WorldWideScience

Sample records for great basin rangeland

  1. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  2. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  3. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: introduction.

    Science.gov (United States)

    Chris Maser; Jack Ward. Thomas

    1983-01-01

    The need for a way by which rangeland managers can account for wildlife in land-use planning, in on-the-ground management actions, and in preparation of environmental impact statements is discussed. Principles of range-land-wildlife interactions and management are described along with management systems. The Great Basin of southeastern Oregon was selected as a well-...

  4. Hydrologic Impacts Associated with the Increased Role of Wildland Fire Across the Rangeland-Xeric Forest Continuum of the Great Basin and Intermountain West, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Boll, J.; Al-Hamdan, O. Z.

    2011-12-01

    The increased role of wildland fire across the rangeland-xeric forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Concomitant climate conditions and altered plant community transitions in recent decades along grassland-shrubland-woodland-xeric forest transitions have promoted frequent and large wildland fires, and the continuance of the trend appears likely if current or warming climate conditions prevail. Much of the Great Basin and Intermountain West in the US now exists in a state in which rangeland and woodland wildfires stimulated by invasive cheatgrass and dense, horizontal and vertical fuel layers have a greater likelihood of progressing upslope into xeric forests. Drier moisture conditions and warmer seasonal air temperatures, along with dense fuel loads, have lengthened fire seasons and facilitated an increase in the frequency, severity and area burned in mid-elevation western US forests. These changes potentially increase the overall hydrologic vulnerability across the rangeland-xeric forest continuum by spatially and temporally increasing soil surface exposure to runoff and erosion processes. Plot-to-hillslope scale studies demonstrate burning may increase event runoff and/or erosion by factors of 2-40 over small-plots scales and more than 100-fold over large-plot to hillslope scales. Anecdotal reports of large-scale flooding and debris-flow events from rangelands and xeric forests following burning document the potential risk to resources (soil loss, water quality, degraded aquatic habitat, etc.), property and infrastructure, and human life. Such risks are particularly concerning for urban centers near the urban-wildland interface. We do not yet know the long-term ramifications of frequent soil loss associated with commonly occurring runoff events on repeatedly burned sites. However, plot to landscape-scale post-fire erosion rate estimates suggest potential losses of biologically

  5. Biological soil crust response to late season prescribed fire in a Great Basin juniper woodland

    Science.gov (United States)

    Steven D. Warren; Larry L. St.Clair; Jeffrey R. Johansen; Paul Kugrens; L. Scott Baggett; Benjamin J. Bird

    2015-01-01

    Expansion of juniper on U.S. rangelands is a significant environmental concern. Prescribed fire is often recommended to control juniper. To that end, a prescribed burn was conducted in a Great Basin juniper woodland. Conditions were suboptimal; fire did not encroach into mid- or late-seral stages and was patchy in the early-seral stage. This study evaluated the effects...

  6. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    Science.gov (United States)

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  7. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 2).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described in a series of appendices. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. ...

  8. Basin wildrye (Leymus cinereus) pooled tetraploid accessions for U.S. Intermountain rangeland reclamation

    Science.gov (United States)

    Stanford A. Young; Jason Vernon; Nancy Shaw

    2013-01-01

    Basin wildrye (Leymus cinereus [Scribn. & Merr.] A. Love) is an important perennial, hardy, long-lived, cool season C3 native grass of rangeland plant communities throughout much of western United States and Canada. All classes of livestock and wildlife, including large and small birds and mammals, utilise the grass year round for food and protection due to its 2-3...

  9. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: the relationship of terrestrial vertebrates to plant communities and structural conditions (Part 1).

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ralph G. Anderson

    1984-01-01

    The relationships of terrestrial vertebrates to plant communities, structural conditions, and special habitats in the Great Basin of southeastern Oregon are described. The importance of habitat components to wildlife and the predictability of management activities on wildlife are examined in terms of managed rangelands. The paper does not provide guidelines but rather...

  10. Great Basin Experimental Range: Annotated bibliography

    Science.gov (United States)

    E. Durant McArthur; Bryce A. Richardson; Stanley G. Kitchen

    2013-01-01

    This annotated bibliography documents the research that has been conducted on the Great Basin Experimental Range (GBER, also known as the Utah Experiment Station, Great Basin Station, the Great Basin Branch Experiment Station, Great Basin Experimental Center, and other similar name variants) over the 102 years of its existence. Entries were drawn from the original...

  11. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  12. Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah

    OpenAIRE

    Fonnesbeck, Brook B.

    2015-01-01

    Digital soil mapping typically involves inputs of digital elevation models, remotely sensed imagery, and other spatially explicit digital data as environmental covariates to predict soil classes and attributes over a landscape using statistical models. Digital imagery from Landsat 5, a digital elevation model, and a digital geology map were used as environmental covariates in a 67,000-ha study area of the Great Basin west of Fillmore, UT. A “pre-map” was created for selecting sampling locatio...

  13. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    Science.gov (United States)

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  14. Common garden comparisons of reproductive, forage and weed suppression potential of rangeland rehabilitation grasses of the Great Basin

    Science.gov (United States)

    Common garden experiments are a means to remove environmental effects. Using 8 species of perennial rangeland grasses, we established a common garden (3 reps x28 plants = 84 plants/species). We found that ‘Hycrest’ crested wheatgrass (Agropyron cristatum) and bluebunch wheatgrass (Pseudoroegneria sp...

  15. Meeting wild bees' needs on rangelands

    Science.gov (United States)

    Some arid rangeland regions, notably those with warm dry climates of the temperate zones, host great diversities of native bees, primarily non-social species among which are many floral specialists. Rangeland bee faunas are threatened indirectly by invasive exotic weeds wherever these displace nat...

  16. The role of fire in managing for biological diversity on native rangelands of the Northern Great Plains

    Science.gov (United States)

    Carolyn Hull Sieg

    1997-01-01

    A strategy for using fire to manage for biological diversity on native rangelands in the Northern Great Plains incorporates an understanding of its past frequency, timing and intensity. Historically, lightning and humans were the major fire setters, and the role of fire varied both in space and time. A burning regime that includes fires at various intervals, seasons...

  17. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  18. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  19. Great Basin wildlife disease concerns

    Science.gov (United States)

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  20. Great Basin Factsheet Series 2016 - Information and tools to restore and conserve Great Basin ecosystems

    Science.gov (United States)

    Jeanne C. Chambers

    2016-01-01

    Land managers are responsible for developing effective strategies for conserving and restoring Great Basin ecosystems in the face of invasive species, conifer expansion, and altered fire regimes. A warming climate is magnifying the effects of these threats and adding urgency to implementation of management practices that will maintain or improve ecosystem...

  1. Great Basin paleoenvironmental studies project

    International Nuclear Information System (INIS)

    1993-01-01

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project

  2. Climate change effects on rangelands and rangeland management: Affirming the need for monitoring

    Science.gov (United States)

    Daniel W. Mccollum; John A. Tanaka; Jack A. Morgan; John E. Mitchell; William E. Fox; Kristie A. Maczko; Lori Hidinger; Clifford S. Duke; Urs P. Kreuter

    2017-01-01

    Uncertainty as to the extent and magnitude of changes in conditions that might occur due to climate change poses a problem for land and resource managers as they seek to adapt to changes and mitigate effects of climate variability. We illustrate using scenarios of projected future conditions on rangelands in the Northern Great Plains and Desert Southwest of the United...

  3. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.

    2018-01-01

    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  4. RANGELAND DEGRADATION: EXTENT, IMPACTS, AND ALTERNATIVE RESTORATION TECHNIQUES IN THE RANGELANDS OF ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Mohammed Mussa Abdulahi

    2016-12-01

    Full Text Available Rangeland degradation remains a serious impediment to improve pastoral livelihoods in the lowlands of Ethiopia. This review paper presents an overview of the extent of rangeland degradation, explores its drivers, discusses the potential impacts of rangeland degradation and also suggests alternative rangeland restoration techniques. It is intended to serve as an exploratory tool for ensuing more detailed quantitative analyses to support policy and investment programs to address rangeland degradation in Ethiopia. The extent of rangeland degradation increases with time, and the productivity of rangelands are losing if not given due attention. The major drivers leading to rangeland degradation includes climate change, overgrazing, bush encroachment, population pressure, drought, and government policy, encroachment of rain fed agriculture and decline of traditional resource management institution. Degradation of rangeland has resulted in substantial declines in rangeland condition, water potential, soil status, and animal performance, livestock holding at the household level and community become destitute. Another consequence of rangeland degradation is linked to food insecurity, poverty to the extent of food aid, expansion of aridity and the need for alternative livelihood and income diversification. Moreover, it has increasingly become a threat to the pastoral production systems, and has contributed towards increases in poverty and tribal conflicts over grazing land and water resources. In spite of these impacts, the adoption of alternative restoration techniques in the country is highly insufficient. To address rangeland degradation problems, there is a strong need to substantially increase the investments and strengthen the policy support for sustainable land management.

  5. Salinity mobilization and transport from rangelands: assessment, recommendations, and knowledge gaps

    Science.gov (United States)

    The purpose of the salinity project is to improve the understanding of sources and transport mechanisms in rangeland catchments that deliver dissolved solids (salts) to streams within the Upper Colorado River Basin (UCRB) through a review of relevant literature on what is known about the impact of r...

  6. Native plant development and restoration program for the Great Basin, USA

    Science.gov (United States)

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  7. Multiscale sagebrush rangeland habitat modeling in the Gunnison Basin of Colorado

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2013-01-01

    North American sagebrush-steppe ecosystems have decreased by about 50 percent since European settlement. As a result, sagebrush-steppe dependent species, such as the Gunnison sage-grouse, have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, is needed to help maintain existing sagebrush habitats; however, products that accurately model and map sagebrush habitats in detail over the Gunnison Basin in Colorado are still unavailable. The goal of this project is to provide a rigorous large-area sagebrush habitat classification and inventory with statistically validated products and estimates of precision across the Gunnison Basin. This research employs a combination of methods, including (1) modeling sagebrush rangeland as a series of independent objective components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground measured plot data on 2.4-meter QuickBird satellite imagery in the same season the imagery is acquired; (3) modeling of ground measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of Landsat Thematic Mapper imagery (30-meter) for optimal modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution Landsat Thematic Mapper; and 6) employing accuracy assessment of model predictions to enable users to understand their dependencies. Results include the prediction of four primary components including percent bare ground, percent herbaceous, percent shrub, and percent litter, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata wyomingensis), and shrub height (centimeters

  8. Pacific salmonines in the Great Lakes Basin

    Science.gov (United States)

    Claramunt, Randall M.; Madenjian, Charles P.; Clapp, David; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    Pacific salmon (genus Oncorhynchus) are a valuable resource, both within their native range in the North Pacific rim and in the Great Lakes basin. Understanding their value from a biological and economic perspective in the Great Lakes, however, requires an understanding of changes in the ecosystem and of management actions that have been taken to promote system stability, integrity, and sustainable fisheries. Pacific salmonine introductions to the Great Lakes are comprised mainly of Chinook salmon, coho salmon, and steelhead and have accounted for 421, 177, and 247 million fish, respectively, stocked during 1966-2007. Stocking of Pacific salmonines has been effective in substantially reducing exotic prey fish abundances in several of the Great Lakes (e.g., lakes Michigan, Huron, and Ontario). The goal of our evaluation was to highlight differences in management strategies and perspectives across the basin, and to evaluate policies for Pacific salmonine management in the Great Lakes. Currently, a potential conflict exists between Pacific salmonine management and native fish rehabilitation goals because of the desire to sustain recreational fisheries and to develop self-sustaining populations of stocked Pacific salmonines in the Great Lakes. We provide evidence that suggests Pacific salmonines have not only become naturalized to the food webs of the Great Lakes, but that their populations (specifically Chinook salmon) may be fluctuating in concert with specific prey (i.e., alewives) whose populations are changing relative to environmental conditions and ecosystem disturbances. Remaining questions, however, are whether or not “natural” fluctuations in predator and prey provide enough “stability” in the Great Lakes food webs, and even more importantly, would a choice by managers to attempt to reduce the severity of predator-prey oscillations be antagonistic to native fish restoration efforts. We argue that, on each of the Great Lakes, managers are pursuing

  9. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  10. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  11. Climate-change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity

    Science.gov (United States)

    David D. Briske; Linda A. Joyce; H. Wayne Polley; Joel R. Brown; Klaus Wolter; Jack A. Morgan; Bruce A. McCarl; Derek W. Bailey

    2015-01-01

    The ecological consequences of climate change are predicted to vary greatly throughout US rangelands. Projections show warming and drying in the southern Great Plains and the Southwest, warmer and drier summers with reduced winter snowpack in the Northwest, and warmer and wetter conditions in the northern Great Plains. Primarily through their combined effects on soil...

  12. Highly calcareous lacustrine soils in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Meester, de T.

    1971-01-01

    The Great Konya Basin is in the south of the Central Anatolian Plateau in Turkey. It is a depression without outlet to the sea. The central part of the Basin is the floor of a former Pleistocene lake, the Ancient Konya Lake. This area, called the Lacustrine
    Plain, has highly calcareous

  13. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  14. Geology of photo linear elements, Great Divide Basin, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  15. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  16. Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales

    Science.gov (United States)

    Blake Meneken Engelhardt

    2009-01-01

    Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...

  17. Quantifying phenology metrics from Great Basin plant communities and their relationship to seasonal water availability

    Science.gov (United States)

    Background/Question/Methods Sagebrush steppe is critical habitat in the Great Basin for wildlife and provides important ecosystem goods and services. Expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) in the Great Basin has reduced the extent of sagebrush steppe causing habitat, fire, and...

  18. Downy brome seed ecology: From flower to emergence

    Science.gov (United States)

    Downy brome (Bromus tectorum) seed is very common in seed banks throughout Great Basin rangelands. Previously, using a soil bioassay method, we tested 100 separate sites within the Great Basin (1000 samples) to measure downy brome seed bank densities. The locations differed greatly by precipitation,...

  19. Earth observation for rangeland monitoring

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available .kashan.co.za] INTRODUCTION Grass nitrogen (N), as an indicator of rangeland quality, plays a crucial role in understanding the distribution, densities and feeding patterns of both wild herbivores and livestock. Zebras and livestock in the grazing and agricultural lands... ? How can grass nitrogen be mapped for assessing and monitoring of rangeland quality at wider or regional scales? ? Conventional point-based techniques for assessing rangeland quality proved to be expensive, laborious and time consuming...

  20. Carbon fluxes on North American rangelands

    Science.gov (United States)

    Tony Svejcar; Raymond Angell; James A. Bradford; William Dugas; William Emmerich; Albert B. Frank; Tagir Gilmanov; Marshall Haferkamp; Douglas A. Johnson; Herman Mayeux; Pat Mielnick; Jack Morgan; Nicanor Z. Saliendra; Gerald E. Schuman; Phillip L. Sims; Kereith Snyder

    2008-01-01

    Rangelands account for almost half of the earth's land surface and may play an important role in the global carbon (C) cycle. We studied net ecosystem exchange (NEE) of C on eight North American rangeland sites over a 6-yr period. Management practices and disturbance regimes can influence NEE; for consistency, we compared ungrazed and undisturbed rangelands...

  1. Criterion III: Maintenance of rangeland productive capacity [Chapter 4

    Science.gov (United States)

    G. R. Evans; R. A. Washmgton-Allen; R. D. Child; J. E. Mitchell; B. R. Bobowskl; R. V. Loper; B. H. Allen-Diaz; D. W. Thompson; G. R. Welling; T. B. Reuwsaat

    2010-01-01

    Maintenance of rangeland productive capacity is one of five criteria established by the Sustainable Rangelands Roundtable (SRR) to monitor and assess rangeland sustainable management. Within this criterion, six indicators were developed through the Delphi Process and the expert opinions of academicians, rangeland scientists, rangeland management agency personnel, non-...

  2. Measuring ecological function on California's rangelands

    Science.gov (United States)

    Porzig, E.

    2016-12-01

    There is a need for a better understanding of ecosystem processes on rangelands and how management decisions influence these processes on scales that are both ecologically and socially relevant. Point Blue Conservation Science's Rangeland Monitoring Network is a coordinated effort to collect standardized data on birds, vegetation, and soils on rangelands throughout California. We work with partners, including private landowners, land trusts, state and federal agencies, and others, to measure bird and plant abundance and diversity and three soil dynamic properties (water infiltration, bulk density, and organic carbon). Here, we present data from our first two years of monitoring on over 50 ranches in 17 counties. By collecting data on the scope and scale of variation in ecological function across rangelands and the relationship with management practices, we aim to advance rangeland management, restoration, and conservation.

  3. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  4. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  5. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Semiarid rangelands in the western United States have been or are being invaded by introduced annual weeds that negatively impact ecosystem services and pose a major conservation threat. Rehabilitation and restoration of these rangelands are challenging due to inter-annual climate and sub-seasonal ...

  6. Rangelands: Where Anthromes Meet Their Limits

    Directory of Open Access Journals (Sweden)

    Nathan F. Sayre

    2017-05-01

    Full Text Available Defining rangelands as anthromes enabled Ellis and Ramankutty (2008 to conclude that more than three-quarters of Earth’s land is anthropogenic; without rangelands, this figure would have been less than half. They classified all lands grazed by domestic livestock as rangelands, provided that human population densities were low; similar areas without livestock were excluded and classified instead as ‘wildlands’. This paper examines the empirical basis and conceptual assumptions of defining and categorizing rangelands in this fashion. Empirically, we conclude that a large proportion of rangelands, although used to varying degrees by domesticated livestock, are not altered significantly by this use, especially in arid, highly variable environments and in settings with long evolutionary histories of herbivory by wild animals. Even where changes have occurred, the dynamics and components of many rangelands remain structurally and functionally equivalent to those that preceded domestic livestock grazing or would be found in its absence. In much of Africa and Asia, grazing is so longstanding as to be inextricable from ‘natural’ or reference conditions for those sites. Thus, the extent of anthropogenic biomes is significantly overstated. Conceptually, rangelands reveal the dependence of the anthromes thesis on outdated assumptions of ecological climax and equilibrium. Coming to terms with rangelands—how they can be classified, understood, and managed sustainably—thus offers important lessons for understanding anthromes and the Anthropocene as a whole. At the root of these lessons, we argue, is not the question of human impacts on ecosystems but property relations among humans.

  7. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    Science.gov (United States)

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  8. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    Science.gov (United States)

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  9. Germination phenology of some Great Basin native annual forb species

    Science.gov (United States)

    Tara A. Forbis

    2010-01-01

    Great Basin native plant communities are being replaced by the annual invasive cheatgrass Bromus tectorum. Cheatgrass exhibits a germination syndrome that is characteristic of facultative winter annuals. Although perennials dominate these communities, native annuals are present at many sites. Germination timing is often an important predictor of competitive...

  10. Conserving biodiversity on native rangelands: Symposium proceedings

    Science.gov (United States)

    Daniel W. Uresk; Greg L. Schenbeck; James T. O' Rourke

    1997-01-01

    These proceedings are the result of a symposium, "Conserving biodiversity on native rangelands" held on August 17, 1995 in Fort Robinson State Park, NE. The purpose of this symposium was to provide a forum to discuss how elements of rangeland biodiversity are being conserved today. We asked, "How resilient and sustainable are rangeland systems to the...

  11. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    Science.gov (United States)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability

  12. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  13. A systematic review of US rangeland social science

    Science.gov (United States)

    Rangeland science aims to create knowledge to sustain rangeland social-ecological systems over the long term. Range science has made substantial progress on understanding ecological dynamics of rangeland systems and the management practices that sustain them, and these findings have been systematica...

  14. Implications of climate change for water resources in the Great Lakes basin

    International Nuclear Information System (INIS)

    Clamen, M.

    1990-01-01

    Several authors have suggested the following impacts of global warming for the Great Lakes region. The average annual warming is predicted by one model to be ca 4.5 degree C, slightly more in winter and slightly less in summer. Annual precipitation is projected to increase by ca 8% for points in the central and western basin, but to decrease by 3-6% for the eastern basin. Basin snowpack could be reduced by up to 100% and the snow season shortened by 2-4 weeks, resulting in a reduction of more than 50% in available soil moisture. Buoyancy-driven turnovers of the water column on four of the six lakes may not occur at all. Presently the phenomena occurs twice per year on all the lakes. Ice formation would be greatly reduced. Maximum ice cover may decline from 72-0% for Lake Superior, 38-0% for Lake Michigan, 65-0% for Lake Huron, 90-50% for Lake Erie and 33-0% for Lake Ontario. Net basin supplies would be reduced probably in the range 15-25% below the current mean value. Possible responses include integrated studies and research, better and continually updated information, assessment of public policies in the U.S. and Canada, enhanced private planning efforts, and increased global cooperation

  15. Bridging Drought – Resilience in Rangeland Management in Times of Climate Change

    OpenAIRE

    Isele, Judith

    2014-01-01

    Organic livestock farming in semiarid regions greatly depends on the sustainable management of the natural rangeland as the resource for livestock sustenance. High stock density in combination with short grazing and long recovery periods achieve effective rainfall utilisation and considerably higher fodder production resulting in a high degree of resilience in drought situations.

  16. Rangeland monitoring and assessment: a review

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2018-04-01

    Full Text Available Rangelands provide vast landscapes for grazing and foraging for livestock and wildlife. Services of rangelands are diverse and generally provide food for millions of the world’s population, especially the rural and sometimes poor communities...

  17. MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...

  18. A RANGELAND GRASSHOPPER INSURANCE PROGRAM

    OpenAIRE

    Skold, Melvin D.; Davis, Robert M.

    1995-01-01

    The incidence of benefits and costs from controlling rangeland grasshoppers on public grazing lands poses problems of economic efficiency and distributional equity. Public grasshopper control programs operate like public disaster assistance. However, grasshopper infestations are an insurable risk. This article proposes a rangeland grasshopper insurance program which reduces the economic inefficiencies and distributional inequities of the existing program.

  19. Developing an operational rangeland water requirement satisfaction index

    Science.gov (United States)

    Senay, Gabriel B.; Verdin, James P.; Rowland, James

    2011-01-01

    Developing an operational water requirement satisfaction index (WRSI) for rangeland monitoring is an important goal of the famine early warning systems network. An operational WRSI has been developed for crop monitoring, but until recently a comparable WRSI for rangeland was not successful because of the extremely poor performance of the index when based on published crop coefficients (K c) for rangelands. To improve the rangeland WRSI, we developed a simple calibration technique that adjusts the K c values for rangeland monitoring using long-term rainfall distribution and reference evapotranspiration data. The premise for adjusting the K c values is based on the assumption that a viable rangeland should exhibit above-average WRSI (values >80%) during a normal year. The normal year was represented by a median dekadal rainfall distribution (satellite rainfall estimate from 1996 to 2006). Similarly, a long-term average for potential evapotranspiration was used as input to the famine early warning systems network WRSI model in combination with soil-water-holding capacity data. A dekadal rangeland WRSI has been operational for east and west Africa since 2005. User feedback has been encouraging, especially with regard to the end-of-season WRSI anomaly products that compare the index's performance to ‘normal’ years. Currently, rangeland WRSI products are generated on a dekadal basis and posted for free distribution on the US Geological Survey early warning website at http://earlywarning.usgs.gov/adds/

  20. USDA internet tool to estimate runoff and soil loss on rangelands: rangelands hydrology and erosion model

    Science.gov (United States)

    Rangelands are the most dominant land cover type in the United States (770 million acres) with approximately 53% of the nation’s rangelands owned and managed by the private sector, while approximately 43% are managed by the federal government. Information on the type, extent, and spatial location of...

  1. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance.

    Science.gov (United States)

    Robinson, Lance W; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship-notably the "design principles" for effective governance of commons-do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  2. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance

    Science.gov (United States)

    Robinson, Lance W.; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S.

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship—notably the "design principles" for effective governance of commons—do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  3. Current situation of rangelands in Mexico

    Science.gov (United States)

    Alicia Melgoza-Castillo

    2006-01-01

    Rangelands are natural areas with certain characteristics that make them unsuitable for agriculture. They include several types of vegetation such as deserts, grasslands, shrubs, forests, and riparian areas. Cattle ranching, along with the products and services it engenders, is a prime activity that rangelands have traditionally supported.

  4. Soil Properties and Plant Biomass Production in Natural Rangeland Management Systems

    Directory of Open Access Journals (Sweden)

    Romeu de Souza Werner

    Full Text Available ABSTRACT Improper management of rangelands can cause land degradation and reduce the economic efficiency of livestock activity. The aim of this study was to evaluate soil properties and quantify plant biomass production in four natural rangeland management systems in the Santa Catarina Plateau (Planalto Catarinense of Brazil. The treatments, which included mowed natural rangeland (NR, burned natural rangeland (BR, natural rangeland improved through the introduction of plant species after harrowing (IH, and natural rangeland improved through the introduction of plant species after chisel plowing (IC, were evaluated in a Nitossolo Bruno (Nitisol. In the improved treatments, soil acidity was corrected, phosphate fertilizer was applied, and intercropped annual ryegrass (Lolium multiflorum, velvet grass (Holcus lanatus, and white clover (Trifolium repens were sown. Management systems with harrowed or chisel plowed soil showed improved soil physical properties; however, the effect decreased over time and values approached those of burned and mowed natural rangelands. Natural rangeland systems in the establishment phase had little influence on soil organic C. The mowed natural rangeland and improved natural rangeland exhibited greater production of grazing material, while burning the field decreased production and increased the proportion of weeds. Improvement of the natural rangelands increased leguminous biomass for pasture.

  5. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    Science.gov (United States)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  6. Monitoring species richness and abundance of shorebirds in the western Great Basin

    Science.gov (United States)

    Warnock, Nils; Haig, Susan M.; Oring, Lewis W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  7. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  8. Bi-national Great Lakes-St. Lawrence Basin climate change and hydrologic scenarios report

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, B.; Smith, J.V.; Koshida, G.; Mortsch, L.D. [eds.

    1998-09-01

    Climate experts in government, industry and academic institutions have put together a national assessment of how climate change will affect Canadians and their social, biological and economic environment over the next century. This volume documents the impacts and implications of climate change on the Great Lakes-St. Lawrence Basin, and provides an analysis and assessment of various climate and hydrologic scenarios used for the Great Lakes - St. Lawrence Basin Project. As part of the analysis and assessment, results from the Canadian Climate Centre second-generation General Circulation Model and four transposition scenarios for both climate and hydrological resources are reviewed. The objective is to provide an indication of sensitivities and vulnerabilities of the region to climate, with a view to improve adaptation to potential climate changes. 25 tabs., 26 figs. figs.

  9. Use of the GREAT-ER model to estimate mass fluxes of chemicals, carried into the Western Scheldt estuary from the Rupel basin

    OpenAIRE

    Schowanek, D.

    2002-01-01

    The poster illustrates the application of the GREAT-ER model to estimate the mass flux of chemicals carried from a river basin into an estuary. GREAT-ER (Geo-referenced Regional Exposure Assessment Tool for European Rivers) is a newly developed model (1999) for management and risk assessment of chemicals in river basins (see www.great-er.org). Recently the Rupel basin has been made available for use within GREAT-ER. This now allows to make a reliable estimation of the contribution of pollu...

  10. Soil Moisture Variability and its Effects on Herbage Production in Semi-arid Rangelands of Kenya

    International Nuclear Information System (INIS)

    Too, D.K.; Trlica, M.J.; Swift, D.M.; Musembi, D.K.

    1999-01-01

    Results obtained from recent studies focused on rangelands potential as influenced by human activity and climatic factors in the semi-arid and arid pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document primary production in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory, field and numerical methods were employed over several seasons and years. Forb and grass production was more variable than that of the browse (dwarf shrub) layer. Compared to forbs and dwarf shrubs, the grass layer contributed less to the total production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variation in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal differences were very evident, with highest estimates in the long rainy and the lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential were identified to be moisture deficiency, resource-use conflicts, an increasing and partially sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can improve rangeland production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information Systems, GIS); (b) technical interventions (i.e. soil and water conservation, restoration of degraded areas, fodder production); (c) social-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development improvement of livestock marketing channels etc.) and (d) continued

  11. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems

    Science.gov (United States)

    Alkemade, Rob; Reid, Robin S.; van den Berg, Maurits; de Leeuw, Jan; Jeuken, Michel

    2013-01-01

    Biodiversity in rangelands is decreasing, due to intense utilization for livestock production and conversion of rangeland into cropland; yet the outlook of rangeland biodiversity has not been considered in view of future global demand for food. Here we assess the impact of future livestock production on the global rangelands area and their biodiversity. First we formalized existing knowledge about livestock grazing impacts on biodiversity, expressed in mean species abundance (MSA) of the original rangeland native species assemblages, through metaanalysis of peer-reviewed literature. MSA values, ranging from 1 in natural rangelands to 0.3 in man-made grasslands, were entered in the IMAGE-GLOBIO model. This model was used to assess the impact of change in food demand and livestock production on future rangeland biodiversity. The model revealed remarkable regional variation in impact on rangeland area and MSA between two agricultural production scenarios. The area of used rangelands slightly increases globally between 2000 and 2050 in the baseline scenario and reduces under a scenario of enhanced uptake of resource-efficient production technologies increasing production [high levels of agricultural knowledge, science, and technology (high-AKST)], particularly in Africa. Both scenarios suggest a global decrease in MSA for rangelands until 2050. The contribution of livestock grazing to MSA loss is, however, expected to diminish after 2030, in particular in Africa under the high-AKST scenario. Policies fostering agricultural intensification can reduce the overall pressure on rangeland biodiversity, but additional measures, addressing factors such as climate change and infrastructural development, are necessary to totally halt biodiversity loss. PMID:22308313

  12. Birds of a Great Basin Sagebrush Habitat in East-Central Nevada

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1992-01-01

    Breeding bird populations ranged from 3.35 to 3.48 individuals/ha over a 3-year study conducted from 1981 to 1983. Brewer's sparrows, sage sparrows, sage thrashers, and black-throated sparrows were numerically dominant. Horned larks and western meadowlarks were less common. Results are compared with bird populations in Great Basin sagebrush habitats elsewhere in the United States.

  13. A landscape approach for ecologically based management of Great Basin shrublands

    Science.gov (United States)

    Michael J. Wisdom; Jeanne C. Chambers

    2009-01-01

    Native shrublands dominate the Great Basin of western of North America, and most of these communities are at moderate or high risk of loss from non-native grass invasion and woodland expansion. Landscape-scale management based on differences in ecological resistance and resilience of shrublands can reduce these risks. We demonstrate this approach with an example that...

  14. Maintaining ecosystem services through continued livestock production on California rangelands

    Science.gov (United States)

    Barry, S.; Becchetti, T.

    2015-12-01

    Nearly 40% of California is rangeland comprising the largest land type in California and providing forage for livestock, primarily beef cattle. In addition to forage, rangelands provide a host of ecosystem systems services, including habitat for common and endangered species, fire fuels management, pollination services, clean water, viewsheds, and carbon sequestration. Published research has documented that most of these ecosystem services are positively impacted by managed livestock grazing and rancher stewardship. Ranchers typically do not receive any monetary reimbursement for their stewardship in providing these ecosystem services to the public. Markets have been difficult to establish with limited ability to adequately monitor and measure services provided. At the same time, rangelands have been experiencing rapid conversion to urbanization and more profitable and intensive forms of agriculture such as almond and walnut orchards. To prevent further conversion of rangelands and the loss of the services they provide, there needs to be a mechanism to identify and compensate landowners for the value of all products and services being received from rangelands. This paper considers two methods (opportunity cost and avoided cost) to determine the value of Payment for Ecosystem Services (PES) for rangelands. PES can raise the value of rangelands, making them more competitive financially. Real estate values and University of California Cooperative Extension Cost Studies, were used to demonstrate the difference in value (lost opportunity cost) between the primary products of rangelands (livestock production) and the products of the converted rangelands (almond and walnut orchards). Avoided costs for vegetation management and habitat creation and maintenance were used to establish the value of managed grazing. If conversion is to be slowed or stopped and managed grazing promoted to protect the ecosystem services rangelands provide, this value could be compensated through

  15. Regional evaluation and primary geological structural and metallogenical research of great Kavir basin as view of possibility formation of sedimentary-surficial Uranium mineralization

    International Nuclear Information System (INIS)

    Kamali Sadr, S.

    2006-01-01

    Great Kavir basin is the largest inner basin in Iran that extended about 90000 km 2. This basin is situated in the centre of lran , to the south from Alborz mountain range and elongated in the sub- latitudinal trend and its construction is asymmetric. The basin cover consists generally of complicated sequence of continental - marine Oligocene - Miocene molasses. According to drainage systems - conditions, molassoid cycles, alluvial, alluvial - deltaic and lacustrine sediments, climate, morphological conditions and metallogenic and structural features, Great Kavir depression generally is favorable for exigence and surficial uranium deposits (vally - fill, flood plain, deltaic and playa). Uranium occurrences that are Known in the southern and north eastern part of the margent Great Kavir basin, are Arosan, Irekan and Mohammad Abad. Similar geological - structural conditions for uranium mineralization is possible in the margent of Great Kavir basin

  16. Remote sensing applications for monitoring rangeland vegetation ...

    African Journals Online (AJOL)

    Remote sensing techniques hold considerable promise for the inventory and monitoring of natural resources on rangelands. A significant lack of information concerning basic spectral characteristics of range vegetation and soils has resulted in a lack of rangeland applications. The parameters of interest for range condition ...

  17. Great Basin land managers provide detailed feedback about usefulness of two climate information web applications

    Directory of Open Access Journals (Sweden)

    Chad Zanocco

    Full Text Available Land managers in the Great Basin are working to maintain or restore sagebrush ecosystems as climate change exacerbates existing threats. Web applications delivering climate change and climate impacts information have the potential to assist their efforts. Although many web applications containing climate information currently exist, few have been co-produced with land managers or have incorporated information specifically focused on land managers’ needs. Through surveys and interviews, we gathered detailed feedback from federal, state, and tribal sagebrush land managers in the Great Basin on climate information web applications targeting land management. We found that a managers are searching for weather and climate information they can incorporate into their current management strategies and plans; b they are willing to be educated on how to find and understand climate related web applications; c both field and administrative-type managers want data for timescales ranging from seasonal to decadal; d managers want multiple levels of climate information, from simple summaries, to detailed descriptions accessible through the application; and e managers are interested in applications that evaluate uncertainty and provide projected climate impacts. Keywords: Great Basin, Sagebrush, Land management, Climate change, Web application, Co-production

  18. Study on Rangeland production Potential and its Limitations in the Semi-Arid lands of Northern Kenya

    International Nuclear Information System (INIS)

    Keya, G.A.; Hornetz, B.

    1999-01-01

    Results obtained from recent studies focused on rangeland potential as influenced by human activity and climatic factors in the semi-arid and pastoral ecosystems of Northern Kenya indicated great temporal and spatial forage production variability. The objective of the studies was to document the primary production potential in relation to water stress (drought), herbivory and direct human activities. Efforts also focused on finding possibilities of increasing productivity while conserving the finite resources for sustainable use. Laboratory field and numeric methods were employed over several seasons and years. Forb and grass production was more viable than that of the brows (dwarf shrub) layer. Compared to forbs and dwarf shrubs, The grass layer contributed less to the total of production in all seasons, indicating that the region had less potential for grazers compared to browsers. Spatial-temporal variations in rangeland carrying capacity reflected the great spatial heterogeneity in vegetation types and production. Similarly, seasonal difference were very evident, with highest estimates in the long rainy and lowest during the dry and short rainy seasons, respectively. Factors limiting rangeland production potential and were identified to be moisture deficiency, resource-use conflicts, an increasing and partial sedentarised nomadic population, overgrazing, tree felling, and land degradation (desert encroachment). Measures that can increase rangelands production potential and provide a better way of life for the inhabitants of the region include: (a) identification of land degradation (e.g. by means of bio-indicators and Geographical Information systems, GIS); (b) technical interventions (i.e. soil and water conservation,restoration of degraded ares, fodder production); (c)socio-economic interventions (i.e. resolution of resource-use conflicts, alleviation of poverty, infrastructure development, improvement of livestock marketing channels, etc) and (d) continued

  19. Conserving rangeland resources. | Mentis | African Journal of Range ...

    African Journals Online (AJOL)

    ... goal-attainment, (5) try to correct departures, and (6) align individual and societal interests by manipulating market-forces. Keywords: altruism; conservation; Conservation implementation; Conservation properties; human activity; Human values; philosophy; Range resources; rangeland; Rangelands; Science philosophy

  20. Sustainable rangeland management, economic growth, and a cautious role for the SRM

    Science.gov (United States)

    Interest in the art and science of rangeland management increased dramatically during the 20th century and it was out of this interest that the profession of rangeland management was born. As public interest in rangeland management grew, so did the number, breadth, and depth of rangeland management ...

  1. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    Science.gov (United States)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  2. Pastoral Decision-Making: An Empirical Investigation of Rangeland Use

    International Nuclear Information System (INIS)

    MacPeak, J.

    1999-01-01

    Recent research in range ecology suggests that the process of resource degradation in African arid and semi-arid rangelands may be less reliant on how many animals are kept on the rangeland than on where these animals are kept. Analysis of pastoralist land use decisions indicated that rangeland condition influences livestock keeping. However, it was found that food and income production strategies, herd characteristics play critical roles in livestock keeping decisions

  3. Using remotely sensed imagery to monitor savanna rangeland deterioration through woody plant proliferation: a case study from communal and biodiversity conservation rangeland sites in Mokopane, South Africa

    CSIR Research Space (South Africa)

    Munyati, C

    2011-05-01

    Full Text Available rangeland, whereas the communal rangelands were getting more opened up by livestock trampling. Rangeland management practices of fire utilisation, stocking levels and stock concentration account for the differing trends. Lightly grazed and heavily grazed...

  4. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    Science.gov (United States)

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  5. A Dynamic Model of California's Hardwood Rangelands

    Science.gov (United States)

    Richard B. Standiford; Richard E. Howitt

    1991-01-01

    Low profitability of hardwood rangeland management, and oak tree harvesting for firewood markets and forage enhancement has led to concern about the long-term sustainability of the oak resource on rangelands. New markets for recreational hunting may give value to oaks for the habitat they provide for game species, and broaden the economic base for managers. A ranch...

  6. Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains

    Directory of Open Access Journals (Sweden)

    Brian V. Smithers

    2017-11-01

    Full Text Available In the Great Basin, limber pine is a sub-alpine tree species that is colonizing newly available habitat above treeline in greater numbers than treeline-dominating Great Basin bristlecone pine, especially on dolomite soil, where few plants are able to grow and where limber pine adults are rare. To examine the role of soil type on germination and establishment of limber pine, I sowed limber pine seeds in containers of the three main White Mountains soil types in one location while measuring soil moisture and temperature. I found that dolomite soil retains water longer, and has higher soil water content, than quartzite and granite soils and has the coolest maximum growing season temperatures. Limber pine germination and survival were highest in dolomite soil relative to quartzite and granite where limber pine adults are more common. While adult limber pines are rare on dolomite soils, young limber pines appear to prefer them. This indicates that limber pine either has only recently been able to survive in treeline climate on dolomite or that bristlecone pine has some long-term competitive advantage on dolomite making limber pine, a species with 1500 year old individuals, an early succession species in Great Basin sub-alpine forests.

  7. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  8. Sustaining working rangelands: Insights from rancher decision making

    Science.gov (United States)

    Grazed rangeland ecosystems encompass diverse global land resources, and are complex social-ecological systems from which society demands both goods (e.g., livestock and forage production) and services (e.g., abundant and high quality water). In the dialogue on rangeland conservation and sustainable...

  9. Rangeland dynamics in South Omo Zone of Southern Ethiopia: Assessment of rangeland condition in relation to altitude and Grazing types

    NARCIS (Netherlands)

    Terefe, A.; Ebro, A.; Tessema, Z.K.

    2010-01-01

    A study was undertaken in Hamer and Benna-Tsemay districts of the Southern Ethiopia with the objective to determine the condition of the rangelands for grazing animals as influenced by altitude and grazing types. The rangelands in each of the study districts were stratified based on altitude and

  10. Climate change and water quality in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Great Lakes Basin is subjected to several stresses, such as land use changes, chemical contamination, nutrient over-enrichment, alien invasive species, and acid precipitation. Climate change is now added to this list. The Water Quality Board was asked to provide advice concerning the impacts of climate change on the water quality of the Great Lakes and on how to address the issue. A White Paper was commissioned by the Board to address four key questions: (1) what are the Great Lakes water quality issues associated with climate change, (2) what are potential impacts of climate change on beneficial uses, (3) how might impacts vary across the Great Lakes region, and (4) what are the implications for decision making. The conclusions and findings of the White Paper were then discussed at a workshop held in May 2003. Part 1 of the document provides an executive summary. The advice of the Water Quality Board was based on the findings of the White Paper and presented in Part 2. Part 3 presented the White Paper, while a summary of the workshop was provided in Part 4. A presentation on cross border tools and strategies was also presented by a workshop participant.

  11. New Tools to Estimate Runoff, Soil Erosion, and Sustainability of Rangeland Plant Communities

    Science.gov (United States)

    Rangelands are the largest land cover type in the world. Degradation from mismanagement, desertification, and drought impact more than 50% of rangelands across the globe. The USDA Agricultural Research Service has been evaluating sustainability of rangeland for over 40-years by conducted rangeland r...

  12. Genecology and seed zones for tapertip onion in the US Great Basin

    Science.gov (United States)

    R. C. Johnson; Barbara C. Hellier; Ken W. Vance-Borland

    2013-01-01

    The choice of germplasm is critical for sustainable restoration, yet seed transfer guidelines are lacking for all but a few herbaceous species. Seed transfer zones based on genetic variability and climate were developed using tapertip onion (Allium acuminatum Hook.) collected in the Great Basin and surrounding areas in the United States. Bulbs from 53 locations were...

  13. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    Science.gov (United States)

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  14. 75 FR 26786 - Notice of Public Meeting: Sierra Front-Northwestern Great Basin Resource Advisory Council, NV

    Science.gov (United States)

    2010-05-12

    ... 261A; 10-08807; MO 4500012081; TAS: 14X1109] Notice of Public Meeting: Sierra Front-Northwestern Great..., Bureau of Land Management (BLM) Sierra Front-Northwestern Great Basin Resource Advisory Council (RAC... discussion will include, but are not limited to: District Manager's reports on current program of work, Draft...

  15. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  16. The Role of Credit in Native Adaptation to the Great Basin Ranching Economy.

    Science.gov (United States)

    Knack, Martha C.

    1987-01-01

    Examines Nevada rancher's account books to explain details of relationship between Great Basin Indian laborers and White employers during the late 19th century. Describes Indians' work, pay rates, purchases, seasonal food availability, and credit arrangements. Examines Indians' social, economic lives and their incorporation into debt/wage system.…

  17. Adaptive management for complex communal rangelands in South ...

    African Journals Online (AJOL)

    Many of the intransigent problems facing the world arise in complex systems. In this paper, I propose that communal rangelands in South Africa be recognised as complex social–ecological systems and that one of the reasons that development initiatives have had little impact on improving livelihoods and rangeland ...

  18. Criterion IV: Social and economic indicators of rangeland sustainability (Chapter 5)

    Science.gov (United States)

    Daniel W. McCollum; Louis E. Swanson; John A. Tanaka; Mark W. Brunson; Aaron J. Harp; L. Allen Torell; H. Theodore Heintz

    2010-01-01

    Social and economic systems provide the context and rationale for rangeland management. Sustaining rangeland ecosystems requires attention to the social and economic conditions that accompany the functioning of those systems. We present and discuss economic and social indicators for rangeland sustainability. A brief conceptual basis for each indicator is offered,...

  19. An Integrated Social, Economic, and Ecologic Conceptual (ISEEC) framework for considering rangeland sustainability

    Science.gov (United States)

    William E. Fox; Daniel W. McCollum; John E. Mitchell; Louis E. Swanson; Urs P. Kreuter; John A. Tanaka; Gary R. Evans; H. Theodore Heintz; Robert P. Breckenridge; Paul H. Geissler

    2009-01-01

    Currently, there is no standard method to assess the complex systems in rangeland ecosystems. Decision makers need baselines to create a common language of current rangeland conditions and standards for continued rangeland assessment. The Sustainable Rangeland Roundtable (SRR), a group of private and public organizations and agencies, has created a forum to discuss...

  20. Water conservation for semi-arid rangelands

    International Nuclear Information System (INIS)

    Willis, W.O.

    1983-01-01

    Water deficiency is most often the cause for low forage production on rangelands in semi-arid and arid regions. Water conservation methods have been developed but additional research is needed to develop the best management practices for various climatic regions. Poor management is another major cause of low rangeland production. Better management, including the application of research findings, depends on attitudes, policies, adaptability of findings, resources for implementation and a good understanding of the governing biotic and abiotic factors. (author)

  1. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    Science.gov (United States)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  2. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  3. Ecology, genetics, and biological control of invasive annual grasses in the Great Basin

    Science.gov (United States)

    Several annual grass species native to Eurasia, including cheatgrass (Bromus tectorum), red brome (B. rubens), and medusahead (Taeniatherum caput-medusae) have become invasive in the western USA. These invasive species degrade rangelands by compromising forage, outcompeting native flora, and exacerb...

  4. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    Science.gov (United States)

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  5. Future scenarios of impacts to ecosystem services on California rangelands

    Science.gov (United States)

    Byrd, Kristin; Alvarez, Pelayo; Flint, Lorraine; Flint, Alan

    2014-01-01

    The 18 million acres of rangelands in the Central Valley of California provide multiple benefits or “ecosystem services” to people—including wildlife habitat, water supply, open space, recreation, and cultural resources. Most of this land is privately owned and managed for livestock production. These rangelands are vulnerable to land-use conversion and climate change. To help resource managers assess the impacts of land-use change and climate change, U.S. Geological Survey scientists and their cooperators developed scenarios to quantify and map changes to three main rangeland ecosystem services—wildlife habitat, water supply, and carbon sequestration. Project results will help prioritize strategies to conserve these rangelands and the ecosystem services that they provide.

  6. Phenotypic and genetic characterization of western prairie clover collections from the western USA

    Science.gov (United States)

    Kishor Bhattarai; B. Shaun Bushman; Douglas A. Johnson; John G. Carman

    2010-01-01

    Few North American legumes are available for rangeland revegetation in the semiarid western United States. Western prairie clover (Dalea ornata [Douglas ex Hook.] Eaton & J. Wright) is a perennial legume with desirable forage characteristics and is distributed in the northern Great Basin, Snake River Basin, and southern Columbia Plateau. Understanding the...

  7. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  8. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

  9. PERSPECTIVES ON RANGELAND ECOLOGY AND MANAGEMENT

    OpenAIRE

    Heady, Harold F.

    2011-01-01

    This paper reviews changes in rangeland ecology and management in the U.S.A. over the last 65 years and speculates on future changes. Emphasis has shifted from livestock management to ecological and environmental concerns, hence "rangeland ecology." The term "range management" may have outlived its usefulness and may also be detrimental to our image. The vision that we have of ourselves is not the same as others have of us. Many members of the Society for Range Management (SRM) and most of ou...

  10. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    Science.gov (United States)

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  11. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  12. Meeting wild bees' needs on Western US rangelands

    Science.gov (United States)

    James H. Cane

    2011-01-01

    Rangelands are areas that are too arid, or with soils too shallow, to support either forests or cultivated agriculture, but that nonetheless produce enough vegetation for livestock grazing. Some arid rangeland regions, notably those with warm, dry climates in temperate zones (e.g., the warm deserts of the United States and adjacent Mexico, parts of Australia, South...

  13. Pluvial lakes in the Great Basin of the western United States: a view from the outcrop

    Science.gov (United States)

    Reheis, Marith C.; Adams, Kenneth D.; Oviatt, Charles G.; Bacon, Steven N.

    2014-01-01

    Paleo-lakes in the western United States provide geomorphic and hydrologic records of climate and drainage-basin change at multiple time scales extending back to the Miocene. Recent reviews and studies of paleo-lake records have focused on interpretations of proxies in lake sediment cores from the northern and central parts of the Great Basin. In this review, emphasis is placed on equally important studies of lake history during the past ∼30 years that were derived from outcrop exposures and geomorphology, in some cases combined with cores. Outcrop and core records have different strengths and weaknesses that must be recognized and exploited in the interpretation of paleohydrology and paleoclimate. Outcrops and landforms can yield direct evidence of lake level, facies changes that record details of lake-level fluctuations, and geologic events such as catastrophic floods, drainage-basin changes, and isostatic rebound. Cores can potentially yield continuous records when sampled in stable parts of lake basins and can provide proxies for changes in lake level, water temperature and chemistry, and ecological conditions in the surrounding landscape. However, proxies such as stable isotopes may be influenced by several competing factors the relative effects of which may be difficult to assess, and interpretations may be confounded by geologic events within the drainage basin that were unrecorded or not recognized in a core. The best evidence for documenting absolute lake-level changes lies within the shore, nearshore, and deltaic sediments that were deposited across piedmonts and at the mouths of streams as lake level rose and fell. We review the different shorezone environments and resulting deposits used in such reconstructions and discuss potential estimation errors. Lake-level studies based on deposits and landforms have provided paleohydrologic records ranging from general changes during the past million years to centennial-scale details of fluctuations during the

  14. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    Science.gov (United States)

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  15. Flow velocities estimated from chlorine-36 in the South-West Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Herczeg, A.L.; Love, A.J.; Sampson, L.; Cresswell, R.G.; Fifield, L.K.

    1999-01-01

    The Great Artesian Basin (GAB) is the largest groundwater basin in the world and is the lifeline for water resources in a large proportion of the arid interior of the Australian continent. Despite its obvious importance, there is a great deal of uncertainty in the estimates of horizontal groundwater flow velocities and recharge rates. We report the first reliable estimates of these sustainability indicators in the south west segment of the GAB. Groundwater was sampled from 23 wells along two transects parallel to the W-E hydraulic gradient for 36 Cl, 14 C, stable isotopes (δ 13 C, δ 18 O, δ 2 H) and major ion chemistry. The groundwater collected was from the undifferentiated Jurassic and Cretaceous (J and K) aquifer. These new data potentially contribute to the resolution of the interpretation of 36 Cl derived ages in a very large slow moving groundwater system and to the overall conceptual understanding of flow systems of the GAB

  16. Ecologic, Economic, and Social Considerations for Rangeland Sustainability: An Integrated Conceptual Framework

    Science.gov (United States)

    Daniel W. McCollum; H. Theodore Jr. Heintz; Aaron J. Harp; John A. Tanaka; Gary R. Evans; David Radloff; Louis E. Swanson; William E. III Fox; Michael G. Sherm Karl; John E. Mitchell

    2006-01-01

    Use and sustainability of rangelands are inherently linked to the health and sustainability of the land. They are also inherently linked to the social and economic infrastructures that complement and support those rangelands and rangeland uses. Ecological systems and processes provide the biological interactions underlying ecosystem health and viability. Social and...

  17. Ecohydrologic impacts of rangeland fire on runoff and erosion: A literature synthesis

    Science.gov (United States)

    Frederick B. Pierson; C. Jason Williams

    2016-01-01

    Fire can dramatically influence rangeland hydrology and erosion by altering ecohydrologic relationships. This synthesis presents an ecohydrologic perspective on the effects of fire on rangeland runoff and erosion through a review of scientific literature spanning many decades. The objectives are: (1) to introduce rangeland hydrology and erosion concepts necessary for...

  18. A description of rangeland on commercial and communal land ...

    African Journals Online (AJOL)

    Analysis of a Landsat TM image from a rangeland near Peddie, Eastern Cape, revealed differences in two vegetation indices (normalised difference vegetation index, NDVI, and moving standard deviation index, MSDI) between communal and commercial rangeland. It was suggested that the difference in the MSDI reflected ...

  19. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    Science.gov (United States)

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for 1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  20. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    International Nuclear Information System (INIS)

    Aldekoa, Joana; Medici, Chiara; Osorio, Victoria; Pérez, Sandra; Marcé, Rafael; Barceló, Damià; Francés, Félix

    2013-01-01

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results

  1. Modelling the emerging pollutant diclofenac with the GREAT-ER model: Application to the Llobregat River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Aldekoa, Joana, E-mail: joaalma2@cam.upv.es [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Medici, Chiara [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Osorio, Victoria; Pérez, Sandra [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Marcé, Rafael [Catalan Institute for Water Research, Emili Grahit 101, 17003 Girona (Spain); Barceló, Damià [Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034 Barcelona (Spain); Francés, Félix [Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain)

    2013-12-15

    Highlights: • Diclofenac levels were measured in 14 sampling sites of the Llobregat River (Spain). • GREAT-ER model was used to simulate diclofenac concentrations in the Llobregat River. • Deterministic and stochastic modelling approaches were contrasted. • Diclofenac discharge into the basin was estimated for the studied period. • Consistent degradation rates were predicted and compared with literature values. -- Abstract: The present research aims at giving an insight into the increasingly important issue of water pollution due to emerging contaminants. In particular, the source and fate of the non-steroidal anti-inflammatory drug diclofenac have been analyzed at catchment scale for the Llobregat River in Catalonia (Spain). In fact, water from the Llobregat River is used to supply a significant part of the Metropolitan Area of Barcelona. At the same time, 59 wastewater treatment plants discharge into this basin. GREAT-ER model has been implemented in this basin in order to reproduce a static balance for this pollutant for two field campaigns data set. The results highlighted the ability of GREAT-ER to simulate the diclofenac concentrations in the Llobregat Catchment; however, this study also pointed out the urgent need for longer time series of observed data and a better knowledge of wastewater plants outputs and their parameterization in order to obtain more reliable results.

  2. Managing the livestock– Wildlife interface on rangelands

    Science.gov (United States)

    du Toit, Johan T.; Cross, Paul C.; Valeix, Marion

    2017-01-01

    On rangelands the livestock–wildlife interface is mostly characterized by management actions aimed at controlling problems associated with competition, disease, and depredation. Wildlife communities (especially the large vertebrate species) are typically incompatible with agricultural development because the opportunity costs of wildlife conservation are unaffordable except in arid and semi-arid regions. Ecological factors including the provision of supplementary food and water for livestock, together with the persecution of large predators, result in livestock replacing wildlife at biomass densities far exceeding those of indigenous ungulates. Diseases are difficult to eradicate from free-ranging wildlife populations and so veterinary controls usually focus on separating commercial livestock herds from wildlife. Persecution of large carnivores due to their depredation of livestock has caused the virtual eradication of apex predators from most rangelands. However, recent research points to a broad range of solutions to reduce conflict at the livestock–wildlife interface. Conserving wildlife bolsters the adaptive capacity of a rangeland by providing stakeholders with options for dealing with environmental change. This is contingent upon local communities being empowered to benefit directly from their wildlife resources within a management framework that integrates land-use sectors at the landscape scale. As rangelands undergo irreversible changes caused by species invasions and climate forcings, the future perspective favors a proactive shift in attitude towards the livestock–wildlife interface, from problem control to asset management.

  3. Managing climate change risks in rangeland systems [Chapter 15

    Science.gov (United States)

    Linda A. Joyce; Nadine A. Marshall

    2017-01-01

    The management of rangelands has long involved adapting to climate variability to ensure that economic enterprises remain viable and ecosystems sustainable; climate change brings the potential for change that surpasses the experience of humans within rangeland systems. Adaptation will require an intentionality to address the effects of climate change. Knowledge of...

  4. The Role of Rural Communities in Conservation of Rangelands in Mahneshan Township

    Directory of Open Access Journals (Sweden)

    Kobra Karimi

    2016-05-01

    Full Text Available The aim of this study was to investigate the action of rangeland-depended livestock holders regarding rangeland conservation, including protection and rehabilitation activities and to analyse relevant influencing factors, using a mixed method of survey and case study. The data were collected through analysing existing documents, focus groups, semi-structured and structured interviews using questionnaires submitted to 204 rural livestock holders in the Mahneshan Township. The quantitative data were analysed using SPSS and AMOS software. According to the results farmers’ knowledge regarding the role, importance and factors affecting rangeland degradation was relatively high, however they had a low level of knowledge and action about mechanical conservation techniques. The action of livestock holders in terms of biological conservation activities and grazing management showed a positive and signifincat corrletaion with variables such as implementing of rangeland projects, their interaction with external institutions, participating in extension training courses, education level and irrigated and rainfed agricultural land size. Moreover, based on a path analysis, 37% of the variance of the farmers’ actions regarding the rangeland conservation was explained by the variables such as rangeland rehabilitation actions, farmers’ conservation knowledge, farmers’ interaction with natural resources experts, beekeeping, and participating in extension training courses. Promotional and extension activities and farmers’ interaction with experts have a positive effect in enhancing farmers’ knowledge and actions for sustainable rangeland use and conservation.

  5. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  6. Alien invasive species and biological pollution of the Great Lakes Basin ecosystem[Great Lakes Water Quality Board : Report to the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    The displacement of important native species in the Great Lakes is a result of an invasion by a succession of non indigenous aquatic species. These invasion also resulted in interference with the proper human water uses and cost billions of dollars. The problem was considered serious enough that the International Joint Commission asked the Great Lakes Water Quality Board in 1999 to review the regulations in place and make recommendations, if necessary, for the implementation of additional measures that could be considered to keep control over the introduction of alien invasive species. Escapes from aquaria, aquaculture, research and educational facilities, canal and diversion water flows, and release of live bait are all sources of this invasion. The effectiveness of alternative technologies to control the invasion was to be examined by the Board. Other efforts taking place to address the situation in the basin are being complemented by the publication of this report. It is considered that the most important source of alien invasive species (AIS) to the Great Lakes is the discharge of ballast water from shipping vessels coming from outside the United States and Canada. A major concern is the role played by vessels reporting no ballast on board (NOBOB) upon entering the basin. A number of recommendations were made concerning: (1) implementation and enforcement of the ballast water discharge standards agreed upon by both countries, (2) the evaluation of the effectiveness of alternative technologies to achieve ballast water discharge standards over the long term, combined with the use of chemical treatment while the evaluation is being performed, (3) the implementation of optimal management practices to control sediments in shipping vessels, (4) modifications to the design of shipping vessels, and (5) the monitoring and contingency plans in the event of a repeat scenario in the future. Composed of an equal number representatives from the United States and Canada, at

  7. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    Science.gov (United States)

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional

  8. The GEOGLAM Rangelands and Pasture Productivity Activity: Recent Progress and Future Directions

    Science.gov (United States)

    Guerschman, J. P.; Held, A. A.; Donohue, R. J.; Renzullo, L. J.; Sims, N.; Kerblat, F.; Grundy, M.

    2015-12-01

    Rangelands and pastures cover about a third of the world's land area and support livestock production which represents ~40% of global agricultural gross domestic product. The global consumption of animal protein shows a clear increasing trend, driven by both total population and per capita income increases, putting a growing pressure on the sustainability of grazing lands worldwide. Despite their relevance, rangelands have received less attention than croplands regarding global monitoring of the resource productivity and condition. The Rangelands and Pasture Productivity (RaPP) activity is a component within the Global Agricultural Monitoring initiative established under the Group on Earth Observations (GEOGLAM) in 2013. GEOGLAM RaPP is aimed at providing the global community with the means to monitor the world's rangelands and pastures on a routine basis, and the capacity to produce animal protein in real-time, at global, regional and national levels. Since its launch two years ago GEOGLAM RAPP has made progress in the four implementation elements. These include: 1- the establishment of community of practice; 2- the development of a global monitoring system for rangeland condition; 3- the establishment of pilot sites in main rangeland systems for satellite data products validation and model testing; and 4- integration with livestock production models. Three international workshops have been held building the community of practice. A prototype monitoring system that provides global visualisations and querying capability of vegetation cover data and anomalies has been established. Pilot sites, mostly in areas with long records of field measurements of rangeland condition and productivity have been proposed for nine countries. The link to global livestock models, including physical and economic components, have been established. Future challenges for GEOGLAM RaPP have also been identified and include: better representation of the areas occupied by rangelands

  9. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  10. GEOMORPHIC AND HYDROGEOLOGICAL CONTROLS ON THE DISTRIBUTION OF WET MEADOWS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    The Great Basin is an arid landscape dominated by dryland vegetation such as big sage and xeric grasses. Meadow complexes occur in mountain drainages and consist of discrete parcels of land up to several hectares in area that are characterized by high water tables and that primar...

  11. Reconsidering the process for bow-stave removal from juniper trees in the Great Basin

    Science.gov (United States)

    Constance I. Millar; Kevin T. Smith

    2017-01-01

    We question the growth arrestment hypothesis for bow stave removal used by indigenous people in the western Great Basin. Using modern understanding of tree growth and wound response, we suggest that growth would not be arrested by one or two transverse notches along a juniper stem. Rather these would trigger compartmentalization, which limits cambial death to within 10...

  12. Geomorphology, hydrology, and ecology of Great Basin meadow complexes - implications for management and restoration

    Science.gov (United States)

    Jeanne C. Chambers; Jerry R. Miller

    2011-01-01

    This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...

  13. Valuation of rangeland ecosystem services

    Science.gov (United States)

    Gascoigne, W.R.

    2011-01-01

    Economic valuation lends itself well to the anthropocentric orientation of ecosystem services. An economic perspective on ecosystems portrays them as natural assets providing a flow of goods and services valuable to individuals and society collectively. A few examples include the purification of drinking water, reduced risk from flooding and other extreme events, pollination of agricultural crops, climate regulation, and recreation opportunities from plant and animal habitat maintenance, among many others. Once these goods and services are identified and quantified, they can be monetized to complete the valuation process. The monetization of ecosystem goods and services (in the form of dollars) provides a common metric that allows for cross-comparison of attributes and evaluation of differing ecological scenarios. Complicating the monetization process is the fact that most of these goods and services are public and non-market in nature; meaning they are non-rival and non-exclusive and are typically not sold in a traditional market setting where monetary values are revealed. Instead, one must employ non-market valuation techniques, with primary valuation methods typically being very time and resource consuming, intimidating to non-economists, and often impractical. For these reasons, benefit transfer methods have gained popularity. This methodology harnesses the primary collection results of existing studies to make inferences about the economic values of non-market goods and services at an alternative policy site (in place and/or in time). For instance, if a primary valuation study on oak reestablishment on rangelands in southern California yielded a value of $30 per-acre associated with water regulation, this result can be transferred, with some adjustments, to say something about the value of an acre of oaks on rangelands in northern portions of the state. The economic valuation of rangeland ecosystem services has many roles. Economic values may be used as input

  14. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  15. Ecological evaluation of rangeland quality in dry subtropics of Azerbaijan

    Science.gov (United States)

    Gasanova, A. F.

    2014-12-01

    The results of ecological evaluation of soil-landscape complexes of winter rangelands of Gobustan with the use of energy criteria are discussed. The diagnostic characteristics of soil fertility and correction coefficients for the thickness of texture of soil horizons, soil salinization, soil erosion, and microelemental composition of soils have been used to separate the soils of winter rangelands into several quality groups. A larger part of the soils belongs to the medium quality group with the mean weighted quality factor (bonitet) of 52. Special assessment scales have been suggested for the differential ecological assessment and monitoring of the rangelands. In the past 40 years, the area of steppe landscapes has decreased from 22.7 to 12%, whereas the area of semideserts has increased up to 64%. The area of best-quality soils within the studied rangelands had decreased by three times, and their average quality factor has decreased from 92 to 86.

  16. Introduced and invasive species in novel rangeland ecosystems: friends or foes?

    Science.gov (United States)

    Belnap, Jayne; Ludwig, John A.; Wilcox, Bradford P.; Betancourt, Julio L.; Dean, W. Richard J.; Hoffmann, Benjamin D.; Milton, Sue J.

    2012-01-01

    Globally, new combinations of introduced and native plant and animal species have changed rangelands into novel ecosystems. Whereas many rangeland stakeholders (people who use or have an interest in rangelands) view intentional species introductions to improve forage and control erosion as beneficial, others focus on unintended costs, such as increased fire risk, loss of rangeland biodiversity, and threats to conservation efforts, specifically in nature reserves and parks. These conflicting views challenge all rangeland stakeholders, especially those making decisions on how best to manage novel ecosystems. To formulate a conceptual framework for decision making, we examined a wide range of novel ecosystems, created by intentional and unintentional introductions of nonnative species and land-use–facilitated spread of native ones. This framework simply divides decision making into two types: 1) straightforward–certain, and 2) complex–uncertain. We argue that management decisions to retain novel ecosystems are certain when goods and services provided by the system far outweigh the costs of restoration, for example in the case of intensively managed Cenchrus pastures. Decisions to return novel ecosystems to natural systems are also certain when the value of the system is low and restoration is easy and inexpensive as in the case of biocontrol of Opuntia infestations. In contrast, decisions whether to retain or restore novel ecosystems become complex and uncertain in cases where benefits are low and costs of control are high as, for example, in the case of stopping the expansion of Prosopis and Juniperus into semiarid rangelands. Decisions to retain or restore novel ecosystems are also complex and uncertain when, for example, nonnative Eucalyptus trees expand along natural streams, negatively affecting biodiversity, but also providing timber and honey. When decision making is complex and uncertain, we suggest that rangeland managers utilize cost–benefit analyses

  17. Very High Resolution Panoramic Photography to Improve Conventional Rangeland Monitoring 1994

    Science.gov (United States)

    Rangeland monitoring often includes repeat photographs as a basis for documentation and although photographic equipment and electronics have been evolving rapidly, basic rangeland photo monitoring methods have changed little over time. Ground based digital photography is underutilized, especially s...

  18. New records of marginal locations for American pika (Ochotona princeps) in the Western Great Basin

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany

    2013-01-01

    We describe 46 new site records documenting occupancy by American pika (Ochotona princeps) at 21 locations from 8 mountain regions in the western Great Basin, California, and Nevada. These locations comprise a subset of sites selected from regional surveys to represent marginal, isolated, or otherwise atypical pika locations, and to provide...

  19. Regional Standards for Rangeland Health and Guidelines for Livestock Grazing Management ... A Progress Report

    OpenAIRE

    1996-01-01

    In August 1995, new BLM regulations for rangeland administration went into effect. The new regulations require BLM to establish regional standards for rangeland health and guidelines for grazing management. This publication is a report on the alternatives being considered for the Montana/Dakotas Rangeland Health Standards and Guidelines process.

  20. MODELING ECONOMIC AND ECOLOGICAL BENEFITS OF POST-FIRE REVEGETATION IN THE GREAT BASIN

    OpenAIRE

    Niell, Rebecca; Englin, Jeffrey E.; Nalle, Darek

    2004-01-01

    This study employs a Markov chain model of vegetation dynamics to examine the economic and ecological benefits of post-fire revegetation in the Great Basin sagebrush steppe. The analysis is important because synergies between wildland fire and invasive weeds in this ecosystem are likely to result in the loss of native biodiversity, less predictable forage availability for livestock and wildlife, reduced watershed stability and water quality, and increased costs and risk associated with firefi...

  1. Earth stewardship on rangelands: Coping with ecological, economic, and political marginality

    Science.gov (United States)

    Rangelands encompass 30-40 percent of Earth's land surface and support 1-2 billion people. Their predominant use is extensive livestock production by pastoralists and ranchers. But rangelands are characterized by ecological, economic, and political marginality, and higher-value, more intensive land ...

  2. Assessing potential impacts of climate change and variability on the Great Lakes-St. Lawrence Basin: A binational approach

    International Nuclear Information System (INIS)

    Quinn, F.H.; Mortsch, L.D.

    1997-01-01

    The potential impacts of climate change and variability on the Great Lakes environment are serious and complex. The Great Lakes-St. Lawrence Basin is home to 42.5 million US and Canadian citizens and is the industrial and commercial heartland of both nations. The region is rich in human and natural resources, with diverse economic activities and substantial infrastructure which would be affected by major shifts in climate. For example, water level changes could affect wetland distribution and functioning; reductions in streamflow would alter assimilative capacities while warmer water temperatures would influence spring and fall turnover and incidence of anoxia. A binational program has been initiated to conduct interdisciplinary, integrated impact assessments for the Great Lakes-St. Lawrence River Basin. The goal of this program is to undertake interdisciplinary, integrated studies to improve the understanding of the complex interactions between climate, the environment, and socioeconomic systems in order to develop informed regional adaptation responses

  3. Breeding biologies, pollinators and seed beetles of two prairie-clovers, Dalea ornata and D. searlsiae (Fabaceae: Amorpheae), from the Intermountain West USA

    Science.gov (United States)

    Two prairie-clovers, Dalea ornata and D. searlsiae, are perennial forbs that flower during early summer throughout the Colombia Plateau and Great Basin of the western USA, respectively. Their seed is desirable for use in rangeland restoration. We experimentally characterized the breeding biologies ...

  4. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    Science.gov (United States)

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the

  5. Priority research and management issues for the imperiled Great Basin of the western United States

    Science.gov (United States)

    Jeanne C. Chambers; Michael J. Wisdom

    2009-01-01

    Like many arid and semiarid regions, the Great Basin of the western United States is undergoing major ecological, social, and economic changes that are having widespread detrimental effects on the structure, composition, and function of native ecosystems. The causes of change are highly interactive and include urban, suburban, and exurban growth, past and present land...

  6. Evaluation of thermal, chemical, and mechanical seed scarification methods for 4 Great Basin lupine species

    Science.gov (United States)

    Covy D. Jones; Mikel R. Stevens; Von D. Jolley; Bryan G. Hopkins; Scott L. Jensen; Dave Turner; Jason M. Stettler

    2016-01-01

    Seeds of most Great Basin lupine (Lupinus spp. [Fabaceae]) species are physically dormant and thus, difficult to establish in uniform stands in seed production fields. We designed this study to examine 5 seed scarification techniques, each with 11 levels of application (including a non-scarified control), to reduce the physical seed dormancy of longspur lupine...

  7. Hydrologic variability in the Red River of the North basin at the eastern margin of the northern Great Plains

    International Nuclear Information System (INIS)

    Wiche, G.J.

    1991-01-01

    The temporal and spatial variations in streamflow in the Red River of the North basin on the eastern margin of the Great Plains are described and related to the various climatic conditions associated with the flows. The Red River drains about 290,000 square kilometers in parts of Minnesota, South Dakota, North Dakota, Saskatchewan and Manitoba, and a 200 year flood history is available from documents of fur traders, explorers and missionaries, as well as from gauging-station records. The coefficient of variation of mean annual streamflow ranges from ca 110% for streams in the southern and western parts of the Assiniboine River basin to ca 50% for streams along the eastern margin of the Red River of the North basin. Decadal streamflow variability is great in the Red River of the North basin, with mean annual streamflow for the 10 years ending 1940 of 489 cubic hectometers and for the 10 years ending 1975 of 3,670 cubic hectometers. Construction of the Rafferty Reservoir on the Souris River and the Almeda Reservoir on Moose Mountain Creek will cause changes in water quality in the Souris River, with most problems occurring during protracted low flow conditions

  8. Discussion of submitted posters for Section 2.3 (Rangeland Germplasm Resources)

    Science.gov (United States)

    As part of the IX International Rangeland Congress held in Rosario, Argentina, a total of 70 posters from 17 countries were submitted to Section 2.3 (Rangeland Germplasm Resources). These posters documented research conducted in five major regions of the world: South America, North America, Africa...

  9. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume I. Dalhart Basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and highly variable prcipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  10. Timing of grazing to reduce cheatgrass fuels

    Science.gov (United States)

    The introduction and subsequent invasion of cheatgrass onto millions of acres of Great Basin rangelands has revolutionized secondary succession by providing a fine-textured early maturing fuel that has increased the chance, rate, spread and season of wildfires. With such vast acreages of landscapes ...

  11. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  12. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume II. Palo Duro basin

    International Nuclear Information System (INIS)

    1982-09-01

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and high variable precipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  13. Preliminary evaluation of the radioactive waste isolation potential of the alluvium-filled valleys of the Great Basin

    International Nuclear Information System (INIS)

    Smyth, J.R.; Crowe, B.M.; Halleck, P.M.; Reed, A.W.

    1979-08-01

    The occurrences, geologic features, hydrology, and thermal, mechanical, and mineralogical properties of the alluvium-filled valleys are compared with those of other media within the Great Basin. Computer modeling of heat conduction indicates that heat generated by the radioactive waste can be dissipated through the alluvium in a manner that will not threaten the integrity of the repository, although waste emplacement densities will be lower than for other media available. This investigation has not revealed any failure mechanism by which one can rule out alluvium as a primary waste isolation medium. However, the alluvium appears to rank behind one or more other possible media in all properties examined except, perhaps, in sorption properties. It is therefore recommended that alluvium be considered as a secondary isolation medium unless primary sites in other rock types in the Great Basin are eliminated from consideration on grounds other than those considered here

  14. Gardening guide for high-desert urban landscapes of Great Basin regions in Nevada and Utah

    Science.gov (United States)

    Heidi Kratsch; Rick Heflebower

    2013-01-01

    Some Great Basin urban areas in Utah and Nevada exhibit climatic conditions that make it difficult for all but the toughest landscape plants to thrive without providing supplemental water. These areas are found at elevations from 4,000 feet to 6,000 feet in USDA cold-hardiness zones 6 and 7. Soils are often poor and gravelly, containing less than 1 percent organic...

  15. EVALUATION AND MAPPING OF RANGELANDS DEGRADATION USING REMOTELY SENSED DATA

    Directory of Open Access Journals (Sweden)

    Majid Ajorlo

    2005-05-01

    Full Text Available The empirical and scientifically documents prove that misuse of natural resource causes degradation in it. So natural resources conservation is important in approaching sustainable development aims. In current study, Landsat Thematic Mapper images and grazing gradient method have been used to map the extent and degree of rangeland degradation. In during ground-based data measuring, factors such as vegetation cover, litter, plant diversity, bare soil, and stone & gravels were estimated as biophysical indicators of degradation. The next stage, after geometric correction and doing some necessary pre-processing practices on the study area’s images; the best and suitable vegetation index has been selected to map rangeland degradation among the Normalized Difference Vegetation Index (NDVI, Soil Adjusted Vegetation Index (SAVI, and Perpendicular Vegetation Index (PVI. Then using suitable vegetation index and distance parameter was produced the rangelands degradation map. The results of ground-based data analysis reveal that there is a significant relation between increasing distance from critical points and plant diversity and also percentage of litter. Also there is significant relation between vegetation cover percent and distance from village, i.e. the vegetation cover percent increases by increasing distance from villages, while it wasn’t the same around the stock watering points. The result of analysis about bare soil and distance from critical point was the same to vegetation cover changes manner. Also there wasn’t significant relation between stones & gravels index and distance from critical points. The results of image processing show that, NDVI appears to be sensitive to vegetation changes along the grazing gradient and it can be suitable vegetation index to map rangeland degradation. The degradation map shows that there is high degradation around the critical points. These areas need urgent attention for soil conservation. Generally, it

  16. Climate impacts on agriculture: Implications for forage and rangeland production

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Thomson, Allison M.; Morgan, Jack; Fay, Philip; Polley, Wayne; Hatfield, Jerry L.

    2011-04-19

    Projections of temperature and precipitation patterns across the United States during the next 50 years anticipate a 1.5 to 2°C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change impacts on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on pastureland and rangeland species to rising CO2 and climate change (temperature, and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pasture species to increased [CO2] is consistent with the general response of C3 and C4 type vegetation, although significant exceptions exist. Both pastureland and rangeland species should exhibit an acceleration of metabolism and development due to earlier onset of spring green-up and longer growing seasons. However, in the studies reviewed here, C3 pasture species increased their photosynthetic rates by up to 40% while C4 species exhibited no increase in photosynthesis. In general, it is expected that increases in [CO2] and precipitation would enhance rangeland net primary production (NPP) while increased air temperatures would either increase or decrease NPP. Much of this uncertainty in response is due to uncertain future projections of precipitation, both globally and regionally. For example, if annual precipitation changes little or declines, rangeland plant response to warming temperatures and rising [CO2] may be neutral or may decline due to increased water stress. This review reveals the need for comprehensive studies of climate change impacts on the pasture ecosystem including grazing regimes, mutualistic relationships (e.g., plant roots-nematodes; N

  17. Bush encroachment dynamics and rangeland management implications in the Horn of Africa

    Science.gov (United States)

    Rangelands in the Horn of Africa have been undergoing a rapid shift from herbaceous to woody plant dominance in the past decades, threatening subsistence livestock herding and pastoral food security. Despite of significant rangeland management implications, quantification of the spatial extent of en...

  18. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  19. Management of communal rangelands - the dialogue between science and indigenous knowledge: the case of the Eastern Cape

    CSIR Research Space (South Africa)

    Dube, S

    2010-07-01

    Full Text Available Communal area rangeland resource users are an important part of the rangeland ecosystem; rangeland management policies and practice should, therefore, accommodate their socio-cultural practices and knowledge. Indigenous knowledge (IK) is often...

  20. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  1. Vegetation - Herbivory Dynamics in Rangeland Ecosystems: Geospatial Modeling for Savanna and Wildlife Conservation in California and Namibia

    OpenAIRE

    Tsalyuk, Miriam

    2014-01-01

    Rangelands cover about half of Earth's land surface, encompass considerable biodiversity, and provide pivotal ecosystem services. However, rangelands across the globe face degradation due to changes in climate, land use, and management. Moreover, since herbivory is fundamental to rangeland ecosystem dynamics, shifts in the distribution of herbivores lead to overgrazing and desertification. To better understand, predict, and prevent changes on rangelands it is important to monitor these landsc...

  2. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.

    Science.gov (United States)

    Klecka, Gary; Persoon, Carolyn; Currie, Rebecca

    2010-01-01

    This review and statistical analysis was conducted to better understand the nature and significance of environmental exposures in the Great Lakes Basin and watershed to a variety of environmental contaminants. These contaminants of interest included current-use pesticides, pharmaceuticals, organic wastewater contaminants, alkylphenol ethoxylates, perfluorinated surfactants, flame retardants, and chlorinated paraffins. The available literature was critically reviewed and used to develop a database containing 19,611 residue values for 326 substances. In many papers, sampling locations were characterized as being downstream from municipal wastewater discharges, receiving waters for industrial facilities, areas susceptible to agricultural or urban contamination, or harbors and ports. To develop an initial assessment of their potential ecological significance, the contamination levels found were compared with currently available regulatory standards, guidelines, or criteria. This review was prepared for the IJC multi-board work group, and served as background material for an expert consultation, held in March, 2009, in which the significance of the contaminants found was discussed. Moreover, the consultation attempted to identify and assess opportunities for strengthening future actions that will protect the Great Lakes. Based on the findings and conclusions of the expert consultation, it is apparent that a wide variety of chemicals of emerging concern have been detected in environmental media (air, water, sediment, biota) from the Great Lakes Basin, although many are present at only trace levels. Although the presence of these contaminants raises concerns in the public and among the scientific community, the findings must be placed in context. Significant scientific interpretation is required to understand the extent to which these chemicals may pose a threat to the ecosystem and to human health. The ability to detect chemicals in environmental media greatly surpasses

  3. An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem

    International Nuclear Information System (INIS)

    Gilbertson, Michael; Carpenter, D.O.

    2004-01-01

    New concerns about the global presence and human health significance of mercury have arisen as a result of recent epidemiological data demonstrating subtle neurological effects from consumption of mercury-contaminated fish. In the Great Lakes Basin, the complexity of the diverse sources, pools, and sinks of mercury and of the pathways of distribution, fate, and biotransformation requires an ecosystem approach to the assessment of exposures of Great Lakes' human populations. Further epidemiological research is needed to verify preliminary indications of harmful effects in people living near the Great Lakes. Great Lakes fish are valuable resources for subsistence nutrition, recreation, and commerce, but the benefits of fish consumption must be balanced by concern for the hazards from the contaminants that they may contain. The efficacy of fish consumption advisories in reducing exposures should continue to be evaluated while planning continues for remedial actions on contaminated sediments from historic industrial activities and for regulatory action to control sources

  4. Plant/life form considerations in the rangeland hydrology and erosion model (RHEM)

    Science.gov (United States)

    Resilience of rangeland to erosion has largely been attributed to adequate plant cover; however, plant life/growth form, and individual species presence can have a dramatic effect on hydrologic and erosion dynamics on rangelands. Plant life/growth form refers to genetic tendency of a plant to grow i...

  5. Grasshopper responses to fire and postfire grazing in the northern Great Plains vary among species

    Science.gov (United States)

    Rangeland management practices such as burning and grazing management may affect grasshopper populations by impacting development, survival and reproduction. Experiments are lacking in the northern Great Plains examining the effects of fire and grazing intensity on grasshoppers. As part of a larger ...

  6. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Science.gov (United States)

    Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey

    2013-01-01

    Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...

  7. Impacts of CO/sub 2/-induced climatic change on water resources in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S J

    1986-01-01

    Scenarios of CO/sub 2/-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.

  8. Records of millennial-scale climate change from the Great Basin of the Western United States

    Science.gov (United States)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which

  9. Preliminary assessment of the risk of volcanism at a proposed nuclear-waste repository in the southern Great Basin

    International Nuclear Information System (INIS)

    Crowe, B.M.; Carr, W.J.

    1980-01-01

    Volcanic hazard studies of the southern Great Basin are being conducted on behalf of the Nevada Nuclear Waste Storage Investigations program. Current work is chiefly concerned with characterizing the geology, chronology, and tectonic setting of Pliocene and Quaternary volcanism in the Nevada Test Site region, and assessing volcanic risk through consequence and probability studies, particularly with respect to a potential site in the southwestern Nevada Test Site. Young ( - 6 volcanic events per year. Based on this rate, the annual probability of disruption of a 10-km 2 repository located within a 25-km radius circle centered at Yucca Mountain, southwestern Nevada Test Site, is 10 - 8 . A larger area, 50-km radius, yields a disruption probability of 10 - 9 per year. Current tectonic zonation studies of the southern Great Basin will reduce the calculated probabilities of basaltic eruption for certain areas. 21 references, 3 figures

  10. 76 FR 17347 - Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control...

    Science.gov (United States)

    2011-03-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revision to the California State Implementation Plan, Great Basin Unified Air Pollution Control District CFR Correction In Title 40 of the Code of Federal Regulations, Part 52 (Sec. Sec. 52.01 to 52.1018), revised as of July 1, 2010, on page 252, in Sec. 52.220, paragraph (c)(345)(i)(D) is added to...

  11. Applying a dryland degradation framework for rangelands: the case of Mongolia.

    Science.gov (United States)

    Jamsranjav, C; Reid, R S; Fernández-Giménez, M E; Tsevlee, A; Yadamsuren, B; Heiner, M

    2018-04-01

    Livestock-caused rangeland degradation remains a major policy concern globally and the subject of widespread scientific study. This concern persists in part because it is difficult to isolate the effects of livestock from climate and other factors that influence ecosystem conditions. Further, degradation studies seldom use multiple plant and soil indicators linked to a clear definition of and ecologically grounded framework for degradation assessment that distinguishes different levels of degradation. Here, we integrate two globally applicable rangeland degradation frameworks and apply them to a broad-scale empirical data set for the country of Mongolia. We compare our assessment results with two other recent national rangeland degradation assessments in Mongolia to gauge consistency of findings across assessments and evaluate the utility of our framework. We measured livestock-use impacts across Mongolia's major ecological zones: mountain and forest steppe, eastern steppe, steppe, and desert steppe. At 143 sites in 36 counties, we measured livestock-use and degradation indicators at increasing distances from livestock corrals in winter-grazed pastures. At each site, we measured multiple indicators linked to our degradation framework, including plant cover, standing biomass, palatability, species richness, forage quality, vegetation gaps, and soil surface characteristics. Livestock use had no effect on soils, plant species richness, or standing crop biomass in any ecological zone, but subtly affected plant cover and palatable plant abundance. Livestock effects were strongest in the steppe zone, moderate in the desert steppe, and limited in the mountain/forest and eastern steppes. Our results aligned closely with those of two other recent country-wide assessments, suggesting that our framework may have widespread application. All three assessments found that very severe and irreversible degradation is rare in Mongolia (1-18% of land area), with most rangelands

  12. Livestock-rangeland management practices and community perceptions towards rangeland degradation in South Omo zone of Southern Ethiopia

    NARCIS (Netherlands)

    Admasu, T.; Abule, E.; Tessema, Z.K.

    2010-01-01

    A survey was conducted in Hamer and Benna-Tsemay districts of the South Omo zone of Ethiopia, with the objectives of assessing the range-livestock management practices and perceptions of the different pastoral groups (Hamer, Benna, and Tsemay) towards rangeland degradation. This information is

  13. Late holocene climate derived from vegetation history and plant cellulose stable isotope records from the Great Basin of western North America

    International Nuclear Information System (INIS)

    Wigand, P.E.; Hemphill, M.L.; Patra, S.M.

    1994-01-01

    Integration of pollen records, and fossil woodrat midden data recovered from multiple strata of fossil woodrat (Neotoma spp.) dens (middens) in both northern and southern Nevada reveal a detailed paleoclimatic proxy record for the Great Basin during the last 45,000 years in growing detail. Clear, late Holocene climate-linked elevational depressions of plant species' distributions have occurred throughout the Great Basin of up to 200 m below today's and by as much as 1000 m below what they were during the middle Holocene. Horizontal plant range extentions during the Holocene reflecting the final northern most adjustments to Holocene climates range up to several hundred kilometers in the Great Basin. Well documented lags evidenced in the late Holocene response of vegetation communities to increased precipitation indicate reduced effectiveness in the ability of plant communities to assimilate excess precipitation. This resulted in significant runoff that was available for recharge. These responses, although indicating both rapid and dramatic fluctuations of climate for the Holocene, fall far short of the scale of such changes during the late Pleistocene. Extension of these results to Pleistocene woodrat den and pollen data evidence spans lasting several hundred to a thousand or more years during which significantly greater amounts of precipitation would have been available for runnoff or recharge

  14. Integrated monitoring of hydrogeomorphic, vegetative, and edaphic conditions in riparian ecosystems of Great Basin National Park, Nevada

    Science.gov (United States)

    Beever, Erik A.; Pyke, D.A.

    2004-01-01

    In semiarid regions such as the Great Basin, riparian areas function as oases of cooler and more stable microclimates, greater relative humidity, greater structural complexity, and a steady flow of water and nutrients relative to upland areas. These qualities make riparian areaʼs attractive not only to resident and migratory wildlife, but also to visitors in recreation areas such as Great Basin National Park in the Snake Range, east-central Nevada. To expand upon the system of ten permanent plots sampled in 1992 (Smith et al. 1994) and 2001 (Beever et al. in press), we established a collection of 31 cross-sectional transects of 50-m width across the mainstems of Strawberry, Lehman, Baker, and Snake creeks. Our aims in this research were threefold: a) map riparian vegetative communities in greater detail than had been done by past efforts; b) provide a monitoring baseline of hydrogeomorphology; structure, composition, and function of upland- and riparianassociated vegetation; and edaphic properties potentially sensitive to management; and c) test whether instream conditions or physiographic variables predicted vegetation patterns across the four target streams.

  15. Restoring Degraded Rangelands in Jordan: Optimizing Mechanized Micro-Water Harvesting Technique Using Rangeland Hydrology and Erosion Model (RHEM)

    Science.gov (United States)

    Continuous population growth, recent refugee movement and migration as well as boundary restrictions and their implications on the nomadic lifestyle are additive pressure on rangelands throughout the Middle East. In particular, overgrazing through increased livestock herds threatens the Jordanian ra...

  16. Rangeland Use Rights Privatisation Based on the Tragedy of the Commons: A Case Study from Tibet

    Directory of Open Access Journals (Sweden)

    Yonten Nyima Yundannima

    2017-01-01

    Full Text Available Rangeland use rights privatisation based on a tragedy of the commons assumption has been the backbone of state policy on rangeland management and pastoralism in China. Through an empirical case study from Pelgon county, Tibet Autonomous Region in China, this paper provides an empirical analysis of rangeland use rights privatisation. It shows that the tragedy of the commons is not the correct model to apply to Tibetan pastoralism because pasture use in Tibet has never been an open-access institution. Thus, when the tragedy of the commons model is applied as a rationale for rangeland use rights privatisation, the result is not what is intended by the policy, but rather a misfit to features of pastoralism and thus disruption of the essence of pastoralism, i.e. mobility and flexibility. The paper further shows that a hybrid institution combining household rangeland tenure with community-based use with user fees is a restoration of the pastoralist institution. This demonstrates the capacity of pastoralists to create adaptive new institutions congruent with the interdependent and integrated nature of pastoralism consisting of three components: pastoralists, livestock, and rangeland.

  17. Global view of remote sensing of rangelands: Evolution, applications, future pathways [Chapter 10

    Science.gov (United States)

    Matt Reeves; Robert A. Washington-Allen; Jay Angerer; E. Raymond Hunt; Ranjani Wasantha Kulawardhana; Lalit Kumar; Tatiana Loboda; Thomas Loveland; Graciela Metternicht; R. Douglas. Ramsey

    2015-01-01

    The term "rangeland" is rather nebulous, and there is no single definition of rangeland that is universally accepted by land managers, scientists, or international bodies (Lund, 2007; Reeves and Mitchell, 2011). Dozens and possibly hundreds (Lund, 2007) of definitions and ideologies exist because various stakeholders often have unique objectives...

  18. Resource analysis of the Chinese society 1980-2002 based on exergy-Part 4: Fishery and rangeland

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.

    2007-01-01

    This fourth part is the continuation of the third part on agricultural products. The major fishery and rangeland products entering the Chinese society from 1980 to 2002 are calculated and analyzed in detail in this paper. The aquatic production, mainly relying on freshwater and seawater breeding, Enhancement policy of fishery resources, including closed fishing season system, construction of artificial fish reefs and ecological fish breeding, etc., is discussed in detail. The degradation of the major rangeland areas, hay yields and intake rangeland resources by the livestock, are also described associated with the strategic adjustment and comprehensive program to protect rangeland resources during the study period

  19. Application of the Rangeland Hydrology and Erosion Model to Ecological Site Descriptions and Management

    Science.gov (United States)

    The utility of Ecological Site Descriptions (ESDs) and State-and-Transition Models (STMs) concepts in guiding rangeland management hinges on their ability to accurately describe and predict community dynamics and the associated consequences. For many rangeland ecosystems, plant community dynamics ar...

  20. AN INTEGRATED, SCIENCE-BASED APPROACH TO MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE GREAT BASIN OF CENTRAL NEVADA

    Science.gov (United States)

    Riparian corridor and meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision is a major ...

  1. Heat dosage and oviposition depth influence egg mortality of two common rangeland grasshopper species

    Science.gov (United States)

    Rangeland fire is a common naturally occurring event and management tool, with the amount and structure of biomass controlling transfer of heat belowground. Temperatures grasshopper eggs are exposed to during rangeland fires are mediated by species specific oviposition traits. This experiment examin...

  2. Bayesian estimation of shrubs diversity in rangelands under two management systems in northern Syria

    NARCIS (Netherlands)

    Niane, A.A.; Singh, M.; Struik, P.C.

    2014-01-01

    The diversity of shrubs in rangelands of northern Syria is affected by the grazing management systems restricted by the increase in human and livestock populations. To describe and estimate diversity and compare the rangeland grazing management treatments, two popular indices for diversity, the

  3. Invasive Plants on Rangelands: a Global Threat

    Science.gov (United States)

    Invasive plant species are spreading and invading rangelands at an unprecedented rate costing ranchers billions of dollars to control invasive plants each year. In its simplest form, the invasion process has four primary stages, including introduction, establishment, spread and colonization. Th...

  4. Management of Collective Rangelands in Rhamna (Morocco ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Management of Collective Rangelands in Rhamna (Morocco) ... reduce the pressure on natural resources and promote sustainable management. ... Project status ... IDRC congratulates first cohort of Women in Climate Change Science Fellows ... and adaptive water management: Innovative solutions from the Global South”.

  5. Integrating the Indigenous Knowledge of Borana Pastoralists into Rangeland Management Strategies in Southern Ethiopia

    OpenAIRE

    World Bank

    2005-01-01

    Pastoralists' indigenous knowledge (IK) about ecology and social organization led to rangeland-management strategies appropriate to deal with the erratic rainfall in African drylands. Herd mobility was traditionally practiced as the key strategy to make use of the scattered rangeland resources on a large scale.

  6. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    Science.gov (United States)

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Federal agencies that oversee land management for much of the Snake Range in eastern Nevada, including the management of Great Basin National Park by the National Park Service, need to understand the potential extent of adverse effects to federally managed lands from nearby groundwater development. As a result, this study was developed (1) to attain a better understanding of aquifers controlling groundwater flow on the eastern side of the southern part of the Snake Range and their connection with aquifers in the valleys, (2) to evaluate the relation between surface water and groundwater along the piedmont slopes, (3) to evaluate sources for Big Springs and Rowland Spring, and (4) to assess groundwater flow from southern Spring Valley into northern Hamlin Valley. The study focused on two areas—the first, a northern area along the east side of Great Basin National Park that included Baker, Lehman, and Snake Creeks, and a second southern area that is the potential source area for Big Springs. Data collected specifically for this study included the following: (1) geologic field mapping; (2) drilling, testing, and water quality sampling from 7 test wells; (3) measuring discharge and water chemistry of selected creeks and springs; (4) measuring streambed hydraulic gradients and seepage rates from 18 shallow piezometers installed into the creeks; and (5) monitoring stream temperature along selected reaches to identify places of groundwater inflow.

  7. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint

    2015-01-01

    Over the period 1883–2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...

  8. Botanical Criteria of Baharkish Rangeland in Quchan, Khorasan ...

    African Journals Online (AJOL)

    ADOWIE PERE

    University of Mashhad International Campus, Mashhad, I.R of IRAN ... ABSTRACT: Rangelands are natural ecosystems containing a range of resources of genetic ..... Ecology of world vegetation. .... Science Journal of Islamic Azad University,.

  9. Agricultural, Runoff, Erosion and Salinity (ARES) Database to Better Evaluate Rangeland State and Sustainability

    Science.gov (United States)

    Rangelands comprise approximately 40% of the earth’s surface and are the largest land cover type in the world. Degradation from mismanagement, desertification, and drought impact more than 50% of rangelands across the globe. The USDA Agricultural Research Service (ARS) has been evaluating means of r...

  10. Rangeland resource trends in the United States: A technical document supporting the 2000 USDA Forest Service RPA Assessment

    Science.gov (United States)

    John E. Mitchell

    2000-01-01

    This report documents trends in America's rangelands as required by the Renewable Resources Planning Act of 1974. The Forest Service has conducted assessments of the rangeland situation for 30 years. Over this period, rangeland values and uses have gradually shifted from concentrating upon forage production and meeting increasing demand for red meat to a more...

  11. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  12. Cheatgrass percent cover change: Comparing recent estimates to climate change − Driven predictions in the Northern Great Basin

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2016-01-01

    Cheatgrass (Bromus tectorum L.) is a highly invasive species in the Northern Great Basin that helps decrease fire return intervals. Fire fragments the shrub steppe and reduces its capacity to provide forage for livestock and wildlife and habitat critical to sagebrush obligates. Of particular interest is the greater sage grouse (Centrocercus urophasianus), an obligate whose populations have declined so severely due, in part, to increases in cheatgrass and fires that it was considered for inclusion as an endangered species. Remote sensing technologies and satellite archives help scientists monitor terrestrial vegetation globally, including cheatgrass in the Northern Great Basin. Along with geospatial analysis and advanced spatial modeling, these data and technologies can identify areas susceptible to increased cheatgrass cover and compare these with greater sage grouse priority areas for conservation (PAC). Future climate models forecast a warmer and wetter climate for the Northern Great Basin, which likely will force changing cheatgrass dynamics. Therefore, we examine potential climate-caused changes to cheatgrass. Our results indicate that future cheatgrass percent cover will remain stable over more than 80% of the study area when compared with recent estimates, and higher overall cheatgrass cover will occur with slightly more spatial variability. The land area projected to increase or decrease in cheatgrass cover equals 18% and 1%, respectively, making an increase in fire disturbances in greater sage grouse habitat likely. Relative susceptibility measures, created by integrating cheatgrass percent cover and temporal standard deviation datasets, show that potential increases in future cheatgrass cover match future projections. This discovery indicates that some greater sage grouse PACs for conservation could be at heightened risk of fire disturbance. Multiple factors will affect future cheatgrass cover including changes in precipitation timing and totals and

  13. Rehabilitation of community-owned, mixed-use rangelands: Lessons from the Ewaso ecosystem in Kenya

    Science.gov (United States)

    Globally, 10-20% of arid and semi-arid rangelands have been classified as severely degraded (UNCCD 1994; MEA 2005), and in sub-Saharan Africa specifically, 70% of rangelands are considered moderately to severely degraded (Dregne 1992; UNCCD 1994). Given that these drylands make up 43% of Africa’s la...

  14. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    Science.gov (United States)

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  15. Recovery of rangelands : the functioning of soil seed banks in a semi-arid African savanna

    NARCIS (Netherlands)

    Tessema, Z.K.

    2011-01-01

    Rangelands in Africa provide important forage resources for herbivores; particularly perennial grasses provide grazing for domestic and wild herbivores. However, semi-arid African rangelands experience severe vegetation and soil degradation due to heavy grazing, causing negative impacts

  16. Opportunities and obstacles for rangeland conservation in San Diego County, California, USA

    Directory of Open Access Journals (Sweden)

    Kathleen A. Farley

    2017-03-01

    Full Text Available Working landscapes such as rangelands are increasingly recognized as having high conservation value, providing a variety of ecosystem services, including food, fiber, habitat, recreation, open space, carbon storage, and water, in addition to a broad range of social benefits. However, conversion of rangelands to other land uses has been prevalent throughout the western United States, leading to greater attention in the conservation community to the importance of collaborating with private landowners. The level of interest in collaborative conservation among private landowners and the types of conservation programs they choose to participate in depend on the social, economic, and environmental context. We used GIS analysis and interviews with ranchers to evaluate rangeland conversion and participation in conservation programs among ranchers in San Diego County, California, USA, which is part of a biodiversity hotspot with high plant species richness and a large number of endemic and rare species. We found that > 25% of rangelands were converted to other uses, primarily urbanization, over the past 25 years while the area of public rangeland increased by 9%. Interviews revealed that ranchers in San Diego County have had limited involvement with most conservation programs, and a critical factor for nonparticipation was providing programs access to private land, along with other issues related to trust and social values. Among ranchers who had participated in conservation programs, the payment level and the agency or organization administering the program were key factors. Our results provide insight into factors influencing whether and when ranchers are likely to participate in conservation initiatives and illustrate that private and public land conservation are strongly linked and would be more effective if the two strategies were better integrated.

  17. Geomorphic and land cover identification of dust sources in the eastern Great Basin of Utah, U.S.A.

    Science.gov (United States)

    Hahnenberger, Maura; Nicoll, Kathleen

    2014-01-01

    This study identifies anthropogenically disturbed areas and barren playa surfaces as the two primary dust source types that repeatedly contribute to dust storm events in the eastern Great Basin of western Utah, U.S.A. This semi-arid desert region is an important contributor to dust production in North America, with this study being the first to specifically identify and characterize regional dust sources. From 2004 to 2010, a total of 51 dust event days (DEDs) affected the air quality in Salt Lake City, UT. MODIS satellite imagery during 16 of these DEDs was analyzed to identify dust plumes, and assess the characteristics of dust source areas. A total of 168 plumes were identified, and showed mobilization of dust from Quaternary deposits located within the Bonneville Basin. This analysis identifies 4 major and 5 secondary source areas for dust in this region, which produce dust primarily during the spring and fall months and during moderate or greater drought conditions, with a Palmer Drought Index (PDI) of - 2 or less. The largest number of observed dust plumes (~ 60% of all plumes) originated from playas (ephemeral lakes) and are classified as barren land cover with a silty clay soil sediment surface. Playa surfaces in this region undergo numerous recurrent anthropogenic disturbances, including military operations and anthropogenic water withdrawal. Anthropogenic disturbance is necessary to produce dust from the vegetated landscape in the eastern Great Basin, as evidenced by the new dust source active from 2008 to 2010 in the area burned by the 2007 Milford Flat Fire; this fire was the largest in Utah's history due to extensive cover of invasive cheatgrass (Bromus tectorum) along with drought conditions. However, dust mobilization from the Milford Flat Burned Area was limited to regions that had been significantly disturbed by post-fire land management techniques that consisted of seeding, followed by chaining or tilling of the soil. Dust storms in the eastern

  18. Geochemistry and travertine dating provide new insights into the hydrogeology of the Great Artesian Basin, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Rousseau-Gueutin, P.; Priestley, S.; Keppel, M.; Shand, P.; Karlstrom, K.; Crossey, L.; Wholing, D.; Fulton, S.

    2013-01-01

    While of great national and societal significance, and importance in its own right, the Great Artesian Basin of Australia is an iconic example of a continental scale artesian groundwater system. New geochemical, hydrological, and neo-tectonic data suggests that existing models that involve recharge in eastern Australia, relatively simple flow paths and discharge in springs in the western margin require modification. New geochemical data indicate a small volume flux of deeply derived (endogenic) fluids mixing into the aquifer system at a continental scale. Neotectonic data indicates active tectonism today that provides a fluid pathway through faults for the deeply sourced endogenic fluids to discharge in GAB travertine depositing springs. (authors)

  19. Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities

    Science.gov (United States)

    Richardson, A. J.; Escobar, D. E.; Gausman, H. W.; Everitt, J. H. (Principal Investigator)

    1982-01-01

    The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer.

  20. Possible extrinsic controls on the Ordovician radiation: Stratigraphic evidence from the Great Basin, western USA

    Energy Technology Data Exchange (ETDEWEB)

    Droser, M.L. (Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences); Fortey, R.A. (Natural History Museum, London (United Kingdom). Dept. of Palaeontology)

    1993-04-01

    The Ordovician radiation has been previously examined by looking at 1/analyses of patterns of diversification within small clades, 2/analyses of large databases to elucidate large-scale paleoecological patterns such as increased tiering and onshore-offshore shifts associated with this radiation. In order to resolve the relationships between these two scales of analysis there is critical need to examine in detail the paleoecology and possible biofacies shifts associated with the Ordovician radiation. The authors have examined the base of the Whiterock Series (Lower-Middle Ordovician) in the Great Basin as it represents one of the most complete records of the Ordovician radiation on the North American continent. Detailed field evidence suggests that the base of the Whiterock does not represent a simple faunal turnover but corresponds with the first occurrences in the region of groups that come to dominate the rest of the Paleozoic. Among the trilobites, this includes the lichides, calymenids, proetides, and phacopides. Similar patterns are found among the dominate Paleozoic bivalve, cephalopod, brachiopod and graptolite clades. Global correlation of this time interval suggests that this pattern of first broad geographic occurrences is not unique to North America. This boundary corresponds with a globally recognized sea level lowstand. In the Great Basin, significant facies shifts are present in shallow and deep water settings. While extrinsic controls are commonly reserved for extinctions, these data suggest that extrinsic factors may have been significant in the timing of the Paleozoic fauna rose to dominance.

  1. Vegetation restoration on degraded rangelands through the use of microcatchment and brush packs in the communal areas of the Eastern Cape

    CSIR Research Space (South Africa)

    Lesoli, MS

    2010-07-01

    Full Text Available Rangeland degradation results in declining functional capacity, increased poverty, and food insecurity. Major changes in rangeland surface morphology and soil characteristics have a drastic effect on the primary productivity of the rangeland...

  2. Effects of climate change on rangeland vegetation in the Northern Rockies Region [Chapter 7

    Science.gov (United States)

    Matt C. Reeves; Mary E. Manning; Jeff P. DiBenedetto; Kyle A. Palmquist; William K. Lauenroth; John B. Bradford; Daniel R. Schlaepfer

    2018-01-01

    Rangelands are dominated by grass, forb, or shrub species, but are usually not modified by using agronomic improvements such as fertilization or irrigation (Lund 2007; Reeves and Mitchell 2011) as these lands would normally be considered pastures. Rangeland includes grassland, shrubland, and desert ecosystems, alpine areas, and some woodlands (box 7.1). This chapter...

  3. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Science.gov (United States)

    Berg, Matthew D.; Marcantonio, Franco; Allison, Mead A.; McAlister, Jason; Wilcox, Bradford P.; Fox, William E.

    2016-06-01

    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.

  4. Hydrologic ramifications of an increased role of wildland fire across the rangeland-dry forest continuum

    Science.gov (United States)

    The increased role of wildland fire across the rangeland-dry forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Much of the Intermountain West now exists in a state in which rangeland and woodland wildfires stimulated by invasive che...

  5. Seasonal food habits of swift fox (Vulpes velox) in cropland and rangeland landscapes in western Kansas

    Science.gov (United States)

    Sovada, M.A.; Roy, C.C.; Telesco, D.J.

    2001-01-01

    Food habits of swift foxes (Vulpes velox) occupying two distinct landscapes (dominated by cropland versus rangeland) in western Kansas were determined by analysis of scats collected in 1993 and 1996. Frequencies of occurrence of prey items in scats were compared between cropland and rangeland areas by season. Overall, the most frequently occurring foods of swift foxes were mammals (92% of all scats) and arthropods (87%), followed by birds (24%), carrion (23%), plants (15%) and reptiles (4%). No differences were detected between landscapes for occurrence of mammals, arthropods or carrion in any season (P ≥ 0.100). Plants, specifically commercial sunflower seeds, were consumed more frequently in cropland than in rangeland in spring (P = 0.004) and fall (P = 0.001). Birds were more common in the swift fox diet in cropland than in rangeland during the fall (P = 0.008), whereas reptiles occurred more frequently in the diet in rangeland than in cropland during spring (P = 0.042). Variation in the diet of the swift fox between areas was most likely due to its opportunistic foraging behavior, resulting in a diet that closely links prey use with availability.

  6. Reorienting land degradation towards sustainable land management: linking sustainable livelihoods with ecosystem services in rangeland systems.

    Science.gov (United States)

    Reed, M S; Stringer, L C; Dougill, A J; Perkins, J S; Atlhopheng, J R; Mulale, K; Favretto, N

    2015-03-15

    This paper identifies new ways of moving from land degradation towards sustainable land management through the development of economic mechanisms. It identifies new mechanisms to tackle land degradation based on retaining critical levels of natural capital whilst basing livelihoods on a wider range of ecosystem services. This is achieved through a case study analysis of the Kalahari rangelands in southwest Botswana. The paper first describes the socio-economic and ecological characteristics of the Kalahari rangelands and the types of land degradation taking place. It then focuses on bush encroachment as a way of exploring new economic instruments (e.g. Payments for Ecosystem Services) designed to enhance the flow of ecosystem services that support livelihoods in rangeland systems. It does this by evaluating the likely impacts of bush encroachment, one of the key forms of rangeland degradation, on a range of ecosystem services in three land tenure types (private fenced ranches, communal grazing areas and Wildlife Management Areas), before considering options for more sustainable land management in these systems. We argue that with adequate policy support, economic mechanisms could help reorient degraded rangelands towards more sustainable land management. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A comparison of the effects of different rangeland management ...

    African Journals Online (AJOL)

    A comparison of the effects of different rangeland management systems on ... Three management systems exploit these areas: commercial livestock ranching, communal livestock ranching and game ranching. ... AJOL African Journals Online.

  8. DEVELOPMENTS IN MONITORING RANGELANDS USING REMOTELY-SENSED CROSS-FENCE COMPARISONS

    Directory of Open Access Journals (Sweden)

    A. D. Kilpatrick

    2012-07-01

    Full Text Available This paper presents a new method for the use of earth-observation images to assess relative land condition over broad regions, using a cross-fence comparison methodology. It controls for natural spatial and temporal variables (e.g. rainfall, temperature soils, ecosystem so that we can objectively monitor rangelands and other areas for the effects of management. The method has been tested with small and large scale theoretical models, as well as a case study in South Australian rangelands. This method can also be applied in other systems and experiments such as field trials of crop varieties as a robust spatial statistic.

  9. Assessing Rangeland Attributes On Semi-Arid Zone Of North Darfur State Sudan

    Directory of Open Access Journals (Sweden)

    Mohamed Almontasir A. M. Mohamed

    2015-08-01

    Full Text Available Abstract The study was conducted over a two years period of 2012 and 2013 at three sites of Alfashir locality Ummarahik 25km north of Alfashir Fashar in eastern part of Alfashir about 5km and Berka 30km west of Alfashir Western Sudan in semi-arid zone. The aim of this study was to assess rangeland attributes. Measurements of plant density vegetation cover range production and carrying capacity were assessed. Results showed that total forage production was low and inadequate to satisfy requirements of livestock for inhabiting the area average range production all over the area was found to be 50.68 kgha and 59.21 kgha for the seasons 2012 and 2013 respectively. The average ground cover was about 34.71 and 42.41 for two seasons. The average plant density for the first season was 27.1 plantm2 while the average plant density for the second season was 29.4 plantm2. The study concluded that unwise utilization and exploitation of the rangelands particularly by man causes range deterioration and serious reduction in range production in both quantity and quality so the study suggested that improvement and rehabilitation such lands rangelands should be done. Further research work is needed to assess rangeland attributes across different ecological zones in North Darfur State.

  10. China's Rangelands under Stress : A comparative study of pasture commons in the Ningxia Hui Autonomous Region

    NARCIS (Netherlands)

    Ho, P.P.S.

    2000-01-01

    China's economic reforms have exacerbated the problems of over-grazing and desertification in the country's pastoral areas. In order to deal with rangeland degradation, the Chinese government has resorted to nationalization, or semi-privatization. Since the implementation of rangeland policy has

  11. Forests, rangelands and climate change in Southern Africa

    CSIR Research Space (South Africa)

    Naidoo, Sasha

    2013-09-01

    Full Text Available This paper provides an analysis of the implications of climate change for forests and rangelands in southern Africa. The extent of the resources and their economic and social functions and drivers of change is outlined. The vulnerability...

  12. The challenge of integrated rangeland monitoring: synthesis address

    African Journals Online (AJOL)

    The utility of monitoring and its guiding principles will only work effectively where good environmental governance is practiced by users and producers affecting rangeland ecosystems. Keywords: adaptive management, complex, environmental governance, human impacts, multi-scale, socio-ecological. African Journal of ...

  13. Effect of management on rangeland phytomass, cover and condition ...

    African Journals Online (AJOL)

    similarity of management effects on rangeland condition and forage provision across major dryland biomes. Taking a macro-ecological perspective, we analysed if management effects differed between South Africa's central grassland and ...

  14. Monitoring Forage Production of California Rangeland Using Remote Sensing Observations

    Science.gov (United States)

    Liu, H.; Jin, Y.; Dahlgren, R. A.; O'Geen, A. T.; Roche, L. M.; Smith, A. M.; Flavell, D.

    2016-12-01

    Pastures and rangeland cover more than 10 million hectares in California's coastal and inland foothill regions, providing feeds to livestock and important ecosystem services. Forage production in California has a large year-to-year variation due to large inter-annual and seasonal variabilities in precipitation and temperature. It also varies spatially due to the variability in climate and soils. Our goal is to develop a robust and cost-effective tool to map the near-real-time and historical forage productivity in California using remote sensing observations from Landsat and MODIS satellites. We used a Monteith's eco-physiological plant growth theory: the aboveground net primary production (ANPP) is determined by (i) the absorbed photosynthetically active radiation (APAR) and the (ii) light use efficiency (LUE): ANPP = APAR * LUEmax * f(T) * f(SM), where LUEmax is the maximum LUE, and f(T) and f(SM) are the temperature and soil moisture constrains on LUE. APAR was estimated with Landsat and MODIS vegetation index (VI), and LUE was calibrated with a statewide point dataset of peak forage production measurements at 75 annual rangeland sites. A non-linear optimization was performed to derive maximum LUE and the parameters for temperature and soil moisture regulation on LUE by minimizing the differences between the estimated and measured ANPP. Our results showed the satellite-derived annual forage production estimates correlated well withcontemporaneous in-situ forage measurements and captured both the spatial and temporal productivity patterns of forage productivity well. This remote sensing algorithm can be further improved as new field measurements become available. This tool will have a great importance in maintaining a sustainable range industry by providing key knowledge for ranchers and the stakeholders to make managerial decisions.

  15. Runoff and soil erosion from two rangeland sites

    Science.gov (United States)

    Historically over 50 years of rainfall/runoff research using rainfall simulators has been conducted at various rangeland sites in the West, however these sites rarely have consecutive yearly measurements. This limits the understanding of dynamic annual conditions and the interactions of grazing, pla...

  16. Ground Motion Prediction for Great Interplate Earthquakes in Kanto Basin Considering Variation of Source Parameters

    Science.gov (United States)

    Sekiguchi, H.; Yoshimi, M.; Horikawa, H.

    2011-12-01

    Broadband ground motions are estimated in the Kanto sedimentary basin which holds Tokyo metropolitan area inside for anticipated great interplate earthquakes along surrounding plate boundaries. Possible scenarios of great earthquakes along Sagami trough are modeled combining characteristic properties of the source area and adequate variation in source parameters in order to evaluate possible ground motion variation due to next Kanto earthquake. South to the rupture area of the 2011 Tohoku earthquake along the Japan trench, we consider possible M8 earthquake. The ground motions are computed with a four-step hybrid technique. We first calculate low-frequency ground motions at the engineering basement. We then calculate higher-frequency ground motions at the same position, and combine the lower- and higher-frequency motions using a matched filter. We finally calculate ground motions at the surface by computing the response of the alluvium-diluvium layers to the combined motions at the engineering basement.

  17. Robustness and management adaptability in tropical rangelands: a viability-based assessment under the non-equilibrium paradigm.

    Science.gov (United States)

    Accatino, F; Sabatier, R; De Michele, C; Ward, D; Wiegand, K; Meyer, K M

    2014-08-01

    Rangelands provide the main forage resource for livestock in many parts of the world, but maintaining long-term productivity and providing sufficient income for the rancher remains a challenge. One key issue is to maintain the rangeland in conditions where the rancher has the greatest possibility to adapt his/her management choices to a highly fluctuating and uncertain environment. In this study, we address management robustness and adaptability, which increase the resilience of a rangeland. After reviewing how the concept of resilience evolved in parallel to modelling views on rangelands, we present a dynamic model of rangelands to which we applied the mathematical framework of viability theory to quantify the management adaptability of the system in a stochastic environment. This quantification is based on an index that combines the robustness of the system to rainfall variability and the ability of the rancher to adjust his/her management through time. We evaluated the adaptability for four possible scenarios combining two rainfall regimes (high or low) with two herding strategies (grazers only or mixed herd). Results show that pure grazing is viable only for high-rainfall regimes, and that the use of mixed-feeder herds increases the adaptability of the management. The management is the most adaptive with mixed herds and in rangelands composed of an intermediate density of trees and grasses. In such situations, grass provides high quantities of biomass and woody plants ensure robustness to droughts. Beyond the implications for management, our results illustrate the relevance of viability theory for addressing the issue of robustness and adaptability in non-equilibrium environments.

  18. Grasshopper (Orthoptera: Acrididae) community composition in the rangeland of the northern slopes of The Qilian Mountains in northwestern China.

    Science.gov (United States)

    Sun, T; Liu, Z Y; Qin, L P; Long, R J

    2015-01-01

    In order to describe grasshopper (Orthoptera: Acrididae) species composition, diversity, abundance, and density of four rangelands types, we compared the grasshopper community composition and dynamics in the rangeland of the northern slopes of the Qilian Mountains. In total, 55 grasshopper species were collected from 2007 to 2009, representing three families and six subfamilies. The subfamily Oedipodinae was dominant, followed by Gomphocerinae and Catantopinae. Species abundance varied among rangeland types (RTs). The greatest abundance of grasshoppers was found in mountain rangeland, while the lowest abundance of grasshoppers was caught in alpine shrublands. Three species (Chorthippus cf. brunneus (Thunberg) (Acrididae), Chorthippus Dubius (Zubovski), and Gomphocerus licenti (Chang) were broadly distributed in the four RTs and constituted 7.5% of all grasshoppers collected. Ch. dubius was very abundant in desert rangeland and alpine shrubland. Bryodema dolichoptera Yin et Feng Eremippus qilianshanensis Lian and Zheng, and Filchnerella qilianshanensis Xi and Zheng (Pamphagidae) were endemic to the region of the Qilian Mountains. Species similarity between RTs ranged from 17.8 to 51.6 based on the Renkonen index. Similarly, the Sörensen index indicated a wide separation in species composition among RTs. The abundance of the eight most common species showed obvious differences among RTs and years. On average, mountain rangeland had the highest density values in 2007 and 2008, and alpine shrubland supported the smallest density. The densities in desert and mountain rangeland in 2007 were significantly higher than in 2008, while alpine rangeland and shrublands did not present obvious differences among years. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. Phenotypic and genetic characterization of wildland collections of western and Searls prairie clovers for rangeland revegetation in the western USA

    Science.gov (United States)

    Kishor Bhattarai

    2010-01-01

    Western prairie clover [Dalea ornata (Douglas ex Hook.) Eaton & J. Wright] is a perennial legume that occurs in the northern Great Basin, Snake River Basin, and southern Columbia Plateau, whereas Searls prairie clover [Dalea searlsiae (A. Gray) Barneby], also a perennial legume, occurs in the southern Great Basin and surrounding areas. Understanding the genetic and...

  20. Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin

    Science.gov (United States)

    Coates, Peter S.; Ricca, Mark A.; Prochazka, Brian G.; Doherty, Kevin E.; Brooks, Matthew L.; Casazza, Michael L.

    2015-09-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across broad spatial scales and long time periods. To help inform a threat assessment within the Great Basin for listing sage-grouse in 2015 under the ESA, we conducted an extensive analysis of wildfire and climatic effects on sage-grouse population growth derived from 30 years of lek-count data collected across the hydrographic Great Basin of Western North America. Annual (1984–2013) patterns of wildfire were derived from an extensive dataset of remotely sensed 30-meter imagery and precipitation derived from locally downscaled spatially explicit data. In the sagebrush ecosystem, underlying soil conditions also contribute strongly to variation in resilience to disturbance and resistance to plant community changes (R&R). Thus, we developed predictions from models of post-wildfire recovery and chronic effects of wildfire based on three spatially explicit R&R classes derived from soil moisture and temperature regimes. We found evidence of an interaction between the effects of wildfire (chronically affected burned area within 5 kilometers of a lek) and climatic conditions (spring through fall precipitation) after accounting for a consistent density-dependent effect. Specifically, burned areas near leks nullifies population growth that normally follows years with relatively high precipitation. In models, this effect results in long-term population declines for sage-grouse despite cyclic

  1. The pollination ecology of Hedysarum boreale Nutt. (Fabaceae) and evaluation of its pollinating bees for restoration seed production

    Science.gov (United States)

    Katharine A. Swoboda

    2007-01-01

    Federal land managers desire a consistent and cost-effective source of Hedysarum boreale Nutt. seed for rangeland restoration in the Great Basin and adjacent ecosystems. The breeding biology of H. boreale was assessed via hand pollination experiments at 2 sites in Cache County, Utah, USA in 2003. H. boreale was found to be self-compatible, but did not produce fruit and...

  2. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    Science.gov (United States)

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  3. Impact of Rangeland Degradation on Soil Physical, Chemical

    African Journals Online (AJOL)

    major threats to enhance a sustainable pastoral-livestock production in Ethiopia. ... overall negative impact on the soil physical and chemical characteristics, demanding ... chemical properties (Gemedo et al., 2006) as well as the rangeland .... parameters such as life forms (annuals and perennials), plant forms (woody plant,.

  4. Rangeland Ecosystem Services: Nature's Supply and Humans' Demand

    Science.gov (United States)

    Ecosystem services are the benefits that society receives from nature and they include the regulation of climate, the pollination of crops, the provisioning of intellectual inspiration and recreational environment, as well as many essential goods such as food, fiber, and wood. Rangeland ecosystem se...

  5. Livestock systems and rangeland degradation in the new World Atlas of Desertification

    Science.gov (United States)

    Zucca, Claudio; Reynolds, James F.; Cherlet, Michael

    2015-04-01

    Livestock systems and rangeland degradation in the new World Atlas of Desertification Land degradation and desertification (LDD), which are widespread in global rangelands, are complex processes. They are caused by multiple (but limited) number of biophysical and socioeconomic drivers that lead to an unbalance in the capacity of the land to sustainably produce ecosystem services and economic value. Converging evidence indicates that the key biophysical and socioeconomic drivers include agricultural or pastoral land use and management practices, population growth, societal demands (e.g., urbanization), and climate change (e.g., increasing aridity and drought). The new World Atlas of Desertification (WAD) describes these global issues, documents their spatial change, and highlights the importance of these drivers in relation to land degradation processes. The impacts of LDD on the atmosphere, on water and on biodiversity are also covered. The WAD spatially illustrates relevant types of livestock and rangeland management systems, related (over-under) use of resources, various management activities, and some of the common features and transitions that contribute to LDD. For example, livestock grazing in marginal areas is increasing due to competition with agricultural encroachment and, hence, vulnerable lands are under threat. The integration of stratified global data layers facilitates identifying areas where stress on the land system can be linked to underlying causal issues. One of the objectives of the new WAD is to provide synthesis and tools for scientists and stakeholders to design sustainable solutions for efficient land use in global rangelands.

  6. Book title: Rangelands systems: Processes, management and challenges - Chapter title: Invasive plant species and novel ecosystems

    Science.gov (United States)

    Rangelands represent the dominant land use systems in many countries of the world and provide sociological and cultural benefits to millions of people in both rural and urban areas. The undesirable impacts of rangeland weeds have been recognized for well over 100 years and infest between 41 and 51 ...

  7. A conceptual tool for improving rangeland management decision ...

    African Journals Online (AJOL)

    ... the LLM concept should be seen as a continuous and evolving learning process that will be updated over the long term through decision support to include several other components essential to implement effective and sustainable rangeland management practices by local land users. Keywords: desertification; indicators ...

  8. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    Science.gov (United States)

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  9. Interpreting and Correcting Cross-scale Mismatches in Resilience Analysis: a Procedure and Examples from Australia's Rangelands

    Directory of Open Access Journals (Sweden)

    John A. Ludwig

    2005-12-01

    Full Text Available Many rangelands around the globe are degraded because of mismatches between the goals and actions of managers operating at different spatial scales. In this paper, we focus on identifying, interpreting, and correcting cross-scale mismatches in rangeland management by building on an existing four-step resilience analysis procedure. Resilience analysis is an evaluation of the capacity of a system to persist in the face of disturbances. We provide three examples of cross-scale resilience analysis using a rangeland system located in northern Australia. The system was summarized in a diagram showing key interactions between three attributes (water quality, regional biodiversity, and beef quality, which can be used to indicate the degree of resilience of the system, and other components that affect these attributes at different scales. The strengths of cross-scale interactions were rated as strong or weak, and the likely causes of mismatches in strength were interpreted. Possible actions to correct cross-scale mismatches were suggested and evaluated. We found this four-step, cross-scale resilience analysis procedure very helpful because it reduced a complex problem down to manageable parts without losing sight of the larger-scale whole. To build rangeland resilience, many such cross-scale mismatches in management will need to be corrected, especially as the global use of rangelands increases over the coming decades.

  10. Phenology-based, remote sensing of post-burn disturbance windows in rangelands

    Science.gov (United States)

    Sankeya, Joel B.; Wallace, Cynthia S.A.; Ravi, Sujith

    2013-01-01

    Wildland fire activity has increased in many parts of the world in recent decades. Ecological disturbance by fire can accelerate ecosystem degradation processes such as erosion due to combustion of vegetation that otherwise provides protective cover to the soil surface. This study employed a novel ecological indicator based on remote sensing of vegetation greenness dynamics (phenology) to estimate variability in the window of time between fire and the reemergence of green vegetation. The indicator was applied as a proxy for short-term, post-fire disturbance windows in rangelands; where a disturbance window is defined as the time required for an ecological or geomorphic process that is altered to return to pre-disturbance levels. We examined variability in the indicator determined for time series of MODIS and AVHRR NDVI remote sensing data for a database of ∼100 historical wildland fires, with associated post-fire reseeding treatments, that burned 1990–2003 in cold desert shrub steppe of the Great Basin and Columbia Plateau of the western USA. The indicator-based estimates of disturbance window length were examined relative to the day of the year that fires burned and seeding treatments to consider effects of contemporary variability in fire regime and management activities in this environment. A key finding was that contemporary changes of increased length of the annual fire season could have indirect effects on ecosystem degradation, as early season fires appeared to result in longer time that soils remained relatively bare of the protective cover of vegetation after fires. Also important was that reemergence of vegetation did not occur more quickly after fire in sites treated with post-fire seeding, which is a strategy commonly employed to accelerate post-fire vegetation recovery and stabilize soil. Future work with the indicator could examine other ecological factors that are dynamic in space and time following disturbance – such as nutrient cycling

  11. Scale effects on runoff and soil erosion in rangelands: observations and estimations with predictors of different availability

    Science.gov (United States)

    Runoff and erosion estimates are needed for rangeland management decisions and evaluation of ecosystem services derived from rangeland conservation practices. The information on the effect of scale on the runoff and erosion, and on the choice of runoff and erosion predictors, remains scarce. The obj...

  12. The late Holocene dry period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA

    Science.gov (United States)

    Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy

    2013-01-01

    Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.

  13. Appraisal of the tight sands potential of the Sand Wash and Great Divide Basins

    International Nuclear Information System (INIS)

    1993-08-01

    The volume of future tight gas reserve additions is difficult to estimate because of uncertainties in the characterization and extent of the resource and the performance and cost-effectiveness of stimulation and production technologies. Ongoing R ampersand D by industry and government aims to reduce the risks and costs of producing these tight resources, increase the certainty of knowledge of their geologic characteristics and extent, and increase the efficiency of production technologies. Some basins expected to contain large volumes of tight gas are being evaluated as to their potential contribution to domestic gas supplies. This report describes the results of one such appraisal. This analysis addresses the tight portions of the Eastern Greater Green River Basin (Sand Wash and Great Divide Subbasins in Northwestern Colorado and Southwestern Wyoming, respectively), with respect to estimated gas-in-place, technical recovery, and potential reserves. Geological data were compiled from public and proprietary sources. The study estimated gas-in-place in significant (greater than 10 feet net sand thickness) tight sand intervals for six distinct vertical and 21 areal units of analysis. These units of analysis represent tight gas potential outside current areas of development. For each unit of analysis, a ''typical'' well was modeled to represent the costs, recovery and economics of near-term drilling prospects in that unit. Technically recoverable gas was calculated using reservoir properties and assumptions about current formation evaluation and extraction technology performance. Basin-specific capital and operating costs were incorporated along with taxes, royalties and current regulations to estimate the minimum required wellhead gas price required to make the typical well in each of unit of analysis economic

  14. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    Science.gov (United States)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  15. Yield Response of Mediterranean Rangelands under a Changing Climate

    NARCIS (Netherlands)

    Daliakopoulos, Ioannis N.; Panagea, Ioanna S.; Tsanis, Ioannis K.; Grillakis, Manolis G.; Koutroulis, Aristeidis G.; Hessel, Rudi; Mayor, Angeles G.; Ritsema, Coen J.

    2017-01-01

    Understanding the Mediterranean rangelands degradation trends is a key element of mitigating their vulnerability and enhancing their resilience. Climate change and its inherent effects on mean temperature and the precipitation variability can regulate the magnitude, frequency and duration of

  16. Presidential address - 1999 Towards a national rangeland policy ...

    African Journals Online (AJOL)

    There are some problems with the publication of the journal, but Council hopes to have our ... The first is that all agencies funded through DACST will be reviewed ... to improve our understanding of management issues in communal rangeland. ... All current programmes to rehabilitate degraded land contain budgets for the ...

  17. Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems.

    Science.gov (United States)

    Sasaki, Takehiro; Okubo, Satoru; Okayasu, Tomoo; Jamsran, Undarmaa; Ohkuro, Toshiya; Takeuchi, Kazuhiko

    2009-03-01

    The current growing body of evidence for diversity-disturbance relationships suggests that the peaked pattern predicted by the intermediate disturbance hypothesis (IDH) may not be the rule. Even if ecologists could quantify the diversity-disturbance relationship consistent with the IDH, the applicability of the IDH to land management has rarely been addressed. We examined two hypotheses related to the generality and management applicability of the IDH to Mongolian rangeland ecosystems: that the diversity-disturbance relationship varies as a function of landscape condition and that some intermediate scales of grazing can play an important role in terms of sustainable rangeland management through a grazing gradient approach. We quantified the landscape condition of each ecological site using an ordination technique and determined two types of landscape conditions: relatively benign and harsh environmental conditions. At the ecological sites characterized by relatively benign environmental conditions, diversity-disturbance relationships were generally consistent with the IDH, and maximum diversity was observed at some intermediate distance from the source of the grazing gradient. In contrast, the IDH was not supported at most (but not all) sites characterized by relatively harsh environmental conditions. The intermediate levels of grazing were generally located below the ecological threshold representing the points or zones at which disturbance should be limited to prevent drastic changes in ecological conditions, suggesting that there is little "conundrum" with regard to intermediate disturbance in the studied systems in terms of land management. We suggest that the landscape condition is one of the primary factors that cause inconsistencies in diversity-disturbance relationships. The ecological threshold can extend its utility in rangeland management because it also has the compatibility with the maintenance of species diversity. This study thus suggests that some

  18. Multi-agency Oregon Pilot: Working towards a national inventory and assessment of rangelands using onsite data

    Science.gov (United States)

    Paul L. Patterson; James Alegria; Leonard Jolley; Doug Powell; J. Jeffery Goebel; Gregg M. Riegel; Kurt H. Riitters; Craig. Ducey

    2014-01-01

    Rangelands are lands dominated by grasses, forbs, and shrubs and are managed as a natural ecosystem. Although these lands comprise approximately 40 percent of the landmass of the continental United States, there is no coordinated effort designed to inventory, monitor, or assess rangeland conditions at the national scale. A pilot project in central Oregon with the U.S....

  19. Rangeland restoration for Hirola, the world's most endangered antelope

    Science.gov (United States)

    Rangeland restoration can improve habitat for threatened species such as the hirola antelope (Beatragus hunteri) that inhabit savannas of eastern Kenya. However, restoration success likely varies across soil types and target restoration species, as well as according to restoration approach. We teste...

  20. Exploring the invasion of rangelands by Acacia mearnsii (black ...

    African Journals Online (AJOL)

    Reducing A. mearnsii canopy could promote grass production while encouraging carbon sequestration. Given the high AGB and clearing costs, it may be prudent to adopt the 'novel ecosystems' approach in managing infested landscapes. Keywords: grassland, invasive plants, landscape ecology, rangeland condition ...

  1. Anoxia pre-dates Frasnian–Famennian boundary mass extinction horizon in the Great Basin, USA

    Science.gov (United States)

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  2. State and transition models: Theory, applications, and challenges. In: Briske, D.D. Rangeland Systems: Processes, Management and Challenges

    Science.gov (United States)

    State and transition models (STMs) are used for communicating about ecosystem change in rangelands and other ecosystems, especially the implications for management. The fundamental premise that rangelands can exhibit multiple states is now widely accepted. The current application of STMs for managem...

  3. Rangeland degradation in two watersheds of Lebanon

    International Nuclear Information System (INIS)

    Darwish, T; Faour, G.

    2008-01-01

    A complex and rugged nature characterizes the Lebanese mountains.The climatic pattern prevailing in the country, deforestation and man made erosion caused increased rangeland degradation. The purpose of this study was to monitor two contrasting watersheds, representing the Lebanese agro-ecological zones, to analyze the vegetation dynamics and trace the state of rangeland degradation. The Kfarselouane (205 km2) and Aarsal (316.7 km2) watersheds are located in the Lebanon and Anti-Lebanon mountain chain and characterized by sub humid and semi-arid climate respectively.Using multitemporal spot vegetation images between 1999 and 2005 to analyze the normalized differential vegetation index (NDVI) revealed some improvement of the vegetation cover over recent years in Kfaselouane with a steady state in Aarsal. The NDVI trend curve inclines in spring and declines in summer and fall. Judging by the time scale amplitude change and highest magnitude between the peak and lower NDVI level in Aarsal, an increased vulnerability to drought is observed in the dry Lebanese areas. Comparing land cover/use in Aarsal area between 1962 and 2000 using aerial photos and large resolution Indian satellite images (IRS) showed wood fragmentation and slight increase of the degenerated forest cover from 1108 ha to 1168 ha. Landuse change was accompanied by a simultaneous increase of cultivated lands (mostly fruit trees) from 932 ha to 4878 ha with absence of soil conservation and water harvesting practices. On the contrary, grasslands decreased from 29581 ha to 25000 ha. In Kfarselouane, the area of grassland was invaded by forestland where rangeland decreased from 8073 ha to 3568 ha and woodland increased from 5766 ha to 11800 ha. Forest expansion occurred even at the account of unproductive land which decreased from 2668 ha to 248 ha, while cultivated lands did not reveal any substantial change. Based on animals' seasonal feeding pattern, a mismatch between land carrying capacity and grazing

  4. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 3: Kinematics of Great Basin intraplate extension from earthquake, geodetic and geologic information. Final Technical Report, 15 Apr. 1981 - 31 Jan. 1986 M.S. Thesis

    Science.gov (United States)

    Eddington, P. K.

    1986-01-01

    Strain rates assessed from brittle fracture, associated with earthquakes, and total brittle-ductile deformation measured from geodetic data were compared to paleostrain from Quaternary geology for the intraplate Great Basin of the western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced in the last 5 to 10 million years. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions. Contemporary deformation of the Great Basin occurs principally along the active seismic zones. The earthquake related strain shows that the Great Basin is characterized by regional E-W extension at 8.4 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum extension correspond to belts of shallow crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through an effect such as a stress relaxation allowing bouyant uplift and ascension of magmas.

  5. Ecology and Conservation of Acacia senegal in the Rangelands ...

    African Journals Online (AJOL)

    Ecology and Conservation of Acacia senegal in the Rangelands ofLuwero and Nakasongola Districts. Jacob Godfrey Agea, Joseph Obua, Sara Namirembe, Mukadasi Buyinza, Daniel Waiswa. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  6. Advances in modeling soil erosion after disturbance on rangelands

    Science.gov (United States)

    Research has been undertaken to develop process based models that predict soil erosion rate after disturbance on rangelands. In these models soil detachment is predicted as a combination of multiple erosion processes, rain splash and thin sheet flow (splash and sheet) detachment and concentrated flo...

  7. Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests.

    Science.gov (United States)

    Smithers, Brian V; North, Malcolm P; Millar, Constance I; Latimer, Andrew M

    2018-02-01

    In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine-dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above-treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully "leap-frogging" over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early-stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal

  8. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    Science.gov (United States)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  9. The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Julienne J. eParaiso

    2013-08-01

    Full Text Available Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs are core membrane lipids of many archaea that enhance the integrity of cytoplasmic membranes in extreme environments. We examined the iGDGT profiles and corresponding aqueous geochemistry in 40 hot spring sediment and microbial mat samples from the U.S. Great Basin with temperatures ranging from 31 to 95°C and pH ranging from 6.8 to 10.7. The absolute abundance of iGDGTs correlated negatively with pH and positively with temperature. High lipid concentrations, distinct lipid profiles, and a strong relationship between polar and core lipids in hot spring samples suggested in situ production of most iGDGTs rather than contamination from local soils. Two-way cluster analysis and non-metric multidimensional scaling (NMS of polar iGDGTs indicated that the relative abundance of individual lipids was most strongly related to temperature (r2 = 0.546, with moderate correlations with pH (r2 = 0.359, nitrite (r2 = 0.286, oxygen (r2 = 0.259, and nitrate (r2 = 0.215. Relative abundance profiles of individual polar iGDGTs indicated potential temperature optima for iGDGT-0 (≤70°C, iGDGT-3 (≥55°C, and iGDGT -4 (≥60°C. These relationships likely reflect both physiological adaptations and community-level population shifts in response to temperature differences, such as a shift from cooler samples with more abundant methanogens to higher-temperature samples with more abundant Crenarchaeota. Crenarchaeol was widely distributed across the temperature gradient, which is consistent with other reports of abundant crenarchaeol in Great Basin hot springs and suggests a wide distribution for thermophilic ammonia-oxidizing archaea (AOA.

  10. Great lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2012

    Science.gov (United States)

    Gorman, Owen T.

    2012-01-01

    The assessment of prey fish stocks in the Great Lakes have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, bottom trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, direct comparison of prey fish catches among lakes is not straightforward. However, all of the assessments produce indices of abundance or biomass that can be standardized to facilitate comparisons of status and trends across all the Great Lakes. In this report, population indices were standardized to the highest value for a time series within each lake for the following principal prey species: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). Indices were also provided for round goby (Neogobius melanostomus), an invasive fish that has proliferated throughout the basin over the past 18 years. These standardized indices represent the best available long-term indices of relative abundance for these fishes across all of the Great Lakes. In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. In keeping with this intent, tables, references, and a detailed discussion were omitted.

  11. Ranch business planning and resource monitoring for rangeland sustainability

    Science.gov (United States)

    Kristie A. Maczko; John A. Tanaka; Michael Smith; Cindy Garretson-Weibel; Stanley F. Hamilton; John E. Mitchell; Gene Fults; Charles Stanley; Dick Loper; Larry D. Bryant; J. K. (Rooter) Brite

    2012-01-01

    Aligning a rancher's business plan goals with the capability of the ranch's rangeland resources improves the viability and sustainability of family ranches. Strategically monitoring the condition of soil, water, vegetation, wildlife, livestock production, and economics helps inform business plan goals. Business planning and resource monitoring help keep...

  12. Influence of domestic livestock grazing on American Pika (Ochotona princeps) forage and haypiling behavior in the Great Basin. Western North American Naturalist.

    Science.gov (United States)

    Constance I. Millar

    2011-01-01

    In a pilot study, I observed a relationship between domestic livestock grazing and location of American pika (Ochotona princeps) haypiles in the eastern Sierra Nevada and several Great Basin mountain ranges. Where vegetation communities adjacent to talus bases (forefields) were grazed, mean distance from the talus borders to the closest fresh...

  13. Phenomapping of rangelands in South Africa using time series of RapidEye data

    Science.gov (United States)

    Parplies, André; Dubovyk, Olena; Tewes, Andreas; Mund, Jan-Peter; Schellberg, Jürgen

    2016-12-01

    Phenomapping is an approach which allows the derivation of spatial patterns of vegetation phenology and rangeland productivity based on time series of vegetation indices. In our study, we propose a new spatial mapping approach which combines phenometrics derived from high resolution (HR) satellite time series with spatial logistic regression modeling to discriminate land management systems in rangelands. From the RapidEye time series for selected rangelands in South Africa, we calculated bi-weekly noise reduced Normalized Difference Vegetation Index (NDVI) images. For the growing season of 2011⿿2012, we further derived principal phenology metrics such as start, end and length of growing season and related phenological variables such as amplitude, left derivative and small integral of the NDVI curve. We then mapped these phenometrics across two different tenure systems, communal and commercial, at the very detailed spatial resolution of 5 m. The result of a binary logistic regression (BLR) has shown that the amplitude and the left derivative of the NDVI curve were statistically significant. These indicators are useful to discriminate commercial from communal rangeland systems. We conclude that phenomapping combined with spatial modeling is a powerful tool that allows efficient aggregation of phenology and productivity metrics for spatially explicit analysis of the relationships of crop phenology with site conditions and management. This approach has particular potential for disaggregated and patchy environments such as in farming systems in semi-arid South Africa, where phenology varies considerably among and within years. Further, we see a strong perspective for phenomapping to support spatially explicit modelling of vegetation.

  14. Ecology and utilization of desert shrub rangelands in Iraq

    NARCIS (Netherlands)

    Thalen, Derk Catharinus Peter

    1979-01-01

    When grazing is the accepted land use, vegetation is the key resource. The present study deals with the desert shrub rangelands of lraq, which contain the major characteristics of such an area, having been under grazing for many centuries. Emphasis is given to the ecology and utilization of the

  15. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  16. The value of milk in rangelands in Mandera County, Kenya

    Science.gov (United States)

    Ngugi, Keziah; Ertsen, Maurits

    2015-04-01

    Lack of water over expansive regions in Greater Horn of Africa created the rangelands and rangelands created pastoralism. Pastoralism involve keeping of large livestock herds and movement in search of resources, mainly water, pasture, medicine and wild foods. Several studies have been done in the last century and findings pointed at pastoralism being primitive and unsustainable. It has been predicted it would die in the last century but in the rangelands, pastoralism lives on and it is resilient. This study is based in Mandera, a pastoralism county in Kenya that neighbors Ethiopia to the North and Somalia to the East. The study sought to investigate contribution of milk to pastoralism resilience. Interviews were conducted in the field among the pastoralists, women groups, transporters, traders, government officials and consumers of milk. These information was corroborated with actual field investigations in the expansive rangelands of Mandera County. Pastoralists rarely slaughter or sell their livestock even when the animals waste away during droughts. This is because they have been through such cycles before and observed livestock make tremendous recovery when the right conditions were restored. Rangelands lack infrastructure, there are no roads, schools, telephone or hospitals. Pastoralists diet is comprised of rice, wheat and milk. It was established milk was the main source of income among pastoralists in Mandera County. From milk, the pastoralists make income that is used to purchase the other foodstuffs. Milk is available on daily basis in large quantities owing to the large number of livestock. Unfortunately, every pastoralist household produce copious amounts of milk, thus no local demand and transport infrastructure is nonexistent, making sale of milk a near impossible task. The findings showed the pastoralists have established unique routes through which milk reach the markets in urban centers where demand is high. Urbanization sustain pastoralism. These

  17. A synoptic review of U.S. rangelands: a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Matthew Clark Reeves; John E. Mitchell

    2012-01-01

    The Renewable Resources Planning Act of 1974 requires the USDA Forest Service to conduct assessments of resource conditions. This report fulfills that need and focuses on quantifying extent, productivity, and health of U.S. rangelands. Since 1982, the area of U.S. rangelands has decreased at an average rate of 350,000 acres per year owed mostly to conversion to...

  18. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  19. TESTING TREE-CLASSIFIER VARIANTS AND ALTERNATE MODELING METHODOLOGIES IN THE EAST GREAT BASIN MAPPING UNIT OF THE SOUTHWEST REGIONAL GAP ANALYSIS PROJECT (SW REGAP)

    Science.gov (United States)

    We tested two methods for dataset generation and model construction, and three tree-classifier variants to identify the most parsimonious and thematically accurate mapping methodology for the SW ReGAP project. Competing methodologies were tested in the East Great Basin mapping un...

  20. Ecosystem water availability in juniper versus sagebrush snow-dominated rangelands

    Science.gov (United States)

    Western Juniper (J. occidentalis Hook.) now dominates over 3.6 million ha of rangeland in the Intermountain Western US. Critical ecological relationships among snow distribution, water budgets, plant community transitions, and habitat requirements for wildlife, such as sage grouse, remain poorly und...

  1. Parameterization of erodibility in the Rangeland Hydrology and Erosion Model

    Science.gov (United States)

    The magnitude of erosion from a hillslope is governed by the availability of sediment and connectivity of runoff and erosion processes. For undisturbed rangelands, sediment is primarily detached and transported by rainsplash and sheetflow (splash-sheet) processes in isolated bare batches, but sedime...

  2. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  3. Introducing cattle grazing to a noxious weed-dominated rangeland shifts plant communities

    Directory of Open Access Journals (Sweden)

    Josh S. Davy

    2015-10-01

    Full Text Available Invasive weed species in California's rangelands can reduce herbaceous diversity, forage quality and wildlife habitat. Small-scale studies (5 acres or fewer have shown reductions of medusahead and yellow starthistle using prescribed grazing on rangelands, but little is published on the effects of pasture-scale (greater than 80 acres prescribed grazing on weed control and plant community responses. We report the results of a 6-year collaborative study of manager-applied prescribed grazing implemented on rangeland that had not been grazed for 4 years. Grazing reduced medusahead but did not alter yellow starthistle cover. Medusahead reductions were only seen in years that did not have significant late spring rainfall, suggesting that it is able to recover from heavy grazing if soil moisture is present. Later season grazing appears to have the potential to suppress medusahead in all years. In practice, however, such grazing is constrained by livestock drinking water availability and forage quality, which were limited even in years with late spring rainfall. Thus, we expect that grazing treatments under real-world constraints would reduce medusahead only in years with little late spring rainfall. After 10 years of grazing exclusion, the ungrazed plant communities began to shift, replacing medusahead with species that have little value, such as ripgut and red brome.

  4. Rangelands Vegetation under Different Management Systems and Growth Stages in North Darfur State, Sudan (Range Attributes

    Directory of Open Access Journals (Sweden)

    Mohamed AAMA Mohamed

    2014-09-01

    Full Text Available This study was conducted at Um Kaddada, North Darfur State, Sudan, at two sites (closed and open for two consecutive seasons 2008 and 2009 during flowering and seed setting stages to evaluate range attributes at the locality. A split plot design was used to study vegetation attributes. Factors studied were management systems (closed and open and growth stages (flowering and seed setting. Vegetation cover, plant density, carrying capacity, and biomass production were assessed. Chemical analyses were done for selected plants to determine their nutritive values. The results showed high significant differences in vegetation attributes (density, cover and biomass production between closed and open areas. Closed areas had higher carrying capacity compared to open rangelands. Crude protein (CP and ash contents of range vegetation were found to decrease while Crude fiber (CF and Dry matter yield (DM had increased with growth. The study concluded that closed rangelands are better than open rangelands because it fenced and protected. Erosion index and vegetation degradation rate were very high. Future research work is needed to assess rangelands characteristics and habitat condition across different ecological zones in North Darfur State, Sudan.DOI: http://dx.doi.org/10.3126/ije.v3i3.11093 International Journal of Environment Vol.3(3 2014: 332-343

  5. Use of biosolids to enhance rangeland forage quality.

    Science.gov (United States)

    McFarland, Michael J; Vasquez, Issaak Romero; Vutran, MaiAnh; Schmitz, Mark; Brobst, Robert B

    2010-05-01

    Biosolids land application was demonstrated to be a potentially cost-effective means for restoring forage productivity and enhancing soil-moisture-holding capacity on disturbed rangelands. By land-applying aerobically digested, anaerobically digested, composted, and lime-stabilized biosolids on rangeland test plots at rates of up to 20 times (20X) the estimated nitrogen-based agronomic rate, forage yields were found to increase from 132.8 kg/ha (118.2 lb/ac) (control plots) to 1182.3 kg/ha (1052.8 lb/ac). Despite the environmental benefits associated with increased forage yield (e.g., reduced soil erosion, improved drainage, and enhanced terrestrial carbon sequestration), the type of forage generated both before and after biosolids land application was found to be dominated by invasive weeds, all of which were characterized as having fair to poor nutritional value. Opportunistic and shallow rooting invasive weeds not only have marginal nutritional value, they also limit the establishment of native perennial grasses and thus biodiversity. Many of the identified invasive species (e.g., Cheatgrass) mature early, a characteristic that significantly increases the fuel loads that support the increased frequency and extent of western wildfires.

  6. Linking ecosystem services with state-and-transition models to evaluate rangeland management decisions

    Science.gov (United States)

    Lohani, S.; Heilman, P.; deSteiguer, J. E.; Guertin, D. P.; Wissler, C.; McClaran, M. P.

    2014-12-01

    Quantifying ecosystem services is a crucial topic for land management decision making. However, market prices are usually not able to capture all the ecosystem services and disservices. Ecosystem services from rangelands, that cover 70% of the world's land area, are even less well-understood since knowledge of rangelands is limited. This study generated a management framework for rangelands that uses remote sensing to generate state and transition models (STMs) for a large area and a linear programming (LP) model that uses ecosystem services to evaluate natural and/or management induced transitions as described in the STM. The LP optimization model determines the best management plan for a plot of semi-arid land in the Empire Ranch in southeastern Arizona. The model allocated land among management activities (do nothing, grazing, fire, and brush removal) to optimize net benefits and determined the impact of monetizing environmental services and disservices on net benefits, acreage allocation and production output. The ecosystem services under study were forage production (AUM/ac/yr), sediment (lbs/ac/yr), water runoff (inches/yr), soil loss (lbs/ac/yr) and recreation (thousands of number of visitors/ac/yr). The optimization model was run for three different scenarios - private rancher, public rancher including environmental services and excluding disservices, and public rancher including both services and disservices. The net benefit was the highest for the public rancher excluding the disservices. A result from the study is a constrained optimization model that incorporates ecosystem services to analyze investments on conservation and management activities. Rangeland managers can use this model to understand and explain, not prescribe, the tradeoffs of management investments.

  7. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  8. Agroforestry potential of Acacia senegal in the rangelands of luwero ...

    African Journals Online (AJOL)

    Agroforestry potential of Acacia senegal in the rangelands of luwero and Nakasongola districts. Jacob Godfrey Agea, Joseph Obua, Sara Namirembe, Mukadasi Buyinza, Daniel Waiswa. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  9. Session B1 Management for sustainable use — Rangeland auditing ...

    African Journals Online (AJOL)

    Social, economic and cultural needs, values and expectations will be examined together with the biophysical technologies and approaches which underlie auditing in rangeland science. Adaptive frameworks which enhance sustainable strategic responses, and the state of art in scale dilemmas will be addressed. A hybrid ...

  10. Multi-scale wind erosion monitoring and assessment for US rangelands

    Science.gov (United States)

    Wind erosion is a major resource concern for rangeland managers. Although wind erosion is a naturally occurring process in many drylands, land use activities, and land management in particular, can accelerate wind-driven soil loss – impacting ecosystem dynamics and agricultural production, air quali...

  11. Session A6 Rangelands as dynamic systems — Fragmentation of ...

    African Journals Online (AJOL)

    Biological complexity in rangelands arises from spatially-linked ecological states and processes. Herbivores, humans and other agents integrate distinct spatial units into complex systems by moving among and exploiting these units. Spatial heterogeneity plays a central role in the structure and function of grazed ...

  12. A review of climate change effects on terrestrial rangeland birds

    Science.gov (United States)

    D. M. Finch; K. E. Bagne; M. M. Friggens; D. M. Smith; K. M. Brodhead

    2011-01-01

    We evaluated existing literature on predicted and known climate change effects on terrestrial rangeland birds. We asked the following questions: 1) How does climate change affect birds? 2) How will birds respond to climate change? 3) Are species already responding? 4) How will habitats be impacted?

  13. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Science.gov (United States)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  14. Determining termite diversity in arid Namibian rangelands – a ...

    African Journals Online (AJOL)

    Three methods of sampling termite diversity in arid rangelands were tested in Namibia during the wet (March) and dry (October) seasons of 1998. Six sites were chosen: one pair on each of three farms representing a gradient of land use intensity. At each site, two adjacent plots of 1 ha each were sampled: one plot by a ...

  15. The Role of Rangelands in Diversified Farming Systems: Innovations, Obstacles, and Opportunities in the USA

    Directory of Open Access Journals (Sweden)

    Nathan F. Sayre

    2012-12-01

    Full Text Available Discussions of diversified farming systems (DFS rarely mention rangelands: the grasslands, shrublands, and savannas that make up roughly one-third of Earth's ice-free terrestrial area, including some 312 million ha of the United States. Although ranching has been criticized by environmentalists for decades, it is probably the most ecologically sustainable segment of the U.S. meat industry, and it exemplifies many of the defining characteristics of DFS: it relies on the functional diversity of natural ecological processes of plant and animal (reproduction at multiple scales, based on ecosystem services generated and regenerated on site rather than imported, often nonrenewable, inputs. Rangelands also provide other ecosystem services, including watershed, wildlife habitat, recreation, and tourism. Even where non-native or invasive plants have encroached on or replaced native species, rangelands retain unusually high levels of plant diversity compared with croplands or plantation forests. Innovations in management, marketing, incentives, and easement programs that augment ranch income, creative land tenure arrangements, and collaborations among ranchers all support diversification. Some obstacles include rapid landownership turnover, lack of accessible U.S. Department of Agriculture certified processing facilities, tenure uncertainty, fragmentation of rangelands, and low and variable income, especially relative to land costs. Taking advantage of rancher knowledge and stewardship, and aligning incentives with production of diverse goods and services, will support the sustainability of ranching and its associated public benefits. The creation of positive feedbacks between economic and ecological diversity should be the ultimate goal.

  16. Session B1 Management for sustainable use — Rangeland auditing ...

    African Journals Online (AJOL)

    We need to monitor the capacity of healthy rangeland to support a broad suite of ecosystem services for a wide range of stakeholders — in a fair, objective and representative way. ... A hybrid session structure will be utilised: distilling wisdom from relevant posters; formal presentations; and stimulating structured debate.

  17. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  18. Power and limitation of soil properties as predictors of rangeland health and ecosystem functioning in a Northern mixed-grass prairie[Abstract

    Science.gov (United States)

    Soil properties are thought to affect rangeland ecosystem functioning (e.g. primary productivity, hydrology), and thus soil variables that are consistently correlated with key ecosystem functions may be general indicators of rangeland health. We summarize results from several studies in mixed-grass...

  19. Session A5 Rangelands as dynamic systems Role of wildlife in ...

    African Journals Online (AJOL)

    Rangelands in southern Africa are increasingly being used for conservation, ecotourism, game farming and hunting. This impacts people's livelihoods and the state of natural resources. Complimentarity and competition between wildlife and domestic livestock can be explored. Theme: This session focuses on ecosystem ...

  20. Temperament affects rangeland use patterns and reproductive performance of beef cows

    Science.gov (United States)

    • The American beef industry is paying more attention to cattle temperament, but studies examining relationships between temperaments and grazing behavior or animal performance on rangelands are limited. • We studied range beef cow temperaments using the behavioral syndromes framework. Cows classifi...

  1. Vulnerability of amphibians to climate change: implications for rangeland management

    Science.gov (United States)

    Karen E. Bagne; Deborah M. Finch; Megan M. Friggens

    2011-01-01

    Many amphibian populations have declined drastically in recent years due to a large number of factors including the emerging threat of climate change (Wake 2007). Rangelands provide important habitat for amphibians. In addition to natural wetlands, stock tanks and other artificial water catchments provide habitat for many amphibian species (Euliss et al. 2004).

  2. Preliminary seismicity and focal mechanisms for the southern Great Basin of Nevada and California: January 1992 through September 1992

    International Nuclear Information System (INIS)

    Harmsen, S.C.

    1994-01-01

    The telemetered southern Great Basin seismic network (SGBSN) is operated for the Department of Energy's Yucca Mountain Project (YMP). The US Geological Survey, Branch of Earthquake and Landslide Hazards, maintained this network until September 30, 1992, at which time all operational and analysis responsibilities were transferred to the University of Nevada at Reno Seismological Laboratory (UNRSL). This report contains preliminary earthquake and chemical explosion hypocenter listings and preliminary earthquake focal mechanism solutions for USGS/SGBSN data for the period January 1, 1992 through September 30, 1992, 15:00 UTC

  3. Analysis reveals potential rangeland impacts if Williamson Act eliminated

    Directory of Open Access Journals (Sweden)

    William C. Wetzel

    2012-10-01

    Full Text Available California budget cuts have resulted in dramatic reductions in state funding for the Williamson Act, a land protection program that reduces property taxes for the owners of 15 million acres of California farms and rangeland. With state reimbursements to counties eliminated, the decision to continue Williamson Act contracts lies with individual counties. We investigated the consequences of eliminating the Williamson Act, using a geospatial analysis and a mail questionnaire asking ranchers for plans under a hypothetical elimination scenario. The geospatial analysis revealed that 72% of rangeland parcels enrolled in Williamson Act contracts contained habitat important for statewide conservation goals. Presented with the elimination scenario, survey respondents reported an intention to sell 20% of their total 496,889 acres. The tendency of survey participants to respond that they would sell land was highest among full-time ranchers with low household incomes and without off-ranch employment. A majority (76% of the ranchers who reported that they would sell land predicted that the buyers would develop it for nonagricultural uses, suggesting substantial changes to California's landscape in a future without the Williamson Act.

  4. WOOD CELLULAR DENDROCLIMATOLOGY: TESTING NEW PROXIES IN GREAT BASIN BRISTLECONE PINE

    Directory of Open Access Journals (Sweden)

    Emanuele Ziaco

    2016-10-01

    Full Text Available Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013 time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g. lumen area; lumen diameter for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g. tracheid lumen area and radial lumen diameter showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell-wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e. lumen and cell diameter with monthly (i.e. March and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological

  5. 25 CFR 166.307 - Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not...

    Science.gov (United States)

    2010-04-01

    ... § 166.307 Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not... trust or non-trust rangeland in common with the permitted land. Grazing capacity will be established... 25 Indians 1 2010-04-01 2010-04-01 false Will the grazing capacity be increased if I graze...

  6. Returning succession to downy brome dominated rangelands: roadblocks to perennial grass establishment

    Science.gov (United States)

    The most common cause of successional retrogression in the Great Basin is wildfires fueled by downy brome (Bromus tectorum). Downy brome invasion has reduced fire intervals from an estimated 60-100 years down to 5-10 years. Our previous research found that establishment of long-lived perennial grass...

  7. Reality of rangeland degradation mapping with remote sensing: the South African experience

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2008-09-01

    Full Text Available Globally there is an urgent need for standardized, quantitative measures rangeland degradation. Over the past 10 years in South Africa (SA), significant research efforts have been directed at this challenge, using diverse methods and data...

  8. Fire rehabilitation effectiveness: a chronosequence approach for the Great Basin

    Science.gov (United States)

    Pyke, David A.; Pilliod, David S.; Chambers, Jeanne C.; Brooks, Matthew L.; Grace, James

    2009-01-01

    Federal land management agencies have invested heavily in seeding vegetation for emergency stabilization and rehabilitation (ES&R) of non-forested lands. ES&R projects are implemented to reduce post-fire dominance of non-native annual grasses, minimize probability of recurrent fire, quickly recover lost habitat for sensitive species, and ultimately result in plant communities with desirable characteristics including resistance to invasive species and resilience or ability to recover following disturbance. Land managers lack scientific evidence to verify whether seeding non-forested lands achieves their desired long-term ES&R objectives. The overall objective of our investigation is to determine if ES&R projects increase perennial plant cover, improve community composition, decrease invasive annual plant cover and result in a more desirable fuel structure relative to no treatment following fires while potentially providing habitat for Greater Sage-Grouse, a species of management concern. In addition, we provide the locations and baseline vegetation data for further studies relating to ES&R project impacts. We examined effects of seeding treatments (drill and broadcast) vs. no seeding on biotic and abiotic (bare ground and litter) variables for the dominant climate regimes and ecological types within the Great Basin. We attempted to determine seeding effectiveness to provide desired plant species cover while restricting non-native annual grass cover relative to post-treatment precipitation, post-treatment grazing level and time-since-seeding. Seedings were randomly sampled from all known post-fire seedings that occurred in the four-state area of Idaho, Nevada, Oregon and Utah. Sampling locations were stratified by major land resource area, precipitation, and loam-dominated soils to ensure an adequate spread of locations to provide inference of our findings to similar lands throughout the Great Basin. Nearly 100 sites were located that contained an ES&R project. Of

  9. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    Science.gov (United States)

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  10. Determining RUSLE P-factors for stonebunds and trenches in rangeland and cropland, Northern Ethiopia

    Science.gov (United States)

    Taye, Gebeyehu; Poesen, Jean; Vanmaercke, Matthias; Van Wesemael, Bas; Tesfay, Samuel; Teka, Daniel; Nyssen, Jan; Deckers, Jozef; Haregeweyn, Nigussie

    2017-04-01

    The implementation of soil and water conservation (SWC) measures in the Ethiopian highlands is a top priority to reduce soil erosion rates and to enhance the sustainability of agroecosystem. Nonetheless, the effectiveness of many of these measures for different hillslope and land use conditions remains currently poorly understood. As a result, the overall effects of these measures at regional or catchment scale remain hard to quantify. This study addresses this knowledge gap by determining the cover-management (C) and support practice (P) factors of the Revised Universal Soil Loss Equation (RUSLE), for commonly used SWC measures in semi-arid environments (i.e. stone bunds, trenches and a combination of both). Calculations were based on soil loss data collected with runoff plots in Tigray, northern Ethiopia (i.e. 21 runoff plots of 600 to 1000 m2, monitored during 2010, 2011 and 2012). The runoff plots were installed in rangeland and cropland sites corresponding to a gentle (5%), medium (12%) and steep (16%) slope gradients. The C and P factors of the RUSLE were calculated following the recommended standard procedures. Results show that the C-factor for rangeland ranges from 0.31 to 0.98 and from 0.06 to 0.39 for cropland. For rangeland, this large variability is due to variations in vegetation cover caused by grazing. In cropland, C-factors vary with tillage practices and crop types. The calculated P-factors ranged from 0.32 to 0.74 for stone bunds, from 0.07 to 0.65 for trenches and from 0.03 to 0.22 for a combination of both stone bunds and trenches. This variability is partly due to variations in the density of the implemented measures in relation to land use (cropland vs rangeland) and slope angles. However, also annual variations in P factor values are highly significant. Especially trenches showed a very significant decline of effectiveness over time, which is attributable to their reduced static storage capacity as a result of sediment deposition (e.g. for

  11. Young (gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    Science.gov (United States)

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  12. Chlorine stable isotope studies of old groundwater, southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Zhang Min; Frape, Shaun K.; Love, Andrew J.; Herczeg, Andrew L.; Lehmann, B.E.; Beyerle, U.; Purtschert, R.

    2007-01-01

    Stable Cl isotope ratios ( 37 Cl/ 35 Cl) were measured in groundwater samples from the southwestern flow system of the Great Artesian Basin, Australia to gain a better understanding of the Cl - sources and transport mechanisms. δ 37 Cl values range from 0 per mille to -2.5 per mille (SMOC), and are inversely correlated with Cl - concentration along the inferred flow direction. The Cl isotopic compositions, in conjunction with other geochemical parameters, suggest that Cl - in groundwaters is not derived from salt dissolution. Mixing of the recharge water with saline groundwater cannot explain the relationship between δ 37 Cl and Cl - concentration measured. Marine aerosols deposited via rainfall and subsequent evapotranspiration appear to be responsible for the Cl - concentrations observed in wells that are close to the recharge area, and in groundwaters sampled along the southern transect. δ 37 Cl values measured in the leachate of the Bulldog shale suggest that the aquitard is the subsurface source of Cl - for the majority of groundwater samples studied. Diffusion is likely the mechanism through which Cl - is transported from the pore water of the Bulldog shale to the aquifer. However, a more detailed study of the aquitard rocks is required to verify this hypothesis

  13. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  14. Towards a remote sensing based indicator of rangeland ecosystem resistance and resilience

    Science.gov (United States)

    Understanding ecosystem resistance and resilience to disturbance and invasive species is critical to the sustainable management of rangeland systems. In this context, resistance refers to the inherent ability of an ecosystem to resist disturbance, while resilience refers to the capacity of an ecosys...

  15. A conservation paradox in the Great Basin—Altering sagebrush landscapes with fuel breaks to reduce habitat loss from wildfire

    Science.gov (United States)

    Shinneman, Douglas J.; Aldridge, Cameron L.; Coates, Peter S.; Germino, Matthew J.; Pilliod, David S.; Vaillant, Nicole M.

    2018-03-15

    Interactions between fire and nonnative, annual plant species (that is, “the grass/fire cycle”) represent one of the greatest threats to sagebrush (Artemisia spp.) ecosystems and associated wildlife, including the greater sage-grouse (Centrocercus urophasianus). In 2015, U.S. Department of the Interior called for a “science-based strategy to reduce the threat of large-scale rangeland fire to habitat for the greater sage-grouse and the sagebrush-steppe ecosystem.” An associated guidance document, the “Integrated Rangeland Fire Management Strategy Actionable Science Plan,” identified fuel breaks as high priority areas for scientific research. Fuel breaks are intended to reduce fire size and frequency, and potentially they can compartmentalize wildfire spatial distribution in a landscape. Fuel breaks are designed to reduce flame length, fireline intensity, and rates of fire spread in order to enhance firefighter access, improve response times, and provide safe and strategic anchor points for wildland fire-fighting activities. To accomplish these objectives, fuel breaks disrupt fuel continuity, reduce fuel accumulation, and (or) increase plants with high moisture content through the removal or modification of vegetation in strategically placed strips or blocks of land.Fuel breaks are being newly constructed, enhanced, or proposed across large areas of the Great Basin to reduce wildfire risk and to protect remaining sagebrush ecosystems (including greater sage-grouse habitat). These projects are likely to result in thousands of linear miles of fuel breaks that will have direct ecological effects across hundreds of thousands of acres through habitat loss and conversion. These projects may also affect millions of acres indirectly because of edge effects and habitat fragmentation created by networks of fuel breaks. Hence, land managers are often faced with a potentially paradoxical situation: the need to substantially alter sagebrush habitats with fuel breaks

  16. Evaluating new SMAP soil moisture for drought monitoring in the rangelands of the US High Plains

    Science.gov (United States)

    Velpuri, Naga Manohar; Senay, Gabriel B.; Morisette, Jeffrey T.

    2016-01-01

    Level 3 soil moisture datasets from the recently launched Soil Moisture Active Passive (SMAP) satellite are evaluated for drought monitoring in rangelands.Validation of SMAP soil moisture (SSM) with in situ and modeled estimates showed high level of agreement.SSM showed the highest correlation with surface soil moisture (0-5 cm) and a strong correlation to depths up to 20 cm.SSM showed a reliable and expected response of capturing seasonal dynamics in relation to precipitation, land surface temperature, and evapotranspiration.Further evaluation using multi-year SMAP datasets is necessary to quantify the full benefits and limitations for drought monitoring in rangelands.

  17. Beginnings of range management: an anthology of the Sampson-Ellison photo plots (1913 to 2003) and a short history of the Great Basin Experiment Station

    Science.gov (United States)

    David A. Prevedel; E. Durant McArthur; Curtis M. Johnson

    2005-01-01

    High-elevation watersheds on the Wasatch Plateau in central Utah were severely overgrazed in the late 1800s, resulting in catastrophic flooding and mudflows through adjacent communities. Affected citizens petitioned the Federal government to establish a Forest Reserve (1902), and the Manti National Forest was established by the Transfer Act of 1905. The Great Basin...

  18. Great Lakes prey fish populations: a cross-basin overview of status and trends based on bottom trawl surveys, 1978-2013

    Science.gov (United States)

    Gorman, Owen T.; Weidel, Brian C.

    2014-01-01

    The assessment of Great Lakes prey fish stocks have been conducted annually with bottom trawls since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. These stock assessments provide data on the status and trends of prey fish that are consumed by important commercial and recreational fishes. Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the proportion of the lake covered, seasonal timing, trawl gear used, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique, population indices were standardized to the highest value for a time series within each lake for the following prey species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), and Round Goby (Neogobius melanostomus). In this report, standardized indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of the status and trends of principal prey fishes. There was basin-wide agreement in the trends of age-1 and older biomass for all prey species, with the highest concordance occurring for coregonids and Rainbow Smelt, and weaker concordance for Alewife. For coregonids, the highest biomass occurred from the mid-1980s to the mid-1990s. Rainbow Smelt biomass declined slowly and erratically during the last quarter century. Alewife biomass was generally higher from the early 1980s through 1990s across the Great Lakes, but since the early 1990s, trends have been divergent across the lakes, though there has been a downward trend in all lakes since 2005. Recently, Lake Huron has shown resurgence in biomass of Bloater, achieving 75% of its maximum record in 2012 due to recruitment of a succession of strong and moderate year classes that appeared in 2005-2011. Also, strong recruitment of the 2010 year class of Alewife has led to a sharp increase in biomass of Alewife in

  19. Grazing management, resilience and the dynamics of a fire driven rangeland system

    NARCIS (Netherlands)

    Anderies, J.M.; Janssen, M.A.; Walker, B.H.

    2002-01-01

    We developed a stylized mathematical model to explore the effects of physical, ecological, and economic factors on the resilience of a managed fire-driven rangeland system. Depending on grazing pressure, the model exhibits one of three distinct configurations: a fire-dominated, grazing-dominated, or

  20. Vulnerability of cattle production to climate change on U.S. rangelands

    Science.gov (United States)

    Matt C. Reeves; Karen E. Bagne

    2016-01-01

    We examined multiple climate change effects on cattle production for U.S. rangelands to estimate relative change and identify sources of vulnerability among seven regions. Climate change effects to 2100 were projected from published models for four elements: forage quantity, vegetation type trajectory, heat stress, and forage variability. Departure of projections from...

  1. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1979-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1% of the aquifer material would have been dissolved since the mid-Tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean deltaD of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (author)

  2. Application of MODIS Land Products to Assessment of Land Degradation of Alpine Rangeland in Northern India with Limited Ground-Based Information

    Directory of Open Access Journals (Sweden)

    Masahiro Tasumi

    2014-09-01

    Full Text Available Land degradation of alpine rangeland in Dachigam National Park, Northern India, was evaluated in this study using MODerate resolution Imaging Spectroradiometer (MODIS land products. The park has been used by a variety of livestock holders. With increasing numbers of livestock, the managers and users of the park are apprehensive about degradation of the grazing land. However, owing to weak infrastructure for scientific and statistical data collection and sociopolitical restrictions in the region, a lack of quality ground-based weather, vegetation, and livestock statistical data had prevented scientific assessment. Under these circumstances, the present study aimed to assess the rangeland environment and its degradation using MODIS vegetation, snow, and evapotranspiration products as primary input data for assessment. The result of the analysis indicated that soil water content and the timing of snowmelt play an important role in grass production in the area. Additionally, the possibility of land degradation in heavily-grazed rangeland was indicated via a multiple regression analysis at a decadal timescale, whereas weather conditions, such as rainfall and snow cover, primarily explained year-by-year differences in grass production. Although statistical uncertainties remain in the results derived in this study, the satellite-based data and the analyses will promote understanding of the rangeland environment and suggest the potential for unsustainable land management based on statistical probability. This study provides an important initial evaluation of alpine rangeland, for which ground-based information is limited.

  3. Improving dynamic global vegetation model (DGVM) simulation of western U.S. rangelands vegetation seasonal phenology and productivity

    Science.gov (United States)

    Kerns, B. K.; Kim, J. B.; Day, M. A.; Pitts, B.; Drapek, R. J.

    2017-12-01

    Ecosystem process models are increasingly being used in regional assessments to explore potential changes in future vegetation and NPP due to climate change. We use the dynamic global vegetation model MAPSS-Century 2 (MC2) as one line of evidence for regional climate change vulnerability assessments for the US Forest Service, focusing our fine tuning model calibration from observational sources related to forest vegetation. However, there is much interest in understanding projected changes for arid rangelands in the western US such as grasslands, shrublands, and woodlands. Rangelands provide many ecosystem service benefits and local rural human community sustainability, habitat for threatened and endangered species, and are threatened by annual grass invasion. Past work suggested MC2 performance related to arid rangeland plant functional types (PFT's) was poor, and the model has difficulty distinguishing annual versus perennial grasslands. Our objectives are to increase the model performance for rangeland simulations and explore the potential for splitting the grass plant functional type into annual and perennial. We used the tri-state Blue Mountain Ecoregion as our study area and maps of potential vegetation from interpolated ground data, the National Land Cover Data Database, and ancillary NPP data derived from the MODIS satellite. MC2 historical simulations for the area overestimated woodland occurrence and underestimated shrubland and grassland PFT's. The spatial location of the rangeland PFT's also often did not align well with observational data. While some disagreement may be due to differences in the respective classification rules, the errors are largely linked to MC2's tree and grass biogeography and physiology algorithms. Presently, only grass and forest productivity measures and carbon stocks are used to distinguish PFT's. MC2 grass and tree productivity simulation is problematic, in particular grass seasonal phenology in relation to seasonal patterns

  4. Fodder Biomass Monitoring in Sahelian Rangelands Using Phenological Metrics from FAPAR Time Series

    Directory of Open Access Journals (Sweden)

    Abdoul Aziz Diouf

    2015-07-01

    Full Text Available Timely monitoring of plant biomass is critical for the management of forage resources in Sahelian rangelands. The estimation of annual biomass production in the Sahel is based on a simple relationship between satellite annual Normalized Difference Vegetation Index (NDVI and in situ biomass data. This study proposes a new methodology using multi-linear models between phenological metrics from the SPOT-VEGETATION time series of Fraction of Absorbed Photosynthetically Active Radiation (FAPAR and in situ biomass. A model with three variables—large seasonal integral (LINTG, length of growing season, and end of season decreasing rate—performed best (MAE = 605 kg·DM/ha; R2 = 0.68 across Sahelian ecosystems in Senegal (data for the period 1999–2013. A model with annual maximum (PEAK and start date of season showed similar performances (MAE = 625 kg·DM/ha; R2 = 0.64, allowing a timely estimation of forage availability. The subdivision of the study area in ecoregions increased overall accuracy (MAE = 489.21 kg·DM/ha; R2 = 0.77, indicating that a relation between metrics and ecosystem properties exists. LINTG was the main explanatory variable for woody rangelands with high leaf biomass, whereas for areas dominated by herbaceous vegetation, it was the PEAK metric. The proposed approach outperformed the established biomass NDVI-based product (MAE = 818 kg·DM/ha and R2 = 0.51 and should improve the operational monitoring of forage resources in Sahelian rangelands.

  5. Emerging issues and challenges in conservation of biodiversity in the rangelands of Tanzania

    Directory of Open Access Journals (Sweden)

    Jafari Kideghesho

    2013-11-01

    Full Text Available Tanzania rangelands are a stronghold for biodiversity harbouring a variety of animal and plant species of economic, ecological and socio-cultural importance. Efforts to protect these resources against destruction and loss have involved, among other things, setting aside some tracks of land as protected areas in the form of national parks, nature reserves, game reserves, game controlled and wildlife management areas. However, these areas and adjacent lands have long been subjected to a number of emerging issues and challenges, which complicate their management, thus putting the resources at risk of over exploitation and extinction. These issues and challenges include, among other things, government policies, failure of conservation (as a form of land use to compete effectively with alternative land uses, habitat degradation and blockage of wildlife corridors, overexploitation and illegal resource extraction, wildfires, human population growth, poverty, HIV/AIDS pandemic and human-wildlife conflicts. In this paper, we review the emerging issues and challenges in biodiversity conservation by drawing experience from different parts of Tanzania. The paper is based on the premise that, understanding of the issues and challenges underpinning the rangelands is a crucial step towards setting up of plausible objectives, strategies and plans that will improve and lead to effective management of these areas. We conclude by recommending some proactive measures that may enhance the sustainability of the rangeland resources for the benefit of the current and future generations.

  6. Forage seeding in rangelands increases production and prevents weed invasion

    Directory of Open Access Journals (Sweden)

    Josh Davy

    2017-07-01

    Full Text Available Increasing forage productivity in the Sierra foothill rangelands would help sustain the livestock industry as land availability shrinks and lease rates rise, but hardly any studies have been done on forage selections. From 2009 to 2014, in one of the first long-term and replicated studies of seeding Northern California's Mediterranean annual rangeland, we compared the cover of 22 diverse forages to determine their establishment and survivability over time. Among the annual herbs, forage brassica (Brassica napus L. and chicory (Cichorium intybus L. proved viable options. Among the annual grasses, soft brome (Bromus hordeaceus and annual ryegrass (Lolium multiflorum performed well. However, these species will likely require frequent reseeding to maintain dominance. Long-term goals of sustained dominant cover (> 3 years are best achieved with perennial grasses. Perennial grasses that persisted with greater than 50% cover were Berber orchardgrass (Dactylis glomerata, Flecha tall fescue (Lolium arundinaceum and several varieties of hardinggrass (Phalaris aquatica L., Perla koleagrass, Holdfast, Advanced AT. In 2014, these successful perennials produced over three times more dry matter (pounds per acre than the unseeded control and also suppressed annual grasses and yellow starthistle (Centaurea solstitialis L. cover.

  7. Stakeholder Theory and Rangeland Management: The Importance of Ranch Income Dependence

    Science.gov (United States)

    Elias, S.; Roche, L. M.; Elias, E.

    2016-12-01

    The California drought beginning in 2012 has been driven by reduced precipitation and record high temperatures. Hydrologic drought in the Southwest United States is projected to become the new climatology of the region. While ranchers are considered naturally adaptive, often adeptly altering management based upon conditions, the projected increased aridity may challenge rangeland management. Certain rancher characteristics are likely to impact how well ranchers adapt. Based on Stakeholder Theory (ST), we hypothesize that the extent to which ranchers are dependent on their ranches as a source of income would serve as a predictor of several key variables related to ranching adaptation and success. Data were obtained from 507 ranchers throughout the State of California via the Rangeland Decision-Making Survey implemented by University of California, Davis in 2010, just prior to the unprecedented California drought. Consistent with the ST urgency facet, results of linear regression analyses indicate the more dependent ranchers are on their ranches for their income, the more aware they are of USDA ranching initiatives (β = 0.19, p < .001) and state ranching initiatives (β = 0.10, p < .05). In addition, more dependent ranchers are more likely to use multiple and diverse sources of information about ranching (β = 0.18, p < .001), are more likely to realize the severity and extent of the most recent drought's impacts (β = 0.18, p < .001), and were more likely to have a drought management plan in place during the most recent drought (β = 0.18, p < .001). These findings are important in relation to both outreach/extension efforts and rangeland research. Outreach/extension efforts should take into account that people less dependent on their ranches are less aware of resources, as well as, less prepared to adapt to drought. Researchers should control for the extent to which ranchers are dependent on their ranches for income in order to ensure more accurate findings.

  8. Dairy cattle on Norwegian alpine rangelands – grazing preferences and milk quality

    NARCIS (Netherlands)

    Sickel, H; Abrahamsen, R K; Eldegard, K; Lunnan, T; Norderhaug, A; Petersen, M.A.; Sickel, M.; Steenhuisen, F.; Ohlson, M.

    2014-01-01

    The results from the study ‘Effects of vegetation and grazing preferences on the quality of alpine dairy products’ will be presented. The main objective of the project was to investigate the connections bet - ween alpine rangeland vegetation, landscape use and grazing preferences of free ranging

  9. Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS)

    Science.gov (United States)

    Liu, H.; Jin, Y.; Devine, S.; Dahlgren, R. A.; Covello, S.; Larsen, R.; O'Geen, A. T.

    2017-12-01

    California rangelands cover 23 million hectares and support a $3.4 billion annual cattle industry. Rangeland forage production varies appreciably from year-to-year and across short distances on the landscape. Spatially explicit and near real-time information on forage production at a high resolution is critical for effective rangeland management, especially during an era of climatic extremes. We here integrated a multispectral MicaSense RedEdge camera with a 3DR solo quad-copter and acquired time-series images during the 2017 growing season over a topographically complex 10-hectare rangeland in San Luis Obispo County, CA. Soil moisture and temperature sensors were installed at 16 landscape positions, and vegetation clippings were collected at 36 plots to quantify forage dry biomass. We built four centimeter-level models for forage production mapping using time series of sUAS images and ground measurements of forage biomass and soil temperature and moisture. The biophysical model based on Monteith's eco-physiological plant growth theory estimated forage production reasonably well with a coefficient of determination (R2) of 0.86 and a root-mean-square error (RMSE) of 424 kg/ha when the soil parameters were included, and a R2 of 0.79 and a RMSE of 510 kg/ha when only remote sensing and topographical variables were included. We built two empirical models of forage production using a stepwise variable selection technique, one with soil variables. Results showed that cumulative absorbed photosynthetically active radiation (APAR) and elevation were the most important variables in both models, explaining more than 40% of the spatio-temporal variance in forage production. Soil moisture accounted for an additional 29% of the variance. Illumination condition was selected as a proxy for soil moisture in the model without soil variables, and accounted for 18% of the variance. We applied the remote sensing-based models to map daily forage production at 30-cm resolution for the

  10. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  11. The economic impact of global climate change on Mediterranean rangeland ecosystems. A Space-for-Time approach

    International Nuclear Information System (INIS)

    Fleischer, Aliza; Sternberg, Marcelo

    2006-01-01

    Global Climate Change (GCC) can bring about changes in ecosystems and consequently in their services value. Here we show that the urban population in Israel values the green landscape of rangelands in the mesic Mediterranean climate region and is willing to pay for preserving it in light of the expected increasing aridity conditions in this region. Their valuation of the landscape is higher than that of the grazing services these rangelands provide for livestock growers. These results stem from a Time-for-Space approach with which we were able to measure changes in biomass production and rainfall at four experimental sites along an aridity gradient. (author)

  12. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  13. Analytical approaches to quality assurance and quality control in rangeland monitoring data

    Science.gov (United States)

    Producing quality data to support land management decisions is the goal of every rangeland monitoring program. However, the results of quality assurance (QA) and quality control (QC) efforts to improve data quality are rarely reported. The purpose of QA and QC is to prevent and describe non-sampling...

  14. Rangeland Brush Estimation Toolbox (RaBET): An Approach for Evaluating Brush Management Conservation Efforts in Western Grazing Lands

    Science.gov (United States)

    Holifield Collins, C.; Kautz, M. A.; Skirvin, S. M.; Metz, L. J.

    2016-12-01

    There are over 180 million hectares of rangelands and grazed forests in the central and western United States. Due to the loss of perennial grasses and subsequent increased runoff and erosion that can degrade the system, woody cover species cannot be allowed to proliferate unchecked. The USDA-Natural Resources Conservation Service (NRCS) has allocated extensive resources to employ brush management (removal) as a conservation practice to control woody species encroachment. The Rangeland-Conservation Effects Assessment Project (CEAP) has been tasked with determining how effective the practice has been, however their land managers lack a cost-effective means to conduct these assessments at the necessary scale. An ArcGIS toolbox for generating large-scale, Landsat-based, spatial maps of woody cover on grazing lands in the western United States was developed through a collaboration with NRCS Rangeland-CEAP. The toolbox contains two main components of operation, image generation and temporal analysis, and utilizes simple interfaces requiring minimum user inputs. The image generation tool utilizes geographically specific algorithms developed from combining moderate-resolution (30-m) Landsat imagery and high-resolution (1-m) National Agricultural Imagery Program (NAIP) aerial photography to produce the woody cover scenes at the Major Land Resource (MLRA) scale. The temporal analysis tool can be used on these scenes to assess treatment effectiveness and monitor woody cover reemergence. RaBET provides rangeland managers an operational, inexpensive decision support tool to aid in the application of brush removal treatments and assessing their effectiveness.

  15. Turbidity as an Indicator of Water Quality in Diverse Watersheds of the Upper Pecos River Basin

    Directory of Open Access Journals (Sweden)

    Gregory M. Huey

    2010-06-01

    Full Text Available Microbial concentrations, total suspended solids (TSS and turbidity vary with stream hydrology and land use. Turbidity, TSS, and microbial concentrations, loads and yields from four watersheds were assessed: an unburned montane forest, a catastrophically burned montane forest, urban land use and rangeland prairie. Concentrations and loads for most water quality variables were greatest during storm events. Turbidity was an effective indicator of TSS, E. coli and Enterococci spp. The greatest threat to public health from microbial contamination occurs during storm runoff events. Efforts to manage surface runoff and erosion would likely improve water quality of the upper Pecos River basin in New Mexico, USA.

  16. [US Geological Survey research in radioactive waste disposal, fiscal year 1980:] Tectonics, seismicity, volcanism, and erosion rates in the southern Great Basin

    International Nuclear Information System (INIS)

    Carr, W.J.; Rogers, A.M.

    1982-01-01

    The objective is to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. The following approaches are being used: (1) investigating the rate, intensity, and distribution of faulting during approximately the last 25 m.y., with emphasis on the last 10 m.y.; (2) monitoring and interpreting present seismicity; (3) studying the history of volcanism; and (4) evaluating past rates of erosion and deposition. Progress is reported

  17. Environmental drivers of cambial phenology in Great Basin bristlecone pine.

    Science.gov (United States)

    Ziaco, Emanuele; Biondi, Franco; Rossi, Sergio; Deslauriers, Annie

    2016-07-01

    The timing of wood formation is crucial to determine how environmental factors affect tree growth. The long-lived bristlecone pine (Pinus longaeva D. K. Bailey) is a foundation treeline species in the Great Basin of North America reaching stem ages of about 5000 years. We investigated stem cambial phenology and radial size variability to quantify the relative influence of environmental variables on bristlecone pine growth. Repeated cellular measurements and half-hourly dendrometer records were obtained during 2013 and 2014 for two high-elevation stands included in the Nevada Climate-ecohydrological Assessment Network. Daily time series of stem radial variations showed rehydration and expansion starting in late April-early May, prior to the onset of wood formation at breast height. Formation of new xylem started in June and lasted until mid-September. There were no differences in phenological timing between the two stands, or in the air and soil temperature thresholds for the onset of xylogenesis. A multiple logistic regression model highlighted a separate effect of air and soil temperature on xylogenesis, the relevance of which was modulated by the interaction with vapor pressure and soil water content. While air temperature plays a key role in cambial resumption after winter dormancy, soil thermal conditions coupled with snowpack dynamics also influence the onset of wood formation by regulating plant-soil water exchanges. Our results help build a physiological understanding of climate-growth relationships in P. longaeva, the importance of which for dendroclimatic reconstructions can hardly be overstated. In addition, environmental drivers of xylogenesis at the treeline ecotone, by controlling the growth of dominant species, ultimately determine ecosystem responses to climatic change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Climate change impact on soil erosion in the Mandakini River Basin, North India

    Science.gov (United States)

    Khare, Deepak; Mondal, Arun; Kundu, Sananda; Mishra, Prabhash Kumar

    2017-09-01

    Correct estimation of soil loss at catchment level helps the land and water resources planners to identify priority areas for soil conservation measures. Soil erosion is one of the major hazards affected by the climate change, particularly the increasing intensity of rainfall resulted in increasing erosion, apart from other factors like landuse change. Changes in climate have an adverse effect with increasing rainfall. It has caused increasing concern for modeling the future rainfall and projecting future soil erosion. In the present study, future rainfall has been generated with the downscaling of GCM (Global Circulation Model) data of Mandakini river basin, a hilly catchment in the state of Uttarakhand, India, to obtain future impact on soil erosion within the basin. The USLE is an erosion prediction model designed to predict the long-term average annual soil loss from specific field slopes in specified landuse and management systems (i.e., crops, rangeland, and recreational areas) using remote sensing and GIS technologies. Future soil erosion has shown increasing trend due to increasing rainfall which has been generated from the statistical-based downscaling method.

  19. Aspects of the isotope hydrology of the Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Airey, P.L.; Calf, G.E.; Campbell, B.L.; Hartley, P.E.; Roman, D.

    1978-01-01

    A study has been made of the isotope hydrology of the principal Jurassic aquifer of the Queensland portion of the Great Artesian Basin down-gradient of the recharge area. Much of the data have been interpreted in terms of the residence times of the groundwater samples which were up to 350,000 years. It is postulated that the observed systematic variations in the chloride levels reflect variations in the rate of infiltration of recycled salt throughout the late Quaternary. The minimum and maximum in the chloride curve correlate with the last glacial and interglacial period respectively. The bicarbonate ion levels are perturbed by the dissolution of carbonate minerals. About 0.1 per cent of the aquifer materia would have been dissolved since the mid-tertiary when the present hydrodynamic conditions were established if dissolution rates calculated from the geochemical model are representative. The D/H ratios were found to be extremely constant. The 46 wells sited away from the recharge area have a mean of delta D of -41.8 per mille and a standard deviation of 1.1. There was no isotopic evidence for exchange of oxygen between water and the host rock despite the long contact periods, sometimes at elevated temperatures. A 226 Ra, 238 U survey showed that radium is frequently in excess despite extensive leaching since the Tertiary times and the fact that the time scales associated with the transport of water are large compared with the half life of 226 Ra. (orig.) [de

  20. Ammonia emissions from Swine waste lagoons in the Utah great basin.

    Science.gov (United States)

    Harper, Lowry A; Weaver, Kim H; Dotson, Richard A

    2006-01-01

    In animal production systems (poultry, beef, and swine), current production, storage, and disposal techniques present a challenge to manage wastes to minimize the emissions of trace gases within relatively small geographical areas. Physical and chemical parameters were measured on primary and secondary lagoons on three different swine farming systems, three replicates each, in the Central Great Basin of the United States to determine ammonia (NH3) emissions. Nutrient concentrations, lagoon water temperature, and micrometeorological data from these measurements were used with a published process model to calculate emissions. Annual cycling of emissions was determined in relation to climatic factors and wind speed was found the predominating factor when the lagoon temperatures were above about 3 degrees C. Total NH3 emissions increased in the order of smallest to largest: nursery, sow, and finisher farms. However, emissions on an animal basis increased from nursery animals being lowest to sow animals being highest. When emissions were compared to the amount of nitrogen (N) fed to the animals, NH3 emissions from sows were lowest with emissions from finisher animals highest. Ammonia emissions were compared to similar farm production systems in the humid East of the United States and found to be similar for finisher animals but had much lower emissions than comparable humid East sow production. Published estimates of NH3 emissions from lagoons ranged from 36 to 70% of feed input (no error range) compared to our emissions determined from a process model of 9.8% with an estimated range of +/-4%.

  1. Ecosystem services in the Great Lakes

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  2. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    Science.gov (United States)

    Rapidly increasing demand for food, fiber and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, ...

  3. Current stage of the restoration of Chernozems in rangeland ecosystems of the steppe zone

    Science.gov (United States)

    Rusanov, A. M.

    2015-06-01

    The results of two rounds of soil and geobotanic surveys of rangeland ecosystems in the steppe zone are presented. The same sites with southern chernozems (Calcic Chernozems) under steppe plant communities at different stages of pasture degradation were investigated at the end of the 1980s, when they suffered maximum anthropogenic loads, and in 2011-2013, after a long period of relative rest. In the 1980s, degradation of soil physical properties in rangeland ecosystems under the impact of long-term unsustainable management was noted. At the same time, it was found that the major qualitative and quantitative properties of humus in the chernozems were preserved independently from the level of pasture degradation. The following period of moderate grazing pressure had a favorable effect on the soil properties. Owing to the good characteristics of the soil humus, the restoration of the physical properties of chernozems-including their structural state, water permeability, and bulk density-took place in a relatively short period. It is argued that the soil bulk density is a natural regulator of the species composition of steppe vegetation, because true grasses (Poaceae)-typical representatives of the steppe flora-have a fibrous root system requiring the soils with low density values. The improvement of the properties of chernozems is related to the development of secondary ecosystems with a higher portion of grasses in place of damaged rangelands and to the increase in the area of nominal virgin phytocenoses.

  4. Human-modified landscapes: patterns of fine-scale woody vegetation structure in communal savannah rangelands

    CSIR Research Space (South Africa)

    Fisher, T

    2011-11-01

    Full Text Available structure in five communal rangelands around 12 settlements in Bushbuckridge, a municipality in the Kruger to Canyons Biosphere Reserve (South Africa). The importance of underlying abiotic factors was evaluated by measuring size class distributions across...

  5. The interconnectedness between landowner knowledge, value, belief, attitude, and willingness to act: policy implications for carbon sequestration on private rangelands.

    Science.gov (United States)

    Cook, Seth L; Ma, Zhao

    2014-02-15

    Rangelands can be managed to increase soil carbon and help mitigate emissions of carbon dioxide. This study assessed Utah rangeland owner's environmental values, beliefs about climate change, and awareness of and attitudes towards carbon sequestration, as well as their perceptions of potential policy strategies for promoting carbon sequestration on private rangelands. Data were collected from semi-structured interviews and a statewide survey of Utah rangeland owners, and were analyzed using descriptive and bivariate statistics. Over two-thirds of respondents reported some level of awareness of carbon sequestration and a generally positive attitude towards it, contrasting to their lack of interest in participating in a relevant program in the future. Having a positive attitude was statistically significantly associated with having more "biocentric" environmental values, believing the climate had been changing over the past 30 years, and having a stronger belief of human activities influencing the climate. Respondents valued the potential ecological benefits of carbon sequestration more than the potential financial or climate change benefits. Additionally, respondents indicated a preference for educational approaches over financial incentives. They also preferred to work with a private agricultural entity over a non-profit or government entity on improving land management practices to sequester carbon. These results suggest potential challenges for developing technically sound and socially acceptable policies and programs for promoting carbon sequestration on private rangelands. Potential strategies for overcoming these challenges include emphasizing the ecological benefits associated with sequestering carbon to appeal to landowners with ecologically oriented management objectives, enhancing the cooperation between private agricultural organizations and government agencies, and funneling resources for promoting carbon sequestration into existing land management and

  6. Geographic variability in elevation and topographic constraints on the distribution of native and nonnative trout in the Great Basin

    Science.gov (United States)

    Warren, Dana R.; Dunham, Jason B.; Hockman-Wert, David

    2014-01-01

    Understanding local and geographic factors influencing species distributions is a prerequisite for conservation planning. Our objective in this study was to model local and geographic variability in elevations occupied by native and nonnative trout in the northwestern Great Basin, USA. To this end, we analyzed a large existing data set of trout presence (5,156 observations) to evaluate two fundamental factors influencing occupied elevations: climate-related gradients in geography and local constraints imposed by topography. We applied quantile regression to model upstream and downstream distribution elevation limits for each trout species commonly found in the region (two native and two nonnative species). With these models in hand, we simulated an upstream shift in elevation limits of trout distributions to evaluate potential consequences of habitat loss. Downstream elevation limits were inversely associated with latitude, reflecting regional gradients in temperature. Upstream limits were positively related to maximum stream elevation as expected. Downstream elevation limits were constrained topographically by valley bottom elevations in northern streams but not in southern streams, where limits began well above valley bottoms. Elevation limits were similar among species. Upstream shifts in elevation limits for trout would lead to more habitat loss in the north than in the south, a result attributable to differences in topography. Because downstream distributions of trout in the north extend into valley bottoms with reduced topographic relief, trout in more northerly latitudes are more likely to experience habitat loss associated with an upstream shift in lower elevation limits. By applying quantile regression to relatively simple information (species presence, elevation, geography, topography), we were able to identify elevation limits for trout in the Great Basin and explore the effects of potential shifts in these limits that could occur in response to changing

  7. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  8. Land use and soil organic matter in South Africa 1: A review on spatial variability and the influence of rangeland stock production

    Directory of Open Access Journals (Sweden)

    Pearson N.S. Mnkeni

    2011-05-01

    Full Text Available Degradation of soil as a consequence of land use poses a threat to sustainable agriculture in South Africa, resulting in the need for a soil protection strategy and policy. Development of such a strategy and policy require cognisance of the extent and impact of soil degradation processes. One of the identified processes is the decline of soil organic matter, which also plays a central role in soil health or quality. The spatial variability of organic matter and the impact of grazing and burning under rangeland stock production are addressed in this first part of the review. Data from uncoordinated studies showed that South African soils have low organic matter levels. About 58% of soils contain less than 0.5% organic carbon and only 4% contain more than 2% organic carbon. Furthermore, there are large differences in organic matter content within and between soil forms, depending on climatic conditions, vegetative cover, topographical position and soil texture. A countrywide baseline study to quantify organic matter contents within and between soil forms is suggested for future reference. Degradation of rangeland because of overgrazing has resulted in significant losses of soil organic matter, mainly as a result of lower biomass production. The use of fire in rangeland management decreases soil organic matter because litter is destroyed by burning. Maintaining or increasing organic matter levels in degraded rangeland soils by preventing overgrazing and restricting burning could contribute to the restoration of degraded rangelands. This restoration is of the utmost importance because stock farming uses the majority of land in South Africa.

  9. The Interior Columbia Basin Ecosystem Management Project: scientific assessment.

    Science.gov (United States)

    1999-01-01

    This CD-ROM contains digital versions (PDF) of the major scientific documents prepared for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). "A Framework for Ecosystem Management in the Interior Columbia Basin and Portions of the Klamath and Great Basins" describes a general planning model for ecosystem management. The "Highlighted...

  10. Principles of optimizing animal production from rangeland

    International Nuclear Information System (INIS)

    Stubbendieck, J.; Waller, S.S.

    1983-01-01

    Increasing world population is one of the dominant factors escalating demands for the world's natural resources. Range and forage resources, which are used primarily for food and fibre, could be more efficiently used if management techniques were improved. The principles of managing forage resources are directly associated with both the growth and development of plants and the actions and needs of the grazing animal. An understanding of the effects of environmental factors and herbage removal (frequency, intensity and season of defoliation) on growth and regrowth of plants is the first step towards optimizing animal productivity from rangelands. Most potential changes will fit into three categories: (1) increase the quantity of forage, (2) improve the quality of forage, and (3) improve use of forage. The principles of grazing management can be separated into four intricately related categories: (1) proper degree of grazing, (2) proper season of grazing, (3) proper kind of livestock, and (4) proper distribution of grazing. Grazing management is affected by the manner in which both improvements and manipulation of vegetation affect forage yield and quality. The adaptation and application of existing knowledge to individual locations will be one step towards optimizing animal production from rangeland. Some of the problems may be solved through better dissemination of present knowledge through existing educational programmes, while others will require expanded programmes of information dissemination. A third group of problems may also be solved with present technology, but the solutions are not currently economical. Some of the problems will be solved only through expanded research. These research efforts need to be directed towards grazing or browsing animals, plant resources and the interaction between plants and animals. Application of nuclear techniques will be an integral part of this research. (author)

  11. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  12. Scytonemin and Photosynthetic Pigment Proxies for Late Pleistocene/Holocene Environmental Change in the Eastern Great Basin

    Science.gov (United States)

    Fulton, J. M.; Van Mooy, B. A. S.

    2015-12-01

    Sedimentary pigments are biomarkers of photosynthetic organisms, most commonly derived from aquatic bacteria and algae but also with potential terrigenous sources. We detected a diverse pigment assemblage with variable down-core distributions in Great Salt Lake (GSL) sediments deposited since ca. 280 ka (GLAD1-GSL00, core 4). The most abundant pigments included derivatives of chlorophyll a, most likely from algae or cyanobacteria, bacteriochlorophyll c from green sulfur bacteria, okenone from purple sulfur bacteria, and scytonemin from UV-exposed cyanobacteria. Scytonemin is a biomarker for colonial cyanobacteria exposed to UV-radiation. In GSL it has potential sources from bioherms on the shoreline or microbiotic soil crusts from the adjacent Great Basin Desert. Scytonemin concentration was highest in the Upper Salt and Sapropel (USS) unit, deposited between 11.5-10 ka in shallow water (ca. 10 m), following deep pluvial Lake Bonneville (30-18 cal ka), the Provo lake level (ca. 18-15 cal ka), and the Gilbert transgression (11.6 cal ka). Scytonemin concentration was very low in sediments deposited during the deep lake phases, even though bioherms were prominent shoreline features. The USS was deposited under hypersaline waters and contained remarkably low concentrations of photosynthetic pigment derivatives that would be expected in organic-matter-rich sediments deposited under productive surface waters or anoxic bottom waters. Stable carbon and nitrogen isotopic data point toward a desert soil crust source for scytonemin in the USS, similar to what we previously observed in the Holocene Black Sea sapropel. We propose that increased aridity supported the widespread occurrence and erosion of microbiotic soil crusts during deposition of the USS. This is consistent with interpretations of Great Salt Lake hydrology, pointing toward a broader regional aridity event. Holocene sediments above the USS also contain scytonemin at relatively high concentration, consistent with

  13. Movement and spatial proximity patterns of rangeland-raised Raramuri Criollo cow-calf pairs

    Science.gov (United States)

    The objective of this study was to compare movement patterns of nursing vs. nonnursing mature cows and to characterize cow-calf proximity patterns in two herds of Raramuri Criollo cattle. Herds grazed rangeland pastures in southern New Mexico (4355 ha) and west-central Chihuahua, Mexico (633 ha)'' A...

  14. Searls prairie clover (Dalea searlsiae) for rangeland revegetation: Phenotypic and genetic evaluations

    Science.gov (United States)

    Kishor Bhattarai; Shaun Bushman; Douglas A. Johnson; John G. Carman

    2011-01-01

    Few North American legumes are available for use in rangeland revegetation in the western USA, but Searls prairie clover [Dalea searlsiae (A. Gray) Barneby] is one that holds promise. Commercial-scale seed production of this species could address the issues of unreliable seed availability and high seed costs associated with its wildland seed collection. To evaluate its...

  15. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  16. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs

    Science.gov (United States)

    Hedlund, Brian P.; Paraiso, Julienne J.; Williams, Amanda J.; Huang, Qiuyuan; Wei, Yuli; Dijkstra, Paul; Hungate, Bruce A.; Dong, Hailiang; Zhang, Chuanlun L.

    2013-01-01

    Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C). PMID:23964271

  17. Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins

    Science.gov (United States)

    Hollingsworth, Jeffery L.

    2016-01-01

    ' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.

  18. Evaluating Structural and Functional Characteristics of Various Ecological Patches in Different Range Conditions (Case Study: Semi -Steppe Rangeland of Aghche-Isfahan

    Directory of Open Access Journals (Sweden)

    F. Jafari

    2015-03-01

    Full Text Available Rangeland condition assessment plays an important role in determining range health and applying appropriate management programs. This study aimed to evaluate the structure and function of a semi-steppe rangeland using Landscape Function Analysis technique (LFA in different land conditions in western Isfahan province, Iran. For this purpose, 4, 3 and 7 sites in different rangeland condition classes including very poor, poor, and moderate were selected respectively. In each site, a 30-meter transect was established and all kinds of patches and inter patches were identified and their lengths and widths were recorded. Also, in each ecological patch, 11 indicators of soil surface characteristics with three replications were measured, and their status was scored according to LFA method. The functionality indices of all the sites including soil stability, infiltration and nutrient cycling were measured. According to the statistical analysis results, most of the structural characteristics (number of patches, patch length, patch area index, landscape organization index and functional indices (infiltration, stability and nutrient cycling status varied significantly (α= 5% between rangeland sites with moderate and very poor condition. The changes of these structural and functional characteristics were not significant between range sites with moderate and poor, and also poor and very poor range conditions. According to the findings of this study, patch types' functionalities did not vary significantly in both rangeland sites with moderate and very poor conditions. The nutrient cycling index in patches formed by ‘forb, shrub and grass’ with poor range condition was significantly more than ‘forb’ and ‘grass’ patches. The study of range site functionality can assist managers in identifying possible ecological thresholds and prioritizing the sub-catchments and vegetation types for implementing range improvement practices.

  19. Re-creating the commons and re-configuring Maasai women’s roles on the rangelands in the face of fragmentation

    Directory of Open Access Journals (Sweden)

    Caroline S Archambault

    2016-09-01

    Full Text Available Throughout the world pastoralists today face a particularly daunting challenge of intensified rangeland fragmentation combined with human population growth and climate change. In many pastoral settings, rangelands are undergoing processes of fragmentation due to tenure transformations, as previously communal lands are privatized into individual holdings. Such processes of enclosure have raised concerns over the long-term costs on pastoral communities and on rangeland eco-systems. This paper explores pastoral responses and adaptations to enclosure based on long-term ethnographic engagement in a Maasai community in Southern Kenya that has recently privatized. Detailed family case studies and herd tracking illuminate the ways in which families try to re-create the commons by relying on social networks for free access to resources. In particular, women’s social networks (for example, their kin, affines, friends, or religious associates seem to play an important role. This paper calls attention to the need to better understand women’s changing roles in pastoral governance and production and the implications these new roles have for women’s well-being and for pastoralism in the face of fragmentation.

  20. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  1. A review of concentrated flow erosion processes on rangelands: fundamental understanding and knowledge gaps

    Science.gov (United States)

    Concentrated flow erosion processes are distinguished from splash and sheetflow processes in their enhanced ability to mobilize and transport large amounts of soil, water and dissolved elements. On rangelands, soil, nutrients and water are scarce and only narrow margins of resource losses are tolera...

  2. Composted manure application promotes long-term invasion of semi-arid rangeland by Bromus tectorum

    Science.gov (United States)

    Composted organic matter derived from sewage treatment facilities or livestock manure from feedlots is often applied to rangelands of western North America to increase soil fertility, forage production, forage quality, and soil carbon (C) storage. This practice can have a number of undesirable side ...

  3. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  4. Hydrological Responses to Land Use/Cover Changes in the Olifants Basin, South Africa

    Directory of Open Access Journals (Sweden)

    Charles Gyamfi

    2016-12-01

    Full Text Available This paper discusses the hydrological impacts of land use changes on the Olifants Basin in South Africa using the Soil and Water Assessment Tool (SWAT. A three-phase land use scenario (2000, 2007 and 2013 employing the “fix-changing” method was used to simulate the hydrology of the Olifants Basin. Changes in land uses were related to different hydrological responses through a multi-regression analysis to quantify the effects of land use changes. Results reveal that from 2000 to 2013, a 31.6% decrease in rangeland with concomitant increases in agriculture lands (20.1%, urban areas (10.5% and forest (0.7% led to a 46.97% increase in surface runoff generation. Further, urbanization was revealed as the strongest contributor to increases in surface runoff generation, water yield and evapotranspiration (ET. ET was found to be a key water availability determinant as it has a high negative impact on surface runoff and water yield. Urbanization and agriculture were the most essential environmental factors influencing water resources of the basin with ET playing a dominant role. The output of the paper provides a simplistic approach of evaluating the impacts of land use changes on water resources. The tools and methods used are relevant for policy directions on water resources planning and adaptation of strategies.

  5. Scales of snow depth variability in high elevation rangeland sagebrush

    Science.gov (United States)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  6. Great Lakes prey fish populations: A cross-basin overview of status and trends in 2008

    Science.gov (United States)

    Gorman, Owen T.; Bunnell, David B.

    2009-01-01

    Assessments of prey fishes in the Great Lakes have been conducted annually since the 1970s by the Great Lakes Science Center, sometimes assisted by partner agencies. Prey fish assessments differ among lakes in the proportion of a lake covered, seasonal timing, bottom trawl gear used, sampling design, and the manner in which the trawl is towed (across or along bottom contours). Because each assessment is unique in one or more important aspects, a direct comparison of prey fish catches among lakes is problematic. All of the assessments, however, produce indices of abundance or biomass that can be standardized to facilitate comparisons of trends among lakes and to illustrate present status of the populations. We present indices of abundance for important prey fishes in the Great Lakes standardized to the highest value for a time series within each lake: cisco (Coregonus artedi), bloater (C. hoyi), rainbow smelt (Osmerus mordax), and alewife (Alosa pseudoharengus). We also provide indices for round goby (Neogobius melanostomus), an invasive fish presently spreading throughout the basin. Our intent is to provide a short, informal report emphasizing data presentation rather than synthesis; for this reason we intentionally avoid use of tables and cited references.For each lake, standardized relative indices for annual biomass and density estimates of important prey fishes were calculated as the fraction relative to the largest value observed in the times series. To determine whether basin-wide trends were apparent for each species, we first ranked standardized index values within each lake. When comparing ranked index values from three or more lakes, we calculated the Kendall coefficient of concordance (W), which can range from 0 (complete discordance or disagreement among trends) to 1 (complete concordance or agreement among trends). The P-value for W provides the probability of agreement across the lakes. When comparing ranked index values from two lakes, we calculated

  7. Success of seeding native compared with introduced perennial vegetation for revegetating medusahead-invaded sagebrush rangeland

    Science.gov (United States)

    Millions of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) rangeland have been invaded by medusahead (Taeniatherum caput-medusae [L.] Nevski), an exotic annual grass that degrades wildlife habitat, reduces forage production, and decreases biodiversity....

  8. Separating the cows from the trees: toward development of national definitions of forest and rangeland

    Science.gov (United States)

    H. Gyde Lund

    2007-01-01

    This paper introduces issues surrounding the need for national definitions of forest and rangeland, and it review types of definitions in use, reviews past agreements and their status, and finally gives recommendations as to what should be done next.

  9. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    Science.gov (United States)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  10. Energy and water in the Great Lakes.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll

    2011-11-01

    The nexus between thermoelectric power production and water use is not uniform across the U.S., but rather differs according to regional physiography, demography, power plant fleet composition, and the transmission network. That is, in some regions water demand for thermoelectric production is relatively small while in other regions it represents the dominate use. The later is the case for the Great Lakes region, which has important implications for the water resources and aquatic ecology of the Great Lakes watershed. This is today, but what about the future? Projected demographic trends, shifting lifestyles, and economic growth coupled with the threat of global climate change and mounting pressure for greater U.S. energy security could have profound effects on the region's energy future. Planning for such an uncertain future is further complicated by the fact that energy and environmental planning and regulatory decisionmaking is largely bifurcated in the region, with environmental and water resource concerns generally taken into account after new energy facilities and technologies have been proposed, or practices are already in place. Based on these confounding needs, the objective of this effort is to develop Great Lakes-specific methods and tools to integrate energy and water resource planning and thereby support the dual goals of smarter energy planning and development, and protection of Great Lakes water resources. Guiding policies for this planning are the Great Lakes and St. Lawrence River Basin Water Resources Compact and the Great Lakes Water Quality Agreement. The desired outcome of integrated energy-water-aquatic resource planning is a more sustainable regional energy mix for the Great Lakes basin ecosystem.

  11. Energy budgets and resistances to energy transport in sparsely vegetated rangeland

    Science.gov (United States)

    Nichols, W.D.

    1992-01-01

    Partitioning available energy between plants and bare soil in sparsely vegetated rangelands will allow hydrologists and others to gain a greater understanding of water use by native vegetation, especially phreatophytes. Standard methods of conducting energy budget studies result in measurements of latent and sensible heat fluxes above the plant canopy which therefore include the energy fluxes from both the canopy and the soil. One-dimensional theoretical numerical models have been proposed recently for the partitioning of energy in sparse crops. Bowen ratio and other micrometeorological data collected over phreatophytes growing in areas of shallow ground water in central Nevada were used to evaluate the feasibility of using these models, which are based on surface and within-canopy aerodynamic resistances, to determine heat and water vapor transport in sparsely vegetated rangelands. The models appear to provide reasonably good estimates of sensible heat flux from the soil and latent heat flux from the canopy. Estimates of latent heat flux from the soil were less satisfactory. Sensible heat flux from the canopy was not well predicted by the present resistance formulations. Also, estimates of total above-canopy fluxes were not satisfactory when using a single value for above-canopy bulk aerodynamic resistance. ?? 1992.

  12. Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

    Science.gov (United States)

    Iwata, T.; Kubo, H.; Asano, K.; Sato, K.; Aoi, S.

    2014-12-01

    Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability. We used strong motion

  13. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    Science.gov (United States)

    Herrick, J.E.; Brown, J.R.; Bestelmeyer, B.T.; Andrews, S.S.; Baldi, G.; Davies, J.; Duniway, M.; Havstad, K.M.; Karl, J.W.; Karlen, D.L.; Peters, Debra P.C.; Quinton, J.N.; Riginos, C.; Shaver, P.L.; Steinaker, D.; Twomlow, S.

    2012-01-01

    Rapidly increasing demand for food, fiber, and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, including many marginal lands with low resistance and resilience to degradation. Sustaining the productivity of these lands requires careful land use planning and innovative management systems. Historically, this responsibility has been left to agronomists and others with expertise in crop production. In this article, we argue that the revolutionary land use changes necessary to support national and global food security potentially make rangeland science more relevant now than ever. Maintaining and increasing relevance will require a revolutionary change in range science from a discipline that focuses on a particular land use or land cover to one that addresses the challenge of managing all lands that, at one time, were considered to be marginal for crop production. We propose four strategies to increase the relevance of rangeland science to global land management: 1) expand our awareness and understanding of local to global economic, social, and technological trends in order to anticipate and identify drivers and patterns of conversion; 2) emphasize empirical studies and modeling that anticipate the biophysical (ecosystem services) and societal consequences of large-scale changes in land cover and use; 3) significantly increase communication and collaboration with the disciplines and sectors of society currently responsible for managing the new land uses; and 4) develop and adopt a dynamic and flexible resilience-based land classification system and data-supported conceptual models (e.g., state-and-transition models) that represent all lands, regardless of use and the consequences of land conversion to various uses instead of changes in state or condition that are

  14. Mother-Offspring Interactions in Raramuri Criollo Cattle on New Mexico and Chihuahua (Mexico) Rangelands

    Science.gov (United States)

    Rangeland beef cows spend approximately six months of a typical year raising their calf. This endeavor is known to significantly alter a dam’s grazing behavior and spatial distribution patterns. The objective of this study was to characterize cow-calf contact events in two herds of Raramuri Criollo ...

  15. Deforestation of "degraded" rangelands: The Argentine Chaco enters the next stage of the Anthropocene

    Science.gov (United States)

    Twenty years ago I completed my Master’s work in the Chaco forests of northern Argentina. The native forests are, in fact, rangelands. In addition to livestock grazing, there is timber extraction, wildlife harvest (think tegu lizard cowboy boots), and charcoal production. I took part in a project co...

  16. Mapping Erosion and Salinity Risk Categories Using GIS and the Rangeland Hydrology Erosion Model

    Science.gov (United States)

    Up to fifteen percent of rangelands in the state of Utah in the United States are classified as being in severely eroding condition. Some of these degraded lands are located on saline, erodible soils of the Mancos Shale formation. This results in a disproportionate contribution of sediment, salinity...

  17. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  18. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  19. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  20. Advances in Hydrogeochemical Indicators for the Discovery of New Geothermal Resources in the Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart F. [Colorado School of Mines, Golden, CO (United States). Geology and Geological Engineering; Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  1. Rangeland monitoring using remote sensing: comparison of cover estimates from field measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Ammon Boswell

    2017-01-01

    Full Text Available Rangeland monitoring is important for evaluating and assessing semi-arid plant communities. Remote sensing provides an effective tool for rapidly and accurately assessing rangeland vegetation and other surface attributes such as bare soil and rock. The purpose of this study was to evaluate the efficacy of remote sensing as a surrogate for field-based sampling techniques in detecting ground cover features (i.e., trees, shrubs, herbaceous cover, litter, surface, and comparing results with field-based measurements collected by the Utah Division of Wildlife Resources Range Trent Program. In the field, five 152 m long transects were used to sample plant, litter, rock, and bare-ground cover using the Daubenmire ocular estimate method. At the same location of each field plot, a 4-band (R,G,B,NIR, 25 cm pixel resolution, remotely sensed image was taken from a fixed-wing aircraft. Each image was spectrally classified producing 4 cover classes (tree, shrub, herbaceous, surface. No significant differences were detected between canopy cover collected remotely and in the field for tree (P = 0.652, shrub (P = 0.800, and herbaceous vegetation (P = 0.258. Surface cover was higher in field plots (P < 0.001, likely in response to the methods used to sample surface features by field crews. Accurately classifying vegetation and other features from remote sensed information can improve the efficiency of collecting vegetation and surface data. This information can also be used to improve data collection frequency for rangeland monitoring and to efficiently quantify ecological succession patterns.

  2. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    Raines, Gary L.

    1999-01-01

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km 2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  3. Threats to Mediterranean rangelands: a case study based on the views of citizens in the Viotia prefecture, Greece.

    Science.gov (United States)

    Kyriazopoulos, Apostolos P; Arabatzis, Garyfallos; Abraham, Eleni M; Parissi, Zoi M

    2013-11-15

    Rangelands in Greece constitute a very important natural resource as they occupy 40% of the total surface. Not only is their forage production essential for the development of extensive livestock farming, but also they play a key role in outdoor recreational activities, protection from erosion, provision of water supplies and biodiversity conservation. However, land use changes, inappropriate management and wildfires threaten their existence. The research was conducted among the citizens of Viotia prefecture, an area close to Athens, Greece, using personal interviews with a structured questionnaire in 2008. The aim was to record citizens' opinions regarding the threats to rangelands. The results suggest that the main threats as perceived by the respondents, are land use changes especially for urban development, and wildfires. The application of cluster analysis highlighted the differentiation among the respondents in ranking these threats. The more ecologically aware citizens recognised that mismanagement, abandonment and agriculture also threaten rangelands. These threats can have a considerable impact on the lives of the local people. Policy makers and managers should take the opinions of local citizens into consideration, and engage them in decision making so that sustainable management policies could be applied. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Great Basin Canada goose in southcentral Washington: A 40-year nesting history

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.; Eberhardt, L.E.; Gray, R.H.

    1991-04-01

    Overall, the nesting population of Great Basin Canada geese (Branta canadensis moffitti) on the Hanford Site in southcentral Washington State is doing well and appears to be increasing. The average annual total nests for the period 1981 through 1990 was 215 nests, which is slightly above the average reported for the period 1950 through 1970. The nesting population has shifted its nucleus from upriver islands (1--10) to the lower river islands (11--20) with over 70% of the present-day nesting occurring on Islands 17, 18, 19, 20. The annual percent-successful nests from 1981 through 1990 was 80%. This is above the 71% reported for 1950 to 1970, but is below the 82% reported for 1971 to 1980. Average annual clutch size for 1981 to 1990 was 6.05, which is above the 1971-to-1980 average of 5.6 and the 1950-to-70 average of 5.5. Next desertions for 1981 to 1990 averaged 8%. This rate is well below the 14% reported for 1950 to 1970. Predators were responsible for an annual predation rate of 9% from 1981 to 1990. This is below the 1950-to-1970 annual average predation rate of 14%. Flooding losses to nests were low during the 1980s, except for 1989 and 1990 when 6% and 9% of the total nests, respectively, were destroyed by flooding. 9 refs., 4 figs., 1 tab

  5. A study of tectonic activity in the Basin-Range Province and on the San Andreas Fault. No. 1: Kinematics of Basin-Range intraplate extension

    Science.gov (United States)

    Eddington, P. K.; Smith, R. B.; Renggli, C.

    1986-01-01

    Strain rates assessed from brittle fracture and total brittle-ductile deformation measured from geodetic data were compared to estimates of paleo-strain from Quaternary geology for the intraplate Great Basin part of the Basin-Range, western United States. These data provide an assessment of the kinematics and mode of lithospheric extension that the western U.S. Cordillera has experienced from the past few million years to the present. Strain and deformation rates were determined by the seismic moment tensor method using historic seismicity and fault plane solutions for sub-regions of homogeneous strain. Contemporary deformation in the Great Basin occurs principally along the active seismic zones. The integrated opening rate across the entire Great Basin is accommodated by E-E extension at 8 to 10 mm/a in the north that diminishes to NW-SE extension of 3.5 mm/a in the south. Zones of maximum lithospheric extension correspond to belts of thin crust, high heat flow, and Quaternary basaltic volcanism, suggesting that these parameters are related through mechanism of extension such as a stress relaxation, allowing bouyant uplift and ascension of magmas.

  6. A planning support system for rangeland allocation in Iran : case of Chadegan sub-region

    NARCIS (Netherlands)

    Farahpour, M.

    2002-01-01

    Rangelands, like other natural resources are subject to many changes. In Iran, one of the changes is the land tenure reform, that may have significant effects on both the land and the land user. Land tenure changes not only affect the life of the present, but also that of next generations,

  7. 8000 yr of vegetation reconstruction from the Great Basin (Nevada, USA): the contribution of Non-Pollen Palynomorphs.

    Science.gov (United States)

    Tunno, I.; Mensing, S. A.

    2017-12-01

    Multiproxy records from the Great Basin showed that a severe drought occurred in the area between 3000-1850 BP (Mensing et al., 2013). The pollen analysis on a 7m sediment core from Stonehouse Meadow revealed that during this period arboreal pollen dropped abruptly, reaching the lowest percentage ( 10%) around 2500 BP. At the same time, grass and herbs increased significantly ( 60%) together with the total carbonate percentage (TC%). To better understand this dramatic event, the analysis of Non-Pollen Palynomorphs (NPPs) was conducted. NPPs are microfossils that survive the chemical treatment during pollen extraction and appear in pollen slides. They are valuable indicators of climate- and human-induced changes, and due to their different origin, NPPs can be integrated with pollen analysis to corroborate and improve the information provided by pollen records. To obtain more reliable information, fossil NPPs from the sediment core were compared to modern NPPs and the pollen records. Modern samples, represented by mineral soil and sediment specimens, were collected around the meadow in 2015. Fossil NPPs were counted from the same sediment core subsamples previously analyzed for pollen records. A total of 64 different NPPs were identified from both modern and fossil samples, 33 of which were identified as unknowns and given an identification code. While several of the known NPPs were consistent with the data provided by pollen record, the most crucial information was provided by some of the unknown NPPs, such as PLN-01, PLN-20 and PLN-11. The presence of PLN-01 and PLN-20 on the edge of the meadow in the modern samples and right before and after the driest period in the core, supports the evidence of a drought, when the meadow was likely shrinking during the transition from a wetter to a drier period and expanding once again after the drought. PLN-11 appears to be related to the drought as well, occurring exclusively during the driest period. However, this NPP was not

  8. Bio solids Effects in Chihuahuan Desert Rangelands: A Ten-Year Study

    International Nuclear Information System (INIS)

    Wester, D.B; Sosebee, R.E; Fish, E.B; Villalobos, J.C; Zartman, R.E; Gonzalez, R.M; Jurado, P.; Moffet, C.A

    2011-01-01

    Arid and semiarid rangelands are suitable for responsible bio solids application. Topical application is critical to avoid soil and vegetation disturbance. Surface-applied bio solids have long-lasting effects in these ecosystems. We conducted a 10-year research program investigating effects of bio solids applied at rates from 0 to 90 dry Mg ha -1 on soil water infiltration; runoff and leachate water quality; soil erosion; forage production and quality; seedling establishment; plant physiological responses; nitrogen dynamics; bio solids decomposition; and grazing animal behavior and management. Bio solids increased soil water infiltration and reduced erosion. Effects on soil water quality were observed only at the highest application rates. Bio solids increased soil nitrate-nitrogen. Bio solids increased forage production and improved forage quality. Bio solids increased leaf area of grasses; photosynthetic rates were not necessarily increased by bio solids. Bio solids effects on plant establishment are expected only under moderately favorable conditions. Over an 82-mo exposure period, total organic carbon, nitrogen, and total and available phosphorus decreased and inorganic matter increased. Grazing animals spent more time grazing, ruminating, and resting in bio solids-treated areas; positive effects on average daily gain were observed during periods of higher rainfall. Our results suggest that annual bio solids application rates of up to 18 Mg ha -1 are appropriate for desert rangelands.

  9. Meat fatty acid and cholesterol level of free-range broilers fed on grasshoppers on alpine rangeland in the Tibetan Plateau.

    Science.gov (United States)

    Sun, Tao; Liu, Zhiyun; Qin, Liping; Long, Ruijun

    2012-08-30

    Meat safety and nutrition are major concerns of consumers. The development of distinctive poultry production methods based on locally available natural resources is important. Grasshoppers are rich in important nutrients and occur in dense concentrations in most rangelands of northern China. Foraging chickens could be used to suppress grasshopper infestations. However, knowledge of the fatty acid content of meat from free-range broilers reared on alpine rangeland is required. Rearing conditions and diet did not significantly (P > 0.05) affect concentrations of saturated fatty acid (SFA), arachidonic acid, docosahexaenoic acid or the ratio of total n-6 to total n-3 fatty acids. Breast muscle of chickens that had consumed grasshoppers contained significantly (P 0.05) higher than intensively reared birds. Compared with meat from intensively reared birds, meat from free-range broilers had less cholesterol and higher concentrations of total lipid and phospholipids. Chickens eating grasshoppers in rangeland produce superior quality meat and reduce the grasshopper populations that damage the pastures. This provides an economic system of enhanced poultry-meat production, which derives benefits from natural resources rather than artificial additives. Copyright © 2012 Society of Chemical Industry.

  10. Weight gain and behavior of Raramuri Criollo versus Corriente steers developed on Chihuahuan Desert rangeland

    Science.gov (United States)

    Ranchers that raise Criollo cattle must overcome the challenge of lack of markets for weaned calves. Raramuri Criollo (RC) steers are commonly raised for beef and finished on rangelands, while Corriente (CR) are often raised for rodeo sports. No data exist on weight gains and grazing behavior of ran...

  11. Weight gain and behavior of Raramuri Criollo versus crossbred steers developed on Chihuahuan Desert rangeland

    Science.gov (United States)

    Ranchers that raise Raramuri Criollo (RC) cattle must overcome the challenge of lack of markets for weaned calves. Growing and finishing RC or RC-crossbred steers on rangeland pastures is increasingly common; however, no data exist on their weight gains or grazing behavior. We tracked the weight a...

  12. Comparative Assessment of Goods and Services Provided by Grazing Regulation and Reforestation in Degraded Mediterranean Rangelands

    NARCIS (Netherlands)

    Papanastasis, Vasilios P.; Bautista, Susana; Chouvardas, Dimitrios; Mantzanas, Konstantinos; Papadimitriou, Maria; Garcia Mayor, Angeles; Koukioumi, Polina; Papaioannou, Athanasios; Vallejo, Ramon V.

    2017-01-01

    Several management actions are applied to restore ecosystem services in degraded Mediterranean rangelands, which range from adjusting the grazing pressure to the removal of grazers and pine plantations. Four such actions were assessed in Quercus coccifera L. shrublands in northern Greece: (i)

  13. Moisture, plant-plant interactions and herbivory as drivers of rangeland restoration success in the western US

    Science.gov (United States)

    Restoration efforts in the western US occur across a diverse array of plant communities and climatic conditions. Restoration is likely constrained by different factors in different locations, but few efforts have compared the outcomes of rangeland restoration experiments across broad spatial scales....

  14. Infection of Melanoplus sanguinipes Grasshoppers following Ingestion of Rangeland Plant Species Harboring Vesicular Stomatitis Virus▿

    Science.gov (United States)

    Drolet, Barbara S.; Stuart, Melissa A.; Derner, Justin D.

    2009-01-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV. PMID:19286779

  15. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus.

    Science.gov (United States)

    Drolet, Barbara S; Stuart, Melissa A; Derner, Justin D

    2009-05-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.

  16. Application of the North American Multi-Model Ensemble to seasonal water supply forecasting in the Great Lakes basin through the use of the Great Lakes Seasonal Climate Forecast Tool

    Science.gov (United States)

    Gronewold, A.; Apps, D.; Fry, L. M.; Bolinger, R.

    2017-12-01

    The U.S. Army Corps of Engineers (USACE) contribution to the internationally coordinated 6-month forecast of Great Lakes water levels relies on several water supply models, including a regression model relating a coming month's water supply to past water supplies, previous months' precipitation and temperature, and forecasted precipitation and temperature. Probabilistic forecasts of precipitation and temperature depicted in the Climate Prediction Center's seasonal outlook maps are considered to be standard for use in operational forecasting for seasonal time horizons, and have provided the basis for computing a coming month's precipitation and temperature for use in the USACE water supply regression models. The CPC outlook maps are a useful forecast product offering insight into interpretation of climate models through the prognostic discussion and graphical forecasts. However, recent evolution of USACE forecast procedures to accommodate automated data transfer and manipulation offers a new opportunity for direct incorporation of ensemble climate forecast data into probabilistic outlooks of water supply using existing models that have previously been implemented in a deterministic fashion. We will present results from a study investigating the potential for applying data from the North American Multi-Model Ensemble to operational water supply forecasts. The use of NMME forecasts is facilitated by a new, publicly available, Great Lakes Seasonal Climate Forecast Tool that provides operational forecasts of monthly average temperatures and monthly total precipitation summarized for each lake basin.

  17. In-filled reservoirs serving as sediment archives to analyse soil organic carbon erosion – Taking a closer look at the Karoo rangelands

    DEFF Research Database (Denmark)

    Krenz, Juliane; Greenwood, Philip; Kuhn, Brigitte

    The semi-arid rangelands of the Great Karoo region in South Africa, which are nowadays characterized by badlands on the foot slopes of upland areas and complex gully systems in valley bottoms, have experienced a number of environmental changes. With the settlement of European farmers in the late ......th century agricultural activities increased, leading to overgrazing which probably acted as a trigger to land degradation. As a consequence of higher water demands and shifting rainfall patterns, many dams and small reservoirs have been constructed to provide drinking water for cattle...... or to facilitate irrigation during dry periods. Most of these dams are now filled with sediment and many have become breached, revealing sediment archives that can be used to analyse land use changes as well as carbon erosion and deposition during the last ca. 100 years. In this ongoing project, a combination...

  18. Rangeland livestock production: Developing the concept of sustainability on the Santa Rita Experimental Range

    Science.gov (United States)

    George B. Ruyle

    2003-01-01

    The Santa Rita Experimental Range (SRER) was established in 1903 at the behest of concerned stockmen and researchers as the first facility in the United States set aside to study range livestock production. At the time, severe overgrazing of the public domain had seriously reduced carrying capacities of Southwestern rangelands. Researchers on the SRER developed and...

  19. Comment on “The role of interbasin groundwater transfers in geologically complex terranes, demonstrated by the Great Basin in the western United States”: report published in Hydrogeology Journal (2014) 22:807–828, by Stephen T. Nelson and Alan L. Mayo

    Science.gov (United States)

    Masbruch, Melissa D.; Brooks, Lynette E.; Heilweil, Victor M.; Sweetkind, Donald S.

    2015-01-01

    The subject article (Nelson and Mayo 2014) presents an overview of previous reports of interbasin flow in the Great Basin of the western United States. This Comment is presented by authors of a cited study (comprising chapters in one large report) on the Great Basin carbonate and alluvial aquifer system (GBCAAS; Heilweil and Brooks 2011; Masbruch et al. 2011; Sweetkind et al. 2011a, b), who agree that water budget imbalances alone are not enough to accurately quantify interbasin flow; however, it is proposed that statements made in the subject article about the GBCAAS report are inaccurate. The Comment authors appreciate the opportunity to clarify some statements made about the work.

  20. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  1. Effect of canopy cover and canopy background variables on spectral profiles of savanna rangeland bush encroachment species based on selected Acacia species (mellifera, tortilis, karroo) and Dichrostachys cinerea at Mokopane, South Africa

    CSIR Research Space (South Africa)

    Munyati, C

    2013-07-01

    Full Text Available The proliferation of woody plant species on savanna rangelands (i.e. bush encroachment) degrades rangeland quality, thereby threatening the biodiversity conservation effort as well as pastoral farming. Hyperspectral remote sensing offers...

  2. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    Science.gov (United States)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  3. Hunter-gatherer adaptations and environmental change in the southern Great Basin: The evidence from Pahute and Rainier mesas

    Energy Technology Data Exchange (ETDEWEB)

    Pippin, L.C.

    1998-06-01

    This paper reviews the evidence for fluctuations in past environments in the southern Great Basin and examines how these changes may have affected the strategies followed by past hunter and gatherers in their utilization of the resources available on a highland in this region. The evidence used to reconstruct past environments for the region include botanical remains from packrat middens, pollen spectra from lake and spring deposits, faunal remains recovered from archaeological and geologic contexts, tree-ring indices from trees located in sensitive (tree-line) environments, and eolian, alluvial and fluvial sediments deposited in a variety of contexts. Interpretations of past hunter and gatherer adaptive strategies are based on a sample of 1,311 archaeological sites recorded during preconstruction surveys on Pahute and Rainier mesas in advance of the US Department of Energy`s nuclear weapons testing program. Projectile point chronologies and available tree-ring, radiocarbon, thermoluminescence and obsidian hydration dates were used to assign these archaeological sites to specific periods of use.

  4. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  5. The Younger Dryas phase of Great Salt Lake, Utah, USA

    Science.gov (United States)

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  6. The usefullness of ERTS-1 and supporting aircraft data for monitoring plant development in rangeland environments

    Science.gov (United States)

    Carneggie, D. M.; Degloria, S. D.

    1972-01-01

    The author has identified the following significant results. Preliminary analysis of ERTS-1 MSS imagery of annual and perennial rangeland in California yields the following observations: (1) Sufficient geomorphological detail can be resolved to differentiate upland and bottomland range sites in the foothill range areas. (2) Dry and green meadowland can be differentiated on MSS band 5. (3) Color composites prepared by NASA-Goddard were useful for locating perennial rangeland with varying amounts of herbaceous ground cover. (4) The ERTS-1 images received and interpreted cover nearly 50% of the state of California and show nearly two-thirds of the annual grassland type. (5) Satellite imagery obtained during the late summer season should be optimum for differentiating grassland from brushland and forested land. (6) The ERTS-1 imagery clearly shows areas which at one time were part of the annual grassland but which are now used for dry land farming (cropping of cereal grains). Similarly, the imagery show areas which have been converted from brushland to grassland.

  7. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  8. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    Science.gov (United States)

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  9. Three-dimensional framework of vigor, organization, and resilience (VOR) for assessing rangeland health: a case study from the alpine meadow of the Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Li, Yuan-yuan; Dong, Shi-kui; Wen, Lu; Wang, Xue-xia; Wu, Yu

    2013-12-01

    Rangeland health assessments play an important role in providing qualitative and quantitative data about ecosystem attributes and rangeland management. The objective of this study is to test the feasible of a modified model and visualize the health in a three-dimensional model. A modified Costanza model was employed, and eight indicators, including the biomass, biodiversity, and carrying capacity [associated with the vigor, organization, and resilience (VOR)] were applied. An entropy method was also developed to calculate the weight of each indicator, and a three-dimensional framework was applied to visualize the indicators and health index. The conceptual model was demonstrated using data from a case study on the alpine rangeland of the Qinghai-Tibetan Plateau, one of the globally important grassland biomes being severely degraded by natural and human factors. The health indices of four grassland plots at different levels of degradation were calculated using a modified approach to measuring their VOR. The results indicated that the least disturbed plot was relatively healthy compared to the other plots. In addition, the health indices presented in the three-dimensional VOR framework decreased in a consistent manner across the four plots along the disturbance gradients. Such rangeland health assessments should be integrated with management efforts to insure their long-term sustainable use.

  10. Recovery act. Characterizing structural controls of EGS-candidate and conventional geothermal reservoirs in the Great Basin. Developing successful exploration strategies in extended terranes

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James [Univ. of Nevada, Reno, NV (United States)

    2015-06-25

    We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites.

  11. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    Science.gov (United States)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the

  12. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains all the activity data, emission factor data, and ancillary data used to compute crop residue burning and rangeland emissions for the 2014 NEI...

  13. BITES RATE ON NATIVE VEGETATION BY TRASHUMANCE GOATS GRAZING IN MOUNTAIN RANGELAND IN NUDO MIXTECO, MEXICO

    Directory of Open Access Journals (Sweden)

    F.J. Franco-Guerra

    2014-08-01

    Full Text Available The objective of the present study was to determine the habits of grazing-browsing by the rate of bites and rate of consumption in the dry matter (MS of the diet of goats under transhumance grazing in mountain rangelands of Nudo Mixteco, being the natural vegetation in the different strata. Six animals of different age and sex were randomly chosen. Direct observation of grazing method was used to determine the rate of bites/min and the rate of consumption by layers. Analyzes of variance was performed and the Tukey test was used for mean comparison test was used (HSD Tukey (α, 0.05. The values of both variables were small, which may be due to the great diversity of plants and their varied morphology which induces the goat won on the one hand to spend more time in the choice of food becoming more selective and on the other, to carry out bites smaller in those plants whose leaf surface is of the type megafilia or in those woody whose leaves are very small (microphilia 2.25 cm2 to 20.25 cm2.

  14. Integrated scientific assessment for ecosystem management in the interior Columbia Basin and portions of the Klamath and Great Basins.

    Science.gov (United States)

    Thomas M. Quigley; Richard W Haynes; Russell T. Graham

    1996-01-01

    The Integrated Scientific Assessment for Ecosystem Management for the Interior Columbia Basin links landscape, aquatic, terrestrial, social, and economic characterizations to describe biophysical and social systems. Integration was achieved through a framework built around six goals for ecosystem management and three different views of the future. These goals are:...

  15. Biomass increases go under cover: woody vegetation dynamics in South African rangelands

    CSIR Research Space (South Africa)

    Mograbi, PJ

    2015-05-01

    Full Text Available and ranging (LiDAR) data The communal rangelands were surveyed with airborne laser mapping as part of a Carnegie Airborne Observatory (http://cao.ciw.edu/) campaign in April 2008 and April 2012, concur- rently with the collected fieldwork data in 2012. Small... permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Data Availability Statement: All data necessary to replicate the results of this study are contained within the paper and its...

  16. Grazing exclusion, substrate type, and drought frequency affect plant community structure in rangelands of the arid unpredictable Arabian Deserts

    Science.gov (United States)

    El-Keblawy, Ali; El-Sheikh, Mohamed

    2017-04-01

    Grazing and drought can adversely affect the ecology and management of rangeland ecosystems. Several management actions have been applied to restore species diversity and community structure in degraded rangelands of the unpredictable arid environment. Protection from grazing is considered as a proper approach for restoration of degraded rangelands, but this depends on substrate type and sometime is hindered with water deficiency (drought). In this study, the effect of protection from grazing animals on species diversity and plant community structure was assessed after a dry and wet periods in both sandy and gravelly substrates in the Dubai Desert Conservation reserve (DDCR), United Arab Emirates. Two sites were selected during November 2012 on the two substrate types (fixed sandy flat and gravel plain) in the arid DDCR. An enclosure was established in each site. Plant community attributes (plant cover, density, frequency, species composition, and diversity indices) were assessed in a number of permanent plots laid inside and outside each enclosure during November 2012, April 2014 and April 2016. The results showed that protection improved clay content, but decreased the organic matters. Interestingly, the protection reduced the concentrations of most estimated nutrients, which could be attributed to the high turnover rate of nutrients associated grazing and low decomposition of accumulated dry plants of non-protected sites. Protection significantly increased all plant community attributes, but the only significant effect was for plant density. Plant density was almost twice greater inside than outside the enclosures. During the dry period, protection resulted in significantly greater deterioration in cover, density and all diversity indices in gravel, compared to sandy sites. Most of the grasses and shrubby plants had died in the gravel plains. However, plant community of the gravel plains was significantly restored after receiving considerable rainfalls. The

  17. Asymmetric ecological and economic responses for rangeland restoration: A case study of tree thickening in Queensland, Australia

    Science.gov (United States)

    Ecological and economic thresholds are important considerations when making decisions about safeguarding or restoring degraded rangelands. When degradation levels have passed a threshold, most managers figure it is either time to take action or too late to take action depending on the particular c...

  18. Evaluation of environmental change in rangelands of Uzbekistan with application of nuclear techniques approach

    International Nuclear Information System (INIS)

    Nasyrov, M.G.; Safarov, A.N.; Osmanov, B.S.

    2004-01-01

    Full text: Desertification and land degradation are a problem of major importance in the arid and semi-arid regions of the world. Deterioration of soil and plant cover has adversely affected nearly 50% of land areas as a result of extended droughts and human mismanagement of cultivated and rangelands. Due to several factors such as soil erosion, overgrazing, collection of plants and other anthropogenic activities the most part of these biomes are under degradation. The problem of assessments of current status of rangelands becomes very important days after days. Therefore, it needs to work out and implement new time and labor saving methods of assessment of current status of natural biomes. Soil erosion is a natural process caused by water, wind, and ice that have affected the earth's surface since the beginning if time. Man's activities often accelerate soil erosion. Soil erosion and its off-site, downstream damages are major concerns around the world causing losses in soil productivity, degradation of landscape, degradation of water quality, and loss of soil organic carbon. Current techniques for assessing soil erosion are (1) long-term soil erosion plot monitoring, (2) field surveys, and (3) soil erosion models (Evans, 1995). Each of this techniques has strengths and weaknesses. Over the last 30 years, research has shown the potential of using radioactive fallout 137 Cs to provide timely and quantitative estimates of soil erosion and redeposition at point, field, and reconnaissance scales. Applications of 137 Cs o provide an independent measurement of soil erosion rates, patterns, and redepositions are well-documented (Ritchie and McHenry, 1990). The unique advantages of the 137 Cs technique to study soil erosion rates and patterns are that it (a) requires only one trip to the field; (b) provides results quickly; (c) allows retrospective assessment of soil erosion rates; (d) provides average losses for 35 to 40 year period thus is less influenced by extreme

  19. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  20. Effects of feral free-roaming horses on semi-arid rangeland ecosystems: an example from the sagebrush steppe

    Science.gov (United States)

    Feral horses (Equus caballus) are viewed as a symbol of freedom and power; however, they are also a largely unmanaged, non-native grazer in North America, South America, and Australia. Information on their influence on vegetation and soil characteristics in semi-arid rangelands has been limited by ...

  1. The changing role of shrubs in rangeland-based livestock production systems: Can shrubs increase our forage supply?

    Science.gov (United States)

    Projected global increases in ruminant numbers and loss of native grasslands will present a number of challenges for livestock agriculture. Escalated demand for livestock products may stimulate interest in using shrubs on western rangelands. A paradigm shift is needed to change the role of shrubs in...

  2. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    Science.gov (United States)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the

  3. Assessment of water resource potential for common use of cow and goat by GIS (Case study: Boroujerd Rangeland, Sarab Sefid, Iran)

    International Nuclear Information System (INIS)

    Ariapour, A; Karami, K; Sadr, A

    2014-01-01

    One of the most important factors to sustainability utilization of natural potential by rangeland grazing suitability is water resources suitability. This study is a model for quantitative, qualitative and spatial distance assessment of water resource's propriety for goat and cow grazing based on geographic information systems (GIS) in Boroujerd Sarab Sefid rangeland, Lorestan province, Iran 2013. In this research from combining three factors such as quantity, quality and water resource's distances; the final model of degree of propriety of water resources for goat and cow grazing is characterized. Results showed that slope factor was the reason of limitation, and it is considered as a limiting factor in propriety of water resources, so in terms of access to water resources for goat grazing, 4856.4 ha (100%) located in S1 classes and for cow grazing, 4023.14 ha (68.6%) located in S1(suitability) classes, 1,187 ha (20.24%) in S2 classes and 654.8 ha (11.16%) located in S3 classes, respectively for both. So according to the results the rangelands in this region are most suitable for goat because of terrain and weather but this, in combination with, cow hasbandry will allow diversity of economic production and stability of incomes

  4. Geospatial Data as a Service: The GEOGLAM Rangelands and Pasture Productivity Map Experience

    Science.gov (United States)

    Evans, B. J. K.; Antony, J.; Guerschman, J. P.; Larraondo, P. R.; Richards, C. J.

    2017-12-01

    Empowering end-users like pastoralists, land management specialists and land policy makers in the use of earth observation data for both day-to-day and seasonal planning needs both interactive delivery of multiple geospatial datasets and the capability of supporting on-the-fly dynamic queries while simultaneously fostering a community around the effort. The use of and wide adoption of large data archives, like those produced by earth observation missions, are often limited by compute and storage capabilities of the remote user. We demonstrate that wide-scale use of large data archives can be facilitated by end-users dynamically requesting value-added products using open standards (WCS, WMS, WPS), with compute running in the cloud or dedicated data-centres and visualizing outputs on web-front ends. As an example, we will demonstrate how a tool called GSKY can empower a remote end-user by providing the data delivery and analytics capabilities for the GEOGLAM Rangelands and Pasture Productivity (RAPP) Map tool. The GEOGLAM RAPP initiative from the Group on Earth Observations (GEO) and its Agricultural Monitoring subgroup aims at providing practical tools to end-users focusing on the important role of rangelands and pasture systems in providing food production security from both agricultural crops and animal protein. Figure 1, is a screen capture from the RAPP Map interface for an important pasture area in the Namibian rangelands. The RAPP Map has been in production for six months and has garnered significant interest from groups and users all over the world. GSKY, being formulated around the theme of Open Geospatial Data-as-a-Service capabilities uses distributed computing and storage to facilitate this. It works behind the scenes, accepting OGC standard requests in WCS, WMS and WPS. Results from these requests are rendered on a web-front end. In this way, the complexities of data locality and compute execution are masked from an end user. On-the-fly computation of

  5. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Veerkamp, C.J.; Alkemade, Rob; Leemans, Rik

    2015-01-01

    Over one billion people's livelihoods depend on dry rangelands through livestock grazing and agriculture. Livestock grazing and other management activities can cause soil erosion, increase surface runoff and reduce water availability. We studied the effects of different management regimes on soil

  6. A potential to monitor nutrients as an indicator of rangeland quality using space borne remote sensing

    International Nuclear Information System (INIS)

    Ramoelo, A; Madonsela, S; Mathieu, R; Van der Korchove, R; Kaszta, Z; Wolf, E; Cho, M A

    2014-01-01

    Global change consisting of land use and climate change could have huge impacts on food security and the health of various ecosystems. Leaf nitrogen (N) is one of the key factors limiting agricultural production and ecosystem functioning. Leaf N can be used as an indicator of rangeland quality which could provide information for the farmers, decision makers, land planners and managers. Leaf N plays a crucial role in understanding the feeding patterns and distribution of wildlife and livestock. Assessment of this vegetation parameter using conventional methods at landscape scale level is time consuming and tedious. Remote sensing provides a synoptic view of the landscape, which engenders an opportunity to assess leaf N over wider rangeland areas from protected to communal areas. Estimation of leaf N has been successful during peak productivity or high biomass and limited studies estimated leaf N in dry season. The objective of this study is to monitor leaf N as an indicator of rangeland quality using WorldView 2 satellite images in the north-eastern part of South Africa. Series of field work to collect samples for leaf N were undertaken in the beginning of May (end of wet season) and July (dry season). Several conventional and red edge based vegetation indices were computed. Simple regression was used to develop prediction model for leaf N. Using bootstrapping, indicator of precision and accuracy were analyzed to select a best model for the combined data sets (May and July). The may model for red edge based simple ratio explained over 90% of leaf N variations. The model developed from the combined data sets with normalized difference vegetation index explained 62% of leaf N variation, and this is a model used to estimate and map leaf N for two seasons. The study demonstrated that leaf N could be monitored using high spatial resolution with the red edge band capability

  7. Decision Making in Rangelands: An Integrated Modeling Approach to Resilience and Change

    Science.gov (United States)

    Galvin, K. A.; Ojima, D. S.; Boone, R. B.

    2007-12-01

    Rangelands comprise approximately 25% of the earth's surface and these landscapes support more than 20 million people and most of the world's charismatic megafauna. Most of the people who live in these regions of the world herd domestic livestock and some do limited cultivation so they are dependent directly on the environment for their livelihoods. But change is rapidly changing the environments upon which these people depend through such factors as population pressures, land use and land tenure changes, climate variability, and policy changes which fragment their resources and thus their ability to earn a living. How can we understand change in this linked human-environment system? The study of complex biophysical and human systems can be greatly assisted by appropriate simulation models that integrate what is known about ecological and human decision-making processes. We have developed an integrated modeling system for Kajiado, Kenya where land use management decisions have implications for economics and the ecosystem. In this paper we look at how land use decisions, that is, livestock movement patterns have implications for societal economics and ecosystem services. Research that focuses on local behavior is important because it is at that level where fundamental decisions are made regarding events like extreme climate and changes such as land tenure policy and it is here where resilience is manifested. The notion that broad recommendation domains can be identified for a broad set of people and large regions coping with change is becoming increasingly hard to trust given the spatial and temporal heterogeneity of the systems we are looking at, and the complexity of the world we now live in. Why is this important? The only way the research community is going to make great progress in attaining objectives that do confer resilience (on social and ecological systems) is through much better targeting ability, a large part of which seem to be intimately entwined with

  8. An overview of the rangelands atmosphere hydrosphere biosphere interaction study experiment in northeastern Asia (RAISE)

    Science.gov (United States)

    Sugita, Michiaki; Asanuma, Jun; Tsujimura, Maki; Mariko, Shigeru; Lu, Minjiao; Kimura, Fujio; Azzaya, Dolgorsuren; Adyasuren, Tsokhio

    2007-01-01

    SummaryIntensive observations, analysis and modeling within the framework of the rangelands atmosphere-hydrosphere-biosphere interaction study experiment in northeastern Asia (RAISE) project, have allowed investigations into the hydrologic cycle in the ecotone of forest-steppe, and its relation to atmosphere and ecosystem in the eastern part of Mongolia. In this region, changes in the climate have been reported and a market oriented economy was introduced recently, but their impact on the natural environment is still not well understood. In this RAISE special issue, the outcome is presented of the studies carried out by six groups within RAISE, namely: (1) Land-atmosphere interaction analysis, (2) ecosystem analysis and modeling, (3) hydrologic cycle analysis, (4) climatic modeling, (5) hydrologic modeling, and (6) integration. The results are organized in five relevant categories comprising (i) hydrologic cycle including precipitation, groundwater, and surface water, (ii) hydrologic cycle and ecosystem, (iii) surface-atmosphere interaction, (iv) effect of grazing activities on soils, plant ecosystem and surface fluxes, and (v) future prediction. Comparison with studies on rangelands in other parts of the world, and some future directions of studies still needed in this region are also summarized.

  9. Influence of forest and rangeland management on anadromous fish habitat in Western North America: economic considerations.

    Science.gov (United States)

    William R. tech. ed. Meehan

    1985-01-01

    Although many effects of forest and rangeland management on anadromous fisheries are difficult to measure, economic methods for the evaluation of costs and benefits can be helpful. Such methods can be used to address questions of equity as well as efficiency. Evaluations of equity can show who bears the costs and who captures the benefits of management actions, but...

  10. National projections of forest and rangeland condition indicators: a supporting technical document for the 1999 RPA assessment.

    Science.gov (United States)

    John Hof; Curtis Flather; Tony Baltic; Stephen. Davies

    1999-01-01

    The 1999 forest and rangeland condition indicator model is a set of independent econometric production functions for environmental outputs (measured with condition indicators) at the national scale. This report documents the development of the database and the statistical estimation required by this particular production structure with emphasis on two special...

  11. Contaminants of emerging concern in the Great Lakes Basin: A report on sediment, water, and fish tissue chemistry collected in 2010-2012

    Science.gov (United States)

    Choy, Steven J.; Annis, Mandy L.; Banda, JoAnn; Bowman, Sarah R.; Brigham, Mark E.; Elliott, Sarah M.; Gefell, Daniel J.; Jankowski, Mark D.; Jorgenson, Zachary G.; Lee, Kathy E.; Moore, Jeremy N.; Tucker, William A.

    2017-01-01

    Despite being detected at low levels in surface waters and sediments across the United States, contaminants of emerging concern (CECs) in the Great Lakes Basin are not well characterized in terms of spatial and temporal occurrence. Additionally, although the detrimental effects of exposure to CECs on fish and wildlife have been documented for many CECs in laboratory studies, we do not adequately understand the implications of the presence of CECs in the environment. Based on limited studies using current environmentally relevant concentrations of chemicals, however, risks to fish and wildlife are evident. As a result, there is an increasing urgency to address data gaps that are vital to resource management decisions. The U.S. Fish and Wildlife Service, in collaboration with the U.S. Geological Survey, is leading a Great Lakes Basin-wide evaluation of CECs (CEC Project) with the objectives to (a) characterize the spatial and temporal distribution of CECs; (b) evaluate risks to fish and wildlife resources; and (c) develop tools to aid resource managers in detecting, averting, or minimizing the ecological consequences to fish and wildlife that are exposed to CECs. This report addresses objective (a) of the CEC Project, summarizing sediment and water chemistry data collected from 2010 to 2012 and fish liver tissue chemistry data collected in 2012; characterizes the sampling locations with respect to potential sources of CECs in the landscape; and provides an initial interpretation of the variation in CEC concentrations relative to the identified sources. Data collected during the first three years of our study, which included 12 sampling locations and analysis of 134 chemicals, indicate that contaminants were more frequently detected in sediment compared to water. Chemicals classified as alkyphenols, flavors/ fragrances, hormones, PAHs, and sterols had higher average detection frequencies in sediment compared to water, while the opposite was observed for pesticides

  12. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41 deg 32'N, 120 deg 5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4(2-), respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth

  13. Canada's Response to the Recommendations in the Tenth Biennial Report on Great Lakes Water Quality of the International Joint Commission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The Government of Canada and Ontario are currently renegotiating the Canada-Ontario Agreement Respecting the Great Lakes Basin Ecosystem (COA). They are committed to restoring and maintaining the basin's chemical, physical and biological integrity and ensuring that it has a healthy, sustainable future. The COA has established a strategic framework for coordinated federal-provincial responsibilities regarding the Great Lakes basin ecosystem. This document presents responses to the recommendations of the International Joint Commission's (IJC) Tenth Biennial Report on how to improve the performance and effectiveness of government programs such as the Great Lakes Water Quality Agreement. According to the IJC, there are many challenges ahead, including: cleanup of Canadian Areas of Concern; controlling and preventing the further introduction of exotic species; mitigating the impact of rapid urban growth on environmental conditions throughout the basin; and reducing contaminants transported in the atmosphere over long distances to the Great Lakes. This document presented the government's responses to each of the following IJC recommendations regarding remedial action plans, threats to human health with respect to consumption of fish, contaminated sediment, airborne toxic substances, Great Lakes binational toxics strategy, land use, alien invasive species, and information and data management. IJC also recommended that indicators should be reported regarding whether the Great Lakes surface waters are suitable for drinking, swimming and whether fish are edible.

  14. Morphological and molecular characterization of an uninucleated cyst-producing Entamoeba spp. in captured Rangeland goats in Western Australia.

    Science.gov (United States)

    Al-Habsi, Khalid; Yang, Rongchang; Ryan, Una; Jacobson, Caroline; Miller, David W

    2017-02-15

    Uninucleated Entamoeba cysts measuring 7.3×7.7μm were detected in faecal samples collected from wild Rangeland goats (Capra hircus) after arrival at a commercial goat depot near Geraldton, Western Australia at a prevalence of 6.4% (8/125). Sequences were obtained at the 18S rRNA (n=8) and actin (n=5) loci following PCR amplification. At the 18S locus, phylogenetic analysis grouped the isolates closest with an E. bovis isolate (FN666250) from a sheep from Sweden with 99% similarity. At the actin locus, no E. bovis sequences were available, and the isolates shared 94.0% genetic similarity with E. suis from a pig in Western Japan. This is the first report to describe the morphology and molecular characterisation of Entamoeba from Rangeland goats in Western Australia and the first study to produce actin sequences from E. bovis-like Entamoeba sp. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Research plan for lands administered by the U.S. Department of the Interior in the Interior Columbia Basin and Snake River Plateau

    Science.gov (United States)

    Beever, Erik A.; Pyke, David A.

    2002-01-01

    This document presents a long-term research strategy designed to address current and future research needs for management of Department of the Interior-administered ecosystems in the Intermountain West. Although the research plan was developed in the context of the Interior Columbia Basin Ecosystem Management Project, the plan addresses many high-priority issues facing land managers throughout the Intermountain West. These issues pose management challenges that may be addressed with applied research both currently and in upcoming decades. Possessing a particular focus on semiarid ecosystems, the plan is a collection of research questions under five categories of research emphases: 1) restoration; 2) rangeland health; 3) aquatic-terrestrial connections; 4) development of monitoring and evaluation protocols; and 5) species and habitats at risk.

  16. Spatial distribution and trends of total mercury in waters of the Great Lakes and connecting channels using an improved sampling technique

    International Nuclear Information System (INIS)

    Dove, A.; Hill, B.; Klawunn, P.; Waltho, J.; Backus, S.; McCrea, R.C.

    2012-01-01

    Environment Canada recently developed a clean method suitable for sampling trace levels of metals in surface waters. The results of sampling for total mercury in the Laurentian Great Lakes between 2003 and 2009 give a unique basin-wide perspective of concentrations of this important contaminant and represent improved knowledge of mercury in the region. Results indicate that concentrations of total mercury in the offshore regions of the lakes were within a relatively narrow range from about 0.3 to 0.8 ng/L. The highest concentrations were observed in the western basin of Lake Erie and concentrations then declined towards the east. Compared to the offshore, higher levels were observed at some nearshore locations, particularly in lakes Erie and Ontario. The longer-term temporal record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease in equivalent water concentrations since 1986. - Highlights: ► Basin-wide concentrations of total mercury in Great Lakes surface waters are provided for the first time. ► A clean sampling method is described, stressing isolation of the sample from extraneous sources of contamination. ► Sub-ng/L concentrations of total mercury are observed in most Great Lakes offshore areas. ► Concentrations in the western basin of Lake Erie are consistently the highest observed in the basin. ► The longer-term record of mercury in Niagara River suspended sediments indicates an approximate 30% decrease since 1986. - A new, clean sampling method for metals is described and basin-wide measurements of total mercury are provided for Great Lakes surface waters for the first time.

  17. Ecosystem Services in the Great Lakes – Results of a Summit

    Science.gov (United States)

    A comprehensive inventory of ecosystem services across the entire Great Lakes basin is currently lacking and is needed to make informed management decisions. A greater appreciation and understanding of ecosystem services, including both use and non-use services, may have avoided ...

  18. The Integrated Rangeland Fire Management Strategy Actionable Science Plan: U.S. Department of the Interior, Washington D.C.

    Science.gov (United States)

    Integrated Rangeland Fire Management Strategy Actionable Science Plan Team

    2016-01-01

    The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit...

  19. The use of process models to inform and improve statistical models of nitrate occurrence, Great Miami River Basin, southwestern Ohio

    Science.gov (United States)

    Walter, Donald A.; Starn, J. Jeffrey

    2013-01-01

    in estimated variables for circular buffers and contributing recharge areas of existing public-supply and network wells in the Great Miami River Basin. Large differences in areaweighted mean environmental variables are observed at the basin scale, determined by using the network of uniformly spaced hypothetical wells; the differences have a spatial pattern that generally is similar to spatial patterns in the underlying STATSGO data. Generally, the largest differences were observed for area-weighted nitrogen-application rate from county and national land-use data; the basin-scale differences ranged from -1,600 (indicating a larger value from within the volume-equivalent contributing recharge area) to 1,900 kilograms per year (kg/yr); the range in the underlying spatial data was from 0 to 2,200 kg/yr. Silt content, alfisol content, and nitrogen-application rate are defined by the underlying spatial data and are external to the groundwater system; however, depth to water is an environmental variable that can be estimated in more detail and, presumably, in a more physically based manner using a groundwater-flow model than using the spatial data. Model-calculated depths to water within circular buffers in the Great Miami River Basin differed substantially from values derived from the spatial data and had a much larger range. Differences in estimates of area-weighted spatial variables result in corresponding differences in predictions of nitrate occurrence in the aquifer. In addition to the factors affecting contributing recharge areas and estimated explanatory variables, differences in predictions also are a function of the specific set of explanatory variables used and the fitted slope coefficients in a given model. For models that predicted the probability of exceeding 1 and 4 milligrams per liter as nitrogen (mg/L as N), predicted probabilities using variables estimated from circular buffers and contributing recharge areas generally were correlated but differed

  20. Structure of the la VELA Offshore Basin, Western Venezuela: AN Obliquely-Opening Rift Basin Within the South America-Caribbean Strike-Slip Plate Boundary

    Science.gov (United States)

    Blanco, J. M.; Mann, P.

    2015-12-01

    Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.

  1. Fire and nitrogen effects on Purple Threeawn (Aristida purpurea)abundance in northern mixed-grass prairie old fields

    Science.gov (United States)

    Purple threeawn (Aristida purpurea Nutt. varieties) is a native grass capable of increasing on rangelands, forming near monocultures, and creating a stable state. Productive rangelands throughout the Great Plains and Intermountain West have experienced increases in purple threeawn abundance, reduci...

  2. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes.

    Science.gov (United States)

    Reis, Carla Roberta Gonçalves; Nardoto, Gabriela Bielefeld; Rochelle, André Luis Casarin; Vieira, Simone Aparecida; Oliveira, Rafael Silva

    2017-03-01

    Mangroves exhibit low species richness compared to other tropical forests, but great structural and functional diversity. Aiming to contribute to a better understanding of the functioning of mangrove forests, we investigated nitrogen (N) dynamics in two physiographic types of mangroves (fringe and basin forests) in southeastern Brazil. Because fringe forests are under great influence of tidal flushing we hypothesized that these forests would exhibit higher N cycling rates in sediment and higher N losses to the atmosphere compared to basin forests. We quantified net N mineralization and nitrification rates in sediment and natural abundance of N stable isotopes (δ 15 N) in the sediment-plant-litter system. The fringe forest exhibited higher net N mineralization rates and δ 15 N in the sediment-plant-litter system, but net nitrification rates were similar to those of the basin forest. The results of the present study suggest that fringe forests exhibit higher N availability and N cycling in sediment compared to basin forests.

  3. The economics of fuel management: Wildfire, invasive plants, and the dynamics of sagebrush rangelands in the western United States

    Science.gov (United States)

    Michael H. Taylor; Kimberly Rollins; Mimako Kobayashi; Robin J. Tausch

    2013-01-01

    In this article we develop a simulation model to evaluate the economic efficiency of fuel treatments and apply it to two sagebrush ecosystems in the Great Basin of the western United States: the Wyoming Sagebrush Steppe and Mountain Big Sagebrush ecosystems. These ecosystems face the two most prominent concerns in sagebrush ecosystems relative to wildfire: annual grass...

  4. Remote sensing data in Rangeland assessment and monitoring

    International Nuclear Information System (INIS)

    Hamid, Amna Ahmed; Ali, Mohamed M.

    1999-01-01

    The main objective of the paper is to illustrate the potential of remote sensing data in the study and monitoring of environmental changes in western Sudan where considerable part of the area is under rangeland use. Data from NOAA satellite AVHRR sensor as well as thematic mapper Tm was used to assess the environment of the area during 1982-1997. The AVHRR data was processed into vegetation index (NDVI) images. Image analysis and classification was done using image display and analysis (IDA) GIS method to study vegetation condition in time series. The obtained information from field observations. The result showed high correlation between the information the work concluded the followings: NDVI images and thematic mapper data proved to be efficient in environment change analysis. NOAA AVHRR satellite data can provide an early-warning indicator of an approaching disaster. Remote sensing integrated into a GIS can contribute effectively to improve land management through better understanding of environment variability.(Author)

  5. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  6. Prescribed Fire Effects on Runoff, Erosion, and Soil Water Repellency on Steeply-Sloped Sagebrush Rangeland over a Five Year Period

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Al-Hamdan, O. Z.

    2014-12-01

    Fire is an inherent component of sagebrush steppe rangelands in western North America and can dramatically affect runoff and erosion processes. Post-fire flooding and erosion events pose substantial threats to proximal resources, property, and human life. Yet, prescribed fire can serve as a tool to manage vegetation and fuels on sagebrush rangelands and to reduce the potential for large catastrophic fires and mass erosion events. The impact of burning on event hydrologic and erosion responses is strongly related to the degree to which burning alters vegetation, ground cover, and surface soils and the intensity and duration of precipitation. Fire impacts on hydrologic and erosion response may be intensified or reduced by inherent site characteristics such as topography and soil properties. Parameterization of these diverse conditions in predictive tools is often limited by a lack of data and/or understanding for the domain of interest. Furthermore, hydrologic and erosion functioning change as vegetation and ground cover recover in the years following burning and few studies track these changes over time. In this study, we evaluated the impacts of prescribed fire on vegetation, ground cover, soil water repellency, and hydrologic and erosion responses 1, 2, and 5 yr following burning of a mountain big sagebrush community on steep hillslopes with fine-textured soils. The study site is within the Reynolds Creek Experimental Watershed, southwestern Idaho, USA. Vegetation, ground cover, and soil properties were measured over plot scales of 0.5 m2 to 9 m2. Rainfall simulations (0.5 m2) were used to assess the impacts of fire on soil water repellency, infiltration, runoff generation, and splash-sheet erosion. Overland flow experiments (9 m2) were used to assess the effects of fire-reduced ground cover on concentrated-flow runoff and erosion processes. The study results provide insight regarding fire impacts on runoff, erosion, and soil water repellency in the immediate and

  7. Fire impact on soil-water repellency and functioning of semi-arid croplands and rangelands: Implications for prescribed burnings and wildfires

    Science.gov (United States)

    Stavi, Ilan; Barkai, Daniel; Knoll, Yaakov M.; Glion, Hiam Abu; Katra, Itzhak; Brook, Anna; Zaady, Eli

    2017-03-01

    An unintended fire outbreak during summer 2015 in the semi-arid Israeli Negev resulted in the burning of extensive croplands and rangelands. The rangelands have been managed over the long term for occasional grazing, while the croplands have been utilized for rainfed wheat cropping. Yet, during the studied year, the croplands were left fallow, allowing the growth of herbaceous vegetation, which was harvested and baled for hay before the fire outbreak. The study objectives were to investigate the impacts of fire, land-use, and soil depth on water-repellency and on the status and dynamics of some of the most important organic and mineral soil resources. Additionally, we aimed to assess the severity of this fire outbreak. The soil-water repellency was studied by measuring the soil's water drop penetration time (WDPT) and critical surface tension (CST). A significant effect of fire on soil hydrophobicity was recorded, with a slight increase in mean WDPT and a slight decrease in mean CST in the burnt sites than in the non-burnt sites. Yet, soil hydrophobicity in the burnt lands was rather moderate and remained within the water repellency's lowest class. A significant effect of land-use on the means of WDPT and CST was also recorded, being eleven-fold greater and 7% smaller, respectively, in the rangelands than in the croplands. This is consistent with the almost eightfold greater mean above-ground biomass recorded in the non-burnt rangelands than in the non-burnt post-harvest croplands, revealing the positive relations between available fuel load and soil-water repellency. The effect of soil depth was significant for CST but not for WDPT. Overall, the gathered data suggest that fire severity was low to moderate. Fire was also found to significantly affect the fire severity only slightly increased the soil water repellency, and at the same time, increased on-site availability of some important soil resources. Nevertheless, it is acknowledged that such fires could impose

  8. Sediment budgets and source determinations using fallout Cesium-137 in a semiarid rangeland watershed, Arizona, USA

    International Nuclear Information System (INIS)

    Ritchie, Jerry C.; Nearing, Mark A.; Rhoton, Fred E.

    2009-01-01

    Analysis of soil redistribution and sediment sources in semiarid and arid watersheds provides information for implementing management practices to improve rangeland conditions and reduce sediment loads to streams. The purpose of this research was to develop sediment budgets and identify potential sediment sources using 137 Cs and other soil properties in a series of small semiarid subwatersheds on the USDA ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona, USA. Soils were sampled in a grid pattern on two small subwatersheds and along transects associated with soils and geomorphology on six larger subwatersheds. Soil samples were analyzed for 137 Cs and selected physical and chemical properties (i.e., bulk density, rocks, particle size, soil organic carbon). Suspended sediment samples collected at measuring flume sites on the Walnut Gulch Experimental Watershed were also analyzed for these properties. Soil redistribution measured using 137 Cs inventories for a small shrub-dominated subwatershed and a small grass-dominated subwatershed found eroding areas in these subwatersheds were losing -5.6 and -3.2 t ha -1 yr -1 , respectively; however, a sediment budget for each of these subwatersheds, including depositional areas, found net soil loss to be -4.3 t ha -1 yr -1 from the shrub-dominated subwatershed and -0.1 t ha -1 yr -1 from the grass-dominated subwatershed. Generally, the suspended sediment collected at the flumes of the six other subwatersheds was enriched in silt and clay. Using a mixing model to determine sediment source indicated that shrub-dominated subwatersheds were contributing most of the suspended sediment that was measured at the outlet flume of the Walnut Gulch Experimental Watershed. The two methodologies (sediment budgets and sediment source analyses) indicate that shrub-dominated systems provide more suspended sediment to the stream systems. The sediment budget studies also suggest that sediment yields measured at the outlet of a

  9. Woodlands Grazing Issues in Mediterranean Basin

    Science.gov (United States)

    Campos, P.

    2009-04-01

    's family ownerships. These poor livestockeepers could maintain their livestock regimen on the basis of low cash-income earnings and crops self-consumption in extremely poor family living conditions. In this state woodlands, social an environmental goals -as they were noted above- could generate high trade off between family basic needs and soil degradation because woodlands and crops operations. As result, grazing rent is pending on the low opportunity cost for family labour. In this context, Tunisian Mediterranean woodlands maintain the highest livestock rate population, which woodland economy could be called for poor people subsistence and environmentally unsustainable because soil erosion, forest degradation and over/under grazing. These study present three study cases where Mediterranean basin grazing resources economies are analyzed in the contexts of Tunisian developing economy (Iteimia woodlands, North West of Tunisia) and Spanish developed economy (Jerez de la Frontera and Monfragüe woodlands, South and West of Spain). The results show the crucial role that livestock (goat, sheep and cattle) play in maintaining the working Mediterranean woodlands landscape. People, woodlands and livestock grazing dependences are changing so fast in Mediterranean basin that they appear too complex for being accurately forecasting by rangeland economists. In this context, perhaps a question might be a more suitable concluding remark: ¿will does woodlands extensive livestock become a quasi-wild management for urban landowners pleasure aims in rich Mediterranean basin countries?

  10. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41º32'N, 120º5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4 2-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated

  11. Modelling tree dynamics to assess the implementation of EU policies related to afforestation in SW Spain rangelands

    Science.gov (United States)

    Herguido, Estela; Pulido, Manuel; Francisco Lavado Contador, Joaquín; Schnabel, Susanne

    2017-04-01

    In Iberian dehesas and montados, the lack of tree recruitment compromises its long-term sustainability. However, in marginal areas of dehesas shrub encroachment facilitates tree recruitment while altering the distinctive physiognomic and cultural characteristics of the system. These are ongoing processes that should be considered when designing afforestation measures and policies. Based on spatial variables, we modeled the proneness of a piece of land to undergo tree recruitment and the results were related with the afforestation measures carried out under the UE First Afforestation Agricultural Land Program between 1992 and 2008. We analyzed the temporal tree population dynamics in 800 randomly selected plots of 100 m radius (2,510 ha in total) in dehesas and treeless pasturelands of Extremadura (hereafter rangelands). Tree changes were revealed by comparing aerial images taken in 1956 with orthophotographs and infrared ones from 2012. Spatial models that predict the areas prone either to lack tree recruitment or with recruitment were developed and based on three data mining algorithms: MARS (Multivariate Adaptive Regression Splines), Random Forest (RF) and Stochastic Gradient Boosting (Tree-Net, TN). Recruited-tree locations (1) vs. locations of places with no recruitment (0) (randomly selected from the study areas) were used as the binary dependent variable. A 5% of the data were used as test data set. As candidate explanatory variables we used 51 different topographic, climatic, bioclimatic, land cover-related and edaphic ones. The statistical models developed were extrapolated to the spatial context of the afforested areas in the region and also to the whole Extremenian rangelands, and the percentage of area modelled as prone to tree recruitment was calculated for each case. A total of 46,674.63 ha were afforested with holm oak (Quercus ilex) or cork oak (Quercus suber) in the studied rangelands under the UE First Afforestation Agricultural Land Program. In

  12. IMPACT OF WOODY PLANTS SPECIES ON SOIL PHYSIO-CHEMICAL PROPERTIES ALONG GRAZING GRADIENTS IN RANGELANDS OF EASTERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Mohammed Mussa Abdulahi

    2016-12-01

    Full Text Available In the lowlands of arid and semiarid rangelands woody plants plays an important role in soil fertility maintenance, providing food, medicine, cosmetics, fodder, fuel wood and pesticides. A better understanding of the interaction of woody plants on their immediate environment is needed to guide optimum management of native vegetation in the production landscapes. However, the impact of woody plant species on soil properties remains poorly understood. This study evaluates the impact of two dominant woody plant species (A. senegal and B. aegyptica on soil physico-chemical properties along grazing gradients in rangelands of eastern Ethiopia. Six trees of each species were selected from light, moderate and heavy grazing sites.  Soil sample data at two depths (0-15 and 16-30 cm were collected from under and open areas of A. senegal and B. aegyptica from each grazing sites, and analysed for nutrient contents. The nutrient status of soil under both woody species was significantly higher especially with regard to soil organic matter (4.37%, total nitrogen (0.313%, and available phosphorus (11.62 than the open grassland with soil organic matter (3.82%, total nitrogen (0.246%, and available phosphorus (10.94 mg/Kg soil for A. Senegal. The soil organic matter (3.93%, total nitrogen (0.285%, available phosphorus (11.66 mg/Kg soil were significantly higher than open grassland with soil organic matter (3.52%, total nitrogen (0.218%, available phosphorus (10.73 mg/Kg soil for B. aegyptica. This was more pronounced in the top 15 cm of soil under A. senegal woody plant species and on the light and moderate grazing site. Therefore, this tree has a significant effect on soil fertility improvement in resource poor rangelands and as a result, it is important to retain scattered A. senegal and B. aegyptica plants in the lowlands of eastern Ethiopia.

  13. An Application of BLM's Riparian Inventory Procedure to Rangeland Riparian Resources in the Kern and Kaweah River Watersheds

    Science.gov (United States)

    Patricia Gradek; Lawrence Saslaw; Steven Nelson

    1989-01-01

    The Bakersfield District of the Bureau of Land Management conducted an inventory of rangeland riparian systems using a new method developed by a Bureau-wide task force to inventory, monitor and classify riparian areas. Data on vegetation composition were collected for 65 miles of streams and entered into a hierarchical vegetation classification system. Ratings of...

  14. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.

    Science.gov (United States)

    Arkle, Robert S; Pilliod, David S

    2015-09-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species' range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  15. SimBasin: serious gaming for integrated decision-making in the Magdalena-Cauca basin

    Science.gov (United States)

    Craven, Joanne; Angarita, Hector; Corzo, Gerald

    2016-04-01

    discussed, such as using the game in planning processes and to engage local communities. The game has been beta tested at a modelling workshop in Bangkok and was then used as the basis of a national basin management forum in Bogotá. 42 high-level stakeholders attended and the session generated a great deal of interest in the decision support system, and served as a nucleus for different stakeholders to discuss ideas. The study discusses the development of the game and observations from these sessions. More information: http://simbasin.hilab.nl

  16. Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity using remote sensing in Savanna ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available and grass quantity, respectively. The objective of the study is to estimate and map leaf N and biomass as an indicator of rangeland quality and quantity using vegetation indices derived from one RapidEye image taken at peak productivity. The study...

  17. Soil erosion assessment using geographical information system (GIS) and remote sensing (RS) study from Ankara-Guvenc Basin, Turkey.

    Science.gov (United States)

    Dengiz, Orhan; Yakupoglu, Tugrul; Baskan, Oguz

    2009-05-01

    The objective of this research was to assess vulnerable soil erosion risk with qualitative approach using GIS in Ankara-Guvenc Basin. The study area is located about 44 km north of Ankara and covers 17.5 km2. The selected theme layers of this model include topographic factor, soil factors (depth, texture, impermeable horizon) and land use. Slope layer and land use-land cover data were prepared by using DEM and Landsat-TM satellite image. According to land use classification, the most common land use type and land cover are rangeland (50.5%) then, rainfed (36.4%), week forest land (3.2%), irrigated land (0.7%) and other various lands (rock out crop and lake) (9.2%). Each land characteristic is also considered as a thematic layer in geographical information systems (GIS) process. After combination of the layers, soil erosion risk map was produced. The results showed that 44.4% of the study area is at high soil erosion risk, whereas 42% of the study area is insignificantly and slightly susceptible to erosion risk. In addition, it was found that only 12.6% of the total area is moderately susceptible to erosion risk. Furthermore, conservation land management measures were also suggested for moderate, high and very high erosion risk areas in Ankara-Guvenc Basin.

  18. Oligocene paleogeography of the northern Great Plains and adjacent mountains

    International Nuclear Information System (INIS)

    Seeland, D.

    1985-01-01

    Early Oligocene paleogeography of the northern Great Plains and adjacent mountains is inferred in part from published surface and subsurface studies of the pre-Oligocene surface. These studies are combined with published and unpublished information on clast provenance, crossbedding orientation, and Eocene paleogeography. The Oligocene Arctic Ocean-Gulf of Mexico continental divide extended from the southern Absaroka Mountains east along the Owl Creek Mountains, across the southern Powder River Basin, through the northern Black Hills, and eastward across South Dakota. Streams north of the divide flowed northeastward. The Olligocene White River Group contains 50 to 90 percent airfall pyroclastic debris from a northern Great Basin source. Most of the uranium deposits of the region in pre-Oligocene rocks can be related to a uranium source in the volcanic ash of the White River; in many places the pre-Oligocene deposits can be related to specific Oligocene channels. Uranium deposits in sandstones of major Oligocene rivers are an important new type of deposit. The Oligocene channel sandstones also contain small quantities of gold, molybdenum, gas, and oil

  19. Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah

    Directory of Open Access Journals (Sweden)

    Meredith C. Schuman

    2013-01-01

    Full Text Available Big-eyed bugs (Geocoris spp. Fallén, Hemiptera: Lygaeidae are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stål and G. punctipes (Say native to the Great Basin Desert of southwestern Utah, including observations of their life histories and color morphs, dynamics of their predatory feeding behavior and prey choice over space and time, and novel aspects of Geocoris spp.’s relationships to their host plants. These observations open up new areas to be explored regarding the behavior of Geocoris spp. and their interactions with plant and herbivore populations.

  20. Abandoned seasonal livestock migration reflected by plant functional traits: A case study in Kyrgyz rangelands

    Science.gov (United States)

    Hoppe, Franziska; Zhusui Kyzy, Taalaigul; Usupbaev, Adilet; Schickoff, Udo

    2017-04-01

    At least 30% of Kyrgyz pasture areas are considered to be subject to vegetation and soil degradation. Since animal husbandry is the economic basis to sustain people's livelihoods, rangeland degradation presents a threat for the majority of the population. Recently, the usage of plant functional traits as a powerful tool for the characterization of vegetation dynamics in response to anthropogenic and natural disturbances has been put forward. Grazing is one of the most severe disturbances on vegetation, which concerns equally the loss of area and biomass. Because grazing is both depending on and affecting plant functional traits, important insights can be generated, based on this codependency. We hypothesized that the contrasting grazing intensity of summer and winter pastures is reflected by the chosen traits. We used traits such as plant height, flowering start, growth form as well as SLA (Specific Leaf Area) and LMA (Leaf Mass per Area). Based on former phytosociological classification of the main pasture types (summer and winter pastures), community structure and the traits of dominant plant species were analyzed. Our results showed that on winter pastures grazing decreased plant height and SLA and favored plants with an earlier flowering start as well as rosette plants and ascending plants. We conclude that the study of trait composition in relation to anthropogenic disturbances can provide important insights into the mechanism of plant response to grazing in high-altitude rangelands.

  1. Endemic shrubs in temperate arid and semiarid regions of northern China and their potentials for rangeland restoration.

    Science.gov (United States)

    Chu, Jianmin; Yang, Hongxiao; Lu, Qi; Zhang, Xiaoyan

    2015-06-03

    Some endemic shrubs in arid and semiarid ecosystems are in danger of extinction, and yet they can play useful roles in maintaining or restoring these ecosystems, thus practical efforts are needed to conserve them. The shrubs Amygdalus pedunculata Pall., Amygdalus mongolica (Maxim.) Ricker and Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f. are endemic species in arid and semiarid regions of northern China, where rangeland desertification is pronounced due to chronic overgrazing. In this study, we tested the hypothesis that these endemic shrubs have developed adaptations to arid and semiarid environments and could play critical roles as nurse species to initiate the process of rangeland recovery. Based on careful vegetation surveys, we analysed the niches of these species in relation to precipitation, temperature and habitats. All sampling plots were categorized by these endemics and sorted by the non-metric multidimensional scaling method. Species ratios of each life form and species co-occurrence rates with the endemics were also evaluated. Annual average temperature and annual precipitation were found to be the key factors determining vegetation diversity and distributions. Amygdalus pedunculata prefers low hills and sandy land in temperate semiarid regions. Amygdalus mongolica prefers gravel deserts of temperate semiarid regions. Ammopiptanthus mongolicus prefers sandy land of temperate arid regions. Communities of A. pedunculata have the highest diversity and the largest ratios of long-lived grass species, whereas those of A. mongolicus have the lowest diversity but the largest ratios of shrub species. Communities of A. mongolica are a transition between the first two community types. These findings demonstrate that our focal endemic shrubs have evolved adaptations to arid and semiarid conditions, thus they can be nurse plants to stabilize sand ground for vegetation restoration. We suggest that land managers begin using these shrub species to restore

  2. Seedbed preparation influence on morphometric characteristics of perennial grasses of a semi-arid rangeland in Kenya

    OpenAIRE

    Opiyo, Francis EO; Ekaya, Wellington N; Nyariki, Dickson M; Mureithi, Stephen Mwangi

    2011-01-01

    Semi-arid rangelands in Kenya are an important source of forage for both domestic and wild animals. However, indigenous perennial grasses notably Cenchrus ciliaris (African foxtail grass), Eragrostis superba (Maasai love grass) and Enteropogon macrostachyus (Bush rye grass) are disappearing at an alarming rate. Efforts to re-introduce them through restoration programs have often yielded little success. This can partly be attributed to failure of topsoil to capture and store scarce water to me...

  3. Assessment of Landsat multispectral scanner spectral indexes for monitoring arid rangeland

    Science.gov (United States)

    Musick, H. B.

    1984-01-01

    Correlations between spectral indices and vegetation parameters in south-central New Mexico were used to determine the utility of Landsat Multispectral Scanner (MSS) spectral indices in arid rangeland monitoring. In addition, spectral index change for 1976-1980 was calculated from retrospective MSS data and compared with qualitative ground truth in order to evaluate vegetation change detection by means of spectral indices. Brightness index change consistently differentiated between cover increase and decrease, but index change appears to have been offset from true cover change; this may at least partly be attributed to the failure of the methods used to standardize MSS scenes for differences in sensor response. Green vegetation indices, by contrast to brightness indices, failed to consistently differentiate between cover increase and decrease.

  4. The Rangeland Vegetation Simulator: A user-driven system for quantifying production, succession, disturbance and fuels in non-forest environments

    Science.gov (United States)

    Matt Reeves; Leonardo Frid

    2016-01-01

    Rangeland landscapes occupy roughly 662 million acres in the coterminous U.S. (Reeves and Mitchell 2011) and their vegetation responds quickly to climate and management, with high relative growth rates and inter-annual variability. Current national decision support systems in the U.S. such as the Interagency Fuels Treatment Decision Support System (IFT-DSS) require...

  5. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems

  6. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees

    Science.gov (United States)

    Hart, Nicole R.; Stockli, Daniel F.; Lavier, Luc L.; Hayman, Nicholas W.

    2017-06-01

    Onshore and offshore geological and geophysical observations and numerical modeling have greatly improved the conceptual understanding of magma-poor rifted margins. However, critical questions remain concerning the thermal evolution of the prerift to synrift phases of thinning ending with the formation of hyperextended crust and mantle exhumation. In the western Pyrenees, the Mauléon Basin preserves the structural and stratigraphic record of Cretaceous extension, exhumation, and sedimentation of the proximal-to-distal margin development. Pyrenean shortening uplifted basement and overlying sedimentary basins without pervasive shortening or reheating, making the Mauléon Basin an ideal locality to study the temporal and thermal evolution of magma-poor hyperextended rift systems through coupling bedrock and detrital zircon (U-Th)/He thermochronometric data from transects characterizing different structural rifting domains. These new data indicate that the basin was heated during early rifting to >180°C with geothermal gradients of 80-100°C/km. The proximal margin recorded rift-related exhumation/cooling at circa 98 Ma, whereas the distal margin remained >180°C until the onset of Paleocene Pyrenean shortening. Lithospheric-scale numerical modeling shows that high geothermal gradients, >80°C/km, and synrift sediments >180°C, can be reached early in rift evolution via heat advection by lithospheric depth-dependent thinning and blanketing caused by the lower thermal conductivity of synrift sediments. Mauléon Basin thermochronometric data and numerical modeling illustrate that reheating of basement and synrift strata might play an important role and should be considered in the future development of conceptual and numerical models for hyperextended magma-poor continental rifted margins.

  7. River basin management and estuarine needs: the Great Brak case study

    CSIR Research Space (South Africa)

    Huizinga, P

    1995-01-01

    Full Text Available The study of the effect of the Wolwedans Dam on the Great Brak Estuary and the development of the management plan to maintain a healthy environment yielded many interesting results. The general conclusion is that developments in a catchment...

  8. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Science.gov (United States)

    Nelson, C. H.; Gutiérrez Pastor, J.; Goldfinger, C.; Escutia, C.

    2012-11-01

    We summarize the importance of great earthquakes (Mw ≳ 8) for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1) radiometric dating (14C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The H method provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia) or very close (San Andreas) to the early window for another great earthquake. On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs) are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km) than on passive margins (~1000 km). The great earthquakes along the Cascadia and northern California margins cause seismic strengthening of the sediment, which

  9. Upper Ordovician-Lower Silurian shelf sequences of the Eastern Great Basin: Barn Hills and Lakeside Mountains, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.T. (Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Geosciences); Sheehan, P.M. (Milwaukee Public Museum, WI (United States). Dept of Geology)

    1993-04-01

    Detailed stratigraphic sections through Upper Ordovician-Lower Silurian shelf strata of the Eastern Great Basin were measured in two Utah localities, Barn Hills (Confusion Range) and Lakeside Mountains. Six major subfacies occur in these strata: mud-cracked and crinkly laminated subfacies, Laminated mudstone subfacies, cross-bedded grainstone subfacies, cross-laminated packstone subfacies, grainy bioturbated subfacies, muddy bioturbated subfacies, and thalassinoides burrowed subfacies. These occur in 1--10 m thick cycles in three facies: muddy cyclic laminite facies (tidal flats), cross-bedded facies (subtidal shoals), and bioturbated facies (moderate to low-energy shelf). The vertical facies succession, stacking patterns of meter-scale cycles, and exposure surfaces define correlatable sequences. The authors recognize four Upper Ordovician sequences (Mayvillian to Richmondian). An uppermost Ordovician (Hirnantian) sequence is missing in these sections but occurs basinward. Lower Silurian sequences are of early Llandoverian (A), middle Llandoverian (B), early late Llandoverian (C1--C3), late late Llandoverian (C4--C5), latest Llandoverian (C6) to early Wenlock age. In general, Upper Ordovician and latest Llandoverian-Wenlockian facies are muddier than intervening Llandoverian facies. The shift to muddier shelf facies in latest Llandoverian probably corresponds to the development of a rimmed shelf. The sequence framework improves correlation of these strata by combining sedimentologic patterns with the biostratigraphic data. For example, in the Lakesides, the Ordovician-Silurian boundary is shifted 37 m downward from recent suggestions. In addition, the sequence approach highlights intervals for which additional biostratigraphic information is needed.

  10. Cyberinfrastructure for remote environmental observatories: a model homogeneous sensor network in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick

    2017-04-01

    Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to

  11. Erosion Potential of a Burn Site in the Mojave-Great Basin Transition Zone: Interim Summary of One Year of Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Etyemezian, V.; Shafer, D.; Miller, J.; Kavouras, I.; Campbell, S.; DuBois, D.; King, J.; Nikolich, G.; Zitzer, S.

    2010-05-18

    A historic return interval of 100 years for large fires in deserts in the Southwest U.S. is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. This increase in fires has implications for management of Soil Sub-Project Corrective Action Units (CAUs) for which the Department of Energy, National Nuclear Security Administration Nevada Site office (NNSA/NSO) has responsibility. A series of studies has been initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn over to understand technical and perceived risk they might pose to site workers and public receptors in communities around the NTS, TTR, and NTTR; and to develop recommendations for stabilization and restoration after a fire. The first of these studies was undertaken at the Jacob fire, a lightning-caused fire approximately 12 kilometers north of Hiko, Nevada, that burned approximately 200 ha between August 6-8, 2008, and is representative of a transition zone on the NTS between the Mojave and Great Basin Deserts, where the largest number of Soil Sub-Project CAUs/CASs are located.

  12. A multi-criteria approach to Great Barrier Reef catchment (Queensland, Australia) diffuse-source pollution problem.

    Science.gov (United States)

    Greiner, R; Herr, A; Brodie, J; Haynes, D

    2005-01-01

    This paper presents a multi-criteria based tool for assessing the relative impact of diffuse-source pollution to the Great Barrier Reef (GBR) from the river basins draining into the GBR lagoon. The assessment integrates biophysical and ecological data of water quality and pollutant concentrations with socio-economic information pertaining to non-point source pollution and (potential) pollutant impact. The tool generates scores for each river basin against four criteria, thus profiling the basins and enabling prioritization of management alternatives between and within basins. The results support policy development for pollution control through community participation, scientific data integration and expert knowledge contributed by people from across the catchment. The results specifically provided support for the Reef Water Quality Protection Plan, released in October 2003. The aim of the plan is to provide a framework for reducing discharge of sediment, nutrient and other diffuse-source loads and (potential) impact of that discharge and for prioritising management actions both between and within river basins.

  13. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  14. Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia's Great Artesian Basin

    Science.gov (United States)

    Smerdon, Brian D.; Turnadge, Chris

    2015-08-01

    Hydraulic head measurements in the Great Artesian Basin (GAB), Australia, began in the early 20th century, and despite subsequent decades of data collection, a well-accepted smoothed potentiometric surface has continually assumed a contiguous aquifer system. Numerical modeling was used to produce alternative potentiometric surfaces for the Cadna-owie-Hooray aquifers with and without the effect of major faults. Where a fault created a vertical offset between the aquifers and was juxtaposed with an aquitard, it was assumed to act as a lateral barrier to flow. Results demonstrate notable differences in the central portion of the study area between potentiometric surfaces including faults and those without faults. Explicitly considering faults results in a 25-50 m difference where faults are perpendicular to the regional flow path, compared to disregarding faults. These potential barriers create semi-isolated compartments where lateral groundwater flow may be diminished or absent. Groundwater management in the GAB relies on maintaining certain hydraulic head conditions and, hence, a potentiometric surface. The presence of faulting has two implications for management: (1) a change in the inferred hydraulic heads (and associated fluxes) at the boundaries of regulatory jurisdictions; and (2) assessment of large-scale extractions occurring at different locations within the GAB.

  15. SOME ASPECTS OF HYDROLOGICAL RISK MANIFESTATION IN JIJIA BASIN

    Directory of Open Access Journals (Sweden)

    D. BURUIANĂ

    2012-03-01

    Full Text Available Jijia river basin surface geographically fits in Moldavian Plateau, Plain of Moldavia subunit. Being lowered by 200 to 300 m compared to adjacent subunits, it appears as a depression with altitudes between 270-300 m.Through its position in the extra-Carpathian region, away from the influence of oceanic air masses, but wide open to the action of air masses of eastern, north-eastern and northern continental origin, Jijia basin receives precipitations which vary according to the average altitude differing from the northern to the southern part of the basin (564 mm in north, 529.4 mm in Iasi. A characteristic phenomenon to the climate is represented by the torrential rains in the hot season, under the form of rain showers with great intensity, fact that influences the drainage of basin rivers. Jijia hydrographic basin is characterized by frequent and sharp variations of flow volumes and levels which lead to floods and flooding throughout the basin. The high waters generally occur between March and June, when approximately 70% of the annual stock is transported. The paper analyzes the main causes and consequences of flooding in the studied area, also identifying some structural and non-structural measures of flood protection applied by authorities in Jijia hydrographic basin. As a case study, the flood recorded in Dorohoi in June 28-29, 2010 is presented.

  16. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  17. Rangeland -- Plant response to elevated CO{sub 2}. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    An experiment is being designed to examine the influence of elevating CO2 levels on tallgrass prairie rangeland. Changes in biomass production, photosynthesis rates, and species composition (C3 versus C4) over time are to be examined. This report covers the period from August 15, 1988 to January 1, 1989. During this period the authors have had planning meetings in Manhattan, KS, and Washington, DC, with various investigators of the measurement and modeling groups within the elevated CO{sub 2} program. During this period detailed discussions with regard to the methodology were carried out. In addition, short-term experiments and prototype constructions were completed to assess design and materials. Because of changes in the methodology and, to a certain degree, the scope, they are requesting changes in the funding cycle to implement the project at the beginning of the growing cycle of the tallgrass prairie.

  18. The influence of grazing intensity on soil properties and degradation processes in Mediterranean rangelands (Extremadura, SW Spain)

    Science.gov (United States)

    Pulido-Fernández, Manuel; Schnabel, Susanne; Francisco Lavado-Contador, Joaquín

    2014-05-01

    Rangelands cover vast extensions of land in Spain (>90,000 km2), where a total amount of 13 millions of domestic animals graze extensively their pastures. By clear-cutting shrubs, removing selected trees and by cultivation, these rangelands were created from former Mediterranean oak forests, mainly composed by holm oak and cork oak (Quercus ilex rotundifolia and Q. suber) as tree species, Nowadays this land system is exploited economically in large farms (>100 ha), most of them held on private ownership (80% of total) and dedicated to extensive ranching. Overgrazing is common and the excessive stocking rates may deteriorate soil quality, causing economic losses and environmental damage. Many studies have been developed on the effects of livestock grazing over soil properties and degradation processes, most of them by only comparing extreme cases (e.g. ungrazed vs. grazed or overgrazed areas). The main goal of this study is to contribute to the understanding on how animal grazing affects soil properties and degradation processes. The study is particularly focused on soil compaction and sheet erosion as related to the reduction of vegetation cover by defoliation. Soil properties were analysed from 119 environmental units selected from 56 farms distributed throughout the region of Extremadura (SW Spain). The units are representative of different rangeland types, i.e. scrublands of Retama sphaerocarpa, dehesas (wooded rangelands) and treeless grasslands. Soil surface cover was determined along transects in September 2010 (antecedent rainfall: 413-923 mm) considering the following classes: bare ground, grasses, mosses, litter, stones (<2 mm) and rock outcrops. Farmer interviews were also conducted in order to quantify stocking rates and to assess land management in 12 out of 56 farms. In the farms where transects and farmer interviews could not be carried out, bare soil surface and livestock densities were estimated. Bare soil surface was determined by classifying

  19. Evidence for early hunters beneath the Great Lakes

    OpenAIRE

    O'Shea, John M.; Meadows, Guy A.

    2009-01-01

    Scholars have hypothesized that the poorly understood and rarely encountered archaeological sites from the terminal Paleoindian and Archaic periods associated with the Lake Stanley low water stage (10,000–7,500 BP) are lost beneath the modern Great Lakes. Acoustic and video survey on the Alpena-Amberley ridge, a feature that would have been a dry land corridor crossing the Lake Huron basin during this time period, reveals the presence of a series of stone features that match, in form and loca...

  20. Spatial distribution of overland flow and sediment yield in semi-arid rangelands

    International Nuclear Information System (INIS)

    Sarah, P.; Lavee, H.

    2009-01-01

    Feedbacks and mutual links exist among soil, vegetation and water; they enable co-evolution of these features within eco-geomorphic systems, These relations are fragile, especially in semi-arid areas where grazing is the main land use. The simples subdivision of the surface of many semi-arid rangelands is into a two-component mosaic pattern comprising shrub patches interspersed with open spaces, with the former acting s skinks for water and other resources, and the latter as sources. However close observations in areas under grazing in the northern Negev region of Israel suggested that the spatial patterns of surface components is more complicated, and that the open space between shrubs consists of two components: herbaceous areas, separated by trampling routes that support no vegetation. (Author)

  1. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    DeSutter, T.M.; Cihacek, L.J. [North Dakota State University, Fargo, ND (United States). Department of Soil Science

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

  2. Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Lee, Kathy E.; Banda, Jo A.; Choy, Steven J.; Gefell, Daniel J.; Minarik, Thomas A.; Moore, Jeremy N.; Jorgenson, Zachary G.

    2017-01-01

    Human activities introduce a variety of chemicals to the Laurentian Great Lakes including pesticides, pharmaceuticals, flame retardants, plasticizers, and solvents (collectively referred to as contaminants of emerging concern or CECs) potentially threatening the vitality of these valuable ecosystems. We conducted a basin-wide study to identify the presence of CECs and other chemicals of interest in 12 U.S. tributaries to the Laurentian Great Lakes during 2013 and 2014. A total of 292 surface-water and 80 sediment samples were collected and analyzed for approximately 200 chemicals. A total of 32 and 28 chemicals were detected in at least 30% of water and sediment samples, respectively. Concentrations ranged from 0.0284 (indole) to 72.2 (cholesterol) μg/L in water and 1.75 (diphenhydramine) to 20,800 μg/kg (fluoranthene) in sediment. Cluster analyses revealed chemicals that frequently co-occurred such as pharmaceuticals and flame retardants at sites receiving similar inputs such as wastewater treatment plant effluent. Comparison of environmental concentrations to water and sediment-quality benchmarks revealed that polycyclic aromatic hydrocarbon concentrations often exceeded benchmarks in both water and sediment. Additionally, bis(2-ethylhexyl) phthalate and dichlorvos concentrations exceeded water-quality benchmarks in several rivers. Results from this study can be used to understand organism exposure, prioritize river basins for future management efforts, and guide detailed assessments of factors influencing transport and fate of CECs in the Great Lakes Basin.

  3. Great earthquakes along the Western United States continental margin: implications for hazards, stratigraphy and turbidite lithology

    Directory of Open Access Journals (Sweden)

    C. H. Nelson

    2012-11-01

    Full Text Available We summarize the importance of great earthquakes (Mw ≳ 8 for hazards, stratigraphy of basin floors, and turbidite lithology along the active tectonic continental margins of the Cascadia subduction zone and the northern San Andreas Transform Fault by utilizing studies of swath bathymetry visual core descriptions, grain size analysis, X-ray radiographs and physical properties. Recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California margins are analyzed using two methods: (1 radiometric dating (14C method, and (2 relative dating, using hemipelagic sediment thickness and sedimentation rates (H method. The H method provides (1 the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2 the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that, on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~550 yr in northern Cascadia Basin and ~200 yr along northern California margin. The minimum recurrence times for great earthquakes are approximately 300 yr for the Cascadia subduction zone and 130 yr for the northern San Andreas Fault, which indicates both fault systems are in (Cascadia or very close (San Andreas to the early window for another great earthquake.

    On active tectonic margins with great earthquakes, the volumes of mass transport deposits (MTDs are limited on basin floors along the margins. The maximum run-out distances of MTD sheets across abyssal-basin floors along active margins are an order of magnitude less (~100 km than on passive margins (~1000 km. The great earthquakes along the Cascadia and northern California margins

  4. 81Br, 37Cl, and 87Sr studies to assess groundwater flow and solute sources in the southwestern Great Artesian Basin, Australia

    International Nuclear Information System (INIS)

    Gwynne, Rhys; Frape, Shaun; Shouakar-Stash, Orfan; Love, Andy

    2013-01-01

    The Great Artesian Basin (GAB) is a water source for more than 200,000 residents in central Australia. This study investigates the relationship of bromine and chlorine stable isotopes to groundwater chemistry in a confined aquifer in the southwestern GAB to better understand its flow regime and solute sources. δ 81 Br values range from +0.660/00 near the recharge area to +1.04 0/00, 150 km down gradient, while δ 37 Cl ranges from 00/00 to -2.50/00. While δ 37 Cl decreases with distance from the recharge area, δ 81 Br increases slightly. Bromide in the recharge area is possibly enriched from selective atmospheric processes causing fractionation in marine aerosols during transport. When confined and isolated from the atmosphere, increases in bromide and to a lesser extent strontium concentrations may contribute through water-rock interaction to changes in isotopic signatures along the flow system. 87 Sr/ 86 Sr values range from ∼0.717 near the recharge zone to a depleted 0.708 160 km down gradient. (authors)

  5. Macroecology, paleoecology, and ecological integrity of terrestrial species and communities of the interior Columbia basin and northern portions of the Klamath and Great Basins.

    Science.gov (United States)

    Bruce G. Marcot; L.K. Croft; J.F. Lehmkuhl; R.H. Naney; C.G. Niwa; W.R. Owen; R.E. Sandquist

    1998-01-01

    This report present information on biogeography and broad-scale ecology (macroecology) of selected fungi, lichens, bryophytes, vascular plants, invertebrates, and vertebrates of the interior Columbia River basin and adjacent areas. Rareplants include many endemics associated with local conditions. Potential plant and invertebrate bioindicators are identified. Species...

  6. Paleoecology of a Northern Michigan Lake and the relationship among climate, vegetation, and Great Lakes water levels

    Science.gov (United States)

    Booth, R.K.; Jackson, S.T.; Thompson, T.A.

    2002-01-01

    We reconstructed Holocene water-level and vegetation dynamics based on pollen and plant macrofossils from a coastal lake in Upper Michigan. Our primary objective was to test the hypothesis that major fluctuations in Great Lakes water levels resulted in part from climatic changes. We also used our data to provide temporal constraints to the mid-Holocene dry period in Upper Michigan. From 9600 to 8600 cal yr B.P. a shallow, lacustrine environment characterized the Mud Lake basin. A Sphagnum-dominated wetland occupied the basin during the mid-Holocene dry period (???8600 to 6600 cal yr B.P.). The basin flooded at 6600 cal yr B.P. as a result of rising water levels associated with the onset of the Nipissing I phase of ancestral Lake Superior. This flooding event occured contemporaneously with a well-documented regional expansion of Tsuga. Betula pollen increased during the Nipissing II phase (4500 cal yr B.P.). Macrofossil evidence from Mud Lake suggests that Betula alleghaniensis expansion was primarily responsible for the rising Betula pollen percentages. Major regional and local vegetational changes were associated with all the major Holocene highstands of the western Great Lakes (Nipissing I, Nipissing II, and Algoma). Traditional interpretations of Great Lakes water-level history should be revised to include a major role of climate. ?? 2002 University of Washington.

  7. Insights on the evolution of mid-ocean basins: the Atlantis Basin of southern Azores

    Science.gov (United States)

    Alves, T.; Bouriak, S.; Volkonskaya, A.; Monteiro, J.; Ivanov, M.

    2003-04-01

    Single-channel seismic reflection and sidescan (OKEAN) data acquired in an unstudied region of the North Atlantic give important insights on the evolution of mid-ocean basins. Located on the eastern flank of the Mid-Atlantic Ridge, south of the Azores Islands, the study area contains more than 1,000 ms two-way travel-time of sediments with a similar seismic stratigraphy to that of ODP sites 950-952 in the Madeira Abyssal Plain. Processed thickness values correspond to a maximum thickness of about 1450 m and an average thickness of more than 500 m based on velocity data from ODP sites 950-952. The structure of the surveyed area and its location in relation to the Madeira Abyssal Plain and Mid-Atlantic Ridge indicate the existence, south of Azores, of two distinct sedimentary basins separated by major structural lineaments (Azores-Gibraltar and Atlantis Fracture Zones) and by seamount chains (Cruiser-Great Meteor Chain, Plato-Atlantis Chain). The basement of the sedimentary basins is irregular, showing multiple dome-shaped volcanic structures identical to those in the Norwegian-Greenland Sea and Madeira Abyssal Plain. However, half-graben/graben basement blocks predominate east of 30ºW underneath a moderately deformed overburden. The complex structure observed most likely reflects changes in the direction and velocity of ocean spreading plus variations in the regional thermal gradients induced by local hot spots. In parallel, some of the sub-surface structures identified next to basin-bounding Fracture Zones may have resulted from transtensional and transpressional tectonism.

  8. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    Science.gov (United States)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for

  9. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    Science.gov (United States)

    Davis, John M.; Ekman, Drew R.; Teng, Quincy; Ankley, Gerald T.; Berninger, Jason P.; Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Schroeder, Anthony L.; Villeneuve, Daniel L.; Jorgenson, Zachary G.; Lee, Kathy E.; Collette, Timothy W.

    2016-01-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493–2502.

  10. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile

    Science.gov (United States)

    Uribe, Javier; Muñoz, José F.; Gironás, Jorge; Oyarzún, Ricardo; Aguirre, Evelyn; Aravena, Ramón

    2015-11-01

    Closed basins are catchments whose drainage networks converge to lakes, salt flats or alluvial plains. Salt flats in the closed basins in arid northern Chile are extremely important ecological niches. The Salar del Huasco, one of these salt flats located in the high plateau (Altiplano), is a Ramsar site located in a national park and is composed of a wetland ecosystem rich in biodiversity. The proper management of the groundwater, which is essential for the wetland function, requires accurate estimates of recharge in the Salar del Huasco basin. This study quantifies the spatio-temporal distribution of the recharge, through combined use of isotopic characterization of the different components of the water cycle and a rainfall-runoff model. The use of both methodologies aids the understanding of hydrological behavior of the basin and enabled estimation of a long-term average recharge of 22 mm/yr (i.e., 15 % of the annual rainfall). Recharge has a high spatial variability, controlled by the geological and hydrometeorological characteristics of the basin, and a high interannual variability, with values ranging from 18 to 26 mm/yr. The isotopic approach allowed not only the definition of the conceptual model used in the hydrological model, but also eliminated the possibility of a hydrogeological connection between the aquifer of the Salar del Huasco basin and the aquifer that feeds the springs of the nearby town of Pica. This potential connection has been an issue of great interest to agriculture and tourism activities in the region.

  11. Insights from a synthesis of old and new climate-proxy data from the Pyramid and Winnemucca lake basins for the period 48 to 11.5 cal ka

    Science.gov (United States)

    Benson, Larry; Smoot, J.P.; Lund, S.P.; Mensing, S.A.; Foit, F.F.; Rye, R.O.

    2013-01-01

    A synthesis of old and new paleoclimatic data from the Pyramid and Winnemucca lake basins indicates that, between 48.0 and 11.5·103 calibrated years BP (hereafter ka), the climate of the western Great Basin was, to a degree, linked with the climate of the North Atlantic. Paleomagnetic secular variation (PSV) records from Pyramid Lake core PLC08-1 were tied to the GISP2 ice-core record via PSV matches to North Atlantic sediment cores whose isotopic and(or) carbonate records could be linked to the GISP2 δ18O record. Relatively dry intervals in the western Great Basin were associated with cold Heinrich events and relatively wet intervals were associated with warm Dansgaard-Oeschger (DO) oscillations. The association of western Great Basin dry events with North Atlantic cold events (and vice versa) switched sometime after the Laurentide Ice Sheet (LIS) reached its maximum extent. For example, the Lahontan highstand, which culminated at 15.5 ka, and a period of elevated lake level between 13.1 and 11.7 ka were associated with cold North Atlantic conditions, the latter period with the Youngest Dryas event. Relatively dry periods were associated with the Bølling and Allerød warm events. A large percentage of the LIS may have been lost to the North Atlantic during Heinrich events 1 and 2 and may have resulted in the repositioning of the Polar Jet Stream over North America. The Trego Hot Springs, Wono, Carson Sink, and Marble Bluff tephras found in core PLC08-1 have been assigned GISP2 calendar ages of respectively, 29.9, 33.7, 34.1, and 43.2 ka. Given its unique trace-element chemistry, the Carson Sink Bed is the same as Wilson Creek Ash 15 in the Mono Lake Basin. This implies that the Mono Lake magnetic excursion occurred at approximately 34 ka and it is not the Laschamp magnetic excursion. The entrance of the First Americans into the northern Great Basin is dated to approximately 14.4 ka, a time when the climate was relatively dry. Evidence for human occupation of

  12. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    Science.gov (United States)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  13. Evaluation of Rambouillet, Polypay, and Romanov-White Dorper x Rambouillet ewes mated to terminal sires in an extensive rangeland production system: Lamb production

    Science.gov (United States)

    Ewe productivity (i.e., total numbers or weight of lamb weaned ÷ number of breeding ewes) is a key indicator of lamb production efficiency. This second-generation study compared various measures of ewe productivity and ewe and lamb performance in an extensive rangeland production system of ewes of 3...

  14. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems

    Science.gov (United States)

    Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Arkle, Robert S.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.

    2014-01-01

    1. Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish sustainable ecosystems in which native species are well represented. Long-term effectiveness of these treatments has rarely been evaluated. 2. We studied vegetation at 88 sites where aerial or drill seeding was implemented following fires between 1990 and 2003 in Great Basin (USA) shrublands. We examined sites on loamy soils that burned only once since 1970 to eliminate confounding effects of recurrent fire and to assess soils most conducive to establishment of seeded species. We evaluated whether seeding provided greater cover of perennial seeded species than burned–unseeded and unburned–unseeded sites, while also accounting for environmental variation. 3. Post-fire seeding of native perennial grasses generally did not increase cover relative to burned–unseeded areas. Native perennial grass cover did, however, increase after drill seeding when competitive non-natives were not included in mixes. Seeding non-native perennial grasses and the shrub Bassia prostrata resulted in more vegetative cover in aerial and drill seeding, with non-native perennial grass cover increasing with annual precipitation. Seeding native shrubs, particularly Artemisia tridentata, did not increase shrub cover or density in burned areas. Cover of undesirable, non-native annual grasses was lower in drill seeded relative to unseeded areas, but only at higher elevations. 4. Synthesis and applications. Management objectives are more likely to be met in high-elevation or precipitation locations where establishment of perennial grasses occurred. On lower and drier sites, management objectives are unlikely to be met with seeding alone

  15. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    Science.gov (United States)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  16. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    Science.gov (United States)

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  17. Encounters with Pinyon-Juniper influence riskier movements in Greater Sage-Grouse across the Great Basin

    Science.gov (United States)

    Prochazka, Brian; Coates, Peter S.; Ricca, Mark; Casazza, Michael L.; Gustafson, K. Ben; Hull, Josh M.

    2016-01-01

    Fine-scale spatiotemporal studies can better identify relationships between individual survival and habitat fragmentation so that mechanistic interpretations can be made at the population level. Recent advances in Global Positioning System (GPS) technology and statistical models capable of deconstructing high-frequency location data have facilitated interpretation of animal movement within a behaviorally mechanistic framework. Habitat fragmentation due to singleleaf pinyon (Pinus monophylla; hereafter pinyon) and Utah juniper (Juniperus osteosperma; hereafter juniper) encroachment into sagebrush (Artemisia spp.) communities is a commonly implicated perturbation that can adversely influence greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) demographic rates. Using an extensive GPS data set (233 birds and 282,954 locations) across 12 study sites within the Great Basin, we conducted a behavioral change point analysis and subsequently constructed Brownian bridge movement models from each behaviorally homogenous section. We found a positive relationship between modeled movement rate and probability of encountering pinyon-juniper with significant variation among age classes. The probability of encountering pinyon-juniper among adults was two and three times greater than that of yearlings and juveniles, respectively. However, the movement rate in response to the probability of encountering pinyon-juniper trees was 1.5 times greater for juveniles. We then assessed the risk of mortality associated with an interaction between movement rate and the probability of encountering pinyon-juniper using shared frailty models. During pinyon-juniper encounters, on average, juvenile, yearling, and adult birds experienced a 10.4%, 0.2%, and 0.3% reduction in annual survival probabilities. Populations that used pinyon-juniper habitats with a frequency ≥ 3.8 times the overall mean experienced decreases in annual survival probabilities of 71.1%, 0.9%, and 0.9%. This

  18. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

    Science.gov (United States)

    Wang, Bin; Waters, Cathy; Orgill, Susan; Gray, Jonathan; Cowie, Annette; Clark, Anthony; Liu, De Li

    2018-07-15

    Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R 2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha -1 at 0-5cm and 9.16MgCha -1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    Science.gov (United States)

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  20. Pesticide presence in Great Lakes tributaries and comparison to ToxCast and other water quality benchmarks to screen for potential biological effects

    Science.gov (United States)

    Product Description:Pesticides are a broad category of current use chemicals that pose potential threats to aquatic organisms in and around the Great Lakes basin. In this study, we monitored for over 200 pesticides or their break down products in 16 major tributaries to the Great...

  1. Using RapidEye and MODIS Data Fusion to Monitor Vegetation Dynamics in Semi-Arid Rangelands in South Africa

    Directory of Open Access Journals (Sweden)

    Andreas Tewes

    2015-05-01

    Full Text Available Image time series of high temporal and spatial resolution capture land surface dynamics of heterogeneous landscapes. We applied the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model algorithm to multi-spectral images covering two semi-arid heterogeneous rangeland study sites located in South Africa. MODIS 250 m resolution and RapidEye 5 m resolution images were fused to produce synthetic RapidEye images, from June 2011 to July 2012. We evaluated the performance of the algorithm by comparing predicted surface reflectance values to real RapidEye images. Our results show that ESTARFM predictions are accurate, with a coefficient of determination for the red band 0.80 < R2 < 0.92, and for the near-infrared band 0.83 < R2 < 0.93, a mean relative bias between 6% and 12% for the red band and 4% to 9% in the near-infrared band. Heterogeneous vegetation at sub-MODIS resolution is captured adequately: A comparison of NDVI time series derived from RapidEye and ESTARFM data shows that the characteristic phenological dynamics of different vegetation types are reproduced well. We conclude that the ESTARFM algorithm allows us to produce synthetic remote sensing images at high spatial combined with high temporal resolution and so provides valuable information on vegetation dynamics in semi-arid, heterogeneous rangeland landscapes.

  2. Geochemical element mobility during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin (Saskatchewan, Canada)

    International Nuclear Information System (INIS)

    Kister, Philippe

    2003-01-01

    In order to understand the mechanisms of migration and deposition of ore elements, it is essential to determine the timing, source, and destination of the geochemical element mass transfers and/or transportation on a scale encompassing the great sedimentary basins. The purpose of this study is to trace and to date the element migrations that occurred during the history of a Paleo-proterozoic clastic sedimentary basin, the Athabasca Basin, which hosts the world's largest and richest uranium deposits. As this geological environment was proved to be efficient to preserve high grade ore deposits for over more than one billion years, it provides an opportunity to study some natural analogues of deep geological nuclear waste storage. Five research topics were studied: 3D modelling of the distribution of normative minerals and trace elements on a basin-wide scale; U-Pb and Rb-Sr systematics; average chemical age estimation; thermodynamic modelling of the major mineralogical assemblages; U-Pb geochronology of uranium oxides. Some elements have remained immobile (Zr) since their initial sedimentary deposition, or were transferred from one phase to another (Al, Th). Other elements have been transported during fluid flow events that occurred: (1) on a basin wide scale during diagenesis (REE, Y, Sr, Fe), (2) at the unconformity and in the vicinity of the fault zones that represent preferential fluid flow pathways between the basement and the sandstone cover (U, Ni, As, B, Mg, K, Fe, Sr, REE), (3) during the late fault reactivation events associated with the basin uplift (U, Pb, Ni, S, Sr, REE). The successive tectonic events related to the geodynamical context that lead to the formation of these high-grade U concentrations (1460 Ma, 1335 Ma and 1275 Ma in the McArthur River deposit), did not however systematically occur in the whole basin (1275 Ma only at Shea Creek). The exceptionally high grade and tonnages of some deposits seem to be related to a larger number of U

  3. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    Science.gov (United States)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  4. Environmentally relevant chemical mixtures of concern in waters of United States tributaries to the Great Lakes

    Science.gov (United States)

    Elliott, Sarah M.; Brigham, Mark E.; Kiesling, Richard L.; Schoenfuss, Heiko L.; Jorgenson, Zachary G.

    2018-01-01

    The North American Great Lakes are a vital natural resource that provide fish and wildlife habitat, as well as drinking water and waste assimilation services for millions of people. Tributaries to the Great Lakes receive chemical inputs from various point and nonpoint sources, and thus are expected to have complex mixtures of chemicals. However, our understanding of the co‐occurrence of specific chemicals in complex mixtures is limited. To better understand the occurrence of specific chemical mixtures in the US Great Lakes Basin, surface water from 24 US tributaries to the Laurentian Great Lakes was collected and analyzed for diverse suites of organic chemicals, primarily focused on chemicals of concern (e.g., pharmaceuticals, personal care products, fragrances). A total of 181 samples and 21 chemical classes were assessed for mixture compositions. Basin wide, 1664 mixtures occurred in at least 25% of sites. The most complex mixtures identified comprised 9 chemical classes and occurred in 58% of sampled tributaries. Pharmaceuticals typically occurred in complex mixtures, reflecting pharmaceutical‐use patterns and wastewater facility outfall influences. Fewer mixtures were identified at lake or lake‐influenced sites than at riverine sites. As mixture complexity increased, the probability of a specific mixture occurring more often than by chance greatly increased, highlighting the importance of understanding source contributions to the environment. This empirically based analysis of mixture composition and occurrence may be used to focus future sampling efforts or mixture toxicity assessments. 

  5. Cultivation and characterization of thermophilic Nitrospira species from geothermal springs in the US Great Basin, China, and Armenia.

    Science.gov (United States)

    Edwards, Tara A; Calica, Nicole A; Huang, Dolores A; Manoharan, Namritha; Hou, Weiguo; Huang, Liuqin; Panosyan, Hovik; Dong, Hailiang; Hedlund, Brian P

    2013-08-01

    Despite its importance in the nitrogen cycle, little is known about nitrite oxidation at high temperatures. To bridge this gap, enrichment cultures were inoculated with sediment slurries from a variety of geothermal springs. While nitrite-oxidizing bacteria (NOB) were successfully enriched from seven hot springs located in US Great Basin, south-western China, and Armenia at ≤ 57.9 °C, all attempts to enrich NOB from > 10 hot springs at ≥ 61 °C failed. The stoichiometric conversion of nitrite to nitrate, chlorate sensitivity, and sensitivity to autoclaving all confirmed biological nitrite oxidation. Regardless of origin, all successful enrichments contained organisms with high 16S rRNA gene sequence identity (≥ 97%) with Nitrospira calida. In addition, Armenian enrichments also contained close relatives of Nitrospira moscoviensis. Physiological properties of all enrichments were similar, with a temperature optimum of 45-50 °C, yielding nitrite oxidation rates of 7.53 ± 1.20 to 23.0 ± 2.73 fmoles cell(-1) h(-1), and an upper temperature limit between 60 and 65 °C. The highest rates of NOB activity occurred with initial NO2 - concentrations of 0.5-0.75 mM; however, lower initial nitrite concentrations resulted in shorter lag times. The results presented here suggest a possible upper temperature limit of 60-65 °C for Nitrospira and demonstrate the wide geographic range of Nitrospira species in geothermal environments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records

    Science.gov (United States)

    Biondi, Franco; Rossi, Sergio

    2015-08-01

    Water is the main limiting resource for natural and human systems, but the effect of hydroclimatic variability on woody species in water-limited environments at sub-monthly time scales is not fully understood. Plant-water relationships of single-leaf pinyon pine ( Pinus monophylla) were investigated using hourly dendrometer and environmental data from May 2006 to October 2011 in the Great Basin Desert, one of the driest regions of North America. Average radial stem increments showed an annual range of variation below 1.0 mm, with a monotonic steep increase from May to July that yielded a stem enlargement of about 0.5 mm. Stem shrinkage up to 0.2 mm occurred in late summer, followed by an abrupt expansion of up to 0.5 mm in the fall, at the arrival of the new water year precipitation. Subsequent winter shrinkage and enlargement were less than 0.3 mm each. Based on 4 years with continuous data, diel cycles varied in both timing and amplitude between months and years. Phase shifts in circadian stem changes were observed between the growing season and the dormant one, with stem size being linked to precipitation more than to other water-related indices, such as relative humidity or soil moisture. During May-October, the amplitude of the phases of stem contraction, expansion, and increment was positively related to their duration in a nonlinear fashion. Changes in precipitation regime, which affected the diel phases especially when lasting more than 5-6 h, could substantially influence the dynamics of water depletion and replenishment in single-leaf pinyon pine.

  7. A population model of the impact of a rodenticide containing strychnine on Great Basin Gophersnakes (Pituophis catenifer deserticola).

    Science.gov (United States)

    Bishop, Christine A; Williams, Kathleen E; Kirk, David A; Nantel, Patrick; Reed, Eric; Elliott, John E

    2016-09-01

    Strychnine is a neurotoxin and an active ingredient in some rodenticides which are placed in burrows to suppress pocket gopher (Thomomys talpoides) populations in range and crop land in western North America. The population level impact was modelled of the use of strychnine-based rodenticides on a non-target snake species, the Great Basin Gophersnake (Pituophis catenifer deserticola), which is a predator of pocket gopher and a Species at Risk in Canada. Using information on population density, demographics, and movement and habitat suitability for the Gophersnake living in an agricultural valley in BC, Canada, we estimated the impact of the poisoning of adult snakes on the long-term population size. To determine the area where Gophersnakes could be exposed to strychnine, we used vendor records of a rodenticide, and quantified the landcover areas of orchards and vineyards where the compound was most commonly applied. GIS analysis determined the areas of overlap between those agricultural lands and suitable habitats used by Gophersnakes. Stage-based population matrix models revealed that in a low density (0.1/ha) population scenario, a diet of one pocket gopher per year wherein 10 % of them carried enough strychnine to kill an adult snake could cause the loss of 2 females annually from the population and this would reduce the population by 35.3 % in 25 years. Under the same dietary exposure, up to 35 females could die per year in a high density (0.4/ha) population which would result in a loss of 50 % of adults in 25 years.

  8. Regional trend of coal metamorphism in the major Gondwana basins of India

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, A K; Alam, M M; Bunerjee, B

    1983-04-01

    The coal-bearing Gondwana sedimentaries are of great economic importance as they possess over 98% of coal resources of India. Within the Gondwana supergroup coal-bearing formations are confined in the Lower Gondwana sequence (Damuda group). The development of coal seams in the different basins were genetically related to the evolutionary pattern of each basin. The imprint of such diverse tectono-geomorphic conditions prevailing over the vast Peninsular Shield, and their regional impact in individual basins are well preserved in the different lithofacies of this thick-pile of sedimentary sequence. In fact constituting coal facies served as a sensitive recorder of the past episode enacted for long geological time span in each basin of the Gondwana grabens. In the present paper an attempt is made to incorporate the salient features of the operative processes in the major Gondwana basins with special reference to coal metamorphism. This has been done considering mass of analytical and sub-surface data available from the physico-chemical survey of coal seams of major coalfields, and extensive drilling operations carried out over the vast virgin tracts of important coalfields.

  9. Performance and effects of land cover type on synthetic surface reflectance data and NDVI estimates for assessment and monitoring of semi-arid rangeland

    Science.gov (United States)

    Olexa, Edward M.; Lawrence, Rick L

    2014-01-01

    Federal land management agencies provide stewardship over much of the rangelands in the arid andsemi-arid western United States, but they often lack data of the proper spatiotemporal resolution andextent needed to assess range conditions and monitor trends. Recent advances in the blending of com-plementary, remotely sensed data could provide public lands managers with the needed information.We applied the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to five Landsat TMand concurrent Terra MODIS scenes, and used pixel-based regression and difference image analyses toevaluate the quality of synthetic reflectance and NDVI products associated with semi-arid rangeland. Pre-dicted red reflectance data consistently demonstrated higher accuracy, less bias, and stronger correlationwith observed data than did analogous near-infrared (NIR) data. The accuracy of both bands tended todecline as the lag between base and prediction dates increased; however, mean absolute errors (MAE)were typically ≤10%. The quality of area-wide NDVI estimates was less consistent than either spectra lband, although the MAE of estimates predicted using early season base pairs were ≤10% throughout the growing season. Correlation between known and predicted NDVI values and agreement with the 1:1regression line tended to decline as the prediction lag increased. Further analyses of NDVI predictions,based on a 22 June base pair and stratified by land cover/land use (LCLU), revealed accurate estimates through the growing season; however, inter-class performance varied. This work demonstrates the successful application of the STARFM algorithm to semi-arid rangeland; however, we encourage evaluation of STARFM’s performance on a per product basis, stratified by LCLU, with attention given to the influence of base pair selection and the impact of the time lag.

  10. Incidental oligotrophication of North American Great Lakes.

    Science.gov (United States)

    Evans, Mary Anne; Fahnenstiel, Gary; Scavia, Donald

    2011-04-15

    Phytoplankton production is an important factor in determining both ecosystem stability and the provision of ecosystem goods and services. The expansive and economically important North American Great Lakes are subjected to multiple stressors and understanding their responses to those stresses is important for understanding system-wide ecological controls. Here we show gradual increases in spring silica concentration (an indicator of decreasing growth of the dominant diatoms) in all basins of Lakes Michigan and Huron (USA and Canadian waters) between 1983 and 2008. These changes indicate the lakes have undergone gradual oligotrophication coincident with and anticipated by nutrient management implementation. Slow declines in seasonal drawdown of silica (proxy for seasonal phytoplankton production) also occurred, until recent years, when lake-wide responses were punctuated by abrupt decreases, putting them in the range of oligotrophic Lake Superior. The timing of these dramatic production drops is coincident with expansion of populations of invasive dreissenid mussels, particularly quagga mussels, in each basin. The combined effect of nutrient mitigation and invasive species expansion demonstrates the challenges facing large-scale ecosystems and suggest the need for new management regimes for large ecosystems.

  11. The distribution of hillslope-channel interactions in a rangeland watershed

    Science.gov (United States)

    Leslie M. Reid

    1998-01-01

    The distribution of erosion and deposition in a basin--and thus of the major controls on basin evolution--is dependent upon the local balance between sediment transport and sediment supply. This balance, in turn, reflects the nature, strength, and distribution of interactions between hillslope and channel processes.

  12. Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States†

    Science.gov (United States)

    Lemons, Angela R.; Hogan, Mary Beth; Gault, Ruth A.; Holland, Kathleen; Sobek, Edward; Olsen-Wilson, Kimberly A.; Park, Yeonmi; Park, Ju-Hyeong; Gu, Ja Kook; Kashon, Michael L.; Green, Brett J.

    2017-01-01

    Recent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region. PMID:28091681

  13. Role of burrowing activities of the Great Basin pocket mouse (Perognathus parvus) in the dispersal of radionuclides on a decommissioned pond

    International Nuclear Information System (INIS)

    Landeen, D.S.; Mitchell, R.M.

    1982-08-01

    The intrusion of waste burial sites by animals is a common occurrence at nuclear waste facilities. This study identifies parameters associated with burrowing activities of the Great Basin Pocket Mouse at the Hanford Site in southeastern Washington. The objectives of the study were to: (1) document and compare burrow depths on a control site and a decommissioned radioactive waste pond and (2) document 137 Cs concentrations in pocket mice and the soil mounds created by their burrowing activities. Pocket mice burrowed deeper in the backfilled burial site (anti x = 72 cm) than they did in the control site (anti x = 38 cm). The small amounts of 137 Cs found in the mice were an order of magnitude below what was present in the mounds. This indicates that the burrowing habits of these mice and subsequent mound construction may be more important in terms of radionuclide dispersal than the small amounts contained within their bodies. The 137 Cs values reported in the mice and mounds are below Rockwell Hanford Operations (Rockwell) surface soil contamination limits. Information received from test plots will be used in formulating appropriate control mechanisms which may be deployed in the future. In the interim, surface stabilization efforts are being conducted on waste sites to control and deter burrowing animals

  14. The Ogaden Basin, Ethiopia: an underexplored sedimentary basin

    Energy Technology Data Exchange (ETDEWEB)

    Teitz, H.H.

    1991-01-01

    A brief article examines the Ogaden Basin in Ethiopia in terms of basin origin, basin fill and the hydrocarbon exploration history and results. The natural gas find in pre-Jurassic sandstones, which appears to contain substantial reserves, justifies continuing investigations in this largely underexplored basin. (UK).

  15. Mapping Erosion Risk in California's Rangelands Using the Universal Soil Loss Equation (USLE)

    Science.gov (United States)

    Salls, W. B.; O'Geen, T. T.

    2015-12-01

    Soil loss constitutes a multi-faceted problem for agriculture: in addition to reducing soil fertility and crop yield, it compromises downstream water quality. Sediment itself is a major issue for aquatic ecosystems, but also serves as a vector for transporting nutrients, pesticides, and pathogens. Rangelands are thought to be a contributor to water quality degradation in California, particularly in the northern Coast Range. Though total maximum daily loads (TMDLs) have been imposed in some watersheds, and countless rangeland water quality outreach activities have been conducted, the connection between grazing intensity recommendations and changes in water quality is poorly understood at the state level. This disconnect gives rise to poorly informed regulations and discourages adoption of best management practices by ranchers. By applying the Universal Soil Loss Equation (USLE) at a statewide scale, we highlighted areas most prone to erosion. We also investigated how two different grazing intensity scenarios affect modeled soil loss. Geospatial data layers representing the USLE parameters—rainfall erosivity, soil erodibility, slope length and steepness, and cover—were overlaid to model annual soil loss. Monitored suspended sediment data from a small North Coast watershed with grazing as the predominant land use was used to validate the model. Modeled soil loss values were nearly one order of magnitude higher than monitored values; average soil loss feeding the downstream-most site was modeled at 0.329 t ha-1 yr-1, whereas storm-derived sediment passing the site over two years was calculated to be 0.037 t ha-1 yr-1. This discrepancy may stem from the fact that the USLE models detached sediment, whereas stream monitoring reflects sediment detached and subsequently transported to the waterway. Preliminary findings from the statewide map support the concern that the North Coast is particularly at risk given its combination of intense rain, erodible soils, and

  16. Contribution to the stratigraphy of the onshore Paraiba Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Rossetti, Dilce F.; Valeriano, Marcio M., E-mail: rossetti@dsr.inpe.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Divisao de Sensoriamento Remoto; Goes, Ana M.; Brito-Neves, Benjamim B. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Geociencias; Bezerra, Francisco H.R.; Ochoa, Felipe L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Ciencias Exatas e da Terra. Departamento de Geologia

    2012-06-15

    Several publications have contributed to improve the stratigraphy of the Paraiba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono- sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraiba Basin. Except for a few outcrops of carbonatic-rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraiba Basin. (author)

  17. Contribution to the stratigraphy of the onshore Paraiba Basin, Brazil

    International Nuclear Information System (INIS)

    Rossetti, Dilce F.; Valeriano, Marcio M.; Goes, Ana M.; Brito-Neves, Benjamim B.; Bezerra, Francisco H.R.; Ochoa, Felipe L.

    2012-01-01

    Several publications have contributed to improve the stratigraphy of the Paraiba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono- sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraiba Basin. Except for a few outcrops of carbonatic-rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraiba Basin. (author)

  18. Effects of land use change and management on SOC and soil quality in Mediterranean rangelands areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Requejo, Ana; Zornoza, Raúl

    2017-04-01

    INTRODUCTION Rangelands in the Iberian Peninsula occupy more than 90,000 km2. These rangelands were created from the former Mediterranean oak forests, mainly composed of holm oak and cork oak (Quercus ilex rotundifolia and Quercus suber), by clear-cutting shrubs, removing selected trees and cultivating. These man-made landscapes are called 'dehesas' in Spain and 'montados' in Portugal. Between 1955 and 1981, more than 5,000 km2 of dehesas was converted from pastureland to cultivated land. This process has been accelerated since 1986 owing to subsidies from the European Common Agricultural Policy (Parras-Alcántara et al., 2015a). The role that natural rangelands play in the global carbon cycle is extremely important, accounting for 10-30% of the world's total soil organic carbon (SOC), in addition, SOC concentration is closely related to soil quality and vegetation productivity (Brevik, 2012). Therefore, to study the land use and management changes is important, particularly in Mediterranean soils, as they are characterized by low organic carbon content, furthermore, the continuous use of ploughing for grain production is the principal cause of soil degradation. Therefore, land use decisions and management systems can increase or decrease SOC content and stock (Corral-Fernández et al., 2013; Parras-Alcántara et al., 2014, 2015a and 2015b; Parras-Alcántara and Lozano-García, 2014) MATERIAL AND METHODS A field study was conducted to determine the land use change (Mediterranean evergreen oak woodland to olive grove and cereal, all of them managed under conventional tillage and under conservationist practices) effects on SOC stocks and the soil quality (Stratification Ratio) in Los Pedroches valley, southern Spain. RESULTS Results for the present study indicate that management practices had little effect on SOC storage in dehesas. The stratification ratio was >2 both under conventional tillage and under organic farming, so, soils under dehesa had high quality

  19. Geohydrologic reconnaissance of the upper Potomac River basin

    Science.gov (United States)

    Trainer, Frank W.; Watkins, Frank A.

    1975-01-01

    The upper Potomac River basin, in the central Appalachian region in Pennsylvania, Maryland, Virginia, and West Virginia, is a humid temperate region of diverse fractured rocks. Three geohydrologic terranes, which underlie large parts of the basin, are described in terms of their aquifer characteristics and of the magnitude and duration of their base runoff: (1) fractured rock having a thin regolith, (2) fractured rock having a thick regolith, and (3) carbonate rock. Crystalline rock in the mountainous part of the Blue Ridge province and shale with tight sandstone in the folded Appalachians are covered with thin regolith. Water is stored in and moves through fairly unmodified fractures. Average transmissivity (T) is estimated to be 150 feet squared per day, and average storage coefficient (S), 0.005. Base runoff declines rapidly from its high levels during spring and is poorly sustained during the summer season of high evapotranspiration. The rocks in this geohydrologic terrane are the least effective in the basin for the development of water supplies and as a source of dry-weather streamflow. Crystalline and sedimentary rocks in the Piedmont province and in the lowland part of the Blue Ridge province are covered with thick regolith. Water is stored in and moves through both the regolith and the underlying fractured rock. Estimated average values for aquifer characteristics are T, 200 feet squared per day, and S, 0.01. Base runoff is better sustained in this terrane than in the thin-regolith terrane and on the average .is about twice as great. Carbonate rock, in which fractures have been widened selectively by solution, especially near streams, has estimated average aquifer characteristics of T, 500 feet squared per day, and S, 0.03-0.04. This rock is the most effective in the basin in terms of water supply and base runoff. Where its fractures have not been widened by solution, the carbonate rock is a fractured-rock aquifer much like the noncarbonate rock. At low

  20. A simple prioritization tool to diagnose impairment of stream temperature for coldwater fishes in the Great Basin

    Science.gov (United States)

    Falke, Jeffrey A.; Dunham, Jason B.; Hockman-Wert, David; Pahl, Randy

    2016-01-01

    We provide a simple framework for diagnosing the impairment of stream water temperature for coldwater fishes across broad spatial extents based on a weight-of-evidence approach that integrates biological criteria, species distribution models, and geostatistical models of stream temperature. As a test case, we applied our approach to identify stream reaches most likely to be thermally impaired for Lahontan Cutthroat Trout Oncorhynchus clarkii henshawi in the upper Reese River, located in the northern Great Basin, Nevada. We first evaluated the capability of stream thermal regime descriptors to explain variation across 170 sites, and we found that the 7-d moving average of daily maximum stream temperatures (7DADM) provided minimal among-descriptor redundancy and, based on an upper threshold of 20°C, was also a good indicator of acute and chronic thermal stress. Next, we quantified the range of Lahontan Cutthroat Trout within our study area using a geographic distribution model. Finally, we used a geostatistical model to assess spatial variation in 7DADM and predict potential thermal impairment at the stream reach scale. We found that whereas 38% of reaches in our study area exceeded a 7DADM of 20°C and 35% were significantly warmer than predicted, only 17% both exceeded the biological criterion and were significantly warmer than predicted. This filtering allowed us to identify locations where physical and biological impairment were most likely within the network and that would represent the highest management priorities. Although our approach lacks the precision of more comprehensive approaches, it provides a broader context for diagnosing impairment and is a useful means of identifying priorities for more detailed evaluations across broad and heterogeneous stream networks.