and whether fish are edible.

  18. Spatial distribution of nearshore fish in the vicinity of two thermal generating stations, Nanticoke and Douglas Point, on the Great Lakes

    International Nuclear Information System (INIS)

    Minns, C.K.; Kelso, J.R.M.; Hyatt, W.

    1978-01-01

    At Nanticoke, Lake Erie, 1974, mean fish density varied considerably, range 162-14 204/10 000 m 3 , as estimated by digital acoustic fish enumeration. At Douglas Point, Lake Huron, 1975, mean density varied less, range 108-671/10 000 m 3 . At both sites fish densities were generally greatest in the shallowest, 3-5 m, depths. At Nanticoke, where the nearshore has low relief, there were no distinguishable communities. At Douglas Point, where depth increases rapidly offshore, there was evidence of benthic and pelagic communities. There was no evidence of altered fish distribution in relation to temperature. At Nanticoke there was no vertical variation in temperature and no vertical response was to be expected. At Douglas Point there was thermal stratification present in the summer and there was no apparent response. The influence of incident radiation was uncertain because of the effects of diurnal migrations. At both locations fish were clustered horizontally to varying degrees in the spring and fall, while in the summer fish were distributed more evenly. Densest clusters were usually in the vicinity of the turbulent discharge at both locations. The lack of temperature response and the similarity of Nanticoke with situations at nearby streams on Lake Erie suggest that the fish are responding to currents and perhaps topography. (author)

  19. Ecomorphological correlates of twenty dominant fish species of Amazonian floodplain lakes

    Directory of Open Access Journals (Sweden)

    F. K. Siqueira-Souza

    Full Text Available Abstract Fishes inhabiting Amazonian floodplain lakes exhibits a great variety of body shape, which was a key advantage to colonize the several habitats that compose these areas adjacent to the large Amazon rivers. In this paper, we did an ecomorphological analysis of twenty abundant species, sampled in May and August 2011, into two floodplain lakes of the lower stretch of the Solimões River. The analysis detected differences among species, which could be probably associated with swimming ability and habitat use preferences.

  20. Detection of Viral Hemorrhagic Septicemia Virus by Quantitative Reverse Transcription Polymerase Chain Reaction from Two Fish Species at Two Sites in Lake Superior

    Science.gov (United States)

    Cornwell, Emily R.; Eckerlin, Geofrey E.; Getchell, Rodman G.; Groocock, Geoffrey H.; Thompson, Tarin M.; Batts, William N.; Casey, Rufina N.; Kurath, Gael; Winton, James R.; Bowser, Paul R.; Bain, Mark B.; Casey, James W.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003. By the end of 2008, mortality events and viral isolations had occurred in all of the Laurentian Great Lakes except Lake Superior. In 2009, a focused disease surveillance program was designed to determine whether VHSV was also present in Lake Superior. In this survey, 874 fish from 7 sites along the U.S. shoreline of Lake Superior were collected during June 2009. Collections were focused on nearshore species known to be susceptible to VHSV. All fish were dissected individually by using aseptic techniques and were tested for the presence of VHSV genetic material by use of a quantitative reverse transcription (qRT) polymerase chain reaction (PCR) targeting the viral nucleoprotein gene. Seventeen fish from two host species at two different sites tested positive at low levels for VHSV. All attempts to isolate virus in cell culture were unsuccessful. However, the presence of viral RNA was confirmed independently in five fish by using a nested PCR that targeted the glycoprotein (G) gene. Partial G gene sequences obtained from three fish were identical to the corresponding sequence from the original 2003 VHSV isolate (MI03) from muskellunge. These detections represent the earliest evidence for the presence of VHSV in Lake Superior and illustrate the utility of the highly sensitive qRT-PCR assay for disease surveillance in aquatic animals.

  1. Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes

    Science.gov (United States)

    Lian, Yuxi; Huang, Geng; Godlewska, Małgorzata; Cai, Xingwei; Li, Chang; Ye, Shaowen; Liu, Jiashou; Li, Zhongjie

    2018-03-01

    We conducted acoustical surveys with a horizontal beam transducer to detect fish and with a vertical beam transducer to detect depth and macrophytes in two typical shallow lakes along the middle and lower reaches of the Changjiang (Yangtze) River in November 2013. Both lakes are subject to active fish management with annual stocking and removal of large fish. The purpose of the study was to compare hydroacoustic horizontal beam estimates with fish landings. The preliminary results show that the fish distribution patterns differed in the two lakes and were affected by water depth and macrophyte coverage. The hydroacoustically estimated fish biomass matched the commercial catch very well in Niushan Lake, but it was two times higher in Kuilei Lake. However, acoustic estimates included all fish, whereas the catch included only fish >45 cm (smaller ones were released). We were unable to determine the proper regression between acoustic target strength and fish length for the dominant fish species in the two lakes.

  2. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  3. New records of Ergasilus (Copepoda: Ergasilidae) in the Laurentian Great Lakes, including a lakewide review of records and host associations

    Science.gov (United States)

    Hudson, Patrick L.; Bowen, Charles A.; Stedman, Ralph M.

    1994-01-01

    Ergasilus nerkae was found infecting ninespine stickleback (Pungitius pungitius) in lakes Huron, Michigan, and Superior and threespine stickleback (Gasterosteus aculeatus) and round whitefish (Prosopium cylindraceum) in Lake Huron. Based upon the literature and study of archived material, we propose that E. nerkae is enzootic to the Great Lakes and that ninespine stickleback are a preferred host in Lake Huron. Prevalence of E. nerkae on ninespine stickleback increased from 17% in June to 68% in September, but mean intensity remained light. Prevalence and mean intensity increased with host length. Ergasilus luciopercarum is also reported on lake trout (Salvelinus namaycush) and largemouth bass (Micropterus salmoides) for the first time. Host-parasite records of Ergasilus spp. in North America are reviewed, biology and taxonomy are summarized, and a checklist of Great Lakes host-parasite-locality records is provided. At present, eight species of Ergasilus are known to infect 42 Great Lakes fish species.

  4. Mercury in fish from two Nicaraguan lakes: A recommendation for increased monitoring of fish for international commerce

    International Nuclear Information System (INIS)

    McCrary, Jeffrey K.; Castro, Mark; McKaye, Kenneth R.

    2006-01-01

    We measured total mercury concentrations in water and fish of Lake Managua and Lake Apoyo. Water mercury concentrations were 10-fold higher in Lake Managua than in Lake Apoyo, although differences in mercury concentration in the most common native fish were not significant. One-fourth of the commercially fished tilapia in Lake Managua exceeded maximum recommended mercury levels for consumption among pregnant women and other at-risk groups, although bioavailability to fishes was lower than in previously studied sites in Brazil and Western Maryland. The lower bioavailiability may present important information for management options to reduce mercury exposure to fishes and humans. We recommend closer mercury monitoring among freshwater fish destined for international commerce. - Fish commonly exported into the international food supply may be contaminated with mercury

  5. Mercury in fish from two Nicaraguan lakes: A recommendation for increased monitoring of fish for international commerce

    Energy Technology Data Exchange (ETDEWEB)

    McCrary, Jeffrey K. [University of Central America, Apdo. 69, Managua (Nicaragua) and College of Natural Resources, Virginia Tech, Blacksburg, VA 24061 (United States)]. E-mail: jmccrary2@yahoo.com; Castro, Mark [Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD 21532 (United States); McKaye, Kenneth R. [University of Central America, Apdo. 69, Managua (Nicaragua); Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD 21532 (United States)

    2006-06-15

    We measured total mercury concentrations in water and fish of Lake Managua and Lake Apoyo. Water mercury concentrations were 10-fold higher in Lake Managua than in Lake Apoyo, although differences in mercury concentration in the most common native fish were not significant. One-fourth of the commercially fished tilapia in Lake Managua exceeded maximum recommended mercury levels for consumption among pregnant women and other at-risk groups, although bioavailability to fishes was lower than in previously studied sites in Brazil and Western Maryland. The lower bioavailiability may present important information for management options to reduce mercury exposure to fishes and humans. We recommend closer mercury monitoring among freshwater fish destined for international commerce. - Fish commonly exported into the international food supply may be contaminated with mercury.

  6. Fish populations in a large group of acid-stressed lakes

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, H H

    1975-01-01

    The purpose of this study was to determine the effects of environmental stress on the number and diversity of fish species in a group of acid-stressed lakes. The study area was the La Cloche Mountains, a series of quartzite ridges covering 1,300 km/sup 2/ along the north shore of Georgian Bay and north channel of Lake Huron. Within these ridges are 173 lakes; 68 of the largest of these made up the study sample. The lakes of the La Cloche Mountains are undergoing rapid acidification. Coincident with this there has been the loss of sport fishes from several lakes. Lakes such as Nellie, Lumsden, O.S.A., Acid and Killarney supported good sport fisheries for the lake trout, (Salvelinus namaycush) for many years, but have ceased to do so in the last 5 to 15 years. Other sport fishes, notably the walleye (Stizostedion vitreum) and smallmouth bass (micropterus dolomieu) have disappeared from some of the La Cloche Lakes. Thus recreational fishing alone could not have been the cause of the change. Beamish (1974) recorded the extreme sparcity of the three remaining fish species in O.S.A. Lake. Many of the lakes of the La Cloche mountains are accessible only with difficulty and little or no information exists for these lakes prior to this study. This precluded simple comparison of these lakes before and during acidification. This lack of historic data determined in part the approach taken in this study; a comparison of the fish communities of a group of lakes differing in degree of acid stress.

  7. Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes

    Science.gov (United States)

    Jorgenson, Zachary G.; Thomas, Linnea M.; Elliott, Sarah M.; Cavallin, Jenna E.; Randolph, Eric C.; Choy, Steven J.; Alvarez, David; Banda, Jo A.; Gefell, Daniel J.; Lee, Kathy E.; Furlong, Edward T.; Schoenfuss, Heiko L.

    2018-01-01

    The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in

  8. Contaminants of emerging concern in the Great Lakes Basin: A report on sediment, water, and fish tissue chemistry collected in 2010-2012

    Science.gov (United States)

    Choy, Steven J.; Annis, Mandy L.; Banda, JoAnn; Bowman, Sarah R.; Brigham, Mark E.; Elliott, Sarah M.; Gefell, Daniel J.; Jankowski, Mark D.; Jorgenson, Zachary G.; Lee, Kathy E.; Moore, Jeremy N.; Tucker, William A.

    2017-01-01

    Despite being detected at low levels in surface waters and sediments across the United States, contaminants of emerging concern (CECs) in the Great Lakes Basin are not well characterized in terms of spatial and temporal occurrence. Additionally, although the detrimental effects of exposure to CECs on fish and wildlife have been documented for many CECs in laboratory studies, we do not adequately understand the implications of the presence of CECs in the environment. Based on limited studies using current environmentally relevant concentrations of chemicals, however, risks to fish and wildlife are evident. As a result, there is an increasing urgency to address data gaps that are vital to resource management decisions. The U.S. Fish and Wildlife Service, in collaboration with the U.S. Geological Survey, is leading a Great Lakes Basin-wide evaluation of CECs (CEC Project) with the objectives to (a) characterize the spatial and temporal distribution of CECs; (b) evaluate risks to fish and wildlife resources; and (c) develop tools to aid resource managers in detecting, averting, or minimizing the ecological consequences to fish and wildlife that are exposed to CECs. This report addresses objective (a) of the CEC Project, summarizing sediment and water chemistry data collected from 2010 to 2012 and fish liver tissue chemistry data collected in 2012; characterizes the sampling locations with respect to potential sources of CECs in the landscape; and provides an initial interpretation of the variation in CEC concentrations relative to the identified sources. Data collected during the first three years of our study, which included 12 sampling locations and analysis of 134 chemicals, indicate that contaminants were more frequently detected in sediment compared to water. Chemicals classified as alkyphenols, flavors/ fragrances, hormones, PAHs, and sterols had higher average detection frequencies in sediment compared to water, while the opposite was observed for pesticides

  9. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  10. Grass carp in the Great Lakes region: establishment potential, expert perceptions, and re-evaluation of experimental evidence of ecological impact

    Science.gov (United States)

    Wittmann, Marion E.; Jerde, Christopher L.; Howeth, Jennifer G.; Maher, Sean P.; Deines, Andrew M.; Jenkins, Jill A.; Whitledge, Gregory W.; Burbank, Sarah B.; Chadderton, William L.; Mahon, Andrew R.; Tyson, Jeffrey T.; Gantz, Crysta A.; Keller, Reuben P.; Drake, John M.; Lodge, David M.

    2014-01-01

    Intentional introductions of nonindigenous fishes are increasing globally. While benefits of these introductions are easily quantified, assessments to understand the negative impacts to ecosystems are often difficult, incomplete, or absent. Grass carp (Ctenopharyngodon idella) was originally introduced to the United States as a biocontrol agent, and recent observations of wild, diploid individuals in the Great Lakes basin have spurred interest in re-evaluating its ecological risk. Here, we evaluate the ecological impact of grass carp using expert opinion and a suite of the most up-to-date analytical tools and data (ploidy assessment, eDNA surveillance, species distribution models (SDMs), and meta-analysis). The perceived ecological impact of grass carp by fisheries experts was variable, ranging from unknown to very high. Wild-caught triploid and diploid individuals occurred in multiple Great Lakes waterways, and eDNA surveillance suggests that grass carp are abundant in a major tributary of Lake Michigan. SDMs predicted suitable grass carp climate occurs in all Great Lakes. Meta-analysis showed that grass carp introductions impact both water quality and biota. Novel findings based on updated ecological impact assessment tools indicate that iterative risk assessment of introduced fishes may be warranted.

  11. Mitigation options for fish kills in L Lake and Pond C

    International Nuclear Information System (INIS)

    Paller, M.H.

    1989-11-01

    This report concerns mitigation options for reducing or eliminating the fish kills that occur in L Lake and Pond C as a result of reactor operations. These kills occur when fish that have entered the discharge areas during outages are killed by the rapid rises in temperature that follow reactor re-starts. Factors that have been observed to influence the severity of the kills include the length of the outage, season during which the outage occurs, reactor power level, and size of the fish in the discharge area. Without mitigation, fish kills can be expected to occur in Pond C with approximately the same frequency and severity as in the past. Even in the absence of mitigation, however, it is unlikely that future fish kills in L Lake will be as severe as the large kill that occurred in December 1986. Fish abundance in Region 2 of L Lake (where severe kills occurred in the past) has declined over 90% since 1986, largely due to a reduction in the abundance of juvenile sunfish (which constituted approximately 99% of past kills). There are basically three categories of mitigation options: changes in reactor operations, methods to exclude fish from time discharge areas, and methods to promote the escapement of fish from the discharge area. These options vary in approach, scope, and anticipated expense. Most would need to be researched in greater depth before it would be possible to predict their effectiveness more definitively. While the options have the potential to greatly reduce mortalities, none can totally eliminate mortalities. The only way of ensuring the elimination of all mortalities is to reduce effluent temperatures to sublethal levels with properly designed and operated cooling technology. 18 refs., 2 figs., 1 tab

  12. Freshwater fishes in Greek lakes: Species richness and body size patterns

    Directory of Open Access Journals (Sweden)

    Anthi Oikonomou

    2015-11-01

    Full Text Available Freshwater ecosystems are widely recognised as hotspots of biodiversity and endemism; thus they are of great value for conservation biogeography. Amongst the taxa found in freshwater ecosystems, fish are the ideal biological model for testing biogeographical patterns and have often been used in large-scale ecological and biogeographical analyses. Lakes of Greece provide a unique opportunity to test biogeographical theories, however, biogeographical studies in Greece at broader, regional, scales, based on the distribution of freshwater species, species richness and endemism, are scarce. The aim of the current study is to test the effect of key environmental factors and spatial variables on species richness of lacustrine fishes and to test their effect on species’ size distributions. We assembled datasets of species richness and body size and environmental (predictor factors for 13 Greek lakes. Model selection procedures revealed that fish species richness increased with ecosystem area and decreased with altitude. In addition, our results showed that latitude per se is a good predictor of body size. Indeed, the mean size of lacustrine communities in the northern and southern lake ecosystems differed significantly. These patterns reflect the biogeographical history of these areas and highlight the crucial role connectivity plays in communities’ species composition.

  13. Effects of fish removal in the Furnas Lake, Azores

    Directory of Open Access Journals (Sweden)

    Bio, A.

    2008-01-01

    Full Text Available The Furnas Lake is a small volcanic, monomitic and increasingly eutrophised water body. Next to agricultural nutrient inputs, high densities of herbivorous fish are thought to contribute to high levels of turbidity in the lake, through zooplankton consumption and re suspension of the nutrients accumulated in the sediment. According to the alternative state hypothesis a shift from turbid to clear water conditions is favoured by reduction of nutrient concentrations, increased light availability and reduction of planktivorous and benthos-feeding fish stock. To improve water quality in the Furnas Lake, a substantial part of the bottom-feeding fish population (62% of the estimated common carp population, Cyprinus carpio, and 5% of the estimated roach population, Rutilus rutilus was removed. Effects of fish removal on turbidity and associated trophic state were analysed next to post-manipulation chlorophyll a concentration, zooplankton and macrophytes densities. Results suggest that fish removal was not enough to change lake conditions towards a lasting clear state dominated by macrophytes. Excessive nutrient load, in water and sediments, nutrient input from the lake basin and fish recruitment causing enhanced zooplankton grazing are appointed causes. Any further biomanipulation efforts should be associated to nutrient reduction; and continued monitoring of water quality, fish stock, macrophytes and zooplankton is needed.

  14. Morphometry and Lens of Eyes Bilih Fish (mystacoleucus padangensis, Bleeker) from Lake Toba, North Sumatra and Lake Singkarak, West Sumatra

    Science.gov (United States)

    Razak, A.

    2018-04-01

    This research has been carried out 2015. Bilih fish today need conservation and attention for sustainability. Habitat this fish is treated by human activities in Lake Singkarak, West Sumatera and Lake Toba in North Sumatera. The objectives of the research are describes morphometry of the body and relation with lens of eyes. The methods of the reasearch for measure all parts of surface body fish according www.fishbase.org. For measure and chemical composition of lens of eyes Bilih Fish (M. padangensis) are according Razak (2005). T he result of the research are indicated the size of morphology body Bilih Fish from Lake Toba and from Lake Singkarak is diffrent. Furthermore, diameter of lens is trend linier follow the growth of the body Bilih Fish from Lake Singkarak and Lake Toba. The chemical composition of lens of eyes Bilih Fish from Lake Singkarak contains Sulfur until 73.77% per 100 ppm, another substances like Calcium, Silicone, Magnesium, Phosporus 4.09%-4.83% per 100 ppm. The chemical composition of lens of eyes Bilih Fish from Lake Toba contains Sulfur only 50.08% per 100 ppm, another substances like Kalium, Calcium, Silicone, Magnesium, Phosporus 1.09%-10.43% per 100 ppm. Kalium substance only found in lens of eyes Bilih Fish from Lake Toba. As conclusion, morphometry body Bilih Fish from Lake Toba is bigger better than Bilih Fish from Lake Singkarak and chemical composition lens of eyes Bilih Fish from Lake Toba is influenced by environmental waters factors.

  15. Variations of thiaminase I activity pH dependencies among typical Great Lakes forage fish and Paenibacillus thiaminolyticus.

    Science.gov (United States)

    Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.

    2009-01-01

    The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.

  16. Biology and status of the shortnose cisco Coregonus reighardi Koelz in the Laurentian Great Lakes

    Science.gov (United States)

    Webb, Shane A.; Todd, Thomas N.

    1995-01-01

    The shortnose cisco, Coregonus reighardi, a member of the endemic species assemblage of Coregoninae in the Laurentian Great Lakes, was commercially important until overfishing and competition pressures from induced planktivores extirpated the species in Lakes Michigan and Ontario. Spawning shortnose ciscoes have been collected from Lake Huron and Georgian Bay of Lake Huron since 1956, however, no individuals have been collected from these habitats since 1985. Shortnose ciscoes were not collected during surveys of the cisco fishery of Georgian Bay during the summer of 1992 and spring of 1993. The lack of captures in the last eight years coupled with captures of only lone individuals in the last 16 years suggests the species may be extinct in all of the Laurentian system. The life history traits examined for Lake Huron shortnose ciscoes were similar to the conditions recorded for Lake Michigan and Ontario shortnose ciscoes, although Lake Huron fish were smaller.

  17. Depth as an organizer of fish assemblages in floodplain lakes

    Science.gov (United States)

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  18. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  19. Evaluation of Mercury, Selenium, Methylmercury in Consumed Fish from Shkodra Lake

    OpenAIRE

    , S. Fejzo; , K. Korro; , A. Alia

    2016-01-01

    In the present study, mercury and selenium levels were evaluated in fish tissues and fish organs from Shkodra Lake. 45 species of fish exists in this lake where 12 are migrate species. Some of the main types of fish that grow up in this lake are: crap, mullet, buy, carsi, cubla etc. Also the Shkodra Lake contains a very rich biota of microalgae, about 700 species with 250 algae type’s which grow up to 3 meter depth. These constitute a good environment food, but from the other side exist like ...

  20. Cormorant predation on PIT-tagged lake fish

    DEFF Research Database (Denmark)

    Skov, Christian; Jepsen, Niels; Baktoft, Henrik

    2014-01-01

    The present study use data from recovered PIT (Passive Integrated Transponder) tags to explore species-and size-specific annual predation rates by cormorants on three common lacustrine fishes (size range 120-367 mm) in a European lake; roach (Rutilus rutilus), common bream (Abramis brama) and perch...... (Perca fluviatilis). In addition, we quantify the level of age/size truncation that cormorant predation could introduce in a population of perch, an important fish for recreational angling as well as for trophic interactions and ecosystem function in European lakes. Based on three years of PIT tagging...... of fish in Lake Viborg and subsequent recoveries of PIT tags from nearby cormorant roosting and breeding sites, we show that cormorants are major predators of roach, bream and perch within the size groups we investigated and for all species larger individuals had higher predation rates. Perch appear...

  1. Great Lakes/Saint Lawrence Seaway Regional Transportation Study for U.S. Army Corps of Engineers. Phase II. Summary Report.

    Science.gov (United States)

    1982-03-01

    center in Hamilton and the public utilities in Toronto. The vast majority of these shipments are loaded at U.S. Lake Erie ports. (2) The Great Lakes...fish spawning, including egg survival, behavior, distribution of species and spawning, nursery and food/cover habitats in wetlands. Although fish...30P 305 CHICAGO 0 IR 21 41 74 43 141 16P 16P CALUMFT HR 0 7S9 3%0 %On IOA4 631 1934 240A 2414 INDIANA HA 0 1 4 7 10 13 1r is BURNS HOP 0 115 65 , A ?07

  2. Plutonium and americum concentration along fresh water food chains of the Great Lakes, U.S.A. General summary of progress, 1975--1976

    International Nuclear Information System (INIS)

    Bowen, V.T.

    1976-01-01

    Progress is reported for studies on the distribution of long-lived transuranic nuclides and 137 Cs introduced into the Great Lakes by fallout deposits or in radioactive effluents from nuclear facilities. Emphasis is placed on the content of 137 Cs, 241 Am, 239 Pu, 240 Pu, and 244 Cm in plankton, fish, and sediments sampled in Lake Erie and Lake Ontario during 1975 and 1976

  3. 78 FR 5474 - Great Lakes Pilotage Advisory Committee

    Science.gov (United States)

    2013-01-25

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2013-0029] Great Lakes Pilotage Advisory... Meeting. SUMMARY: The Great Lakes Pilotage Advisory Committee (GLPAC) will meet on February 11, 2013, in..., 2013, after the committee completes its work on the agenda given under SUPPLEMENTARY INFORMATION...

  4. A historical perspective on the "fish tumors or other deformities" beneficial use impairment at Great Lakes Areas of Concern

    Science.gov (United States)

    Rafferty, S.D.; Blazer, V.S.; Pinkney, A.E.; Grazio, J.L.; Obert, E.C.; Boughton, L.

    2009-01-01

    The Great Lakes Water Quality Agreement defines Areas of Concern as geographic areas that fail to meet the general or specific objectives of the agreement where such failure has caused or is likely to cause impairment of beneficial use of the area's ability to support aquatic life. One of the beneficial use impairments, fish tumors or other deformities, is defined by the International Joint Commission to occur when the incidence rate of fish tumors and other deformities exceeds rates at unimpacted or control sites, or when survey data confirm the presence of neoplastic or preneoplastic liver tumors in bullhead or suckers. Brown bullhead, a benthic species with a limited home range, have frequently been used as indicator species in U.S. Areas of Concern. While there is strong field evidence for an association between PAH exposure and hepatic neoplasia in brown bullhead, laboratory investigations would strengthen the association. There is less evidence linking specific classes of chemicals in the environment to orocutaneous neoplasia in brown bullhead. Studies on orocutaneous neoplasia of brown bullhead should focus on assessing the presence or absence of viruses and on epidermal exposure to specific chemicals and chemical mixtures. Lastly, the effects of covariates such as length, age, and gender on the prevalence of liver and skin neoplasms should be investigated. This paper reviews the state of science on the fish tumors or other deformities beneficial use impairment. Subsequent papers address specific issues related to this impairment and provide recommendations for standardized criteria.

  5. Evaluate prevailing climate change on Great Lakes water levels

    International Nuclear Information System (INIS)

    Islam, M.

    2009-01-01

    'Full text:'In this paper, results of a comprehensive water mass balance modeling for the Great Lakes against prevailing and different anticipated climate change scenarios would be presented. Modeling is done in evaluating the changes in the lake storages and then changes in the lake's water level considering present condition, uncertainty and variability of climate and hydrologic conditions in the future. Inflow-outflow and consequent changes in the five Great Lake's storages are simulated for the last 30 years and then projected to evaluate the changes in the lake storages for the next 50 years. From the predicted changes in the lake storage data, water level is calculated using mass to linear conversion equation. Modeling and analysis results are expected to be helpful in understanding the possible impacts of the climate change on the Great Lakes water environment and preparing strategic plan for the sustainable management of lake's water resources. From the recent past, it is observed that there is a depleting trend in the lakes water level and hence there is a potential threat to lake's water environment and uncertainty of the availability of quality and quantity of water for the future generations, especially against prevailing and anticipated climate changes. For this reason, it is an urgent issue of understanding and quantifying the potential impacts of climate change on the Great Lake's water levels and storages. (author)

  6. Population ecology of the sea lamprey (Petromyzon marinus) as an invasive species in the Laurentian Great Lakes and an imperiled species in Europe

    Science.gov (United States)

    Hansen, Michael J.; Madenjian, Charles P.; Slade, Jeffrey W.; Steeves, Todd B.; Almeida, Pedro R.; Quintella, Bernardo R.

    2016-01-01

    The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range.

  7. Selecting fish-based metrics responding to human pressures in French natural lakes and reservoirs: towards the development of a fish-based index (FBI) for French lakes

    OpenAIRE

    Launois, L.; Veslot, J.; Irz, P.; Argillier, C.

    2010-01-01

    1.Fish-based indices of biotic integrity (IBI) have been developed for many lotic systems but remain scarce for lakes. The goal of the present study was to assess the responses of lentic fish assemblages to anthropogenic pressures when environmental variability was controlled for, and to compare them between French natural lakes and reservoirs. 2.Environmental features, catchment-scale anthropogenic descriptors and fish data were collected from 30 natural lakes and 59 reservoirs throughout...

  8. Regime shifts in shallow lakes: the importance of seasonal fish migration

    DEFF Research Database (Denmark)

    Brönmark, Christer; Brodersen, Jakob; Chapman, Ben B.

    2010-01-01

    . Our earlier research shows that a large proportion of zooplanktivorous fish populations in shallow lakes undertake seasonal migrations where they leave the lake during winter and migrate back to the lake in spring. Based on our past research, we propose a number of scenarios of how feedback processes...... properties, including piscivore abundance and zooplankton productivity, affect the individual state of zooplanktivorous fish, such as growth rate or condition. Individual state, in turn, affects the relative proportion and timing of migrating zooplanktivorous fish. This change, in turn, may stabilize states...... between the individual and ecosystem levels may affect stability of alternative stable states in shallow lakes when mediated by fish migration. Migration effects on shallow lakes result from processes at different scales, from the individual to the ecosystem. Our earlier research has shown that ecosystem...

  9. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  10. Great Lakes CoastWatch Node

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CoastWatch is a nationwide National Oceanic and Atmospheric Administration (NOAA) program within which the Great Lakes Environmental Research Laboratory (GLERL)...

  11. The offshore fish community in southern Lake Ontario, 1972-1998

    Science.gov (United States)

    Owens, Randall W.; O'Gorman, Robert; Eckert, Thomas H.; Lantry, Brian F.; Munawar, M.

    2003-01-01

    The authors document the status of Lake Ontario's open-water fish community in 1972, near the beginning of an era of massive fish stocking and when phosphorus levels in the lake from anthropogenic inputs, were near their peak. They then describe changes that occurred in the fish community in 1978-98. This was a period when large numbers of young salmonid piscivores were released annually, sea lamprey control continued to improve, and phosphorus levels were declining due to successful nutrient abatement programs. Coincident with the above, the lower food web was changed by the addition of new exotic invertebrates, the zooplankter Bythotrephes cederstroemi and particularly the zebra mussel, Dreissena polymorpha, and quagga mussel, D. bugensis. The picture of the fish community structure is drawn from records of catches in bottom trawls and gill nets during surveys of southern Lake Ontario conducted the the U.S. Geological Survey (USGS) and the New York Department of Environmental Conservation (NYDEC), from records of fish stocked in Lake Ontario by the NYDEC, and from a creel census of boat anglers returning to southern Lake Ontario ports conducted by the NYDEC.

  12. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    Science.gov (United States)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  13. The major and trace element chemistry of fish and lake water within ...

    African Journals Online (AJOL)

    Chemical elements in lake water are incorporated into fish tissues through bioconcentration and biomagnification. Lake water and fish tissue samples from 23 lakes, located within 4 major South African catchments, were analysed to investigate the link between element concentrations in lake water and otolith, fin spine, ...

  14. Lake variability: Key factors controlling mercury concentrations in New York State fish

    International Nuclear Information System (INIS)

    Simonin, Howard A.; Loukmas, Jefferey J.; Skinner, Lawrence C.; Roy, Karen M.

    2008-01-01

    A 4 year study surveyed 131 lakes across New York State beginning in 2003 to improve our understanding of mercury and gather information from previously untested waters. Our study focused on largemouth and smallmouth bass, walleye and yellow perch, common piscivorous fish shown to accumulate high mercury concentrations and species important to local fisheries. Fish from Adirondack and Catskill Forest Preserve lakes generally had higher mercury concentrations than those from lakes in other areas of the state. Variability between nearby individual lakes was observed, and could be due to differences in water chemistry, lake productivity or the abundance of wetlands in the watershed. We found the following factors impact mercury bioaccumulation: fish length, lake pH, specific conductivity, chlorophyll a, mercury concentration in the water, presence of an outlet dam and amount of contiguous wetlands. - Lake water chemistry variables, dams, and wetlands play major roles in determining fish mercury concentrations

  15. Hexabromocyclododecane (HBCDD) Flame Retardant in Top Predator Fish across Canada and its 36-Year Temporal Trends for Lake Ontario.

    Science.gov (United States)

    Su, Guanyong; McGoldrick, Daryl; Clark, Mandi G; Evans, Marlene; Gledhill, Melissa; Garron, Christine; Armellin, Alain; Backus, Sean; Letcher, Robert J

    2018-05-08

    Hexabromocyclododecane (HBCDD) is a high concern environmental pollutant due to its persistent, bioaccumulative and toxic properties. The spatial distribution of HBCDD was investigated in top predator fish (Lake Trout, Walleye or Brook Trout) collected in 2013 (n=165) from nineteen sampling sites and in 2015 (n=145) from twenty sites across Canada. HBCDD was measurable in at least one sample at each sampling site regardless of sampling year with the exception of Walleye from the south basin of Lake Winnipeg (2013). Sampling sites in or near the Laurentian Great Lakes had greater HBCDD concentrations compared to locations to the west or east. The greatest mean HBCDD concentration was 72.6 ng/g lw in fish from Lake Huron-Goderich (2015). Regardless of the sampling sites, α-HBCDD was the dominant congener followed by γ-HBCDD, whereas β-HBCDD was barely detectable. In fish from the same waterbody there were comparable α/γ isomer concentration ratios. The greatest ratio was 20.8 in fish from Lake Ontario, whereas the lowest ratio was 6.3 for fish from Lac Memphrémagog (Québec) likely related to more recent emissions of technical HBCDD mixture. Temporal trends of HBCDD in Lake Trout from Lake Ontario showed a significant decreasing trend for γ-HBCDD with a half-life estimate of 10 years over a 36-year period (1979-2015), and for -HBCDD with a half-life of 11 years over the years of 2008 to 2015. The proportion of α-HBCDD to ΣHBCDD increased significantly during 1979 to 2015. The present study provided novel information on the isomer-specific HBCDDs in Canada freshwater fish.

  16. 46 CFR 30.10-33 - Great Lakes-TB/L.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Great Lakes-TB/L. 30.10-33 Section 30.10-33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-33 Great Lakes—TB/L. Under this designation shall be included all tank vessels navigating the Great Lakes. ...

  17. Analysis of fish movements between Great Lakes coastal wetlands and near shore habitat via otolith microchemistry

    Science.gov (United States)

    Great Lakes coastal wetlands are unique habitats with physical connections with near shore environments. This facilitates the exchange of energy between habitats in a principle known as habitat coupling. Coupling can be facilitated by movements of consumers; however, wetland us...

  18. LIMNOLOGICAL CONDITION AND ESTIMATION OF POTENTIAL FISH PRODUCTION OF KERINCI LAKE JAMBI, SUMATRA

    Directory of Open Access Journals (Sweden)

    Samuel Samuel

    2015-06-01

    Full Text Available Kerinci Lake is a type of tectonic lakes located in a protected forest area of National Park of Kerinci Sebelat and a source of various fish species important for local people for their dayly food comsumption and income. However, few information is available on limnological condition and fish resources. Field research observing the limnological condition and estimating the potential fish production was conducted four times in April, June, August and October 2013. The research is aimed to describe the condition of limnology and estimate the potential fish production of the lake. Limnological aspect included the physico-chemical and biological parameters, namely: temperature, water transparency, depth, substrate, conductivity, pH, dissolved oxygen, alkalinity, ammonia, nitrate, phosphate, total phosphorus, chlorophyll-a and trophic state. Potential fish production was calculated by using the biological parameter levels of chlorophyll-a. The results show that the euphotic layer of the lake waters was still feasible for fish life. Water condition of the bottom layer was less supportable for fish life due to low dissolved oxygen content. Trophic state index (TSI values, either measured by temporal and spatial ways, had TSI with an average of 61.75. From these index, the lake is classified as a lake at the high productivity level (eutrophic. Annual fish production was an average of 307 kg/ha/year. By taking account the average of fish production and the total area of lake of around 4,200 ha, the potential fish production of Kerinci Lake is estimated about ± 1,287 tons/year.

  19. Transfer of Chernobyl-derived 137Cs into fishes in some Finnish lakes

    International Nuclear Information System (INIS)

    Saxen, R.; Koskelainen, U.; Alatalo, M.

    2000-09-01

    This report summarises STUK's work for the hydrological modelling (WG 4) in RODOS C, a project co-ordinated by the EU, in 1996-1999. The role of STUK in the project was to provide a data set on the radio-caesium contents in different types of fish and lakes in northern European environmental conditions for the development of a dynamic regional model describing radio-caesium transfer into fish. The co-operating institute, Technical Research Centre of Finland (VTT), was responsible for the modelling work in this project. Besides the analysed data on 137 Cs in the various fish species in the lakes, background information was produced on lakes and their drainage areas that might affect radio-caesium transfer into fish, which was needed for the development of fish, lake and drainage basin models. The role of STUK included also providing another, independent data set for the validation of the model. The proposals and needs of the co-operating institute, VTT, were taken into account. One of the factors strongly affecting the transfer of 137 Cs into fish is the nutrition level of the lake. The average transfer of 137 Cs in predators at the time of maximum activity concentrations in oligotrophic lakes was found to be up to 0.10 m 2 /kg, implying that approximately 10% of the amount of 137 Cs deposited on one square metre is transferred into 1 kg of fish. The corresponding transfer in eutrophic lakes was clearly lower,.i.e. 3- 4%, at the time of maximum concentrations, which usually occurred 1- 3 years after the deposition, depending on the fish species. These time-dependent transfer coefficients can be regarded as a kind of a lake-specific model. If deposition to the lake is known, the activity concentrations in fish can be estimated within specific uncertainty limits, by multiplying the deposition value by the transfer coefficient at a certain time point. Temporal changes in annual averages of transfer coefficients with variation for a certain set of lakes and for three

  20. Characteristics of fatty acid composition of Gammarus lacustris inhabiting lakes with and without fish.

    Science.gov (United States)

    Makhutova, O N; Sharapova, T A; Kalachova, G S; Shulepina, S P; Gladyshev, M I

    2016-01-01

    The effect of a biotic factor--the presence of predatory fish in water--on the composition and content of fatty acids in crustaceans was studied in the populations of the lake amphipod Gammarus lacustris from two lakes with fish and three lakes without fish. It was found that, at an overall increase in the quantity and quality of food resources (namely, increase in the content of eicosapentaenoic acid and docosahexaenoic acid (DHA) in the biomass), the relative rate of DHA accumulation in gammarids in the lakes without fish is higher than in the lake with fish.

  1. Total mercury concentration in common fish species of Lake Victoria ...

    African Journals Online (AJOL)

    Total mercury (THg) concentration was analysed in muscles of common fish species of Lake Victoria in the eastern and southern parts of the lake using cold vapour Atomic Absorption Spectrophotometric technique. Mercury concentration in all fish species was generally lower than the WHO maximum allowable ...

  2. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  3. Great Lakes water quality initiative technical support document for human health criteria and values (January 1993 draft)

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of the human health criteria and values for the Great Lakes is the protection of humans from unacceptable exposure to toxicants from consumption of contaminated fish, drinking water and water related to recreational activities. Emphasis is on the protection of the individual in evaluating toxicity information and its application in the derivation of criteria and values

  4. Effects of water quality and trophic status on helminth infections in the cyprinid fish, Schizothorax niger Heckel, 1838 from three lakes in the Kashmir Himalayas.

    Science.gov (United States)

    Zargar, U R; Yousuf, A R; Chishti, M Z; Ahmed, F; Bashir, H; Ahmed, F

    2012-03-01

    Water quality greatly influences the population density of aquatic biota, including parasites. In order to evaluate the relationship between fish parasites and water quality in Kashmir Himalayas, we assessed helminth parasite densities in Schizothorax niger Heckel, 1838 (an endemic cyprinid fish of Kashmir) from three lakes, namely Anchar, Manasbal and Dal, which reflected the varied stages of eutrophication. The overall prevalence of helminth infections was higher in the hypertrophic Anchar Lake (prevalence = 18.6%) compared to Manasbal Lake, which was the least eutrophied (prevalence = 6.4%). Furthermore, mean prevalence of monoxenous and heteroxenous parasites was higher in lakes containing higher levels of water degradation (Anchar and Dal). The mean number of helminth species per fish host was the highest in the hypertrophic lake (1.3 ± 0.3) in comparison to the least eutrophic lake (0.2 ± 1.5). Variability of calculated infection indices (prevalence, mean intensity and mean abundance) revealed that helminth parasite composition in the fish was affected by the lakes' environmental stress (degraded water quality). Therefore, data on the density of helminth parasites in fish can provide supplementary information on the pollution status of a water body.

  5. Adaption of egg and larvae sampling techniques for lake sturgeon and broadcast spawning fishes in a deep river

    Science.gov (United States)

    Roseman, Edward F.; Kennedy, Gregory W.; Craig, Jaquelyn; Boase, James; Soper, Karen

    2011-01-01

    In this report we describe how we adapted two techniques for sampling lake sturgeon (Acipenser fulvescens) and other fish early life history stages to meet our research needs in the Detroit River, a deep, flowing Great Lakes connecting channel. First, we developed a buoy-less method for sampling fish eggs and spawning activity using egg mats deployed on the river bottom. The buoy-less method allowed us to fish gear in areas frequented by boaters and recreational anglers, thus eliminating surface obstructions that interfered with recreational and boating activities. The buoy-less method also reduced gear loss due to drift when masses of floating aquatic vegetation would accumulate on buoys and lines, increasing the drag on the gear and pulling it downstream. Second, we adapted a D-frame drift net system formerly employed in shallow streams to assess larval lake sturgeon dispersal for use in the deeper (>8 m) Detroit River using an anchor and buoy system.

  6. Depth gradients in food-web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem

    Science.gov (United States)

    Sierszen, Michael E.; Hrabik, Thomas R.; Stockwell, Jason D.; Cotter, Anne M; Hoffman, Joel C.; Yule, Daniel L.

    2014-01-01

    In large lakes around the world, depth-based changes in the abundance and distribution of invertebrate and fish species suggest that there may be concomitant changes in patterns of resource allocation. Using Lake Superior of the Laurentian Great Lakes as an example, we explored this idea through stable isotope analyses of 13 major fish taxa.

  7. Biological effects-based tools for monitoring impacted surface waters in the Great Lakes: a multiagency program in support of the Great Lakes Restoration Initiative

    Science.gov (United States)

    Ekman, Drew R.; Ankley, Gerald T.; Blazer, Vicki; Collette, Timothy W.; Garcia-Reyero, Natàlia; Iwanowicz, Luke R.; Jorgensen, Zachary G.; Lee, Kathy E.; Mazik, Pat M.; Miller, David H.; Perkins, Edward J.; Smith, Edwin T.; Tietge, Joseph E.; Villeneuve, Daniel L.

    2013-01-01

    There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particularly with regard to monitoring potentially toxic chemicals and assessing Areas of Concern (AOCs), as envisioned by the Great Lakes Restoration Initiative (GLRI). Our strategy includes use of both targeted and open-ended/discovery techniques, as appropriate to the amount of information available, to guide a priori end point and/or assay selection. Specifically, a combination of in vivo and in vitro tools is employed by using both wild and caged fish (in vivo), and a variety of receptor- and cell-based assays (in vitro). We employ a work flow that progressively emphasizes in vitro tools for long-term or high-intensity monitoring because of their greater practicality (e.g., lower cost, labor) and relying on in vivo assays for initial surveillance and verification. Our strategy takes advantage of the strengths of a diversity of tools, balancing the depth, breadth, and specificity of information they provide against their costs, transferability, and practicality. Finally, a series of illustrative scenarios is examined that align EBMS options with management goals to illustrate the adaptability and scaling of EBMS approaches and how they can be used in management decisions.

  8. Review of fish diversity in the Lake Huron basin

    Science.gov (United States)

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  9. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  10. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    Science.gov (United States)

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  11. A comparison of water quality criteria for the Great Lakes based on human and wildlife health

    Science.gov (United States)

    Ludwig, James P.; Giesy, John P.; Summer, Cheryl L.; Bowerman, William; Aulerich, Richard J.; Bursian, Steven J.; Auman, Heidi J.; Jones, Paul D.; Williams, Lisa L.; Tillitt, Donald E.; Gilbertson, Michael

    1993-01-01

    Water quality criteria (WQC) can be derived in several ways. The usual techniques involve hazard and risk assessment procedures. For non-persistent, non-biomagnified compounds and elements, WQC are experimentally derived from their acute and chronic toxicity to aquatic organisms. For those persistent chlorinated hydrocarbons (PCHs) that are bioaccumulated and biomagnified, these traditional techniques have not been effective, partly because effects higher in the food web were not considered. Polychlorinated biphenyls (PCBs) are the bioaccumulative synthetic chemicals of primary toxicological significance to the Great Lakes biota which have caused widespread injury to wildlife. In the Laurentian Great Lakes, the primary emphasis of hazard assessments has been on the potential for adverse effects in humans who eat fish. The primary regulatory endpoint of traditional hazard and risk assessments underlying current WQC are the probabilities of additional cancers occurring in the human population. The analysis presented here indicates that this is not adequate to restore sensitive wildlife species that are highly exposed to PCBs, especially those that have suffered serious population declines. Because WQC are legal instruments, the methods of deriving WQC have large implications for remediation, litigation, and damage assessments. Here WQC are derived for six species based on the responses of wildlife in the field or produced by feeding fish to surrogate species, rather than projecting a potential of increased cancer rates in humans. If the most sensitive wildlife species are restored and protected for very sensitive reproductive endpoints, then all components of the ecosystem, including human health, should be more adequately protected. The management of Great Lakes wildlife requires an understanding of the injury and causal relationships to persistent toxic substances.

  12. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: II. Biological consequences of exposure

    Science.gov (United States)

    Thomas, Linnea M.; Jorgenson, Zachary G.; Brigham, Mark E.; Choy, Steven J.; Moore, Jeremy N.; Banda, Jo A.; Gefell, D.J.; Minarik, Thomas A.; Schoenfuss, Heiko L.

    2017-01-01

    The Laurentian Great Lakes contain one fifth of the world’s surface freshwater and have been impacted by human activity since the Industrial Revolution. In addition to legacy contaminants, nitrification and invasive species, this aquatic ecosystem is also the recipient of Contaminants of Emerging Concern (CECs) with poorly understood biological consequences. In the current study, we documented the presence, concentrations, and biological effects of CECs across 27 field sites in six Great Lakes tributaries by examining over 2250 resident and caged sunfish (Lepomis ssp.) for a variety of morphological and physiological endpoints and related these results to CEC occurrence. CEC were ubiquitous across studies sites and their presence and concentrations in water and sediment were highest in effluent dominated rivers and downstream of municipal wastewater treatment plant discharges. However, even putative upstream reference sites were not free of CEC presence and fish at these sites exhibited biological effects consistent with CEC exposure. Only the Fox River exhibited consistent adverse biological effects, including increased relative liver size, greater prominence of hepatocyte vacuoles and increased plasma glucose concentrations. Canonical Redundancy Analysis revealed consistent patterns of biological consequences of CEC exposure across all six tributaries. Increasing plasma glucose concentrations, likely as a result of pollutant-induced metabolic stress, were associated with increased relative liver size and greater prominence of hepatocyte vacuoles. These indicators of pollutant exposure were inversely correlated with indicators of reproductive potential including smaller gonad size and less mature gametes. The current study highlights the need for greater integration of chemical and biological studies and suggests that CECs in the Laurentian Great Lakes Basin may adversely affect the reproductive potential of exposed fish populations.

  13. FISHING ACTIVITIES AND FISHERMEN INCOME IN RANAU LAKE, SOUTH SUMATRA

    Directory of Open Access Journals (Sweden)

    Dina Muthmainah

    2015-06-01

    Full Text Available Fish resources contribute to the socio-economic development for people who live surrounding the waters. The fishermen of Ranau Lake, South Ogan Komering Ulu Regency, South Sumatra Province and West Lampung Regency, Lampung Province are the prime stakeholder and direct interest in fish resources, because they depend on it for their livelihoods or they are directly involved in its exploitation in some ways. However, to well manage these resources, it needs data and information about fish utilization and fishing activity. The objectives of this work are to assess fishing activities such as the fishing craft and gears, catch composition, fish yield, catch per unit of effort (CPUE and to estimate the fihermen income with economical parameter such as cost and price. Field surveys were conducted from February to November 2014. Fishing activities data were collected from field survey and interview. The results showed that fish resources utilization in Ranau Lake was categorized as traditional and small scale fisheries using different selective fishing gears such gillnet, harpoon, net trap and basket trap with the fish catch in average of 696.66 g/day; 205.03 g/day; 1.584.06 g/day and 123.67 g/day, respectively. Fisherman income (IDR 2,163,300 means the fishermen in Ranau Lake reach standard Indonesian welfare.

  14. GLERL Great Lakes Air Temperature/Degree Day Climatology, 1897-1983

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily maximum and minimum temperatures for 25 stations around the Great Lakes, 1897 to 1983, were given to NSIDC by the NOAA Great Lakes Environmental Research...

  15. Saline lakes of the glaciated Northern Great Plains

    Science.gov (United States)

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  16. Jellyfish Distribution and Habitat - Fishing Special Regulation Lakes (Polygons)

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer contains the lakes that are part of the Pennsylvania Fish and Boat Commission Fisheries Resource Database. These include lakes that are currently or have...

  17. Maternal exposure to Great Lakes sport-caught fish and dichlorodiphenyl dichloroethylene, but not polychlorinated biphenyls, is associated with reduced birth weight

    International Nuclear Information System (INIS)

    Weisskopf, M.G.; Anderson, H.A.; Hanrahan, L.P.; Kanarek, M.S.; Falk, C.M.; Steenport, D.M.; Draheim, L.A.

    2005-01-01

    Fish consumption may be beneficial for a developing human fetus, but fish may also contain contaminants that could be detrimental. Great Lakes sport-caught fish (GLSCF) are contaminated with polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethylene (DDE), but the effects of these contaminants on birth outcome are not clear. To distinguish potential contaminant effects, we examined (1) whether the decrease over time in contaminant levels in GLSCF is paralleled by an increase in birth weight of children of GLSCF-consuming mothers and (2) the relation between maternal serum concentrations of these contaminants and birth weight. Mothers (n=511) were interviewed from 1993 to 1995, and maternal serum was collected from 1994 to 1995 (n=143). Potential confounders considered were child gender, maternal age at delivery, maternal prepregnancy body mass index, maternal cigarette and alcohol use during pregnancy, maternal education level, maternal parity, and maternal breastfeeding. Children born during 1970-1977, 1978-1984, and 1985-1993 to mothers who ate more than 116 meals of GLSCF before pregnancy were, on average, 164 g lighter, 46 g heavier, and 134 g heavier, respectively, than children of mothers who ate no GLSCF before pregnancy (P trend=0.05). GLSCF-consuming mothers had higher serum PCB and DDE concentrations, but only increased DDE was associated with lower birth weight. The data suggest that fetal DDE exposure (as indicated by maternal serum DDE concentration) may decrease birth weight and that decreased birth weight effects associated with GLSCF consumption have decreased over time

  18. Correlates of mercury in fish from lakes near Clyde Forks, Ontario, Canada

    International Nuclear Information System (INIS)

    Ethier, A.L.M.; Scheuhammer, A.M.; Bond, D.E.

    2008-01-01

    Subsurface soils near Clyde Forks, Ontario, Canada, can have naturally high concentrations of mercury (Hg) from local geological sources. To investigate Hg in local aquatic food webs, Hg was measured in fish dorsal muscle (mainly yellow perch [YP] and pumpkinseed sunfish [PS]) and surface sediments from 10 regional lakes. Water chemistry, along with fork length, weight, and stable isotopes (δ 15 N, δ 13 C, δ 34 S) in fish were also measured. No lake sediments had elevated (>0.3 μg/g dw) Hg, and average Hg concentrations in fish were not sufficiently high ( 13 C), and certain lake variables (e.g., pH for YP). PS with more pelagic feeding habits had higher δ 34 S and Hg than those with more littoral feeding habits. Potential biological linkages between fish Hg and δ 34 S, a parameter that may be related to the lake sulphate-reducing bacteria activity, requires further investigation. - Fish from lakes near a localized geological Hg source do not have elevated Hg concentrations

  19. Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes.

    Science.gov (United States)

    Koblmüller, Stephan; Egger, Bernd; Sturmbauer, Christian; Sefc, Kristina M

    2007-09-01

    Although Lake Tanganyika is not the most species-rich of the Great East African Lakes it comprises by far the greatest diversity of cichlid fishes in terms of morphology, ecology, and breeding styles. Our study focuses on the Tanganyikan cichlid tribe Perissodini, which exhibits one of the most peculiar feeding strategies found in cichlids-scale-eating. Their evolutionary history was reconstructed from 1416 bp DNA sequence of two mitochondrial genes (ND2 and partial control region) and from 612 AFLP markers. We confirm the inclusion of the zooplanktivorous genus Haplotaxodon in the tribe Perissodini, and species status of Haplotaxodon trifasciatus. Within the Perissodini, the major lineages emerged within a short period roughly 1.5-2 MYA, which makes their radiation slightly younger than that of other Tanganyikan cichlid tribes. Most scale-eaters evolved in deep-water habitat, perhaps associated with the previously documented radiations of other deep-water dwelling cichlid lineages, and colonized the shallow habitat only recently.

  20. Transfer of Chernobyl-derived {sup 137}Cs into fishes in some Finnish lakes

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, R.; Koskelainen, U.; Alatalo, M

    2000-09-01

    This report summarises STUK's work for the hydrological modelling (WG 4) in RODOS C, a project co-ordinated by the EU, in 1996-1999. The role of STUK in the project was to provide a data set on the radio-caesium contents in different types of fish and lakes in northern European environmental conditions for the development of a dynamic regional model describing radio-caesium transfer into fish. The co-operating institute, Technical Research Centre of Finland (VTT), was responsible for the modelling work in this project. Besides the analysed data on {sup 137}Cs in the various fish species in the lakes, background information was produced on lakes and their drainage areas that might affect radio-caesium transfer into fish, which was needed for the development of fish, lake and drainage basin models. The role of STUK included also providing another, independent data set for the validation of the model. The proposals and needs of the co-operating institute, VTT, were taken into account. One of the factors strongly affecting the transfer of {sup 137}Cs into fish is the nutrition level of the lake. The average transfer of {sup 137}Cs in predators at the time of maximum activity concentrations in oligotrophic lakes was found to be up to 0.10 m{sup 2}/kg, implying that approximately 10% of the amount of {sup 137}Cs deposited on one square metre is transferred into 1 kg of fish. The corresponding transfer in eutrophic lakes was clearly lower,.i.e. 3- 4%, at the time of maximum concentrations, which usually occurred 1- 3 years after the deposition, depending on the fish species. These time-dependent transfer coefficients can be regarded as a kind of a lake-specific model. If deposition to the lake is known, the activity concentrations in fish can be estimated within specific uncertainty limits, by multiplying the deposition value by the transfer coefficient at a certain time point. Temporal changes in annual averages of transfer coefficients with variation for a certain

  1. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  2. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    Science.gov (United States)

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats

  3. Lake Superior Coastal Wetland Fish Assemblages and ...

    Science.gov (United States)

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  4. MERGANSER: an empirical model to predict fish and loon mercury in New England lakes.

    Science.gov (United States)

    Shanley, James B; Moore, Richard; Smith, Richard A; Miller, Eric K; Simcox, Alison; Kamman, Neil; Nacci, Diane; Robinson, Keith; Johnston, John M; Hughes, Melissa M; Johnston, Craig; Evers, David; Williams, Kate; Graham, John; King, Susannah

    2012-04-17

    MERGANSER (MERcury Geo-spatial AssessmeNtS for the New England Region) is an empirical least-squares multiple regression model using mercury (Hg) deposition and readily obtainable lake and watershed features to predict fish (fillet) and common loon (blood) Hg in New England lakes. We modeled lakes larger than 8 ha (4404 lakes), using 3470 fish (12 species) and 253 loon Hg concentrations from 420 lakes. MERGANSER predictor variables included Hg deposition, watershed alkalinity, percent wetlands, percent forest canopy, percent agriculture, drainage area, population density, mean annual air temperature, and watershed slope. The model returns fish or loon Hg for user-entered species and fish length. MERGANSER explained 63% of the variance in fish and loon Hg concentrations. MERGANSER predicted that 32-cm smallmouth bass had a median Hg concentration of 0.53 μg g(-1) (root-mean-square error 0.27 μg g(-1)) and exceeded EPA's recommended fish Hg criterion of 0.3 μg g(-1) in 90% of New England lakes. Common loon had a median Hg concentration of 1.07 μg g(-1) and was in the moderate or higher risk category of >1 μg g(-1) Hg in 58% of New England lakes. MERGANSER can be applied to target fish advisories to specific unmonitored lakes, and for scenario evaluation, such as the effect of changes in Hg deposition, land use, or warmer climate on fish and loon mercury.

  5. Factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, Daniel J.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts.

  6. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times

    Directory of Open Access Journals (Sweden)

    Harrod Chris

    2010-05-01

    Full Text Available Abstract Background After a volcano erupts, a lake may form in the cooled crater and become an isolated aquatic ecosystem. This makes fishes in crater lakes informative for understanding sympatric evolution and ecological diversification in barren environments. From a geological and limnological perspective, such research offers insight about the process of crater lake ecosystem establishment and speciation. In the present study we use genetic and coalescence approaches to infer the colonization history of Midas cichlid fishes (Amphilophus cf. citrinellus that inhabit a very young crater lake in Nicaragua-the ca. 1800 year-old Lake Apoyeque. This lake holds two sympatric, endemic morphs of Midas cichlid: one with large, hypertrophied lips (~20% of the total population and another with thin lips. Here we test the associated ecological, morphological and genetic diversification of these two morphs and their potential to represent incipient speciation. Results Gene coalescence analyses [11 microsatellite loci and mitochondrial DNA (mtDNA sequences] suggest that crater lake Apoyeque was colonized in a single event from the large neighbouring great lake Managua only about 100 years ago. This founding in historic times is also reflected in the extremely low nuclear and mitochondrial genetic diversity in Apoyeque. We found that sympatric adult thin- and thick-lipped fishes occupy distinct ecological trophic niches. Diet, body shape, head width, pharyngeal jaw size and shape and stable isotope values all differ significantly between the two lip-morphs. The eco-morphological features pharyngeal jaw shape, body shape, stomach contents and stable isotopes (δ15N all show a bimodal distribution of traits, which is compatible with the expectations of an initial stage of ecological speciation under disruptive selection. Genetic differentiation between the thin- and thick-lipped population is weak at mtDNA sequence (FST = 0.018 and absent at nuclear

  7. Environmental variables measured at multiple spatial scales exert uneven influence on fish assemblages of floodplain lakes

    Science.gov (United States)

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2014-01-01

    We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.

  8. Wildlife in the Upper Great Lakes Region: a community profile.

    Science.gov (United States)

    Janine M. Benyus; Richard R. Buech; Mark D. Nelson

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. The composite NORTHWOODS data base is summarized. Multiple queries of NORTHWOODS were used to profile the wildlife community of the Upper Great Lakes region.

  9. Are Predators Limiting Zebra Mussel Colonization of Unionid Mussels in Great Lake Coastal Wetlands?

    Science.gov (United States)

    de Szalay, F. A.; Bowers, R.

    2005-05-01

    Although many native mollusc populations have been eliminated in the Laurentian Great Lakes by the exotic zebra mussel, recent surveys have found abundant unionid (Bivalvia: Unionidae) populations in some coastal wetlands. Unionid burrowing in soft sediments and predation by fish have been shown to reduce numbers of attached zebra mussels, and we tested these factors in a Lake Erie coastal wetland. In 2002, we held live unionids (Leptodea fragilis, Quadrula quadrula) and Pyganodon grandis shells in exclosures with wire mesh bottoms that were buried to sediment depths of either 5, 10, or 20 cm. After 2 months, numbers of attached dreissenids on unionids were significantly higher inside all exclosure treatments than outside exclosures. This indicated that either unionid burrowing was prevented in all sediment depth treatments or molluscivores were excluded by exclosures. In 2004, we measured dreissenid colonization on Q. quadrula and PVC plates in bottomless exclosures with different mesh sizes. After 6 months, dreissenid numbers on PVC plates and on Q. quadrula in 2.5 cm X 2.5 cm and 5 cm X 10 cm mesh exclosures were significantly higher than in open exclosures. These data suggest that molluscivores are important in limiting dreissenids in Great Lake coastal wetlands.

  10. Helminthiasis and gram negative enteric bacteria in freshwater fish from selected lakes of Haramaya District, Ethiopia

    Science.gov (United States)

    Microbiological and helminthiasis examination of fish from Tinike and Adelle Lakes were conducted at Haramaya District, Ethiopia. The types of fish available in the lakes were also assessed. Adelle Lake has only Clarias gariepinus while the Tinike Lake has only Oreochromis niloticus fish species. Te...

  11. Levels and distribution of organohalogenated contaminants in 5 fish species from Sir Dam Lake, Kahramanmaras, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Erdogrul, Oe [Faculty of Agriculture, Kahramanmaras (Turkey). Dept. of Food Engineering; Covaci, A; Schepens, P [Antwerp Univ. (Belgium). Toxicological Center

    2004-09-15

    In Turkey, OCPs have been used since 1945, with large quantities of these chemicals being used during the 1960s and 1970s. Since 1983, the usage of OCPs has been severely restricted or banned. Only few studies have investigated the presence of OCPs in Turkish aquatic environment, where they have been evidenced in relatively high concentrations. The aim of this study was to investigate the levels and distribution of organohalogenated contaminants in several fish species from Syr Dam Lake (Kahramanmarab, Turkey), an artificial lake with great economical importance for the region.

  12. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    Science.gov (United States)

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  14. 46 CFR 11.430 - Endorsements for the Great Lakes and inland waters.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsements for the Great Lakes and inland waters. 11... Endorsements for the Great Lakes and inland waters. Any license or MMC endorsement issued for service on the Great Lakes and inland waters is valid on all of the inland waters of the United States as defined in...

  15. 78 FR 21937 - Proposed Agency Information Collection Request: Comment Request; Great Lakes Accountability...

    Science.gov (United States)

    2013-04-12

    ... Collection Request: Comment Request; Great Lakes Accountability System (Renewal) AGENCY: Environmental... an information collection request (ICR), ``Great Lakes Accountability System'' (EPA ICR No. 2379.02... using www.regulations.gov (our preferred method) or by mail to: Great Lakes Accountability System, Attn...

  16. 75 FR 34448 - Proposed CERCLA Administrative Cost Recovery Settlement; Great Lakes Container Corporation...

    Science.gov (United States)

    2010-06-17

    ... Settlement; Great Lakes Container Corporation Superfund Site, Coventry Rhode Island AGENCY: Environmental... and future response costs concerning the Great Lakes Container Corporation Superfund Site, located in...), Boston, MA 02109-3912, (617) 918-1216. Comments should reference the Great Lakes Container Corporation...

  17. Lake Michigan Fish Acoustic Data from 2011 to 2016

    Data.gov (United States)

    Department of the Interior — Each line in the file “Lake Michigan fish acoustic data from 2011 to 2016.csv” represents the acoustic data and estimated fish density for a single depth layer of...

  18. Benthic prey fish assessment, Lake Ontario 2013

    Science.gov (United States)

    Weidel, Brian C.; Walsh, Maureen; Connerton, Michael J.

    2014-01-01

    The 2013 benthic fish assessment was delayed and shortened as a result of the U.S. Government shutdown, however the assessment collected 51 of the 62 planned bottom trawls. Over the past 34 years, Slimy Sculpin abundance in Lake Ontario has fluctuated, but ultimately decreased by two orders of magnitude, with a substantial decline occurring in the past 10 years. The 2013 Slimy Sculpin mean bottom trawl catch density (0.001 ind.·m-2, s.d.= 0.0017, n = 52) and mean biomass density (0.015 g·m-2 , s.d.= 0.038, n = 52) were the lowest recorded in the 27 years of sampling using the original bottom trawl design. From 2011-2013, the Slimy Sculpin density and biomass density has decreased by approximately 50% each year. Spring bottom trawl catches illustrate Slimy Sculpin and Round Goby Neogobius melanostoma winter habitat overlaps for as much as 7 months out of a year, providing opportunities for competition and predation. Invasive species, salmonid piscivory, and declines in native benthic invertebrates are likely all important drivers of Slimy Sculpin population dynamics in Lake Ontario. Deepwater Sculpin Myoxocephalus thompsonii, considered rare or absent from Lake Ontario for 30 years, have generally increased over the past eight years. For the first time since they were caught in this assessment, Deepwater Sculpin density and biomass density estimates declined from the previous year. The 2013 abundance and density estimates for trawls covering the standard depths from 60m to 150m was 0.0001 fish per square meter and 0.0028 grams per square meter. In 2013, very few small (recruitment. Nonnative Round Gobies were first detected in the USGS/NYSDEC Lake Ontario spring Alewife assessment in 2002. Since that assessment, observations indicate their population has expanded and they are now found along the entire south shore of Lake Ontario, with the highest densities in U.S. waters just east of the Niagara River confluence. In the 2013 spring-based assessment, both the

  19. Mercury Sources and Cycling in the Great Lakes: Dramatic Changes Resulting from Altered Atmospheric Loads and the Near-Shore Shunt

    Science.gov (United States)

    Krabbenhoft, D. P.; DeWild, J. F.; Maglio, M. M.; Tate, M. T.; Ogorek, J. M.; Hurley, J. P.; Lepak, R.

    2013-12-01

    there have been large declines in surface water total Hg concentrations (50-75%) across the Great Lakes since about 2000, an observation in agreement with concurrent declines in atmospheric deposition. In addition to a decline in inputs, we hypothesize that appreciable increases in volatilization of gaseous Hg have occurred. Mercury volatilization is directly related to water clarity (via the photo-reduction process), which has increased substantially in the Great Lakes since the invasion of zebra mussels and quagga mussels. Finally, although substantial declines in total aqueous Hg levels are apparent, fish mercury levels over the same time period appear to be relatively steady, and in some locations increasing. We submit this apparent discordance is also the outcome of the invasive mussels, which have caused near-shore eutrophication and off-shore oligotrophication commonly referred to as the near-shore shunt. Initial sampling by this project has revealed that these eutrophied zones are markedly enriched in MeHg. Therefore, it appears that while the open water regions of the Great Lakes appear to have experienced significant aqueous Hg declines, fish Hg levels may be responding to a new site of methylation in the near-shore zone.

  20. Invasive alien freshwater fishes in the Wilderness Lakes System, a ...

    African Journals Online (AJOL)

    Invasive alien freshwater fishes in the Wilderness Lakes System, a wetland of international importance in the Western Cape Province, South Africa. ... A total of 87 893 fish comprising 16 species were caught. In addition to confirming the ... Key words: freshwater fish, invasive alien fishes, estuary, RAMSAR site, diversity.

  1. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help

    Science.gov (United States)

    Jones, Michael L.; Shuter, Brian J.; Zhao, Yingming; Stockwell, Jason D.

    2006-01-01

    Future changes to climate in the Great Lakes may have important consequences for fisheries. Evidence suggests that Great Lakes air and water temperatures have risen and the duration of ice cover has lessened during the past century. Global circulation models (GCMs) suggest future warming and increases in precipitation in the region. We present new evidence that water temperatures have risen in Lake Erie, particularly during summer and winter in the period 1965–2000. GCM forecasts coupled with physical models suggest lower annual runoff, less ice cover, and lower lake levels in the future, but the certainty of these forecasts is low. Assessment of the likely effects of climate change on fish stocks will require an integrative approach that considers several components of habitat rather than water temperature alone. We recommend using mechanistic models that couple habitat conditions to population demographics to explore integrated effects of climate-caused habitat change and illustrate this approach with a model for Lake Erie walleye (Sander vitreum). We show that the combined effect on walleye populations of plausible changes in temperature, river hydrology, lake levels, and light penetration can be quite different from that which would be expected based on consideration of only a single factor.

  2. A Research for Massive Fish Kills in Lake Bafa (Turkey

    Directory of Open Access Journals (Sweden)

    Murat Yabanlı

    2011-06-01

    Full Text Available As there were massive fish kills in Lake Bafa which is a lagoon situated in Southwestern Turkey in October, 2006, water and fish samples were taken from the region. Water samples were analysed physicochemically, toxicologically and microbiologically and fish samples were subjected to toxicological analysis. The analyses of lake water revealed on oxygen value of approximately 5.0 mg/L, salinity 16.2 ‰, nitrogen from ammonia 0.1 mg/L, nitrogen nitrite 0.013 mg/L, and total organic carbon 13 mg/L. Total coliform count was 1100 MPN/100 ml and faecal coliform count was 28 MPN/100 ml. There was no detection of any pesticide residues in fish and water samples. Massive fish kills are thought to be due to the decrease in water quality.

  3. The Great Lakes Spill Co-op and how it works

    International Nuclear Information System (INIS)

    Usher, D.

    1994-01-01

    A major program was launched by spill control professionals and industry in 1990 when it created the Great Lakes Spill Cooperative (GLSCOOP). The major objective of this cooperative is to provide a network to facilitate quick response in crises situations in the Great Lakes region. Specifically, the Great Lakes Spill Cooperative will: (1) coordinate environmental response activities in connection with emergency conditions as a result of spills of petroleum and hazardous substances in the Great Lakes; (2) apply state-of-the-art management, training and equipment technology during emergency environmental response operations, consistent with local, state and federal regulations; and (3) promote cooperation with its members, governmental agencies as well as allied trade and professional associations, consistent with the existing laws, in mobilizing equipment and expertise in controlling or mitigating pollution incidents in the Great Lakes. In this presentation the author discusses how the cooperative was formed, how it will operate, the members of the group and their individual roles as well as the organization's partnership with government--local, state and federal. He also discusses his involvement in the formation of the Mamne Response Alliance (MRA). This co-op was utilized recently by one of its members to provide 100 personnel who were Haz-Woper trained for the recent Tampa Bay Spill in August of last year

  4. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.

    Science.gov (United States)

    Barber, Larry B; Loyo-Rosales, Jorge E; Rice, Clifford P; Minarik, Thomas A; Oskouie, Ali K

    2015-06-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  5. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  6. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  7. Adirondack lakes survey: An interpretive analysis of fish communities and water chemistry, 1984--1987

    Energy Technology Data Exchange (ETDEWEB)

    Baker, J.P. (Baker (Joan P.), Raleigh, NC (USA)); Gherini, S.A.; Munson, R.K. (Tetra Tech, Inc., Pasadena, CA (USA)); Christensen, S.W. (Oak Ridge National Lab., TN (USA)); Driscoll, C.T. (Syracuse Univ., NY (USA)); Gallagher, J. (Adirondack Lakes Survey Corp., Ray Brook, NY (USA)); Newton, R.M. (Smith Coll., Northampton, MA (USA)); Reckhow, K.H. (Duke Univ., Durham, NC (USA)); Schofield, C.L. (Co

    1990-01-01

    The Adirondack Lakes Survey Corporation (ALSC) was formed as a cooperative effort of the New York State Department of Environmental Conservation and the Empire State Electric Energy Research Corporation to better characterize the chemical and biological status of Adirondack lakes. Between 1984 and 1987, the ALSC surveyed 1469 lakes within the Adirondack ecological zone. As a follow-up to the survey, the ALSC sponsored a series of interpretive analyses of the ALSC data base. The primary objectives of these analyses were as follows: Evaluate the influence of mineral acids (from acidic deposition) and nonmineral acids (natural organic acids) on lake pH levels; classify Adirondack lakes according to lake and watershed features expected to influence their responsiveness to changes in acidic deposition; evaluate the sensitivity of Adirondack lakes to changes in environmental conditions, such as changes in mineral acids or dissolved organic carbon concentrations; identify lake characteristics important in explaining the observed present-day status of fish communities in Adirondack lakes, in particular the relative importance of lake acidity; evaluate changes that have occurred over time in Adirondack fish communities and probable causes for these trends by using the available historical data on fish communities in the Adirondacks and the ALSC data base; and determine the degree to which the existing fish resource might be at risk from continued acidic deposition, or might recover if acidity levels were reduced. The basic approach examined relationships observed in the ALSC data base among watershed characteristics, lake chemistry, and fish status. Individual reports are processed separately for the data bases.

  8. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  9. Effect of rearing density on poststocking survival of lake trout in Lake Ontario

    Science.gov (United States)

    Elrod, Joseph H.; Ostergaard, David E.; Schneider, Clifford P.

    1989-01-01

    Six paired lots of yearling lake trout (Salvelinus namaycush) reared at densities of 41,000 and 51,000 fish per raceway during their last 9 months in the hatchery were stocked in Lake Ontario. Poststocking survival of the high-density (HD) and low-density (LD) fish was not different for the 1982 year-class. However, for the 1983 year-class, mean survival was significantly different between HD and LD fish (P Mean survival of HD fish was only 76% that of LD fish (P Mean size at stocking was not different for HD and LD fish of the 1982 year-class, but for the 1983 year-class, the LD fish were 6% longer and 22% heavier than the HD fish. Mean lengths and weights of LD and HD fish were not different in samples collected in Lake Ontario at age 2 and older. Size at stocking was not likely the factor that caused the difference in survival. Rather, the rearing conditions (probably water exchange rate in relation to number of fish in the raceway) that resulted in slower growth of the HD fish of the 1983 year-class also caused them to be poorer physiologically than the LD fish. The number of yearling lake trout per rearing unit that will result in maximum contribution to populations in the Great Lakes after stocking may be lower than the rearing densities customarily used at some hatcheries.

  10. Phytoplankton productivity in newly dug fish ponds within Lake ...

    African Journals Online (AJOL)

    The declining Lake Victoria fisheries resource led to a growing recognition of aquaculture as a source of livelihood to riparian communities. Finger ponds speculated to naturally stock fish during flooding and retain them during dry seasons were introduced within the lake's wetlands. In order to develop a

  11. Interactions between fishes and the structure of fish communities in Dutch shallow, eutrophic lakes

    NARCIS (Netherlands)

    Lammens, E.

    1986-01-01

    This thesis describes the structure of fish communities in Tjeukemeer (21 km 2) and some other surrounding very eutrophic lakes and emphasizes the interactions of the fishes with each other and their food organisms (predation and (exploitative) competition). It is a compilation of seven

  12. ECONOMETRIC MODELLING OD THE INFLUENCE OF LAKE WATER QUALITY CHANGES ON FISHING ECONOMY

    Directory of Open Access Journals (Sweden)

    Marek Antoni Ramczyk

    2017-06-01

    Full Text Available The econometric model can be a precise instrument for the analysis of the impact of the natural environment's degradation on fishing economy. This paper aims at analysing the influence of the water quality changes in lake Charzykowskie on the fishing economy. This dissertation present the results of a research on the lake water pollution's impact on fishing economy. The economic-ecological models have been constructed, explaining the changes of economic effects of the lake fishery in the conditions of an increasing water pollution in the epilimnion on the example of the catch of Rutilus rutilus, Abramis brama, Blicca bjoerkna, Coregonus albula, Coregonus lavaretus, Anguilla anguilla and Esox lucius in Lake Charzykowskie. Performed empirical research looked into the influence of the environmental factors on the size of fish catch. Calculations and analysis show clearly that though the habitat factors do influence the catch size of each studied fish species, they do it with different intensity and in various combinations. Both lake water quality and climate factors changes cause measurable effects on fishing industry of lake Charzykowskie. Among all the examined Rutilus rutilus, Abramis brama and Blicca bjoerkna the highest environmental requirements concerning water quality has Blicca bjoerkna. Whereas Abramis brama has slightly higher environmental requirements than Rutilus rutilus. Empirical calculations showed as well that Coregonus albula and Coregonus lavaretus have considerably higher water cleanness requirements than Rutilus rutilus, Abramis brama and Blicca bjoerkna. While when talking about Rutilus rutilus, Abramis brama and Blicca bjoerkna, most water characteristics still rather stimulated these species' development, when it comes to Coregonus albula and Coregonus lavaretus, in general they suppressed their development. The model has also proved quite high habitat requierements of Anquilla anquilla and correctness of the thesis that

  13. Evidence for early hunters beneath the Great Lakes

    OpenAIRE

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and loca...

  14. Using traditional ecological knowledge as a basis for targeted forest inventory: paper birch (Betula papyrifera) in the US Great Lakes Region

    Science.gov (United States)

    Marla R. Emery; Alexandra Wrobel; Mark H. Hansen; Michael Dockry; W. Keith Moser; Kekek Jason Stark; Jonathan H. Gilbert

    2014-01-01

    Traditional ecological knowledge (TEK) has been proposed as a basis for enhanced understanding of ecological systems and their management. TEK also can contribute to targeted inventories of resources not included in standard mensuration. We discuss the results of a cooperative effort between the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) and USDA Forest...

  15. Great Lakes Hyperspectral Water Quality Instrument Suite for Airborne Monitoring of Algal Blooms

    Science.gov (United States)

    Lekki, John; Leshkevich, George; Nguyen, Quang-Viet; Flatico, Joseph; Prokop, Norman; Kojima, Jun; Anderson, Robert; Demers, James; Krasowski, Michael

    2007-01-01

    NASA Glenn Research Center and NOAA Great Lakes Environmental Research Lab are collaborating to utilize an airborne hyperspectral imaging sensor suite to monitor Harmful Algal Blooms (HABs) in the western basin of Lake Erie. The HABs are very dynamic events as they form, spread and then disappear within a 4 to 8 week time period in late summer. They are a concern for human health, fish and wildlife because they can contain blue green toxic algae. Because of this toxicity there is a need for the blooms to be continually monitored. This situation is well suited for aircraft based monitoring because the blooms are a very dynamic event and they can spread over a large area. High resolution satellite data is not suitable by itself because it will not give the temporal resolution due to the infrequent overpasses of the quickly changing blooms. A custom designed hyperspectral imager and a point spectrometer mounted on aT 34 aircraft have been used to obtain data on an algal bloom that formed in the western basin of Lake Erie during September 2006. The sensor suite and operations will be described and preliminary hyperspectral data of this event will be presented

  16. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  17. Utilization of a Marketing Strategy at Naval Regional Medical Center Great Lakes, Great Lakes, Illinois

    Science.gov (United States)

    1983-06-01

    22 Analysis of the Mare.....................22 Development of the Marketing Mix .. .......... 29 A Marketing Mix --Recommendations...problem. Marketing strategy, marketing mix and ultimately the marketing orientation will allow hospitals to persevere and possibly thrive in a somewhat...market are currently being met at Naval Regional Medical Center Great Lakes. The fourth objective is to demonstrate an appropriate marketing mix for

  18. Local fish extinction in a small tropical lake in Brazil

    Directory of Open Access Journals (Sweden)

    Paulo dos Santos Pompeu

    Full Text Available Lagoa Santa is a shallow permanent lake, located in Belo Horizonte metropolitan region, Brazil. In this study, the loss in fish diversity of the lake over the past 150 years is evaluated. Local extinction of almost 70% of the original fish fauna is described. Probably, the main causes of this richness loss were: obstruction of natural communication with rio das Velhas, non-native species introduction, change in the water level, organic pollution, and elimination of littoral and submerged vegetation.

  19. Water quality and fish dynamics in forested wetlands associated with an oxbow lake

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert

    2015-01-01

    Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.

  20. Mercury in fish from the Pinchi Lake Region, British Columbia, Canada

    International Nuclear Information System (INIS)

    Weech, S.A.; Scheuhammer, A.M.; Elliott, J.E.; Cheng, K.M.

    2004-01-01

    Water, surface sediments, and <40 cm rainbow trout (Oncorhynchus mykiss) and northern pikeminnow (Ptychocheilus oregonensis) were collected from Pinchi Lake, British Columbia, and from several nearby reference lakes. Hg concentrations in sediment samples from Pinchi L. were highly elevated compared to sediments from reference lakes, especially in sites adjacent to and downstream of a former Hg mine. In both fish species examined, Hg concentration was positively related to age and/or fork length. In northern pikeminnow, Hg concentrations were also positively related to trophic level (δN). Hg concentrations in both fish species were highest in Pinchi L., and were higher in pikeminnow than in rainbow trout of similar size. Average Hg concentrations in small rainbow trout from all lakes, including Pinchi L., were lower than dietary levels reported to cause reproductive impairment in common loons (Gavia immer); however, Hg levels in small pikeminnow from Pinchi L. were sufficiently high to be of concern. The risk for Hg toxicity in the study area is greatest for animals that consume larger piscivorous fish such as larger northern pikeminnow or lake trout, which are known from previous studies to contain higher Hg concentrations

  1. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  2. Transactional sex in the fishing communities along Lake Victoria ...

    African Journals Online (AJOL)

    The study describes the nature, context and implications of a unique form of transactional sexual relationships in the fishing communities along Lake Victoria in Kisumu County, Kenya. We conducted 12 focus group discussions and 17 key informant interviews among fishermen, fishmongers and fish transporters in Kisumu.

  3. Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?

    Science.gov (United States)

    Lin, Peng; Guo, Laodong

    2016-12-01

    The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.

  4. Methylmercury exposure in a subsistence fishing community in Lake Chapala, Mexico: an ecological approach

    Directory of Open Access Journals (Sweden)

    Abercrombie Mary I

    2010-01-01

    Full Text Available Abstract Background Elevated concentrations of mercury have been documented in fish in Lake Chapala in central Mexico, an area that is home to a large subsistence fishing community. However, neither the extent of human mercury exposure nor its sources and routes have been elucidated. Methods Total mercury concentrations were measured in samples of fish from Lake Chapala; in sections of sediment cores from the delta of Rio Lerma, the major tributary to the lake; and in a series of suspended-particle samples collected at sites from the mouth of the Lerma to mid-Lake. A cross-sectional survey of 92 women ranging in age from 18-45 years was conducted in three communities along the Lake to investigate the relationship between fish consumption and hair mercury concentrations among women of child-bearing age. Results Highest concentrations of mercury in fish samples were found in carp (mean 0.87 ppm. Sediment data suggest a pattern of moderate ongoing contamination. Analyses of particles filtered from the water column showed highest concentrations of mercury near the mouth of the Lerma. In the human study, 27.2% of women had >1 ppm hair mercury. On multivariable analysis, carp consumption and consumption of fish purchased or captured from Lake Chapala were both associated with significantly higher mean hair mercury concentrations. Conclusions Our preliminary data indicate that, despite a moderate level of contamination in recent sediments and suspended particulate matter, carp in Lake Chapala contain mercury concentrations of concern for local fish consumers. Consumption of carp appears to contribute significantly to body burden in this population. Further studies of the consequences of prenatal exposure for child neurodevelopment are being initiated.

  5. MERGANSER - A Predictive Model of Mercury in Fish and Loons in New England Lakes

    Science.gov (United States)

    Moore, R. B.; Shanley, J. B.; Smith, R. A.; Miller, E. K.; Simcox, A.; Kamman, N. C.; Nacci, D. E.; Robinson, K. W.; Johnston, J. M.; Hughes, M.; Johnston, C. M.; Williams, K.; Graham, J.; King, S.

    2010-12-01

    MERGANSER (MERcury Geo-spatial AssessmeNtS for the New England Region) is an empirical least squares multiple regression model using atmospheric deposition of mercury (Hg) and readily obtainable lake and watershed features to predict fish and common loon Hg in New England lakes. We modeled lakes larger than 8 ha and with drainage area completely within the USA (4404 lakes), using 3827 fish (12 species) and loon Hg values from 420 lakes. MERGANSER predictor variables included Hg deposition, watershed alkalinity, percent wetlands, percent forest canopy, percent agriculture, drainage area, population, mean annual temperature and watershed slope. The model returns fish tissue or loon blood Hg for user-entered species and length. MERGANSER explained 63% of the variance in fish fillet and loon Hg concentrations. MERGANSER predicted that 32-cm small mouth bass had a median Hg concentration of 0.53 µg g-1 and exceeded EPA’s maximum contaminant level (MCL) of 0.3 µg/g Hg in 90% of New England lakes. Common loon had a median Hg concentration of 1.07 µg g-1 and was in the moderate or higher risk category of >1 µg/g Hg in 58% of New England lakes.

  6. Radiocaesium in lake fishes - pre and post Chernobyl evaluation of transfer factors from deposition

    International Nuclear Information System (INIS)

    Dominici, G.; Malvicini, A.

    1991-01-01

    The amounts and concentration of radiocaesium in fishes and in lake water, taken from major lakes in the Varese region for the periods pre and post Chernobyl are reported. Some relationships are obtained which permit to forecast the intake on behalf of the fishes knowing the quantity of radioactivity entering into the lake bed. (15 tabs; 18 figs)

  7. Hierarchy in factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Dembkowski, D.J.; Miranda, L.E.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts. ?? 2011 Springer Science+Business Media B.V.

  8. A Bottom-Up Understanding of Illegal, Unreported, and Unregulated Fishing in Lake Victoria

    Directory of Open Access Journals (Sweden)

    Joseph Luomba

    2016-10-01

    Full Text Available Illegal, unreported, and unregulated (IUU fishing is a major concern in fisheries management around the world. Several measures have been taken to address the problem. In Lake Victoria, the alleviation of IUU fishing is implemented through the Regional Plan of Action (RPOA-IUU, which restricts use of certain fishing gear, as well as prohibits fishing in closed areas and during closed seasons. Despite the long-term efforts to monitor and control what goes on in the fisheries, IUU fishing has persisted in Lake Victoria. Inspired by interactive governance theory, this paper argues that the persistence of IUU fishing could be due to different images that stakeholders have about the situation, rather than the lack of management competency. Through structured interviews with 150 fisheries stakeholders on Ijinga Island in the southeastern part of Lake Victoria, Tanzania, using paired comparison questionnaires, the study elicits stakeholders’ perspective about the severity of different locally-pertinent fishing-related activities. The results show that while fisheries stakeholder groups agree on their judgments about certain fishing gears, some differences are also apparent. For instance, fisheries managers and scientists do not always agree with fishing people about what activities cause the most damage to fisheries resources and ecosystem. Further, they tend to consider some IUU fishing-related activities less damaging than some non-IUU fishing. Such disparity creates governability challenges, pointing to the need to revisit relevant regulatory measures and to make them consistent with the knowledge and judgments of all stakeholders. Based on these findings, we discuss governing interventions that may contribute to addressing IUU fishing in Lake Victoria and elsewhere.

  9. Assessment of microcystins in lake water and fish (Mugilidae, Liza sp.) in the largest Spanish coastal lake.

    Science.gov (United States)

    Romo, Susana; Fernández, Francisca; Ouahid, Youness; Barón-Sola, Ángel

    2012-01-01

    Cyanobacteria dominance and cyanotoxin production can become major threats to humans and aquatic life, especially in warm shallow lakes, which are often dominated by cyanobacteria. This study investigates the occurrence and distribution of microcystins (MCYST) in water, cell-bound and in the tissues of the commercial mugilid Liza sp. in the largest, coastal, Spanish Mediterranean lake (Albufera of Valencia). This is the first report concerning microcystin accumulation in tissues of mugilid fish species. Considerable amounts of microcystins were found in the water and seston, which correlated with development of Microcystis aeruginosa populations in the lake. The MCYST concentrations found in Lake Albufera (mean 1.7 and 17 μg/L and maximum 16 and 120 μg/L in water and seston, respectively) exceeded by one to two orders of magnitude the guideline levels proposed by the World Health Organization and were higher than that reported in other lakes of the Mediterranean zone. The presence of MCYST was found in all the fishes studied and accumulated differently among tissues of the commercial species Liza sp. Toxin accumulation in fish tissues showed that although the target organ for MCYST was the liver, high concentrations of microcystins were also found in other analysed tissues (liver>intestine>gills>muscle). Human tolerable daily intake for microcystins is assessed relative to the WHO guidelines, and potential toxicological risks for humans, wildlife and related ecosystems of the lake are discussed.

  10. Fish otolith geochemistry, environmental conditions and human occupation at Lake Mungo, Australia

    Science.gov (United States)

    Long, Kelsie; Stern, Nicola; Williams, Ian S.; Kinsley, Les; Wood, Rachel; Sporcic, Katarina; Smith, Tegan; Fallon, Stewart; Kokkonen, Harri; Moffat, Ian; Grün, Rainer

    2014-03-01

    Fish otoliths from the Willandra Lakes Region World Heritage Area (south-western New South Wales, Australia) have been analysed for oxygen isotopes and trace elements using in situ techniques, and dated by radiocarbon. The study focused on the lunettes of Lake Mungo, an overflow lake that only filled during flooding events and emptied by evaporation, and Lake Mulurulu, which was part of the running Willandra Creek system. Samples were collected from two different contexts: from hearths directly associated with human activity, and isolated surface finds. AMS radiocarbon dating constrains the human activity documented by five different hearths to a time span of less than 240 years around 19,350 cal. BP. These hearths were constructed in aeolian sediments with alternating clay and sand layers, indicative of fluctuating lake levels and occasional drying out. The geochemistry of the otoliths confirms this scenario, with shifts in Sr/Ca and Ba/Ca marking the entry of the fish into Lake Mungo several years before their death, and a subsequent increase in the δ18O by ˜4‰ indicating increasing evaporation of the lake. During sustained lake-full conditions there are considerably fewer traces of human presence. It seems that the evaporating Lake Mungo attracted people to harvest fish that might have become sluggish through oxygen starvation in an increasingly saline water body (easy prey hypothesis). In contrast, surface finds have a much wider range in radiocarbon age as a result of reworking, and do not necessarily indicate evaporative conditions, as shown by comparison with otoliths from upstream Lake Mulurulu.

  11. Lake whitefish and Diporeia spp. in the Great lakes: an overview

    Science.gov (United States)

    Nalepa, Thomas F.; Mohr, Lloyd C.; Henderson, Bryan A.; Madenjian, Charles P.; Schneeberger, Philip J.

    2005-01-01

    Because of growing concern in the Great Lakes over declines in abundance and growth of lake whitefish (Coregonus clupeaformis) and declines in abundance of the benthic amphipod Diporeia spp., a workshop was held to examine past and current trends, to explore trophic links, and to discuss the latest research results and needs. The workshop was divided into sessions on the status of populations in each of the lakes, bioenergetics and trophic dynamics, and exploitation and management. Abundance, growth, and condition of whitefish populations in Lakes Superior and Erie are stable and within the range of historical means, but these variables are declining in Lakes Michigan and Ontario and parts of Lake Huron. The loss of Diporeia spp., a major food item of whitefish, has been a factor in observed declines, particularly in Lake Ontario, but density-dependent factors also likely played a role in Lakes Michigan and Huron. The loss of Diporeia spp. is temporally linked to the introduction and proliferation of dreissenid mussels, but a direct cause for the negative response of Diporeia spp. has not been established. Given changes in whitefish populations, age-structured models need to be re-evaluated. Other whitefish research needs to include a better understanding of what environmental conditions lead to strong year-classes, improved aging techniques, and better information on individual population (stock) structure. Further collaborations between assessment biologists and researchers studying the lower food web would enhance an understanding of links between trophic levels.

  12. Forging the Link: Using a Conservative Mixing Framework to Characterize Connections between Rivers and Great Lakes in River-lake Transition Zones

    Science.gov (United States)

    River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...

  13. Great Lakes Research Review, 1982. Appendices.

    Science.gov (United States)

    1982-11-01

    7D-i53 28 GREAT LAKES RESEARCH REVIEW 1982 PPENDICES (U) / PETROLEUM REFINERY PO INT SOURCE TASK FORCE WINDSOR (ONTARIO) NOV 82UNCLASSIFIED F/G 8...C7 U. 3 X 7 45 1 2 0. ODm C of. C.’ WC.’ L. LI 7 R-Ri53 62B GREAT LKES RESEARCH REVIEW 1982 PPENDICES (U) 2/3 PETROLEUM REFINERY POINT SOURCE TASK...NUMBER ORGANIZATION* TITLE OF PROJECT 001 A** 0300 ERL-D Acute and Early Life Stage Toxicity Testing of Priority Pollutant Chemicals 002 A 0302 ERL-D

  14. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  15. The impact of fish predation and cyanobacteria on zooplankton size structure in 96 subtropical lakes.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Zooplankton are relatively small in size in the subtropical regions. This characteristic has been attributed to intense predation pressure, high nutrient loading and cyanobacterial biomass. To provide further information on the effect of predation and cyanobacteria on zooplankton size structure, we analyzed data from 96 shallow aquaculture lakes along the Yangtze River. Contrary to former studies, both principal components analysis and multiple regression analysis showed that the mean zooplankton size was positively related to fish yield. The studied lakes were grouped into three types, namely, natural fishing lakes with low nutrient loading (Type1, planktivorous fish-dominated lakes (Type 2, and eutrophic lakes with high cyanobacterial biomass (Type 3. A marked difference in zooplankton size structure was found among these groups. The greatest mean zooplankton size was observed in Type 2 lakes, but zooplankton density was the lowest. Zooplankton abundance was highest in Type 3 lakes and increased with increasing cyanobacterial biomass. Zooplankton mean size was negatively correlated with cyanobacterial biomass. No obvious trends were found in Type 1 lakes. These results were reflected by the normalized biomass size spectrum, which showed a unimodal shape with a peak at medium sizes in Type 2 lakes and a peak at small sizes in Type 3 lakes. These results indicated a relative increase in medium-sized and small-sized species in Types 2 and 3 lakes, respectively. Our results suggested that fish predation might have a negative effect on zooplankton abundance but a positive effect on zooplankton size structure. High cyanobacterial biomass most likely caused a decline in the zooplankton size and encouraged the proliferation of small zooplankton. We suggest that both planktivorous fish and cyanobacteria have substantial effects on the shaping of zooplankton community, particularly in the lakes in the eastern plain along the Yangtze River where

  16. Emergence of Viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity.

    Science.gov (United States)

    Thompson, Tarin M; Batts, William N; Faisal, Mohamed; Bowser, Paul; Casey, James W; Phillips, Kenneth; Garver, Kyle A; Winton, James; Kurath, Gael

    2011-08-29

    Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naive host populations.

  17. Emergence of viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity

    Science.gov (United States)

    Thompson, T.M.; Batts, W.N.; Faisal, M.; Bowser, P.; Casey, J.W.; Phillips, K.; Garver, K.A.; Winton, J.; Kurath, G.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North Ame­rica. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from ­individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with ­previously naïve host populations.

  18. Deep Learning Methods for Quantifying Invasive Benthic Species in the Great Lakes

    Science.gov (United States)

    Billings, G.; Skinner, K.; Johnson-Roberson, M.

    2017-12-01

    In recent decades, invasive species such as the round goby and dreissenid mussels have greatly impacted the Great Lakes ecosystem. It is critical to monitor these species, model their distribution, and quantify the impacts on the native fisheries and surrounding ecosystem in order to develop an effective management response. However, data collection in underwater environments is challenging and expensive. Furthermore, the round goby is typically found in rocky habitats, which are inaccessible to standard survey techniques such as bottom trawling. In this work we propose a robotic system for visual data collection to automatically detect and quantify invasive round gobies and mussels in the Great Lakes. Robotic platforms equipped with cameras can perform efficient, cost-effective, low-bias benthic surveys. This data collection can be further optimized through automatic detection and annotation of the target species. Deep learning methods have shown success in image recognition tasks. However, these methods often rely on a labelled training dataset, with up to millions of labelled images. Hand labeling large numbers of images is expensive and often impracticable. Furthermore, data collected in the field may be sparse when only considering images that contain the objects of interest. It is easier to collect dense, clean data in controlled lab settings, but this data is not a realistic representation of real field environments. In this work, we propose a deep learning approach to generate a large set of labelled training data realistic of underwater environments in the field. To generate these images, first we draw random sample images of individual fish and mussels from a library of images captured in a controlled lab environment. Next, these randomly drawn samples will be automatically merged into natural background images. Finally, we will use a generative adversarial network (GAN) that incorporates constraints of the physical model of underwater light propagation

  19. Evidence for early hunters beneath the Great Lakes.

    Science.gov (United States)

    O'Shea, John M; Meadows, Guy A

    2009-06-23

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000-7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and location, structures used for caribou hunting in both prehistoric and ethnographic times. These results present evidence for early hunters on the Alpena-Amberley corridor, and raise the possibility that intact settlements and ancient landscapes are preserved beneath Lake Huron.

  20. Mapping ecosystem services in a Great Lakes estuary supports local decision-making

    Science.gov (United States)

    Estuaries of the Laurentian Great Lakes provide a concentrated supply of ecosystem goods and services from which humans benefit. As long-term centers of human activity, most estuaries of the Great Lakes and have a legacy of chemical contamination, degraded habitats, and non-point...

  1. 40 CFR Appendix B to Part 132 - Great Lakes Water Quality Initiative

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Great Lakes Water Quality Initiative B Appendix B to Part 132 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Water Quality Initiative Methodology for Deriving Bioaccumulation Factors Great Lakes States and Tribes...

  2. Ecology, fish and fishery of Lake Liambezi, a recently refilled ...

    African Journals Online (AJOL)

    Lake Liambezi (300 km2) refilled in 2009 after a prolonged 22-year dry period. Its aquatic macrophyte populations, fish fauna and fishery shortly after refilling are described. The emergent aquatic macrophyte Phragmites australis formed dense stands covering large parts of the lake, while extensive beds of submerged ...

  3. Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review

    Science.gov (United States)

    Spry, D.J.; Wiener, James G.

    1991-01-01

    Fish in low-alkalinity lakes having pH of 6·0–6·5 or less often have higher body or tissue burdens of mercury, cadmium, and lead than do fish in nearby lakes with higher pH. The greater bioaccumulation of these metals in such waters seems to result partly from the greater aqueous abundances of biologically available forms (CH3 Hg+, Cd2+, and Pb2+) at low pH. In addition, the low concentrations of aqueous calcium in low-alkalinity lakes increase the permeability of biological membranes to these metals, which in fish may cause greater uptake from both water and food. Fish exposed to aqueous inorganic aluminum in the laboratory and field accumulate the metal in and on the epithelial cells of the gills; however, there is little accumulation of aluminum in the blood or internal organs. In low-pH water, both sublethal and lethal toxicity of aluminum has been clearly demonstrated in both laboratory and field studies at environmental concentrations. In contrast, recently measured aqueous concentrations of total mercury, methylmercury, cadmium, and lead in low-alkalinity lakes are much lower than the aqueous concentrations known to cause acute or chronic toxicity in fish, although the vast majority of toxicological research has involved waters with much higher ionic strength than that in low-alkalinity lakes. Additional work with fish is needed to better assess (1) the toxicity of aqueous metals in low-alkalinity waters, and (2) the toxicological significance of dietary methylmercury and cadmium.

  4. Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes

    Science.gov (United States)

    Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.

    2003-01-01

    Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.

  5. Remedial measures against high levels of radioactive cesium in Swedish lake fish

    International Nuclear Information System (INIS)

    Andersson, T.; Nilsson, Aa.; Haakanson, L.; Kvarnaes, H.

    1991-01-01

    The Swedish Radiation Protection Institute (SSI) has provided funds for the testing of methods to reduce the concentration of radioactive cesium in fish. The main purpose of this report is to present to remedies tested and to give an account of the effect they had on the concentration of Cs-137 in fish. In addition, analyses are made of the lake-specific factors contributing to the Cs-uptake in fish in the tested lakes. The time interval between the remedies adopted and the latest fish analyses (about 2 years on average) is not sufficient to statistically establish the small effects of the remedies. A longer time series of data is required for this

  6. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.

    Science.gov (United States)

    Malczyk, Evan A; Branfireun, Brian A

    2015-08-15

    Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.

  7. Women's independent access to productive resources: fish ponds in the Oxbow Lakes Project, Bangladesh.

    Science.gov (United States)

    Nathan, D; Apu, N A

    1998-01-01

    This article analyzes the experiences of women in acquiring user rights to fish ponds on government owned lands in the Oxbow Lakes Project in Bangladesh. The analysis describes the significance, functioning, and problems of women in fish farming. The field reports were based on the authors' involvement in implementation of the extension of fishing rights to women during 6 weeks/year over 4 years. Analysis was based on observations and discussions during project implementation and on a survey conducted in March 1997. The project involved land reforms that transferred rights to a group of poor people. Most of the lakes had been overfished. The poor fishers were organized into Lake Fishing Teams (LFTs) with the right to culture and harvest fish in lakes that were under common property management. In late 1994, at least 50% of the women were included in the Fish Farming Groups (FFGs) to manage fish culture in ponds constructed in shallow areas of the lake shore. The proportion of women was increased to 75% in 1994-95 and favored women-headed households. By March 1997, there were 510 members of FFGs, of whom 84% were single, poor women. Women had low participation in fish sales and netting and guarding the harvest. Women in mixed gender groups complained that men dominated the key decision-making and financial areas. Production averaged 1500 kg/hectare in 1995-96. FFGs had higher expenses for feed and fertilizer than LFTs. This endeavor earned higher per capita income than poultry raising. All women groups performed better than mixed groups. These groups increased assertiveness and self-confidence.

  8. A synthesis of ecological and fish-community changes in Lake Ontario, 1970-2000

    Science.gov (United States)

    Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.

    2005-01-01

    We assessed stressors associated with ecological and fishcommunity changes in Lake Ontario since 1970, when the first symposium on Salmonid Communities in Oligotrophic Lakes (SCOL I) was held (J. Fish. Res. Board Can. 29: 613-616). Phosphorus controls implemented in the early 1970s were undeniably successful; lower food-web studies showed declines in algal abundance and epilimnetic zooplankton production and a shift in pelagic primary productivity toward smaller organisms. Stressors on the fish community prior to 1970 such as exploitation, sea lamprey (Petromyzon marinus) predation, and effects of nuisance populations of alewife (Alosa pseudoharengus) were largely ameliorated by the 1990s. The alewife became a pivotal species supporting a multi-million-dollar salmonid sport fishery, but alewife-induced thiamine deficiency continued to hamper restoration and sustainability of native lake trout (Salvelinus namaycush). Expanding salmonine populations dependent on alewife raised concerns about predator demand and prey supply, leading to reductions in salmonine stocking in the early 1990s. Relaxation of the predation impact by alewives and their shift to deeper water allowed recovery of native fishes such as threespine stickleback (Gasterosteus aculeatus) and emerald shiner (Notropis atherinoides). The return of the Lake Ontario ecosystem to historical conditions has been impeded by unplanned introductions. Establishment of Dreissena spp. led to increased water clarity and increased vectoring of lower trophic-level production to benthic habitats and contributed to the collapse of Diporeia spp. populations, behavioral modifications of key fish species, and the decline of native lake whitefish (Coregonus clupeaformis). Despite reduced productivity, exotic-species introductions, and changes in the fish community, offshore Mysis relicta populations remained relatively stable. The effects of climate and climate change on the population abundance and dynamics of Lake Ontario

  9. Long-term effects of extreme weather events and eutrophication on the fish community of shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Külli Kangur

    2013-06-01

    Full Text Available The fish kill in lake Peipsi (Estonia/Russia during the extraordinarily hot summer of 2010 evoked an investigation into the effects of environmental extremes and long-term eutrophication on the fish community of the lake. Current data on lake Peipsi indicate that temperature extremes and synergistic interactions with eutrophication have led to a radical restructuring of the fish community. Commercial landings of lake smelt, Osmerus eperlanus eperlanus m. spirinchus (Pallas, the previous dominant species of the fish community, have decreased dramatically since the 1930s, these declines being coupled with summer heat waves coinciding with low water levels. Gradual decline in smelt stock and catches was significantly related to a decline of near-bottom oxygen conditions and to a decrease in water transparency. The first documented fish kill in 1959 occurred only in the southern, most shallow and eutrophic lake (lake Pihkva. Recently, summer fish kill have become more frequent, involving larger areas of the lake. In addition to the cold-water species, e.g. smelt and vendace Coregonus albula (L., the abundance of bottom-dwelling fishes such as ruffe Gymnocephalus cernuus (L. and juvenile fish have significantly decreased after the 2010 heat wave probably due to hypoxia and warm water temperatures. This study showed that fish community structure in large shallow lakes may be very vulnerable to water temperature increases, especially temperature extremes in combination with eutrophication.

  10. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Wissemann, Chris [Freshwater Wind I, LLC, Youngstown, OH (United States); White, Stanley M [Stanley White Engineering LLC, Noank, CT (United States)

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project; Developed a cost model and “baseline” LCOE; Documented Site Conditions within Lake Erie; Developed Fabrication, Installation and Foundations Innovative Concept Designs; Evaluated LCOE Impact of Innovations; Developed Assembly line “Rail System” for GBF Construction and Staging; Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System; Developed GBF with “Penetration Skirt”; Developed Integrated GBF with Turbine Tower; Developed Turbine, Plant Layout and O&M Strategies. The

  11. The Oligochaeta (Annelida, Clitellata) of the St. Lawrence Great Lakes region: An update

    Science.gov (United States)

    Spencer, Douglas R.; Hudson, Patrick L.

    2003-01-01

    An updated oligochaete species list for the Great Lakes region is provided. The list was developed through the reexamination of the taxa reported in a previous report in 1980, addition of new taxa or records collected from the region since 1980, and an update of taxonomy commensurate with systematic and nomenclatural changes over the intervening years since the last review. The authors found 74 papers mentioning Great Lakes oligochaete species. The majority of these papers were published in the 1980s. The literature review and additional collections resulted in 15 species being added to the previous list. Nine taxa were removed from the previous list due to misidentification, synonymies, level of identification, or inability to confirm the identity. Based on this review, 101 species of Oligochaeta are now known from the St. Lawrence Great Lakes watershed. Of these, 95 species are known from the St. Lawrence Great Lakes proper, with an additional 6 species recorded from the inland waters of the watershed. The greatest diversity of oligochaete species was found in the inland waters of the region (81) followed by Lake Huron (72), Lake Ontario (65), Lake Erie (64), Lake Superior (63), Lake Michigan (62), St. Marys River (60), Niagara River (49), Saginaw Bay (44), St. Clair River (37), Lake St. Clair (36), St. Lawrence River (27), and the Detroit River (21). Three species are suspected of being introduced, Branchiura sowerbyi, Gianius aquaedulcisand Ripistes parasita, and two are believed to be endemic, Thalassodrilus hallae andTeneridrilus flexus.

  12. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  13. Incidental oligotrophication of North American Great Lakes.

    Science.gov (United States)

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  14. Size Distribution and Growth of Young Payangka Fish, Ophieleotris Aporos (Bleeker) From Lake Tondano

    OpenAIRE

    Susanto, Mayangsari Kimberli; Bataragoa, Nego E; Moningkey, Ruddy D

    2017-01-01

    The research was conducted at the location of Lake Tondano, Minahasa District.The young payangka fish, locally known as nike fish by fishermen of the area. This study aims to determine the size distribution, length-weight relationships and to know the captivity growth in the aquarium. The research is expected to be a source of information about the fish of young payangka (Nike) and be able to contribute on the efforts of nike fish management in Lake Tondano for the future. Sampling is done by...

  15. 46 CFR 117.206 - Survival craft-vessels operating on Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes... PASSENGERS LIFESAVING EQUIPMENT AND ARRANGEMENTS Number and Type of Survival Craft § 117.206 Survival craft... vessel certificated to operate on a Great Lakes route must be provided with the survival craft required...

  16. Reaching Regional and Local Learners via a Great Lakes MOOC

    Science.gov (United States)

    Mooney, M. E.; Ackerman, S. A.

    2015-12-01

    The Cooperative Institute of Meteorological Satellite Studies (CIMSS) took a regional approach to climate change education in a 4-week MOOC (Massive Open On-line Course) on the Changing Weather and Climate in the Great Lakes Region launched in February 2015. Featuring a different season each week, this Great Lakes MOOC includes lectures about seasonal weather conditions, observed changes, and societal impacts of regional climate change, as well as actions with co-benefits to slow future climate change. To better connect with learners, CIMSS facilitated 21 discussion groups at public libraries around Wisconsin each week. Participants discussed climate change impacts in their communities as well as strategies to mitigate climate change. Not surprisingly, initial survey results show library participants were more committed, engaged, climate literate, and community minded. This session will share lessons learned and survey results from the Great Lakes MOOC which remains open and accessible on Coursera through February 2016 at https://www.coursera.org/course/greatlakesclimate.

  17. Impact of cooling systems on Lake Michigan fishes

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Romberg, G.P.

    1976-01-01

    A comparison of data on fish mortalities due to impingement at thermal power plant water intakes on Lake Michigan with available estimates of standing crop biomass, commercial and sport fishery catches, and estimated predation mortality is presented. The striking features of these data are the proportions of total mortality due to predation and the lack of accurate basic population statistics such as standing crop biomass and natural mortality for important forage and human food fishes in Lake Michigan. Although this preliminary assessment would indicate that power plant and total impingement losses constitute an insignificant fraction of total forage biomass, the potentially unstable forage-predator ratios and the apparent high degree of annual fluctuations (year-classes) in alewife, smelt, and perch indicate the need for a more detailed assessment of cooling-system related impact on selected populations

  18. Assessment methodology for new cooling lakes. Volume 2. Development of empirical multivariate relationships for evaluating fish communities in new cooling lakes. Final report

    International Nuclear Information System (INIS)

    Grieb, T.M.; Porcella, D.B.; Ginn, T.C.; Lorenzen, M.W.

    1983-02-01

    Numerical classification techniques were used to define groups of lakes with distinct fish community attributes. Simple linear and multiple regression were then used to identify the important environmental variables affecting the fish communities. Next, the multivariate statistical technique of discriminant analysis was tested and shown to predict the groups of lakes (defined in the initial step of classification) using the identified environmental variables. Classification equations derived in the discriminant analysis enable the user to predict fish community characteristics of a new lake. The equations combine the information from nine limnological parameters into a single index of classification. Based on the value of this index, the lake is classified into one of four distinct groups. The fishery characteristics of the indicated group are then used to predict fish community structure and recreational fishery use. Angler-use estimates for the group are used to project multiple use benefits

  19. Temporal and spatial variation of fish assemblages in Dianshan Lake, Shanghai, China

    Science.gov (United States)

    Hu, Zhongjun; Wang, Siqing; Wu, Hao; Chen, Qingjiang; Ruan, Renliang; Chen, Liqiao; Liu, Qigen

    2014-07-01

    Using multi-mesh gillnets and trawls, the fish communities in Dianshan Lake at 6 stations from Oct. 2009 to Jul. 2010 were investigated seasonally to reveal the biodiversity and its spatial and temporal distribution patterns. The long-term changes in their structural characteristics were then analyzed to identify the main influencing factors and several measures for lake restoration were put forward. Thirty six species, belonging to 9 family and 30 genera, were collected, amongst which, the order Cypriniformes accounted for 61.1% of the total species number. In terms of importance value, Cypriniformes was the predominant group, Coilia nasus the dominant species, while Cyprinus carpio and Rhinogobius giurinus were the subdominant taxa. The community types did not differ among stations, but between seasons. There were no significant differences between seasons and among stations in species diversity, but richness differed both spatially and seasonally. Along with the process of eutrophication and the drastic reduction of the area colonized by macrophytes from 1959 to 2009-2010, the fish diversity declined markedly, and species numbers of herbivores and piscivores declined proportionately more than those of invertivores, omnivores, and planktivores. The decline of potamophilus and river-lake migratory fish was more marked than those of sedentary, river-sea migratory, and estuarine fishes. Eutrophication concomitant with sharp reduction of macrophyte area and overfishing may be the main reasons for the decline in fish diversity in Dianshan Lake.

  20. Distribution of fallout plutonium in the waters of the lower Great Lakes

    International Nuclear Information System (INIS)

    Alberts, J.J.; Wahlgren, M.A.; Nelson, D.M.

    1976-01-01

    The concentrations of fallout 239 240 Pu in the surface waters from all the Great Lakes were slightly lower in 1976 samples than in those from 1973. The same trend of higher concentrations in the surface waters of the upper lakes as in the surface waters of the lower lakes was observed for both years. In addition, the 239 240 Pu concentration in samples of deep water collected during the summer of 1976 was higher than in the surface waters but was similar to the surface water values of the 1973 spring samples. This observation is significant in that it suggests that the surface waters of all the Great Lakes undergo a seasonal decrease in plutonium concentration similar to that already observed in Lake Michigan

  1. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages.

    Directory of Open Access Journals (Sweden)

    Peter C Jacobson

    Full Text Available Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896-1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981-2010. Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future.

  2. 46 CFR 180.206 - Survival craft-vessels operating on Great Lakes routes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Survival craft-vessels operating on Great Lakes routes... Craft § 180.206 Survival craft—vessels operating on Great Lakes routes. (a) Except as allowed by... with the survival craft required by § 180.205 (a) through (e), as appropriate. (b) Each vessel...

  3. Mid Holocene lake level and shoreline behavior during the Nipissing phase of the upper Great Lakes at Alpena, Michigan, USA

    Science.gov (United States)

    Thompson, T.A.; Lepper, K.; Endres, A.L.; Johnston, J.W.; Baedke, S.J.; Argyilan, E.P.; Booth, R.K.; Wilcox, D.A.

    2011-01-01

    The Nipissing phase was the last pre-modern high-water stage of the upper Great Lakes. Represented as either a one- or two-peak highstand, the Nipissing occurred following a long-term lake-level rise. This transgression was primarily an erosional event with only the final stage of the transgression preserved as barriers, spits, and strandplains of beach ridges. South of Alpena, Michigan, mid to late Holocene coastal deposits occur as a strandplain between Devils Lake and Lake Huron. The landward part of this strandplain is a higher elevation platform that formed during the final stage of lake-level rise to the Nipissing peak. The pre-Nipissing shoreline transgressed over Devils Lake lagoonal deposits from 6.4 to 6.1. ka. The first beach ridge formed ~ 6. ka, and then the shoreline advanced toward Lake Huron, producing beach ridges about every 70. years. This depositional regression produced a slightly thickening wedge of sediment during a lake-level rise that formed 20 beach ridges. The rise ended at 4.5. ka at the Nipissing peak. This peak was short-lived, as lake level fell > 4. m during the following 500. years. During this lake-level rise and subsequent fall, the shoreline underwent several forms of shoreline behavior, including erosional transgression, aggradation, depositional transgression, depositional regression, and forced regression. Other upper Great Lakes Nipissing platforms indicate that the lake-level change observed at Alpena of a rapid pre-Nipissing lake-level rise followed by a slower rise to the Nipissing peak, and a post-Nipissing rapid lake-level fall is representative of mid Holocene lake level in the upper Great Lakes. ?? 2011 Elsevier B.V.

  4. The Younger Dryas phase of Great Salt Lake, Utah, USA

    Science.gov (United States)

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  5. Compsopogon cf. coeruleus, a benthic red alga (Rhodophyta) new to the Laurentian Great Lakes

    Science.gov (United States)

    Manny, Bruce A.; Edsall, Thomas A.; Wujek, Daniel E.

    1991-01-01

    We found Compsopogon cf. coeruleus for the first time in the Laurentian Great Lakes, growing on limestone rocks at a depth of 21 m on Six Fathom Bank in central Lake Huron. It is the first freshwater red alga to be found in the Great Lakes and the only red alga ever found on an offshore reef in the Great Lakes. However, because this alga usually inhabits water 10–28 °C and has not survived freezing winter temperatures elsewhere, it may not be a permanent member of the flora.

  6. Water clarity of the Upper Great Lakes: tracking changes between 1998-2012

    Science.gov (United States)

    Yousef, F.; Shuchman, R. A.; Sayers, M.; Fahnenstiel, G.; Henareh Khalyani, A.

    2016-12-01

    Water clarity trends in three upper Great Lakes, Lakes Superior, Michigan, and Huron, were assessed via satellite imagery from 1998 to 2012. Water attenuation coefficients (Kd490) from SeaWiFS and Aqua MODIS satellites compared favorably with in situ measurements. Significant temporal and spatial trends and differences in Kd490 were noted within all three of the lakes. Lake-wide average Kd490 for Lake Superior did not exhibited any changes between 1998 and 2012. Annual Kd490 values for Lake Huron, however, showed a significant negative trend during the study period using both SeaWiFS and MODIS datasets. Similarly, annual Kd490 values of Lake Michigan declined between 1998 and 2010. Additionally, Kd490 trend for depths >90m in northern Lake Michigan reversed (increased) after 2007. Photic depth increased significantly in both Lake Michigan (≃5m), and Lake Huron (≃10m) when comparing annual Kd490 for pre- (1998-2001) and post-mussel (2006-2010). At seasonal level, significant decreases in Kd490 in lakes Michigan and Huron were mainly noted for the spring/fall/winter mixing periods. After current changes in water clarity, lake-wide photic depths in lakes Michigan and Huron superseded Lake Superior; thus, making Lake Superior no longer the clearest Great Lake. Combination of several factors (filtering activities of quagga mussels [Dreissena bugensis rostriformis], phosphorus abatement, climate change, etc.) are likely responsible for these large changes.

  7. Angler-caught piscivore diets reflect fish community changes in Lake Huron

    Science.gov (United States)

    Roseman, Edward F.; Schaeffer, Jeff; Bright, Ethan; Fielder, David G.

    2014-01-01

    Examination of angler-caught piscivore stomachs revealed that Lake Trout Salvelinus namaycush, Chinook Salmon Oncorhynchus tshawytscha, and Walleyes Sander vitreus altered theirdiets in response to unprecedented declines in Lake Huron's main-basin prey fish community.Diets varied by predator species, season, and location but were nearly always dominated numerically by some combination of Alewife Alosa pseudoharengus, Rainbow Smelt Osmerus mordax, Emerald Shiner Notropis atherinoides, Round Goby Neogobius melanostomus, or terrestrial insects. Rainbow Trout Oncorhynchus mykiss (steelhead), Coho Salmon Oncorhynchus kisutch, and Atlantic Salmon Salmo salar had varied diets that reflected higher contributions of insects. Compared with an earlier (1983–1986) examination of angler-caught predator fishes from Lake Huron, the contemporary results showed an increase in consumption of nontraditional prey (including conspecifics), use of smaller prey, and an increase in insects in the diet, suggesting that piscivores were faced with chronic prey limitation during this study. The management of all piscivores in Lake Huron will likely require consideration of the pervasive effects of changes in food webs, especially if prey fish remain at low levels.

  8. Sub-indicator: Prey fish

    Science.gov (United States)

    Weidel, Brian C.; Dunlop, Erin

    2017-01-01

    Prey fish communities across the Great Lakes continue to change, although the direction and magnitude of those changes are not consistent across the lakes. The metrics used to categorize prey fish status in this and previous periods are based on elements that are common among each of the lake’s Fish Community Objectives and include diversity and the relative role of native species in the prey fish communities. The diversity index categorized three of lakes as ‘fair’, while Superior and Erie were ‘good’ (Table 1). The short term trend, from the previous period (2008-2010) to the current period (2011-2014) found diversity in Erie and Superior to be unchanging, but the other three lakes to be ‘deteriorating’, resulting in an overall trend categorization of ‘undetermined’ (Table 1). The long term diversity trend suggested Lakes Superior and Erie have the most diverse prey communities although the index for those prey fish have been quite variable over time (Figure 1). In Lake Huron, where non-native alewife have substantially declined, the diversity index has also declined. The continued dominance of alewife in Lake Ontario (96% of the prey fish biomass) resulted in the lowest diversity index value (Figure 1). The proportion of native species within the community was judged as ‘good’ in Lakes Superior and Huron, ‘fair’ in Michigan and Erie and ‘poor’ in Ontario (Table 2). The short term trend was improving in in all lakes except Michigan (‘deteriorating’) and Ontario (‘unchanging’), resulting in an overall short term trend of ‘undetermined’ (Table 2). Over the current period, Lake Superior consistently had the highest proportion native prey fish (87%) while Lake Ontario had the lowest (1%) (Figure 2). Lake Michigan’s percent native has declined as round goby increase and comprises a greater proportion of the community. Native prey fish make up 51% of Lake Erie, although basin-specific values differed (Figure 2). Most notably

  9. Non-indigenous invertebrates, fish and macrophytes in Lake Garda (Italy

    Directory of Open Access Journals (Sweden)

    Cristina CAPPELLETTI

    2011-08-01

    Full Text Available As observed in many countries, lakes are involved in an important process of colonization by non-indigenous species (NIS. Since 1725, 37 species of non-indigenous fish, invertebrates and macrophytes have been recorded in Lake Garda, the largest Italian lake. This phenomenon is particularly important for invertebrates and macrophytes, as their pathways of introduction are accidental. Recently among the 100 Worst Invasive Alien Species in Europe, the invertebrates Corbicula fluminea, Dikerogammarus villosus and Procambarus clarkii, and the macrophytes Lagarosiphon major, Elodea nuttallii and Elodea canadensis have been recorded in Lake Garda. In order to define the present status of non-indigenous species in Lake Garda, published and unpublished data were reviewed.

  10. Herbivory of Omnivorous Fish Shapes the Food Web Structure of a Chinese Tropical Eutrophic Lake: Evidence from Stable Isotope and Fish Gut Content Analyses

    Directory of Open Access Journals (Sweden)

    Jian Gao

    2017-01-01

    Full Text Available Studies suggest that, unlike the situation in temperate lakes, high biomasses of omnivorous fish are maintained in subtropical and tropical lakes when they shift from a turbid phytoplankton-dominated state to a clear water macrophyte-dominated state, and the predation pressure on large-bodied zooplankton therefore remains high. Whether this reflects a higher degree of herbivory in warm lakes than in temperate lakes is debatable. We combined food web studies using stable isotopes with gut content analyses of the most dominant fish species to elucidate similarities and differences in food web structure between a clear water macrophyte-dominated basin (MDB and a turbid phytoplankton-dominated basin (PDB of Huizhou West Lake, a shallow tropical Chinese lake. The δ13C–δ15N biplot of fish and invertebrates revealed community-wide differences in isotope-based metrics of the food webs between MDB and PDB. The range of consumer δ15N (NR was lower in MDB than in PDB, indicating shorter food web length in MDB. The mean nearest neighbor distance (MNND and standard deviation around MNND (SDNND were higher in MDB than in PDB, showing a markedly low fish trophic overlap and a more uneven packing of species in niches in MDB than in PDB. The range of fish δ13C (CR of consumers was more extensive in MDB than in PDB, indicating a wider feeding range for fish in MDB. Mixing model results showed that macrophytes and associated periphyton constituted a large fraction of basal production sources for the fish in MDB, while particulate organic matter (POM contributed a large fraction in PDB. In MDB, the diet of the dominant fish species, crucian carp (Carassius carassius, consisted mainly of vegetal matter (macrophytes and periphyton and zooplankton, while detritus was the most important food item in PDB. Our results suggest that carbon from macrophytes with associated periphyton may constitute an important food resource for omnivorous fish, and this may strongly

  11. Assessment of the Great Lakes Marine Renewable Energy Resources: Characterizing Lake Erie Surge, Seiche and Waves

    Science.gov (United States)

    Farhadzadeh, A.; Hashemi, M. R.

    2016-02-01

    Lake Erie, the fourth largest in surface area, smallest in volume and shallowest among the Great Lakes is approximately 400 km long and 90 km wide. Short term lake level variations are due to storm surge generated by high winds and moving pressure systems over the lake mainly in the southwest-northeast direction, along the lakes longitudinal axis. The historical wave data from three active offshore buoys shows that significant wave height can exceed 5 m in the eastern and central basins. The long-term lake level data show that storm surge can reach up to 3 m in eastern Lake Erie. Owing its shallow depth, Lake Erie frequently experiences seiching motions, the low frequency oscillations that are initiated by storm surge. The seiches whose first mode of oscillations has a period of nearly 14.2 hours can last from several hours to days. In this study, the Lake Erie potential for power generation, primarily using storm surge and seiche and also waves are assessed. Given the cyclic lake level variations due to storm-induced seiching, a concept similar to that of tidal range development is utilized to assess the potential of storm surge and seiche energy harvesting mechanisms for power generation. In addition, wave energy resources of the Lake is characterized -. To achieve these objectives, the following steps are taken : (1) Frequency of occurrence for extreme storm surge and wave events is determined using extreme value analysis such as Peak-Over-Threshold method for the long-term water level and wave data; (2) Spatial and temporal variations of wave height, storm surge and seiche are characterized. The characterization is carried out using the wave and storm surge outputs from numerical simulation of a number of historical extreme events. The coupled ADCIRC and SWAN model is utilized for the modeling; (3) Assessment of the potentials for marine renewable power generation in Lake Erie is made. The approach can be extended to the other lakes in the Great Lakes region.

  12. Citizen science datasets reveal drivers of spatial and temporal variation for anthropogenic litter on Great Lakes beaches.

    Science.gov (United States)

    Vincent, Anna; Drag, Nate; Lyandres, Olga; Neville, Sarah; Hoellein, Timothy

    2017-01-15

    Accumulation of anthropogenic litter (AL) on marine beaches and its ecological effects have been a major focus of research. Recent studies suggest AL is also abundant in freshwater environments, but much less research has been conducted in freshwaters relative to oceans. The Adopt-a-BeachTM (AAB) program, administered by the Alliance for the Great Lakes, organizes volunteers to act as citizen scientists by collecting and maintaining data on AL abundance on Great Lakes beaches. Initial assessments of the AAB records quantified sources and abundance of AL on Lake Michigan beaches, and showed that plastic AL was >75% of AL on beaches across all five Great Lakes. However, AAB records have not yet been used to examine patterns of AL density and composition among beaches of all different substrate types (e.g., parks, rocky, sandy), across land-use categories (e.g., rural, suburban, urban), or among seasons (i.e., spring, summer, and fall). We found that most AL on beaches are consumer goods that most likely originate from beach visitors and nearby urban environments, rather than activities such as shipping, fishing, or illegal dumping. We also demonstrated that urban beaches and those with sand rather than rocks had higher AL density relative to other sites. Finally, we found that AL abundance is lowest during the summer, between the US holidays of Memorial Day (last Monday in May) and Labor Day (first Monday in September) at the urban beaches, while other beaches showed no seasonality. This research is a model for utilizing datasets collected by volunteers involved in citizen science programs, and will contribute to AL management by offering priorities for AL types and locations to maximize AL reduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Histopathology of feral fish from a PCB-contaminated freshwater lake

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, Kari; Ritola, Ossi; Huuskonen, Sirpa E.; Lindstroem-Seppae, Pirjo [Univ. of Kuopio (Finland). Dept. of Physiology; Myers, Mark S. [National Oceanic and Atmospheric Administration, Seattle, WA (United States). National Marine Fisheries Service

    2001-05-01

    The purpose of this study was to evaluate the potential toxic effects of chronic sublethal polychlorinated biphenyl (PCB) exposure on feral fish, using histopathology as an endpoint. Histopathological study of bream (Abramis brama) and asp (Aspius aspius) living in a PCB-polluted freshwater lake revealed abnormal cellular changes in the renal corpuscle of both species. Dilation of glomerular capillaries (DGC), mesangial edema (ME), an adhesion between visceral and parietal layers of Bowman's capsule (ABC), and filling of Bowman's space (FBS), were highly prevalent features in lake fish. The prevalence of each of these lesions was significantly lower, or totally absent in fish caught from reference locations. Cellular alterations in liver, gill, gonads, spleen, and intestine were all linked to seasonal changes. The results suggest that some of the observed histopathological changes in renal glomeruli, particularly DGC and ME, could possibly indicate a prolonged chemical stress caused by PCBs and related compounds. It is also possible that chronic PCB exposure may have suppressed and weakened the immuno systems of exposed fish making them more vulnerable to secondary parasitic infection.

  14. Interconnectedness during high water maintains similarity in fish assemblages of island floodplain lakes in the Amazonian Basin

    Directory of Open Access Journals (Sweden)

    Carlos Edwar de C. Freitas

    2010-01-01

    Full Text Available We conducted a study to test the hypothesis that interconnectedness among island floodplain lakes and the adjacent Solimões River during the flood stage of the hydrologic cycle is enough to maintain similarity in fish species assemblages. Gill net samples were collected during high and low water periods for three consecutive years (July 2004 to July 2006 in four lakes on Paciência Island. Two lakes, Piranha and Ressaca, are connected to the river all year, and the other two, Preto and Cacau, which are in the center of the island, are isolated during low water periods. The abundance, species richness and evenness of the fish assemblages in these lakes did not differ according to their relative positions or the season of the hydrological cycle, which confirmed our hypothesis. However, fish abundance during the dry season was greater than in the flood season. Apparently, the short period of full connection between the lakes is enough to allow the colonization of all fish species, but not to cause similar abundances. Our study indicates that persistence of the species composition of island floodplain lakes is primarily due to the annual replenishment of fish to the lakes during the flood season.

  15. Great Lakes waters: radiation dose commitments, potential health effects, and cost-benefit considerations

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1977-07-01

    In 1972, a Great Lakes Water Quality Agreement was signed by the United States and Canadian Governments. It was stipulated that the operation and effectiveness of the agreement were to be reviewed comprehensively in 1977. Aspects of the agreement concern nondegradation of Great Lakes waters and maintenance of levels of radioactivity or other potential pollutants at levels considered as low as practicable. A refined radioactivity objective of one millirem is proposed in the Water Quality Agreement. The implications of adoption of this objective are not known fully. The Division of Environmental Impact Studies was commissioned by ERDA's Division of Technology Overview to summarize the information available on the current levels of radioactivity in Great Lakes waters, compute radiation-dose commitment (integrated dose over 50 years after consumption of 2.2 liters of water of one year), and to comment on the feasibility and cost-benefit considerations associated with the refined one-millirem objective. Current levels of radioactivity in the waters of Lakes Michigan, Ontario, Erie, and Huron result in dose commitments in excess of 1 mrem for whole body and 6 mrem for bone. Future projections of isotope concentrations in Great lakes water indicate similar dose commitments for drinking water in the year 2050. Reduction of the levels of radioactivity in Great Lakes waters is not feasible, but cost-benefit considerations support removal of 226 Ra and 90 Sr through interceptive technology before water consumption. Adoption of the one-millirem objective is not propitious

  16. Fishing for improvements: managing fishing by boat on New York City water supply reservoirs and lakes

    Science.gov (United States)

    Nicole L. Green; Jennifer A. Cairo

    2008-01-01

    In 2003, the New York City Department of Environmental Protection Bureau of Water Supply undertook a 5-year initiative to improve fishing by boat on its water supply reservoirs and controlled lakes in upstate New York. The project includes: revising administrative procedures; cleaning up boat fishing areas on reservoir shores; improving two-way communication with...

  17. 3 CFR - National Policy for the Oceans, Our Coasts, and the Great Lakes

    Science.gov (United States)

    2010-01-01

    ... sustainable oceans, coasts, and Great Lakes resources for the benefit of this and future generations. Yet, the... conservation, economic activity, user conflict, and sustainable use of ocean, coastal, and Great Lakes... publish this memorandum in the Federal Register.BARACK OBAMATHE WHITE HOUSE, Washington, June 12, 2009. ...

  18. Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo), Kenya, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M.; Osano, O.; Hecky, R.E.; Dixon, D.G

    2003-09-01

    Mercury concentrations in Kenyan fish vary with tropic position but, in general, do not pose an unacceptable risk to human consumers of wildlife. -Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g{sup -1} wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g{sup -1}. The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g{sup -1}. In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g{sup -1}), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g{sup -1}, THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g{sup -1} for at-risk groups.

  19. Selenium poisoning of fish by coal ash wastewater in Herrington Lake, Kentucky.

    Science.gov (United States)

    Lemly, A Dennis

    2018-04-15

    Selenium pollution from the E.W. Brown Electric Generating Station was investigated in Herrington Lake, KY. Coal ash wastewater is discharged as surface water overflow from ash disposal ponds into the lake via a National Pollutant Discharge Elimination System permit issued by the Kentucky Division of Water, but the permit does not restrict or limit the amount of selenium released. Unpermitted discharges occur from seeps and drainage through leaks in ash pond dams. Together, these discharges have resulted in selenium concentrations in water, sediment, benthic macroinvertebrates, and fish that are 2-9 times the level that is toxic for fish reproduction and survival. A large proportion (12.2%, or 25 times background) of juvenile largemouth bass (Micropterus salmoides, the only species examined) exhibited spinal and/or craniofacial malformations that are consistent with selenium poisoning. Teratogenic Deformity Index values indicated a 3.05% population-level impact on the bass fishery, with total selenium-induced mortality (including pre-swimup mortality) estimated to be in excess of 25% per year. These findings confirm that coal ash discharges into Herrington Lake are contributing selenium to the Lake that is poisoning fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Recent changes in the deep-water fish populations of Lake Michigan

    Science.gov (United States)

    Moffett, James W.

    1957-01-01

    The deep-water fish fauna of Lake Michigan consisted of lake trout (Salvelinus namaycush), burbot (Lota lota maculosa), seven species of chubs or deep-water ciscoes (Leucichthys spp.), and the deep-water sculpin (Myoxocephalus quadricornis). Other species occupied the deep-water zone but were not typically part of the fauna.

  1. Assessment of the fish tumor beneficial use impairment in brown bullhead (Ameiurus nebulosus) at selected Great Lakes Areas of Concern

    Science.gov (United States)

    Blazer, Vicki; Mazik, Patricia M.; Iwanowicz, Luke R.; Braham, Ryan P.; Hahn, Cassidy M.; Walsh, Heather L.; Sperry, Adam J.

    2014-01-01

    A total of 878 adult Brown Bullhead were collected at 11 sites within the Lake Erie and Lake Ontario drainages from 2011 to 2013. The sites included seven Areas of Concern (AOC; 670 individuals), one delisted AOC (50 individuals) and three non-AOC sites (158 individuals) used as reference sites. These fish were used to assess the “fish tumor or other deformities” beneficial use impairment. Fish were anesthetized, weighed, measured and any external abnormalities documented and removed. Abnormal orocutaneous and barbel tissue, as well as five to eight pieces of liver, were preserved for histopathological analyses. Otoliths were removed and used for age analyses. Visible external abnormalities included reddened (raised or eroded), melanistic areas and raised growths on lips, body surface, fins and barbels. Microscopically, these raised growths included papilloma, squamous cell carcinoma, osteoma and osteosarcoma. Proliferative lesions of the liver included bile duct hyperplasia, foci of cellular alteration, bile duct (cholangioma, cholangiocarcinoma) and hepatocellular (adenoma, hepatic cell carcinoma) neoplasia. The two reference sites (Long Point Inner Bay, Conneaut Creek), at which 30 or more bullhead were collected had a skin tumor prevalence of 10% or less and liver tumor prevalence of 4% or less. Presque Isle Bay, recently delisted, had a similar liver tumor prevalence (4%) and slightly higher prevalence (12%) of skin tumors. The prevalence of skin neoplasms was 15% or less at sites in the Black River, Cuyahoga River and Maumee AOCs, while more than 20% of the bullheads from the Rochester Embayment, Niagara River, Detroit River and Ashtabula River AOCs had skin tumors. The prevalence of liver tumors was greater than 4% at all AOC sites except the Old Channel site at the Cuyahoga River AOC, Wolf Creek within the Maumee AOC and the upper and lower sites within the Niagara River AOC.

  2. St. Louis River fish migrations: Gains and losses of ecosystem services

    Science.gov (United States)

    The Twin Ports fishery has undergone change from a migratory fish-based fishery to a Lake Superior-based fishery, and is now returning to a diverse fishery that includes fish of both life histories. These changes reflect past disturbances to the Great Lakes ecosystem as well as r...

  3. Exploiting Habitat and Gear Patterns for Efficient Detection of Rare and Non-native Benthos and Fish in Great Lakes Coastal ecosystems

    Science.gov (United States)

    There is at present no comprehensive early-detection monitoring for exotic species in the Great Lakes, despite their continued arrival and impacts and recognition that early detection is key to effective management. We evaluated strategies for efficient early-detection monitorin...

  4. Biological and ecological science for Michigan—The Great Lakes State

    Science.gov (United States)

    ,

    2018-04-04

    Michigan is rich in lakes, rivers, dune and rocky shorelines, forests, fish and wildlife, and has the longest freshwater coastline in the United States, 3,224 miles. Many enterprises critical to Michigan’s economy and cultural heritage are based on natural resources including commercial and sport fishing, hunting, and other outdoor recreation. Overall, outdoor recreation is enjoyed by more than 63 percent of Michigan residents, and has been estimated to generate $18.7 billion in consumer spending, create 194,000 jobs, and raise $1.4 billion in State and local tax revenue annually.

  5. Nile perch fish processing waste along Lake Victoria in East Africa ...

    African Journals Online (AJOL)

    In East Africa, Nile perch fish processing into chilled fish fillet for export along Lake Victoria generate large proportions of both solid and liquid wastes. However, no thorough auditing and characterization of the waste has been done that would guide potential value addition through bioconversions and waste management.

  6. Fish abundance and distribution near three heated effluents to Lake Michigan

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Goldstein, R.M.; Prepejchal, W.; Thommes, M.M.

    1982-01-01

    A combined echo location-temperature mapping technique was used to determine the abundance and distribution of fish with depth and temperature in locally heated and unheated areas of Lake Michigan. Surveys were conducted between April and October at two adjacent power plants in the southern basin and at one plant in the northern basin of the lake. Fish densities in plume and reference areas differed seasonally. Densities typically differed by a factor of 2-4 although on one occasion plume area density was 90 times greater. Highest plume densities occurred during late spring when alewife (Alosa pseudoharengus) were spawning inshore. Consistently dense congregations of fish were found downstream of the interfaces between ambient shore-parallel currents and discharge flows. The general distribution of fish with depth was similar in all areas. Differences between plume and reference areas were related to the discharge type: at canal discharges fish tended to congregate inshore while at the offshore discharge they congregated in deeper zones. Fish also tended to occupy shallower depth strata in all plume areas. Positive correlation between fish density and increasing temperature was common at both plume and reference areas during all three seasons, but more frequent at plume areas. Temperatures selected by fish in plume areas were 1-3 0 C higher than maximum ambient temperatures

  7. Spatial Complexity, Resilience, and Policy Diversity: Fishing on Lake-rich Landscapes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    2004-06-01

    Full Text Available The dynamics of and policies governing spatially coupled social-ecological mosaics are considered for the case of fisheries in a lake district. A microeconomic model of households addresses agent decisions at three hierarchic levels: (1 selection of the lake district from among a larger set of alternative places to live or visit, (2 selection of a base location within the lake district, and (3 selection of a portfolio of ecosystem services to use. Ecosystem services are represented by dynamics of fish production subject to multiple stable domains and trophic cascades. Policy calculations show that optimal policies will be highly heterogeneous in space and fluid in time. The diversity of possible outcomes is illustrated by simulations for a hypothetical lake district based loosely on the Northern Highlands of the State of Wisconsin. Lake districts are frequently managed as if lakes were independent, similar, endogenously regulating systems. Our findings contradict that view. One-size-fits-all (OSFA policies erode ecological and social resilience. If regulations are too stringent, social resilience declines because of the potential rewards of overharvesting. If regulations are too lax, ecological resilience is diminished by overharvesting in some lakes. In either case, local collapses of fish populations evoke spatial shifts of angling effort that can lead to serial collapses in neighboring fisheries and degraded fisheries in most or all of the lakes. Under OSFA management, the natural resources of the entire landscape become more vulnerable to transformation because of changes in, e.g., human population, the demand for resources, or fish harvesting technology. Multiplicity of management regimes can increase the ecological resilience, social resilience, and inclusive value of a spatially heterogeneous social-ecological system. Because of the complex interactions of mobile people and multistable ecosystems, management regimes must also be flexible

  8. The effect of the United States Great Lakes on the maintenance of derecho-producing mesoscale convective systems.

    Science.gov (United States)

    Bentley, M.; Sparks, J.; Graham, R.

    2003-04-01

    The primary aim of this research is to investigate the influence of the United States Great Lakes on the intensity of mesoscale convective systems (MCSs). One of the greatest nowcast challenges during the warm season is anticipating the impact of the Great Lakes on severe convection, particularly MCSs capable of producing damaging widespread windstorms known as derechos. Since a major derecho activity corridor lies over the Great Lakes region, it is important to understand the effects of the Lakes on the intensity and propagation of severe wind producing MCSs. Specific objectives of the research include: 1) The development of a short-term climatology of MCS events that have impacted the Great Lakes region over the past seven years; 2) An analysis of radar, satellite, surface (including buoy and lighthouse observations), and lake surface temperature data to determine the environmental conditions impacting the evolution of MCSs passing over a Great Lake; 3) An examination of MCS initiation times and seasonal frequencies of occurrence to delineate temporal consistencies in MCS evolution due to changing lake surface temperatures; and 4) The development of conceptual and forecast models to help anticipate MCS intensity and morphology as these systems interact with the Great Lakes environment.

  9. Bottom trawl assessment of Lake Ontario prey fishes

    Science.gov (United States)

    Weidel, Brian C.; Connerton, Michael J.; Holden, Jeremy

    2018-01-01

    Managing Lake Ontario fisheries in an ecosystem-context requires prey fish community and population data. Since 1978, multiple annual bottom trawl surveys have quantified prey fish dynamics to inform management relative to published Fish Community Objectives. In 2017, two whole-lake surveys collected 341 bottom trawls (spring: 204, fall: 137), at depths from 8-225m, and captured 751,350 fish from 29 species. Alewife were 90% of the total fish catch while Deepwater Sculpin, Round Goby, and Rainbow Smelt comprised the majority of the remaining total catch (3.8, 3.1, and 1.1% respectively). The adult Alewife abundance index for US waters increased in 2017 relative to 2016, however the index for Canadian waters declined. Adult Alewife condition, assessed by the predicted weight of a 165 mm fish (6.5 inches), declined in 2017 from record high values observed in spring 2016. Spring 2017 Alewife condition was slightly less than the 10-year average, but the fall value was well below the 10-year average, likely due to increased Age-1 Alewife abundance. The Age-1 Alewife abundance index was the highest observed in 40 years, and 8-times higher than the previous year. The Age-1 index estimates Alewife reproductive success the preceding year. The warm summer and winter of 2016 likely contributed to the large year class. In contrast the relatively cool 2017 spring and cold winter may result in a lower than average 2017 year class. Abundance indices for Rainbow Smelt, Cisco, and Emerald Shiner either declined or remained at low levels in 2017. Pelagic prey fish diversity continues to be low since a single species, Alewife, dominates the catch. Deepwater Sculpin were the most abundant benthic prey fish in 2017 because Round Goby abundance declined sharply from 2016. Slimy Sculpin density continued to decline and the 2017 biomass index for US waters was the lowest ever observed. Prior to Round Goby proliferation, juvenile Slimy Sculpin comprised ~10% of the Slimy Sculpin catch, but

  10. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: hydroclimatic implications

    Science.gov (United States)

    Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E.H.

    2014-01-01

    We report a unique hydrologic time-series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically-driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13y) is remarkably consistent among small seepage lakes, groundwater tables and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P-E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the mid-latitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by a ~12y downward trend beginning in 1998. Record low water levels region-wide may mark the onset of a new hydroclimatic regime.

  11. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (D.R. Congo)

    International Nuclear Information System (INIS)

    Squadrone, S.; Burioli, E.; Monaco, G.; Koya, M.K.; Prearo, M.; Gennero, S.; Dominici, A.; Abete, M.C.

    2016-01-01

    The concentrations of 14 essential and nonessential trace elements were determined in fish from Lake Tshangalele, Katanga province, Democratic Republic of Congo. This province has been a place of intensive mining activities for centuries, which have increased in recent years, due to the use of metals such as copper and cobalt for the industries of fast-growing countries. Lake Tshangalele, which receives effluents from metallurgical and mining plants in Likasi, is home to several fish species that are an important part of the diet of the local population, and, therefore, it constitutes a relevant site for documenting the human exposure to metals as a result of a fish diet. The highest concentrations (median levels, dry weight) of cobalt (7.25 mg kg"− "1), copper (88.1 mg kg"− "1), iron (197.5 mg kg"− "1), manganese (65.35 mg kg"− "1), zinc (122.9 mg kg"− "1) and aluminum (135.4 mg kg"− "1) were found in fish collected closest to the copper mining plant, with decreasing concentrations along the lake, up to the dam. In the most contaminated fish samples, values of up to 270.1 mg kg"− "1 for Al, 173.1 mg kg"− "1 for Cu, 220.9 mg kg"− "1 for Zn, 211.0 mg kg"− "1 for Mn, 324.2 mg kg"− "1 for Fe, 15.1 mg kg"− "1 for Co, 4.2 mg kg"− "1 for Cr, 1.6 mg kg"− "1 for Cd, 1.9 mg kg"− "1 for Pb, and 1.8 mg kg"− "1 for Ni were found. Metal contamination from mining activity resulted in being of great concern because of potential health risks to the local inhabitants due to the consumption of heavily contaminated fish. Capsule: High levels of metals, especially cobalt, aluminum, iron, manganese, zinc and cadmium were found in fish from Tshangalele water system. - Highlights: • Metal contamination from mining activity is of great concern for human exposure. • We analyzed metal content in fish from Lake Tshangalele (Katanga Copperbelt). • Fish consumption largely contributes to intake of Co and other metals. • In some samples, Co, Cu, Mn, Al

  12. Systematically variable planktonic carbon metabolism along a land-to-lake gradient in a Great Lakes coastal zone.

    Science.gov (United States)

    Weinke, Anthony D; Kendall, Scott T; Kroll, Daniel J; Strickler, Eric A; Weinert, Maggie E; Holcomb, Thomas M; Defore, Angela A; Dila, Deborah K; Snider, Michael J; Gereaux, Leon C; Biddanda, Bopaiah A

    2014-11-01

    During the summers of 2002-2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 µg C L -1 day -1 , respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and -33 ± 15 µg C L -1 day -1 , respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles.

  13. Status of the amphipod Diporeia ssp. in coastal waters of the Laurentian Great Lakes

    Science.gov (United States)

    Diporeia has historically been the dominant benthic macroinvertebrate in deeper waters of the Laurentian Great Lakes, and its abundance has been proposed as an indicator of ecological condition. In 2010, the USEPA incorporated the Great Lakes into the National Coastal Condition A...

  14. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems

    Science.gov (United States)

    Cohen, Andrew S.; Gergurich, Elizabeth L.; Kraemer, Benjamin M.; McGlue, Michael M.; McIntyre, Peter B.; Russell, James M.; Simmons, Jack D.; Swarzenski, Peter W.

    2016-01-01

    Warming climates are rapidly transforming lake ecosystems worldwide, but the breadth of changes in tropical lakes is poorly documented. Sustainable management of freshwater fisheries and biodiversity requires accounting for historical and ongoing stressors such as climate change and harvest intensity. This is problematic in tropical Africa, where records of ecosystem change are limited and local populations rely heavily on lakes for nutrition. Here, using a ∼1,500-y paleoecological record, we show that declines in fishery species and endemic molluscs began well before commercial fishing in Lake Tanganyika, Africa’s deepest and oldest lake. Paleoclimate and instrumental records demonstrate sustained warming in this lake during the last ∼150 y, which affects biota by strengthening and shallowing stratification of the water column. Reductions in lake mixing have depressed algal production and shrunk the oxygenated benthic habitat by 38% in our study areas, yielding fish and mollusc declines. Late-20th century fish fossil abundances at two of three sites were lower than at any other time in the last millennium and fell in concert with reduced diatom abundance and warming water. A negative correlation between lake temperature and fish and mollusc fossils over the last ∼500 y indicates that climate warming and intensifying stratification have almost certainly reduced potential fishery production, helping to explain ongoing declines in fish catches. Long-term declines of both benthic and pelagic species underscore the urgency of strategic efforts to sustain Lake Tanganyika’s extraordinary biodiversity and ecosystem services.

  15. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  16. Effectiveness of a refuge for Lake Trout in Western Lake Superior II: Simulation of future performance

    Science.gov (United States)

    Akins, Andrea L; Hansen, Michael J.; Seider, Michael J.

    2015-01-01

    Historically, Lake Superior supported one of the largest and most diverse Lake Trout Salvelinus namaycush fisheries in the Laurentian Great Lakes, but Lake Trout stocks collapsed due to excessive fishery exploitation and predation by Sea Lampreys Petromyzon marinus. Lake Trout stocking, Sea Lamprey control, and fishery regulations, including a refuge encompassing Gull Island Shoal (Apostle Islands region), were used to enable recovery of Lake Trout stocks that used this historically important spawning shoal. Our objective was to determine whether future sustainability of Lake Trout stocks will depend on the presence of the Gull Island Shoal Refuge. We constructed a stochastic age-structured simulation model to assess the effect of maintaining the refuge as a harvest management tool versus removing the refuge. In general, median abundances of age-4, age-4 and older (age-4+), and age-8+ fish collapsed at lower instantaneous fishing mortality rates (F) when the refuge was removed than when the refuge was maintained. With the refuge in place, the F that resulted in collapse depended on the rate of movement into and out of the refuge. Too many fish stayed in the refuge when movement was low (0–2%), and too many fish became vulnerable to fishing when movement was high (≥22%); thus, the refuge was more effective at intermediate rates of movement (10–11%). With the refuge in place, extinction did not occur at any simulated level of F, whereas refuge removal led to extinction at all combinations of commercial F and recreational F. Our results indicate that the Lake Trout population would be sustained by the refuge at all simulated F-values, whereas removal of the refuge would risk population collapse at much lower F (0.700–0.744). Therefore, the Gull Island Shoal Refuge is needed to sustain the Lake Trout population in eastern Wisconsin waters of Lake Superior.

  17. Fish communities of the Wilderness Lakes System in the southern Cape, South Africa

    Directory of Open Access Journals (Sweden)

    Alexis A. Olds

    2016-08-01

    Full Text Available The Wilderness Lakes System, a temporarily open and closed estuary with three associated lakes situated in the southern Cape region of South Africa, was sampled using a range of sampling gears to assess the fish community. A total of 25 species were sampled throughout the system, with the highest diversity in the Touw Estuary (23 species and the lowest in Langvlei (11 species. Estuary-associated marine species (13 species dominated species richness with smaller proportions of estuarine resident (7 species, freshwater (3 species and catadromous species (2 species. Estuarine resident species dominated the catch numerically. The size–class distribution of euryhaline marine species indicated that upon entering the Touw Estuary as juveniles, the fish move up the system towards Rondevlei where they appear to remain. Three freshwater species were recorded in the system, all of which are alien to the Wilderness Lakes System. Decreasing salinity in the upper lakes appears to be a driving factor in the distribution and increasing abundance of the freshwater fishes. Sampling followed a drought, with the system experiencing substantially increased levels of mouth closure compared to a similar study conducted in the 1980s. The timing of mouth opening and the degree of connectivity between the lakes influence the nursery function of the system as a whole. Management actions need to focus on improving ecological functioning of this system, in particular how mouth opening is managed, to facilitate nursery function and limit the establishment of invasive species. Conservation implications: Key management actions are required to improve fish recruitment potential into and within the system. These include maintenance of adequate marine inflow through adherence to artificial mouth breaching protocols and improving connectivity between the lakes through sediment removal from localised deposition points within the connecting channels.

  18. GLERL Great Lakes Ice Thickness Data Base, 1966-1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the winters of 1965/66 through 1976/77, NOAA/Great Lakes Environmental Research Laboratory (GLERL) collected weekly ice thickness and stratigraphy data at up...

  19. 40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy

    Science.gov (United States)

    2010-07-01

    ... most cost effective pollution prevention and treatment techniques available, and minimizes the... shall adopt an antidegradation standard applicable to all waters of the Great Lakes System and identify... result in an increased loading of BCCs to surface waters of the Great Lakes System and for which...

  20. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  1. Emergency Fish Restoration Project; Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    LeCaire, Richard

    2003-03-01

    Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleye (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a

  2. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): A paleoecological approach

    DEFF Research Database (Denmark)

    Buchaca, Teresa; Skov, Tue; Amsinck, Susanne Lildal

    2011-01-01

    Lake ecosystems are nowadays often subjected to multi-stressors, such as eutrophication, climate change, and fish manipulations, the effects of which can be difficult to disentangle, not least from the usual short-term limnological time-series that are available. However, multi-proxy paleoecologi......Lake ecosystems are nowadays often subjected to multi-stressors, such as eutrophication, climate change, and fish manipulations, the effects of which can be difficult to disentangle, not least from the usual short-term limnological time-series that are available. However, multi......, meteorological forcing, and fish species introduction for recent lake ecosystem development in Lake Furnas on the island of Sa˜o Miguel, the Azores. The lake was stocked with cyprinids in the late nineteenth century and recently also with piscivorous fish, and has been affected by increasing agricultural......, and cryptophytes. The composition of microbial and algal assemblages changed rapidly after Daphnia appearance, and the covariance between fish stocking, nutrient loading, and enhanced temperatures captured most of the variability in algae accumulation, and thus likely in lake primary production as well. Thus, lake...

  3. The effect of pesticides on fish fauna of Bhopal lower lake (M. P. ...

    African Journals Online (AJOL)

    Pesticides significantly affect the early life stages of fishes. Toxic effects of pesticides vary in different organs of the fish. Liver, gill, kidney are tissues that can accumulate high level of pollutants as well as other factors, such as salinity temperature, hardness, etc. Key words: Bhopal lower lake, fishes, pesticides, toxicity.

  4. Expansion of Dreissena into offshore waters of Lake Michigan and potential impacts on fish populations

    Science.gov (United States)

    Bunnell, D.B.; Madenjian, C.P.; Holuszko, J.D.; Adams, J.V.; French, J. R. P.

    2009-01-01

    Lake Michigan was invaded by zebra mussels (Dreissena polymorpha) in the late 1980s and then followed by quagga mussels (D. bugensis) around 1997. Through 2000, both species (herein Dreissena) were largely restricted to depths less than 50??m. Herein, we provide results of an annual lake-wide bottom trawl survey in Lake Michigan that reveal the relative biomass and depth distribution of Dreissena between 1999 and 2007 (although biomass estimates from a bottom trawl are biased low). Lake-wide mean biomass density (g/m2) and mean depth of collection revealed no trend between 1999 and 2003 (mean = 0.7??g/m2 and 37??m, respectively). Between 2004 and 2007, however, mean lake-wide biomass density increased from 0.8??g/m2 to 7.0??g/m2, because of increased density at depths between 30 and 110??m, and mean depth of collection increased from 42 to 77??m. This pattern was confirmed by a generalized additive model. Coincident with the Dreissena expansion that occurred beginning in 2004, fish biomass density (generally planktivores) declined 71% between 2003 and 2007. Current understanding of fish population dynamics, however, indicates that Dreissena expansion is not the primary explanation for the decline of fish, and we provide a species-specific account for more likely underlying factors. Nonetheless, future sampling and research may reveal a better understanding of the potential negative interactions between Dreissena and fish in Lake Michigan and elsewhere.

  5. Successional change in the Lake Superior fish community: population trends in ciscoes, rainbow smelt, and lake trout, 1958-2008

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The Lake Superior fish community underwent massive changes in the second half of the 20th century. Those changes are largely reflected in changes in abundance of the adults of principal prey species, the ciscoes (Coregonus spp.), the invasive rainbow smelt (Osmerus mordax), and the principal predator, lake trout (Salvelinus namaycush). To better understand changes in species abundances, a comprehensive series of gillnet and bottom trawl data collected from 1958 to 2008 were examined. In the late 1950s/early 1960s, smelt abundance was at its maximum, wild lake trout was at its minimum, and an abundance of hatchery lake trout was increasing rapidly. The bloater (Coregonus hoyi) was the prevalent cisco in the lake; abundance was more than 300% greater than the next most abundant cisco, shortjaw cisco (C. zenithicus), followed by kiyi (C. kiyi) and lake cisco (C. artedi). By the mid-1960s, abundance of hatchery lake trout was nearing maximum, smelt abundance was beginning to decline, and abundances of all ciscoes declined, but especially that of shortjaw cisco and kiyi. By the late 1970s, recovery of wild lake trout stocks was well underway and abundances of hatchery lake trout and smelt were declining and the ciscoes were reaching their nadir. During 1980–1990, the fish community underwent a dramatic shift in organization and structure. The rapid increase in abundance of wild lake trout, concurrent with a rapid decline in hatchery lake trout, signaled the impending recovery. Rainbow smelt abundance dropped precipitously and within four years, lake cisco and bloater populations rebounded on the heels of a series of strong recruitment events. Kiyi populations showed signs of recovery by 1989, and shortjaw by 2000, though well below historic maximum abundances. High abundance of adult smelt prior to 1980 appears to be the only factor linked to recruitment failure in the ciscoes. Life history traits of the cisco species were examined to better understand their different

  6. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  7. A study on the levels of radioactivity in fish samples from the experimental lakes area in Ontario, Canada

    International Nuclear Information System (INIS)

    Chen, Jing; Rennie, Michael D.; Sadi, Baki; Zhang, Weihua; St-Amant, Nadereh

    2016-01-01

    To better understand background radiation levels in country foods, a total of 125 fish samples were collected from three lakes (Lake 226, Lake 302 and Lake 305) in the Experimental Lakes Area (ELA) in Ontario of Canada during the summer of 2014. Concentrations of naturally occurring radionuclides ("2"2"6Ra, "2"1"0Pb and "2"1"0Po) as well as anthropogenic radionuclides ("1"3"4Cs and "1"3"7Cs) were measured. This study confirmed that "2"1"0Po is the dominant contributor to radiation doses resulting from fish consumption. While concentrations of "2"1"0Pb and "2"2"6Ra were below conventional detection limits, "2"1"0Po was measured in almost all fish samples collected from the ELA. The average concentration was about 1.5 Bq/kg fresh weight (fw). None of the fish samples analysed in this study contained any detectable levels of "1"3"4Cs. An average "1"3"7Cs level of 6.1 Bq/kg fw was observed in freshwater fishes harvested in the ELA, almost twice that of samples measured in the National Capital Region of Canada in 2014 and more than 20 times higher than the levels observed in marine fish harvested from the Canadian west coast in 2013 and 2014. However, it is important to note that the concentrations of "1"3"7Cs in fish samples from these inland lakes are considered very low from a radiological protection perspective. The resulting radiation dose for people from fish consumption would be a very small fraction of the annual dose from exposure to natural background radiation in Canada. The results indicate that fishes from inland lakes do not pose a radiological health concern. - Highlights: • "2"1"0Po is the dominant radionuclide measured in a total of 125 fish samples. The average activity concentration was 1.5 Bq/kg fresh weight (fw). • Activity concentration of "2"1"0Po in fish showed a negative dependency on fish size. • While an average "1"3"7Cs level of 6.1 Bq/kg fw was observed, none of the fish samples analysed in this study contained any detectable

  8. Lake fish as the main contributor of internal dose to lakeshore residents in the Chernobyl contaminated area

    International Nuclear Information System (INIS)

    Travnikova, I.G.; Bazjukin, A.N.; Bruk, G.Ja.; Shutov, V.N.; Balonov, M.I.; Skuterud, L.; Mehli, H.; Strand, P.

    2004-01-01

    Two field expeditions in 1996 studied 137 Cs intake patterns and its content in the bodies of adult residents from the village Kozhany in the Bryansk region, Russia, located on the shore of a drainless peat lake in an area subjected to significant radioactive contamination after the 1986 Chernobyl accident. The 137 Cs contents in lake water and fish were two orders of magnitude greater than in local rivers and flow-through lakes, 10 years after Chernobyl radioactive contamination, and remain stable. The 137 Cs content in lake fish and a mixture of forest mushrooms was between approximately 10-20 kBq/kg, which exceeded the temporary Russian permissible levels for these products by a factor of 20-40. Consumption of lake fish gave the main contribution to internal doses (40-50%) for Kozhany village inhabitants Simple countermeasures, such as Prussian blue doses for dairy cows and pre-boiling mushrooms and fish before cooking, halved the 137 Cs internal dose to inhabitants, even 10 years after the radioactive fallout

  9. [Species composition, diversity and density of small fishes in two different habitats in Niushan Lake].

    Science.gov (United States)

    Ye, Shao-Wen; Li, Zhong-Jie; Cao, Wen-Xuan

    2007-07-01

    This paper studied the spatial distribution of small fishes in a shallow macrophytic lake, Niushan Lake in spring 2003, and its relations with habitat heterogeneity. Based on the macrophyte cover condition, distance from lake shore and water depth, two representative habitat types in the lake were selected. Habitat A was near the shore with dense submersed macrophyte, while habitat B was far from the shore with sparse submersed macrophyte. Small fishes were sampled quantitatively by block net (180 m2), and their densities within the net area were estimated by multiple mark-recapture or Zippin's removal method. The results showed that there were some differences in species composition, biodiversity measurement, and estimated density of small fishes between the two habitats: 1) the catches in habitat A consisted of 14 small fish species from 5 families, among which, benthopelagic species Rhodeus ocellatus, Paracheilognathus imberbis and Pseudorasbora parva were considered as dominant species, while those in habitat B consisted of 9 small fish species from 3 families, among which, bottom species Rhinogobius giurinus and Micropercops swinhonis were dominant; 2) the Bray-Curtis index between the two small fish communities was 0.222, reflecting their low structure similarity, and no significant difference was observed between their rank/ abundance distributions, both of which belonged to log series distribution; 3) the total density of 9 major species in habitat A was 8.71 ind x m(-2), while that of 5 major species in habitat B was only 3.54 ind x m(-2). The fact that the spatial distribution of the small fishes differed with habitats might be related to their habitat need for escaping predators, feeding, and breeding, and thus, aquatic macrophyte habitat should be of significance in the rational exploitation of small fish resources as well as the conservation of fish resource diversity.

  10. Persistent Organohalogens in Paired Fish Fillet and Eggs: Implications for Fish Consumption Advisories.

    Science.gov (United States)

    Zhang, Xianming; Gandhi, Nilima; Bhavsar, Satyendra P

    2016-04-13

    Fish consumption is associated with both health benefits from high-quality proteins, minerals, vitamins, and fatty acids and risks from contaminants in fish. Fish consumption advisories are issued by many government agencies to keep exposure to contaminants at a safe level. Such advisories are typically based on fillets and neglect consumption of other fish parts such as eggs by certain subpopulations. To evaluate potential for dietary exposure to toxic organic chemicals via fish eggs, we analyzed polybrominated diphenyl ethers (PBDEs), polychlorinated naphthalenes (PCNs), dioxin-like polychlorinated biphenyls (dlPCBs), and polychlorinated dibenzodioxins/furans (PCDD/Fs) in paired fillet and eggs of fish from a tributary to Lake Ontario, one of the North American Great Lakes. All wet weight based concentrations in fish eggs were statistically higher than in the paired fillet samples. In fish eggs, concentrations of Σ14PBDEs, Σ14PCNs, and Σ12dlPCBs were 41-118, 0.3-1.7, and 30-128 ng/g wet weight (ww), respectively; Σ3PCDD/Fs and total (dlPCB+ PCDD/Fs) toxic equivalents (TEQs) were 4-22 and 9-54 pg/g ww, respectively. In fillet samples, Σ14PBDEs, Σ14PCNs, and Σ12dlPCBs were 4-116, 0.05-0.66, and 6-85 ng/g, respectively; Σ3PCDD/Fs and TEQs were 2-10 and 3.4-31 pg/g ww, respectively. In contrast, the fillets had higher lipid normalized concentrations than the paired egg samples, suggesting that these chemicals did not reach equilibrium between the fillets and eggs. Accordingly, measured concentrations in eggs or empirical relationship with fillet rather than prediction from equilibrium partitioning model should be used to evaluate contaminant exposure via consumption of fish eggs. For fatty fish from the lower Great Lakes area, we suggest one fillet meal be reduced from the advised fish consumption frequency for consumptions of 207 ± 37, 39 ± 2, 105 ± 51, and 119 ± 9 g fish eggs of brown trout, Chinook salmon, Coho salmon, and rainbow trout, respectively.

  11. Regulatory impact analysis of the proposed great lakes water quality guidance. Final report

    International Nuclear Information System (INIS)

    Raucher, R.; Dixon, A.; Trabka, E.

    1993-01-01

    The Regulatory Impact Analysis provides direction to the Great Lakes States and Tribes on minimum water quality standards and contains numerical water quality criteria for 32 pollutants as well as methodologies for the development of water quality criteria for additional pollutants discharged to these waters. It also provides guidance to the Great Lakes States and Tribes on antidegradation policies and standards and implementation procedures

  12. Impact of metal pollution, food availability, and excessive fishing on Rhabdosargus haffara stock (family: Sparidae) in Timsah lake.

    Science.gov (United States)

    Mehanna, Sahar F; Abd El-Azim, Hoda; Belal, Aisha A

    2016-08-01

    The lakes' fisheries play an important role in Egyptian economy. In 1980s, they provided more than 50 % of harvested fish in Egypt but now their contribution to the Egypt fish production decreased to only 12.5 % in 2012. Lake Timsah, one of the Suez Canal lakes, faced many challenges that lead to serious changes in its water and fish quality, fish production, as well as the catch composition. The present work investigated the impact of pollution, food availability, and excessive fishing mortality on the haffara production in lake Timsah. The distribution of four heavy metals (Pb, Zn, Ni, and Fe) was detected seasonally in water and in muscles, gills, and livers of Rhabdosargus haffara, during 2012 through 2013. Fe and Zn were presented by high values in liver, while Pb and Ni in gills. Generally, the lowest concentrations of all metals were found in muscles. The recorded crustacean organisms (the main food of haffara) decreased from 12 species and 32,079 organisms⁄m(2) in 2012 to only 7 species and 7290 organisms⁄m(2) in 2013 while the amphipods completely disappeared. This serious change was due to the severe pollution in the lake. A logistic surplus production model was fitted to the catch per unit effort indices, to estimate the maximum sustainable yield and the optimum level of fishing effort. The results revealed that haffara stock at lake Timsah is overfished, and the estimated precautionary target reference points advised the reduction of fishing effort by about 30-50 %.

  13. Projected shifts in fish species dominance in Wisconsin lakes under climate change.

    Science.gov (United States)

    Hansen, Gretchen J A; Read, Jordan S; Hansen, Jonathan F; Winslow, Luke A

    2017-04-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989-2014) and future (2040-2064 and 2065-2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33-75% of lakes where recruitment is currently supported and a 27-60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up to 85

  14. Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes

    Science.gov (United States)

    Miranda, Leandro E.; Andrews, Caroline S.; Kroger, Robert

    2013-01-01

    We explored the strength of connectedness among hierarchical system components associated with oxbow lakes in the alluvial valley of the Lower Mississippi River. Specifically, we examined the degree of canonical correlation between land use (agriculture and forests), lake morphometry (depth and size), nutrients (total nitrogen and total phosphorus), primary production (chlorophyll-a), and various fish assemblage descriptors. Watershed (p < 0.01) and riparian (p = 0.02) land use, and lake depth (p = 0.05) but not size (p = 0.28), were associated with nutrient concentrations. In turn, nutrients were associated with primary production (p < 0.01), and primary production was associated with sunfish (Centrarchidae) assemblages (p < 0.01) and fish biodiversity (p = 0.08), but not with those of other taxa and functional guilds. Multiple chemical and biological components of oxbow lake ecosystems are connected to landscape characteristics such as land use and lake depth. Therefore, a top-down hierarchical approach can be useful in developing management and conservation plans for oxbow lakes in a region impacted by widespread landscape changes due to agriculture.

  15. Spatial distribution of pelagic fish larvae in the northern main basin of Lake Huron

    Science.gov (United States)

    Roseman, Edward F.; O'Brien, Timothy P.

    2013-01-01

    Larval fish occurrence in inshore and offshore zones in the northern main basin of Lake Huron was assessed during 2007 as part of a larger ecological examination of Lake Huron foodwebs and habitats. Day and night collections using neuston and conical nets at inshore (1.5–15 m depths) and offshore (37 and 91 m depths) locations at De Tour and Hammond Bay to assess the abundance, phenology, and spatial distribution of pelagic ichthyoplankton during spring and early summer were made. In general, densities of larval fishes were higher at De Tour than Hammond Bay during daytime neuston net collections, with the exception of Longnose Sucker, which were only collected at Hammond Bay. Lake Whitefish, Burbot, and Rainbow Smelt dominated inshore catches in early spring with Cisco, Deepwater Sculpin, Emerald Shiner, Bloater, Slimy Sculpin, Ninespine Stickleback, and Yellow Perch larvae also collected.Nighttime nearshore and offshore sampling revealed that Rainbow Smelt and Burbot larvae were present in relatively high abundances compared to inshore densities. Concentrations of larvae of deepwater demersal fishes such as Lake Whitefish and Deepwater Sculpin suggest that inshore zones in northern Lake Huron are important nursery habitats emphasizing a critical production and recruitment linkage between inshore and deepwater zones.

  16. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  17. Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic environment

    Science.gov (United States)

    Haynes, Trevor B.; Rosenberger, Amanda E.; Lindberg, Mark S.; Whitman, Matthew; Schmutz, Joel A.

    2014-01-01

    Summary For six fish species sampled from 86 lakes on the Arctic Coastal Plain, Alaska, we examined whether lake occupancy was related to variables representing lake size, colonisation potential and/or the presence of overwintering habitat.

  18. Mercury transfer from fish carcasses to scavengers in boreal lakes: the use of stable isotopes of mercury

    International Nuclear Information System (INIS)

    Sarica, Jose; Amyot, Marc; Hare, Landis; Blanchfield, Paul; Bodaly, R.A.; Hintelmann, Holger; Lucotte, Marc

    2005-01-01

    Scavengers play an important role in the flow of energy, matter and pollutants through food webs. For methylmercury (MeHg), which biomagnifies along food chains, the movement of this metal from fish carcasses to aquatic scavengers has never been demonstrated. We measured the transfer of MeHg from fish carcasses to scavenging leeches in two lakes and in the laboratory. The results of a field experiment indicated that leeches were attracted to fish carcasses and that their Hg concentrations increased by as much as a factor of 5 during the time that Hg-rich fish were available for consumption. Under controlled conditions, we exposed leeches to 202 Hg-labelled fish that had been marked in situ following a whole lake 202 Hg addition. Leeches rapidly accumulated Hg from carcasses, and within two weeks assumed the isotopic signature of the carcasses. Necrophagous invertebrates could therefore return Hg from fish carcasses to other trophic levels in lakes. - Scavengers such as leeches accumulate mercury from fish carcasses which then may return into the food web

  19. Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Surette, Celine [COMERN, Universite du Quebec a Montreal, c.p. 8888, succ. Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada)]. E-mail: surettc@umoncton.ca; Lucotte, Marc [COMERN, Universite du Quebec a Montreal, c.p. 8888, succ. Centre-Ville, Montreal, Quebec, H3C 3P8 (Canada); Tremblay, A. [Environment Unit, Dams and Environment Direction, Hydro-Quebec Production 75 Rene-Levesque West, 10th floor, Montreal, Quebec, H2Z 1A4 (Canada)

    2006-09-01

    It has been demonstrated that intensive fishing, i.e., removing more than 25% of the fish biomass, can reduce mercury levels in predator fish in a lake. We test here the hypothesis that, by removing an important part of the fish biomass from a lake, a significant amount of methylmercury can be eliminated, therefore reducing the mercury available to the remaining biota, at least in the short term. A mass burden approach is used to evaluate the partitioning of total mercury and methylmercury in natural lake ecosystems. Three small natural lakes from the James Bay territory, in northern Quebec, Canada, were selected for intensive fishing. Mercury (Hg) and methylmercury (MeHg) concentrations were evaluated for sediments, water column (dissolved fraction and suspended particulate matter), plankton, aquatic invertebrates, and fish. Biomasses were determined for fish, plankton, and aquatic invertebrates. Two case scenarios are presented using different mercury contributions from the sediment component (1 cm depth, and no sediment). Our results for the scenario including the sediment contribution show that lake sediments represent over 98% of the total mercury while the biotic components represent less than 0.1% of the same burden. For methylmercury, fish account for up to 5% of the burden, while sediments make up 84.6% to 93.1%. If we put aside the sediment contribution, the methylmercury in fish partitioning can represent up to 48%. As for invertebrates, they can account for up to 48% of the total MeHg burden. We do not observe any change in the partitionings or the quantities of Hg and MeHg before and after fishing in either of the two case scenarios even when we do not take into account dynamics of the ecosystems. This will be all the more the case when the dynamics of the system are included in the analyses. Therefore, biological parameters such as growth rates or fish diet must be considered.

  20. Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Quebec

    International Nuclear Information System (INIS)

    Surette, Celine; Lucotte, Marc; Tremblay, A.

    2006-01-01

    It has been demonstrated that intensive fishing, i.e., removing more than 25% of the fish biomass, can reduce mercury levels in predator fish in a lake. We test here the hypothesis that, by removing an important part of the fish biomass from a lake, a significant amount of methylmercury can be eliminated, therefore reducing the mercury available to the remaining biota, at least in the short term. A mass burden approach is used to evaluate the partitioning of total mercury and methylmercury in natural lake ecosystems. Three small natural lakes from the James Bay territory, in northern Quebec, Canada, were selected for intensive fishing. Mercury (Hg) and methylmercury (MeHg) concentrations were evaluated for sediments, water column (dissolved fraction and suspended particulate matter), plankton, aquatic invertebrates, and fish. Biomasses were determined for fish, plankton, and aquatic invertebrates. Two case scenarios are presented using different mercury contributions from the sediment component (1 cm depth, and no sediment). Our results for the scenario including the sediment contribution show that lake sediments represent over 98% of the total mercury while the biotic components represent less than 0.1% of the same burden. For methylmercury, fish account for up to 5% of the burden, while sediments make up 84.6% to 93.1%. If we put aside the sediment contribution, the methylmercury in fish partitioning can represent up to 48%. As for invertebrates, they can account for up to 48% of the total MeHg burden. We do not observe any change in the partitionings or the quantities of Hg and MeHg before and after fishing in either of the two case scenarios even when we do not take into account dynamics of the ecosystems. This will be all the more the case when the dynamics of the system are included in the analyses. Therefore, biological parameters such as growth rates or fish diet must be considered

  1. Stable Isotope Mass Balance of the Laurentian Great Lakes to Constrain Evaporative Losses

    Energy Technology Data Exchange (ETDEWEB)

    Jasechko, S. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario and Alberta Innovates, Technology Futures, Victoria, British Columbia (Canada); Gibson, J. J. [Canada Alberta Innovates, Technology Futures, Victoria, British Columbia and Department of Geography, University of Victoria, Victoria, British Columbia (Canada); Pietroniro, A. [National Water Research Institute, Environment Canada, Saskatoon, Saskatchewan (Canada); Edwards, T.W D. [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario (Canada)

    2013-07-15

    Evaporation is an important yet poorly constrained component of the water budget of the Laurentian Great Lakes, but is known historically to have a significant impact on regional climate, including enhanced humidity and downwind lake effect precipitation. Sparse over lake climate monitoring continues to limit ability to quantify bulk lake evaporation and precipitation rates by physical measurements, impeded by logistical difficulties and costs of instrumenting large areas of open water (10{sup 3}-10{sup 5} km2). Measurements of stable isotopes of oxygen and hydrogen in water samples of precipitation and surface waters within the great lakes basin are used to better understand the controls on the region's water cycle. A stable isotope mass balance approach to calculate long term evaporation as a proportion of input to each lake is discussed. The approach capitalizes on the well understood systematic isotopic separation of an evaporating water body, but includes added considerations for internal recycling of evaporated moisture in the overlying atmosphere that should be incorporated for surface waters sufficiently large to significantly influence surrounding climate. (author)

  2. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (D.R. Congo)

    Energy Technology Data Exchange (ETDEWEB)

    Squadrone, S., E-mail: stefania.squadrone@izsto.it [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d' Aosta, via Bologna 148, 10154 Torino (Italy); Burioli, E.; Monaco, G. [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d' Aosta, via Bologna 148, 10154 Torino (Italy); Koya, M.K. [Institut Supérieur d' Etudes Agronomiques (ISEA) de Kaseya/Kongolo (Congo, The Democratic Republic of the); Prearo, M.; Gennero, S. [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d' Aosta, via Bologna 148, 10154 Torino (Italy); Dominici, A. [Independent Veterinarian Researcher, Turin (Italy); Abete, M.C. [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d' Aosta, via Bologna 148, 10154 Torino (Italy)

    2016-10-15

    The concentrations of 14 essential and nonessential trace elements were determined in fish from Lake Tshangalele, Katanga province, Democratic Republic of Congo. This province has been a place of intensive mining activities for centuries, which have increased in recent years, due to the use of metals such as copper and cobalt for the industries of fast-growing countries. Lake Tshangalele, which receives effluents from metallurgical and mining plants in Likasi, is home to several fish species that are an important part of the diet of the local population, and, therefore, it constitutes a relevant site for documenting the human exposure to metals as a result of a fish diet. The highest concentrations (median levels, dry weight) of cobalt (7.25 mg kg{sup −} {sup 1}), copper (88.1 mg kg{sup −} {sup 1}), iron (197.5 mg kg{sup −} {sup 1}), manganese (65.35 mg kg{sup −} {sup 1}), zinc (122.9 mg kg{sup −} {sup 1}) and aluminum (135.4 mg kg{sup −} {sup 1}) were found in fish collected closest to the copper mining plant, with decreasing concentrations along the lake, up to the dam. In the most contaminated fish samples, values of up to 270.1 mg kg{sup −} {sup 1} for Al, 173.1 mg kg{sup −} {sup 1} for Cu, 220.9 mg kg{sup −} {sup 1} for Zn, 211.0 mg kg{sup −} {sup 1} for Mn, 324.2 mg kg{sup −} {sup 1} for Fe, 15.1 mg kg{sup −} {sup 1} for Co, 4.2 mg kg{sup −} {sup 1} for Cr, 1.6 mg kg{sup −} {sup 1} for Cd, 1.9 mg kg{sup −} {sup 1} for Pb, and 1.8 mg kg{sup −} {sup 1} for Ni were found. Metal contamination from mining activity resulted in being of great concern because of potential health risks to the local inhabitants due to the consumption of heavily contaminated fish. Capsule: High levels of metals, especially cobalt, aluminum, iron, manganese, zinc and cadmium were found in fish from Tshangalele water system. - Highlights: • Metal contamination from mining activity is of great concern for human exposure. • We analyzed metal content in

  3. Building a reference inventory of Great Lakes aquatic fauna

    Science.gov (United States)

    Despite the existence of numerous publications and web-pages that address aspects of species composition and distribution in the Great Lakes, there is at present no single resource that brings all this information together. This poster describes our progress towards generating a ...

  4. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    Science.gov (United States)

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  5. Blood mercury levels among Ontario anglers and sport-fish eaters

    International Nuclear Information System (INIS)

    Cole, D.C.; Kearney, Jill; Sanin, L.H.; Leblanc, Alain; Weber, J.P.

    2004-01-01

    We conducted two surveys of Ontario (Canada) fishers: a stratified sample of licensed anglers in two Lake Ontario communities (anglers, n=232) and a shore and community-based sample in five Great Lakes' Areas of Concern (AOC eaters, n=86). Among the 176 anglers consuming their catch, the median number of sport-fish meals/year was 34.2 meals and 10.9, respectively, in two communities, with a mean blood total mercury level among these sport-fish consumers of 2.8 μg/L. The vast majority of fish eaten by AOC eaters was from Ontario waters (74%). For AOC eaters, two broad country-of-origin groups were assembled: Euro-Canadians (EC) and Asian-Canadians (AC). EC consumed a median of 174 total fish meals/year and had a geometric mean total mercury level of 2.0 μg/L. Corresponding AC figures were 325 total fish meals/year and 7.9 μg/L. Overall, mercury levels among AOC eaters were higher than in many other Great Lakes populations but lower than in populations frequently consuming seafood. In multivariate models, mercury levels were significantly associated with levels of fish consumption among both anglers and EC AOC eaters. Given the nutritional and social benefits of fish consumption, prudent species and location choices should continue

  6. Determination of arsenic in some Lake Michigan fish using neutron activation analysis

    International Nuclear Information System (INIS)

    Nicholson, L.W.; Rengan, K.

    1979-01-01

    The level of arsenic in six different species of fish collected from Lake Michigan near Saugatuck, Michigan has been measured using radiochemical neutron activation analysis. The arsenic concentration was found to vary from 0.05 μg/g (wet weight) for yellow perch fillet to 1.4 μg/g (wet weight) for eviscerated bloater chubs. A significant correlation was observed between arsenic concentrations and number of years in the lake for lake trout; correlations were also observed between arsenic concentrations and length of lake trout and smelt. No such correlations were found for alewife or yellow perch. (author)

  7. Impacts of species introductions on the health of fish communities receiving chronic radionuclide inputs

    International Nuclear Information System (INIS)

    Yankovich, T.L.; Casselman, J.M.; Cornett, R.J.J.

    2004-01-01

    There is widespread interest in gaining further understanding of the relative influences of multiple stressors on aquatic ecosystem structure and function. To address this, work has been done to evaluate the effects of the introduction of an efficient predator (northern pike) on a fish community in a small lake (Perch Lake, Chalk River, Ontario) receiving chronic inputs of radionuclides over a 50-year period. In general, large changes in fish community structure, with corresponding changes in fish health, occurred following the pike introduction. For example, several forage fish species were extirpated from the lake and densities of the past top predator, yellow perch, became greatly reduced, likely due to predation by northern pike and/or other species in the lake. The reduced perch numbers appeared to alleviate an ecological bottleneck, which resulted in significant increases in brown bullhead densities to levels that were much higher than observed in other water bodies under typical conditions. Corresponding changes in the health of the Perch Lake fish community could also be detected, and included decreased fish diversity, shifts in fish community size structure to smaller body sizes, significant reductions in fish condition factors, reduced hepato-somatic indices, depletion of fish internal fat reserves, hardening of the gastrointestinal tract, resorption of gonadal material, degradation of muscle tissue, emaciation and ultimately, mortality of northern pike and brown bullheads. Evaluation of data indicated that female fishes responded more quickly than did males in terms of condition loss, likely due to their higher energetic requirements. In addition, although pike and bullheads were detrimentally affected by the pike introduction, health of forage fish species, such as pumpkinseeds, did not appear to be greatly influenced. No clear relationships existed between fish community health and exposure to radionuclides in the lake. (author)

  8. Application of theory and research in fishery management of the Laurentian Great Lakes

    Science.gov (United States)

    Smith, Stanford H.

    1973-01-01

    The Great Lakes have a high potential for the conduct of research and useful application of research findings, but the history of the Great Lakes indicates that extensive research and intensive management have failed to prevent deterioration of the fisheries. At times the research was not done before a loss occurred, or did not provide the information needed to solve a problem, or was not interpreted to indicate a need for corrective action.

  9. Earliest Cucurbita from the Great Lakes, Northern USA

    Science.gov (United States)

    Monaghan, G. William; Lovis, William A.; Egan-Bruhy, Kathryn C.

    2006-03-01

    Directly dated Cucurbita from archaeological sites near Lake Huron expand the range and human usage of adventive, cultivated wild gourds or squash into the Great Lakes region, USA, by 4000 14C yr BP. The data also show that domesticated C. pepo squash was cultivated there by 3000 14C yr BP. Although milder Hypsithermal climate may have been a contributing factor, squash and gourds expanded northward during the mid-Holocene mainly by human agency and may be the first human-introduced adventive plant in temperate North America. Even after 3000 14C yr BP, when domesticated squash generally replaced wild varieties at northern sites, squash stands were probably informally managed rather than intensively cultivated.

  10. Genetic population structure of muskellunge in the Great Lakes

    Science.gov (United States)

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  11. Groundwater science relevant to the Great Lakes Water Quality Agreement: A status report

    Science.gov (United States)

    Grannemann, Norman G.; Van Stempvoort, Dale

    2016-01-01

    When the Great Lakes Water Quality Agreement (GLWQA) was signed in 1972 by the Governments of Canada and the United States (the “Parties”) (Environment Canada, 2013a), groundwater was not recognized as important to the water quality of the Lakes. At that time, groundwater and surface water were still considered as two separate systems, with almost no appreciation for their interaction. When the GLWQA was revised in 1978 (US Environmental Protection Agency (USEPA), 2012), groundwater contamination, such as that reported at legacy industrial sites such as those at Love Canal near the Niagara River, was squarely in the news. Consequently, the potential impacts of contaminated groundwater from such sites on Great Lakes water quality became a concern (Beck, 1979), and Annex 16 was added to the agreement, to address “pollution from contaminated groundwater” (Francis, 1989). However, no formal process for reporting under this annex was provided. The GLWQA Protocol in 1987 modified Annex 16 and called for progress reports beginning in 1988 (USEPA, 1988). The Protocol in 2012 provided a new Annex 8 to address groundwater more holistically (Environment 2 Canada, 2013b). Annex 8 (Environment Canada, 2013b) commits the Parties to coordinate groundwater science and management actions; as a first step, to “publish a report on the relevant and available groundwater science” by February 2015 (this report); and to “identify priorities for science activities and actions for groundwater management, protection, and remediation…” The broader mandate of Annex 8 is to (1) “identify groundwater impacts on the chemical, physical and biological integrity of the Waters of the Great Lakes;” (2) “analyze contaminants, including nutrients in groundwater, derived from both point and non-point sources impacting the Waters of the Great Lakes;” (3) “assess information gaps and science needs related to groundwater to protect the quality of the Waters of the Great Lakes

  12. Assemblage patterns of fish functional groups relative to habitat connectivity and conditions in floodplain lakes

    Science.gov (United States)

    Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.

    2010-01-01

    We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.

  13. Parasites and non-fish predators of tilapia with particular reference to the sustainable management of fisheries of Lake Kainji Nigeria

    OpenAIRE

    Okaeme, A.N.; Olufemi, B.E.; Obiekezie, A.

    2001-01-01

    The fisheries of Lake Kainji, Nigeria, experienced a boom year following impoundment, then decline post impoundment and now is in a period of stabilisation of the fish resources. Several reasons have been advanced on factors responsible for these changes, but two outstanding factors are those of nutritional status and fishing methods of the lake. Two important fish families however continue to dominate the lake fisheries in daily fisherman catches: Clupeidae and Cichlidae (tilapias). Recent s...

  14. Toward Integrated Resource Management: Lessons About the EcosystemApproach from the Laurentian Great Lakes

    Science.gov (United States)

    MACKENZIE

    1997-03-01

    / The ecosystem approach is an innovative tool for integratedresource management. Its goal is to restore, enhance, and protect ecosystemintegrity through a holistic and integrated mode of planning. Under thisapproach, the ecosystem itself becomes the unit of analysis and organizingprinciple for environmental management. Utilizing the ecosystem approachchallenges the prevailing structure and function of contemporary resourcemanagement agencies. This paper explores a number of important policy andmanagement issues in the context of a ten-year initiative to remediate theLaurentian Great Lakes using the ecosystem approach. The lessons gleaned fromthe Great Lakes experience are relevant to other areas in North America andabroad where resource management responsibilities are held by multiple andsometimes overlapping jurisdictions.KEY WORDS: Integrated resource management; Ecosystem approach; Watershedmanagement; Great Lakes

  15. Mercury concentrations of fish in Southern Indian Lake and Issett Lake, Manitoba 1975-88: The effect of lake impoundment and Churchill River diversion

    International Nuclear Information System (INIS)

    Strange, N.E.; Bodaly, R.A.; Fudge, R.J.P.

    1991-01-01

    Southern Indian and Issett Lakes in northern Manitoba were flooded in 1976 as part of Manitoba Hydro's Churchill River diversion project. Fish were collected from 1975 to 1988 from five regional sites on the lakes to examine the effects of impoundment and river diversion on muscle mercury concentrations. Raw data for individual fish caught in 1987 and 1988 are presented, along with means and analyses calculated over the entire 1975-1988 study period. Mercury concentrations in whitefish, pike, and walleye increased significantly after impoundment. Whitefish mercury levels peaked in 1978 and have since declined to near pre-flooding levels. Northern pike and walleye mercury levels were much higher than for whitefish. Pike mercury concentrations showed no indication of declining after 12 years of impoundment, but walleye mercury levels at 2 of the 5 Southern Indian Lake sites declined from maximum recorded levels. Significant variability in fish mercury concentrations was noted both from year to year and among the sites. It is suggested that site-to-site variations are due to varying conditions in the reservoir which stimulate mercury methylation. Since there appears to be an ongoing long-term source of mercury and organic material from the eroding shorelines, pike and walleye mercury concentrations are expected to remain high for many years. 25 refs., 7 figs., 20 tabs

  16. Fish abundance in the Wilderness and Swartvlei lake systems ...

    African Journals Online (AJOL)

    A longer duration tidal phase in the Swartvlei system during 1992 and 1993, compared to the Wilderness lake system, did not result in greater abundance of fish sampled. There appears to be no justification for the artificial maintenance of permanently tidal conditions in the Swartvlei and Touw River estuaries on the ...

  17. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    Science.gov (United States)

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  18. Wetland Plants of Great Salt Lake, A Guide to Identification, Communities, & Bird Habitat

    OpenAIRE

    Downard, Rebekah; Frank, Maureen; Perkins, Jennifer; Kettenring, Karin; Larese-Casanova, Mark

    2017-01-01

    Wetland Plants of Great Salt Lake: a guide to identification, communities, & bird habitat is a wetland plant identification guide, resulting from collaborative research efforts about Great Salt Lake (GSL) wetland conditions and bird habitat. Dr. Rebekah Downard collected dissertation field data from GSL wetlands during 2012–2015, the majority of which informed this work. Dr. Maureen Frank contributed her guide to GSL wetland vegetation and how to manage native plants as high-quality habitat f...

  19. 78 FR 49544 - Great Lakes Pilotage Advisory Committee; Vacancies

    Science.gov (United States)

    2013-08-14

    .... ADDRESSES: Send your cover letter and resume indicating the membership category for which you are applying... pilotage of vessels on the Great Lakes, and at least 5 years of practical experience in maritime operations..., national origin, political affiliation, sexual orientation, gender identity, marital status, disability and...

  20. Repeated Fish Removal to Restore Lakes: Case Study of Lake Væng, Denmark—Two Biomanipulations during 30 Years of Monitoring

    Directory of Open Access Journals (Sweden)

    Martin Søndergaard

    2017-01-01

    Full Text Available Biomanipulation by fish removal has been used in many shallow lakes as a method to improve lake water quality. Here, we present and analyse 30 years of chemical and biological data from the shallow and 16 ha large Lake Væng, Denmark, which has been biomanipulated twice with a 20-year interval by removing roach (Rutilus rutilus and bream (Abramis brama. After both biomanipulations, Lake Væng shifted from a turbid, phytoplankton-dominated state to a clear, water macrophyte-dominated state. Chlorophyll a was reduced from 60–80 μg·L−1 to 10–30 μg·L−1 and the coverage of submerged macrophytes, dominated by Elodea canadensis, increased from <0.1% to 70%–80%. Mean summer total phosphorus was reduced from about 0.12 to 0.07 mg·L−1 and total nitrogen decreased from 1.0 to 0.4 mg·L−1. On a seasonal scale, phosphorus and chlorophyll concentrations changed from a summer maximum during turbid conditions to a winter maximum under clear conditions. The future of Lake Væng is uncertain and a relatively high phosphorus loading via the groundwater, and the accumulation of a mobile P pool in the sediment make it likely that the lake eventually will return to turbid conditions. Repeated fish removals might be a relevant management strategy to apply in shallow lakes with a relatively high external nutrient loading.

  1. Comparison of fish assemblages in two disjoined segments of an oxbow lake in relation to connectivity

    Science.gov (United States)

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2011-01-01

    Disconnection between adjacent habitat patches is one of the most notable factors contributing to the decreased biotic integrity of global ecosystems. Connectivity is especially threatened in river–floodplain ecosystems in which channel modifications have disrupted the lateral links between the main river channel and floodplain lakes. In this study, we examined the interaction between the interconnectedness of floodplain lakes and main river channels and fish assemblage descriptors. Fish assemblages in two segments of an oxbow lake, one connected to and the other isolated from the Yazoo River, Mississippi, were estimated with daytime boat electrofishing during 2007–2010. The frequency of connection for the connected segment ranged from zero to seven individual events per year (mean, ∼2). The timing of most connection events reflected regional precipitation patterns. Greater species richness, diversity, and evenness were observed in the connected segment. Additionally, the connected segment had a greater abundance of piscivores and periodic life history strategists. All fishes collected solely in the connected segment were typically riverine in nature, whereas fishes collected only in the disconnected segment were more lacustrine adapted. These results suggest that periodic connection and the associated habitat heterogeneity that it provides are important for maintaining fish species richness and diversity in large-river floodplain lakes. We suggest that maintenance or restoration of connection be an integral part of fluvial ecosystem management plans.

  2. Great Lakes Surface Ice Reports from U.S. Coast Guard

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data consist of ice observations from U.S. Coast Guard vessels operating on the Great Lakes, and from Coast Guard shore stations reported via teletype messages and...

  3. Food habits of diving ducks in the Great Lakes after the zebra mussel invasion

    Science.gov (United States)

    Custer, Christine M.; Custer, T.W.

    1996-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  4. Cesium-137 activities in fish residing in thermal discharges to Lake Michigan

    International Nuclear Information System (INIS)

    Spigarelli, S.A.

    1976-01-01

    The results of a study of 137 Cs activity in brown and rainbow trout and chinook salmon found in the thermal discharges from power plant sites on Lake Michigan, are reported. The objectives of the investigation were: (1) to compare 137 Cs activities in plume 'resident' fish with those in fish collected from reference (unheated) areas; (2) to compare the residence effect on the three sport fishes; and (3) to evaluate the radioecological significance of thermal discharge residence on temporal trends in 137 Cs accumulation by these fishes. Plume resident fish were identified and the residence time of these individuals estimated by the use of temperature-sensitive fish tags. Results are shown tabulated. (U.K.)

  5. Cesium-137 activities in fish residing in thermal discharges to Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Spigarelli, S A [Argonne National Lab., Ill. (USA)

    1976-05-01

    The results of a study of /sup 137/Cs activity in brown and rainbow trout and chinook salmon found in the thermal discharges from power plant sites on Lake Michigan, are reported. The objectives of the investigation were: (1) to compare /sup 137/Cs activities in plume 'resident' fish with those in fish collected from reference (unheated) areas; (2) to compare the residence effect on the three sport fishes; and (3) to evaluate the radioecological significance of thermal discharge residence on temporal trends in /sup 137/Cs accumulation by these fishes. Plume resident fish were identified and the residence time of these individuals estimated by the use of temperature-sensitive fish tags. Results are shown tabulated.

  6. MERGANSER - An Empirical Model to Predict Fish and Loon Mercury in New England Lakes

    Science.gov (United States)

    MERGANSER (MERcury Geo-spatial AssessmeNtS for the New England Region) is an empirical least-squares multiple regression model using mercury (Hg) deposition and readily obtainable lake and watershed features to predict fish (fillet) and common loon (blood) Hg in New England lakes...

  7. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    Science.gov (United States)

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  8. Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Rutkiewicz, Jennifer [Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S. Observatory St, Ann Arbor, MI 48109 (United States); Scheuhammer, Anton; Crump, Doug; Jagla, Magdalena [Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3 (Canada); Basu, Niladri, E-mail: niladri@umich.ed [Department of Environmental Health Sciences, University of Michigan School of Public Health, 109 S. Observatory St, Ann Arbor, MI 48109 (United States)

    2010-08-15

    Herring gulls (Larus argentatus) bioaccumulate mercury (Hg) but it is unknown whether they are exposed at levels of neurological concern. Here we studied brain tissues from gulls at five Great Lakes colonies and one non-Great Lakes colony during spring of 2001 and 2003. Total brain Hg concentrations ranged from 0.14 to 2.0 {mu}g/g (dry weight) with a mean of 0.54 {mu}g/g. Gulls from Scotch Bonnet Island, on the easternmost edge of the Great Lakes, had significantly higher brain Hg than other colonies. No association was found between brain Hg concentration and [3H]-ligand binding to neurochemical receptors (N-methyl-D-aspartate, muscarinic cholinergic, nicotinic cholinergic) or nicotinic receptor {alpha}-7 relative mRNA expression as previously documented in other wildlife. In conclusion, spatial trends in Hg contamination exist in herring gulls across the Great Lakes basin, and herring gulls accumulate brain Hg but not at levels associated with sub-clinical neurochemical alterations. - Spatial trends in brain mercury exist in herring gulls across the Laurentian Great Lakes though levels are not associated with neurochemical biomarkers.

  9. Investigation of spatial trends and neurochemical impacts of mercury in herring gulls across the Laurentian Great Lakes

    International Nuclear Information System (INIS)

    Rutkiewicz, Jennifer; Scheuhammer, Anton; Crump, Doug; Jagla, Magdalena; Basu, Niladri

    2010-01-01

    Herring gulls (Larus argentatus) bioaccumulate mercury (Hg) but it is unknown whether they are exposed at levels of neurological concern. Here we studied brain tissues from gulls at five Great Lakes colonies and one non-Great Lakes colony during spring of 2001 and 2003. Total brain Hg concentrations ranged from 0.14 to 2.0 μg/g (dry weight) with a mean of 0.54 μg/g. Gulls from Scotch Bonnet Island, on the easternmost edge of the Great Lakes, had significantly higher brain Hg than other colonies. No association was found between brain Hg concentration and [3H]-ligand binding to neurochemical receptors (N-methyl-D-aspartate, muscarinic cholinergic, nicotinic cholinergic) or nicotinic receptor α-7 relative mRNA expression as previously documented in other wildlife. In conclusion, spatial trends in Hg contamination exist in herring gulls across the Great Lakes basin, and herring gulls accumulate brain Hg but not at levels associated with sub-clinical neurochemical alterations. - Spatial trends in brain mercury exist in herring gulls across the Laurentian Great Lakes though levels are not associated with neurochemical biomarkers.

  10. Mercury bioaccumulation in fishes from subalpine lakes of the Wallowa-Whitman National Forest, northeastern Oregon and western Idaho

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2013-01-01

    Mercury (Hg) is a globally distributed pollutant that poses considerable risks to human and wildlife health. Over the past 150 years since the advent of the industrial revolution, approximately 80 percent of global emissions have come from anthropogenic sources, largely fossil fuel combustion. As a result, atmospheric deposition of Hg has increased by up to 4-fold above pre-industrial times. Because of their isolation, remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited Hg through freshwater food webs, as well as for evaluating the relative importance of Hg loading versus landscape influences on Hg bioaccumulation. The increase in Hg deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in Hg emissions may propagate to changes in Hg bioaccumulation and ecological risk. In this study, we evaluated Hg concentrations in fishes of high-elevation, sub-alpine lakes in the Wallowa-Whitman National Forest in northeastern Oregon and western Idaho. Our goals were to (1) assess the magnitude of Hg contamination in small-catchment lakes to evaluate the risk of atmospheric Hg to human and wildlife health, (2) quantify the spatial variability in fish Hg concentrations, and (3) determine the ecological, limnological, and landscape factors that are best correlated with fish total mercury (THg) concentrations in these systems. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. Importantly, our top statistical model explained 87 percent of the variability in fish THg concentrations among lakes with four key landscape and limnological variables— catchment conifer density (basal area of conifers within a lake’s catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. The basal area of conifers

  11. Phallodrilus hallae, a new tubificid oligochaete from the St. Lawrence Great Lakes

    Science.gov (United States)

    Cook, David G.; Hiltunen, Jarl K.

    1975-01-01

    The predominantly marine tubificid genus Phallodrilus is defined, a key to its nine species constructed, and an illustrated description of Phallodrilus hallae n. sp. from the St. Lawrence Great Lakes presented. The species is distinguished from other members of the genus by its well-developed atrial musculature, extensions of which ensheath the posterior prostatic ducts.Phallodrilus hallae n. sp. is a small worm which is widely distributed in the sublittoral and profundal benthos of Lake Superior; lakewide it occurred in mean densities of 50 individuals per square metre. Available records indicate a more restricted distribution in Lake Huron and Georgian Bay. We suggest that P. hallae n. sp. is either a glaciomarine relict species, or that it entered the Great Lakes system at the time of the marine transgression of the St. Lawrence valley. The apparent restriction of P. hallae n. sp. to waters of high quality suggests that it may be a sensitive oligotrophic indicator species.

  12. Productivity, embryo and eggshell characteristics, and contaminants in bald eagles from the Great Lakes, USA, 1986 to 2000

    Science.gov (United States)

    Best, David A.; Elliott, Kyle; Bowerman, William; Shieldcastle, Mark C.; Postupalsky, Sergej; Kubiak, Timothy J.; Tillitt, Donald E.; Elliott, John E.

    2010-01-01

    Chlorinated hydrocarbon concentrations in eggs of fish-eating birds from contaminated environments such as the Great Lakes of North America tend to be highly intercorrelated, making it difficult to elucidate mechanisms causing reproductive impairment, and to ascribe cause to specific chemicals. An information- theoretic approach was used on data from 197 salvaged bald eagle (Haliaeetus leucocephalus) eggs (159 clutches) that failed to hatch in Michigan and Ohio, USA (1986–2000). Contaminant levels declined over time while eggshell thickness increased, and by 2000 was at pre-1946 levels. The number of occupied territories and productivity increased during 1981 to 2004. For both the entire dataset and a subset of nests along the Great Lakes shoreline, polychlorinated biphenyls (ΣPCBs, fresh wet wt) were generally included in the most parsimonious models (lowest-Akaike's information criterion [AICs]) describing productivity, with significant declines in productivity observed above 26 µg/g ΣPCBs (fresh wet wt). Of 73 eggs with a visible embryo, eight (11%) were abnormal, including three with skewed bills, but they were not associated with known teratogens, including ΣPCBs. Eggs with visible embryos had greater concentrations of all measured contaminants than eggs without visible embryos; the most parsimonious models describing the presence of visible embryos incorporated dieldrin equivalents and dichlorodiphenyldichloroethylene (DDE). There were significant negative correlations between eggshell thickness and all contaminants, with ΣPCBs included in the most parsimonious models. There were, however, no relationships between productivity and eggshell thickness or Ratcliffe's index. The ΣPCBs and DDE were negatively associated with nest success of bald eagles in the Great Lakes watersheds, but the mechanism does not appear to be via shell quality effects, at least at current contaminant levels, while it is not clear what other mechanisms were involved.

  13. Perfluorinated compounds in fish and blood of anglers at Lake Möhne, Sauerland area, Germany.

    Science.gov (United States)

    Hölzer, Jürgen; Göen, Thomas; Just, Paul; Reupert, Rolf; Rauchfuss, Knut; Kraft, Martin; Müller, Johannes; Wilhelm, Michael

    2011-10-01

    Perfluorinated compounds (PFCs) were measured in fish samples and blood plasma of anglers in a cross-sectional study at Lake Möhne, Sauerland area, Germany. Human plasma and drinking water samples were analyzed by solid phase extraction, high-performance liquid chromatography (HPLC), and tandem mass spectrometry (MS/MS). PFCs in fish fillet were measured by ion pair extraction followed by HPLC and MS/MS. PFOS concentrations in 44 fish samples of Lake Möhne ranged between 4.5 and 150 ng/g. The highest median PFOS concentrations have been observed in perches (median: 96 ng/g) and eels (77 ng/g), followed by pikes (37 ng/g), whitefish (34 ng/g), and roaches (6.1 ng/g). In contrast, in a food surveillance program only 11% of fishes at retail sale contained PFOS at detectable concentrations. One hundred five anglers (99 men, 6 women; 14-88 years old; median 50.6 years) participated in the human biomonitoring study. PFOS concentrations in blood plasma ranged from 1.1 to 650 μg/L (PFOA: 2.1-170 μg/L; PFHxS: 0.4-17 μg/L; LOD: 0.1 μg/L). A distinct dose-dependent relationship between fish consumption and internal exposure to PFOS was observed. PFOS concentrations in blood plasma of anglers consuming fish 2-3 times per month were 7 times higher compared to those without any fish consumption from Lake Möhne. The study results strongly suggest that human internal exposure to PFC is distinctly increased by consumption of fish from PFC-contaminated sites.

  14. Consumption dynamics of the adult piscivorous fish community in Spirit Lake, Iowa

    Science.gov (United States)

    Liao, H.; Pierce, C.L.; Larscheid, J.G.

    2004-01-01

    At Spirit Lake, one of Iowa's most important fisheries, walleye Sander vitreus (formerly Stizostedion vitreum) is one of the most popular species with anglers. Despite a century of walleye stocking and management in Spirit Lake, walleye growth rate, size structure, and angler harvest continue to decline. Our purpose was to determine the magnitude and dynamics of walleye population consumption relative to those of other piscivorous species in Spirit Lake, which would allow managers to judge the feasibility of increasing the abundance, growth rate, and size structure of the walleye population. We quantified food consumption by the adult piscivorous fish community in Spirit Lake over a 3-year period. Data on population dynamics, diet, energy density, and water temperature from 1995 to 1997 were used in bioenergetics models to estimate total consumption by walleye, yellow perch Perca flavescens, smallmouth bass Micropterus dolomieu, largemouth bass Micropterus salmoides, black crappie Pomoxis nigromaculatus, and northern pike Esox lucius. Estimated annual consumption by the piscivorous community varied roughly fourfold, ranging from 154,752 kg in 1995 to 662,776 kg in 1997. Walleyes dominated total consumption, accounting for 68, 73, and 90% (1995-1997, respectively) of total food consumption. Walleyes were also the dominant consumers of fish, accounting for 76, 86, and 97% of piscivorous consumption; yellow perch followed, accounting for 16% of piscivorous consumption in 1995 and 12% in 1996. Yellow perch were the predominant fish prey species in all 3 years, accounting for 68, 52, and 36% of the total prey consumed. Natural reproduction is weak, so high walleye densities are maintained by intensive stocking. Walleye stocking drives piscivorous consumption in Spirit Lake, and yearly variation in the cannibalism of stocked walleye fry may be an important determinant of walleye year-class strength and angler success. Reducing walleye stocking intensity, varying stocking

  15. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: does the method matter?

    DEFF Research Database (Denmark)

    Menezes, Rosemberg; Borchsenius, Finn; Svenning, J.-C.

    2013-01-01

    a better understanding of fish communities. We compare fish community composition, richness, and diversity in 56 Danish lakes using data obtained by gillnetting in different lake zones and near-shore electrofishing, respectively. On average, electrofishing captured more species than offshore gillnets......, but not more than littoral gillnets. Overall, the different fish sampling methods showed consistency as to fish community structure, but noticeable differences in community–environment relationships. Lake area was the best predictor for fish species richness in the littoral samplings, while it was poor...... community, as all methods miss some important species that other methods capture. However, electrofishing seems to be a fast alternative to gillnets for monitoring fish species richness and composition in littoral habitats of Danish lakes....

  16. Groundwater declines are linked to changes in Great Plains stream fish assemblages.

    Science.gov (United States)

    Perkin, Joshuah S; Gido, Keith B; Falke, Jeffrey A; Fausch, Kurt D; Crockett, Harry; Johnson, Eric R; Sanderson, John

    2017-07-11

    Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950-2010) and prospective (2011-2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.

  17. Estimating exposure of piscivorous birds and sport fish to mercury in California lakes using prey fish monitoring: a predictive tool for managers

    Science.gov (United States)

    Ackerman, Joshua T.; Hartman, C. Alex; Eagles-Smith, Collin A.; Herzog, Mark P.; Davison, Jay; Ichikawa, Gary; Bonnema, Autumn

    2015-01-01

    Numerous water bodies in California are listed under the Clean Water Act as being impaired due to mercury (Hg) contamination. The Surface Water Ambient Monitoring Program (SWAMP), via the Bioaccumulation Oversight Group (BOG), has recently completed statewide surveys of contaminants in sport fish tissue from more than 250 lakes and rivers in California and throughout coastal waters. This effort focused on human health issues but did not include beneficial uses by wildlife. Many piscivorous birds such as grebes, terns, cormorants, and mergansers eat fish smaller than those that were sampled by BOG, and sport fish Hg concentrations are not always indicative of wildlife exposure to Hg; therefore, the BOG surveys could not address whether wildlife were at risk due to Hg-induced reproductive impairment in these lakes.

  18. Understanding Obstacles to Peace in the Great Lakes Region ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Africa's Great Lakes region is home to violent and prolonged conflicts that cause a lot of suffering and block socioeconomic progress. Several initiatives are underway to bring peace to the region. But, most of these focus on specific countries and have not taken into account the interrelated and overlapping nature of the ...

  19. Distribution and Modeled Transport of Plastic Pollution in the Great Lakes, the World's Largest Freshwater Resource

    Directory of Open Access Journals (Sweden)

    Rachel N. Cable

    2017-07-01

    Full Text Available Most plastic pollution originates on land. As such, freshwater bodies serve as conduits for the transport of plastic litter to the ocean. Understanding the concentrations and fluxes of plastic litter in freshwater ecosystems is critical to our understanding of the global plastic litter budget and underpins the success of future management strategies. We conducted a replicated field survey of surface plastic concentrations in four lakes in the North American Great Lakes system, the largest contiguous freshwater system on the planet. We then modeled plastic transport to resolve spatial and temporal variability of plastic distribution in one of the Great Lakes, Lake Erie. Triplicate surface samples were collected at 38 stations in mid-summer of 2014. Plastic particles >106 μm in size were quantified. Concentrations were highest near populated urban areas and their water infrastructure. In the highest concentration trawl, nearly 2 million fragments km−2 were found in the Detroit River—dwarfing previous reports of Great Lakes plastic abundances by over 4-fold. Yet, the accuracy of single trawl counts was challenged: within-station plastic abundances varied 0- to 3-fold between replicate trawls. In the smallest size class (106–1,000 μm, false positive rates of 12–24% were determined analytically for plastic vs. non-plastic, while false negative rates averaged ~18%. Though predicted to form in summer by the existing Lake Erie circulation model, our transport model did not predict a permanent surface “Lake Erie Garbage Patch” in its central basin—a trend supported by field survey data. Rather, general eastward transport with recirculation in the major basins was predicted. Further, modeled plastic residence times were drastically influenced by plastic buoyancy. Neutrally buoyant plastics—those with the same density as the ambient water—were flushed several times slower than plastics floating at the water's surface and exceeded the

  20. Changes in the dreissenid community in the lower Great Lakes with emphasis on southern Lake Ontario

    Science.gov (United States)

    Mills, Edward L.; Chrisman, Jana R.; Baldwin, Brad; Owens, Randall W.; O'Gorman, Robert; Howell, Todd; Roseman, Edward F.; Raths, Melinda K.

    1999-01-01

    A field study was conducted in the lower Great Lakes to assess changes in spatial distribution and population structure of dreissenid mussel populations. More specifically, the westward range expansion of quagga mussel into western Lake Erie and toward Lake Huron was investigated and the shell size, density, and biomass of zebra and quagga mussel with depth in southern Lake Ontario in 1992 and 1995 were compared. In Lake Erie, quagga mussel dominated the dreissenid community in the eastern basin and zebra mussel dominated in the western basin. In southern Lake Ontario, an east to west gradient was observed with the quagga mussel dominant at western sites and zebra mussel dominant at eastern locations. Mean shell size of quagga mussel was generally larger than that of zebra mussel except in western Lake Erie and one site in eastern Lake Erie. Although mean shell size and our index of numbers and biomass of both dreissenid species increased sharply in southern Lake Ontario between 1992 and 1995, the increase in density and biomass was much greater for quagga mussels over the 3-year period. In 1995, zebra mussels were most abundant at 15 to 25 m whereas the highest numbers and biomass of quagga mussel were at 35 to 45 m. The quagga mussel is now the most abundant dreissenid in areas of southern Lake Ontario where the zebra mussel was once the most abundant dreissenid; this trend parallels that observed for dreissenid populations in the Dneiper River basin in the Ukraine.

  1. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    Science.gov (United States)

    Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  2. A review of the influence of biogeography, riverine linkages, and marine connectivity on fish assemblages in evolving lagoons and lakes of coastal southern Africa.

    Science.gov (United States)

    Whitfield, Alan K; Weerts, Steven P; Weyl, Olaf L F

    2017-09-01

    The Holocene evolution of eight South African coastal lakes and lagoons is examined and related to changes in fish composition over that period. Historical and current connectivity with riverine and marine environments are the primary determinants of present-day fish assemblages in these systems. A small and remarkably consistent group of relict estuarine species have persisted in these coastal lakes and lagoons. The loss or reduction of connectivity with the sea has impacted on the diversity of marine fishes in all eight study systems, with no marine fishes occurring in those water bodies where connectivity has been completely broken (e.g. Sibaya, Groenvlei). In systems that have retained tenuous linkages with the sea (e.g., Verlorenvlei, Wilderness lakes), elements of the marine fish assemblage have persisted, especially the presence of facultative catadromous species. Freshwater fish diversity in coastal lakes and lagoons is a function of historical and present biogeography and salinity. From a freshwater biogeography perspective, the inflowing rivers of the four temperate systems reviewed here contain three or fewer native freshwater fishes, while the subtropical lakes that are fed by river systems contain up to 40 freshwater fish species. Thus, the significantly higher fish species diversity in subtropical versus temperate coastal lakes and lagoons comes as no surprise. Fish species diversity has been increased further in some systems (e.g., Groenvlei) by alien fish introductions. However, the impacts of fish introductions and translocations have not been studied in the coastal lakes and lagoons of South Africa. In these closed systems, it is probable that predation impacts on small estuarine fishes are significant. The recent alien fish introductions is an example of the growing threats to these systems during the Anthropocene, a period when human activities have had significant negative impacts and show potential to match the changes recorded during the

  3. Lake Sturgeon, Lake Whitefish, and Walleye egg deposition patterns with response to fish spawning substrate restoration in the St. Clair–Detroit River system

    Science.gov (United States)

    Fischer, Jason L.; Pritt, Jeremy J.; Roseman, Edward; Prichard, Carson G.; Craig, Jaquelyn M.; Kennedy, Gregory W.; Manny, Bruce A.

    2018-01-01

    Egg deposition and use of restored spawning substrates by lithophilic fishes (e.g., Lake Sturgeon Acipenser fulvescens, Lake Whitefish Coregonus clupeaformis, and Walleye Sander vitreus) were assessed throughout the St. Clair–Detroit River system from 2005 to 2016. Bayesian models were used to quantify egg abundance and presence/absence relative to site-specific variables (e.g., depth, velocity, and artificial spawning reef presence) and temperature to evaluate fish use of restored artificial spawning reefs and assess patterns in egg deposition. Lake Whitefish and Walleye egg abundance, probability of detection, and probability of occupancy were assessed with detection-adjusted methods; Lake Sturgeon egg abundance and probability of occurrence were assessed using delta-lognormal methods. The models indicated that the probability of Walleye eggs occupying a site increased with water velocity and that the rate of increase decreased with depth, whereas Lake Whitefish egg occupancy was not correlated with any of the attributes considered. Egg deposition by Lake Whitefish and Walleyes was greater at sites with high water velocities and was lower over artificial spawning reefs. Lake Sturgeon eggs were collected least frequently but were more likely to be collected over artificial spawning reefs and in greater abundances than elsewhere. Detection-adjusted egg abundances were not greater over artificial spawning reefs, indicating that these projects may not directly benefit spawning Walleyes and Lake Whitefish. However, 98% of the Lake Sturgeon eggs observed were collected over artificial spawning reefs, supporting the hypothesis that the reefs provided spawning sites for Lake Sturgeon and could mitigate historic losses of Lake Sturgeon spawning habitat.

  4. Local and regional variability in fish community structure, richness and diversity of 56 Danish lakes with contrasting depth and trophic state

    DEFF Research Database (Denmark)

    Menezes, Rosemberg; Borchsenius, Finn; Svenning, J.-C.

    Habitat distribution of fish might be influenced by food availability, competition, predation,composition of aquatic plants and water clarity. It has been found that a shift from a turbid to a clear water state in a lake lead to higher proportion of piscivorous fish and a habitat shift of prey fish...... oligotrophic lakes due to high turbidity leading to loss of submerged macrophytes and thus habitat variability. Also the influence of piscivorous birds on the fish distribution in the littoral zone may differ between lake types leading to a more homogeneous distribution along the littoral area in eutrophic...

  5. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  6. Spatially explicit measures of production of young alewives in Lake Michigan: Linkage between essential fish habitat and recruitment

    Science.gov (United States)

    Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.

    2003-01-01

    The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.

  7. ARE ELEMENTAL FINGERPRINTS OF FISH OTOLITHS DISTINCT AMONG GREAT LAKES COASTAL NURSERY AREAS?

    Science.gov (United States)

    Elemental composition of an otolith reflects a fish's rearing environment, so otolith geochemistry can record differences in ambient water conditions specific to habitats used during a fish's life history. Although few studies have been conducted in freshwater, trace ...

  8. Genome sequences of lower Great Lakes Microcystis sp. reveal strain-specific genes that are present and expressed in western Lake Erie blooms.

    Directory of Open Access Journals (Sweden)

    Kevin Anthony Meyer

    Full Text Available Blooms of the potentially toxic cyanobacterium Microcystis are increasing worldwide. In the Laurentian Great Lakes they pose major socioeconomic, ecological, and human health threats, particularly in western Lake Erie. However, the interpretation of "omics" data is constrained by the highly variable genome of Microcystis and the small number of reference genome sequences from strains isolated from the Great Lakes. To address this, we sequenced two Microcystis isolates from Lake Erie (Microcystis aeruginosa LE3 and M. wesenbergii LE013-01 and one from upstream Lake St. Clair (M. cf aeruginosa LSC13-02, and compared these data to the genomes of seventeen Microcystis spp. from across the globe as well as one metagenome and seven metatranscriptomes from a 2014 Lake Erie Microcystis bloom. For the publically available strains analyzed, the core genome is ~1900 genes, representing ~11% of total genes in the pan-genome and ~45% of each strain's genome. The flexible genome content was related to Microcystis subclades defined by phylogenetic analysis of both housekeeping genes and total core genes. To our knowledge this is the first evidence that the flexible genome is linked to the core genome of the Microcystis species complex. The majority of strain-specific genes were present and expressed in bloom communities in Lake Erie. Roughly 8% of these genes from the lower Great Lakes are involved in genome plasticity (rapid gain, loss, or rearrangement of genes and resistance to foreign genetic elements (such as CRISPR-Cas systems. Intriguingly, strain-specific genes from Microcystis cultured from around the world were also present and expressed in the Lake Erie blooms, suggesting that the Microcystis pangenome is truly global. The presence and expression of flexible genes, including strain-specific genes, suggests that strain-level genomic diversity may be important in maintaining Microcystis abundance during bloom events.

  9. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders.

    Science.gov (United States)

    Cuhel, Russell L; Aguilar, Carmen

    2013-01-01

    Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.

  10. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  11. Cormorant predation overlaps with fish communities and commercial-fishery interest in a Swedish lake

    DEFF Research Database (Denmark)

    Ovegård, K. M.; Öhman, K.; Mikkelsen, Jørgen Skole

    2017-01-01

    The increase of the fish-eating cormorant (Phalacrocorax carbo sinensis) in Europe has resulted in conflicts with fisheries. In Lake Roxen, Sweden, cormorants are blamed for causing a decrease in fishery catches. To study and describe the potential effects that cormorants may have had on fish in ...

  12. Air pollution and environmental justice in the Great Lakes region

    Science.gov (United States)

    Comer, Bryan

    While it is true that air quality has steadily improved in the Great Lakes region, air pollution remains at unhealthy concentrations in many areas. Research suggests that vulnerable and susceptible groups in society -- e.g., minorities, the poor, children, and poorly educated -- are often disproportionately impacted by exposure to environmental hazards, including air pollution. This dissertation explores the relationship between exposure to ambient air pollution (interpolated concentrations of fine particulate matter, PM2.5) and sociodemographic factors (race, housing value, housing status, education, age, and population density) at the Census block-group level in the Great Lakes region of the United States. A relatively novel approach to quantitative environmental justice analysis, geographically weighted regression (GWR), is compared with a simplified approach: ordinary least squares (OLS) regression. While OLS creates one global model to describe the relationship between air pollution exposure and sociodemographic factors, GWR creates many local models (one at each Census block group) that account for local variations in this relationship by allowing the value of regression coefficients to vary over space, overcoming OLS's assumption of homogeneity and spatial independence. Results suggest that GWR can elucidate patterns of potential environmental injustices that OLS models may miss. In fact, GWR results show that the relationship between exposure to ambient air pollution and sociodemographic characteristics is non-stationary and can vary geographically and temporally throughout the Great Lakes region. This suggests that regulators may need to address environmental justice issues at the neighborhood level, while understanding that the severity of environmental injustices can change throughout the year.

  13. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change

    Science.gov (United States)

    Waltham, Nathan J.; Sheaves, Marcus

    2017-09-01

    Understanding acute hyperthermic exposure risk to animals, including fish in tropical estuaries, is increasingly necessary under future climate change. To examine this hypothesis, fish (upper water column species - glassfish, Ambassis vachellii; river mullet, Chelon subviridis; diamond scale mullet, Ellochelon vaigiensis; and ponyfish, Leiognathus equulus; and lower water bottom dwelling species - whiting Sillago analis) were caught in an artificial tidal lake in tropical north Queensland (Australia), and transported to a laboratory tank to acclimate (3wks). After acclimation, fish (between 10 and 17 individuals each time) were transferred to a temperature ramping experimental tank, where a thermoline increased (2.5 °C/hr; which is the average summer water temperature increasing rate measured in the urban lakes) tank water temperature to establish threshold points where each fish species lost equilibrium (defined here as Acute Effect Temperature; AET). The coolest AET among all species was 33.1 °C (S. analis), while the highest was 39.9 °C (A. vachellii). High frequency loggers were deployed (November and March representing Austral summer) in the same urban lake where fish were sourced, to measure continuous (20min) surface (0.15 m) and bottom (0.1 m) temperature to derive thermal frequency curves to examine how often lake temperatures exceed AET thresholds. For most fish species examined, water temperature that could be lethal were exceeded at the surface, but rarely, if ever, at the bottom waters suggesting deep, cooler, water provides thermal refugia for fish. An energy-balance model was used to estimate daily mean lake water temperature with good accuracy (±1 °C; R2 = 0.91, modelled vs lake measured temperature). The model was used to predict climate change effects on lake water temperature, and the exceedance of thermal threshold change. A 2.3 °C climate warming (based on 2100 local climate prediction) raised lake water temperature by 1.3 °C. However

  14. Fishing Farmers or Farming Fishers? Fishing Typology of Inland Small-Scale Fishing Households and Fisheries Management in Singkarak Lake, West Sumatra, Indonesia

    Science.gov (United States)

    Yuerlita; Perret, Sylvain Roger; Shivakoti, Ganesh P.

    2013-07-01

    Technical and socio-economic characteristics are known to determine different types of fishers and their livelihood strategies. Faced with declining fish and water resources, small-scale fisheries engage into transformations in livelihood and fishing practices. The paper is an attempt to understand these changes and their socio-economic patterns, in the case of Singkarak Lake in West Sumatra, Indonesia. Based upon the hypothesis that riparian communities have diverse, complex yet structured and dynamic livelihood systems, the paper's main objective is to study, document and model the actual diversity in livelihood, practices and performance of inland small-scale fisheries along the Singkarak Lake, to picture how households are adapted to the situation, and propose an updated, workable model (typology) of those for policy. Principal component analysis and cluster analysis were used to develop a typology of fishing households. The results show that small-scale fishers can be classified into different types characterized by distinct livelihood strategies. Three household types are identified, namely "farming fishers" households (type I, 30 %), "fishing farmers" households (type II, 30 %), and "mainly fishers" households (type III, 40 %). There are significant differences among these groups in the number of boats owned, annual fishing income, agriculture income and farming experience. Type I consists of farming fishers, well equipped, with high fishing costs and income, yet with the lowest return on fishing assets. They are also landowners with farming income, showing the lowest return on land capital. Type II includes poor fishing farmers, landowners with higher farming income; they show the highest return on land asset. They have less fishing equipment, costs and income. Type III (mainly fishers) consists of poorer, younger fishers, with highest return on fishing assets and on fishing costs. They have little land, low farming income, and diversified livelihood

  15. Petrology of the Fort Smith - Great Slave Lake radiometric high near Pilot Lake, N.W.T

    International Nuclear Information System (INIS)

    Burwash, R.A.; Cape, D.F.

    1981-01-01

    Near Pilot Lake, the east boundary of the Fort Smith - Great Slave Lake radiometric high coincides with the contact of a well-foliated, porphyroblastic microcline-plagioclase-quartz-garnet-biotite gneiss (Pilot Lake Gneiss) with a hybrid assemblage of quartzite, mica schist, garnet-cordierite gneiss, and minor amphibolite (Variable Paragneiss). Anomalously high concentrations of uranium and thorium are associated with mafic-rich, lenticular bodies with a mineral assemblage biotite + monazite + zircon + ilmenite + hematite +- plagioclase +- quartz, within both the Variable Paragneiss and the Pilot Lake Gneiss. Corundum and spinel occur in the mafic lenses and sillimanite, kyanite, and hypersthene in other inclusions of the Pilot Lake Gneiss. The ilmenite-magnetite--monazite-zircon-apatite assemblage is interpreted as a 'black sand' concentration in a clastic sedimentary sequence subsequently metamorphosed by a regional granulite facies event. A granite pluton intruded during the same orogenic cycle assimilated the clastic metasedimentary rocks containing black sand interlayers, becoming enriched in thorium from the monazite. A second metamorphic event at lower P-T conditions, accompanied by strong cataclasis, developed the texture of the Pilot Lake Gneiss as now observed. Shearing within the gneiss locally concentrated hematite + quartz + uranium. Regional tectonic extrapolations suggest that the pyroxene granulite event was Kenoran and the later amphibolite event Hudsonian. (author)

  16. A survey of ichthyofauna of Lake Kanyaboli and other small waterbodies in Kenya: alternative refugia for endangered fish species

    OpenAIRE

    Maithya, J.

    1998-01-01

    In 1988, the World Conservation Union (WCU) Red Book of Endangered Species listed hundreds of endemic fishes of Lake Victoria under a single heading - "ENDANGERED". Most of the endemic native food fishes are either endangered or extinct. However, a survey of the fauna of Lake Kanyaboli, revealed that a few remaining samples of these native fishes are actually thriving. These include several unidentified Haplochromis spp., Oreochromis esculentus and Oreochromis variabilis. As a resul...

  17. Policies and practices of beach monitoring in the Great Lakes, USA: a critical review

    Science.gov (United States)

    Nevers, Meredith B.; Whitman, Richard L.

    2010-01-01

    Beaches throughout the Great Lakes are monitored for fecal indicator bacteria (typically Escherichia coli) in order to protect the public from potential sewage contamination. Currently, there is no universal standard for sample collection and analysis or results interpretation. Monitoring policies are developed by individual beach management jurisdictions, and applications are highly variable across and within lakes, states, and provinces. Extensive research has demonstrated that sampling decisions for time, depth, number of replicates, frequency of sampling, and laboratory analysis all influence the results outcome, as well as calculations of the mean and interpretation of the results in policy decisions. Additional shortcomings to current monitoring approaches include appropriateness and reliability of currently used indicator bacteria and the overall goal of these monitoring programs. Current research is attempting to circumvent these complex issues by developing new tools and methods for beach monitoring. In this review, we highlight the variety of sampling routines used across the Great Lakes and the extensive body of research that challenges comparisons among beaches. We also assess the future of Great Lakes monitoring and the advantages and disadvantages of establishing standards that are evenly applied across all beaches.

  18. Evaluating the behavior of polychlorinated biphenyl compounds in Lake Superior using a dynamic multimedia model

    Science.gov (United States)

    Khan, T.; Perlinger, J. A.; Urban, N. R.

    2017-12-01

    Certain toxic, persistent, bioaccumulative, and semivolatile compounds known as atmosphere-surface exchangeable pollutants or ASEPs are emitted into the environment by primary sources, are transported, deposited to water surfaces, and can be later re-emitted causing the water to act as a secondary source. Polychlorinated biphenyl (PCB) compounds, a class of ASEPs, are of major concern in the Laurentian Great Lakes because of their historical use primarily as additives to oils and industrial fluids, and discharge from industrial sources. Following the ban on production in the U.S. in 1979, atmospheric concentrations of PCBs in the Lake Superior region decreased rapidly. Subsequently, PCB concentrations in the lake surface water also reached near equilibrium as the atmospheric levels of PCBs declined. However, previous studies on long-term PCB levels and trends in lake trout and walleye suggested that the initial rate of decline of PCB concentrations in fish has leveled off in Lake Superior. In this study, a dynamic multimedia flux model was developed with the objective to investigate the observed levelling off of PCB concentrations in Lake Superior fish. The model structure consists of two water layers (the epilimnion and the hypolimnion), and the surface mixed sediment layer, while atmospheric deposition is the primary external pathway of PCB inputs to the lake. The model was applied for different PCB congeners having a range of hydrophobicity and volatility. Using this model, we compare the long-term trends in predicted PCB concentrations in different environmental media with relevant available measurements for Lake Superior. We examine the seasonal depositional and exchange patterns, the relative importance of different process terms, and provide the most probable source of the current observed PCB levels in Lake Superior fish. In addition, we evaluate the role of current atmospheric PCB levels in sustaining the observed fish concentrations and appraise the need

  19. New data on mitochondrial diversity and origin of Hemimysis anomala in the Laurentian Great Lakes

    Science.gov (United States)

    Questel, Jennifer M.; Walsh, Maureen G.; Smith, Randall J.; Welsh, Amy B.

    2012-01-01

    The most recent Ponto-Caspian species to invade the Laurentian Great Lakes is the crustacean Hemimysis anomala, first reported in 2006. A previous study described three haplotype groups (A, B, C) of H. anomala in native and invaded areas within Europe, but only one haplotype (A1) in a sample from Lake Michigan. Our study expands these results to additional populations in the Great Lakes basin, and evaluates relationships among North American and European populations. A 549-bp fragment of themitochondrial cytochrome oxidase I (COI) gene was analyzed from populations of H. anomala in Lakes Ontario, Erie, Huron, and the St. Lawrence River.Two different haplotypes, A1 and B1,were observed in the sampled populations of H. anomala and in a previous analysis from H. anomala in Oneida Lake (New York). Our results, in contrast with a previous study, detect an additional haplotype in North America.

  20. Mercury biomagnification in the food web of Lake Tanganyika (Tanzania, East Africa)

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L. [School of Environmental Studies and Department of Biology, Queen' s University, Kingston, Ontario, K7L-3N6 (Canada)], E-mail: linda.campbell@queensu.ca; Verburg, Piet [National Institute of Water and Atmospheric Research, PO Box 11-115, Hamilton 3251 (New Zealand); Dixon, D.G. [Department of Biology, University of Waterloo, 200 University Avenue, Waterloo (Canada); Hecky, R.E. [Large Lakes Observatory, University of Minnesota, Duluth, 10 University Drive 204 RLBDuluth, MN 55812-2496 (United States)

    2008-09-01

    Lake Tanganyika is a globally important lake with high endemic biodiversity. Millions of people in the lake basin depend on several fish species for consumption. Due to the importance of fish consumption as an exposure route of mercury to humans, we sampled Lake Tanganyika in 2000 to assess total mercury concentrations and biomagnification of total mercury through the food web. Stable nitrogen and carbon isotope analyses of food web structure indicate a complex food web with overlapping omnivory with some specialist fish species. Stable nitrogen isotope analyses further confirm that mercury is biomagnifying through the Tanganyika food web at rates similar to those seen in Lakes Malawi and Victoria, the other two African Great Lakes. Most collected fish species and all invertebrate species had mercury concentrations below 0.2 {mu}g Hg/g wet weight. However, several fish species, Ctenochromis horei (average 0.15 {mu}g/g ww), Neolamprologus boulengeri (0.2 {mu}g/g ww) , Bathybates spp.spp. (0.21 {mu}g/g ww), Mastacembelus cunningtoni (0.22 {mu}g/g ww) and Clarias theodorae (0.22 {mu}g/g ww) approached or slightly exceeded the World Health Organization (WHO)'s recommended guideline of 0.2 {mu}g Hg/g for vulnerable populations with high rates of fish consumption. Two individuals of the piscivorous fish species Lates microlepis (0.54, 0.78 {mu}g/g ww) and a Polypterus congicus (1.3 {mu}g/g ww) exceeded the international marketing limit value of 0.5 {mu}g/g ww. Because C. theodorae and L. microlepis are also important market fish species, there is a need to monitor mercury concentrations in internationally marketed fish from Lake Tanganikya to ensure that those fish do not present a risk to human consumers.

  1. Mercury biomagnification in the food web of Lake Tanganyika (Tanzania, East Africa)

    International Nuclear Information System (INIS)

    Campbell, L.; Verburg, Piet; Dixon, D.G.; Hecky, R.E.

    2008-01-01

    Lake Tanganyika is a globally important lake with high endemic biodiversity. Millions of people in the lake basin depend on several fish species for consumption. Due to the importance of fish consumption as an exposure route of mercury to humans, we sampled Lake Tanganyika in 2000 to assess total mercury concentrations and biomagnification of total mercury through the food web. Stable nitrogen and carbon isotope analyses of food web structure indicate a complex food web with overlapping omnivory with some specialist fish species. Stable nitrogen isotope analyses further confirm that mercury is biomagnifying through the Tanganyika food web at rates similar to those seen in Lakes Malawi and Victoria, the other two African Great Lakes. Most collected fish species and all invertebrate species had mercury concentrations below 0.2 μg Hg/g wet weight. However, several fish species, Ctenochromis horei (average 0.15 μg/g ww), Neolamprologus boulengeri (0.2 μg/g ww) , Bathybates spp.spp. (0.21 μg/g ww), Mastacembelus cunningtoni (0.22 μg/g ww) and Clarias theodorae (0.22 μg/g ww) approached or slightly exceeded the World Health Organization (WHO)'s recommended guideline of 0.2 μg Hg/g for vulnerable populations with high rates of fish consumption. Two individuals of the piscivorous fish species Lates microlepis (0.54, 0.78 μg/g ww) and a Polypterus congicus (1.3 μg/g ww) exceeded the international marketing limit value of 0.5 μg/g ww. Because C. theodorae and L. microlepis are also important market fish species, there is a need to monitor mercury concentrations in internationally marketed fish from Lake Tanganikya to ensure that those fish do not present a risk to human consumers

  2. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  3. Prevalence and seasonality of parasites of fish in Agulu Lake ...

    African Journals Online (AJOL)

    Owner

    2014-01-15

    Jan 15, 2014 ... belonging to four families (Cichlidae, Bagridae, Hepsetidae and Channidae), seven genera and nine species were collected from the lake ... Fish oil contains omega-3-essential fatty acids necessary for the proper ... 7°01' and 7°03'E. The climate of the area shows two distinct seasons namely, rainy season ...

  4. Environmental Assessment: Lake Yankton Fish Population Renovation Project Yankton County, South Dakota and Cedar County, Nebraska

    Science.gov (United States)

    2014-08-01

    respiration in fish, mammals, birds, insects, reptiles , amphibians , and plants. However, at concentrations used in fisheries management, rotenone is...prey upon fish, rodents, and small game. Lake Yankton supports many species of fish, reptiles , and amphibians . The Preferred Alternative is not...3‐4  3.2.1.3.  Amphibians

  5. Radionuclide and heavy metal concentrations in soil, vegetation, and fish collected around and within Tsicoma Lake in Santa Clara Canyon

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Armstrong, D.R.; Naranjo, L. Jr.

    1996-03-01

    Radionuclide ( 3 H, 90 Sr, 137 Cs, 238 Pu, 239 Pu, total U) and heavy metal (Ag, As, Ba, Be, Cd, Cr, Hg, Ni, Pb, Sb, Se, Tl) contents were determined in soil, vegetation (overstory and understory), and fish (rainbow trout) collected around and within Tsicoma Lake in Santa Clara Canyon in 1995. All heavy metal and most radionuclide contents around or within the lake, except for U in soil, vegetation, and fish, were within or just above upper limit background. Detectable levels (where the analytical result was greater than two times counting uncertainty) of U in soils, vegetation, and fish were found in slightly higher concentrations than in background samples. Overall, however, maximum total committed effective dose equivalent (CEDE)(95% confidence level)--based on consumption of 46 lb of fish--from Tsicoma Lake (0.066 mrem/y) was within the maximum total CEDE from the ingestion of fish from the Mescalero National Fish Hatchery (background)(0.113 mrem/y)

  6. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    Science.gov (United States)

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Morphometric variation among spawning cisco aggregations in the Laurentian Great Lakes: are historic forms still present?

    Science.gov (United States)

    Yule, Daniel L.; Moore, Seth A.; Ebener, Mark P.; Claramunt, Randall M.; Pratt, Thomas C.; Salawater, Lorrie L.; Connerton, Michael J.

    2013-01-01

    Cisco (Coregonus artedi Leseur, formerly lake herring Leucichthys artedi Leseur) populations in each of the Laurentian Great Lakes collapsed between the late 1920s and early 1960s following a multitude of stressors, and never recovered in Lakes Michigan, Erie and Ontario. Prior to their collapse, Koelz (1929) studied Leucichthys spp. in the Great Lakes basin and provided a description of their diversity. Three cisco morphotypes were described; a ‘slim terete’morphotype (L. artedi artedi), a ‘deep compressed’ morphotype (L. artedi albus), and a deep-bodied form resembling tullibee in western Canadian lakes (L. artedi manitoulinus). Based on body measurements of 159 individuals (Koelz 1929), we used discriminant function analysis (DFA) to discriminate historic morphotypes. Shapes of historic morphotypes were found to vary significantly (Pillai’s trace = 1.16, P cisco. Important discriminating measurements included body depth, eye diameter, and dorsal fin base and height. Between October-November of 2007-2011, we sampled cisco from 16 Great Lakes sites collecting digital photographs of over 1, 700 individuals. We applied the DFA model to their body measurements and classified each individual to a morphotype. Contemporary cisco from Lakes Superior, Ontario and Michigan were predominantly classified as artedi, while the most common classifications from northern Lake Huron were albus and manitoulinus. Finding historic morphotypes is encouraging because it suggests that the morphological variation present prior to their collapse still exists. We conclude that contemporary cisco having shapes matching the missing historic morphotypes in the lower lakes warrant special consideration as potential donor populations in reestablishment efforts.

  8. Sherman Creek Hatchery; Washington Department of Fish and Wildlife Fish Program, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Mitch (Washington Department of Fish and Wildlife, Kettle Falls, WA)

    2002-01-01

    the monitoring program also suggests that the hatchery and net pen rearing programs have been beneficial to enhancing the Lake Roosevelt fishery while not negatively impacting wild and native stocks within the lake. The 2001 fishing season has been especially successful with great fishing for both rainbow and kokanee throughout Lake Roosevelt. The results of the Two Rivers Fishing Derby identified 100 percent of the rainbow and 47 percent of the kokanee caught were of hatchery origin.

  9. Regional versus local influences on lead and cadmium loading to the Great Lakes region

    Energy Technology Data Exchange (ETDEWEB)

    Yohn, S.; Long, D.; Fett, J.; Patino, L. [Michigan State University, East Lansing, MI (United States). Dept. of Geological Science

    2004-07-01

    Environmental legislation has reduced the anthropogenic loadings of Pb and Cd to the Great Lakes region over the past 3 decades. However, the accumulation rates of these metals still remain above background values. Because environmental legislation was targeted at major sources (e.g., Pb in gasoline) whose influence on the environment was on a regional scale, local sources (e.g., watershed scale) for the metals may now play a more significant role. The relative importance of regional versus local scale influences on metal inputs to the environment is poorly understood. In this study, sediment chronologies of Pb and Cd were examined from 12 inland lakes that cover the broad geographic area of the State of Michigan. These chronologies were compared temporally and spatially and to watershed population densities and metal production records to gain an understanding of local and regional influences on metal inputs to the Great Lakes region. Results show that anthropogenic Pb loading during the 1930s and 1970s was dominated by regional sources. such as coal burning and use of leaded gasoline. Current loadings are now more related to local influences such as watershed population densities, rather than atmospheric deposition. Anthropogenic Cd loadings to the Great Lakes region have been dominated by both regional and local sources over time. Lead may also have shown the influence of local sources over time, if the influence of emissions from gasoline had not been present. This work shows that Pb and Cd loadings in the Great Lakes region are strongly related to watershed population densities; however, the specific sources and pathways for the metal cycling are unclear.

  10. Nile perch fish processing waste along Lake Victoria in East Africa ...

    African Journals Online (AJOL)

    Nile perch fish processing waste along Lake Victoria in East Africa: Auditing and characterization. ... African Journal of Environmental Science and Technology ... If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

  11. Coping with scarcity: Fishing adaptability and culture in lake Chapala

    Directory of Open Access Journals (Sweden)

    Carmen Pedroza Gutiérrez

    2017-11-01

    Full Text Available This paper examines different adaptive responses that lakeside communities develop when faced with environmental change. The focus lies particularly on rural towns near lake Chapala, Mexico, affected by water level fluctuations. These situations require social reorganization, especially among groups whose survival is directly dependent on the lake’s integrity, such as fishermen.Using an adaptation and adaptability framework, various historical and current strategies used to confront scarcity and lake stress in La Palma, Michoacán are contrasted. Our aim is to highlight the changing social position of the fishing trade, and its most influential cultural features that have allowed its continuity.

  12. Democratic Republic of Congo A Fertile Ground for Instability in the Great Lakes Region States

    Science.gov (United States)

    2017-06-09

    ravaged by a brutal armed conflict. In comparison to the three past presidents, Joseph Kabila has managed to restore political stability and calm to much...DEMOCRATIC REPUBLIC OF CONGO-A FERTILE GROUND FOR INSTABILITY IN THE GREAT LAKES REGION STATES A thesis presented to the Faculty of...From - To) AUG 2016 – JUNE 2017 4. TITLE AND SUBTITLE Democratic Republic of Congo-A Fertile Ground for Instability in the Great Lakes Region

  13. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.

    Directory of Open Access Journals (Sweden)

    Timothy J Cline

    Full Text Available Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha, and walleye (Sander vitreus. Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km(2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km(2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.

  14. Changes in the fish community and water quality during seven years of stocking piscivorous fish in a shallow lake

    DEFF Research Database (Denmark)

    Skov, Christian; Perrow, M.R.; Berg, Søren

    2002-01-01

    evaluated between predatory fish and potential prey and between zooplanktivorous or benthivorous fish and water quality parameters. In addition, potential consumption of piscivorous fishes was calculated. 3. The density of fish feeding on larger zooplankton or benthos (roach >15 cm, crucian carp >15 cm......1. Piscivores (annual stocking of 1000 individuals ha(-1) of 0+ pike and a single stocking of 30 kg ha(-1) of large 20-30 cm perch) were stocked in seven consecutive years in a shallow eutrophic lake in Denmark. The stocking programme aimed at changing food-web structure by reducing...... zooplanktivorous and benthivorous fish, with resultant effects on lower trophic levels and ultimately water quality. 2. The fish community and water quality parameters (Secchi depth, concentrations of total phosphorus, chlorophyll a and suspended solids) were monitored between 1996 and 2000 and relationships were...

  15. FISH PRODUCTION ESTIMATES FOR GBEDIKERE LAKE, BASSA, KOGI STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    Samuel Olusegun Adeyemi

    2013-10-01

    Full Text Available Annual estimates of the fish caught by local fishermen in randomly selected fishing villages adjacent to Gbedikere Lake were determined using Catch Assessment (CAS. The studies were carried out within two seasons of low water (February and high water (September periods between 2006 to 2008. Annual fish catch varied from 537.4 mts to 576.9 mts at high water. Mean catch per boat ranged from 7.40 kg to 10.60 kg among the landing sites. A total of 12 fish species were identified belonging to ten families. The catches were dominated by the cichlids with Orechromis niloticus dominating the overall catch compositions. Production estimate was compared with the catches obtained through experimental gill-net sampling and potential fish yield estimates using Ryder’s Morpho - Edaphic Index (MEI as modified by Henderson and Welcomme (1974. Contributions of the gears in use were also done with cast nets ranking above others (29%, followed by the set net (25%, hook and lines (16.6%, traps (16.6%, clap net (8.3%. Management measures were suggested.

  16. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function

    NARCIS (Netherlands)

    Jeppesen, E.; Meerhoff, M.; Holmgren, K.; González-Bergonzoni, I.; Teixeira-de Mello, F.; Declerck, Steven A.J.; De Meester, L.; Søndergaard, M.; Lauridsen, T.; Bjerring, R.; Conde-Porcuna, J-M.; Mazzeo, N.; Iglesias, C.; Reizenstein, M.; Malmquist, H.J.; Liu, Z.; Balayla, D.; Lazzaro, X.

    2010-01-01

    Fish play a key role in the trophic dynamics of lakes, not least in shallow systems. With climate warming, complex changes in fish community structure may be expected owing to the direct and indirect effects of temperature, and indirect effects of eutrophication, water-level changes and salinisation

  17. Occurrence and distribution of fecal indicator bacteria and gene markers of pathogenic bacteria in Great Lakes tributaries, March-October 2011

    Science.gov (United States)

    Brennan, Angela K.; Johnson, Heather E.; Totten, Alexander R.; Duris, Joseph W.

    2015-01-01

    From March through October 2011, the U.S. Geological Survey (USGS), conducted a study to determine the frequency of occurrence of pathogen gene markers and densities of fecal indicator bacteria (FIB) in 22 tributaries to the Great Lakes. This project was funded as part of the Great Lakes Restoration Initiative (GLRI) and included sampling at 22 locations throughout 6 states that border the Great Lakes.

  18. heavy metal contamination of clarias gariepinus from a lake and fish ...

    African Journals Online (AJOL)

    Adult Clarias gariepinus (African Catfish) were purchased from Eleiyele Lake and Zartech fish farm in Ibadan. Water samples were also collected in February (dry season) and. June (rainy season), 2002. Gill, bone, intestine, muscle and water samples were analyzed for five metals: manganese, copper, zinc, iron, and ...

  19. From "Duck Factory" to "Fish Factory": Climate induced changes in vertebrate communities of prairie pothole wetlands and small lakes

    Science.gov (United States)

    McLean, Kyle I.; Mushet, David M.; Stockwell, Craig A.

    2016-01-01

    The Prairie Pothole Region’s myriad wetlands and small lakes contribute to its stature as the “duck factory” of North America. The fishless nature of the region’s aquatic habitats, a result of frequent drying, freezing, and high salinity, influences its importance to waterfowl. Recent precipitation increases have resulted in higher water levels and wetland/lake freshening. In 2012–13, we sampled chemical characteristics and vertebrates (fish and salamanders) of 162 Prairie Pothole wetlands and small lakes. We used non-metric multidimensional scaling, principal component analysis, and bootstrapping techniques to reveal relationships. We found fish present in a majority of sites (84 %). Fish responses to water chemistry varied by species. Fathead minnows (Pimephales promelas) and brook sticklebacks (Culaea inconstans) occurred across the broadest range of conditions. Yellow perch (Perca flavescens) occurred in a smaller, chemically defined, subset. Iowa darters (Etheostoma exile) were restricted to the narrowest range of conditions. Tiger salamanders (Ambystoma mavortium) rarely occurred in lakes with fish. We also compared our chemical data to similar data collected in 1966–1976 to explore factors contributing to the expansion of fish into previously fishless sites. Our work contributes to a better understanding of relationships between aquatic biota and climate-induced changes in this ecologically important area.

  20. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  1. Fringe benefit: Value of restoring coastal wetlands for Great Lakes fisheries

    Science.gov (United States)

    Fishery support is recognized as a valuable ecosystem service provided by Great Lakes coastal wetlands, but it is challenging to quantify because multiple species and habitats are involved. Recent studies indicate that coastal wetland area is proportional to fishery harvest among...

  2. Ecosystem Services in the Great Lakes – Results of a Summit

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  3. Status and trends of the Lake Huron deepwater demersal fish ommunity, 2008

    Science.gov (United States)

    Roseman, Edward F.; O'Brien, Timothy P.; Riley, Stephen C.; Farha, Steve A.; French, John R.

    2009-01-01

    The U.S.Geological Survey Great Lakes Science Center has conducted trawl surveys to assess annual changes in the deepwater demersal fish community of Lake Huron since 1973. Since 1992, surveys have been carried out using a 21 m wing trawl towed on-contour at depths ranging from 9 to 110 m on fixed transects. Sample sites include five ports in U.S. waters with less frequent sampling near Goderich, Ontario. The 2008 fall bottom trawl survey was carried out between October 24 and November 20, 2008 and sampled only the three northern U.S. ports at DeTour, Hammond Bay, and Alpena due to mechanical problems with the research vessel and prolonged periods of bad weather. Therefore, all data presented for 2008 are based on samples collected from these ports. Compared to previous years, alewife populations in Lake Huron remain at low levels after collapsing in 2004. Age-0 alewife density and biomass appears to have increased slightly but overall levels remain near the nadir observed in 2004. Density and biomass of adult and juvenile rainbow smelt showed a decrease from 2007 despite record-high abundance of juveniles observed in 2005, suggesting recruitment was low. Numbers of adult and juvenile bloater were low despite recent high year-classes. Abundances for most other prey species were similar to the low levels observed in 2005 - 2007. We captured one wild juvenile lake trout in 2008 representing the fifth consecutive year that wild lake trout were captured in the survey. Based on pairwise graphical comparisons and nonparametric correlation analyses, dynamics of prey abundance at the three northern ports followed lakewide trends since 1992. Density of benthic macroinvertebrates was at an all-time low in 2008 since sampling began in 2001. The decline in abundance was due to decreases in all taxonomic groups and a large reduction in recruitment of quagga mussels. Density of Diporeia at northern ports in 2008 was the lowest observed. Diporeia were found only at 73-m sites of

  4. State-of-the-art techniques for inventory of Great Lakes aquatic habitats and resources

    Science.gov (United States)

    Edsall, Thomas A.; Brock, R.H.; Bukata, R.P.; Dawson, J.J.; Horvath, F.J.; Busch, W.-Dieter N.; Sly, Peter G.

    1992-01-01

    This section of the Classification and Inventory of Great Lakes Aquatic Habitat report was prepared as a series of individually authored contributions that describe, in various levels of detail, state-of-the-art techniques that can be used alone or in combination to inventory aquatic habitats and resources in the Laurentian Great Lakes system. No attempt was made to review and evaluate techniques that are used routinely in limnological and fisheries surveys and inventories because it was felt that users of this document would be familiar with them.

  5. Fishes from Lake Yaxhá, Mayan Biosphere Reserve, Petén, Guatemala

    OpenAIRE

    Barrientos, Christian; Elías, Diego; Quintana, Yasmín

    2015-01-01

    The Mayan Biosphere Reserve is the largest protected area in Guatemala. Lake Yaxhá is located inside the core zone. Using electrofishing, seines and gillnets we assessed the fish richness and community in 2011. We collected 18 species distributed in seven families, with Cichlidae (seven species) and Poecilidae (five species) the most specious. We evaluated the effectiveness of electrofishing to sample the most important fish in the artisanal fishery in Petén, Petenia splendida, with September...

  6. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    Science.gov (United States)

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  7. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.

    Science.gov (United States)

    Warren, Dana R; Kraft, Clifford E; Josephson, Daniel C; Driscoll, Charles T

    2017-06-01

    From the 1970s to 1990s, more stringent air quality regulations were implemented across North America and Europe to reduce chemical emissions that contribute to acid rain. Surface water pH slowly increased during the following decades, but biological recovery lagged behind chemical recovery. Fortunately, this situation is changing. In the past few years, northeastern US fish populations have begun to recover in lakes that were historically incapable of sustaining wild fish due to acidic conditions. As lake ecosystems across the eastern United States recover from acid deposition, the stress to the most susceptible populations of native coldwater fish appears to be shifting from acidification effects to thermal impacts associated with changing climate. Extreme summer temperature events - which are expected to occur with increasing frequency in the coming century - can stress and ultimately kill native coldwater fish in lakes where thermal stratification is absent or highly limited. Based on data from northeastern North America, we argue that recovery from acid deposition has the potential to improve the resilience of coldwater fish populations in some lakes to impacts of climate change. This will occur as the amount of dissolved organic carbon (DOC) in the water increases with increasing lake pH. Increased DOC will reduce water clarity and lead to shallower and more persistent lake thermoclines that can provide larger areas of coldwater thermal refuge habitat. Recovery from acidification will not eliminate the threat of climate change to coldwater fish, but secondary effects of acid recovery may improve the resistance of coldwater fish populations in lakes to the effects of elevated summer temperatures in historically acidified ecosystems. This analysis highlights the importance of considering the legacy of past ecosystem impacts and how recovery or persistence of those effects may interact with climate change impacts on biota in the coming decades. © 2016 John

  8. Impacts of climate change on freshwater fisheries of the Great Plains

    International Nuclear Information System (INIS)

    Regier, H.A.; Holmes, J.A.

    1991-01-01

    The diversity and habitats of fish in Great Plains hydrologic systems are described. Fisheries on the Great Plains consist of commercial, subsistence, and recreational. Direct effects of climate change on Great Plains fisheries will involve temperature and hydrology. Increased temperature could expand suitable habitat for fish with preferred temperatures between 10 and 27.5 degree C by 2.5 times base conditions. Reductions in precipitation will reduce river flows and lake levels, and an overall reduction in habitat for the most preferred species is expected. Indirect effects stem from human responses to climate change, and streams, wetlands and coastal zones will likely bear the brunt of such activity. More river systems may be damned or channelized, which could lead to increases in eutrophication or pollution, most severely affecting the preferred white fishes. Geographical shifts of species in response to climate change will likely favour black fish over grey fish over white fish, and when longitudinal or lateral movement is blocked, local extinctions may occur. 22 refs., 1 tab

  9. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  10. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  11. Spawning site fidelity and apparent annual survival of walleye (Sander vitreus) differ between a Lake Huron and Lake Erie tributary

    Science.gov (United States)

    Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.

    2018-01-01

    Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.

  12. Meteotsunamis in the Great Lakes and Investigation into the May 27, 2012 Event on Lake Erie

    Science.gov (United States)

    Anderson, E. J.; Bechle, A.; Wu, C. H.; Schwab, D. J.; Mann, G.

    2016-02-01

    Meteotsunami events have been documented in several countries around the world in the coastal ocean, semi-enclosed basins, and in the Great Lakes. In particular, investigations in the Great Lakes have raised the issue of dangers posed by enclosed basins due to the reflection and interaction of meteotsunami waves, in which the destructive waves can arrive several hours after the atmospheric disturbance has passed. This disassociation in time and space between the atmospheric disturbance and resultant meteotsunami wave can pose a significant threat to the public. In a recent event on May 27, 2012, atmospheric conditions gave rise to two convective systems that generated a series of waves in the meteotsunami band on Lake Erie. The resulting waves swept three swimmers a half-mile offshore, inundated a marina, and may have led to a capsized boat along the southern shoreline. Examination of the observed conditions shows that these events occurred at a time between the arrivals of these two storm systems when atmospheric conditions were relatively calm but water level displacements were at their greatest. In this work, we attempt to explain the processes that led to these conditions through a combination of atmospheric and hydrodynamic modeling and an analysis of the observed radial velocities associated with the meteotsunami-inducing front. Results from a high-resolution atmospheric model and hydrodynamic model reveal that the formation of these destructive waves resulted from a combination of wave reflection, focusing, and edge waves that impacted the southern shore of Lake Erie. This event illustrates the unique danger posed by temporal lags between the inducing atmospheric conditions and resulting dangerous nearshore wave conditions.

  13. Decadal trends and common dynamics of the bio-optical and thermal characteristics of the African Great Lakes.

    Directory of Open Access Journals (Sweden)

    Steven Loiselle

    Full Text Available The Great Lakes of East Africa are among the world's most important freshwater ecosystems. Despite their importance in providing vital resources and ecosystem services, the impact of regional and global environmental drivers on this lacustrine system remains only partially understood. We make a systematic comparison of the dynamics of the bio-optical and thermal properties of thirteen of the largest African lakes between 2002 and 2011. Lake surface temperatures had a positive trend in all Great Lakes outside the latitude of 0° to 8° south, while the dynamics of those lakes within this latitude range were highly sensitive to global inter-annual climate drivers (i.e. El Niño Southern Oscillation. Lake surface temperature dynamics in nearly all lakes were found to be sensitive to the latitudinal position of the Inter Tropical Convergence Zone. Phytoplankton dynamics varied considerably between lakes, with increasing and decreasing trends. Intra-lake differences in both surface temperature and phytoplankton dynamics occurred for many of the larger lakes. This inter-comparison of bio-optical and thermal dynamics provides new insights into the response of these ecosystems to global and regional drivers.

  14. A comparison of sediment toxicity test methods at three Great Lake Areas of Concern

    Science.gov (United States)

    Burton, G. Allen; Ingersoll, Christopher G.; Burnett, LouAnn C.; Henry, Mary; Hinman, Mark L.; Klaine, Stephen J.; Landrum, Peter F.; Ross, Phillipe; Tuchman, Marc

    1996-01-01

    The significance of sediment contamination is often evaluated using sediment toxicity (bioassay) testing. There are relatively few “standardized” test methods for evaluating sediments. Popular sediment toxicity methods examine the extractable water (elutriate), interstitial water, or whole (bulk) sediment phases using test species spanning the aquatic food chain from bacteria to fish. The current study was designed to evaluate which toxicity tests were most useful in evaluations of sediment contamination at three Great Lake Areas of Concern. Responses of 24 different organisms including fish, mayflies, amphipods, midges, cladocerans, rotifers, macrophytes, algae, and bacteria were compared using whole sediment or elutriate toxicity assays. Sediments from several sites in the Buffalo River, Calumet River (Indiana Harbor), and Saginaw River were tested, as part of the U.S. Environmental Protection Agency's (USEPA) Assessment and Remediation of Contaminated Sediments (ARCS) Project. Results indicated several assays to be sensitive to sediment toxicity and able to discriminate between differing levels of toxicity. Many of the assay responses were significantly correlated to other toxicity responses and were similar based on factor analysis. For most applications, a test design consisting of two to three assays should adequately detect sediment toxicity, consisting of various groupings of the following species: Hyalella azteca, Ceriodaphnia dubia, Chironomus riparius, Chironomus tentans, Daphnia magna, Pimephales promelas, Hexagenia bilineata, Diporeia sp., Hydrilla verticillata, or Lemna minor.

  15. Fish as bioindicators in aquatic environmental pollution assessment: A case study in Lake Victoria wetlands, Uganda

    Science.gov (United States)

    Naigaga, I.; Kaiser, H.; Muller, W. J.; Ojok, L.; Mbabazi, D.; Magezi, G.; Muhumuza, E.

    Growing human population and industrialization have led to the pollution of most aquatic ecosystems and consequent deterioration in environmental water quality. Indicator organisms are needed to improve assessment programmes on the ecological impacts of anthropogenic activities on the aquatic environment. Fish have been widely documented as useful indicators of environmental water quality because of their differential sensitivity to pollution. This study investigated the environmental water quality of selected wetland ecosystems using fish as biological indicators. Fish community structure in relation to water quality was assessed in five wetlands along the shoreline of Lake Victoria from August 2006 to June 2008. Four urban wetlands were variedly impacted by anthropogenic activities while one rural wetland was less impacted, and served as a reference site. Fish species diversity, abundance and richness were assessed, and canonical correspondence analysis (CCA) was used to evaluate the relationship between the fish communities and environmental variables. Results revealed that urban effluent impacted negatively on water quality and consequently the fish community structure. A total of 29 fish species were recorded throughout the study with the lowest number of 15 species recorded in the most impacted site. Shannon diversity and Margalef species richness indices were highest at the references site and lowest at the most impacted site. Wetland haplochromis species dominated the reference site, while oreochromis species dominated the most impacted site. The inshore locations registered higher species diversity and low species richness than the offshore locations. Low dissolved oxygen, pH, secchi depth and high electrical conductivity, total phosphorous, and total nitrogen were strongly associated with the effluent-impacted sites and greatly influenced the fish community structure. This study recommends the use of fish as valuable biological indicators in aquatic

  16. Radionuclide concentrations in fish collected from Jemez, Nambe, and San Ildefonso Tribal Lakes

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Armstrong, D.R.; Salazar, J.G.

    1995-02-01

    Radionuclide concentrations ( 90 Sr, 137 Cs, 238 Pu, 239 Pu,and total uranium) were determined in fish collected from Jemez, Nambe, and San Ildefonso tribal lakes. With the exception of 137 Cs, all other radionuclides were not significantly different in (stocked) rainbow trout collected from Jemez and Nambe as compared with game fish collected from Abiquiu, Heron, and El Vado Reservoirs. Although 137 Cs levels in trout from Jemez (3.2 x 10 -2 pCi per dry gram) and Nambe (7.5 x 10 -2 pCi per dry gram) were significantly higher than 137 Cs concentrations in fish from Abiquiu, Heron, and El Vado, they were still well below the regional statistical (worldwide fallout) reference level (i.e., -2 pCi per dry gram). Game and nongame fish collected from San Ildefonso contained higher and significantly higher concentrations of uranium, respectively, as compared with fish collected from Abiquiu, Heron, and El Vado. The higher uranium concentrations in fish from San Ildefonso as compared with fish from Abiquiu, Heron, and El Vado were attributed to the higher natural soil uranium contents in the area as compared with the geology of the area upstream of San Ildefonso. The effective (radiation) dose equivalent (EDE) from consuming 46 lb of game fish from Jemez, Nambe, and San Ildefonso lakes, after natural background has been subtracted, was 0.013 (±0.002), 0.019 (±0.012), and 0.017 (±0.028) mrem/yr, respectively. Similarly, the EDE from consuming nongame fish from San Ildefonso was 0.0092 (±0.0084) mrem/yr. The highest calculated dose, based on the mean + 2 standard deviation (95% confidence level), was 0.073 mrem/yr; this was <0.08% of the International Commission on Radiological Protection permissible dose limit for protecting members of the public

  17. Bioaccumulation of PCB Contaminants in Five Fish Species in Utah Lake as Affected by Carp Removal

    Science.gov (United States)

    Sanjinez-Guzmán, V. A.; Cadet, E. L.; Crandall, T.; Chamberlain, T.; Rakotoarisaona, H.; Morris, P.

    2017-12-01

    State reports published by the Utah Department of Health (2005) and the Utah Department of Water Quality (2008) determined that there were elevated levels of PCBs (Polychlorinated biphenyls) that exceeded the EPA's cancer (0.02 𝑚𝑔 𝑘𝑔-1) and non-cancer screening levels (0.08 𝑚𝑔 𝑘𝑔-1) in two fish species from Utah Lake, the Common Carp (Cyprinus carpio) and the Channel Catfish (Ictalurus punctatus). Fish consumption advisories were issued for both of these fish species due to their health effects of PCBs. The Common Carp is a non-native predatory species that comprise 90% of the biomass in Utah Lake. As of September 2009, an extensive carp removal program was instituted by the Department of Natural Resources and began the removal of 75% of the carp population. The purpose of this study is to assess the impact of carp removal on PCB levels in five sport fish species consumed by Utah citizens. The fish being analyzed are the Common Carp (Cyprinus carpio), Channel Catfish (Ictalurus punctatus), Black Bullhead (Ameiurus melas), Walleye (Sander vitreus), and White Bass (Morone chrysops). One-hundred twenty (120) fish were collected from Utah Lake and subcategorized by their gender, tissue type (fillet and offal), weight, and size: small (under 33 cm), medium (33 cm - 43 cm), and large (greater than 43 cm). This was done in order to determine the variation of contaminant levels in each subcategory. PCB analysis was performed by Utility Testing Laboratory in Salt Lake City, Utah. Results show there has been a significant increase in PCB levels in all fish species in comparison with the state reports (2008). All fish species have exceeded the EPA cancer screening level, except for the fillet tissue of the White Bass species. In Common Carp fillet, and offal decreased concentrations of 11.80% and 23.72%, respectively. In Channel catfish: the PCB levels in the fillet increase by 87.93%, however, the offal levels

  18. Nourishment of perched sand dunes and the issue of erosion control in the Great Lakes

    Science.gov (United States)

    Marsh, William M.

    1990-09-01

    Although limited in coverage, perched sand dunes situated on high coastal bluffs are considered the most prized of Great Lakes dunes. Grand Sable Dunes on Lake Superior and Sleeping Bear Dunes on Lake Michigan are featured attractions of national lakeshores under National Park Service management. The source of sand for perched dunes is the high bluff along their lakeward edge. As onshore wind crosses the bluff, flow is accelerated upslope, resulting in greatly elevated levels of wind stress over the slope brow. On barren, sandy bluffs, wind erosion is concentrated in the brow zone, and for the Grand Sable Bluff, it averaged 1 m3/yr per linear meter along the highest sections for the period 1973 1983. This mechanism accounts for about 6,500 m3 of sand nourishment to the dunefield annually and clearly has been the predominant mechanism for the long-term development of the dunefield. However, wind erosion and dune nourishment are possible only where the bluff is denuded of plant cover by mass movements and related processes induced by wave erosion. In the Great Lakes, wave erosion and bluff retreat vary with lake levels; the nourishment of perched dunes is favored by high levels. Lake levels have been relatively high for the past 50 years, and shore erosion has become a major environmental issue leading property owners and politicians to support lake-level regulation. Trimming high water levels could reduce geomorphic activity on high bluffs and affect dune nourishment rates. Locally, nourishment also may be influenced by sediment accumulation associated with harbor protection facilities and by planting programs aimed at stabilizing dunes.

  19. Microhabitat influence on larval fish assemblages within ...

    Science.gov (United States)

    We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densities (including disturbed, preserved and post-restoration sites). Canonical correspondence analysis, relating species abundances to environmental variables revealed that plant species richness, turbidity and aquatic plant cover were most influential in structuring assemblages. Results from this microhabitat analysis at this crucial life stage has potential to inform wetland restoration efforts within the St. Louis River and other Great Lake coastal wetlands. not applicable

  20. Po-210 and Pb-210 in water and fish from Taboshar uranium mining Pit Lake, Tajikistan

    International Nuclear Information System (INIS)

    Skipperud, L.; Jørgensen, A.G.; Heier, L.S.; Salbu, B.; Rosseland, B.O.

    2013-01-01

    Polonium-210 in water and 210 Pb and 210 Po in different fish organs from 3 different fish species in Taboshar Pit Lake (n = 13), located in the uranium mining area in Tajikistan, and in Kairakkum Reservoir (reference lake, n = 3), have been determined as part of a Joint project between Norway, Kazakhstan, Kyrgyzstan and Tajikistan. The average activity concentration of 210 Pb and 210 Po in liver, muscle and bone of Carassius auratus was higher than the concentration in similar tissues of C. carpio and Sander lucioperca from the reference site. The accumulation of 210 Po was higher than for 210 Pb, and the accumulation of 210 Po was highest in the liver of C. auratus (3673 ± 434 Bq kg −1 ww). Although the average activity concentration of 210 Pb in liver and bones of C. auratus from Pit Lake were fairly similar, a huge variation in the liver activity concentrations (25–327 Bq kg −1 ww) was found. The results confirm direct uptake of unsupported 210 Po into the liver, and that the distributions of 210 Po and 210 Pb in fish organs were different. The BCF (L/kg) for 210 Po in bone, liver and muscle clearly demonstrates high accumulation of 210 Po in C. auratus, especially in the liver. The average BCFs of liver, bone and muscle were >1.4 × 10 5 , >2.5 × 10 4 and >1.4 × 10 4 , respectively. All fish in the Pit Lake were found to be in the same trophic level, however, a linear correlation between log 210 Po in liver and δ 15 N could indicate biomagnification of 210 Po in liver of C. auratus. In regards to the recommended Annual Limit of Intake (ALI) for 210 Po, the concentration of 210 Po in muscle tissues of C. auratus is alarming, as there is a high probability for the local population at risk to exceed the recommended ALI through consumption of fish from Taboshar Pit Lake

  1. Temporal variation in fish mercury concentrations within lakes from the western Aleutian Archipelago, Alaska.

    Directory of Open Access Journals (Sweden)

    Leah A Kenney

    Full Text Available We assessed temporal variation in mercury (Hg concentrations of threespine stickleback (Gasterosteus aculeatus from Agattu Island, Aleutian Archipelago, Alaska. Total Hg concentrations in whole-bodied stickleback were measured at two-week intervals from two sites in each of two lakes from June 1 to August 10, 2011 during the time period when lakes were ice-free. Across all sites and sampling events, stickleback Hg concentrations ranged from 0.37-1.07 µg/g dry weight (dw, with a mean (± SE of 0.55 ± 0.01 µg/g dw. Mean fish Hg concentrations declined by 9% during the study period, from 0.57 ± 0.01 µg/g dw in early June to 0.52 ± 0.01 µg/g dw in mid-August. Mean fish Hg concentrations were 6% higher in Loon Lake (0.56 ± 0.01 µg/g dw than in Lake 696 (0.53 ± 0.01 µg/g dw, and 4% higher in males (0.56 ± 0.01 µg/g dw than in females (0.54 ± 0.01 µg/g dw. Loon Lake was distinguished from Lake 696 by the presence of piscivorous waterbirds during the breeding season. Mercury concentrations in stickleback from Agattu Island were higher than would be expected for an area without known point sources of Hg pollution, and high enough to be of concern to the health of piscivorous wildlife.

  2. Temporal variation in fish mercury concentrations within lakes from the western Aleutian Archipelago, Alaska

    Science.gov (United States)

    Kenney, Leah A.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; von Hippel, Frank A.

    2014-01-01

    We assessed temporal variation in mercury (Hg) concentrations of threespine stickleback (Gasterosteus aculeatus) from Agattu Island, Aleutian Archipelago, Alaska. Total Hg concentrations in whole-bodied stickleback were measured at two-week intervals from two sites in each of two lakes from June 1 to August 10, 2011 during the time period when lakes were ice-free. Across all sites and sampling events, stickleback Hg concentrations ranged from 0.37–1.07 µg/g dry weight (dw), with a mean (± SE) of 0.55±0.01 µg/g dw. Mean fish Hg concentrations declined by 9% during the study period, from 0.57±0.01 µg/g dw in early June to 0.52±0.01 µg/g dw in mid-August. Mean fish Hg concentrations were 6% higher in Loon Lake (0.56±0.01 µg/g dw) than in Lake 696 (0.53±0.01 µg/g dw), and 4% higher in males (0.56±0.01 µg/g dw) than in females (0.54±0.01 µg/g dw). Loon Lake was distinguished from Lake 696 by the presence of piscivorous waterbirds during the breeding season. Mercury concentrations in stickleback from Agattu Island were higher than would be expected for an area without known point sources of Hg pollution, and high enough to be of concern to the health of piscivorous wildlife.

  3. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    Science.gov (United States)

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  4. Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Ziegeweid, Jeffrey R.

    2017-07-20

    Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large

  5. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.

  6. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Lake Trout Spawning Habitat Mapping in the Drummond Island Refuge, northern Lake Huron

    Science.gov (United States)

    Wattrus, N. J.; Binder, T.

    2012-12-01

    Until the 1950s, lake trout supported a valuable commercial fishery in the Great Lakes. The introduction of sea lamprey into the Great Lakes and overfishing resulted in the loss of most populations. Despite consistent stocking efforts since the 1960s, restoration of these populations has been slow. The reasons are numerous, but may be related to differences in the spawning behavior between hatchery and wild trout. A four-year study initiated in 2010, utilizes acoustic telemetry to characterize and compare the spawning behaviors of hatchery and wild lake trout in the Drummond Island Refuge in northern Lake Huron. In this project, the movement of tagged fish are monitored by an array of over 125 lake floor hydrophones during the fall spawning period. Fish behavior is overlaid over detailed bathymetric and substrate data and compared with environmental variables (e.g. water temperature, wind speed and direction, and wave height and direction) to develop a conceptual behavioral model. Sites suspected of being spawning sites based upon telemetry data are verified through the use of divers and trapping eggs and fry. Prior to this study, the factors that influenced how the spawning fish utilize the lake floor shoals have been poorly understood. Among the factors thought to impact spawning success were: bathymetry and substrate composition. Diver and telemetry data suggest that the fish(both hatchery raised and wild) are particularly attracted to rocky substrates and that fragment size is important. High resolution multibeam bathymetric surveys conducted in 2010 and 2011 have been used to characterize the shape and composition of the lake floor in the study area. Classification of the substrate is a labor intensive process requiring divers, drop cameras and sediment sampling. To improve this, the traditional approach has been to use supervised and unsupervised classification techniques that are based upon measured acoustic backscatter from an echosounder or sidescan sonar

  7. An Overview of Sediment Organic Matter Records of Human Eutrophication in the Laurentian Great Lakes Region

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Philip A. [University of Michigan, Department of Geological Sciences (United States)], E-mail: pameyers@umich.ed

    2006-12-15

    The isotopic and molecular compositions of organic matter buried in lake sediments provide information that helps to reconstruct past environmental conditions and to assess impacts of humans on local ecosystems. This overview of sedimentary records from the North American Great Lakes region describes examples of applications of organic geochemistry to paleolimnological reconstructions. These lakes experienced a succession of human-induced environmental changes that started after completion of the Erie Canal in 1825. Agricultural deforestation in the mid-nineteenth century released soil nutrients that increased algal productivity and caused an associated increase in algal biomarkers in sediment records. Eutrophication that accompanied magnified delivery of municipal nutrients to the lakes in the 1960s and 1970s created excursions to less negative {delta}{sup 13}C values in sediment organic matter. Increased organic carbon mass accumulation rates mirror the isotopic evidence of eutrophication in the Great Lakes.

  8. Bioaccumulation of organochlorine pollutants in the fish community in Lake Arungen, Norway

    International Nuclear Information System (INIS)

    Sharma, Chhatra Mani; Rosseland, Bjorn Olav; Almvik, Marit; Eklo, Ole Martin

    2009-01-01

    Organochlorine pollutants in the major fish species (pike Esox lucius, perch Perca fluviatilis, and roach Rutilus rutilus) of Lake Arungen, Norway, were investigated after an extensive removal of large pike in 2004. The organochlorine pollutants detected in fish liver samples in 2005 were dichlorodiphenyltrichloroethane (DDTs), polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and heptachlor epoxide (HCE). DDTs were the dominant among all analyzed OCs. ΣPCB and HCB, detected in fish from two clearly distinct trophic levels (prey and predators), give an indication of biomagnification. All OC concentrations in female pike were significantly lower compared to males, which might be due to the removal of high concentrations of pollutants in roe during spawning. - Organochlorine pollutants in fish tissues tend to magnify up the food chain

  9. Indiscriminate Fisheries: Understanding the Foodweb of the Great Tonle Sap Lake, Cambodia

    Science.gov (United States)

    Hannah, L.; Kaufman, L.

    2014-12-01

    Indiscriminate fisheries target multiple species with multiple gear types. In contrast to well-studied, industrialized single-species, single-gear fisheries, little theory and little but growing literature on practice exists for indiscriminate fisheries. Indiscriminate fisheries are disproportionately important in low-income countries, providing most of the animal protein intake in countries such as Cambodia and Bangladesh. Indiscriminate fisheries may be either freshwater or marine, but here we focus on what may be the largest freshwater indiscriminate fishery in the world. Cambodia's freshwater fishery stands out because it provides the majority of animal protein to over 3 million people living in poverty. The fishery of the Tonle Sap lake is one of the largest, if not the largest contributor to this freshwater fish take, and is perhaps the largest freshwater fishery in the world. In contrast to its importance, very little is known about the foodweb ecology of this system, or how community management which now governs the entire fishery, interacts with biological and physical factors such as climate change.The foodweb of the Tonle Sap has changed dramatically due to high fishing pressure. A system that once harbored giant catfish, barbs and stingrays is now dominated by fish under 20cm in length. The simplification of the system may not have reduced its productivity. Theory of indiscriminate fisheries suggests that r-selected species may be favored and that biomass available for harvest may be maximized, while being more sensitive to environmental fluctuations such as climate change due to food web simplification. The r-selection and size predictions of theory have been confirmed by observations of the Tonle Sap. Early model results suggest sensitivity to environmental stochasticity. The interaction of these ecological changes with social systems will be tested in the Tonle Sap. Fisheries management across the lake has been transferred to community management

  10. Quantitative interpretation of great lakes remote sensing data

    International Nuclear Information System (INIS)

    Shook, D.F.; Salzman, J.; Svehla, R.A.; Gedney, R.T.

    1980-01-01

    Remote sensing has been applied in the past to the surveillance of Great Lakes water quality, but it has been only partially successful because of the completely empirical approach taken in relating the multispectral scanning data at visible and near-infrared wavelengths to water parameters. Any remote sensing approach using water color information must take into account (1) the existence of many different organic and inorganic species throughtout the Greak Lakes, (2) the occurrence of a mixture of species in most locations, and (3) spatial (inter- and interlake as well as vertical) variations in types and concentrations of species. The radiative transfer model provides a potential method for an orderly analysis of remote sensing data and a physical basis for developing quantitative algorithms. Predictions and field measurements of volume reflectances are presented which clearly show the advantage of using a radiative transfer model. Spectral absorptance and backscattering coefficients for two inorganic sediments are reported

  11. trace metals in selected fish species from lakes awassa and ziway

    African Journals Online (AJOL)

    Preferred Customer

    were collected from six sampling stations in Lakes Awassa and Ziway, Ethiopia. The edible ... Concentrations of trace elements in the fishes ranged (µg element/g dry mass): Zn. 23.04–30.92; Fe ...... water and soil sediments from some fishponds. Int. J. Environ. ... radioactive contaminants in the aquatic environ- ment and ...

  12. Environmental Sensitivity Index (ESI) Atlas: Great Lakes, 1995-1998 (NODC Accession 0013820)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set comprises the Environmental Sensitivity Index (ESI) maps in .PDF format for the following Great Lakes and associated waterways: north, east, and west...

  13. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  14. Recovery of a wild fish population from whole-lake additions of a synthetic estrogen.

    Science.gov (United States)

    Blanchfield, Paul J; Kidd, Karen A; Docker, Margaret F; Palace, Vince P; Park, Brad J; Postma, Lianne D

    2015-03-03

    Despite widespread recognition that municipal wastewaters contain natural and synthetic estrogens, which interfere with development and reproduction of fishes in freshwaters worldwide, there are limited data on the extent to which natural populations of fish can recover from exposure to these compounds. We conducted whole-lake additions of an active component of the birth control pill (17α-ethynylestradiol; EE2) that resulted in the collapse of the fathead minnow (Pimephales promelas) population. Here we quantify physiological, population, and genetic characteristics of this population over the 7 years after EE2 additions stopped to determine if complete recovery was possible. By 3 years post-treatment, whole-body vitellogenin concentrations in male fathead minnow had returned to baseline, and testicular abnormalities were absent. In the spring of the fourth year, adult size-frequency distribution and abundance had returned to pretreatment levels. Microsatellite analyses clearly showed that postrecovery fish were descendants of the original EE2-treated population. Results from this whole-lake experiment demonstrate that fish can recover from EE2 exposure at the biochemical through population levels, although the timelines to do so are long for multigenerational exposures. These results suggest that wastewater treatment facilities that reduce discharges of estrogens and their mimics can improve the health of resident fish populations in their receiving environments.

  15. A new cichlid fish in the Sahara: The Ounianga Serir lakes (Chad), a biodiversity hotspot in the desert.

    Science.gov (United States)

    Trape, Sébastien

    In the rare perennial bodies of water of the Sahara desert, only a few fish species have survived to increasing aridification since the end of the last humid period at the Holocene, approximately 5000 years BP. Here, I report the occurrence of an undescribed haplochomine cichlid fish in Lake Boukou, one of the seven Ounianga Serir lakes (Chad). These lakes are located in one of the most arid areas of the Sahara desert, but they persist by virtue of subsurface inflow of fresh groundwater from a large fossil aquifer. Astatotilapia tchadensis sp. nov. is characterized by a black bar between eye and corner of mouth, rounded orange spots on anal fin, scales ctenoid, lower limb of first gill arch with 7-8 gill rackers, dorsal fin with 13-14 spines and 9-11 soft rays, anal fin with 3 spines and 8-9 soft rays, 29 or 30 lateral line scales, and lower pharyngeal dentition with enlarged molariform teeth. The new species is easily distinguished from A. desfontainii and A. flaviijosephii, the northernmost haplochromine species currently isolated from its other group members, and appears close to an unnamed species of Lake Chad basin. Ounianga Serir lakes and especially Lake Boukou present a remarkable diversity of fish, the highest known in the Sahara desert with a total of at least six fish species belonging to six genera and three families. They also constitute an exceptional natural landscape inscribed on the UNESCO world heritage list in 2012 and a biodiversity hotspot for desert vertebrate species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Rating impacts in a multi-stressor world: a quantitative assessment of 50 stressors affecting the Great Lakes.

    Science.gov (United States)

    Smith, Sigrid D P; Mcintyre, Peter B; Halpern, Benjamin S; Cooke, Roger M; Marino, Adrienne L; Boyer, Gregory L; Buchsbaum, Andy; Burton, G A; Campbell, Linda M; Ciborowski, Jan J H; Doran, Patrick J; Infante, Dana M; Johnson, Lucinda B; Read, Jennifer G; Rose, Joan B; Rutherford, Edward S; Steinman, Alan D; Allan, J David

    2015-04-01

    Ecosystems often experience multiple environmental stressors simultaneously that can differ widely in their pathways and strengths of impact. Differences in the relative impact of environmental stressors can guide restoration and management prioritization, but few studies have empirically assessed a comprehensive suite of stressors acting on a given ecosystem. To fill this gap in the Laurentian Great Lakes, where considerable restoration investments are currently underway, we used expert elicitation via a detailed online survey to develop ratings of the relative impacts of 50 potential stressors. Highlighting the multiplicity of stressors in this system, experts assessed all 50 stressors as having some impact on ecosystem condition, but ratings differed greatly among stressors. Individual stressors related to invasive and nuisance species (e.g., dreissenid mussels and ballast invasion risk) and climate change were assessed as having the greatest potential impacts. These results mark a shift away from the longstanding emphasis on nonpoint phosphorus and persistent bioaccumulative toxic substances in the Great Lakes. Differences in impact ratings among lakes and ecosystem zones were weak, and experts exhibited surprisingly high levels of agreement on the relative impacts of most stressors. Our results provide a basin-wide, quantitative summary of expert opinion on the present-day influence of all major Great Lakes stressors. The resulting ratings can facilitate prioritizing stressors to achieve management objectives in a given location, as well as providing a baseline for future stressor impact assessments in the Great Lakes and elsewhere.

  17. Comparing the Performance of Protected and Unprotected Areas in Conserving Freshwater Fish Abundance and Biodiversity in Lake Tanganyika, Tanzania

    Directory of Open Access Journals (Sweden)

    Emmanuel Andrew Sweke

    2016-01-01

    Full Text Available Marine protected areas have been shown to conserve aquatic resources including fish, but few studies have been conducted of protected areas in freshwater environments. This is particularly true of Lake Tanganyika, Tanzania. To better conserve the lake’s biodiversity, an understanding of the role played by protected areas in conserving fish abundance and diversity is needed. Sampling of fish and environmental parameters was performed within the Mahale Mountains National Park (MMNP and nearby unprotected areas at depths between 5 m and 10 m. Twelve replicates of fish sampling were performed at each site using gillnets set perpendicularly to the shore. Mann-Whitney tests were performed, and the total amount of species turnover was calculated. A total of 518 individual fish from 57 species were recorded in the survey. The fish weight abundance was fivefold greater in the MMNP than in the unprotected areas. Fish abundance and diversity were higher in the MMNP than in the unprotected areas and decreased with distance from it. Our findings confirmed the importance of the protected area in conserving fish resources in Lake Tanganyika. The study provides baseline information for management of the resources and guiding future studies in the lake and other related ecosystems. Management approaches that foster awareness and engage with communities surrounding the MMNP are recommended for successful conservation of the resources in the region.

  18. Occurrence of parasites of the genus Eustrongylides spp. (Nematoda: Dioctophymatidae in fish caught in Trasimeno lake, Italy

    Directory of Open Access Journals (Sweden)

    Raffaella Branciari

    2016-11-01

    Full Text Available Eustrongylides spp. is considered a freshwater fish zoonotic nematode. In the present study, the prevalence of Eustrongylides spp. in six edible fish (European perch - Perca fluviatilis, goldfish - Carassius auratus, largemouth black bass - Micropterus salmoides, tench- Tinca tinca, carp - Cyprinus carpio and sand smelt - Atherina boyeri of Trasimeno lake was surveyed. The investigations were conducted from October 2014 to September 2015 and 384 specimens per species for each season were caught in Trasimeno lake and examined for the presence of larvae in the abdominal cavity and muscle. The presence of nematodes in the abdominal cavity and musculature was revealed in three fish species. The prevalence of Eustrongylides spp. infection was 6.84, 1.89 and 0.13% in perch, largemouth black bass and sand smelt, respectively. The number of parasites per fish was only one in largemouth black bass and sand smelt and ranged from one up to three in perch. This study states that the European perch, largemouth black bass and sand smelt of Trasimeno lake are infected with zoonotic parasites; therefore, food business operators have to take appropriate measures to guarantee the health of consumers.

  19. 2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component

    Science.gov (United States)

    This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.

  20. How systematic age underestimation can impede understanding of fish population dynamics: Lessons learned from a Lake Superior cisco stock

    Science.gov (United States)

    Yule, D.L.; Stockwell, J.D.; Black, J.A.; Cullis, K.I.; Cholwek, G.A.; Myers, J.T.

    2008-01-01

    Systematic underestimation of fish age can impede understanding of recruitment variability and adaptive strategies (like longevity) and can bias estimates of survivorship. We suspected that previous estimates of annual survival (S; range = 0.20-0.44) for Lake Superior ciscoes Coregonus artedi developed from scale ages were biased low. To test this hypothesis, we estimated the total instantaneous mortality rate of adult ciscoes from the Thunder Bay, Ontario, stock by use of cohort-based catch curves developed from commercial gill-net catches and otolith-aged fish. Mean S based on otolith ages was greater for adult females (0.80) than for adult males (0.75), but these differences were not significant. Applying the results of a study of agreement between scale and otolith ages, we modeled a scale age for each otolith-aged fish to reconstruct catch curves. Using modeled scale ages, estimates of S (0.42 for females, 0.36 for males) were comparable with those reported in past studies. We conducted a November 2005 acoustic and midwater trawl survey to estimate the abundance of ciscoes when the fish were being harvested for roe. Estimated exploitation rates were 0.085 for females and 0.025 for males, and the instantaneous rates of fishing mortality were 0.089 for females and 0.025 for males. The instantaneous rates of natural mortality were 0.131 and 0.265 for females and males, respectively. Using otolith ages, we found that strong year-classes at large during November 2005 were caught in high numbers as age-1 fish in previous annual bottom trawl surveys, whereas weak or absent year-classes were not. For decades, large-scale fisheries on the Great Lakes were allowed to operate because ciscoes were assumed to be short lived and to have regular recruitment. We postulate that the collapse of these fisheries was linked in part to a misunderstanding of cisco biology driven by scale-ageing error. ?? Copyright by the American Fisheries Society 2008.

  1. Bioaccumulation of persistent organic pollutants (POPs) in fish species from Lake Koka, Ethiopia: The influence of lipid content and trophic position

    International Nuclear Information System (INIS)

    Deribe, Ermias; Rosseland, Bjørn Olav; Borgstrøm, Reidar; Salbu, Brit; Gebremariam, Zinabu; Dadebo, Elias; Norli, Hans Ragnar; Eklo, Ole Martin

    2011-01-01

    The concentrations and bioaccumulation of persistent organic pollutants (POPs) were determined in four fish species from Lake Koka, Ethiopia, representing 2–3 levels in the food chain of the lake. Dichlorodiphenyltrichloroethanes (DDTs), endosulfans, polychlorinated biphenyls (PCBs) and chlorpyrifos were identified, with DDTs as the most predominant pesticide, with concentration ranging from 0.05 to 72.53 ng g −1 wet weight (ww). All fish tissue samples collected from different species of the lake contained residues of DDTs. The maximum level of DDTs was found in the fattiest, African sharptooth catfish (Clarias gariepinus) sampled from the lake, with a mean concentration of 15.15 ng g −1 ww. The significant (P 15 N indicates that DDTs biomagnified in the food web of the lake. The 4,4′-DDE to 4,4′-DDT ratio in Oreochromis niloticus (0.6) and Cyprinus carpio (0.5) were below 1, indicating ongoing use of DDTs in the study area and recent exposure of these fish species.

  2. Study of pike-perch (Sander lucioperca fishery from Razim Lake, Danube delta Romania

    Directory of Open Access Journals (Sweden)

    CERNIȘENCU Irina

    2018-05-01

    Full Text Available The Razim Lake is a great part of the Danube Delta Biosphere Reserve (DDBR, with a surface of 54,000 ha. Fish fauna from Razim lake include pike-perch (Sander lucioperca as one of the main top predators of fish community, however ecological significance indicates accessory species, recedent as dominance, sometimes been subrecedent species like in 2011 and 2012 sampling, but constant species regarding frequency in sampling. Otherwise, pike-perch is an important value DDBR fishery species with an average of 5% in total catch, range 2-10%, from what Razim lake contributes with average 71%, range 41-95% in the 1960-2015 period. Razim Lake has been in average 13%, range 1-40% from total Razim lake catch, in the same period of time. Since in RBDD has been fishing up to 2000 fisherman, in Razim lake activated up to 500 fishermen, however nowadays number of fishermen was regulated at lower range. Catch data series shows a continuous stock decline trend, considered to be a consequences of habitat degradation and over-exploitation. Fish stock estimation in last 15 years (2001-2016 support the hypothesis of over-exploitation. Based on length frequency structure of landings, the growth and exploitation parameters have been estimated as well as the average biomass and the maximum sustainable yields for the Razim lake pike-perch stock. Recommendation concerning fisheries management towards sustainable fishing of pike-perch stock, as increasing of cod-end seine mesh size and decreasing of fishing effort regulation are outlined.

  3. Constraints and motivations related to fishing along the Lake Ontario coast

    Science.gov (United States)

    Matthew P. Brincka; Diane M. Kuehn; Valerie Luzadis

    2012-01-01

    The number of nonresident anglers along the Lake Ontario coast has decreased over the past 15 years. Therefore, in order to sustain a strong sport fishing industry, local businesses and tourism promoters might want to tap into the large resident angler market group. This study examines resident anglers' social, environmental, and economic constraints/facilitators...

  4. Assessment of fishing gear and catch rate in Oguta Lake, south ...

    African Journals Online (AJOL)

    This study was carried out in Oguta Lake, Imo State, Nigeria, from January, 2012 to December, 2013 at five stations (Onu Utu, Okposha, Ogbe Hausa, Osemotor and Ede Ngwugwu) to ascertain the percentage abundance and catch rate of gear and craft. The average weight of fish caught per canoe per day ranged between ...

  5. 75 FR 18451 - Safety and Security Zones; Tall Ships Challenge 2010, Great Lakes; Cleveland, OH; Bay City, MI...

    Science.gov (United States)

    2010-04-12

    ...-AA87 Safety and Security Zones; Tall Ships Challenge 2010, Great Lakes; Cleveland, OH; Bay City, MI.... SUMMARY: The Coast Guard proposes to establish temporary safety and security zones around each Tall Ship visiting the Great Lakes during the Tall Ships Challenge 2010 race series. These safety and security zones...

  6. A description of the nearshore fish communities in the Huron-Erie Corridor using multiple gear types

    Science.gov (United States)

    Francis, James T.; Chiotti, Justin A.; Boase, James C.; Thomas, Mike V.; Manny, Bruce A.; Roseman, Edward F.

    2013-01-01

    Great Lakes coastal wetlands provide a critical habitat for many fish species throughout their life cycles. Once home to one of the largest wetland complexes in the Great Lakes, coastal wetlands in the Huron–Erie Corridor (HEC) have decreased dramatically since the early 1900s. We characterized the nearshore fish communities at three different wetland complexes in the HEC using electrofishing, seines, and fyke nets. Species richness was highest in the Detroit River (63), followed by the St. Clair Delta (56), and Western Lake Erie (47). The nearshore fish communities in the Detroit River and St. Clair Delta consisted primarily of shiners, bluntnose minnow, centrarchids, and brook silverside, while the Western Lake Erie sites consisted of high proportions of non-native taxa including common carp, gizzard shad, goldfish, and white perch. Species richness estimates using individual-based rarefaction curves were higher when using electrofishing data compared to fyke nets or seine hauls at each wetland. Twelve fish species were captured exclusively during electrofishing assessments, while one species was captured exclusively in fyke nets, and none exclusively during seine hauls. Western Lake Erie wetlands were more indicative of degraded systems with lower species richness, lower proportion of turbidity intolerant species, and increased abundance of non-native taxa. This work highlights the importance of coastal wetlands in the HEC by capturing 69 different fish species utilizing these wetlands to fulfill life history requirements and provides insight when selecting gears to sample nearshore littoral areas.

  7. Great Lakes modeling: Are the mathematics outpacing the data and our understanding of the system?

    Science.gov (United States)

    Mathematical modeling in the Great Lakes has come a long way from the pioneering work done by Manhattan College in the 1970s, when the models operated on coarse computational grids (often lake-wide) and used simple eutrophication formulations. Moving forward 40 years, we are now...

  8. The widespread influence of Great Lakes microseisms across the United States revealed by the 2014 polar vortex

    Science.gov (United States)

    Anthony, Robert; Ringler, Adam; Wilson, David

    2018-01-01

    During the winter of 2014, a weak polar vortex brought record cold temperatures to the north‐central (“Midwest”) United States, and the Great Lakes reached the highest extent of ice coverage (92.5%) since 1979. This event shut down the generation of seismic signals caused by wind‐driven wave action within the lakes (termed “lake microseisms”), giving an unprecedented opportunity to isolate and characterize these novel signals through comparison with nonfrozen time periods. Using seismic records at 72 broadband stations, we observe Great Lakes microseism signals at distances >300 km from the lakes. In contrast to conventional oceanic microseisms, there is no clear relationship between the frequency content of the seismic signals (observed from ~0.5–5‐s period) and the dominant swell period or resonance periods of the lakes based on their bathymetric profiles. Thus, the exact generation mechanism is not readily explained by conventional microseism theory and warrants further investigation.

  9. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  10. Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers.

    Science.gov (United States)

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2014-08-19

    Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and β-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.

  11. Tracing multi-habitat support of coastal fishes

    Science.gov (United States)

    Hydrologic linkages among coastal wetland and nearshore areas allow coastal fish to move among the habitats, which has led to a variety of habitat use patterns. In the Great Lakes, fine-scale microchemical analyses of yellow perch otoliths have revealed life-history categories th...

  12. The role of light for fish-zooplankton-phytoplankton interactions during winter in shallow lakes - a climate change perspective

    DEFF Research Database (Denmark)

    Bramm, Mette Elisabeth; Lassen, Majbritt Kjeldahl; Liboriussen, Lone

    2009-01-01

    in the life history of copepods. The strength of the fish effect on zooplankton biomass diminished with declining light and the effect of light was strongest in the presence of fish. 4. When fish were present, reduced light led to a shift from rotifers to calanoid copepods in the clear lake and from rotifers...... in winter light conditions are needed in order to have a significant effect on the plankton community. The change in light occurring when such plankton communities move northwards in response to global warming will mostly be of modest importance for this lake type, at least for the rest of this century...

  13. Stakeholder views of management and decision support tools to integrate climate change into Great Lakes Lake Whitefish management

    Science.gov (United States)

    Lynch, Abigail J.; Taylor, William W.; McCright, Aaron M.

    2016-01-01

    Decision support tools can aid decision making by systematically incorporating information, accounting for uncertainties, and facilitating evaluation between alternatives. Without user buy-in, however, decision support tools can fail to influence decision-making processes. We surveyed fishery researchers, managers, and fishers affiliated with the Lake Whitefish Coregonus clupeaformis fishery in the 1836 Treaty Waters of Lakes Huron, Michigan, and Superior to assess opinions of current and future management needs to identify barriers to, and opportunities for, developing a decision support tool based on Lake Whitefish recruitment projections with climate change. Approximately 64% of 39 respondents were satisfied with current management, and nearly 85% agreed that science was well integrated into management programs. Though decision support tools can facilitate science integration into management, respondents suggest that they face significant implementation barriers, including lack of political will to change management and perceived uncertainty in decision support outputs. Recommendations from this survey can inform development of decision support tools for fishery management in the Great Lakes and other regions.

  14. Some peculiarities of fish abundance, species and sizes distribution, and spacing

    International Nuclear Information System (INIS)

    Astrauskas, A.; Bernotas, E.; Jovaisha, R.

    1995-01-01

    During the construction and exploitation process of Ignalina NPP the abundance of fishes has dropped, and especially stenothermic species (smelt and vendace). The general increase of fish abundance is observed in recent years (1992-1994). This is linked with changes of fish species and their adaptation to the new environmental conditions. Now the partial renovation of vendace abundance is observed, too. It is a result of free feeding recess coming out as the smelt dramatically decreased. Before now the ecosystem of the lake is greatly disbalanced due to antropogenetic impact of the NPP. It's partial stabilisation (but on the essentially high level) is possible only in some generations of fish living in the lake. (author). 18 refs., 1 tab., 11 figs

  15. Science support for evaluating natural recovery of polychlorinated biphenyl concentrations in fish from Crab Orchard Lake, Crab Orchard National Wildlife Refuge, Illinois

    Science.gov (United States)

    Kunz, Bethany K.; Hinck, Jo E.; Calfee, Robin D.; Linder, Greg L.; Little, Edward E.

    2018-05-11

    IntroductionCrab Orchard Lake in southern Illinois is one of the largest and most popular recreational lakes in the state. Construction of the nearly 7,000-acre reservoir in the late 1930s created employment opportunities through the Works Progress Administration, and the lake itself was intended to supply water, control flooding, and provide recreational opportunities for local communities (Stall, 1954). In 1942, the Department of War appropriated or purchased more than 20,000 acres of land around Crab Orchard Lake and constructed the Illinois Ordnance Plant, which manufactured bombs and anti-tank mines during World War II. After the war, an Act of Congress transferred the property to the U.S. Department of the Interior. Crab Orchard National Wildlife Refuge was established on August 5, 1947, for the joint purposes of wildlife conservation, agriculture, recreation, and industry. Production of explosives continued, but new industries also moved onsite. More than 200 tenants have held leases with Crab Orchard National Wildlife Refuge and have operated a variety of manufacturing plants (electrical components, plated metal parts, ink, machined parts, painted products, and boats) on-site. Soils, water, and sediments in several areas of the refuge were contaminated with hazardous substances from handling and disposal methods that are no longer acceptable environmental practice (for example, direct discharge to surface water, use of unlined landfills).Polychlorinated biphenyl (PCB) contamination at the refuge was identified in the 1970s, and a PCB-based fish-consumption advisory has been in effect since 1988 for Crab Orchard Lake. The present advisory covers common carp (Cyprinus carpio) and channel catfish (Ictalurus punctatus); see Illinois Department of Public Health (2017). Some of the most contaminated areas of the refuge were actively remediated, and natural ecosystem recovery processes are expected to further reduce residual PCB concentrations in the lake. The U

  16. Detection of the spatiotemporal trends of mercury in Lake Erie fish communities: a Bayesian approach.

    Science.gov (United States)

    Azim, M Ekram; Kumarappah, Ananthavalli; Bhavsar, Satyendra P; Backus, Sean M; Arhonditsis, George

    2011-03-15

    The temporal trends of total mercury (THg) in four fish species in Lake Erie were evaluated based on 35 years of fish contaminant data. Our Bayesian statistical approach consists of three steps aiming to address different questions. First, we used the exponential and mixed-order decay models to assess the declining rates in four intensively sampled fish species, i.e., walleye (Stizostedion vitreum), yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieui), and white bass (Morone chrysops). Because the two models postulate monotonic decrease of the THg levels, we included first- and second-order random walk terms in our statistical formulations to accommodate nonmonotonic patterns in the data time series. Our analysis identified a recent increase in the THg concentrations, particularly after the mid-1990s. In the second step, we used double exponential models to quantify the relative magnitude of the THg trends depending on the type of data used (skinless-boneless fillet versus whole fish data) and the fish species examined. The observed THg concentrations were significantly higher in skinless boneless fillet than in whole fish portions, while the whole fish portions of walleye exhibited faster decline rates and slower rates of increase relative to the skinless boneless fillet data. Our analysis also shows lower decline rates and higher rates of increase in walleye relative to the other three fish species examined. The food web structural shifts induced by the invasive species (dreissenid mussels and round goby) may be associated with the recent THg trends in Lake Erie fish.

  17. Diel vertical migration of major fish-species in Lake Victoria, East Africa

    NARCIS (Netherlands)

    Goudswaard, P.C.; Wanink, J.H.; Witte, F.; Katunzi, E.F.B.; Berger, M.R.; Postma, D.J.

    2004-01-01

    Understanding of migration patterns is essential in the interpretation of hydro-acoustic stock assessment data of partly demersal partly pelagic fish stocks. In this paper we provide this kind of information for some species that were common in the Mwanza Gulf of Lake Victoria in the 1980s, before

  18. Diel vertical migration of major fish-species in Lake Victoria, East Africa.

    NARCIS (Netherlands)

    Goudswaard, KPC; Wanink, JH; Witte, F; Katunzi, EFB; Berger, MR; Postma, DJ

    2004-01-01

    Understanding of migration patterns is essential in the interpretation of hydro-acoustic stock assessment data of partly demersal partly pelagic fish stocks. In this paper we provide this kind of information for some species that were common in the Mwanza Gulf of Lake Victoria in the 1980s, before

  19. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids

    DEFF Research Database (Denmark)

    Jeppesen, E.; Christoffersen, K.; Landkildehus, F.

    2001-01-01

    We studied the trophic structure in the pelagial and crustacean remains in the surface 1 cm of the sediment of 13 shallow, high arctic lakes in northeast Greenland (74 N). Seven lakes were fishless, while the remaining six hosted a dwarf form of Arctic charr (Salvelinus alpinus). In fishless lakes...... sp. in lakes with Lepidurus, while they were abundant in lakes with fish. The low abundance in fishless lakes could not be explained by damage of crustacean remains caused by Lepidurus feeding in the sediment, because remains of the more soft-shelled, pelagic-living Daphnia were abundant...... in the sediment of these lakes. No significant differences between lakes with and without fish were found in chlorophyll a, total phosphorus, total nitrogen, conductivity or temperature, suggesting that the observed link between Lepidurus arcticus and the benthic crustacean community is causal. Consequently...

  20. Polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, naphthalenes and polybrominated diphenyl ethers in the edible fish caught from the Baltic Sea and lakes in Finland

    International Nuclear Information System (INIS)

    Isosaari, Pirjo; Hallikainen, Anja; Kiviranta, Hannu; Vuorinen, Pekka J.; Parmanne, Raimo; Koistinen, Jaana; Vartiainen, Terttu

    2006-01-01

    A total of 156 fish composite samples were collected from five areas of the Baltic Sea and from three lakes and analysed for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and polybrominated diphenyl ethers (PBDEs). The European Union's maximum permissible level for PCDD/Fs, 4 pg WHO-TEQ/g fresh weight (fw), was exceeded in salmon, river lamprey and Baltic herring. In other species from the Baltic Sea, the 90th percentile was 3.42 pg WHO PCDD/F -TEQ/g fw. In the lake fish, the concentrations of PCDD/Fs, PCBs and PCNs were only 29-46% of those in the same species caught from the Baltic Sea, whereas the concentrations of PBDEs in the lake fish were as high as in the Baltic Sea fish. Dioxin-like PCBs contributed to the total dioxin-like toxicity of PCBs and PCDD/Fs by 49 ± 12% in all the analysed samples. - Lake fish is less contaminated with dioxins, PCBs and chloronaphthalenes than Baltic Sea fish but similarly contaminated with polybrominated diphenyl ethers

  1. Occurrence of alkylphenolic substances in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada

    International Nuclear Information System (INIS)

    Mayer, T.; Bennie, D.; Rosa, F.; Rekas, G.; Palabrica, V.; Schachtschneider, J.

    2007-01-01

    Occurrence and fate of alkylphenols (APs), known endocrine disruptors, were investigated in a Great Lakes coastal wetland, Cootes Paradise, ON. The wetland, which receives discharges from a Wastewater Treatment Plant (WTP) and several Combined Sewer Overflows (CSOs), is an important spawning ground for fish and crucial habitat for other fauna. Elevated concentrations of nonylphenol ethoxylates (NPEs) and their degradation product nonylphenol (NP) were found in water and sediment samples near the sources. Since transfer of APs through the food chain is of concern, we compared their concentrations in invertebrates from clean and contaminated sites. The results reveal transfer of alkylphenolics from sediments to biota and their accumulation in the invertebrate tissue, particularly the highly hydrophobic 4-NP, whose concentrations ranged from 1.9 to 6.3 μg g -1 . To our knowledge, this is the first study to evaluate AP concentrations in tissue of benthic invertebrates under real environmental conditions. - Concentrations of alkylphenolic compounds in water, sediments and benthic invertebrates in a large coastal wetland and implications for trophic transfer

  2. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  3. Abundance and distribution of benthic macroinvertebrates in offshore soft sediments in Western Lake Huron, 2001-2007

    Science.gov (United States)

    French, J. R. P.; Schaeffer, J.S.; Roseman, E.F.; Kiley, C.S.; Fouilleroux, A.

    2009-01-01

    Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001-2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.

  4. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    Science.gov (United States)

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  5. Temporal variations in the food habits of some fish species in Lake ...

    African Journals Online (AJOL)

    Stomach contents of the 12 most abundant fish species in Lake Nokoué, Benin, collected between 2003 and 2005, were analysed for temporal variations in their diet. Several species showed seasonal shifts in their diets based on benthic prey abundance and biomass variation, which are influenced by physico-chemical ...

  6. 40 CFR Appendix D to Part 132 - Great Lakes Water Quality Initiative Methodology for the Development of Wildlife Criteria

    Science.gov (United States)

    2010-07-01

    ... Methodology for the Development of Wildlife Criteria D Appendix D to Part 132 Protection of Environment... Development of Wildlife Criteria Great Lakes States and Tribes shall adopt provisions consistent with (as protective as) this appendix. I. Introduction A. A Great Lakes Water Quality Wildlife Criterion (GLWC) is the...

  7. Bioaccumulation of persistent organic pollutants (POPs) in fish species from Lake Koka, Ethiopia: The influence of lipid content and trophic position

    Energy Technology Data Exchange (ETDEWEB)

    Deribe, Ermias, E-mail: ermias.weldemariam@umb.no [Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432, As (Norway); Hawassa University, Faculty of Natural Sciences, Department of Applied Biology, P.O. Box 5, Awassa (Ethiopia); Rosseland, Bjorn Olav; Borgstrom, Reidar [Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, P.O. Box 5003, N-1432, As (Norway); Salbu, Brit [Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432, As (Norway); Gebremariam, Zinabu [Higher Education Strategy Center (HESC) P.O. Box 32742, Addis Ababa (Ethiopia); Hawassa University, Faculty of Natural Sciences, Department of Applied Biology, P.O. Box 5, Awassa (Ethiopia); Dadebo, Elias [Hawassa University, Faculty of Natural Sciences, Department of Applied Biology, P.O. Box 5, Awassa (Ethiopia); Norli, Hans Ragnar [Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Pesticide Chemistry Section, Hogskoleveien 7, N-1432 As (Norway); Eklo, Ole Martin [Norwegian University of Life Sciences, Department of Plant and Environmental Sciences, P.O. Box 5003, N-1432, As (Norway); Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, Pesticide Chemistry Section, Hogskoleveien 7, N-1432 As (Norway)

    2011-12-01

    The concentrations and bioaccumulation of persistent organic pollutants (POPs) were determined in four fish species from Lake Koka, Ethiopia, representing 2-3 levels in the food chain of the lake. Dichlorodiphenyltrichloroethanes (DDTs), endosulfans, polychlorinated biphenyls (PCBs) and chlorpyrifos were identified, with DDTs as the most predominant pesticide, with concentration ranging from 0.05 to 72.53 ng g{sup -1} wet weight (ww). All fish tissue samples collected from different species of the lake contained residues of DDTs. The maximum level of DDTs was found in the fattiest, African sharptooth catfish (Clarias gariepinus) sampled from the lake, with a mean concentration of 15.15 ng g{sup -1}ww. The significant (P < 0.05) relationship between concentrations of DDTs and {delta}{sup 15}N indicates that DDTs biomagnified in the food web of the lake. The 4,4 Prime -DDE to 4,4 Prime -DDT ratio in Oreochromis niloticus (0.6) and Cyprinus carpio (0.5) were below 1, indicating ongoing use of DDTs in the study area and recent exposure of these fish species.

  8. Great Lake beach-goer behavior during a retrospectively detected bloom of cyanobacteria

    Science.gov (United States)

    Cyanobacteria blooms pose a potential health risk to beachgoers. We conducted a prospective study of weekend beachgoers at a public Great Lake site during July – September 2003. We recorded each person’s health status and activity during their beach visit. We measured...

  9. Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern

    Science.gov (United States)

    Estuaries provide multiple ecosystem services from which humans benefit. Currently, thirty-six Great Lakes estuaries in the United States and Canada are designated as Areas of Concern (AOCs) due to a legacy of chemical contamination, degraded habitat, and non-point-source polluti...

  10. A review of the influence of biogeography, riverine linkages, and marine connectivity on fish assemblages in evolving lagoons and lakes of coastal southern Africa

    CSIR Research Space (South Africa)

    Whitfield, AK

    2017-09-01

    Full Text Available lakes), elements of the marine fish assemblage have persisted, especially the presence of facultative catadromous species. Freshwater fish diversity in coastal lakes and lagoons is a function of historical and present biogeography and salinity. From a...

  11. Food of forage fishes in western Lake Erie, 1975-76

    Science.gov (United States)

    Muth, Kenneth M.; Busch, Wolf-Dieter N.

    1989-01-01

    In western Lake Erie in the summer and fall of 1975–1976, food eaten by seven forage fishes—emerald shiner (Notropis atherinoides), spottail shiner (Notropis hudsonius), trout-perch (Percopsis omiscomaycus), andyoung-of-the-year (YOY) of alewife (Alosa pseudoharengus), gizzard shad (Dorosoma cepedianum), white bass (Morone chrysops), and freshwater drum (Aplodi-notus grunniens)—was divided among six major taxa: Cladocera, Copepoda, Diptera, Ostracoda, Amphipoda, and Algae. In addition, fish were eaten by YOY white bass, and Rotifera were consumed by YOY gizzard shad. Interspecies diet overlap indices, calculated to compare the food of the different species and to evaluate diet similarities, were usually highest for YOY white bass and YOY freshwater drum when compared with the other species and usually lowest between emerald shiners and all other forage fishes. Understanding the feeding interactions among fishes that could influence production at the forage-food level of the food web could provide insight into how cascading trophic interactions influence the production of piscivorous predators.

  12. B chromosomes have a functional effect on female sex determination in Lake Victoria cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Kohta Yoshida

    2011-08-01

    Full Text Available The endemic cichlid fishes in Lake Victoria are a model system for speciation through adaptive radiation. Although the evolution of the sex-determination system may also play a role in speciation, little is known about the sex-determination system of Lake Victoria cichlids. To understand the evolution of the sex-determination system in these fish, we performed cytogenetic analysis in 11 cichlid species from Lake Victoria. B chromosomes, which are present in addition to standard chromosomes, were found at a high prevalence rate (85% in these cichlids. In one species, B chromosomes were female-specific. Cross-breeding using females with and without the B chromosomes demonstrated that the presence of the B chromosomes leads to a female-biased sex ratio in this species. Although B chromosomes were believed to be selfish genetic elements with little effect on phenotype and to lack protein-coding genes, the present study provides evidence that B chromosomes have a functional effect on female sex determination. FISH analysis using a BAC clone containing B chromosome DNA suggested that the B chromosomes are derived from sex chromosomes. Determination of the nucleotide sequences of this clone (104.5 kb revealed the presence of several protein-coding genes in the B chromosome, suggesting that B chromosomes have the potential to contain functional genes. Because some sex chromosomes in amphibians and arthropods are thought to be derived from B chromosomes, the B chromosomes in Lake Victoria cichlids may represent an evolutionary transition toward the generation of sex chromosomes.

  13. New insight into the spawning behavior of lake trout, Salvelinus namaycush, from a recovering population in the Laurentian Great Lakes

    Science.gov (United States)

    Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.

    2015-01-01

    Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.

  14. Mercury in the Calcasieu River/lake Complex, Louisiana

    International Nuclear Information System (INIS)

    Mueller, C.S.; Ramelow, G.J.; Beck, J.N.

    1989-01-01

    The Calcasieu River/Lake Complex is of great economic importance to southwestern Louisiana. Calcasieu Lake is an important fishing ground for shrimp and oysters. The Calcasieu River/Lake Complex has been the focus of an interdisciplinary study to assess the types and areas of pollution along this important waterway. Particular attention has been given to Hg because of the toxicity of this metal, and the local importance of the chloralkali industry--an industry that is known to discharge Hg into the environment. Water, sediment and biota were collected at stations in Calcasieu Lake, Calcasieu River, and along three bayou tributaries that were studied intensively. Intensive sampling included all stations along the particular bayou studied that month

  15. Hydro biological investigations of lake Drukshiai

    International Nuclear Information System (INIS)

    Mazheikaite, S.; Sinkevichiene, Z.; Marchiulioniene, D.; Astrauskas, A.; Barshiene, J.

    1998-01-01

    Purposes of this research were to investigate changes in the physical, chemical and tropic conditions of Lake Drukshiai caused by the combined effect of Ignalina NPP and how it effects on structures and function of biocenoses; to estimate the influence of phytocenoses, zoocenoses and bacteriocenoses on the quality of water in Lake Drukshiai; to estimate the eco toxicological state of Lake Drukshiai. According to the complex hydro biological investigations on Lake Drukshiai - Ignalina NPP cooler great changes in planktonic organism community, tendencies of those changes in different ecological zones were evaluated in 1993 - 1997. The amount of species of most dominant planktonic organisms in 1993 - 1997 decreased 2-3 times in comparison with that before Ignalina NPP operation: phytoplankton from 116 to 40 - 50, zooplankton - from 233 to 139. The organic matter increasing tendency was determined in bottom sediments of the lake. The highest amount of it was evaluated in the south - eastern part of the lake. 69 water macrophyte species were found in bottom sediments during the investigation period. 16 species were not found in this lake earlier. Abundance of filamentous green algae was registered.The rates of fish communities successional transformation were ten times in excess of those of the given processes in natural lakes. Moreover the comparison of results on Lake Drukshiai bioindication analysis with changes of comparable bio markers which were obtained from other water systems of Lithuania, Switzerland, Sweden and Poland, including those with active nuclear power plants in their environment was carried out. It was determined that the functional and structural changes in Lake Drukshiai biota are mostly caused by chemical pollution. It was found out that the frequency of cytogenetic damage emerged as a specific radionuclide - caused effect in aquatic organisms inhabiting Lake Drukshiai, is slightly above the background level and is 5 times lower than the same

  16. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    Science.gov (United States)

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  17. Physico-chemical thresholds in the distribution of fish species among French lakes

    Directory of Open Access Journals (Sweden)

    Roubeix Vincent

    2017-01-01

    Full Text Available The management of lakes requires the definition of physico-chemical thresholds to be used for ecosystem preservation or restoration. According to the European Water Framework Directive, the limits between physico-chemical quality classes must be set consistently with biological quality elements. One way to do this consists in analyzing the response of aquatic communities to environmental gradients across monitoring sites and in identifying ecological community thresholds, i.e. zones in the gradients where the species turnover is the highest. In this study, fish data from 196 lakes in France were considered to derive ecological thresholds using the multivariate method of gradient forest. The analysis was performed on 25 species and 36 environmental parameters. The results revealed the highest importance of maximal water temperature in the distribution of fish species. Other important parameters included geographical factors, dissolved organic carbon concentration and water transparency, while nutrients appeared to have low influence. In spite of the diversity of species responses to the gradients, community thresholds were detected in the gradients of the most important physico-chemical parameters and of total phosphorus and nitrate concentrations as well. The thresholds identified in such macroecological study may highlight new patterns of species natural distribution and improve niche characterization. Moreover, when factors that may be influenced by human activities are involved, the thresholds could be used to set environmental standards for lake preservation.

  18. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  19. A sensor-based energy balance method for the distributed estimation of evaporation over the North American Great Lakes

    Science.gov (United States)

    Fries, K. J.; Kerkez, B.; Gronewold, A.; Lenters, J. D.

    2014-12-01

    We introduce a novel energy balance method to estimate evaporation across large lakes using real-time data from moored buoys and mobile, satellite-tracked drifters. Our work is motivated by the need to improve our understanding of the water balance of the Laurentian Great Lakes basin, a complex hydrologic system that comprises 90% of the United States' and 20% of the world's fresh surface water. Recently, the lakes experienced record-setting water level drops despite above-average precipitation, and given that lake surface area comprises nearly one third of the entire basin, evaporation is suspected to be the primary driver behind the decrease in water levels. There has historically been a need to measure evaporation over the Great Lakes, and recent hydrological phenomena (including not only record low levels, but also extreme changes in ice cover and surface water temperatures) underscore the urgency of addressing that need. Our method tracks the energy fluxes of the lake system - namely net radiation, heat storage and advection, and Bowen ratio. By measuring each of these energy budget terms and combining the results with mass-transfer based estimates, we can calculate real-time evaporation rates on sub-hourly timescales. To mitigate the cost prohibitive nature of large-scale, distributed energy flux measurements, we present a novel approach in which we leverage existing investments in seasonal buoys (which, while providing intensive, high quality data, are costly and sparsely distributed across the surface of the Great Lakes) and then integrate data from less costly satellite-tracked drifter data. The result is an unprecedented, hierarchical sensor and modeling architecture that can be used to derive estimates of evaporation in real-time through cloud-based computing. We discuss recent deployments of sensor-equipped buoys and drifters, which are beginning to provide us with some of the first in situ measurements of overlake evaporation from Earth's largest lake

  20. 75 FR 51191 - Great Lakes Pilotage Rates-2011 Annual Review and Adjustment

    Science.gov (United States)

    2010-08-19

    ... the Great Lakes to generate sufficient revenue to cover allowable expenses, target pilot compensation, and return on investment. The proposed update reflects a projected August 1, 2011, increase in... adjusting the pilotage rates for the 2011 shipping season to generate sufficient revenue to cover allowable...

  1. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  2. Habitat use and trophic position effects on contaminant bioaccumulation in fish indicated by stable isotope composition

    Science.gov (United States)

    The objective of our study was to determine the relationship between fish tissue stable isotope composition and total mercury or polychlorinated biphenyl (PCB) concentrations in a Great Lakes coastal food web. We sampled two resident fishes, Yellow Perch (Perca flavescens) and Bl...

  3. Catch per unit efforts and impacts of gears on fish abundance in an oxbow lake ecosystem in Eastern India

    Directory of Open Access Journals (Sweden)

    Dipankar Ghosh

    2017-05-01

    Full Text Available Background: Oxbow lakes are abundant in indigenous fishes, but they are subject to unsustainable fishing practices, potential overexploitation, and indiscriminate use of fine-meshed fishing gear. To quantify the catch per unit effort (CPUE and impact of fishing gears on fish abundance, a survey was carried out in an oxbow lake in eastern India. Methods: The gear-wise CPUE for fish caught in per unit hour of operation was calculated by dividing the total sampling gear catch in biomass, which is the observed value of fish caught by a particular gear, by the total sampling effort hours. A value of P 71%. Cone-framed cast net hauled the maximum catch in biomass (31.51%, and gill nets contributed the maximum number of fish (64.92%. The lower CPUE values of line and hook, gill net, cone-framed cast net and long lines identified them as the most harmful among all gears. Conclusion: Indiscriminate use of gear, particularly line and hook, gill nets, cone-framed cast nets, and long lines, demands regulations and preventions concerning such gear to obtain higher fish abundance.

  4. Across Hydrological Interfaces from Coastal Watersheds to the Open Lake: Finding Landscape Signals in the Great Lakes Coastal Zone

    Science.gov (United States)

    Over the past decade, our group has been working to bring coastal ecosystems into integrated basin-lakewide monitoring and assessment strategies for the Great Lakes. We have conducted a wide range of research on coastal tributaries, coastal wetlands, semi-enclosed embayments an...

  5. Environmental conditions synchronize waterbird mortality events in the Great Lakes

    Science.gov (United States)

    Prince, Karine; Chipault, Jennifer G.; White, C. LeAnn; Zuckerberg, Benjamin

    2018-01-01

    Since the 1960s, periodic outbreaks of avian botulism type E have contributed to large-scale die-offs of thousands of waterbirds throughout the Great Lakes of the United States. In recent years, these events have become more common and widespread. Occurring during the summer and autumn months, the prevalence of these die-offs varies across years and is often associated with years of warmer lake temperatures and lower water levels. Little information exists on how environmental conditions mediate the spatial and temporal characteristics of mortality events.In 2010, a citizen science programme, Avian Monitoring for Botulism Lakeshore Events (AMBLE), was launched to enhance surveillance efforts and detect the appearance of beached waterbird carcasses associated with avian botulism type E outbreaks in northern Lake Michigan. Using these data, our goal was to quantify the within-year characteristics of mortality events for multiple species, and to test whether the synchrony of these events corresponded to fluctuations in two environmental factors suspected to be important in the spread of avian botulism: water temperature and the prevalence of green macroalgae.During two separate events of mass waterbird mortality, we found that the detection of bird carcasses was spatially synchronized at scales of c. 40 km. Notably, the extent of this spatial synchrony in avian mortality matched that of fluctuations in lake surface water temperatures and the prevalence of green macroalgae.Synthesis and applications. Our findings are suggestive of a synchronizing effect where warmer lake temperatures and the appearance of macroalgae mediate the characteristics of avian mortality. In future years, rising lake temperatures and a higher propensity of algal masses could lead to increases in the magnitude and synchronization of avian mortality due to botulism. We advocate that citizen-based monitoring efforts are critical for identifying the potential environmental conditions associated

  6. Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis)

    Science.gov (United States)

    Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler

    2012-01-01

    Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.

  7. Investigating Human-Induced Changes of Elemental Cycles in the Great Lakes

    Science.gov (United States)

    Baskaran, Mark; Bratton, John

    2013-07-01

    Food webs and associated elemental cycles in the Laurentian Great Lakes have been considerably altered over the past 30 years due to factors such as phosphorus abatement, introduction of zebra and quagga mussels, and climate change. These perturbations provide a unique opportunity to document how this natural system has responded and possibly to predict future changes in biogeochemical cycling.

  8. Beneficial use of dredged materials in Great Lakes commercial ports for transportation projects.

    Science.gov (United States)

    2014-05-01

    This report describes an effort to facilitate beneficial use of dredged materials (DM) from Great Lakes ports and harbors as an alternative construction : material in transportation-related earthwork applications. The overall objective is to link tog...

  9. Development of a Bi-National Great Lakes Coastal Wetland and Land Use Map Using Three-Season PALSAR and Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Laura Bourgeau-Chavez

    2015-07-01

    Full Text Available Methods using extensive field data and three-season Landsat TM and PALSAR imagery were developed to map wetland type and identify potential wetland stressors (i.e., adjacent land use for the United States and Canadian Laurentian coastal Great Lakes. The mapped area included the coastline to 10 km inland to capture the region hydrologically connected to the Great Lakes. Maps were developed in cooperation with the overarching Great Lakes Consortium plan to provide a comprehensive regional baseline map suitable for coastal wetland assessment and management by agencies at the local, tribal, state, and federal levels. The goal was to provide not only land use and land cover (LULC baseline data at moderate spatial resolution (20–30 m, but a repeatable methodology to monitor change into the future. The prime focus was on mapping wetland ecosystem types, such as emergent wetland and forested wetland, as well as to delineate wetland monocultures (Typha, Phragmites, Schoenoplectus and differentiate peatlands (fens and bogs from other wetland types. The overall accuracy for the coastal Great Lakes map of all five lake basins was 94%, with a range of 86% to 96% by individual lake basin (Huron, Ontario, Michigan, Erie and Superior.

  10. Unraveling the complex local-scale flows influencing ozone patterns in the southern Great Lakes of North America

    Directory of Open Access Journals (Sweden)

    I. Levy

    2010-11-01

    Full Text Available This study examines the complexity of various processes influencing summertime ozone levels in the southern Great Lakes region of North America. Results from the Border Air Quality and Meteorology (BAQS-Met field campaign in the summer of 2007 are examined with respect to land-lake differences and local meteorology using a large array of ground-based measurements, aircraft data, and simulation results from a high resolution (2.5 km regional air-quality model, AURAMS.

    Analyses of average ozone mixing ratio from the entire BAQS-Met intensive campaign period support previous findings that ozone levels are higher over the southern Great Lakes than over the adjacent land. However, there is great heterogeneity in the spatial distribution of surface ozone over the lakes, particularly over Lake Erie during the day, with higher levels located over the southwestern end of the lake. Model results suggest that some of these increased ozone levels are due to local emission sources in large nearby urban centers. While an ozone reservoir layer is predicted by the AURAMS model over Lake Erie at night, the land-lake differences in ozone mixing ratios are most pronounced during the night in a shallow inversion layer of about 200 m above the surface. After sunrise, these differences have a limited effect on the total mass of ozone over the lakes and land during the day, though they do cause elevated ozone levels in the lake-breeze air in some locations.

    The model also predicts a mean vertical circulation during the day with an updraft over Detroit-Windsor and downdraft over Lake St. Clair, which transports ozone up to 1500 m above ground and results in high ozone over the lake.

    Oscillations in ground-level ozone mixing ratios were observed on several nights and at several ground monitoring sites, with amplitudes of up to 40 ppbv and time periods of 15–40 min. Several possible mechanisms for these oscillations are discussed, but a

  11. Hydrological, morphometrical, and biological characteristics of the connecting rivers of the International Great Lakes: a review

    Science.gov (United States)

    Edwards, Clayton J.; Hudson, Patrick L.; Duffy, Walter G.; Nepszy, Stephen J.; McNabb, Clarence D.; Haas, Robert C.; Liston, Charles R.; Manny, Bruce; Busch, Wolf-Dieter N.; Dodge, D.P.

    1989-01-01

    The connecting channels of the Great Lakes are large rivers (1, 200-9, 900 m3 • s-1) with limited tributary drainage systems and relatively stable hydrology (about 2:1 ration of maximum to minimum flow). The rivers, from headwaters to outlet, are the St. Marys, St. Clair, Detroit, Niagara, and St. Lawrence. They share several characteristics with certain other large rivers: the fish stocks that historically congregated for spawning or feeding have been overfished, extensive channel modification have been made, and they have been used as a repository for domestic and industrial wastes and for hydroelectric energy generation. Levels of phosphorus, chlorophyll a, and particulate organic matter increase 3- to 5-fold from the St. Marys River to the St. Lawrence River. Biological communities dependent on nutrients in the water column, such as phytoplankton, periphyton, and zooplankton similarly increase progressively downstream through the system. The standing crop of emergent macrophytes is similar in all of the rivers, reflecting the relatively large nutrient pools in the sediments and atmosphere. Consequently, emergent macrophytes are an important source of organic matter (67% of total primary production) in the nutrient poor waters of the St. Marys River, whereas phytoplankton production dominates (76%) in the enriched St. Lawrence River. Submersed and emergent macrophytes and the associated periphyton are major producers of organic matter in the connecting channels. Another major source of organic matter (measured as ash free dry weight, AFDW) in the Detroit River is sewage, introduced at a rate of 26, 000 t per year. The production of benthos ranges from a low 5.4 g AFDW•m-2 in the Detroit River to a high of 15.5 g AFDW•m-2 in the St. Marys River. The rivers lack the organic transport from riparian sources upstream but receive large amounts of high quality phytoplankton and zooplankton from the Great Lakes.

  12. Sampling little fish in big rivers: Larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices

    Science.gov (United States)

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Roseman, Edward F.; DeBruyne, Robin L.

    2014-01-01

    Larval fish are frequently sampled in coastal tributaries to determine factors affecting recruitment, evaluate spawning success, and estimate production from spawning habitats. Imperfect detection of larvae is common, because larval fish are small and unevenly distributed in space and time, and coastal tributaries are often large and heterogeneous. We estimated detection probabilities of larval fish from several taxa in the Maumee and Detroit rivers, the two largest tributaries of Lake Erie. We then demonstrated how accounting for imperfect detection influenced (1) the probability of observing taxa as present relative to sampling effort and (2) abundance indices for larval fish of two Detroit River species. We found that detection probabilities ranged from 0.09 to 0.91 but were always less than 1.0, indicating that imperfect detection is common among taxa and between systems. In general, taxa with high fecundities, small larval length at hatching, and no nesting behaviors had the highest detection probabilities. Also, detection probabilities were higher in the Maumee River than in the Detroit River. Accounting for imperfect detection produced up to fourfold increases in abundance indices for Lake Whitefish Coregonus clupeaformis and Gizzard Shad Dorosoma cepedianum. The effect of accounting for imperfect detection in abundance indices was greatest during periods of low abundance for both species. Detection information can be used to determine the appropriate level of sampling effort for larval fishes and may improve management and conservation decisions based on larval fish data.

  13. GC-MS analysis of polybrominated diphenyl ethers in Lake Erie

    Science.gov (United States)

    Vagula, Mary C.; Vartak, Marissa; Tallmadge, Weslene

    2012-06-01

    Lake Erie is one of the five great lakes of North America. It is the shallowest, the warmest, and the most biologically productive of the Great Lakes producing more fish than all of the other four lakes combined. It is also a source of drinking water for 11 million people and a recreational asset. On the flipside, it is also very vulnerable and troubled with environmental challenges because it has the smallest water volume, but the greatest pressures from the human settlement. One of the many issues faced by the Lake is pollution. It receives larger loads of many pollutants than any other Great Lake. Even with the best pollution controls many pesticides and organohalogens continue to enter the lake. Polybrominated diphenyl ethers (PBDEs) are a class of flame-retardants that have been used in a variety of consumer products since the 1970s. They are added to many commercial and household products such as computers, foam mattresses, carpets, etc. Being largely non-polar and chemically stable, these chemicals are extremely lipophilic and resist degradation in the environment, thus giving them a high affinity for their bioaccumulation. Due to these properties PBDEs have become ubiquitous environmental contaminants. These compounds are reported to be endocrine disruptors and could cause oxidative damage. This report presents the sample preparation protocol, the GC-MS analysis of PBDEs in Lake Erie sediment samples.

  14. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    Science.gov (United States)

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  15. Methyl mercury concentrations in macroinvertebrates and fish from burned and undisturbed lakes on the Boreal Plain

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Prepas, E.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Biological Sciences; Lakehead Univ., Thunder Bay, ON (Canada). Faculty of Forest and the Forest Environment; Gabos, S.; Zhang, W. [Alberta Health and Wellness, Edmonton, AB (Canada); Strachan, W.M.J. [Environment Canada, Burlington, ON (Canada). National Water Research Inst.

    2005-09-01

    Methylmercury (MeHg) concentrations in macroinvertebrates and fish from 5 lakes in burned catchments in Alberta's Swan Hills region were compared with those from 5 reference lakes on the western Canadian Boreal Plain. The objective was to determine the effect of forest fire on the bioaccumulation of MeHg, a toxic pollutant. It was noted that lakes near the Alberta Special Waste Treatment Centre (ASWTC) have fish consumption advisories due to high mercury concentrations. In a separate comparison, MeHg concentrations in biota from a single lake were compared before and after a forest fire interrupted a prescribed timber harvest experiment. The affect of lake water chemistry, watershed characteristics, and trophic ecology on the bioaccumulation and biomagnification of MeHg in littoral food webs was also examined. The study area covered 2 ecoregions, the Boreal Foothills and the Boreal Mixedwood. Two years after the fire, MeHg concentrations in 5 of 6 aquatic taxa did not differ between burned and reference drainage basins in the Swan Hills. These results were in agreement with previous studies. Biomagnification of MeHg was negatively correlated with lake water chlorophyll 'a' concentration. Ecoregional variation in water chemistry seemed to influence MeHg concentrations in aquatic biota, which eluded comparisons of MeHg bioaccumulation between burned and reference drainage basins. MeHg concentrations in biota were negatively correlated with lake water pH, as well as with total phosphorous and dominant cation concentrations, all of which were higher in Mixedwood than in Foothills lakes. It was concluded that in the short-term, fire may lower MeHg concentrations in aquatic biota in a nutrient-rich setting by inducing an increase in lake productivity that dilutes MeHg at the base of the food web. 42 refs., 5 tabs., 7 figs.

  16. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    Directory of Open Access Journals (Sweden)

    Darryl W Hondorp

    Full Text Available Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove

  17. Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems.

    Science.gov (United States)

    Teichert, Nils; Lepage, Mario; Sagouis, Alban; Borja, Angel; Chust, Guillem; Ferreira, Maria Teresa; Pasquaud, Stéphanie; Schinegger, Rafaela; Segurado, Pedro; Argillier, Christine

    2017-12-14

    The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.

  18. Is Fish Farming an Illusion for Lake Malawi Riparian Communities under Environmental Changes?

    Directory of Open Access Journals (Sweden)

    Moses Majid Limuwa

    2018-05-01

    Full Text Available Global environmental changes have negatively affected many food systems while the demand for food has continued to rise. An urgent need exists to identify other sustainable means of producing food. This is a case in Malawi, where capture fisheries and agriculture are not supplying sufficient food. Fish farming food systems by communities who rely on inland fisheries have not been evaluated. Therefore, a study was conducted in two phases: January 2016 to May 2016 and in July 2017 to evaluate if fish farming could sustainably support livelihoods of Lake Malawi riparian communities. We used mixed methods to collect and analyze data. The data collection methods included explorative surveys, household survey interviews, focus group discussion and key informant interviews. Qualitative data was analyzed using content analysis for themes. This identified themes that were quantitatively analyzed using descriptive and inferential statistics. We observed that fish farming was dominated by men and also not the main occupation for the respondents despite owning fishponds. The respondents have water and land, which are prerequisite for any farming. The study also observed fish farming production challenges related to quality fingerlings, formulated diets, and extension services. Cases of food insecurity amongst the respondents were also prevalent due to lack of food to cover the entire year. Weak synergies existed between fish farming and agriculture restricting bio-resource flow and water usage between these two food systems, meaning the outcomes of the food systems provide unsustainable diets. Furthermore, water availability, money spent on food, and cassava cropping increased fish farming participation. Whereas operating a bicycle taxi, casual labor, former fish farming, as well as application of agricultural wastes negatively affected fish farming. On the other hand, extreme weather events (increased incidences of droughts and floods attributed to inter

  19. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    Science.gov (United States)

    Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun

    2015-01-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...

  20. Attenuation of landscape signals through the coastal zone: A basin-wide analysis for the US Great Lakes shoreline, circa 2002-2010

    Science.gov (United States)

    We compare statistical models developed to describe a) the relationship between watershed properties and Great Lakes coastal wetlands with b) the relationship developed between watershed properties and the Great Lakes nearshore. Using landscape metrics from the GLEI project (Dan...

  1. Alien species of fish parasites in the coastal lakes and lagoons of the southern Baltic

    Directory of Open Access Journals (Sweden)

    Jolanta Morozińska-Gogol

    2009-03-01

    Full Text Available Alien species are now found all over the world. New fish parasites have been unintentionally introduced with infected alien fish imported for aquaculture or have sometimes spread with their intermediate invertebrate hosts transported in the ballast waters of ships. Four alien fish parasites have been recorded in Polish coastal lakes and lagoons, all parasitising eels. Three were introduced with the final host - the Japanese eel - introduced for aquaculture (Anguillicola crassus, Pseudodactylogyrus anguillae and Pseudodactylogyrus bini and one (Paratenuisentis ambiguus with its sole intermediate host (Gammarus tigrinus.

  2. Notes on dredging in the Great Bitter Lake of the Suez Canal

    NARCIS (Netherlands)

    Beets, C.

    1953-01-01

    INTRODUCTION In the summer of 1950, the present writer spent a three weeks' holiday dredging in the Great Bitter Lake. Plans to collect specimens in that area for the Rijksmuseum van Natuurlijke Historie at Leiden had, unfortunately, to be drawn up somewhat hurriedly, but at least the most essential

  3. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment

    NARCIS (Netherlands)

    Moss, B.; Stephen, D.; Balayla, D.; Bécares, E.; Collings, S.E.; Fernández-Aláez, C.; Fernández-Aláez, M.; Ferriol, C.; García, P.; Gomá, J.; Gyllström, M.; Hansson, L-A.; Hietala, J.; Kairesalo, T.; Rosa Miracle, M.; Romo, S.; Rueda, J.; Russell, V.; Ståhl-Delbanco, A.; Svensson, M.; Vakkilainen, K.; Valentín, M.; van de Bund, W.; Van Donk, E.; Vicente, E.; Villena, M.J.

    2004-01-01

    1. Results are analysed from 11 experiments in which effects of fish addition and nutrient loading on shallow lakes were studied in mesocosms. The experiments, five in 1998, six in 1999, were carried out in six lakes, distributed from Finland to southern Spain, according to a standard protocol. 2.

  4. Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident

    International Nuclear Information System (INIS)

    Yoshimura, Mayumi; Yokoduka, Tetsuya

    2014-01-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ( 137 Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and 137 Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ( 137 Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of 137 Cs in brown trout was higher than in rainbow trout. • 137 Cs concentration of brown trout in a lake was higher than in a stream. • 137 Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of 137 Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat

  5. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA

    Science.gov (United States)

    To better understand the transport of neonicotinoid insecticides to a sensitive freshwater ecosystem, monthly samples (October 2015-September 2016) were collected from 10 major tributaries to the Great Lakes, USA. For the monthly tributary samples, neonicotinoids were detected in...

  6. The composition of fish communities of nine Ethiopian lakes along a north-south gradient: threats and possible solutions

    NARCIS (Netherlands)

    Vijverberg, J.; Dejen, E.; Getahun, A.; Nagelkerke, L.A.J.

    2012-01-01

    Fish populations of nine Ethiopian freshwater lakes were quantitatively sampled with a standardized protocol, using multi-mesh gill nets. In total, 27 species were identified, but only 14 species were common. Based on the common species, the fish communities showed large differences in their species

  7. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish

    Science.gov (United States)

    Bunnell, D.B.; Hunter, R. Douglas; Warner, D.M.; Chriscinske, M.A.; Roseman, E.F.

    2011-01-01

    Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91-m depth sites in northern Lake Huron, U.S.A., for each month, May-October 2007. Daily consumption was compared to daily zooplankton production. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant - eating only 3% of all zooplankton consumed. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi-, meta- and

  8. Physical behavior of PCBs in the Great Lakes

    International Nuclear Information System (INIS)

    McKay, D.; Eisenreich, S.J.; Patterson, S.; Simmons, M.S.

    1983-01-01

    This book presents a review of all aspects of the physical behavior of one contaminant (PCBs) in one aquatic environment (Great Lakes). This book not only treats this topic extensively, but also serves as a model for treatment of other contaminants in other aquatic environments. This book focuses on the physical rather than biological aspects of PCBs. This focus does not imply a lack of concern for the biosphere or for the effects or toxicology of PCBs; instead, it represents an attempt to tackle a smaller problem of manageable proportions. The environmental fate of PCBs is largely controlled by physical processes, with biodegradation of lower chlorine congeners as the outstanding exception

  9. Corresponding long-term shifts in stream temperature and invasive fish migration

    Science.gov (United States)

    McCann, Erin L.; Johnson, Nicholas; Pangle, Kevin

    2018-01-01

    By investigating historic trapping records of invasive sea lamprey (Petromyzon marinus) throughout tributaries to the Laurentian Great Lakes, we found that upstream spawning migration timing was highly correlated with stream temperatures over large spatial and temporal scales. Furthermore, several streams in our study exceeded a critical spring thermal threshold (i.e., 15°C) and experienced peak spawning migration up to 30 days earlier since the 1980s, whereas others were relatively unchanged. Streams exhibiting warming trends and earlier migration were spatially clustered and generally found on the leeward side of the Great Lakes where the lakes most affect local climate. These findings highlight that all streams are not equally impacted by climate change and represent, to our knowledge, the first observation linking long-term changes in stream temperatures to shifts in migration timing of an invasive fish. Earlier sea lamprey migration in Great Lakes tributaries may improve young of the year growth and survival, but not limit their spatial distribution, making sea lamprey control more challenging.

  10. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  11. A field guide to valuable underwater aquatic plants of the Great Lakes

    Science.gov (United States)

    Schloesser, Donald W.

    1986-01-01

    Underwater plants are a valuable part of the Great Lakes ecosystem, providing food and shelter for aquatic animals. Aquatic plants also help stabilize sediments, thereby reducing shoreline erosion. Annual fall die-offs of underwater plants provide food and shelter for overwintering small aquatic animals such as insects, snails, and freshwater shrimp.

  12. Behind the impact of introduced trout in high altitude lakes: adult, not juvenile fish are responsible of the selective predation on crustacean zooplankton

    Directory of Open Access Journals (Sweden)

    Rocco Tiberti

    2014-05-01

    Full Text Available Introduced fish seriously affect zooplankton communities in mountain lakes, often leading to the loss of large species. Selective predation is recognized to be the ultimate cause of such a strong impact. Here we describe the selection of zooplankton prey by analyzing the stomach contents of more than 300 brook trout (Salvelinus fontinalis inhabiting seven alpine lakes in the Gran Paradiso National Park (western Italian Alps. Our results show that planktivory is much more common in young fish, which feed on a larger number of taxa, but also adult fish maintain the ability to feed on zooplankton. There is a direct dependence between the length of zooplankton prey and the length of their fish predators, and adult, not juvenile fish are responsible of the selective predation on large crustacean zooplankton, which drive the impact of introduced fish throughout the entire zooplankton community. In some rare cases, large zooplankton populations develop in the presence of brook trout, and planktivory can become an important temporary resource for adult fish during the ice-free season. Thus, in the early stages of the establishment of non-native trout in alpine lakes, large-bodied zooplankton may represent an important food resource.

  13. The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade.

    Science.gov (United States)

    Nathan, Lucas R; Jerde, Christopher L; Budny, Michelle L; Mahon, Andrew R

    2015-04-01

    Over 180 non-native species have been introduced in the Laurentian Great Lakes region, many posing threats to native species and ecosystem functioning. One potential pathway for introductions is the commercial bait trade; unknowing or unconcerned anglers commonly release unused bait into aquatic systems. Previous surveillance efforts of this pathway relied on visual inspection of bait stocks in retail shops, which can be time and cost prohibitive and requires a trained individual that can rapidly and accurately identify cryptic species. Environmental DNA (eDNA) surveillance, a molecular tool that has been used for surveillance in aquatic environments, can be used to efficiently detect species at low abundances. We collected and analyzed 576 eDNA samples from 525 retail bait shops throughout the Laurentian Great Lake states. We used eDNA techniques to screen samples for multiple aquatic invasive species (AIS) that could be transported in the bait trade, including bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix), round goby (Neogobius melanostomus), tubenose goby (Proterorhinus marmoratus), Eurasian rudd (Scardinius erythrophthalmus), and goldfish (Carassius auratus). Twenty-seven samples were positive for at least one target species (4.7% of samples), and all target species were found at least once, except bighead carp. Despite current regulations, the bait trade remains a potential pathway for invasive species introductions in the Great Lakes region. Alterations to existing management strategies regarding the collection, transportation, and use of live bait are warranted, including new and updated regulations, to prevent future introductions of invasive species in the Great Lakes via the bait trade. © 2014 Society for Conservation Biology.

  14. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Amirhossein [Case Western Reserve Univ., Cleveland, OH (United States); Loparo, Kenneth A. [Case Western Reserve Univ., Cleveland, OH (United States); D' Aquila, Robert [General Electric (GE), Albany, NY (United States); Clark, Kara [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waligorski, Joseph G. [FirstEnergy, Akron, OH (United States); Baker, Scott [PJM Interconnection, Audubon, PA (United States)

    2016-06-30

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods to quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.

  15. Elucidating causes of Diporeia decline in the Great Lakes via metabolomics: physiological responses after exposure to different stressors.

    Science.gov (United States)

    Maity, Suman; Jannasch, Amber; Adamec, Jiri; Watkins, James M; Nalepa, Thomas; Höök, Tomas O; Sepúlveda, Maria S

    2013-01-01

    The benthic macroinvertebrate Diporeia spp. have been extirpated from many areas of the Laurentian Great Lakes, but the mechanisms underlying such declines are not fully understood. Diporeia declines coinciding with the invasion of exotic dreissenid mussels (zebra and quagga) have led to the hypothesis that Diporeia declines are a result of decreased food availability from increasing competition with dreissenids for diatoms. There is additional evidence that Diporeia are negatively affected when in close proximity to dreissenids, probably because of exposure to toxins present in the mussels' pseudofeces. Diporeia are also known to be sensitive to anthropogenic contaminants (such as polychlorinated biphenyls [PCBs]) present in Great Lakes sediments. To better understand the physiological responses of Diporeia to diverse stressors, we conducted three 28-d experiments evaluating changes in the metabolomes of Diporeia (1) fed diatoms (Cyclotella meneghiniana) versus starved, (2) exposed (from Lake Michigan and Cayuga Lake) to quagga mussels (Dreissena bugensis), and (3) exposed to sediments contaminated with PCBs. The metabolomes of samples were examined using both two-dimensional gas and liquid chromatography coupled with mass spectrometry. Each stressor elicited a unique metabolome response characterized by enhanced citric acid cycle, fatty acid biosynthesis, and protein metabolism in diatom-fed Diporeia; impaired glycolysis, protein catabolism, and folate metabolism in Diporeia from Lake Michigan irrespective of quagga mussel exposure, suggesting lake-specific adaptation mechanisms; and altered cysteine and phospholipid metabolism during PCB exposure. Subsequent comparisons of these stressor-specific metabolic responses with metabolomes of a feral Diporeia population would help identify stressors affecting Diporeia populations throughout the Great Lakes.

  16. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  17. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Haruhiko [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)]. E-mail: nakata@sci.kumamoto-u.ac.jp; Hirakawa, Yuko [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Kawazoe, Masahiro [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, (Japan); Nakabo, Tetsuji [Kyoto University Museum, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Arizono, Koji [Faculty of Environmental and Symbiotic Sciences, Kumamoto Prefectural University, 3-1-100 Tsukide, Kumamoto 862-8502 (Japan); Abe, Shin-Ichi [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Kitano, Takeshi [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Shimada, Hideaki [Faculty of Education, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Watanabe, Izumi [Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchuu-city, Tokyo 183-8509 (Japan); Li Weihua [Shanghai Institute of Planned Parenthood Research, 2140 Xie Tu road, Shanghai 200032 (China); Ding Xucheng [Shanghai Institute of Planned Parenthood Research, 2140 Xie Tu road, Shanghai 200032 (China)

    2005-02-01

    Contamination by persistent organochlorines (OCs), such as DDTs, hexachlorocyclohexane isomers (HCHs), chlordane compounds (CHLs), hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) were examined in sediments, soils, fishes, crustaceans, birds, and aquaculture feed from Lake Tai, Hangzhou Bay, and in the vicinity of Shanghai city in China during 2000 and 2001. OCs were detected in all samples analyzed, and DDT and its metabolites were the predominant contaminants in most sediments, soils and biota. Concentrations of p,p'-DDT and ratio of p,p'-DDT to {sigma}DDTs were significantly higher in marine fishes than those in freshwater fishes. While the use of DDTs has been officially banned in China since 1983, these results indicate a recent input of technical DDTs into the marine environment around Hangzhou Bay. Comparison of organochlorine concentrations in fishes collected from Lake Tai and Hangzhou Bay suggests the presence of local sources of HCHs, chlordanes and PCBs at Lake Tai. Higher proportions of penta- and hexa-PCB congeners in fishes at Lake Tai may suggest the use of highly chlorinated PCB product, such as PCB{sub 5}, around this lake. To our knowledge, this is a first comprehensive study to examine the present status of organochlorine contamination in various environmental media, such as sediments, soils and wildlife, in China. - Elevated concentrations of DDTs were detected in sediments, soils, and wildlife collected from China.

  18. Changes in fish mercury concentrations over 20 years in an acidified lake subject to experimental liming

    International Nuclear Information System (INIS)

    Rask, Martti; Jones, Roger I.; Jaervinen, Marko; Paloheimo, Anna; Salonen, Maiju; Syvaeranta, Jari; Verta, Matti

    2007-01-01

    Lake Iso Valkjaervi (southern Finland, Europe) was divided in two with a plastic curtain in 1991. One half was neutralized with CaCO 3 , and the other acted as a control. Mercury concentrations of perch (Perca fluviatilis) and northern pike (Esox lucius) in the limed and control side of the lake were studied both before and after the treatment. Average Hg concentrations of perch and pike were 0.40 and 1.2 μg g -1 (ww) in the early 1980s and 0.25 and 0.72 μg g -1 (ww) a decade later at the time of liming. Ten years after the liming the Hg concentrations of perch in the limed and control sides of the lake were 0.21 and 0.28 μg g -1 (ww) and those of pike were 0.69 and 0.43 μg g -1 (ww), respectively. Nitrogen isotope ratios (δ 15 N) for perch in the sampling period 2002-2004 showed wide variation suggesting variable trophic positions for individual fish. Pike formed two groups according to their δ 15 N-values, suggesting that zoobenthos dominated the diet of pike around 20 cm in length and fish that of the larger pikes. Because the δ 15 N-values of fish were at similar levels in the limed and control sides of L. Iso Valkjaervi, differences in food web structure cannot account for the different fish Hg concentrations. A more likely explanation is water quality induced differences in the dynamics and bioavailability of Hg, leading to decreased formation of methyl Hg

  19. Lake trout (Salvelinus namaycush) suppression for bull trout (Salvelinus confluentus) recovery in Flathead Lake, Montana, North America

    Science.gov (United States)

    Hansen, Michael J.; Hansen, Barry S; Beauchamp, David A.

    2016-01-01

    Non-native lake trout Salvelinus namaycush displaced native bull trout Salvelinus confluentus in Flathead Lake, Montana, USA, after 1984, when Mysis diluviana became abundant following its introduction in upstream lakes in 1968–1976. We developed a simulation model to determine the fishing mortality rate on lake trout that would enable bull trout recovery. Model simulations indicated that suppression of adult lake trout by 75% from current abundance would reduce predation on bull trout by 90%. Current removals of lake trout through incentivized fishing contests has not been sufficient to suppress lake trout abundance estimated by mark-recapture or indexed by stratified-random gill netting. In contrast, size structure, body condition, mortality, and maturity are changing consistent with a density-dependent reduction in lake trout abundance. Population modeling indicated total fishing effort would need to increase 3-fold to reduce adult lake trout population density by 75%. We conclude that increased fishing effort would suppress lake trout population density and predation on juvenile bull trout, and thereby enable higher abundance of adult bull trout in Flathead Lake and its tributaries.

  20. Confirmation of cisco spawning in Chaumont Bay, Lake Ontario using an egg pumping device

    Science.gov (United States)

    George, Ellen M.; Stott, Wendylee; Young, Brian; Karboski, Curtis T.; Crabtree, Darran L.; Roseman, Edward; Rudstam, Lars G.

    2017-01-01

    Cisco Coregonus artedi, a historically abundant and commercially important fish in the Great Lakes, have declined drastically in the last century due to the impacts of invasive species, overfishing, and habitat degradation. Chaumont Bay, New York is believed to contain one of the last remaining spawning populations of cisco in Lake Ontario although direct evidence of spawning has remained elusive. We document cisco spawning in Chaumont Bay for the first time in decades through the use of an egg pumping device specifically developed to sample through lake ice. Forty-one eggs were identified as cisco using genetic barcoding of the mitochondrial cytochrome c oxidase I (COI) gene. Cisco eggs were associated with shallow, rocky shoals. Contemporary knowledge of spawning behavior is an important step toward the successful restoration of cisco in Lake Ontario and across the Great Lakes.

  1. What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review

    DEFF Research Database (Denmark)

    Bernes, Claes; Carpenter, Stephen R.; Gårdmark, Anna

    2015-01-01

    three years afterwards. Piscivore stocking alone has no significant effect. The response of chlorophyll a levels to biomanipulation is stronger in lakes where fish removal is intense, and in lakes which are small and/or have high pre-manipulation concentrations of total phosphorus. Conclusions: Our......Background: In recent decades, many attempts have been made to restore eutrophic lakes through biomanipulation. Reducing the populations of planktivorous and benthivorous fish (either directly or through stocking of piscivorous fish) may induce ecosystem changes that increase water transparency...... using inclusion criteria set out in an a priori protocol. To reduce the risk of bias, we then critically appraised the combined evidence found on each biomanipulation. Data were extracted on outcomes such as Secchi depth and chlorophyll a concentration before, during and/or after manipulation...

  2. A compilation of empirical data and variations in data concerning radiocesium in water, sediments and fish in European lakes after Chernobyl

    International Nuclear Information System (INIS)

    Hakanson, L.

    1999-01-01

    This work concerns the variability of radiocesium within lakes. The focus is on a broad set of data concerning radiocesium after the Chernobyl accident in lake water, sediments and different species of fish. Data are available to the author from three European data bases. Basic questions are: Are there any general patterns to be found concerning the variability of 137 Cs in lakes? Is it possible to give any recommendations concerning CV values (coefficient of variation; CV=SD/MV; SD=standard deviation, MV=mean value) for radiocesium in lake water, sediments and different species of fish? The analysis can be summarised as: 1. The CV values for lake water vary around 0.3 and are rather independent of the time after fallout. 2. One can use a CV of 0.6 as a reference for the typical uncertainty in radiocesium concentration in surficial lake sediments. CV values are generally higher (up to CV=1) for bottom areas dominated by erosion and transport processes (for fine material following Stokes' law) and lower (CV approx. 0.2) for areas dominated by continuous sedimentation and fine deposits (accumulation areas). CV values for radiocesium in sediments are also likely to increase with contamination and the size of the lake. 3. A reference CV of 0.22 would be a reasonable general CV value for lake fish. CV values are typically larger just after fallout (CV approx. 0.3) and decrease with time after fallout (to about 0.15). CV values are likely to increase with trophic level, from about 0.1 for planktivores to about 0.3 for piscivores, but these CV are based on limited data and are quite uncertain. The benefit of general empirical CV values is evident in modelling, e.g., when empirical data are compared to modelled values. The CV values for water, sediments and fish can be used to set empirical uncertainty bands for model predictions to enable meaningful discussions about predictive success. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Importance of benthic production to fish populations in Lake Mead prior to the establishment of quagga mussels

    Science.gov (United States)

    Umek, John; Chandra, Sudeep; Rosen, Michael; Wittmann, Marion; Sullivan, Joe; Orsak, Erik

    2010-01-01

    Limnologists recently have developed an interest in quantifying benthic resource contributions to higher-level consumers. Much of this research focuses on natural lakes with very little research in reservoirs. In this study, we provide a contemporary snapshot of the food web structure of Lake Mead to evaluate the contribution of benthic resources to fish consumers. In addition, we document the available food to fishes on soft sediments and changes to the invertebrate community over 2 time periods. Benthic invertebrate food availability for fishes is greater in Las Vegas Bay than Overton Arm. Las Vegas Bay is dominated by oligochaetes, whose biomass increased with depth, while Overton Arm is dominated by chironomids, whose biomass did not change with depth. Diet and isotopic measurements indicate the fish community largely relies on benthic resources regardless of basin (Las Vegas Bay >80%; Overton Arm >92%); however, the threadfin shad likely contribute more to largemouth and striped bass production in Overton Arm versus Las Vegas Bay. A 2-time period analysis, pre and post quagga mussel establishment and during lake level declines, suggests there is no change in the density of benthic invertebrates in Boulder Basin, but there were greater abundances of select taxa in this basin by season and depth than in other basins. Given the potential of alterations as a result of the expansion of quagga mussel and the reliance of the fishery on benthic resources, future investigation of basin specific, benthic processes is recommended.

  4. Identification of Cryptosporidium Species in Fish from Lake Geneva (Lac Léman) in France.

    Science.gov (United States)

    Certad, Gabriela; Dupouy-Camet, Jean; Gantois, Nausicaa; Hammouma-Ghelboun, Ourida; Pottier, Muriel; Guyot, Karine; Benamrouz, Sadia; Osman, Marwan; Delaire, Baptiste; Creusy, Colette; Viscogliosi, Eric; Dei-Cas, Eduardo; Aliouat-Denis, Cecile Marie; Follet, Jérôme

    2015-01-01

    Cryptosporidium, a protozoan parasite that can cause severe diarrhea in a wide range of vertebrates including humans, is increasingly recognized as a parasite of a diverse range of wildlife species. However, little data are available regarding the identification of Cryptosporidium species and genotypes in wild aquatic environments, and more particularly in edible freshwater fish. To evaluate the prevalence of Cryptosporidiumspp. in fish from Lake Geneva (Lac Léman) in France, 41 entire fish and 100 fillets (cuts of fish flesh) were collected from fishery suppliers around the lake. Nested PCR using degenerate primers followed by sequence analysis was used. Five fish species were identified as potential hosts of Cryptosporidium: Salvelinus alpinus, Esox lucius, Coregonus lavaretus, Perca fluviatilis, and Rutilus rutilus. The presence of Cryptosporidium spp. was found in 15 out of 41 fish (37%), distributed as follows: 13 (87%) C. parvum, 1 (7%) C. molnari, and 1 (7%) mixed infection (C. parvum and C. molnari). C. molnari was identified in the stomach, while C. parvum was found in the stomach and intestine. C. molnari was also detected in 1 out of 100 analyzed fillets. In order to identify Cryptosporidium subtypes, sequencing of the highly polymorphic 60-kDa glycoprotein (gp60) was performed. Among the C. parvum positive samples, three gp60 subtypes were identified: IIaA15G2R1, IIaA16G2R1, and IIaA17G2R1. Histological examination confirmed the presence of potential developmental stages of C. parvum within digestive epithelial cells. These observations suggest that C. parvum is infecting fish, rather than being passively carried. Since C. parvum is a zoonotic species, fish potentially contaminated by the same subtypes found in terrestrial mammals would be an additional source of infection for humans and animals, and may also contribute to the contamination of the environment with this parasite. Moreover, the risk of human transmission is strengthened by the

  5. Identification of Cryptosporidium Species in Fish from Lake Geneva (Lac Léman in France.

    Directory of Open Access Journals (Sweden)

    Gabriela Certad

    Full Text Available Cryptosporidium, a protozoan parasite that can cause severe diarrhea in a wide range of vertebrates including humans, is increasingly recognized as a parasite of a diverse range of wildlife species. However, little data are available regarding the identification of Cryptosporidium species and genotypes in wild aquatic environments, and more particularly in edible freshwater fish. To evaluate the prevalence of Cryptosporidiumspp. in fish from Lake Geneva (Lac Léman in France, 41 entire fish and 100 fillets (cuts of fish flesh were collected from fishery suppliers around the lake. Nested PCR using degenerate primers followed by sequence analysis was used. Five fish species were identified as potential hosts of Cryptosporidium: Salvelinus alpinus, Esox lucius, Coregonus lavaretus, Perca fluviatilis, and Rutilus rutilus. The presence of Cryptosporidium spp. was found in 15 out of 41 fish (37%, distributed as follows: 13 (87% C. parvum, 1 (7% C. molnari, and 1 (7% mixed infection (C. parvum and C. molnari. C. molnari was identified in the stomach, while C. parvum was found in the stomach and intestine. C. molnari was also detected in 1 out of 100 analyzed fillets. In order to identify Cryptosporidium subtypes, sequencing of the highly polymorphic 60-kDa glycoprotein (gp60 was performed. Among the C. parvum positive samples, three gp60 subtypes were identified: IIaA15G2R1, IIaA16G2R1, and IIaA17G2R1. Histological examination confirmed the presence of potential developmental stages of C. parvum within digestive epithelial cells. These observations suggest that C. parvum is infecting fish, rather than being passively carried. Since C. parvum is a zoonotic species, fish potentially contaminated by the same subtypes found in terrestrial mammals would be an additional source of infection for humans and animals, and may also contribute to the contamination of the environment with this parasite. Moreover, the risk of human transmission is strengthened by

  6. Spatial distribution and trends of total mercury in waters of the Great Lakes and connecting channels using an improved sampling technique

    International Nuclear Information System (INIS)

    Dove, A.; Hill, B.; Klawunn, P.; Waltho, J.; Backus, S.; McCrea, R.C.

    2012-01-01

    Environment Canada recently developed a clean method suitable for sampling trace levels of metals in surface waters. The results of sampling for total mercury in the Laurentian Great Lakes between 2003 and 2009 give a unique basin-wide perspective of concentrations of this important contaminant and represent improved knowledge of mercury in the region. Results indicate that concentrations of total mercury in the offshore regions of the lakes were within a relatively narrow range from about 0.3 to 0.8 ng/L. The highest concentrations were observed in the western basin of Lake Erie and concentrations then declined towards the east. Compared to the offshore, higher levels were observed at some nearshore locations, particularly in lakes Erie and Ontario. The longer-term temporal record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease in equivalent water concentrations since 1986. - Highlights: ► Basin-wide concentrations of total mercury in Great Lakes surface waters are provided for the first time. ► A clean sampling method is described, stressing isolation of the sample from extraneous sources of contamination. ► Sub-ng/L concentrations of total mercury are observed in most Great Lakes offshore areas. ► Concentrations in the western basin of Lake Erie are consistently the highest observed in the basin. ► The longer-term record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease since 1986. - A new, clean sampling method for metals is described and basin-wide measurements of total mercury are provided for Great Lakes surface waters for the first time.

  7. Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish

    Energy Technology Data Exchange (ETDEWEB)

    Buckman, Andrea H. [Department of Environmental Biology, University of Guelph, Guelph, Ont., N1G 2W1 (Canada); National Waters Research Institute, Environment Canada, Burlington, Ont., Canada L7R 4A6 (Canada); Wong, Charles S. [Department of Chemistry, University of Alberta, Edmonton, Alta. (Canada); Chow, Elaine A. [Department of Chemistry, University of Alberta, Edmonton, Alta. (Canada); Brown, Scott B. [National Waters Research Institute, Environment Canada, Burlington, Ont., L7R 4A6 (Canada); Solomon, Keith R. [Department of Environmental Biology, University of Guelph, Guelph, Ont., N1G 2W1 (Canada); Fisk, Aaron T. [Warnell School of Forest Resources, University of Georgia, Athens, GA 30602-2152 (United States)]. E-mail: afisk@smokey.forestry.uga.edu

    2006-06-15

    Hydroxylated PCBs (OH-PCBs) are a class of organic contaminants that have been found recently in the plasma of Great Lakes fish, the source of which is either bioformation from PCBs or accumulation from the environment. To address the potential for fish to biotransform PCBs and bioform OH-PCBs juvenile rainbow trout (Oncorhynchus mykiss; {approx}80 g) were exposed to dietary concentrations of an environmentally relevant mixture of PCBs. Eight OH-PCBs were found in the plasma of rainbow trout after 30 days of exposure to the PCBs, the relative pattern of which was similar to those observed in wild lake trout (Salvelinus namaycush) from Lake Ontario. Hydroxylated-PCBs were not found (detection limit 0.02 pg/g) in the food or control (not PCB-exposed) fish. A curvilinear log t {sub 1/2}-log K {sub ow} relationship for recalcitrant PCBs was found, similar to previously reported relationships, although t {sub 1/2} values were longer and shorter than studies using smaller fish or cooler temperatures, respectively. A number of PCB congeners fell below the log t {sub 1/2}-log K {sub ow} relationship providing the first estimates of non-chiral PCB biotransformation rates in fish. Enantioselective degradation of the chiral congeners PCBs 91 and 136, also indicated biotransformation. Biotransformation of PCBs was structure-dependent with greater biotransformation of PCBs with vicinal hydrogen atoms in the meta/para positions, suggesting CYP 2B-like biotransformation. Other chiral congeners with a meta/para substitution pattern showed no enantioselective degradation but were biotransformed based on the log t {sub 1/2}-log K {sub ow} relationship. The results of this study demonstrate that laboratory held rainbow trout can biotransform a number of PCB congeners and that bioformation is likely an important source of OH-PCBs in wild salmonids of the Great Lakes.

  8. Biotransformation of polychlorinated biphenyls (PCBs) and bioformation of hydroxylated PCBs in fish

    International Nuclear Information System (INIS)

    Buckman, Andrea H.; Wong, Charles S.; Chow, Elaine A.; Brown, Scott B.; Solomon, Keith R.; Fisk, Aaron T.

    2006-01-01

    Hydroxylated PCBs (OH-PCBs) are a class of organic contaminants that have been found recently in the plasma of Great Lakes fish, the source of which is either bioformation from PCBs or accumulation from the environment. To address the potential for fish to biotransform PCBs and bioform OH-PCBs juvenile rainbow trout (Oncorhynchus mykiss; ∼80 g) were exposed to dietary concentrations of an environmentally relevant mixture of PCBs. Eight OH-PCBs were found in the plasma of rainbow trout after 30 days of exposure to the PCBs, the relative pattern of which was similar to those observed in wild lake trout (Salvelinus namaycush) from Lake Ontario. Hydroxylated-PCBs were not found (detection limit 0.02 pg/g) in the food or control (not PCB-exposed) fish. A curvilinear log t 1/2 -log K ow relationship for recalcitrant PCBs was found, similar to previously reported relationships, although t 1/2 values were longer and shorter than studies using smaller fish or cooler temperatures, respectively. A number of PCB congeners fell below the log t 1/2 -log K ow relationship providing the first estimates of non-chiral PCB biotransformation rates in fish. Enantioselective degradation of the chiral congeners PCBs 91 and 136, also indicated biotransformation. Biotransformation of PCBs was structure-dependent with greater biotransformation of PCBs with vicinal hydrogen atoms in the meta/para positions, suggesting CYP 2B-like biotransformation. Other chiral congeners with a meta/para substitution pattern showed no enantioselective degradation but were biotransformed based on the log t 1/2 -log K ow relationship. The results of this study demonstrate that laboratory held rainbow trout can biotransform a number of PCB congeners and that bioformation is likely an important source of OH-PCBs in wild salmonids of the Great Lakes

  9. Evaluation of ERTS data for certain oceanographic uses. [upwelling, water circulation, and pollution in Great Lakes

    Science.gov (United States)

    Strong, A. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Upwelling along the eastern shore of Lake Michigan was occurring during the 3 and 21 August 1973 visits by ERTS-1. The NOAA-2 VHRR thermal-IR data are being digitized for comparison. Early indications are that these upwellings induced a calcium carbonate precipitate to form in the surface waters. It is most pronounced in the MSS-4 channel. On the lake bottom this jell-like sediment is known as marl and adds to the eutrophication of the lake. This phenomenon may help to explain the varve-like nature of bottom cores that have been observed in the Great Lakes.

  10. Determinants of fish assemblage structure in Northwestern Great Plains streams

    Science.gov (United States)

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American

  11. Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Mayumi, E-mail: yoshi887@ffpri.affrc.go.jp [Kansai Research Center, Forestry and Forest Products Research Institute, Nagaikyuutaro 68, Momoyama, Fushimi, Kyoto 612-0855 (Japan); Yokoduka, Tetsuya [Tochigi Prefectural Fisheries Experimental Station, Sarado 2599, Ohtawara, Tochigi 324-0404 (Japan)

    2014-06-01

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011 emitted radioactive substances into the environment, contaminating a wide array of organisms including fishes. We found higher concentrations of radioactive cesium ({sup 137}Cs) in brown trout (Salmo trutta) than in rainbow trout (Oncorhynchus nerka), and {sup 137}Cs concentrations in brown trout were higher in a lake than in a stream. Our analyses indicated that these differences were primarily due to differences in diet, but that habitat also had an effect. Radiocesium concentrations ({sup 137}Cs) in stream charr (Salvelinus leucomaenis) were higher in regions with more concentrated aerial activity and in older fish. These results were also attributed to dietary and habitat differences. Preserving uncontaminated areas by remediating soils and releasing uncontaminated fish would help restore this popular fishing area but would require a significant effort, followed by a waiting period to allow activity concentrations to fall below the threshold limits for consumption. - Highlight: • Concentration of {sup 137}Cs in brown trout was higher than in rainbow trout. • {sup 137}Cs concentration of brown trout in a lake was higher than in a stream. • {sup 137}Cs concentration of stream charr was higher in region with higher aerial activity. • Concentration of {sup 137}Cs in stream charr was higher in older fish. • Difference of contamination among fishes was due to difference in diet and habitat.

  12. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    Science.gov (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  13. Teratogenic effects and monetary cost of selenium poisoning of fish in Lake Sutton, North Carolina

    Science.gov (United States)

    A. Dennis Lemly

    2014-01-01

    Selenium pollution from coal ash waste water was investigated in Lake Sutton, NC. This lake has been continuously used as a cooling pond for a coal-fired power plant since 1972. Historic and recent levels of contamination in fish tissues (14–105 µg Se/g dry weight in liver, 24–127 in eggs, 4–23 in muscle,7–38 in whole-body) exceeded toxic thresholds and teratogenic...

  14. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes

    Science.gov (United States)

    Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert

    2018-05-01

    Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.

  15. Assessing the potential for fish predation to impact zebra mussels (Dreissena polymorpha): Insight from bioenergetics models

    Science.gov (United States)

    Eggleton, M.A.; Miranda, L.E.; Kirk, J.P.

    2004-01-01

    Rates of annual food consumption and biomass were modeled for several fish species across representative rivers and lakes in eastern North America. Results were combined to assess the relative potential of fish predation to impact zebra mussels (Dreissena polymorpha). Predicted annual food consumption by fishes in southern waters was over 100% greater than that in northern systems because of warmer annual water temperatures and presumed increases in metabolic demand. Although generally increasing with latitude, biomasses of several key zebra mussel fish predators did not change significantly across latitudes. Biomasses of some less abundant fish predators did increase significantly with latitude, but increases were not of the magnitude to offset predicted decreases in food consumption. Our results generally support the premise that fishes in rivers and lakes of the southern United States (U.S.) have inherently greater potential to impact zebra mussels by predation. Our simulations may provide a partial explanation of why zebra mussel invasions have not been as rapid and widespread in southern U.S. waters compared to the Great Lakes region. ?? Blackwell Munksgaard, 2004.

  16. Fish larvae assemblages in two floodplain lakes with different degrees of connection to the Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    Vanessa Salete Daga

    Full Text Available The objective of this study was to assess the abundance, attributes of assemblages, and spatial and temporal distributions of fish larvae and their relationships with some abiotic variables in two floodplain lakes with different degrees of connection to the Paraná River in Ilha Grande National Park, PR, Brazil. Four sampling sites were chosen, two in each floodplain lake. Night samples were taken with plankton nets during three spawning seasons (monthly, from October to March from 2001 to 2005. The highest diversity and abundance were recorded at Saraiva Lake, with 25 taxa being identified. In Xambrê Lake, only sedentary species were captured, and the most abundant species were Plagioscion squamosissimus and Hypophthalmus edentatus. The greatest abundance of larvae was found in the second spawning season. In the Saraiva Lake, the most abundant species were Moenkhausia aff. intermedia, Hyphessobrycon sp., and Bryconamericus stramineus, but larvae of known migratory species were also documented. In this lake, the greatest abundance of larvae was found in the third spawning. Larvae abundance was influenced by water temperature and conductivity. The high diversity and abundance recorded in Saraiva Lake may be a result of its connectivity with the Paraná River, and the low diversity and abundance observed at Xambrê Lake are likely due to its isolation from the river. This work shows the importance of these lagoons for fish development, for both sedentary and migratory species. Both lagoons may be considered to have extreme ecological importance and they are also extremely susceptible to impacts, so any careless disturbance may cause irreversible damage.

  17. Fish but Not Macroinvertebrates Promote Trophic Cascading Effects in High Density Submersed Plant Experimental Lake Food Webs in Two Contrasting Climate Regions

    Directory of Open Access Journals (Sweden)

    Carlos Iglesias

    2017-07-01

    Full Text Available Predators play a key role in the functioning of shallow lakes. Differences between the response of temperate and subtropical systems to fish predation have been proposed, but experimental evidence is scarce. To elucidate cascading effects produced by predators in contrasting climatic zones, we conducted a mesocosm experiment in three pairs of lakes in Uruguay and Denmark. We used two typical planktivorous-omnivorous fish species (Jenynsia multidentata + Cnesterodon decemmaculatus and Gasterosteus aculeatus + Perca fluviatilis and one littoral omnivorous-predatory macroinvertebrate (Palaemonetes argentinus and Gammarus lacustris, alone and combined, in numbers resembling natural densities. Fish predation on zooplankton increased phytoplankton biomass in both climate zones, whereas the effects of predatory macroinvertebrates on zooplankton and phytoplankton were not significant in either climate zone. Macroinvertebrates (that freely colonized the sampling devices were diminished by fish in both climate areas; however, periphyton biomass did not vary among treatments. Our experiments demonstrated that fish affected the structure of both planktonic and littoral herbivorous communities in both climate regions, with a visible positive cascading effect on phytoplankton biomass, but no effects on periphyton. Altogether, fish impacts appeared to be a strong driver of turbid water conditions in shallow lakes regardless of climatic zone by indirectly contributing to increasing phytoplankton biomass.

  18. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  19. 77 FR 38803 - Request for Nominations to the Great Lakes Advisory Board (GLAB)

    Science.gov (United States)

    2012-06-29

    ... affiliations and other considerations); Demonstrated experience with Great Lakes issues; Leadership experience... nominees will include: The background and experiences that would help members contribute to the diversity... the nominee's experience and knowledge will bring value to the work of the GLAB. To help the Agency in...

  20. Spatial distribution and risk assessment of radioactivity and heavy metal levels of sediment, surface water and fish samples from Lake Van, Turkey

    International Nuclear Information System (INIS)

    Sema Erenturk; Zeyneb Camtakan

    2014-01-01

    In this study, radioactivity levels of 228 lake water samples, 63 upper and depth sediment samples and 12 fish samples from Lake Van were investigated from 2005 to 2008 and the distribution patterns of the radionuclides were presented. Analysis included gross alpha-beta and total radium isotopes activities and uranium concentrations of the water, and gross alpha and gross beta activities and relevant 238 U, 232 Th and 40 K activity of the sediment and fish samples of the lake. Mean gross alpha, gross beta and radium isotopes activities of lake water were found 0.74 ± 0.46, 0.02 ± 0.01 and 0.06 ± 0.04 Bq/L, respectively. Mean gross alpha and beta activities in upper and depth sediments were found to be 41 ± 6 and 1,514 ± 74 Bq/kg; 77 ± 5 and 394 ± 24 Bq/kg at a 95 % confidence level, respectively. Mean activities of 238 U, 232 Th and 40 K activity concentrations in upper and depth sediments were determined to be 225 ± 22, 70 ± 7 and 486 ± 39 Bq/kg; 174 ± 4, 63 ± 3 and 263 ± 25 Bq/kg, respectively. The mean gross alpha and beta, 238 U, 232 Th and 40 K activities in fish samples were established as 47 ± 18, 470 ± 12, 0.57 ± 0.220, 0.022 ± 0.006, 319 ± 11 Bq/kg, respectively. The transfer factor from lake water to fish tissues, annual intake by humans consuming fish, and annual committed effective doses were estimated and evaluated. (author)