WorldWideScience

Sample records for grc earth day

  1. One Day on Earth

    CERN Multimedia

    2011-01-01

    In collaboration with the CineGlobe Film Festival, the One Day on Earth global film project invites you to share your story of scientific inspiration, scientific endeavors and technological advancement on 11 November 2011 (11.11.11).   Technology in the 21st century continuously inspires us to re-imagine the world. From outer-space to cyberspace, new ideas that we hope will improve the lives of future generations keep us in a state of change. However, these new technologies may alter the nature of our shared existence in ways not yet known. On 11.11.11, we invite you to record the exciting ways that science is a part of your life, together with people around the world who will be documenting their lives on this day of global creation. See www.onedayonearth.org for details on how to participate.

  2. Sun-Earth Day, 2001

    Science.gov (United States)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  3. Earth Day 2012: Greening Government

    Centers for Disease Control (CDC) Podcasts

    2012-04-19

    This podcast describes sustainability efforts at CDC in relation to Earth Day celebrations and details agency greenhouse gas reduction strategies and successes.  Created: 4/19/2012 by Office of the Chief Operating Officer (OCOO)/ Chief Sustainability Office (CSO).   Date Released: 4/23/2012.

  4. 75 FR 21977 - Earth Day, 2010

    Science.gov (United States)

    2010-04-27

    ... of Earth Day, we come together to reaffirm those beliefs. We have come far in these past four decades... change will not come from Washington alone. The achievements of the past were possible because ordinary...

  5. iSTEM: Celebrating Earth Day with Sustainability

    Science.gov (United States)

    Sibley, Amanda; Kurz, Terri L.

    2014-01-01

    Earth Day is celebrated annually on April 22. Teachers often commemorate Earth Day with their classes by planting trees, discussing important conservation topics (such as recycling or preventing pollution), and encouraging students to take care of planet Earth. To promote observance of Earth Day in an intermediate elementary school classroom, this…

  6. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  7. Sun-Earth Day 2005: Ancient Observatories: Timeless Knowledge

    Science.gov (United States)

    Thieman, J. R.; Cline, T.; Lewis, E.; Hawkins, I.; Odenwald, S.; Mayo, L.

    2005-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. For Sun-Earth Day 2005 SECEF has selected a theme called "Ancient Observatories: Timeless Knowledge. This year's Sun-Earth Day theme is your ticket to a fascinating journey through time as we explore centuries of sun watching by a great variety of cultures. From ancient solar motion tracking to modern solar activity monitoring the Sun has always occupied an important spot in mankind's quest to understand the Universe. Sun-Earth Day events usually are centered on the spring equinox around March 21, but this year there has already been a webcast from the San Francisco Exploratorium and the Native American ruins at Chaco Canyon, New Mexico on the day of winter solstice 2004. There will be another webcast on March 20 live from Chichen Itza, Mexico highlighting the solar alignment that makes a serpent appear on one of the ancient pyramids. The website http://sunearthday.nasa.gov has been developed to provide the necessary resources and opportunities for participation by scientists and educators in giving school or general public programs about Sun-Earth Day. The goal is to involve as much of the student population and the public in this event as possible and to help them understand the importance of the Sun for ancient and modern peoples. Through engaging activities available on the website, classrooms and museums can create their own event or participate in one of the opportunities we make available. Scientists, educators, amateur astronomers, and museums are invited to register on the website to receive a free packet of materials about Sun-Earth Day for use in making presentations or programs about the event. Past and future Sun-Earth Days will be discussed as well.

  8. Sun-Earth Day - Teaching Heliophysics Through Education Technology

    Science.gov (United States)

    Thieman, J.; Cline, T.; Lewis, E.

    2010-01-01

    Sun-Earth Day (SED) is an Education and Outreach program supported by the U.S, National Aeronautics and Space Administration (NASA). The intent of the program is to teach students and the general public about Heliophysics (the science of the study of the Sun, how it varies, and how solar dynamics affect the rest of the solar system, especially the Earth). The program was begun ten years ago. Each year since that time a particular day has been designated as "Sun-Earth Day ,,. Usually the day of the spring equinox (March 20 or 21) is Sun-Earth Day, but other days have been used as well. Each year a theme is chosen relating to Heliophysics and events reflecting that theme are planned not only for Sun-Earth Day, but for the entire year. From the very beginning educational technology was emphasized in the events in order to effectively reach wide audiences with the SED message. The main approach has been to have a "webcast" related to each year's theme, often from a location that supports the theme as well. For example, a webcast took place from the Mayan pyramids at Chichen Itza, Mexico to highlight the theme of "Ancient Observatories, Timeless Knowledge". Webcasts were not the only technology employed, however. Many of the themes centered on the dynamic nature of the Sun and the effects that solar storms can have on interplanetary space and in our day-to-day life on Earth. Activities for tracking when solar storms happen and how they affect the Earth were developed and brought together in an educational package called Space Weather Action Centers. This project is explained in more detail in another presentation in this session being given by Norma Teresinha Oliveira Reis. Recent Sun-Earth Days have utilized "social networking" technologies to reach widespread groups on the internet. Podcasts, Vodcasts, Facebook, Twitter, and Second Life are the types of network technologies being employed now. The NASA Distance learning Network is another method for bringing Sun-Earth

  9. CinéGlobe presents: "One Day on Earth"

    CERN Multimedia

    2012-01-01

    The CinéGlobe International Film Festival is proud to announce that it will be hosting the Swiss edition of the Global Screening of “One Day on Earth”, the first film to be shot and then screened in every country in the world.   Founded in 2008, “One Day on Earth's” first media creation event occurred on 10.10.10. The collaboration was the first ever simultaneous filming event occuring in every country of the world. It created a unique geo-tagged video archive as well as a unique feature film. “One Day on Earth” showcases the amazing diversity, conflict, tragedy, and triumph that occurs in one day on our planet.  This Earth Day, April 22nd, CinéGlobe and CERN invite the public to a free global screening event of the first One Day on Earth Motion Picture. This unique film, created from over 3000 hours of footage, was shot by the One Day on Earth community in every country of the world on October...

  10. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  11. Auditing and GRC automation in SAP

    CERN Document Server

    Chuprunov, Maxim

    2013-01-01

    Going beyond current literature, this book extends internal controls to efficiency and profitability. Offers an audit guide for an SAP ERP system, covers risks and control descriptions, and shows how to automate compliance management based on SAP GRC.

  12. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  13. 3 CFR 8364 - Proclamation 8364 of April 22, 2009. Earth Day, 2009

    Science.gov (United States)

    2010-01-01

    .... 8364 Earth Day, 2009By the President of the United States of America A Proclamation The story of the... global leader in clean energy technology, and prevent the worst impacts of climate change. President...

  14. Stirling technology development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  15. Renewable Energy: Solar Fuels GRC and GRS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2010-02-26

    sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  16. 2017 Laser Diagnostics in Combustion GRC/GRS

    Science.gov (United States)

    2017-10-06

    scientists and engineers . The goal of GRC was to bring together scientists and engineers with a strong interest in laser-based combustion diagnostics to...processes. The GRS, held the weekend before the GRC, was organized to bring together emerging leaders in the field at an early stage in their careers ...coupled multi-scale combustion processes. The GRC on Laser Diagnostics in Combustion was designed to bring together scientists and engineers working at

  17. Turbine Seal Research at NASA GRC

    Science.gov (United States)

    Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.

    2011-01-01

    Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.

  18. Sunwatchers Across Time: Sun-Earth Day from Ancient and Modern Solar Observatories

    Science.gov (United States)

    Hawkins, I.; Vondrak, R.

    Humans across all cultures have venerated, observed, and studied the Sun for thousands of years. The Sun, our nearest star, provides heat and energy, is the cause of the seasons, and causes space weather effects that influence our technology-dependent society. The Sun is also part of indigenous tradition and culture. The Inca believed that the Sun had the power to make things grow, and it does, providing us with the heat and energy that are essential to our survival. From a NASA perspective, Sun-Earth Connection research investigates the effects of our active Sun on the Earth and other planets, namely, the interaction of the solar wind and other dynamic space weather phenomena with the solar system. We present plans for Sun-Earth Day 2005, a yearly celebration of the Sun-Earth Connection sponsored by the NASA Sun-Earth Connection Education Forum (SECEF). SECEF is one of four national centers of space science education and public outreach funded by NASA Office of Space Science. Sun-Earth Day involves an international audience of schools, science museums, and the general public in activities and events related to learning about the Sun-Earth Connection. During the year 2005, the program will highlight cultural and historical perspectives, as well as NASA science, through educational and public outreach events intended to involve diverse communities. Sun-Earth Day 2005 will include a series of webcasts from solar observatories produced by SECEF in partnership with the San Francisco Exploratorium. Webcasts from Chaco Culture National Historical Park in New Mexico, USA, and from Chichen Itza, Mexico, will be accessed by schools and the public. Sun-Earth Day will also feature NASA Sun-Earth Connection research, missions, and the people who make it possible. One of the goals of this talk is to inform and engage COSPAR participants in these upcoming public events sponsored by NASA. Another goal is to share best practices in public event programming, and present impact

  19. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  20. Sun-Earth Day: Growth and Impact of NASA E/PO Program

    Science.gov (United States)

    Hawkins, I.; Thieman, J.

    2004-12-01

    Over the past six years, the NASA Sun-Earth Connection Education Forum has sponsored and coordinated education public outreach events to highlight NASA Sun-Earth Connection research and discoveries. Our strategy involves using celestial phenomena, such as total solar eclipses and the Transit of Venus to celebrate Sun-Earth Day, a popular Education and Public Outreach international program. Sun-Earth Day also focuses attention on Equinoxes and Solstices to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium, Maryland Science Center, NASA Connect, Sun-Earth Connection missions, Ideum, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. We will report lessons learned from several years of experience, and strategies for growth and sustainability. We will also share our plans for "Ancient Observatories - Timeless Knowledge" our theme for Sun-Earth Day 2005, which will feature solar alignments at ancient sites that mark the equinoxes and/or solstices. The video and webcast programming will feature several sites including: Chaco Canyon (New Mexico), Hovenweep (Utah), and Chichen Itza (Mexico). Many of these sites present unique opportunities to develop authentic cultural connections to Native Americans, highlighting the importance of the Sun across the ages.

  1. Sun-Earth Day: Reaching the Education Audience by Informal Means

    Science.gov (United States)

    Thieman, J.; Lewis, E.; Cline, T.

    2010-01-01

    For ten years the Sun-Earth Day program has promoted Heliophysics education to ever larger audiences through events centered on attractive annual themes. What originally started out as a one day event quickly evolved into a series of programs and events that occur throughout the year culminating with a celebration on or near the Spring Equinox. The events are often formal broadcasts or webcasts seeking to convey the science behind the latest solar-terrestrial mission discoveries. This has been quite successful, but it is clear that the younger generation increasingly depends on social networking approaches and informal news transmission for learning what is happening in the world around them. For 2010, the Sun-Earth Day team put emphasis on using informal approaches to bring the theme to the audience. The main event, a webcast from the NASA booth at the National Science Teachers Association (NSTA) annual meeting by the NASA EDGE group, took a lighthearted and offbeat approach to interviewing scientists and educators about Heliophysics news. NASA EDGE programs are unscripted and unpredictable, and that represents a different approach to getting the message across. The webcast was supplemented by a number of social networking avenues. The Sun-Earth Day program explored a wide range of social media applications including Facebook, Twitter, NING, podcasting, iPhone apps, etc. Each of these offers unique and effective methods to promote Heliophysics content and mission related highlights. The facebook site was quite popular and message posting there told the Sun-Earth Day story piece by piece. The same could be said of twittering and the tweetup held at the NSTA site. Has all of this been effective? Results are still being gathered, but anecdotal responses from the world seem very positive. What other methods might be used in the future to bring the science to a personal hands-on, interactive experience? Outcomes: Participants will: (1) Be introduced to the Sun-Earth

  2. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    Science.gov (United States)

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  3. Commencement of Geoparks, Geology day and International Earth Science Olympiad, IYPE in Japan

    Science.gov (United States)

    Tsukuda, Eikichi; Kodama, Kisaburo; Miyazaki, Teruki

    2010-05-01

    The GSJ is the main supporting organization of IYPE Japan, which is an implementation body of IYPE in Japan, serving as its secretariat. During the IYPE triennial activity, the GSJ has been supporting development of Geparks, establishment of "the Geology Day" and the Earth Science Olympiad activities with some academic societies, and has distributed geological maps with IYPE logo. The GSJ also established an outreach network "Geo-networks Tsukuba" as a local legacy of the IYPE, and has managed it with a local government, research organizations, nonprofit corporations and local media to increase geological and environmental literacy of public, especially among young people. The GSJ-AIST has also contributed internationally to IYPE by joining two international projects, OneGeology and the CCOP Book project. Geoparks in Japan are characterized by following features. The Japanese Islands and the surrounding seas are situated in the area of unique geologic features; the place where several tectonic plates meet and collide. This causes earthquakes and volcanic activities, and makes Japan one of most dynamic areas on the earth. The dynamics of the earth bring about not only geological hazards but also a lot of blessings. In August of 2009, three Geoparks, the Toya Caldera and Usu Volcano Geopark, the Itoigawa Geopark and the Unzen Volcanic Area Geopark, were accepted to join the Global Geopark Network from Japan for the first time. Since its launch in 2006, the GSJ has been playing a major role in promoting Geoparks in Japan together with Geological Society of Japan. The GSJ hosts the Japan Geopark Committee (JGC) for quality evaluation, serving as the information center of Geoparks in Japan. The Geology Day of Japan (10th of May) has been set up by the academic societies for geology in Japan and GSJ in 2007. The Geology Day is expected to provide the chances for the public to enjoy field trips and excursions and to understand the importance of geo-diversity. The Day

  4. Application of Chemistry in Materials Research at NASA GRC

    Science.gov (United States)

    Kavandi, Janet L.

    2016-01-01

    Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.

  5. Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Directory of Open Access Journals (Sweden)

    Changyi Xu

    2013-01-01

    Full Text Available We calculated the co-seismic Earth rotation changes for several typical great earthquakes since 1960 based on Dahlen¡¦s analytical expression of Earth inertia moment change, the excitation functions of polar motion and, variation in the length of a day (ΔLOD. Then, we derived a mathematical relation between polar motion and earthquake parameters, to prove that the amplitude of polar motion is independent of longitude. Because the analytical expression of Dahlen¡¦s theory is useful to theoretically estimate rotation changes by earthquakes having different seismic parameters, we show results for polar motion and ΔLOD for various types of earthquakes in a comprehensive manner. The modeled results show that the seismic effect on the Earth¡¦s rotation decreases gradually with increased latitude if other parameters are unchanged. The Earth¡¦s rotational change is symmetrical for a 45° dip angle and the maximum changes appear at the equator and poles. Earthquakes at a medium dip angle and low latitudes produce large rotation changes. As an example, we calculate the polar motion and ΔLOD caused by the 2011 Tohoku-Oki Earthquake using two different fault models. Results show that a fine slip fault model is useful to compute co-seismic Earth rotation change. The obtained results indicate Dahlen¡¦s method gives good approximations for computation of co-seismic rotation changes, but there are some differences if one considers detailed fault slip distributions. Finally we analyze and discuss the co-seismic Earth rotation change signal using GRACE data, showing that such a signal is hard to be detected at present, but it might be detected under some conditions. Numerical results of this study will serve as a good indicator to check if satellite observations such as GRACE can detect a seismic rotation change when a great earthquake occur.

  6. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    Science.gov (United States)

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  7. Update on the NASA GRC Stirling Technology development project

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  8. Accomplishments in free-piston stirling tests at NASA GRC

    Science.gov (United States)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  9. The Reflective Experimental Construction of Meanings about the Shape of the Earth and the Alternation of Day and Night

    Science.gov (United States)

    Varela, Paulo

    2012-01-01

    The purpose of this paper is to describe and analyze the process of construction of meaning about the shape of the Earth and the alternation of day and night, which is inherent to the practice of experimental science teaching. This teaching practice was gradually done by the researcher in a 1st grade class of a Portuguese primary school. The class…

  10. Aplicaciones del GRC en España y Argelia

    Directory of Open Access Journals (Sweden)

    Rodríguez Santiago, Jesús

    1986-09-01

    Full Text Available Not Available.Este artículo resume la experiencia obtenida en la utilización del mortero de cemento reforzado con fibra de vidrio (GRC en el campo de la construcción. Se describen en primer lugar las características del material y el proceso de fabricación en factoría de paneles de GRC. Se exponen a continuación algunas realizaciones llevadas a cabo con este material destacando, por su volumen y rapidez de ejecución, el conjunto de fachadas para edificios de viviendas, hospitales y centros escolares construidos en Argelia. También se comentan otras aplicaciones del GRC para la rehabilitación y decoración interior de edificios y para la construcción de elementos singulares. Finalmente, en el apartado de las conclusiones se menciona la necesidad de seguir investigando en el comportamiento a largo plazo de este material para poder aumentar su utilización en la construcción.

  11. The reflective experimental construction of meanings about the shape of the Earth and the alternation of day and night

    Directory of Open Access Journals (Sweden)

    Paulo Varela

    2012-11-01

    Full Text Available The purpose of this paper is to describe and analyze the process of construction of meaning about the shape of the Earth and the alternation of day and night, which is inherent to the practice of experimental science teaching. This teaching practice was gradually done by the researcher in a 1st grade class of a Portuguese primary school. The class was composed of 18 students, ten girls and eight boys, with ages ranging from six to seven years old. The analysis of the meaning construction process focused on the class diary prepared by the researcher, based on the field notes and audio recordings made during the participant observation in the classroom. The goals of the interpretive analysis of the diary were as follows: a identifying the students' initial ideas expressed during class about the shape of the Earth, b characterizing the processes that promote the construction of knowledge about the topics under study; c and presenting the learning that takes place during class. These instances of learning described in the class diary, combined with the results of a true or false questionnaire, suggest that most students developed a good understanding about the shape of the Earth and the alternation of day and night.

  12. Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System

    Science.gov (United States)

    2016-08-01

    Rebounding Brake System by David Gray, Robert Kaste, and Bradley Lawrence Approved for public release; distribution is...Research Laboratory Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System by David Gray and...Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  13. Research on the Application of GRC Material in Exhibition Decoration Engineering

    Science.gov (United States)

    Cai, Yan

    2018-03-01

    Glass fiber reinforced cement (GRC) is a kind of new building material which is based on cement and take the alkali resistant glass fiber as reinforcing material. It is mainly used in building decoration project and it has many advantages like environmental protection, economical, practical modeling and others. This paper mainly studies the concrete application of GRC material in exhibition building decoration project.

  14. Amplitude variations of ELF radio waves in the Earth-ionosphere cavity with the day-night non-uniformity

    Science.gov (United States)

    Galuk, Yu P.; Nickolaenko, A. P.; Hayakawa, M.

    2018-04-01

    The real structure of lower ionosphere should be taken into account when modeling the sub-ionospheric radio propagation in the extremely low frequency (ELF) band and studying the global electromagnetic (Schumann) resonance of the Earth-ionosphere cavity. In the present work we use the 2D (two dimensional) telegraph equations (2DTE) for evaluating the effect of the ionosphere day-night non-uniformity on the electromagnetic field amplitude at the Schumann resonance and higher frequencies. Properties of the cavity upper boundary were taken into account by the full wave solution technique for realistic vertical profiles of atmosphere conductivity in the ambient day and ambient night conditions. We solved the electromagnetic problem in a cavity with the day-night non-uniformity by using the 2DTE technique. Initially, the testing of the 2DTE solution was performed in the model of the sharp day-night interface. The further computations were carried out in the model of the smooth day-night transition. The major attention was directed to the effects at propagation paths "perpendicular" or "parallel" to the solar terminator line. Data were computed for a series of frequencies, the comparison of the results was made and interpretation was given to the observed effects.

  15. Aplicaciones del cemento reforzado con fibra de vidrio (GRC

    Directory of Open Access Journals (Sweden)

    Barros Llerena, Ángel

    1981-12-01

    Full Text Available Not available.

    El presente artículo tiene como objeto dar a conocer la utilización de fibras de vidrio como refuerzo de los cementos. Se da una breve reseña histórica, se mencionan sus características y comportamiento. Además se presenta un caso práctico y reciente de utilización en la fabricación de elementos de fachada del Estadio «Santiago Bernabéu» del Real Madrid C. de F., y se completa con una relación de los actuales y futuros usos del G.R.C. (glass reinforced cement, denominación inglesa del material más comúnmente utilizado.

  16. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  17. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth

    Directory of Open Access Journals (Sweden)

    Nikolay Aseyev

    2017-11-01

    Full Text Available The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.

  18. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the...

  19. 'GRC1.5': Uptower Gearbox Testing to Investigate Bearing Axial Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan; Vaes, David; McNiff, Brian

    2016-02-16

    This presentation focuses on the investigation of bearing axial cracking using the GRC1.5 uptower gearbox. Topics covered include the testing options considered, the project goal, and current and near-term activities.

  20. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić

    2011-01-01

    Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception

  1. 2009 Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes GRC

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Harry [Univ. of Newcastle, Callaghan, NSW (Australia)

    2009-07-26

    your application/abstract to the GRC web site as soon as possible.

  2. Using information technology governance, risk management and compliance (GRC as a creator of business values – a case study

    Directory of Open Access Journals (Sweden)

    Sam Lubbe

    2011-08-01

    Full Text Available The relationship between Information Technology (IT Governance, Risk Management and Compliance (GRC and organisation business values continues to interest academics and practitioners (IT Governance Institute, 2003. Like governance, risk management and compliance generally, IT GRC is about the decision rights and accountabilities that encourage desirable behaviour in the use of IT (IT Governance Institute, 2003. A case study approach was used in an organisation with many business units. The organisation selected is a mining company, RioZim, situated in Zimbabwe. Data was collected from business units on IT issues and business values. The interviews centred on the IT GRC practices based on responsibility and authority for IT decision making. The results suggest that IT GRC does not adequately support business values. The study revealed that business values should drive IT GRC and IT GRC should be the responsibility of executives and all business units.

  3. The effect of silica fume and metakaolin on glass-fibre reinforced concrete (GRC ageing

    Directory of Open Access Journals (Sweden)

    Enfedaque Díaz, A.

    2010-12-01

    Full Text Available The deterioration of the mechanical properties of glassfibre reinforced concrete (GRC over time rules out the use of this material in load-bearing structures. While one possible solution to this problem is the addition of pozzolans or metakaolin to the cement mortar, the amounts needed to ensure GRC integrity raise its price to non-competitive levels. Experimental research has been conducted to analyze whether the addition of small amounts of silica fume or metakaolin can prevent or mitigate the ageing issue. Unfortunately, the findings indicate that the addition of small proportions of metakaolin or silica fume to GRC are ineffective in improving its long-term performance.

    Para el uso del mortero de cemento reforzado con fibras de vidrio (GRC en estructuras portantes se han de solucionar los problemas de reducción de las propiedades mecánicas que aparecen con el paso del tiempo. Estos problemas pueden ser solucionados mediante la adición de puzolanas o de metacaolín, a la pasta de mortero de cemento. Sin embargo, la cantidad de metacaolín que ha de ser añadida es elevada y el precio del GRC fabricado está fuera del mercado. Se ha realizado una campaña experimental que analiza si la adición de humo de sílice o de metacaolín en proporciones reducidas consigue evitar o paliar el problema del envejecimiento, que supone un freno al uso del GRC en elementos estructurales. Desgraciadamente, los resultados experimentales muestran que proporciones bajas de metacaolín o de humo de sílice no son efectivas para reducir el problema de pérdida de propiedades mecánicas.

  4. Improved geophysical excitation of length-of-day constrained by Earth orientation parameters and satellite gravimetry products

    Science.gov (United States)

    Yu, Nan; Li, Jiancheng; Ray, Jim; Chen, Wei

    2018-05-01

    At time scales shorter than about two years, non-tidal LOD variations are mainly excited by angular momentum exchanges between the atmospheric, oceanic, and continental hydrological fluid envelopes and the underlying solid Earth. But, neither agreement among different geophysical models for the fluid dynamics nor consistency with geodetic observations of LOD has reached satisfactory levels. This is mainly ascribed to significant discrepancies and uncertainties in the theories and assumptions adopted by different modeling groups, in their numerical methods, and in the accuracy and coverage of global input data fields. Based on careful comparisons with more accurate geodetic measurements and satellite gravimetry products (from satellite laser ranging, SLR), observed length-of day (LOD) and C20 geopotential time series can provide strong constraints to evaluate or form combined geophysical models. In this study, wavelet decomposition is used to extract several narrow-band components to compare in addition to considering the total signals. We then make refinements to the least difference combination (LDC) method proposed by Chen et al. (2013b) to form multi-model geophysical excitations. Two combination variants, called the weighted mean combination (WMC2 and WMC4), are also evaluated. All the multi-model methods attempt to extract the best-modeled frequency components from each geophysical model by relying on geodetic excitation and the C20 series as references. The comparative performances of the three combinations LDC, WMC2 and WMC4 and the original single models are determined. We find that (1) the Estimating the Circulation and Climate of the Ocean (ECCO) and Max-Planck-Institute for Meteorology Ocean Model (MPIOM) give a more reliable view of the ocean redistributions than the Ocean Model for Circulation and Tides (OMCT) used by European Centre for Medium-Range Weather Forecasts (ECMWF), especially for the annual component; (2) C20 series from SLR can provide a

  5. Solar Flare Five-Day Predictions from Quantum Detectors of Dynamical Space Fractal Flow Turbulence: Gravitational Wave Diminution and Earth Climate Cooling

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2014-10-01

    Full Text Available Space speed fluctuations, which have a 1 / f spectrum, are shown to be the cause of solar flares. The direction and magnitude of the space flow has been detected from numer- ous different experimental techniques, and is close to the normal to the plane of the ecliptic. Zener diode data shows that the fluctuations in the space speed closely match the Sun Solar Cycle 23 flare count, and reveal that major solar flares follow major space speed fluctuations by some 6 days. This implies that a warning period of some 5 days in predicting major solar flares is possible using such detectors. This has significant conse- quences in being able to protect various spacecraft and Earth located electrical systems from the subsequent arrival of ejected plasma from a solar flare. These space speed fluctuations are the actual gravitational waves, and have a significant magnitude. This discovery is a significant application of the dynamical space phenomenon and theory. We also show that space flow turbulence impacts on the Earth’s climate, as such tur- bulence can input energy into systems, which is the basis of the Zener Diode Quantum Detector. Large scale space fluctuations impact on both the sun and the Earth, and as well explain temperature correlations with solar activity, but that the Earth temperatures are not caused by such solar activity. This implies that the Earth climate debate has been missing a key physical process. Observed diminishing gravitational waves imply a cooling epoch for the Earth for the next 30 years.

  6. Investigating the Present Day Cosmic Dust Flux at the Earth's Surface: Initial Results from the Kwajalein Micrometeorite Collection

    Science.gov (United States)

    Wozniakiewicz, P. J.; Bradley, J. P.; Price, M. C.; Zolensky, M. E.; Ishii, H. A.; Brownlee, D. E.; Russell, S. S.

    2014-01-01

    Examination of impact craters on the Long Duration Exposure Facility satellite indicate a present day micrometeoroid flux of approx. 30,000 tonnes [1 after 2]. But what portion of this material arrives at the Earth's surface as micrometeorites? Studies of available micrometeorite collections from deep sea sediments [e.g. 3], Greenland blue ice [e.g. 4] and the South Pole water well [e.g. 1] may be complicated by terrestrial weathering and, in some cases, collection bias (magnetic separation for deep sea sediments) and poorly constrained ages. We have recently set up a micrometeorite collection station on Kwajalein Island in the Republic of the Marshall Islands in the Pacific Ocean, using high volume air samplers to collect particles directly from the atmosphere. By collecting in this way, the terrestrial age of the particles is known, the weathering they experience is minimal, and we are able to constrain particle arrival times. Collecting at this location also exploits the considerably reduced anthropogenic background [5]. Method: High volume air samplers were installed on top of the two-story airport building on Kwajalein. These were fitted with polycarbonate membrane filters with 5µm diameter perforations. The flow rates were set to 0.5m3/min, and filters were changed once a week. After collection, filters were washed to remove salt and concentrate particles [see 5] in preparation for analysis by SEM. Results and Discussion: A selection of filters have been prepared and surveyed. Due to their ease of identification our initial investigations have focused on particles resembling cosmic spherules. The spheres can be divided into three main groups: 1. Silicate spherules rich in Al, Ca, K and Na (to varying degrees), 2. Silicate spherules rich in Mg and Fe and 3. Fe-rich spherules. Group 1 spherules are often vesiculated and can occur as aggregates. They are similar in appearance and composition to volcanic microspheres [e.g. 6] and are thus likely terrestrial in

  7. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  8. Workability of glass reinforced concrete (GRC) with granite and silica sand aggregates

    Science.gov (United States)

    Moceikis, R.; Kičaitė, A.; Keturakis, E.

    2017-10-01

    Glass fiber reinforced concrete (GRC) opens the door for lightweight and complex shaped innovative construction, adding architectural value to buildings. With panel thickness down to 15 mm, considerable amount of total loads and materials per square meter of facade can be saved, if compared to conventionally used 80 mm thickness outer layer in insulated precast concrete wall elements. Even though GRC is used for over 50 years in such countries as Great Britain, USA and Japan, there are very few examples and little research done in Eastern Europe with this building material. European Commission propagates sustainable design as commitment to energy efficiency, environmental stewardship and conservation. For this reason, GRC plays important role in mowing toward these goals. In this paper, GRC premix recipes including fine granite and silica sands, reinforced with 13mm length alkali resistant glass fibers are investigated. Two CEM I 52,5R cements with different particle sizes were used and severe water dissociation noticed in one of concrete mixes. Cement particle size distribution determined with laser diffraction particle analyser Cilas 1090LD. To determine modulus of rupture (M.O.R.) and limit of proportionality (L.O.P), plates thickness 15 and 20 mm were produced and tested for flexural resistance according to 4-point bending scheme. Concrete workability tests were made according EN 1170-1.

  9. Overview of Photovoltaic Calibration and Measurement Standards at GRC

    Science.gov (United States)

    Baraona, Cosmo; Snyder, David; Brinker, David; Bailey, Sheila; Curtis, Henry; Scheiman, David; Jenkins, Phillip

    2002-01-01

    Photovoltaic (PV) systems (cells and arrays) for spacecraft power have become an international market. This market demands accurate prediction of the solar array power output in space throughout the mission life of the spacecraft. Since the beginning of space flight, space-faring nations have independently developed methods to calibrate solar cells for power output in low Earth orbit (LEO). These methods rely on terrestrial, laboratory, or extraterrestrial light sources to simulate or approximate the air mass zero (AM0) solar intensity and spectrum.

  10. Ultrasonic characterization of GRC with high percentage of fly ash substitution.

    Science.gov (United States)

    Genovés, V; Gosálbez, J; Miralles, R; Bonilla, M; Payá, J

    2015-07-01

    New applications of non-destructive techniques (NDT) with ultrasonic tests (attenuation and velocity by means of ultrasonic frequency sweeps) have been developed for the characterization of fibre-reinforced cementitious composites. According to new lines of research on glass-fibre reinforced cement (GRC) matrix modification, two similar GRC composites with high percentages of fly ash and different water/binder ratios will be studied. Conventional techniques have been used to confirm their low Ca(OH)(2) content (thermogravimetry), fibre integrity (Scanning Electron Microscopy), low porosity (Mercury Intrusion Porosimetry) and good mechanical properties (compression and four points bending test). Ultrasound frequency sweeps allowed the estimation of the attenuation and pulse velocity as functions of frequency. This ultrasonic characterization was correlated successfully with conventional techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. GRC: Composite material from an inorganic matrix reinforced with AR glass fibres

    Directory of Open Access Journals (Sweden)

    Comino Almenara, P. I.

    1996-06-01

    Full Text Available This article describes the historical background of Cem-FIL. Alkali Resistant Glass Fibre, as well as the composite characteristics of the element they generate: GRC. The most important advantages and properties of this type of Composite Material are also detailed.

    En este artículo se detallan cuáles son las bases históricas de las Fibras de Vidrio Álcali-Resistentes Cem-FIL así como las características del elemento compuesto que ellas generan: GRC. En este documento también se pueden encontrar indicaciones sobre las principales ventajas y propiedades de este tipo de Material Compuesto.

  12. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  13. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Science.gov (United States)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  14. The Effects of Modern-Day Cropland and Pasture Management on Vegetation Fire: An Earth System Modeling Approach

    Science.gov (United States)

    Rabin, S. S.; Malyshev, S.; Shevliakova, E.; Pacala, S. W.

    2014-12-01

    Fire is a major component of the global carbon cycle, with some estimates of the associated emissions reaching 2.5 PgC/yr. This and the other impacts of biomass burning have driven efforts to improve its simulation in Earth system models. Recent global fire models usually include both bioclimatic and anthropogenic drivers of fire, with the latter (via population density and sometimes economic status) serving to increase or suppress burned area. Some models have added the representation of fire used in deforestation and cropland management, the extent and seasonal timing of which may not be accounted for by the usual approach to anthropogenic influence. Human land use can also limit fire by fragmenting landscapes, but this process is not included in most global models. Moreover, although people often use fire to manage grazing lands for livestock, these practices have not been explicitly modeled (except as performed by pre-industrial societies). This could be important for regions such as sub-Saharan Africa, where the seasonality of pasture burning tends to differ from that of other lands, potentially influencing savanna-forest dynamics. Recent efforts elucidating the effects of cropland and pasture on fire regimes at regional scales provide insight into these processes. Using this new understanding, we have developed a fire model with structurally distinct modules for burning of croplands, pasture, and primary and secondary lands, as well as fire use for deforestation. Parameters for each are rigorously constrained using remote-sensing observations of burned area. This structure allows us to disentangle agricultural practices and fragmentation effects from the endogenous processes driving fire on non-agricultural land, resulting in a better ability to simulate how fire works at large scales. This is critical for modeling the future of fire and all the parts of the Earth system that it affects, including vegetation distributions, nutrient cycling, and biosphere

  15. MAVEN Information Security Governance, Risk Management, and Compliance (GRC): Lessons Learned

    Science.gov (United States)

    Takamura, Eduardo; Gomez-Rosa, Carlos A.; Mangum, Kevin; Wasiak, Fran

    2014-01-01

    As the first interplanetary mission managed by the NASA Goddard Space Flight Center, the Mars Atmosphere and Volatile EvolutioN (MAVEN) had three IT security goals for its ground system: COMPLIANCE, (IT) RISK REDUCTION, and COST REDUCTION. In a multiorganizational environment in which government, industry and academia work together in support of the ground system and mission operations, information security governance, risk management, and compliance (GRC) becomes a challenge as each component of the ground system has and follows its own set of IT security requirements. These requirements are not necessarily the same or even similar to each other's, making the auditing of the ground system security a challenging feat. A combination of standards-based information security management based on the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF), due diligence by the Mission's leadership, and effective collaboration among all elements of the ground system enabled MAVEN to successfully meet NASA's requirements for IT security, and therefore meet Federal Information Security Management Act (FISMA) mandate on the Agency. Throughout the implementation of GRC on MAVEN during the early stages of the mission development, the Project faced many challenges some of which have been identified in this paper. The purpose of this paper is to document these challenges, and provide a brief analysis of the lessons MAVEN learned. The historical information documented herein, derived from an internal pre-launch lessons learned analysis, can be used by current and future missions and organizations implementing and auditing GRC.

  16. Komunikasi Persuasif Komunitas Earth Hour dalam Membentuk Perilaku Ramah Lingkungan pada Masyarakat di Kota Pekanbaru (Studi pada Aksi Rampok Sampah di Car Free Day Jalan Diponegoro)

    OpenAIRE

    Yohana, Nova; Marwuri, Trilis

    2016-01-01

    Garbage is an important issue in urban environments are constantly faced in line with the growing of population and an increase in construction activity. The garbage problem in Pekanbaru city, particularly in the area of Car Free Day (CFD) Diponegoro street can€™t be solved only with the janitor, but need public awareness for the hygiene environmental. Efforts made by the Earth Hour Pekanbaru Community with persuasive the public through the action of €œRampok Sampah€. This study aims to dete...

  17. A Monazite of Bangka Processing Laboratory Work is Undertaken to Recover Rare Earth Oxides for 1 kg/day Capacity

    International Nuclear Information System (INIS)

    Hafni-Lissa-Nuri; Faizal-Riza; Susilaningtyas; Sugeng-Waluyo; Erni-Rifandriyah-Arief

    2004-01-01

    This laboratory work is collaboration P2BGGN-BATAN and PT. Timah Tbk. to obtain monazite data process for use equipment calculation and economic pilot scales. A RE 2 O 3 can be treated to become an individual elements (Ce, Pr, Nd, Pm, Sm, Eu, etc.) and can be used as a raw materials in the industries of electronics, magnetics, ceramics, steels and glass optic etc. RE 2 O 3 which are gained from processing of 100 kg monazite with -325 mesh in size distribution and 1 kg/day capacity will be the sample for PT Timah marketing activity. The process is done with use equipments laboratory scale that were designed last year. The equipment processes are decomposition, dissolution, precipitation tank and calcinator. Total RE 2 O 3 production are 45 kg and total recovery RE 2 O 3 71,696 % ; Th 2,129 % ; U and P 2 O 5 0 %, Purify products RE 2 O 3 93,59 % and Th 1143 ppm. Based on the assessment of Chemex Inc Canada, the product of RE 2 O 3 contains are about >55,32 % RE 2 O 3 and 16 ppm Th. U and Th content within specification product of RE 2 O 3 depends to buyer/request. (author)

  18. Earth Day '70, '80, '90.

    Science.gov (United States)

    Schoenfeld, A. Clay

    1981-01-01

    Uses objective and subjective data to document the triumphs and tragedies of the environmental movement and environmental education during the 1970's. Proposes that members of the National Association for Environmental Education dedicate themselves to a decade of integrated environmental management education. (DC)

  19. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  20. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  1. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  2. An electrochemical study of the flow rate effect on the oxide film of SA106 Gr.C piping

    International Nuclear Information System (INIS)

    Hong, S. M.; Kim, J. H.; Kim, I. S.

    2002-01-01

    Effect of water flow rate on the oxide film of SA106 Gr.C piping was evaluated quantitatively through electrochemical method. It was carried out with weight change experiments, polarization tests, and EIS tests with rig that simulates water flow. Without water flow, the oxide film is so stable that it effectively blocks current exchange. With water flow, the oxide film was damaged and electrochemical current density and oxide film properties, C dl and R p were significantly changed

  3. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik [Korea Power Engineering Company, Seoul (Korea, Republic of)

    1997-04-01

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  4. 2008 GRC Iron Sulfur Enzymes-Conference to be held June 8-13, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen [Univ. of California, Davis, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2009-01-01

    Iron-sulfur proteins are among the most common and ancient enzymes and electron-transfer agents in nature. They play key roles in photosynthesis, respiration, and the metabolism of small molecules such as H2, CO, and N2. The Iron Sulfur Enzyme Gordon Research Conference evolved from an earlier GRC on Nitrogen Fixation that began in 1994. The scope of the current meeting has broadened to include all enzymes or metalloproteins in which Fe-S bonds play a key role. This year's meeting will focus on the biosynthesis of Fe-S clusters, as well as the structure and mechanism of key Fe-S enzymes such as hydrogenase, nitrogenase and its homologues, radical SAM enzymes, and aconitase-related enzymes. Recent progress on the role of Fe-S enzymes in health, disease, DNA/RNA-processing, and alternative bio-energy systems will also be highlighted. This conference will assemble a broad, diverse, and international group of biologists and chemists who are investigating fundamental issues related to Fe-S enzymes, on atomic, molecular, organism, and environmental scales. The topics to be addressed will include: Biosynthesis & Genomics of Fe-S Enzymes; Fundamental Fe-S Chemistry; Hydrogen and Fe-S Enzymes; Nitrogenase & Homologous Fe-S Enzymes; Fe-S Enzymes in Health & Disease; Radical SAM and Aconitase-Related Fe-S Enzymes; Fe-S Enzymes and Synthetic Analogues in BioEnergy; and Fe-S Enzymes in Geochemistry and the Origin of Life.

  5. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  6. The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars.

    Science.gov (United States)

    Wadsworth, Jennifer; Cockell, Charles S

    2017-05-01

    The surface of the early Earth was probably subjected to a higher flux of ultraviolet (UV) radiation than today. UV radiation is known to severely damage DNA and other key molecules of life. Using a liquid culture and a rock analogue system, we investigated the interplay of protective and deleterious effects of iron oxides under UV radiation on the viability of the model organism, Bacillus subtilis. In the presence of hydrogen peroxide, there exists a fine balance between iron oxide's protective effects against this radiation and its deleterious effects caused by Photo-Fenton reactions. The maximum damage was caused by a concentration of hematite of ∼1 mg/mL. Concentrations above this confer increasing protection by physical blockage of the UV radiation, concentrations below this cause less effective UV radiation blockage, but also a correspondingly less effective Photo-Fenton reaction, providing an overall advantage. These results show that on anoxic worlds, surface habitability under a high UV flux leaves life precariously poised between the beneficial and deleterious effects of iron oxides. These results have relevance to the Archean Earth, but also the habitability of the Martian surface, where high levels of UV radiation in combination with iron oxides and hydrogen peroxide can be found. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Living Day by Day

    Science.gov (United States)

    Kaplan, Rachel L.; Khoury, Cynthia El; Field, Emily R. S.; Mokhbat, Jacques

    2016-01-01

    We examined the meaning of living with HIV/AIDS among women in Lebanon. Ten women living with HIV/AIDS (WLWHA) described their experiences via semistructured in-depth interviews. They navigated a process of HIV diagnosis acceptance that incorporated six overlapping elements: receiving the news, accessing care, starting treatment, navigating disclosure decisions, negotiating stigma, and maintaining stability. Through these elements, we provide a framework for understanding three major themes that were constructed during data analysis: Stand by my side: Decisions of disclosure; Being “sick” and feeling “normal”: Interacting with self, others, and society; and Living day by day: focusing on the present. We contribute to the existing literature by providing a theoretical framework for understanding the process of diagnosis and sero-status acceptance among WLWHA. This was the first study of its kind to examine the meaning of living with HIV/AIDS among women in a Middle Eastern country. PMID:28462340

  8. Living Day by Day

    Directory of Open Access Journals (Sweden)

    Rachel L. Kaplan

    2016-05-01

    Full Text Available We examined the meaning of living with HIV/AIDS among women in Lebanon. Ten women living with HIV/AIDS (WLWHA described their experiences via semistructured in-depth interviews. They navigated a process of HIV diagnosis acceptance that incorporated six overlapping elements: receiving the news, accessing care, starting treatment, navigating disclosure decisions, negotiating stigma, and maintaining stability. Through these elements, we provide a framework for understanding three major themes that were constructed during data analysis: Stand by my side: Decisions of disclosure; Being “sick” and feeling “normal”: Interacting with self, others, and society; and Living day by day: focusing on the present. We contribute to the existing literature by providing a theoretical framework for understanding the process of diagnosis and sero-status acceptance among WLWHA. This was the first study of its kind to examine the meaning of living with HIV/AIDS among women in a Middle Eastern country.

  9. Geomagnetic field and length-of-day fluctuations at decadal and subdecadal time scales. A plea for looking beyond the atmosphere for partners in Earth's rotation

    Science.gov (United States)

    Demetrescu, C.; Dobrica, V.; Stefan, C.

    2017-12-01

    A rich scientific literature is linking length-of-day (LOD) fluctuations to geomagnetic field and flow oscillations in the fluid outer core. We demostrate that the temporal evolution of the geomagnetic field shows the existence of several oscillations at decadal, inter-decadal, and sub-centennial time scales that superimpose on a so-called inter-centennial constituent. We show that while the subcentennial oscillations of the geomagnetic field, produced by torsional oscillations in the core, could be linked to oscillations of LOD at a similar time scale, the oscillations at decadal and sub-decadal time scales, of external origin, can be found in LOD too. We discuss these issues from the perspective of long time-span main field models (gufm1 - Jackson et al., 2000; COV-OBS - Gillet et al., 2013) that are used to retrieve time series of geomagnetic elements in a 2.5x2.5° network. The decadal and sub-decadal constituents of the time series of annual values in LOD and geomagnetic field were separated in the cyclic component of a Hodrick-Prescott filtering applied to data, and shown to highly correlate to variations of external sources such as the magnetospheric ring current.

  10. 78 FR 24325 - Earth Day, 2013

    Science.gov (United States)

    2013-04-24

    ... our economy can grow alongside a healthy environment. As environmental challenges evolve with a... standards to curb toxic emissions from power plants. Implementing these standards will help prevent... will protect our environment and contribute to a healthy, sustainable future. IN WITNESS WHEREOF, I...

  11. 76 FR 23685 - Earth Day, 2011

    Science.gov (United States)

    2011-04-28

    ... major global environmental challenge of a changing climate. Our entire planet must address this problem because no nation, however large or small, wealthy or poor, can escape the impact of climate change. The United States can be a leader in reducing the dangerous pollution that causes global warming and can...

  12. 77 FR 24577 - Earth Day, 2012

    Science.gov (United States)

    2012-04-25

    ... fuel economy standards in our Nation's history--standards that will save families money at the pump... foundation in science, technology, engineering, and math for every student will help ensure our youth have the skills and knowledge to advance our clean energy economy. Last year, we launched the Department of...

  13. Dinosaur Day!

    Science.gov (United States)

    Nakamura, Sandra; Baptiste, H. Prentice

    2006-01-01

    In this article, the authors describe how they capitalized on their first-grade students' love of dinosaurs by hosting a fun-filled Dinosaur Day in their classroom. On Dinosaur Day, students rotated through four dinosaur-related learning stations that integrated science content with art, language arts, math, and history in a fun and time-efficient…

  14. Radiochemistry days

    International Nuclear Information System (INIS)

    1998-09-01

    This document provides the 44 papers (transparencies used during the presentations and posters) presented at the Radiochemistry Days, held September 3-4, 1998 in Nantes, France. The main studied topics were problematic questions concerning the nuclear fuel cycle and in particular the management, storage of radioactive wastes and the environmental impact. (O.M.)

  15. Pamphlet day

    OpenAIRE

    Eastwood, Phil; Dunne, Chris; Fowler, Stephen

    2017-01-01

    Pamphlet Day: A Political Protest Pamphlet and Zine Event focused around the occupation of Loughborough Public Library, Granby Street, Loughborough, LE11 3DZ, UK. ABSTRACT “Throughout the 20th Century artists have engaged provocatively with text, images and performance, publishing writings, pamphlets, and manifestos that challenge the status quo.” (1) Loughborough Echo, May 2017 https://www.loughboroughecho.net/whats-on/arts-culture-news/pamphlet-art-feature-events-13038989 A s...

  16. Fraud in Rights and Contracts: A Review of Bankruptcy Case of Livent Inc. Based on Governance, Risk, and Compliance (GRC Framework

    Directory of Open Access Journals (Sweden)

    Samuel Anindyo Widhoyoko

    2017-05-01

    Full Text Available This research discussed the accounting scandal in the perspective of governance, risk, and compliance using Governance, Risk, and Compliance (GRC framework. Unlike other fraud’s framework, GRC framework combinedthree different aspects of business sustainability of reporting. The purpose of the research was to highlight early business fraud that usually initiated by the company in boosting up the revenue during the Initial public offering(IPO processes. When other research discussed the business’ fraud schemes through the document alteration, this research focused on a case showing how a business could make the wrong statement to the investors through real and lawful future contracts with unqualified audit opinion. Structurally, this research was done through the action research method in pointing out all the directors’ failures in their function to hold the fiduciary duty to exercise their responsibility. Based on the analysis with the accordance with the framework used, it is highlighted that directors in the aspect of (1 governance decisive, they fail to set proportional target, provide ethical value, and react positively to maintain the company sustainability; (2 compliance submissive, they do not submit the accounting standards through undisclosed third-party agreement, misrepresentation of revenue recognition, and mistreatment of expense omission; (3 risk preventive, they fail to assess the risk occurs from legal aspect of conflict of interest, long-term contractual and engagement risks, and insufficient future cash flow.

  17. The women day storm

    OpenAIRE

    Parnowski, Aleksei; Polonska, Anna; Semeniv, Oleg

    2012-01-01

    On behalf of the International Women Day, the Sun gave a hot kiss to our mother Earth in a form of a full halo CME generated by the yesterday's double X-class flare. The resulting geomagnetic storm gives a good opportunity to compare the performance of space weather forecast models operating in near-real-time. We compare the forecasts of most major models and identify some common problems. We also present the results of our own near-real-time forecast models.

  18. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  19. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  20. Electromagnetic compatibility and earths

    International Nuclear Information System (INIS)

    Duque Henao, Alan; Casas Ospina, Favio

    2001-01-01

    It is such the increment of applications of electric and electronic equipment in the modern companies that the lack of control of the electromagnetic perturbations, brings, get big losses and difficulties in the normal operations. The paper contribute to ago with base in the challenges that day-by-day are confronting, where the settings to earth, to be the foundation of the electric building, are fundamental for a good coexistence among the different equipment s

  1. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic.

    Directory of Open Access Journals (Sweden)

    Indranil Mukhopadhyay

    Full Text Available Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1 is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca(+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.

  2. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  3. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  4. 2015 Barcelona Asteroid Day

    CERN Document Server

    Gritsevich, Maria; Palme, Herbert

    2017-01-01

    This volume is a compilation of the research presented at the International Asteroid Day workshop which was celebrated at Barcelona on June 30th, 2015. The proceedings discuss the beginning of a new era in the study and exploration of the solar system’s minor bodies. International Asteroid Day commemorates the Tunguska event of June 30th, 1908. The workshop’s goal was to promote the importance of dealing proactively with impact hazards from space. Multidisciplinary experts contributed to this discussion by describing the nature of comets and asteroids along with their offspring, meteoroids. New missions to return material samples of asteroids back to Earth such as Osiris-REx and Hayabusa 2, as well as projects like AIM and DART which will test impact deflection techniques for Potentially Hazardous Asteroids encounters were also covered. The proceedings include both an outreach level to popularize impact hazards and a scientific character which covers the latest knowledge on these topics, as well as offeri...

  5. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  6. AAS 227: Day 3

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 3 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Henry Norris Russell Lecture: Viewing the Universe with Infrared Eyes: The Spitzer Space Telescope (by Erika Nesvold)The Henry Norris Russell Award is the highest honor given by the AAS, for a lifetime of eminence in astronomy research. This years award went to Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. Fazio became a leader in gamma ray astronomy before switching mid-career to the study of infrared astronomy, and he gave his award lecture on the latter subject, specifically on the Spitzer Space Telescope, one of the most successful infrared telescopes of all time.Artists rendering of the Spitzer space telescope. [NASA/JPL-Caltech]Spitzer has been operating for more than twelve years, and has resulted in over six thousand papers in refereed journals in that time. The telescope sits in an Earth-trailing orbit around the Sun, and is now farther from the Earth (1.4 AU) than the Earth is from the Sun. Fazio gave the audience a fascinating overview of the science done by Spitzer over more than a decade. One of the most productive areas of research for Spitzer is the study of exoplanets, which hadnt even been discovered when the Spitzer Telescope was first conceived. Spitzers high sensitivity and ability to observe exoplanets over

  7. The Earth's Plasmasphere

    Science.gov (United States)

    Gallagher, D. L.

    2015-01-01

    go away. Instead the ions react to the electric field and are attracted to it. They begin to move upward out of the ionosphere too. Since all this happens on a small scale, it simply looks like the electrons and ions move out of the ionosphere together. Ultimately the effect is that the lighter ions of hydrogen, helium and oxygen are able to escape from the ionosphere. For a planet like Earth with a strong planetary magnetic field, these outward moving particles remain trapped near the planet unless other processes further draw them away and into interplanetary space. As is always the case with nature, there is much more story to tell about this "upwardly mobile" plasma and these other processes. Over only a short time period of hours and days this escaping plasma can, in some places, build up in concentration until an equilibrium is reached where as much plasma flows inward into the ionosphere as flows outward. This "donut shaped" region of cold (about 1 electron volt in energy) plasma encircling the planet is called the plasmasphere. Because of space weather storms (kind of a generic phrase for those other processes) this cold and dense plasmaspheric plasma can actually end up all over the place. Generally, that region of space where plasma from the ionosphere has the time to build up to become identified as the plasmasphere rotates or nearly rotates with the Earth. That region shrinks in size with increased space weather activity and expands or refills during times of inactivity. As it shrinks with increasing activity, some of the plasmasphere is drawn away from its main body (plasmaspheric erosion) in the sunward direction toward the boundary in space between that region dominated by Earth's magnetic field and the much larger region dominated by the Sun's magnetic field. The region dominated by Earth's magnetic field is called the magnetosphere. The larger Sun dominated region is called the heliosphere.

  8. When Every Day Is Professional Development Day

    Science.gov (United States)

    Tienken, Christopher H.; Stonaker, Lew

    2007-01-01

    In the Monroe Township (New Jersey) Public Schools, teachers' learning occurs daily, not just on one day in October and February. Central office and school-level administrators foster job-embedded teacher growth. Every day is a professional development day in the district, but that has not always been so. How did the district become a system with…

  9. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  10. STS-78 Flight Day 11

    Science.gov (United States)

    1996-01-01

    On this eleventh day of the STS-78 mission, the flight crew, Cmdr. Terence T. Henricks, Pilot Kevin R. Kregel, Payload Cmdr. Susan J. Helms, Mission Specialists Richard M. Linnehan, Charles E. Brady, Jr., and Payload Specialists Jean-Jacques Favier, Ph.D. and Robert B. Thirsk, M.D., are shown conducting a news conference to discuss the progress of the international mission with media from the United States, Canada and Europe. During the press conference, the crew explained the relevance of the experiments conducted aboard the Life Sciences and Microgravity mission, and praised support crews and researchers on Earth who are involved in the mission. Payload Specialist Dr. Robert Thirsk told Canadian journalists of how the research will not only benefit astronauts as they conduct long-term space missions, but also people on Earth. Some of the research will aid studies on osteoporosis and the effects steroids have on bones, and also may help doctors on Earth develop treatments for muscle diseases like muscular dystrophy, Thirsk told reporters in Toronto.

  11. 2016 SPD: Day 1

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    wait for the warmer Antarctic weather in December before a team will be able to reach the instrument and recover it!Over the 12 days it flew, GRIPS observed 21 small, C-class solar flares. Data analysis is currently underway, and the team hopes that these observations will help improve our understanding of the processes underlying these solar flares.The FOXSI mission launches on a sounding rocket, taking roughly five minutes of hard X-ray data of the Sun during its flights. [NASA/FOXSI]FOXSINext, Camilo Buitrago-Casas (UC Berkeley) introduced us to the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket. More than anything, FOXSI is a test of new instrumentation that may be key to future observations of the Sun in hard X-rays.FOXSI is a focusing telescope something that is significantly more difficult to do with hard X-rays than it is with optical telescopes. Hard X-rays are difficult to bounce off of mirrors since, due to their high energy, they simply pass through the mirrors! The trick is to capture the X-rays at a grazing angle, sending them through a series of nested mirrors that progressively focus the light. Due to this process and new-technology detectors, FOXSI is able to produce very high-quality, low-noise images of some of the hottest solar sources in fine detail.FOXSI has now flown twice, with a third flight planned for 2018. Each flight gains about five minutes of data while the sounding rocket is above the Earths atmosphere in its parabolic trajectory. While this instrument has already produced a wealth of data about tiny solar flares, the ultimate goal is to get FOXSIs technology on a space-based observatory, allowing for dedicated and longer observations of solar flares.NuSTARNext, Lindsay Glesener (University of Minnesota) spoke about the Nuclear Spectroscopic Telescope Array (NuSTAR) space telescope, which actually has this opportunity for long solar observations except that its a little busy. NuSTAR was primarily designed to look at faint

  12. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng [Washington State Univ., Pullman, WA (United States)

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Because of the important role that students and postdocs play in the future of this field, we also anticipate to select several posters from young investigators for oral presentations.

  13. Between Anzac Day and Waitangi Day

    Directory of Open Access Journals (Sweden)

    Czerwińska Anna

    2017-12-01

    Full Text Available This paper discusses the historical background and significance of the two most important national holidays in New Zealand: Waitangi Day and Anzac Day. Waitangi Day is celebrated on the 6th February and it commemorates the signing of the Treaty of Waitangi between British representatives and a number of Māori chiefs in 1840. Following the signing of the treaty New Zealand became effectively a British colony. Anzac Day is celebrated on 25th April, i.e., on the anniversary of the landing of soldiers of the Australian and New Zealand Army Corps (ANZAC on the Gallipoli peninsula in Turkey in 1915, during World War One. There are three major differences between these two holidays: the process of those days becoming national holidays, the level of contestation, and the changing messages they have carried. The present study analyzes the national discourse around Anzac Day and Waitangi Day in New Zealand, and attempts to reveal how the official New Zealand government rhetoric about national unity becomes deconstructed. The following analysis is based on a selection of online articles from the New Zealand Herald and Stuff published in Auckland and Wellington, respectively. Both cities are populated by multi-ethnic groups, with Auckland featuring the largest Māori population.

  14. Earth rotation measured by lunar laser ranging

    Science.gov (United States)

    Stolz, A.; Bender, P. L.; Faller, J. E.; Silverberg, E. C.; Mulholland, J. D.; Shelus, P. J.; Williams, J. G.; Carter, W. E.; Currie, D. G.; Kaula, V. M.

    1976-01-01

    The estimated median accuracy of 194 single-day determinations of the earth's angular position in space is 0.7 millisecond (0.01 arc second). Comparison with classical astronomical results gives agreement to about the expected 2-millisecond uncertainty of the 5-day averages obtained by the Bureau International de l'Heure. Little evidence for very rapid variations in the earth's rotation is present in the data.

  15. CGH Supports World Cancer Day Every Day

    Science.gov (United States)

    We celebrate World Cancer Day every year on February 4th. This year the theme “We can. I can.” invites us to think not only about how we can work with one another to reduce the global burden of cancer, but how we as individuals can make a difference. Every day the staff at CGH work to establish and build upon programs that are aimed at improving the lives of people affected by cancer.

  16. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  17. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    of electromagnetism. According to a rule of the left hand: if the magnetic field in a kernel is directed to drawing, electric current are directed to an axis of rotation of the Earth, - a action of force clockwise (to West). Definition of the force causing drift a kernel according to the law of Ampere F = IBlsin. Powerful force 3,5 × 1012 Nyton, what makes drift of the central part of a kernel of the Earth on 0,2 the longitude in year to West, and also it is engine of the mechanism of movement of slabs together with continents. Movement of a core of the Earth carry out around of a terrestrial axis one circulation in the western direction in 2000 of years. Linear speed of rotation of a kernel concerning a mantle on border the mantle a kernel: V = × 3,471 × 10 = 3,818 × 10 m/s = 33 m/day = 12 km/years. Considering greater viscosity of a mantle, the powerful energy at rotation of a kernel seize a mantle and lithospheric slabs and makes their collisions as a result of which there are earthquakes and volcano. Continents Northern and Southern America every year separate from the Europe and Africa on several centimeters. Atlantic ocean as a result of movement of these slabs with such speed was formed for 200 million years, that in comparison with the age of the Earth - several billions years, not so long time. Drift of a kernel in the western direction is a principal cause of delay of speed of rotation of the Earth. Flow of radial electric currents allot according to the law of Joule - Lenz, the quantity of warmth : Q = I2Rt = IUt, of thermal energy 6,92 × 1017 calories/year. This defines heating of a kernel and the Earth as a whole. In the valley of the median-Atlantic ridge having numerous volcanos, the lava flow constantly thus warm up waters of Atlantic ocean. It is a fact the warm current Gulf Stream. Thawing of a permafrost and ices of Arctic ocean, of glaciers of Greenland and Antarctica is acknowledgement: the warmth of earth defines character of thawing of

  18. Antarctica Day: An International Celebration

    Science.gov (United States)

    Pope, A.; Hambrook Berkman, J.; Berkman, P. A.

    2013-12-01

    For more than half a century, the 1959 Antarctic Treaty continues to shine as a rare beacon of international cooperation. To celebrate this milestone of peace in our civilization with hope and inspiration for future generations, Antarctica Day is celebrated each year on December 1st , the anniversary of the Antarctic Treaty signing. As an annual event - initiated by the Foundation for the Good Governance of International Spaces (www.internationalspaces.org/) in collaboration with the Association of Polar Early Carer Scientists (www.apecs.is) - Antarctica Day encourages participation from around the world. The Antarctic Treaty set aside 10% of the earth, 'forever to be used exclusively for peaceful purposes in the interest of mankind.' It was the first nuclear arms agreement and the first institution to govern all human activities in an international region beyond sovereign jurisdictions. In this spirit, Antarctica Day aims to: - Demonstrate how diverse nations can work together peacefully, using science as a global language of cooperation for decision making beyond national boundaries, - Provide strategies for students learning about Antarctica through art, science and history at all school levels, - Increase collaboration and communication between classrooms, communities, researchers and government officials around the world, and - Provide a focus for polar educators to build on each year. Through close collaboration with a number of partners. Antarctica Day activities have included: a Polar Film Festival convened by The Explorers Club; live sessions connecting classrooms with scientists in Antarctica thanks to PolarTREC and ARCUS; an international activity that involved children from 13 countries who created over 600 flags which exemplify Antarctica Day (these were actually flown in Antarctica with signed certificates then returned to the classes); a map where Antarctica Day participants all over the world could share what they were doing; an Antarctic bird count

  19. Changing Pre-School Children's Conceptions of the Day/Night Cycle.

    Science.gov (United States)

    Valanides, N.; Gritsi, F.; Kampeza, M.; Ravanis, K.

    2000-01-01

    Examined the impact of a teaching intervention on preschoolers' concepts of the day/night cycle. Found that most children readily accepted that the sun and earth are separate spherical objects, but fewer attributed the day/night cycle to rotation of the earth on its axis. Most were puzzled by simultaneous movements of the earth around the sun and…

  20. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  1. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  2. Day Care Centers

    Data.gov (United States)

    Department of Homeland Security — This database contains locations of day care centers for 50 states and Washington D.C. and Puerto Rico. The dataset only includes center based day care locations...

  3. Is day surgery safe?

    DEFF Research Database (Denmark)

    Majholm, Birgitte; Engbæk, J; Bartholdy, Jens

    2012-01-01

    Day surgery is expanding in several countries, and it is important to collect information about quality. The aim of this study was to assess morbidity and unanticipated hospital visits 0-30 days post-operatively in a large cohort.......Day surgery is expanding in several countries, and it is important to collect information about quality. The aim of this study was to assess morbidity and unanticipated hospital visits 0-30 days post-operatively in a large cohort....

  4. Day Care: Other Countries.

    Science.gov (United States)

    Hjartarson, Freida; And Others

    This collection of 5 bilingual papers on day care programs in foreign countries (China, the Soviet Union, and 3 Scandinavian countries) is part of a series of papers on various aspects of day care published by the Canadian Department of Health and Welfare. Each paper is presented in both English and French. Paper I considers day care services in…

  5. Every Day Is Mathematical

    Science.gov (United States)

    Barger, Rita H.; Jarrah, Adeeb M.

    2012-01-01

    March 14 is special because it is Pi Day. Mathematics is celebrated on that day because the date, 3-14, replicates the first three digits of pi. Pi-related songs, websites, trivia facts, and more are at the fingertips of interested teachers and students. Less celebrated, but still fairly well known, is National Metric Day, which falls on October…

  6. AAS 227: Day 4

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 4 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Helen B. Warner Prize: Origins of Structure in Planetary Systems (by Erika Nesvold)Another excellent prize lecture started off todays sessions. The Helen B. Warner Prize is awarded for achievement in observational or theoretical astrophysics by a young researcher (no more than eight years after their Ph.D.). This years Warner Prize was presented to Ruth Murray-Clay of UC Santa Barbara. For her award lecture, Murray-Clay told us all about planetary system architecture: the number, masses, and orbits of planets in a given system.Ruth Murray-Clay [photo from http://web.physics.ucsb.edu/ ~murray/biocv.html]The underlying question motivating this type of research is: How rare is the Solar System? In other words, how likely is it that a given planetary system will have rocky planets close to their star, gas giants farther out, and ice giants at the outer reaches of the system? Answering this question will help us solve the physics problem of how and where planets form, and will also help us on our search for other planets like Earth.The data on exoplanet population from transit and radial velocity observations and from direct imaging tell us that our Solar System is not common (many systems we observe have much more eccentric gas giants), but that doesnt

  7. STS-72 Flight Day 2

    Science.gov (United States)

    1996-01-01

    On this second day of the STS-72 mission, the flight crew, Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA), awakened to music from the motion picture 'Star Wars.' The crew performed a systems checkout, prepared for the retrieval of the Japanese Space Flyer Unit (SFU), tested the spacesuits for the EVA, and activated some of the secondary experiments. An in-orbit news interview was conducted with the crew via satellite downlinking. Questions asked ranged from the logistics of the mission to the avoidance procedures the Endeavour Orbiter performed to miss hitting the inactive Air Force satellite, nicknamed 'Misty' (MSTI). Earth views included cloud cover, several storm systems, and various land masses with several views of the shuttle's open cargo bay in the foreground.

  8. Slimmed May Day Holiday

    Institute of Scientific and Technical Information of China (English)

    Liu Xinwen

    2008-01-01

    @@ Last November the State Council of China decided to renew its holiday system by reducing the seven-day Mav Dav holiday to three days and introducing three new one-day public holidays,namely the Qingming Festival,Dragon Boat Festival and Moon Festival.BY doing so,the three golden-week holidays that were introduced in 1999,namely the Spring Festival,Mav Dav and National Day,could be better distributed.The New Year's Eve holiday would remain one day.The new holiday plan was supposed to take effect in 2008.

  9. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  10. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  11. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  12. AAS 227: Day 2

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    Editors Note:This week were at the 227th AAS Meeting in Kissimmee, FL. Along with several fellow authors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting at the end of each day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Welcome to Day 2 of the winter American Astronomical Society (AAS) meeting in Kissimmee! Several of us are attending the conference this year, and we will report highlights from each day here on astrobites. If youd like to see more timely updates during the day, we encourage you to follow @astrobites on twitter or search the #aas227 hashtag.Plenary Session: Black Hole Physics with the Event Horizon Telescope (by Susanna Kohler)If anyone needed motivation to wake up early this morning, they got it in the form of Feryal Ozel (University of Arizona) enthralling us all with exciting pictures, videos, and words about black holes and the Event Horizon Telescope. Ozel spoke to a packed room (at 8:30am!) about where the project currently stands, and where its heading in the future.The EHT has pretty much the coolest goal ever: actually image the event horizons of black holes in our universe. The problem is that the largest black hole we can look at (Sgr A*, in the center of our galaxy) has an event horizon size of 50 as. For this kind of resolution roughly equivalent to trying to image a DVD on the Moon! wed need an Earth-sized telescope. EHT has solved this problem by linking telescopes around the world, creating one giant, mm-wavelength effective telescope with a baseline the size of Earth.Besides producing awesome images, the EHT will be able to test properties of black-hole spacetime, the no-hair theorem, and general relativity (GR) in new regimes.Ozel walked us through some of the theory prep work we need to do now in order to get the most science out of the EHT, including devising new

  13. Open Day at SHMI.

    Science.gov (United States)

    Jarosova, M.

    2010-09-01

    During the World Meteorological Day there has been preparing "Open Day" at Slovak Hydrometeorological Institute. This event has more than 10 years traditions. "Open Day" is one of a lot of possibilities to give more information about meteorology, climatology, hydrology too to public. This "Day" is executed in whole Slovakia. People can visit the laboratories, the forecasting room....and meteo and clima measuring points. The most popular is visiting forecasting room. Visitors are interested in e.g. climatologic change in Slovakia territory, preparing weather forecasting, dangerous phenomena.... Every year we have more than 500 visitors.

  14. Super computer displays future of the earth

    International Nuclear Information System (INIS)

    Yokokawa, Mitsuo; Tani, Keiji

    2000-01-01

    Science and Technology Agency has promoted a project of estimation of the earth environment fluctuation since Fiscal 1997. As one of series, it is developing a very high speed parallel computer 'the earth 'simulator' with 5TFLOPS of effective performance (40TFLOPS of peak performance). Abstract of the hardware, basic software and application software is explained. Hardware is constructed by a distributed memory type parallel computer and single-stage crossbars network. Main storage capacity is 10 TB. The basic software consisted of hierarchical structure with operating system, compiler, operation and management software. In the earth simulator, 640 nodes are connected by magnetic disk units, so that input/output of calculation is parallel processor, the most important development item. The earth simulator project is developing a software, NJR (NASDA-JAMSTEC-RIST) program, which is atmosphere and ocean large circulation joint model library system. An example of analysis showed a global distribution of rain a day in the earth. (S.Y.)

  15. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  16. Orthopaedics in day surgery

    African Journals Online (AJOL)

    processing of day cases is separate, more efficient and cases of ... anaesthetists, patient records, costing of procedures, drugs to be ... Methods: Patients treated at two day surgical units study with the aid of careful record, as to the selection, ... treatment only. .... Trauma, especially road traffic .... children with cerebral palsy.

  17. NO TOBACCO DAY

    CERN Multimedia

    Medical Service

    2002-01-01

    The CERN Medical Service is joining in with the world no tobacco day, which takes place on 31 May 2002. We encourage you to take this opportunity to stop smoking for good. Nurses and Doctors will be present on that day to give out information on methods to stop smoking and to assist you in your efforts.

  18. The Graduation Day

    Institute of Scientific and Technical Information of China (English)

    毛竹晨

    2004-01-01

    It is one of the hottest summer days that Cambridge has ever had.We wereclad(clothe的过去式和过去分词)in the black gown once more.However thiswill probably be my last time to wear it.I had not been wearing it that much af-ter all.After this day,it will be shipped back to my home and lie in my closet,just to be dug out many years later and the sight of it will bring me back to thisvery day.It is our graduation day,the day wher we can add a hood(头巾;兜帽)

  19. AAS 227: Day 1

    Science.gov (United States)

    Kohler, Susanna

    2016-01-01

    The mission was featured on the front pages of 450 newspapers worldwide on every single continent (including Antartica!)New Horizons reached the Moon in9 HOURSafter launch (compared to the ~3 days it took the Apollo missions)The mission controllers were aiming for a 100km window of space all the way from EarthThere was a window of ~400seconds which the probe had to arrive within the probe arrived90 seconds early! Putting tardy astronomers everywhere to shame.Charon was the only satellite of Pluto known at the time of the mission proposalThe canyon found on Charon is not only bigger than the Grand Canyon but bigger than Mariner Valley on Mars which is already4000 km (2500 mi) long and reaches depths of up to 7 km (4 mi)!Charons surface. Tectonic feature runs about 1500 km, around 10 km deep. Eat it, Mars. #aas227 pic.twitter.com/blewwJaXEn Danny Barringer (@HeavyFe_H) January 5, 2016The mountains ringing the Sputnik Planum (aka the heart of Pluto) are over 4km high and are snow capped with methane icePlutos mountain ranges. Means surface nitrogen layer is thin, probably water ice according to @AlanStern. #aas227 pic.twitter.com/0yyHZvpBOE Danny Barringer (@HeavyFe_H) January 5, 2016Plutos atmosphere has a dozendistincthaze layers but how they arecreated is a mystery#aas227 hazes on Pluto wow pic.twitter.com/VPx99ZhPj1 Lisa StorrieLombardi (@lisajsl) January 5, 2016Alan also spoke about the future of New Horizons there is a new mission proposal for a fly by of a Kuiper Belt object 2014MU69 in Jan 2019 which should give us a better understanding of this icy frontier at the edge ofthe Solar System. As a parting gift Alan playedthemost gorgeously detailed fly over video of Plutos surface that had all in the room melting into their flip flops. Its safe to say that the whole room is now Pluto-curious and wondering whether a change of discipline is in order!Press Conference: Black Holes and Exoplanets (by Susanna Kohler)This morning marked the first press conference of the meeting

  20. AAS 228: Day 4

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors Note: Lastweek we were at the 228th AAS Meeting in San Diego, CA. Here is a final post aboutselectedevents on the last day of the meeting, written by authors fromastrobites.com, a grad-student collaborative project with which we recently announced a new partnership! Starting in July,keep an eye out for astrobites postsat AAS Nova in between Highlights(i.e., on Tuesdays and Thursdays).Were excited to be working together to bring you more recent astronomy research from AAS journals!Extrasolar Planets: Detection (by Leonardo dos Santos)Thursdays first session on exoplanets was about detecting these distant worlds, and the opening talk was given by Robert Siverd (Las Cumbres Observatory). He describes the NRES, a network of spectrographs that will look for exoplanets using the radial velocity method. One of the coolest aspects of this instrument is that it will feature an on the fly scheduling system that will perform observations as efficiently as possible. The spectrograph is still being tested, but a unit will be deployed at CTIO later this year.@lcogt contracted by @NASA_TESS for follow up of their candidates. #aas228 Jessie Christiansen (@aussiastronomer) June 16, 2016Measuring the depths of transits and eclipses in Spitzer has been problematic in the past, since the Spitzer instrument IRAC (InfraRed Array Camera) has a non-uniform response in its detectors pixels. But, as reported by James Ingalls (Spitzer Science Center, Caltech), observers are circumventing this issue by using what they call the staring mode (avoiding large pointing jumps) and an algorithm to pick sweet spot pixels. Moreover, the results from the IRAC Data Challenge are helping to better understand its behavior. Giuseppe Morello (University College London), on the other hand, explained how his research group gets rid of instrumental effects from IRAC using machine learning. This method removes systematics from exoplanet transit data no matter if the noise source is from an instrument or

  1. 2016 SPD: Day 3

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors note:This week were in Boulder, Colorado at the47th meeting of the AAS Solar Physics Division (SPD). Follow along to catch some of the latest news from the field of solar physics!Yesterdayspress conference was titled Preparing for the 2017 Great American Eclipse. Four speakers highlighted both outreach and research projects that are planned for the eclipse that will cross the continental United States on August 21st next year.Eclipse from High AltitudeFirst up, Angela Des Jardins (Montana Space Grant Consortium) introduced us to the nationwide Eclipse Ballooning Project.An eclipse as seen from the ISS. Being up high gives you a very different perspective on eclipses! [NASA]The last total solar eclipse in the continental United States was in 1979, and people were told to stay inside and watch from their TVs! For the next total solar eclipse in the US, we want the opposite: for everyone to be outdoors and in the path of totality to watch (with eclipse glasses lets be safe)! This eclipse is a fantastic educational opportunity, and a way to reach an enormous audience.And what better way to experience the eclipse than to be involved? The Eclipse Ballooning Project is involving more than 50 student teams from 30 states to fly high-altitude balloons at 20 locations along the total eclipse path. These balloons will send live videos and images from the edge of space to the NASA website.Why? Being someplace high up provides an entirely different view for an eclipse! Instead of looking up to watch the Moon slide in front of the Sun, you can look down to watch the Moons shadow race across the Earths surface at thousands of miles per hour. This unique perspective is rare, and has certainly never been covered live. This will be an awesome addition to other coverage of the eclipse!At Maximum TotalityThe next speaker, Gordon Emslie, described the outreach efforts planned at his institution, Western Kentucky University (WKU). The location where the eclipse totality will

  2. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  3. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  4. Adult Day Services

    Science.gov (United States)

    ... Home Health Aide Semi Private Private $25,000 Adult Day Servi Acesssisted Living Home Care Nursing Homes $0 1. General information based on industry views of various members of the National Adult ...

  5. Adult Day Care

    Science.gov (United States)

    ... Finding a Center Not all states license and regulate adult day care centers. There may be a ... is not usually covered by Medicare insurance, some financial assistance may be available through a federal or ...

  6. Open Day: General Information

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ With 50 visit points, including theatre performances, debates and visits to installations that have never before been opened to the public, CERN's 50th anniversary Open Day is set to be a day to remember. Seven hundred volunteers have signed up to help for the day. The Open Day team truly appreciates this wonderful show of support! The Open Day would not be possible without their help. Car parking and Access Cars with a CERN sticker can access all CERN sites as normal. However, to avoid congestion on Meyrin site, we ask you to park in areas that will not be open to the public (see below) and to use the shuttle services wherever possible for your transport during the day. Private cars on the French side of the border without a CERN sticker will be diverted to a car park area in the Prévessin site. There is a shuttle service connecting the Meyrin and Prévessin sites via SM18 every 20 minutes. Private cars on the Swiss side of the border without a CERN sticker will be diverte...

  7. Sign of the day-night asymmetry for solar neutrinos

    International Nuclear Information System (INIS)

    Chiang, Cheng-Wei; Wolfenstein, Lincoln

    2001-01-01

    A qualitative understanding of the day-night asymmetry for solar neutrinos is provided. The greater night flux in ν e is seen to be a consequence of the fact that the matter effect in the Sun and that in the Earth have the same sign. It is shown in the adiabatic approximation for the Sun and constant density for the Earth that, for all values of the mixing angle θ V between 0 and π/2, the night flux of neutrinos is greater than the day flux. Only for small values of θ V where the adiabatic approximation badly fails does the sign of the day-night asymmetry reverse

  8. 4th Optimization Day

    CERN Document Server

    Eberhard, Andrew; Ralph, Daniel; Glover, Barney M

    1999-01-01

    Although the monograph Progress in Optimization I: Contributions from Aus­ tralasia grew from the idea of publishing a proceedings of the Fourth Optimiza­ tion Day, held in July 1997 at the Royal Melbourne Institute of Technology, the focus soon changed to a refereed volume in optimization. The intention is to publish a similar book annually, following each Optimization Day. The idea of having an annual Optimization Day was conceived by Barney Glover; the first of these Optimization Days was held in 1994 at the University of Ballarat. Barney hoped that such a yearly event would bring together the many, but widely dispersed, researchers in Australia who were publishing in optimization and related areas such as control. The first Optimization Day event was followed by similar conferences at The University of New South Wales (1995), The University of Melbourne (1996), the Royal Melbourne Institute of Technology (1997), and The University of Western Australia (1998). The 1999 conference will return to Ballarat ...

  9. Space sickness on earth

    Science.gov (United States)

    Nooij, S. A. E.; Bos, J. E.; Groen, E. L.; Bles, W.; Ockels, W. J.

    2007-09-01

    During the first days in space, i.e., after a transition from 1G to 0G, more than 50% of the astro- (and cosmonauts) suffer from the Space Adaptation Syndrome (SAS).The symptoms of SAS, like nausea and dizziness, are especially provoked by head movements. Astronauts have mentioned close similarities between the symptoms of SAS and the symptoms they experienced after a 1 hour centrifuge run on Earth, i.e., after a transition from 3G to 1G (denoted by Sickness Induced by Centrifugation, SIC). During several space missions, we related susceptibility to SAS and to SIC in 11 astronauts and found 4 of them being susceptible to both SIC and SAS, and 7 being not susceptible to SIC nor to SAS. This correspondence in susceptibility suggests that SIC and SAS share the same underlying mechanism. To further study this mechanism, several vestibular parameters have been investigated (e.g. postural stability, vestibularly driven eye movements, subjective vertical). We found some striking changes in individual cases that are possibly due to the centrifuge run. However, the variability between subjects generally is very large, making physiological links to SIC and SAS still hard to find.

  10. Jupiter Night and Day

    Science.gov (United States)

    2001-01-01

    Day and night side narrow angle images taken on January 1, 2001 illustrating storms visible on the day side which are the sources of visible lightning when viewed on the night side. The images have been enhanced in contrast. Note the two day-side occurrences of high clouds, in the upper and lower parts of the image, are coincident with lightning storms seen on the darkside. The storms occur at 34.5 degrees and 23.5 degrees North latitude, within one degree of the latitudes at which similar lightning features were detected by the Galileo spacecraft. The images were taken at different times. The storms' longitudinal separation changes from one image to the next because the winds carrying them blow at different speeds at the two latitudes.

  11. Day of Remembrance

    Science.gov (United States)

    Uri, John

    2018-01-01

    Every year in late January, NASA holds a Day of Remembrance, honoring the astronauts lost in three major space flight accidents: Apollo 1, Challenger and Columbia. In an odd tragic coincidence, all three of the accidents happened in late January or early February, although many years apart: Apollo 1 on January 27, 1967; Challenger on January 28, 1986; and Columbia on February 1, 2003. While the day is a solemn one to commemorate the astronauts who lost their lives, it is also a day to reflect on the errors that led to the accidents and to remind all NASA workers and managers to be ever vigilant so that preventable accidents don't happen again.

  12. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  13. Marketing Your Day Camp.

    Science.gov (United States)

    Coleman, George

    1997-01-01

    Marketing strategies for day camps include encouraging camp staff to get involved in organizations involving children, families, and communities; holding camp fairs; offering the use of camp facilities to outside groups; hosting sport leagues and local youth outings; planning community fairs; and otherwise involving the camp in the community. (LP)

  14. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  15. Every Child, Every Day

    Science.gov (United States)

    Allington, Richard L.; Gabriel, Rachael E.

    2012-01-01

    We know more now than we ever did before about how to make every child a successful reader, write Allington and Gabriel in this research review. Yet, few students regularly receive the best reading instruction we know how to give. The authors present research supporting their recommendation that every child, every day, should (1) read something he…

  16. NATIONAL HEARING DAY

    CERN Multimedia

    2003-01-01

    The 12th of June 2003 Is the French National Hearing Day. The Medical Service invites everyone working at CERN to come and have an ear test at the infirmary. Bld. 57, ground floor, between 9h00 and 16h00 Tel. 73802

  17. National hearing day

    CERN Multimedia

    2003-01-01

    The 12th of June 2003 Is the French National Hearing Day. The Medical Service invites everyone working at CERN to come and have an ear test at the infirmary. Bld. 57, ground floor, between 9h00 and 16h00 Tel. 73802

  18. CERN openlab Open Day

    CERN Multimedia

    Purcell, Andrew Robert

    2015-01-01

    The CERN openlab Open Day took place on 10 June, 2015. This was the first in a series of annual events at which research and industrial teams from CERN openlab can present their projects, share achievements, and collect feedback from their user communities.

  19. Ten-day rule

    International Nuclear Information System (INIS)

    Knox, E.G.; Stewart, A.M.; Kneale, G.W.; Gilman, E.A.

    1987-01-01

    The authors argue against R.H. Mole's paper (Lancet, Dec. 12 1987), supporting the relaxation of ICRP recommendations and the DHSS decision to withdraw the 10 day rule in relation to diagnostic radiography for menstruating women, and draw attention to the recent refinement of estimates of the enhanced risk of childhood cancers, following diagnostic radiography during pregnancy. (U.K.)

  20. National HIV Testing Day

    Centers for Disease Control (CDC) Podcasts

    Dr. Kevin A. Fenton, Director of CDC's National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, discusses National HIV Testing Day, an annual observance which raises awareness of the importance of knowing one's HIV status and encourages at-risk individuals to get an HIV test.

  1. 90-Day Cycle Handbook

    Science.gov (United States)

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  2. World Heart Day

    Centers for Disease Control (CDC) Podcasts

    2009-09-01

    For World Heart Day, learn more about what heart-healthy steps you can take in the workplace.  Created: 9/1/2009 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 9/9/2009.

  3. Radiochemistry days; Journees radiochimie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This document provides the 44 papers (transparencies used during the presentations and posters) presented at the Radiochemistry Days, held September 3-4, 1998 in Nantes, France. The main studied topics were problematic questions concerning the nuclear fuel cycle and in particular the management, storage of radioactive wastes and the environmental impact. (O.M.)

  4. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  5. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  6. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  7. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  8. Earth Rotation Dynamics: Review and Prospects

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  9. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  10. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor No need to book HEALTHY HEART? Evaluation of personal cardiac risks through the monitoring of: Blood pressure Cholesterol and sugar levels Body Mass Index ... and more Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12am - Building 65 Please book (limited to 15 people/day) FIRST AID COURSES What to do in a Cardiac Emergency (3 h. duration) Places are limited and on reservation only (15 people/day). To book, e-mail the Medical Services on: service.medical@cern.ch

  11. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor no need to book HEALTHY HEART? • Evaluation of personal cardiac risks through the monitoring of: Blood pressure Cholesterol and sugar levels Body Mass Index ... and more • Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12 am - Building 65 Please book (limited to 15 people/day) FIRST AID COURSES • What to do in a Cardiac Emergency (3 h. duration) Places are limited and on reservation only (15 people/day). To book, e-mail the Medical Services on: service.medical@cern.ch

  12. Computer Security Day

    CERN Multimedia

    CERN Bulletin

    2010-01-01

      Viruses, phishing, malware and cyber-criminals can all threaten your computer and your data, even at CERN! Experts will share their experience with you and offer solutions to keep your computer secure. Thursday, 10 June 2010, 9.30, Council Chamber Make a note in your diary! Presentations in French and English: How do hackers break into your computer? Quels sont les enjeux et conséquences des attaques informatiques contre le CERN ? How so criminals steal your money on the Internet? Comment utiliser votre ordinateur de manière sécurisée ? and a quiz: test your knowledge and win one of the many prizes that will be on offer! For more information and to follow the day's events via a live webcast go to: http://cern.ch/SecDay.  

  13. Why National Biomechanics Day?

    Science.gov (United States)

    DeVita, Paul

    2018-04-11

    National Biomechanics Day (NBD) seeks to expand the influence and impact of Biomechanics on our society by expanding the awareness of Biomechanics among young people. NBD will manifest this goal through worldwide, synchronized and coordinated celebrations and demonstrations of all things Biomechanics with high school students. NBD invites all Biomechanists to participate in NBD 2018, http://nationalbiomechanicsday.asbweb.org/. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Viva il GIS Day!

    Directory of Open Access Journals (Sweden)

    Redazione Redazione

    2007-03-01

    Full Text Available Il GIS Day è sponsorizzato oltre che da ESRI, dalla National Geographic Society, dalla Association of American Geographers, dalla UCGIS (University Consortium for Geographic Information Science, dalla United States Geological Survey e dalla Library of Congress. Il tutto nasce nel corso della Geography Awareness Week, terza settimana di novembre che nel 1987 il Presidente degli Stati Uniti Ronald Reagan stabilì dovesse essere dedicata alla diffusione della cultura geografica.

  15. 'EU divertor celebration day'

    International Nuclear Information System (INIS)

    Merola, M.

    2002-01-01

    The meeting 'EU divertor celebration day' organized on 16 January 2002 at Plansee AG, Reutte, Austria was held on the occasion of the completion of manufacturing activities of a complete set of near full-scale prototypes of divertor components including the vertical target, the dome liner and the cassette body. About 30 participants attended the meeting including Dr. Robert Aymar, ITER Director, representatives from EFDA, CEA, ENEA, IPP and others

  16. World water day

    International Nuclear Information System (INIS)

    2005-01-01

    The symposium on world water day for the year 2005 was held on 22nd March by the Pakistan Engineering congress in collaboration with Water and Power Development Authority (WAPDA). Six technical papers by engineers/experts presented on the diverse fields from large dams to drinking water and public hygiene. Paper published in this volume are open for written discussion. (orig./A.B.)

  17. National HIV Testing Day

    Centers for Disease Control (CDC) Podcasts

    2011-06-09

    Dr. Kevin A. Fenton, Director of CDC's National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, discusses National HIV Testing Day, an annual observance which raises awareness of the importance of knowing one's HIV status and encourages at-risk individuals to get an HIV test.  Created: 6/9/2011 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 6/9/2011.

  18. Space exercise and Earth benefits.

    Science.gov (United States)

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  19. What can earth tide measurements tell us about ocean tides or earth structure?

    Science.gov (United States)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  20. Aryabha~ and Axial Rotation of Earth

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. Aryabhata and Axial Rotation of Earth - Naksatra Dina (the Sidereal Day). Amartya Kumar Dutta. General Article Volume 11 Issue 4 April 2006 pp 56-74. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  2. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  3. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  4. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  5. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  6. "A Day Without Immigrants"

    DEFF Research Database (Denmark)

    Heiskanen, Benita

    2009-01-01

    Abstract This article considers the debates surrounding the "Day Without Immigrants" protests organized in major U.S. cities on 1 May 2006, prompted by H.R. 4437, the Border Protection, Anti-Terrorism, and Illegal Immigration Control Act of 2005, from the multiple perspectives of scholars, pundits...... that the rhetoric used in these discourses pitted various class-based ethnoracial groups against each other not so much to tackle the proposed immigration bill but, rather, to comment on the ramifications of an increasingly multiracial United States. Udgivelsesdato: 01 December 2009...

  7. CERN hearing day

    CERN Multimedia

    2005-01-01

    1 in 10 people suffer from hearing loss - do you? The Medical Service invites everyone working on the CERN site to participate in the NATIONAL HEARING DAY on: Thursday 10th March 2005 From 9am to 4pm The Infirmary, Blg. 57, Ground Floor We will be offering hearing tests (audiograms), as well as information and advice on hearing loss, tinnitus, etc. Deafness does not just affect the elderly: in Europe, 50% of the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing problems but PREVENTION IS POSSIBLE. For example, hearing protection devices can prevent 80% of tinnitus cases.

  8. CERN hearing day

    CERN Multimedia

    2005-01-01

    1 in 10 people suffer from hearing loss - do you? The Medical Service invites everyone working on CERN premises to participate in the National Hearing Day on: Thursday 10th March From 9am to 4pm The Infirmary, Blg. 57, Gr.Fl. We will be offering hearing tests (audiogram); information, advice on hearing loss, tinnitus and more. Deafness does not just affect the elderly: in Europe, 50% the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing loss. But PREVENTION IS POSSIBLE AND EFFECTIVE: for example, Hearing protection devices could reduce tinnitus cases by 80%.

  9. CERN hearing day

    CERN Document Server

    2005-01-01

    1 in 10 people suffer from hearing loss - do you? The Medical Service invites everyone working on CERN premises to participate in the National Hearing Day on: Thursday 10th March From 9am to 4pm The Infirmary, Blg. 57, Gr.Fl. We will be offering hearing tests (audiogram); information, advice on hearing loss, tinnitus and more. Deafness does not just affect the elderly: in Europe, 50% the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing loss. But prevention is possible and effective: for example, Hearing protection devices could reduce tinnitus cases by 80%.

  10. CERN hearing day

    CERN Multimedia

    2005-01-01

    1 in 10 people suffer from hearing loss ? do you? The Medical Service invites everyone working on the CERN site to participate in the NATIONAL HEARING DAY on: Thursday 10th March 2005 From 9am to 4pm The Infirmary, Blg. 57, Ground Floor We will be offering hearing tests (audiograms), as well as information and advice on hearing loss, tinnitus, etc. Deafness does not just affect the elderly: in Europe, 50% of the hearing-impaired are under the age of 55. Exposure to excessive noise is one of the main reasons for hearing problems but prevention is possible. For example, hearing protection devices can prevent 80% of tinnitus cases.

  11. Hard-hat day

    CERN Multimedia

    2003-01-01

    CERN will be organizing a special information day on Friday, 27th June, designed to promote the wearing of hard hats and ensure that they are worn correctly. A new prevention campaign will also be launched.The event will take place in the hall of the Main Building from 11.30 a.m. to 2.00 p.m., when you will be able to come and try on various models of hard hat, including some of the very latest innovative designs, ask questions and pass on any comments and suggestions.

  12. The Future Days

    OpenAIRE

    Cerezo Rodríguez, Carlos

    2014-01-01

    In this memorandum it will be read all the documentation related to the Final Project Degree of Carlos Cerezo Rodríguez, The Future Days. The objective of this project has been to realise a mini-game (in form of interactive animation in Flash). So that, it will rest prepared for his posterior upload to websites that offer these services. As it will be appreciated in the writing, the process of construction of the project has been made through a phase of planning and preproduction, a phase of ...

  13. Gis Day 2005

    Directory of Open Access Journals (Sweden)

    Esri Italia Esri Italia

    2005-10-01

    Full Text Available Si è svolto nelle Marche, ad Urbino, città simbolo del legame tra scienza e Rinascimento, il GIS DAY 2005; l’evento ha avuto il patrocinio di DAMAC – INTERREG SECUR SEA ed il supporto di: Regione Marche - Giunta Regionale, Contea di Zara (Croazia, Centro di Geobiologia - Università di Urbino, Forum delle Città dell’Adriatico e dello Ionio e Adriatic Action Plan 2020 ed ha sviluppato il tema dedicato ad “Un GIS interoperabile e internazionale”.

  14. Higgs Boson Pizza Day

    CERN Document Server

    Stefania Pandolfi

    2016-01-01

    CERN celebrated the fourth anniversary of the historical Higgs boson announcement with special pizzas.    400 pizzas were served on Higgs pizza day in Restaurant 1 at CERN to celebrate the fourth anniversary of the announcement of the discovery of the Higgs Boson (Image: Maximilien Brice/ CERN) What do the Higgs boson and a pizza have in common? Pierluigi Paolucci, INFN and CMS collaboration member, together with INFN president Fernando Ferroni found out the answer one day in Naples: the pizza in front of them looked exactly like a Higgs boson event display. A special recipe was then created in collaboration with the chef of the historic “Ettore” pizzeria in the St. Lucia area of Naples, and two pizzas were designed to resemble two Higgs boson decay channel event displays. The “Higgs Boson Pizza Day” was held on Monday, 4 July 2016, on the fourth anniversary of the announcement of the discovery of the Higgs boso...

  15. A day to celebrate

    CERN Multimedia

    Laëtitia Pedroso

    2010-01-01

    After several weeks of preparations and hard work on the part of many people, the events to mark International Women's Day at CERN on 8 March were a genuine success. They were followed with great interest by the outside world, judging by the flurry of activity on twitter, various blogs and the media coverage they generated.   Women on shift in the CERN control rooms. Women were overwhelmingly in the majority at the controls of the experiments and accelerators throughout the day, as well as acting as the guides for all official visits. There was no shortage of enthusiasm! "I'm very happy that CERN has supported the project, and I'm especially encouraged by the enthusiastic response from everyone who's taken part", says Pauline Gagnon, a physicist from the Indiana University group and a member of the ATLAS collaboration, who was behind the idea. "I hope that this kind of initiative will help to show that women have a place in science and that young women thinkin...

  16. 5th Optimization Day

    CERN Document Server

    Mees, Alistair; Fisher, Mike; Jennings, Les

    2000-01-01

    'Optimization Day' (OD) has been a series of annual mini-conferences in Australia since 1994. The purpose of this series of events is to gather researchers in optimization and its related areas from Australia and their collaborators, in order to exchange new developments of optimization theories, methods and their applications. The first four OD mini-conferences were held in The Uni­ versity of Ballarat (1994), The University of New South Wales (1995), The University of Melbourne (1996) and Royal Melbourne Institute of Technology (1997), respectively. They were all on the eastern coast of Australia. The fifth mini-conference Optimization Days was held at the Centre for Ap­ plied Dynamics and Optimization (CADO), Department of Mathematics and Statistics, The University of Western Australia, Perth, from 29 to 30 June 1998. This is the first time the OD mini-conference has been held at the west­ ern coast of Australia. This fifth OD preceded the International Conference on Optimization: Techniques and Applica...

  17. The influence of geophysical processes on the Earth's rotation

    International Nuclear Information System (INIS)

    Nastula, J.

    1985-01-01

    The problem of the influence of geophysical processes on the Earth's rotation is presented. The role of these processes in the variations of the length of day is described in this part. 27 refs., 19 figs. (author)

  18. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  19. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  20. Day of Arts Philanthropy

    DEFF Research Database (Denmark)

    Lunde Jørgensen, Ida

    For the Day of Arts Philanthropy I will reflect on the instrumentalisation of art support in Denmark based on the findings from my thesis work (Jørgensen, 2016) investigating the underlyinglegitimations and institutional logics of two of the most significant foundations supporting visual art......, in Denmark, the private New Carlsberg Foundation and public Danish Arts Foundation.Drawing inspiration from neo-institutional theory (Friedland & Alford, 1991) and French pragmatic sociology (Boltanski & Thévenot, 2006), the thesis identifies the most central logics of legitimationunderlying art support......; the industrial, market, inspired, family, renown, civic, projective, emotional and temporal. The most prominent and consistently invoked instrumentalisations identified are theprofessional (industrial), artistic (inspired) and civic purposes of art support. The thesis shows that the instrumentalisations invoked...

  1. Injector MD Days 2017

    CERN Document Server

    Rumolo, G

    2017-01-01

    The Injector Machine Development (MD) days 2017 were held on 23-24 March, 2017, at CERN with thefollowing main goals:Give a chance to the MD users to present their results and show the relevant progress made in 2016 onseveral fronts.Provide the MD users and the Operation (OP) crews with a general overview on the outcome and theimpact of all ongoing MD activities.Identify the open questions and consequently define - with priorities - a list of machine studies in theinjectors for 2017 (covering the operational beams, LHC Injectors Upgrade, High Luminosity LHC,Physics Beyond Colliders, other projects).Create the opportunity to collect and document the highlights of the 2016 MDs and define the perspectivesfor 2017.Discuss how to make best use of the MD time, in particular let the main MD user express their wishesand see whether/how OP teams can contribute to their fulfilment.

  2. CERN Heart Days

    CERN Multimedia

    2003-01-01

    14 & 15 OCTOBER 2003 The Medical Service and the Fire Brigade invite everyone working at CERN to participate in the above event. INFIRMARY 9 am to 16.30 pm Building 57, ground floor HEALTHY HEART? ♥ Evaluation of personal cardiac risks through the monitoring of: • Blood pressure • Cholesterol and sugar levels • Body Mass Index ... and more ♥ Leaflets, information and advice concerning cardiac issues FIRE BRIGADE 9 to 12am Building 65 FIRST AID COURSES ♥ What to do in a Cardiac Emergency (3 h duration) Places are limited and on reservation only (15 people / day) To book, E-mail the Medical Services on: service.medical@cern.ch

  3. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  4. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  5. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  6. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  7. Visualization on the Day Night Year Globe

    International Nuclear Information System (INIS)

    Božić, Mirjana; Vušković, Leposava; Popović, Svetozar; Popović, Jelena; Marković-Topalović, Tatjana

    2016-01-01

    The story about a properly oriented outdoor globe in the hands and minds of Eratosthenes, Jefferson, Milanković and science educators is presented. Having the same orientation in space as the Earth, the Day Night Year Globe (DING) shows in real time the pattern of illumination of the Earth’s surface and its diurnal and seasonal variations. It is an ideal object for the visualization of knowledge and increase in knowledge about: the form of the Earth, Earth’s rotation, Earth’s revolution around the Sun, the length of seasons, solstices, equinoxes, the longitude problem, the distribution of the Sun’s radiation over the Earth, the impact of this radiation on Earth’s climate, and how to use it efficiently. By attaching a movable vane to the poles, or adding pins around the equator to read time, DING becomes a spherical/globe-shaped sundial. So, the DING is simultaneously useful for teaching physics, geophysics, astronomy, use of solar energy and promoting an inquiry-based learning environment for students and the public. (paper)

  8. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  9. Earth study from space

    Science.gov (United States)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  10. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  11. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  12. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  13. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  14. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  15. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  16. Cosmic radiation and the Earth rotation

    International Nuclear Information System (INIS)

    Pil'nik, G.P.

    1986-01-01

    On the basis of classical astronomical observations of time, waves of nonuniformity in the Earth rotation were found. The wave with the period of 159sup(m).566 is very close to the period of global oscillations of the Sun surface 160sup(m).r-1 and to the period of the Germinga gamma-ray radiatnon 159sup(m).96. The necessity is pointed out of a detailed study of the Earth rotation in the days of great developments of astrophysical and geophysical research

  17. STS-69 flight day 6 highlights

    Science.gov (United States)

    1995-09-01

    After being awakened by the Beatles song, 'A Hard Days Night', the flightcrew of the STS-69 mission, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, began their sixth day in orbit by monitoring the free orbiting Wake Shield Facility (WSF). Later Cmdr. Walker conducted an interview with television reporters from Atlanta and Boston, answering questions about the mission and general questions about NASA's space program. The crew filmed a video fo themselves performing daily routines (eating, shaving, exercising), as well as some of the physiological experiments, and shuttle equipment maintenance and checkout. One of the secondary experiments included the Commercial Generic Bioprocessing Apparatus-7 (CGBA-7), which served as an incubator and experiment station for a variety of tests (agricultural, pharmaceutical, biomedical, and environmental). Earth views included some cloud cover, the Gulf of Mexico, Texas, and the Atlantic Ocean.

  18. STS-69 flight day 9 highlights

    Science.gov (United States)

    1995-09-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  19. STS-69 Flight Day 9 Video File

    Science.gov (United States)

    1995-01-01

    The song, 'He's A Tramp', from the Walt Disney cartoon movie, 'Lady and the Tramp', awakened the astronauts, Cmdr. Dave Walker, Pilot Ken Cockrell, and Mission Specialists Jim Voss, Jim Newman, and Mike Gernhardt, on the ninth day of the STS-69 mission. The Wake Shield Facility (WSF) was again unberthed from the shuttle cargo bay and , using the shuttle's robot arm, held over the side of the shuttle for five hours where it collected data on the electrical field build-up around the spacecraft as part of the Charging Hazards and Wake Studies Experiment (CHAWS). Voss and Gernhardt rehearsed their Extravehicular Activity (EVA) spacewalk, which was planned for the next day. Earth views included cloud cover, a hurricane, and its eye.

  20. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  1. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  2. Printshop open days

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    With new machines, new services and new opening hours, the CERN Printshop has turned over many new leaves at the start of 2013. Come and find out more from 25 to 27 March at the Printshop open days!   The CERN Printshop’s new 8-metre long black and white printer. The CERN Printshop’s new 8-metre long black-and-white printer is a technical marvel. It can produce 160 pages per minute (it prints on both sides in one pass) and can also staple, punch holes, do thermal binding and make A4 or A5 brochures. The new colour printer is more discreet but no less efficient: it churns out 70 A4 or A3 pages per minute. Once they are printed, colour documents can be inserted into the black and white machine to be hole-punched, made into brochures or bound. They can even be mixed in with black-and-white pages and, as if by magic, come out in the right order! Having recently acquired a state-of-the-art large-format printer, the CERN Printshop can now print posters in A2, A1 or A0 format. ...

  3. Seven remarkable days

    CERN Document Server

    This has been a truly remarkable seven days for CERN. Things have moved so fast that it has sometimes been hard to separate fact from fiction – all the more so since facts have often seemed too good to be true. It’s been a week of many firsts. Monday was the first time we’ve had two captured beams in the LHC. It’s the first time the LHC has functioned as a particle accelerator, boosting particles to the highest beam energy so far achieved at CERN. And it’s been a week in which we’ve seen the highest energy proton-proton collisions ever produced at CERN: our last hadron collider, the SPS was a proton-antiproton collider, a technically simpler machine than the LHC. This week’s successes are all the more remarkable precisely because of the complexity of the LHC. Unlike the SPS collider, it is two accelerators not one, making the job of commissioning nearly twice as difficult. I’d like to express my heartfelt thanks and congra...

  4. Two days of films

    CERN Document Server

    2011-01-01

    The Chinese community at CERN and the CERN CineClub, on the occasion of the Chinese New Year, invite everyone to two days of films Thursday 3 February 2011 at 20:30 - CERN Council Chamber Eat drink man woman Directed by Ang LEE (Taiwan, 1994) 122 min. With Sihung Lung, Yu-Wen Wang, Chien-Lien Wu, Kuei-Mei Yang Senior Master Chef Chu lives in a large house in Taipei with his three unmarried daughters, Jia-Jen, a chemistry teacher converted to Christianity, Jia-Chien, an airline executive, and Jia-Ning, a student who also works in a fast food restaurant. Life in the house revolves around the ritual of an elaborate dinner each Sunday, and the love lives of all the family members. Original version Mandarin with English subtitles Friday 4 February 2011 at 19:30 - CERN Council Chamber Adieu, ma concubine Directed by Chen KAIGE (China / Hong Kong, 1993) 171 min. With Leslie Cheung, Fengyi Zhang, Li Gong "Farewell, My Concubine" is a movie with two parallel, intertwined stories. It is the story of two performers in t...

  5. CERN Diabetes Awareness Days

    CERN Multimedia

    2005-01-01

    Do you have diabetes without knowing it? Following last year's successful campaign, the CERN Infirmary has organised two further diabetes prevention and screening days on 10th & 11th October 2005 from 9am to 4pm (INFIRMARY, Bldg 57, ground floor) open to everyone working on the CERN site who was unable to participate in 2004. Testing of blood pressure, cholesterol and sugar levels, Body Mass Index, etc. Information - documentation - personal and individual advice. Presence of a dietician from 2 p.m. to 4 p.m. In cooperation with the NOVAE, DSR & AVENANCE restaurants Diabetes is reaching epidemic proportions in many countries and, if not diagnosed sufficiently early, can be a major cause of blindness and of heart and kidney disease, etc. Prevention is possible through screening and life-style changes such as improved dietary habits and regular physical exercise. Diabetes is not a serious condition in itself if it is diagnosed and treated early enough but it can have very serious consequences...

  6. CERN diabetes awareness days

    CERN Multimedia

    2005-01-01

    Do you have diabetes without knowing it? Following last year's successful campaign, the CERN Infirmary has organised two further diabetes prevention and screening days on 10th & 11th October 2005 from 9am to 4pm (INFIRMARY, Bldg 57, ground floor) open to everyone working on the CERN site who was unable to participate in 2004. Testing of blood pressure, cholesterol and sugar levels, Body Mass Index, etc. Information - documentation - personal and individual advice. Presence of a dietician from 2 p.m. to 4 p.m. In cooperation with the NOVAE, DSR & AVENANCE restaurants. Diabetes is reaching epidemic proportions in many countries and, if not diagnosed sufficiently early, can be a major cause of blindness, heart and kidney disease, etc. Prevention is possible through screening and life-style changes such as improved dietary habits and regular physical exercise. Diabetes is not a serious condition in itself if diagnosed and treated early enough but it can have very serious consequences if und...

  7. The Length of the Day: A Cosmological Perspective

    Directory of Open Access Journals (Sweden)

    Arbab A. I.

    2009-01-01

    Full Text Available We have found an empirical law for the variation of the length of the Earth’s day with geologic time employing Wells’s data. We attribute the lengthening of the Earth’s day to the present cosmic expansion of the Universe. The prediction of law has been found to be in agreement with the astronomical and geological data. The day increases at a present rate of 0.002 sec / century. The length of the day is found to be 6 hours when the Earth formed. We have also found a new limit for the value of the Hubble constant and the age of the Universe.

  8. Astrophysics days and MHD

    International Nuclear Information System (INIS)

    Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien

    2001-05-01

    This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number

  9. International Women's Day speech.

    Science.gov (United States)

    Kazibwe, S W

    1993-01-01

    The objectives of the International Women's Day are: 1) to celebrate the struggle for women's rights in the economic, social, political, and cultural domain; 2) to reaffirm women's solidarity in the struggle for peace; 3) and to show what women have achieved. In 1988, Uganda's government of the National Resistance Movement created the Ministry of Women in Development. The period 1988-1990 was one of consultations, needs assessment, planning, and recruiting staff for the Ministry. From 1990 to 1993, measurable results have been achieved. The Ministry's gender concerns pertained to the sector policies of the Ministries of Agriculture, Animal Industry and Fisheries, Education, Health, Water, Energy, Minerals, and Environment Protection. Under the Umbrella Project for Women in Development, gender sensitization has been achieved with policy makers in ministries, at district level, and in the media. Gender issues have also been incorporated in the National Political School Curriculum. The Ministry has also trained a corps of 73 women trainers from 38 districts. The Ministry, with funding from DANIDA, collected women's views on the constitution through meetings and seminars in all the districts in the country. Recommendations were submitted in a consolidated report to the Constitution Commission. A pilot para-legal scheme is successfully being implemented in Kamuli district. A community-based pool of legal advisors has been developed. Legal matters that affect both women and men are undertaken at the community level. The economic emancipation of women is a crucial part of the Ministry's mandate. In conjunction with NGOs, pilot credit programs are being run in Mukono, Jinja, Mbale, and Kapchorwa districts. Cross-sectoral programs are in close collaboration with the rural water and sanitation program, the Northern Uganda rehabilitation program, and the integrated Basic Education Pilot Project to be implemented in 8 districts.

  10. Tritium conference days

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-01-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO air and OBT/HTO free (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  11. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  12. Day-to-day and within-day variation in urinary iodine excretion

    DEFF Research Database (Denmark)

    Rasmussen, Lone Banke; Ovesen, L.; Christiansen, E.

    1999-01-01

    Objective: To examine the day-to-day and within-day variation in urinary iodine excretion and the day-to-day variation in iodine intake. Design: Collection of consecutive 24-h urine samples and casual urine samples over 24 h. Setting: The study population consisted of highly motivated subjects fr...

  13. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  14. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  15. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  16. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  17. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  18. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  19. Methodology of Day-To-Day Ship Costs Assessment

    Directory of Open Access Journals (Sweden)

    Milojka Počuča

    2006-09-01

    Full Text Available The paper presents a methodology of assessing the day-to-day fixed costs of maritime cargo ships. The authoress refersthe reader to factors that affect the amount affixed daily costsand the day-to-day voyage costs of ships. In the last chapter thepaper presents an estimation of the average daily fixed costsand day-to-day voyage costs of ships per type and size for theyear 2003. Besides particular explanations, the reader is refe"ed to data bases that authentically impart data on the structureof maritime fleets and their technical characteristics, aswell as databases on prices and costs in maritime transport.

  20. Day-to-day changes in ionospheric electron content

    International Nuclear Information System (INIS)

    Tyagi, T.R.

    1978-01-01

    Large day-to-day variations have been observed in the ionospheric electron content or the so-called Faraday content derived from ATS-6 measurements at Gauhati (26.15 deg N, 91.75 deg E) for the period November 1975 to July 1976. The changes occur in the form of single-day abnormality, alternate day-to-day fluctuations and long-term periodic fluctuations with a periodicity of about 45 days. In all the cases the fluctuations are as large as plus or minus 40% from the average level. These changes are not correlated with solar or magnetic activity

  1. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  2. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  3. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  4. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  5. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  6. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  7. a Walk Through Earth's Time

    Science.gov (United States)

    Turrin, B. D.; Turrin, M.

    2012-12-01

    After "What is this rock?" the most common questions that is asked of Geologists is "How old is this rock/fossil?" For geologists considering ages back to millions of years is routine. Sorting and cataloguing events into temporal sequences is a natural tendency for all humans. In fact, it is an everyday activity for humans, i.e., keeping track of birthdays, anniversaries, appointments, meetings, AGU abstract deadlines etc… However, the time frames that are most familiar to the non scientist (seconds, minutes, hours, days, years) generally extend to only a few decades or at most centuries. Yet the vast length of time covered by Earth's history, 4.56 billion years, greatly exceeds these timeframes and thus is commonly referred to as "Deep Time". This is a challenging concept for most students to comprehend as it involves temporal and abstract thinking, yet it is key to their successful understanding of numerous geologic principles. We have developed an outdoor learning activity for general Introductory Earth Science courses that incorporates several scientific and geologic concepts such as: linear distance or stratigraphic thickness representing time, learning about major events in Earth's history and locating them in a scaled temporal framework, field mapping, abstract thinking, scaling and dimensional analysis, and the principles of radio isotopic dating. The only supplies needed are readily available in local hardware stores i.e. a 300 ft. surveyor's tape marked in feet, and tenths and hundredths of a foot, and the student's own introductory geology textbook. The exercise employs a variety of pedagogical learning modalities, including traditional lecture-based, the use of Art/Drawing, use of Visualization, Collaborative learning, and Kinesthetic and Experiential learning. Initially the students are exposed to the concept of "Deep Time" in a short conventional introductory lecture; this is followed by a 'field day'. Prior to the field exercise, students work with

  8. Differential Rotation within the Earth's Outer Core

    Science.gov (United States)

    Hide, R.; Boggs, D. H.; Dickey, J. O.

    1998-01-01

    Non-steady differential rotation drive by bouyancy forces within the Earth's liquid outer core (OC) plays a key role not only in the generation of the main geomagnetic field by the magnetohydrodynamic (MHD) dynamo process but also in the excitation of irregular fluctuations in the angular speed of rotation of the overlying solid mantle, as evidenced by changes in the length of the day (LOD) on decadal and longer timescales (1-8).

  9. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  10. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  11. Our bubbling Earth

    NARCIS (Netherlands)

    Schuiling, R.D.

    2005-01-01

    In several places on earth large volumes of gas are seen to escape. These gases are usually dominated by CO2. The emissions are associated with volcanic activity, and are attributed to magma degassing. It will be shown that in the case of Milos this explanation is unacceptable for quantitative

  12. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  13. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  14. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  15. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  16. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  17. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  18. Earth Science Misconceptions.

    Science.gov (United States)

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  19. The earths innermost core

    International Nuclear Information System (INIS)

    Nanda, J.N.

    1989-01-01

    A new earth model is advanced with a solid innermost core at the centre of the Earth where elements heavier than iron, over and above what can be retained in solution in the iron core, are collected. The innermost core is separated from the solid iron-nickel core by a shell of liquid copper. The innermost core has a natural vibration measured on the earth's surface as the long period 26 seconds microseisms. The earth was formed initially as a liquid sphere with a relatively thin solid crust above the Byerly discontinuity. The trace elements that entered the innermost core amounted to only 0.925 ppm of the molten mass. Gravitational differentiation must have led to the separation of an explosive thickness of pure 235 U causing a fission explosion that could expel beyond the Roche limit a crustal scab which would form the centre piece of the moon. A reservoir of helium floats on the liquid copper. A small proportion of helium-3, a relic of the ancient fission explosion present there will spell the exciting magnetic field. The field is stable for thousands of years because of the presence of large quantity of helium-4 which accounts for most of the gaseous collisions that will not disturb the atomic spin of helium-3 atoms. This field is prone to sudden reversals after long periods of stability. (author). 14 refs

  20. Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2017-11-01

    Full Text Available Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD (length of day is −0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.

  1. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  2. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  3. A dark day for dinosaurs

    Science.gov (United States)

    Edwards, Pete

    2015-11-01

    On average, 91 people are killed by asteroids each year. In her book Dark Matter and the Dinosaurs, theoretical physicist Lisa Randall focuses on a novel question: how did a dinosaur-killing asteroid end up on its collision course with Earth in the first place?

  4. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  5. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  6. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  7. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  8. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  9. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  10. Elementary Children’s Retrodictive Reasoning about Earth Science

    Directory of Open Access Journals (Sweden)

    Julie C. LIBARKIN

    2012-10-01

    Full Text Available We report on interviews conducted with twenty-one elementary school children (grades 1-5 about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a wide array of earth science concepts, from rock formation to the Earth’s interior. We analyzed interview data primarily to determine whether or not young children are capable of inferring understanding of the past based on present-day observation (retrodictive reasoning in the context of Earth science. This work provides a basis from which curricula for teaching earth and environmental sciences can emerge, and suggests that new studies into the retrodictive reasoning abilities of young children are needed, including curricula that encourage inference of the past from modern observations.

  11. Physics of the Earth

    Science.gov (United States)

    Stacey, Frank D.; Davis, Paul M.

    he fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.

  12. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  13. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  14. Stirling Technology Development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in identifying convertor areas for further improvements. This paper will update the status and results for these efforts.

  15. Stirling Technology Development at NASA GRC. Revised

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in identifying convertor areas for further improvements. This paper will update the status and results for these efforts.

  16. 2016 Microbial Stress Response GRC/GRS

    Science.gov (United States)

    2016-09-13

    Communicate to Regulate Antimicrobial Peptide Resistance in Gram Positive Bacteria" 10:35 am - 10:40 am Discussion 10:40 am - 11:05 am Coffee Break 11...San Diego State University, USA) "A Tail of Phage and Tubeworms: How Do Bacteria Stimulate Animal Development?" 12:05 pm - 12:15 pm Discussion 12...Transcription Conflict in Bacteria" 9:20 pm - 9:30 pm Discussion Wednesday 7:30 am - 8:30 am Breakfast 9:00 am - 12:30 pm Genetic and Phenotypic Resistance

  17. Earth before life

    OpenAIRE

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-01

    Background A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Results Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome i...

  18. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  19. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  20. The Role of NASA Observations in Understanding Earth System Change

    Science.gov (United States)

    Fladeland, Matthew M.

    2009-01-01

    This presentation will introduce a non-technical audience to NASA Earth science research goals and the technologies used to achieve them. The talk will outline the primary science focus areas and then provide overviews of current and planned missions, in addition to instruments, aircraft, and other technologies that are used to turn data into useful information for scientists and policy-makers. This presentation is part of an Earth Day symposium at the University of Mary.

  1. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  2. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  3. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  4. Korea Earth Observation Satellite Program

    Science.gov (United States)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  5. Statistical modeling of Earth's plasmasphere

    Science.gov (United States)

    Veibell, Victoir

    The behavior of plasma near Earth's geosynchronous orbit is of vital importance to both satellite operators and magnetosphere modelers because it also has a significant influence on energy transport, ion composition, and induced currents. The system is highly complex in both time and space, making the forecasting of extreme space weather events difficult. This dissertation examines the behavior and statistical properties of plasma mass density near geosynchronous orbit by using both linear and nonlinear models, as well as epoch analyses, in an attempt to better understand the physical processes that precipitates and drives its variations. It is shown that while equatorial mass density does vary significantly on an hourly timescale when a drop in the disturbance time scale index ( Dst) was observed, it does not vary significantly between the day of a Dst event onset and the day immediately following. It is also shown that increases in equatorial mass density were not, on average, preceded or followed by any significant change in the examined solar wind or geomagnetic variables, including Dst, despite prior results that considered a few selected events and found a notable influence. It is verified that equatorial mass density and and solar activity via the F10.7 index have a strong correlation, which is stronger over longer timescales such as 27 days than it is over an hourly timescale. It is then shown that this connection seems to affect the behavior of equatorial mass density most during periods of strong solar activity leading to large mass density reactions to Dst drops for high values of F10.7. It is also shown that equatorial mass density behaves differently before and after events based on the value of F10.7 at the onset of an equatorial mass density event or a Dst event, and that a southward interplanetary magnetic field at onset leads to slowed mass density growth after event onset. These behavioral differences provide insight into how solar and geomagnetic

  6. AAS 228: Day 1 afternoon

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session: From Space Archeology to Serving the World Today: A 20-year Journey from the Jungles of Guatemala to a Network of Satellite Remote Sensing Facilities Around the World(by Michael Zevin)In the conferences second plenary session, NASAs Daniel Irwin turned the eyes of the conference back to Earth by highlighting the huge impact that NASA missions play in protecting and developing our own planet.Daniel Irwin: using satellite imagery to detect differences in vegetation and find ancient Mayan cities. #aas228 pic.twitter.com/9LFPQdCHTM astrobites (@astrobites) June 13, 2016Irwin came to be involved in NASA through his work mapping Guatemalan jungles, where he would spend 22 days at a time exploring the treacherous jungles on foot armed with a 1st generation GPS, a compass, and a machete. A colleague introduced Irwin to the satellite imagery thathe was exploring, demonstratinghow these images are a strong complement to field work. The sharing of this satellite data with nearby villages helped to show the encroachment of agriculture and the necessity of connecting space to the village. Satellite imagery also played a role in archeological endeavors, uncovering dozens of Mayan cities that have been buried for over a millennia by vegetation, and it provided evidence that the fall of the Mayan civilization may have been due to massive deforestation that ledto drought.Glacial retreat in Chile imaged by ISERV.Irwin displayed the constellation of NASAs Earth-monitoring satellites that have played an integral role in conserving our planet and alerting the world of natural disasters. He also showed

  7. Day-to-day reliability of gait characteristics in rats

    DEFF Research Database (Denmark)

    Raffalt, Peter Christian; Nielsen, Louise R; Madsen, Stefan

    2018-01-01

    day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures...

  8. World Town Planning Day and GIS Day to be celebrated

    OpenAIRE

    Trulove, Susan

    2003-01-01

    On Wednesday, Nov. 19, Montgomery County will unveil the county's new comprehensive plan during a joint celebration of the fifth anniversary of Geographic Information Systems Day and the 30th anniversary of World Town Planning Day. The event will feature programs by the Virginia Tech Center for Geospatial Information Technology (CGIT) and Virginia's Geospatial Extension Program (GEP).

  9. Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)

    Science.gov (United States)

    Gholibeigian, Hassan

    2017-11-01

    In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.

  10. Visualizing NASA's Planetary Data with Google Earth

    Science.gov (United States)

    Beyer, R. A.; Hancher, M. D.; Broxton, M.; Weiss-Malik, M.; Gorelick, N.; Kolb, E.

    2008-12-01

    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. As a 3D geospatial browser, the Google Earth client is one way to visualize planetary data. KML imagery super-overlays enable us to create a non-Earth planetary globe within Google Earth, and conversion of planetary meta-data allows display of the footprint locations of various higher-resolution data sets. Once our group, or any group, performs these data conversions the KML can be made available on the Web, where anyone can download it and begin using it in Google Earth (or any other geospatial browser), just like a Web page. Lucian Plesea at JPL offers several KML basemaps (MDIM, colorized MDIM, MOC composite, THEMIS day time infrared, and both grayscale and colorized MOLA). We have created TES Thermal Inertia maps, and a THEMIS night time infrared overlay, as well. Many data sets for Mars have already been converted to KML. We provide coverage polygons overlaid on the globe, whose icons can be clicked on and lead to the full PDS data URL. We have built coverage maps for the following data sets: MOC narrow angle, HRSC imagery and DTMs, SHARAD tracks, CTX, and HiRISE. The CRISM team is working on providing their coverage data via publicly-accessible KML. The MSL landing site process is also providing data for potential landing sites via KML. The Google Earth client and KML allow anyone to contribute data for everyone to see via the Web. The Earth sciences community is already utilizing KML and Google Earth in a variety of ways as a geospatial browser, and we hope that the planetary sciences community will do the same. Using this paradigm for sharing geospatial data will not only enable planetary scientists to more easily build and share data within the scientific community, but will also provide an easy platform for public outreach and education efforts, and will easily allow anyone to layer geospatial information on top of planetary data

  11. Coherence and the day-night asymmetry in the solar neutrino flux

    International Nuclear Information System (INIS)

    Dighe, A.S.; Liu, Q.Y.; Smirnov, A.Yu.

    1999-12-01

    We consider the day-night asymmetries predicted by various MSW solutions of the solar neutrino problem. The integration over the neutrino energy, as well as over the production region or over the time intervals of more than a day leads to the averaging of oscillations on the way to the earth. This is equivalent to considering the neutrino state arriving at the surface of the earth as an incoherent mixture of the neutrino mass eigenstates (even if there is no divergence of wavepackets). As a consequence, the regeneration effect inside the earth is incoherent, in contrast with the results in hep-ph/9902435. (author)

  12. AAS 228: Day 2 morning

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session (Day 1) The Galaxy Zoo(by Benny Tsang)Galaxy Zoo was so hot that the servers hosting the galaxy images got melted down soon after being launched.Kevin Schawinski from ETH Zurich took us on a tour ofhis wonderful Galaxy Zoo. It is a huge zoo with about a quarter million zookeepers, they are citizen astronomers who collaboratively classify galaxies by their looks as an attempt to understand galaxy evolution. The big question that is being answered is: how do blue, actively star-forming galaxies evolve into red, quiescent (non-star-forming) galaxies? The Zoo helped reveal that blue galaxies turn into red galaxies via two possible paths galaxies might run out of supply of gas and shut off star formation slowly; or they could merge with one another and turn off star formation by destroying the gas reservoir rapidly!The Galaxy Zoo project also led to the discoveries of:Green Peas: they are the living fossils of galaxy evolution; compact, bright, green galaxies that are actively forming starsOverlapping galaxies: they are pairs of galaxies that are separated physically but happen to lie on the same line of sight; they provide excellent laboratories for studying dust extinctionHannys Voorwerp: an unusual object named after Hanny the discoverer, which is believed to be the first detection of quasar light echoThe idea of Galaxy Zoo in getting help from citizen scientists was further extended into an award-winningproject known as the Zooniverse, which is an online platform for streamlined crowd-sourcing for scientific research that requires human input. The future of astronomy is going to be

  13. WHERE TO FIND HABITABLE ''EARTHS'' IN CIRCUMBINARY SYSTEMS

    International Nuclear Information System (INIS)

    Liu Huigen; Zhang Hui; Zhou Jilin

    2013-01-01

    Six P-type planets have been found thus far around five binary systems, i.e., Kepler-16b, 34b, 35b, 38b, and 47b and c, which are all Neptune- or Jupiter-like planets. The stability of planets and the habitable zones are influenced by the gravitational and radiative perturbations of binary companions. In this Letter, we check the stability of an additional habitable Earth-mass planet in each system. Based on our simulations in 10 Myr, a habitable ''Earth'' is hardly stable in Kepler-16, while a stable ''Earth'' in Kepler-47 close to the boundaries of the habitable zone is possible. In contrast, Kepler-34, 35, and 38 seem to have high probabilities of being able to tolerante a stable ''Earth'' in their habitable zones. The affects of transit time variations are quite small due to the small mass of an undetected ''Earth,'' except that of Kepler-16b. With a time precision of 10 –3 day (∼88 s), an ''Earth'' in the corotational resonance with Kepler-16b can be detected in three years, while habitable ''Earths'' in the Kepler-34 and 38 systems can be detected in 10 yr. Habitable ''Earths'' in Kepler-35 and 47 are not likely to be detected in 10 yr under this precision.

  14. Montessori All Day, All Year

    Science.gov (United States)

    Black, Connie; Davis, Liza

    2015-01-01

    Introducing real community into the Children's House goes back to the roots of Montessori education through all-day Montessori. The all-day environment is a house where children live with a "developmental room" of Montessori materials including a living room, kitchen, dining area, bedroom, bathroom, greeting rooms, and outdoor spaces.…

  15. Green accounts & day high schools

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    1997-01-01

    The arcticle presents the concept of green accounts and describes how it can be used in the daily work and the teaching at day high schools.......The arcticle presents the concept of green accounts and describes how it can be used in the daily work and the teaching at day high schools....

  16. Rare Earth Polyoxometalates.

    Science.gov (United States)

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  17. Stovetop Earth Pecan Pie

    Science.gov (United States)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  18. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa

    2014-06-01

    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  19. The Solid Earth

    Science.gov (United States)

    Fowler, C. M. R.

    2005-02-01

    The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from solutions@cambridge.org. First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3

  20. Between Earth and Sky

    DEFF Research Database (Denmark)

    Carter, Adrian

    2009-01-01

    to rescue architecture from the sterile impasse of late-modernism. In his works the basic elements of lived space become present: the earth, the sky and the `between` of human existence." Jørn Utzon's architecture ranges from the modest to the monumental; from the Kingo courtyard houses, the finest...... of form, material and function, motivated by social values. To this essentially regional response, Utzon combines a fascination for the architectural legacies of foreign cultures. These influences include the architecture of the ancient Mayan civilisation, as well as the Islamic world, China and Japan...

  1. Climate in Earth history

    Science.gov (United States)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  2. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  3. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  4. Procedures and practices for day-to-day operation

    International Nuclear Information System (INIS)

    Distler, K.

    1986-01-01

    This lecture deals with problems of safe plant operation under day-to-day conditions. Operation, maintenance and surveillance have to be organized in a preventive manner. It will be shown that nearly all expected jobs and proceedings can be done rule-based. The connection of documentation and work preparation will be lined out. Moreover, the need for control and quality assurance for nearly all proceedings will be pointed out. The question of communication and scheduling will be touched. (orig.)

  5. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  6. The road to Earth twins

    Science.gov (United States)

    Mayor, M.; Lovis, C.; Pepe, F.; Ségransan, D.; Udry, S.

    2011-06-01

    A rich population of low-mass planets orbiting solar-type stars on tight orbits has been detected by Doppler spectroscopy. These planets have masses in the domain of super-Earths and Neptune-type objects, and periods less than 100 days. In numerous cases these planets are part of very compact multiplanetary systems. Up to seven planets have been discovered orbiting one single star. These low-mass planets have been detected by the HARPS spectrograph around 30% of solar-type stars. This very high occurrence rate has been recently confirmed by the results of the Kepler planetary transit space mission. The large number of planets of this kind allows us to attempt a first characterization of their statistical properties, which in turn represent constraints to understand the formation process of these systems. The achieved progress in the sensitivity and stability of spectrographs have already led to the discovery of planets with masses as small as 1.5 M⊕. Karl Schwarzschild Award Lecture 2010

  7. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  8. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  9. Is dying the earth?

    International Nuclear Information System (INIS)

    Morales Garzon, Gustavo

    1994-01-01

    December 21 of 1968, on board the capsule Apollo 8, three astronauts, James A. Lovell, Frank Borman and William Anders, went toward what would be the first orbital flight around the moon. That experience like Lovell said, it makes us realize the insignificant that we are in comparison with the vastness of the universe. With the revolution lovelockiane, the life doesn't already consist on a group of organisms only adapted to its atmosphere by a certain action for external laws. The terrestrial environment, instead of being a physical world regulated by own autonomous laws, is part of an evolutionary system that contains the life and that it should to the phenomena vital part of its rules, its mechanisms and components. The alive beings connected to each other and to the atmosphere they manufacture and they maintain of continuous their atmosphere forming an everything at planetary level, according to Ricard Guerrero (1988). The theory of the earth then, he says, it has found their owner Darwin in James lovelock. The document treats topics like the science concept that it is the life, the earth and the contemporary environment

  10. The ocean sampling day consortium

    DEFF Research Database (Denmark)

    Kopf, Anna; Bicak, Mesude; Kottmann, Renzo

    2015-01-01

    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate...... the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our...

  11. School, Earth and Imagination

    Science.gov (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  12. Police Incident Blotter (30 Day)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The 30 Day Police Blotter contains the most recent initial crime incident data, updated on a nightly basis. All data is reported at the block/intersection level,...

  13. Summary of the Day (CDMP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Summary of the Day data file contains daily selected elements of observations recorded by certified observers. The stations were located in the U.S. and were...

  14. French days on stable isotopes

    International Nuclear Information System (INIS)

    2000-01-01

    These first French days on stable isotopes took place in parallel with the 1. French days of environmental chemistry. Both conferences had common plenary sessions. The conference covers all aspects of the use of stable isotopes in the following domains: medicine, biology, environment, tracer techniques, agronomy, food industry, geology, petroleum geochemistry, cosmo-geochemistry, archaeology, bio-geochemistry, hydrology, climatology, nuclear and particle physics, astrophysics, isotope separations etc.. Abstracts available on CD-Rom only. (J.S.)

  15. Experience with day stay surgery.

    Science.gov (United States)

    Cohen, D; Keneally, J; Black, A; Gaffney, S; Johnson, A

    1980-02-01

    Potential advantages of day stay surgery are cost saving, improved utilization of staff and hospital facilities, and reduction of stress for the paediatric patient and his family. The successful program requires careful case selection, full operating and anesthetic facilities and good follow-up. Day stay surgery was initiated at Royal Alexandra Hospital for Children in 1974. Experience is reviewed in relation to the total number and nature of surgical admissions and the daily utilisation of the facility. Utilization has markedly increased in the past 2 yr. Current practice is reviewed with regard to initial assessment, preparation for surgery and overall management during the day admission. Parental attitudes towards day stay surgery were evaluated indicating both the advantages and the problems encountered. These related mainly to insufficient information, transport difficulties and afternoon operations. Recommendations for improving the day stay service are discussed with special reference to: (1) communication with the parents as to adequate pre-operative explanation, revision of the day stay information pamphlet and improved distribution, and clear postoperative instructions, (2) the timing of operations, and (3) transport and parking facilities.

  16. Potential climatic impact of organic haze on early Earth.

    Science.gov (United States)

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  17. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  18. Rare earth superlattices

    International Nuclear Information System (INIS)

    McMorrow, D.F.

    1997-01-01

    A review is given of recent experiments on the magnetism of rare earth superlattices. Early experiments in this field were concerned mainly with systems formed by combining a magnetic and a non-magnetic element in a superlattice structure. From results gathered on a variety of systems it has been established that the propagation of magnetic order through the non-magnetic spacer can be understood mostly on the basis of an RKKY-like model, where the strength and range of the coupling depends on the details of the conduction electron susceptibility of the spacer. Recent experiments on more complex systems indicate that this model does not provide a complete description. Examples include superlattices where the constituents can either be both magnetic, adopt different crystal structures (Fermi surfaces), or where one of the constituents has a non-magnetic singlet ground state. The results from such systems are presented and discussed in the context of the currently accepted model. (au)

  19. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  20. Rare earth (3) pivalates

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.; Zoan An' Tu; Ch'eu Tkhi Nguet; Troyanov, S.I.; Rykov, A.N.; Korenev, Yu.M.

    1994-01-01

    Depending on synthesis conditions rare earth pivalates can be obtained in the form of either adducts NPiv·HPiv or hydrates MPiv 3 ·mH 2 O. Adducts are the most stable form of pivalates. Heating of adducts result in formation of corresponding MPiv 3 . MPiv 3 ·nHPiv compounds are characterized by IR-spectroscopy and thermal analysis data. Behaviour of MPiv 3 was studied in the regime of vacuum sublemation. Using mass spectroscopy of NdPiv 3 it was shown that gaseous phase above MPiv 3 had complex composition and contained ligomer fragments. X-ray structure analysis of [NdPiv 3 ·3HPiv] was conducted

  1. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.

    1984-01-01

    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  2. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  3. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  4. Theory of Earth

    Science.gov (United States)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these

  5. Aspects Of 40- to 50-Day Oscillations In LOD And AAM

    Science.gov (United States)

    Dickey, Jean O.; Marcus, Steven L.; Ghil, Michael

    1992-01-01

    Report presents study of fluctuations in rotation of Earth, focusing on irregular intraseasonal oscillations in length of day (LOD) and atmospheric angular momentum (AAM) with periods varying from 40 to 50 days. Study draws upon and extends results of prior research.

  6. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  7. An Earth-mass planet orbiting α Centauri B.

    Science.gov (United States)

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  8. A Prospective, Randomized Study Comparing 7-day and 14-day ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... and 14-day quadruple therapies as first-line treatments for Helicobacter pylori infection in ..... Furthermore, in a large-scale, multicenter, Japanese study ... Taylor DE, Ge Z, Purych D, Lo T, Hiratsuka K. Cloning and sequence ...

  9. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  10. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  11. STS-95 Day 09 Highlights

    Science.gov (United States)

    1998-01-01

    On this ninth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, spend a good part of their day checking out important spacecraft systems for entry and landing. The commander and pilot begin the flight control system checkout by powering up one auxiliary power unit and evaluating the performance of aerodynamic surfaces and flight controls. The flight crew conducts a reaction control system hot fire, followed by a test of the communications system.

  12. Day-Care in Denmark

    DEFF Research Database (Denmark)

    Bundgaard, Helle

    2011-01-01

    interacting with ethnic minority children and their parents, however, staff are occasionally forced to make explicit the reasoning behind their actions. A focus on the interaction of ethnic minority children and their parents in day-care centres therefore provides insights into the cultural beliefs and values......  The chapter explores central notions of appropriate social behavior in what is arguably the most important institution in Denmark when it comes to social integration, namely day-care, also known as pre-school. Moral values guiding everyday practices are generally taken for granted. When...

  13. Registration Day-Camp 2016

    CERN Multimedia

    Nursery School

    2016-01-01

    Reminder Registration for the CERN Staff Association Day-camp are open for children from 4 to 6 years old More information on the website: http://nurseryschool.web.cern.ch/. The day-camp is open to all children. An inscription per week is proposed, cost 480.-CHF/week, lunch included The camp will be open weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. For further questions, thanks you for contacting us by email at Summer.Camp@cern.ch.

  14. AAS 228: Day 3 morning

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Plenary Session 2015 Newton Lacy Pierce Prize Lecture: The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures (by Leonardo dos Santos)The first session on Wednesday at 228th AAS Meeting was the Newton Lacy Pierce Prize Lecture by Heather Knutson (California Institute of Technology). This talk featured a broad range of research efforts on exoplanets, with the main focus on how we study the composition of their atmospheres, and how multi-body interactions carve the structure of the planetary systems we observe.One of her first points is the well-known idea that the Solar System is an oddball, compared to the exoplanet systems we have found so far: most of these systems contain hot Jupiters and mini-Neptunes at very close-in orbits around their host stars. Moreover, even when studying their transmission spectra, it is difficult to know the exact composition of their atmospheres.Knutson: it is difficult to constrain atmospheric composition of exoplanets (H-poor or H-rich+clouds?) #aas228pic.twitter.com/LdyN4o9RC7 astrobites (@astrobites) June 15, 2016The main proposal on how these systems formed is the migration scenario. In order to validate this idea, Dr. Knutson and her group The Friends of Hot Jupiters study systems with close-in gas giants and their frequency of binary companions, which are supposed to be the main culprits causing gas-giant migration. They found that approximately half of the observed systems have long-distance companions, providing strong validation of the migration scenario. Moreover, Dr. Knutson speculates that wide binaries have more

  15. Next-generation digital earth

    NARCIS (Netherlands)

    Goodchild, M.F.; Guo, H.; Annoni, A.; Bian, L.; Bie, de K.; Campbell, F.; Craglia, M.; Ehlers, M.; Genderen, van J.; Skidmore, A.K.; Wang, C.; Woodgate, P.

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google

  16. LIMNOLOGICAL OPTOMETRY: EXAMINING EARTH'S EYE

    Science.gov (United States)

    In Thoreau's Walden, a lake is described as the landscape's most expressive feature and the earth's eye. Collectively, scientists are charged by society to assess, monitor, and remedy maladies of earth's eye in the same way optometrists maintain the health of the human eye. This ...

  17. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  18. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  19. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  20. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  1. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  2. National Latino AIDS Awareness Day

    Centers for Disease Control (CDC) Podcasts

    This podcast highlights National Latino AIDS Awareness Day, to increase awareness of the disproportionate impact of HIV on the Hispanic or Latino population in the United States and dependent territories. The podcast reminds Hispanics or Latinos that they have the power to take control of their health and protect themselves against HIV.

  3. Music All the Livelong Day.

    Science.gov (United States)

    Moravcik, Eva

    2000-01-01

    Discusses how creating a musical climate in early childhood classrooms can give children a way to express feelings and ideas, and can smoothly blend the activities and routines of the classroom day. Provides suggestions for making new songs from old and creating new songs. Includes sample songs. (KB)

  4. Colour Day: an innovative project

    CERN Multimedia

    Staff Association

    2016-01-01

    This year, the Children’s Day-Care Centre (EVE) and School works on the theme of colours. Every class has their own project revolving around this common theme. The class of Claire, Sandrine and Nadia, introduced a monthly “Colour Day”. The objective of this day is to offer children different activities (arts and crafts, baking, etc.) designed around a specific colour. The children get a chance to decorate their classroom and learn in many different ways inspired by the colours blue, red, and many others. The parents are also called to contribute and invited to dress their children in the colour of the day. In September, we discovered the colour blue, in October it was time for red, and in mid-November yellow will brighten up our structure. Everyone plays along, making this a very festive day for us all. On Tuesday, 20 September, we saw the whole School turn blue! We were all dressed in blue and we made blue paintings, too! We made beautiful artwork inspired by artists like Ma...

  5. A day in the life

    Science.gov (United States)

    Rao, Achintya

    2017-12-01

    Even the most avid physics enthusiast does not necessarily awaken each morning and turn their mind to the various physical processes they will encounter over the course of their day. Yet this is precisely the sort of journey that author James Kakalios takes us on in his book The Physics of Everyday Things.

  6. Wind Turbine Acoustic Day 2018

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Søndergaard, Bo; Hünerbein, Sabine Von

    The bi-annual event entitled Wind Turbine Acoustic Day dealing with wind turbine noise issues organized by DTU Wind Energy took place on May, 17th 2018 as its third edition. The abstracts and slides for the presentations are reported....

  7. World AIDS Day PSA (:30)

    Centers for Disease Control (CDC) Podcasts

    2011-11-16

    December 1 is World AIDS Day. In this PSA, communities are encouraged to get tested for HIV.  Created: 11/16/2011 by National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP).   Date Released: 11/16/2011.

  8. ATLAS Assembly Hall Open Day

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  9. Children and Modern Day Slavery

    African Journals Online (AJOL)

    DrNneka

    It decries the varied proliferation of Child Slavery to this modern day .... Children are forced to work long hours in mines for little to no pay. They toil in 24 ..... of child in mines, quarries and mechanical and engineering workshops, imposition of.

  10. Infectious Diseases in Day Care.

    Science.gov (United States)

    Sleator, Esther K.

    Discussed in this publication are infectious illnesses for which children attending day care appear to be at special risk. Also covered are the common cold, some infectious disease problems receiving media attention, and some other annoying but not serious diseases, such as head lice, pinworms, and contagious skin conditions. Causes,…

  11. Open Days a smash hit!

    CERN Multimedia

    2008-01-01

    The general public seized the one and only opportunity to visit the Large Hadron Collider before it goes into service. The Open Days on 5 and 6 April attracted record numbers of visitors, with 53,000 visitors on the Sunday alone!

  12. XXIVth days of nuclear medicine

    International Nuclear Information System (INIS)

    1986-01-01

    Abstracts are presented of papers submitted to the 24th Days of Nuclear Medicine held in Opava, Czechoslovakia between Oct 9 and 11, 1985. The conference proceeded in three sessions, namely nuclear pediatrics, miscellaneous and technicians' session. The publication also contains abstracts of posters. (L.O.)

  13. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  14. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  15. AAS 228: Day 2 afternoon

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.The Limits of Scientific Cosmology: Setting the Stage: Accepted Facts, and Testing Limitations in Theory and Data (by Gourav Khullar)With a stellar lineup of speakers to talk about current and future prospects of cosmology and its limits (or lack thereof), the first session kicked off with talks by Risa Wechsler, Joseph Silk, and Sean Carroll (his talk on Multiverses is described below, by Nathan Sanders). Risa set the stage with an elaborate description of the current accepted facts in the era of precision cosmology including the standard model of concordance cosmology, described by seven parameters and an accepted Lambda-CDM paradigm (with a cosmological constant and cold dark matter). The talk stressed on the fact that all these parameters are understood to a percent order precision, which is a remarkable deviation from the time in 1990s when according to Risa, Alan Guth never thought that any of these numbers could be measured precisely!Risa Wechsler describing our current constraints on what Dark Matter could constitute.Joseph Silk discussing limits on cosmological parameters.The CMB measurements, Big Bang Nucleosynthesis estimates and galaxy clustering statistics all contribute to locking down the description of our universe. She emphasized on the tensions between different probes to measure expansion rate H0 of the universe, and small scale predictions of cold dark matter simulations, but she is hopeful that these shall be resolved eventually. Joe Silk followed this up with his interpretation of trying to understand our place in the universe and placing limits on different parameters and

  16. Changes in earth's dipole.

    Science.gov (United States)

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  17. When the earth shudders

    Energy Technology Data Exchange (ETDEWEB)

    Maltese, G.

    The enormous damage that can be caused by earthquakes (500,000 deaths in Tangshan, China, 1976) makes the art and science of earthquake predicting one of the principal objectives of modern geophysics. In this review of the state-of-the-art in earthquake predicting, brief notes are given on several topics: plate tectonics theory, geographic distribution of earthquakes, elastic potential energy storage of rocks, seismic wave typology, comparison of Mercalli and Richter scales, pre-warning signs in nature (strange behaviour of animals, preliminary reduction of seismic wave velocity, variations in local micro-seismicity and physical properties of rocks, etc.), comparison of earthquake energy release models, historical origin of the science of earthquake predicting, implication of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, the time element in prediction making, analysis of examples of correct predictions, pattern recognition instrumentation, earthquake intensity control through fluid injection, correlations between water reservoir level and seismicity, the creation of government programs for the monitoring of the earth's crust and seismic data acquisition, comparison of earthquake prediction and preparedness approaches in Japan and the USA.

  18. Our sustainable Earth

    International Nuclear Information System (INIS)

    Orbach, Raymond L

    2011-01-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as oceans are slow to respond to atmospheric temperature changes. Atmospheric CO 2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880, and can be associated with the industrial revolution. The climactic consequences of this human dominated increase in atmospheric CO 2 define a geologic epoch that has been termed the 'Anthropocene.' The issue is whether this is a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. Eight 'myths' that posit the former are examined in light of known data. The analysis strongly suggests the latter. In order to stabilize global temperatures, sharp reductions in CO 2 emissions are required: an 80% reduction beginning in 2050. Two examples of economically sustainable CO 2 emission reduction demonstrate that technological innovation has the potential to maintain our standard of living while stabilizing global temperatures.

  19. Registration Day-Camp 2016

    CERN Multimedia

    Nursery School

    2016-01-01

    Registration for the CERN SA Day-camp are open for children from 4 to 6 years old From March 14 to 25 for children already enrolled in CERN SA EVE and School From April 4 to 15 for the children of CERN members of the personnel (MP) From April 18 for other children More information on the website: http://nurseryschool.web.cern.ch/. The day-camp is open to all children. An inscription per week is proposed, cost 480.-CHF/week, lunch included The camp will be open weeks 27, 28, 29 and 30, from 8:30 am to 5:30 pm. For further questions, thanks you for contacting us by email at Summer.Camp@cern.ch.

  20. Three Presidents in one day

    CERN Multimedia

    2009-01-01

    Cristina Fernández de Kirchner, President of Argentina, in the ATLAS cavern with Minister of Science and Technology, Lino Barañao. The President of Mozambique, Armando Guebuza, being shown a crystal from the CMS calorimeter by Jim Virdee, CMS spokesperson, and Felicitas Pauss, CERN Coordinator for External Relations. The President of Poland, Lech Kaczyński, and the First Lady visited the CMS experiment. It was a busy day for many at CERN on 15 June with visits from the Presidents of Argentina, Poland and Mozambique all in one day! The three Presidents were in Geneva for a summit organized by the International Labour Organization (ILO), and couldn’t resist the opportunity to see CERN before heading home. Cristina Fernández de Kirchner, President of Argentina, visited the ATLAS cavern with Minister of Science and Technology, Lino Barañao. While at CERN Kirchner signed an agreement be...

  1. 2005 yearly days of petroleum

    International Nuclear Information System (INIS)

    Constant, R.; Susbielles, G.

    2005-01-01

    14 articles are gathered in this data sheet; they deal with the opening address of the 2005 petroleum days; the hydrocarbons: the evolutive resource; the para-petroleum engineers and the Europe; the speech of Mr Francois Loos; the Shell global scenarios to 2025; the evolution of the gas resource and its uses; the French para-petroleum industry; Bernard Bensaid, Corinne Sagary, Armelle Saniere, economic studies, IFP; the contribution of the innovation and of the technology in the diversification of the hydrocarbons supply; innovation and diversification of the petroleum resource: the point of view of Total; research, development and diversification of the petroleum resource; innovation in services companies; innovation in study and development and engineering; the closing address of the 2005 petroleum days. (O.M.)

  2. Comparison of length of day with oceanic and atmospheric angular momentum series

    Czech Academy of Sciences Publication Activity Database

    Kouba, J.; Vondrák, Jan

    2005-01-01

    Roč. 79, 4-5 (2005), s.256-268 ISSN 0949-7714 R&D Projects: GA AV ČR IAA3003205; GA MŠk LC506 Institutional research plan: CEZ:AV0Z10030501 Keywords : Earth rotation * length of day * atmospheric angular momentum Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.205, year: 2005

  3. High-Performance Data Analysis Tools for Sun-Earth Connection Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interactive Data Language (IDL) is a standard tool used by many researchers in observational fields. Present day Sun-Earth Connection missions like SOHO, or...

  4. "Every day..." : [poems] / Doris Kareva

    Index Scriptorium Estoniae

    Kareva, Doris, 1958-

    2003-01-01

    Autori tutvustus lk. 282. Sisu: "Every day..." ; "I dream that I heard Satan speak..." ; "Rainbow-coloured confusion bears us..." ; "Viewing the rainbowing world..." ; "No time to write the final draft..." ; "Burnt poems..." ; Midas ; Pygmalion ; Enigma 1-5 ; Concerto strumenti e voce. Orig.: "Iga päev..." ; "Ma nägin unes - Saatan kõneles..." ; "Viib sünnieelsest unest surmaunne..." ; "Vaadeldes vikerkaarlevat maailma..." ; "Põletatud luuletused..." ; Pygmalion ; Müsteerium 1-5 ; Concerto strumenti e voce

  5. STS-95 Day 03 Highlights

    Science.gov (United States)

    1998-01-01

    On this third day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen checking out equipment that will be used for the deployment of the Spartan, a small, Shuttle-launched and retrieved satellite, whose mission is to study the Sun.

  6. The early days of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  7. Innovation and energy. ECRIN day

    International Nuclear Information System (INIS)

    2004-01-01

    ECRIN is an association jointly created by the French atomic energy commission (CEA) and the French national center of scientific research (CNRS). It gathers experts from the research and industry worlds, representatives of institutions and decision making peoples in order to work on important topics like energy. This document gathers the working documents and transparencies presented at the ECRIN day on energy and innovation: opening talk of C. Birraux (head of the parliamentary office of evaluation of scientific and technological choices); the energy of seas (offshore wind power, wave energy, tide currents energy, thermal energy of seas, osmotic energy, tidal energy); synthetic fuels (stakes, possible options, Fischer-Tropsch synthesis, GTL, CTL, BTL, production with CO 2 recycling); capture and geological sequestration of CO 2 : a general overview (stakes, solutions, capture and sequestration, transport, geologic disposal, present day situation and perspectives); geothermal energy: new prospects (enhanced geothermal systems, hot-dry-rocks and hot fractured rocks, advances, cost, advantages and drawbacks); heat pumps and valorization of low temperature heat sources (space heating, district heating networks, heat pumps, artificial geothermal energy, low temperature water transport, thermal potentiality); heat and coldness storage and transport (use of intermittent energy sources, cogeneration, optimisation of processes, recovery of heat losses, CO 2 capture, present-day situation, problems to be solved, integration of systems and processes); plastic photovoltaic solar cells (market, stakes, potentialities of organic materials for photovoltaic conversion, state-of-the-art, research in Europe and France, perspectives); conclusion of the Ecrin day (challenges, diversification of energy sources, energy efficiency, abatement of CO 2 emissions, role of ECRIN). (J.S.)

  8. [Organizational recommendations for day surgery].

    Science.gov (United States)

    Bontemps, Gilles

    2014-03-01

    In France, the delayed development of day surgery compared to other countries led the ANAP and the HAS in 2011 to enter into a joint work program to provide some reference guide for hospitals to change their practices to outpatient. In this context, organizational guidelines and operational tools were published in May 2013. The method of construction of the recommendations resulting from an original work that combined a three-fold approach: field vision by identifying the highlights of 15 hospitals selected for their representative performance and analyzing the risks of five voluntary hospitals, mobilization organizational theories from the social sciences, using 53 professional experts. The work concluded on 16 organizational recommendations under four forms (basic principles, strategic elements, operational elements and perspectives). These recommendations are accompanied by tools and guides diagnosis and implementation, as well as productions for further reflection. These organizational recommendations confirmed the specificity of day surgery, which is not related to the act, but to the organization, management and optimization of different flows of a hospital (patient flow, professional flows, logistical, informational…). The performance of a day surgery organization is linked to its ability to control its flow and anticipation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Radiation environment of the earth

    International Nuclear Information System (INIS)

    Furukawa, Masahide

    2003-01-01

    The radiation environment of the earth consists of natural and artificial radiation. This paper explains the distribution and some exposure examples of natural radiation and the relation between life and natural radiation. The earth was born before about 46 hundreds of millions of years. In the present earth, there are some natural radiations with long half-life originated by the earth. They are 232 Th (141 hundreds of millions of years of half-life), 238 U (45 hundreds of millions of years of half-life) and 40 K (13 hundreds of millions of years of half-life). Natural radiation (α-, β-, and γ-ray) from natural radionuclides exists everywhere in the earth. Natural radio nuclides are heat source of the earth, which is about 0.035 μcal/g/y. γ-ray from them is called as ''the earth's crust γ-ray'', which is about 55 nGy/h average of the world and about 50 nGy/h in Japan. The distribution of γ-ray is depended on the kinds of soil and rock. 222 Rn and 230 Rn are rare gases and the concentration of them in a room is larger than outside. Natural radiations originated from the cosmos are proton, ionizing components, neutron component with muon and electron, 3 H, 14 C and 10 Be. Effect of cosmic rays on birth of life, change of temperature, amount of cloud and ultra resistant cell are stated. (S.Y.)

  10. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  11. Mass extinctions of Earth

    International Nuclear Information System (INIS)

    Fernandez, B.; Fernandez, P.; Pereira, B.

    2015-01-01

    Throughout the history of our planet, there have been global phenomena which have led to the disappearance of a large number of species: It is what is known as mass or massive extinctions. This article will make a tour of these large events, from the most remote antiquity to the present day. Today we find ourselves immersed in a process unprecedented since we are eyewitnesses and, more important still, an active part in the decision-making process to try to mitigate their effects. (Author)

  12. AAS 228: Day 1 morning

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Come visit astrobites at the AAS booth we have swag!Things kicked off last night at our undergraduate reception booth. Thanks to all of you who stopped by we were delightedto hear from undergrads who already know and love the site, educators who want to use it in their classrooms, and students who had not yet been introduced to astrobites and were excited about a new resource!For the rest of the meeting we will be stationed at theAAS booth in the exhibit hall (booth #211-213), so drop by if you want to learn more (or pick up swag: weve got lots of stickers and sunglasses)!Mondaymorning was the official start of the meeting. Here are just a few of the talks and workshops astrobiters attended this morning.Opening Address(by Susanna Kohler)AAS President Meg Urry kicked off the meeting this morning at 8am with an overview of some of the great endeavors AAS is supporting. We astrobiters had personal motivation to drag ourselves out of bed that early: during this session, Urryannounced the new partnership between AAS and astrobites!Urry touched on some difficult topics in her welcome, including yesterdays tragedy in Orlando. Shereiteratedthe AASs support fortheCommittee for Sexual-Orientation and Gender Minorities in Astronomy (SGMA). She also reminded meeting attendees about the importance ofkeeping conference interactions professional, and pointed to the meetings anti-harassment policy.Partnership Announcement (by Michael Zevin)This morning, the American Astronomical Society announced the new partnership that it will have with Astrobites! We are beyond excited to embark on this new partnership with the

  13. Our Sustainable Earth

    Science.gov (United States)

    Orbach, Raymond L.

    2013-03-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  14. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  15. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  16. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  17. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  18. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    International Nuclear Information System (INIS)

    Sanromá, E.; Pallé, E.; López, R.; Montañés-Rodríguez, P.; Parenteau, M. N.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  19. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  20. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  1. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  2. National Latino AIDS Awareness Day

    Centers for Disease Control (CDC) Podcasts

    2014-10-08

    This podcast highlights National Latino AIDS Awareness Day, to increase awareness of the disproportionate impact of HIV on the Hispanic or Latino population in the United States and dependent territories. The podcast reminds Hispanics or Latinos that they have the power to take control of their health and protect themselves against HIV.  Created: 10/8/2014 by Office of Health Equity, Office of the Director, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Division of HIV/AIDS Prevention.   Date Released: 10/14/2014.

  3. STS-72 Flight Day 7

    Science.gov (United States)

    1996-01-01

    On this seventh day of the STS-72 mission, the flight crew, Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA), awakened to music from the Walt Disney movie, 'Snow White and the Seven Dwarfs.' Chiao and Scott performed the second spacewalk of the mission where they tested equipment and work platforms that will be used in building the planned International Space Station. This spacewalk was almost seven hours long. Wakata conducted an interview with and answered questions from six graders from a Japanese school in Houston, Texas.

  4. STS-95 Day 02 Highlights

    Science.gov (United States)

    1998-01-01

    On this second day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen preparing a glovebox device in the middeck area of Discovery, an enclosed research facility that will support numerous science investigations throughout the mission. Payload Specialist John Glenn, activates the Microgravity Encapsulation Process experiment (MEPS). This experiment will study the formation of capsules containing two kinds of anti-tumor drugs that could be delivered directly to solid tumors with applications for future chemotherapy treatments and the pharmaceutical industry.

  5. STS-95 Day 05 Highlights

    Science.gov (United States)

    1998-01-01

    On this fifth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, check the status of components of the Hubble Space Telescope Orbital Systems Test (HOST) payload, which provides an on-orbit test bed for hardware that will be used during the third Hubble servicing mission. Then Parazynski and Pilot Steve Lindsey set up some of the tools that will be used during the rendezvous and subsequent capture and reberthing of the Spartan satellite.

  6. STS-95 Day 06 Highlights

    Science.gov (United States)

    1998-01-01

    On this sixth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, test a device called the Video Guidance Sensor, a component of an automated docking system being prepared for use on the International Space Station. As Discovery closes in on Spartan, the astronauts will use a laser system that provides precise measurements of how far away the shuttle is from a target and how fast it is moving toward or away from the target.

  7. The Earth in energy troubles

    International Nuclear Information System (INIS)

    Pierret, Ch.; Carroue, L.; Goodchild, M.F.; Charvet, J.P.; Simon, A.; Ane, J.M.; Auburtin, E.; Barre, B.; Bonin, S.; Fumey, G.; Daviet, S.; Goupil, Ph.; Helfer, M.; Raison, J.; Velut, S.; Vidal, D.; Radvanyi, J.; Tapia, St. de; Pourtier, R.; Sebille-Lopez, Ph.; Clairet, S.; Poirson, A.C.; Guillaume, J.; Collignon, B.; Bauquis, P.R.; Brunel, S.; Guillaume, J.; Hourcade, B.; Marchand-Vaguet, Y.; Pitte, J.R.; Marchand-Vaguet, Y.; Laherrere, J.; Letourneau, M.; Lemarchand, N.; Beltran, A.; Bret, B.; Feckoua, L.; Helfer, M.; Lacoste, R.; Manzagol, C.; Tessier, F.; Vanneph, A.; Claessens, M.; Berdevet, M.; Tabeaud, M.; Laherrere, J.; Arnould, P.; Berque, A.; Brucher, W.; Deshaies, M.; Douguedroit, A.; Husson, J.P.; Lemartinel, J.; Mancebo, F.; Baron-Yelles, N.; Pitte, J.R.; Sede Marceau, J.H. de; Vigneau, J.P.; Tabeaud, M.; Fremont, A.; Crozet, Y.; Maupu, J.L.; Orfeuil, J.P.; Savy, M.; Viel, D.; Hammer, A.; Sanjuan, Th.; Lagarec, D.; Raillon, F.; Koninck, R. de; Bailly, A.; Bruneau, M.; Boulanger, Ph.; Bret, B.; Fournet-Guerin, C.; Hourcade, J.Ch.; Pitte, J.R.; Sanjuan, Th.; Verdeil, E.; Butler, S. de; Saint Germain, F.; Bouette, N.; Detot, A.; Caracchioli, Ph.; Bouette, N.; Smaghue, N.; Pousin, J.; Buysse, Ph.; Riallant, Y.; Durand, H.; Genter, A.; Dieulin, C.; Pronier, O.; Badea, A.; Tetart, F.; Genevois, S.; Leobet, M.; Angsthelm, B.; Calugaru, C.; Domergue, Ph.; Iacu, C.; Muntele, L.; Goodchild, M.F.; Costa, P.

    2007-01-01

    of transportation systems in Freiburg im Brisgau city (Germany); 6 - development stakes - access to energy; fatality or inequality: the energy appetite of China, between development and geopolitics; energy and health; wood fuel: the real energy crisis of the poorest southern countries; Madagascar: the lack of energy as a break to development; the challenges of the Three Gorges dam in China; geopolitics and electric power in Middle East and Lebanon; 7 - pedagogical courses: geography teaching using the map library of the French documentation; harvesting and criticizing the energy information coming from Internet; the Earth's energy troubles; petroleum in Africa, revealer of a development problem; petroleum, geopolitical stake of the present day world; the Penly nuclear power plant (Normandy, France); hydroelectric power in the Durance basin: some complex spatial stakes; wind power and land planning; the Earth's petroleum troubles; how petroleum fluxes can reveal the organization of worldwide trades; Picardie: a region in front of renewable energies; 8 - geomatics: wind farms and landscape; geothermal energy: potentialities, challenges and perspectives; Spot Image's projects of monitoring of hydrocarbon pollutions; geo-referenced databases for the agricultural and environmental management of Romania; virtual globes or educative geographical information systems: what is new for geography teaching; geo-portals: a scientific and technical tool; conflicts and petroleum, the Darfour example; the coal from Oltenie mining area (Romania): solution or puzzling problem; energy and society, which transportation policy; geo-history of petroleum in Romania; Citizens as sensors: the world of volunteered geography; the natural environment of the Danube delta. (J.S.)

  8. Children's knowledge of the Earth

    Science.gov (United States)

    Siegal, Michael; Nobes, Gavin; Panagiotaki, Georgia

    2011-03-01

    Children everywhere are fascinated by the sky, stars and Sun. Emerging evidence from cultures throughout the world suggests that even young children can acquire knowledge of the Earth and its place in the Universe.

  9. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  10. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  11. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  12. The Search for Another Earth

    Indian Academy of Sciences (India)

    2016-08-26

    /fulltext/reso/021/07/0641-0652. Keywords. Stars, planets, planetary systems, detection. Abstract. Is there life anywhere else in the vast cosmos?Are there planets similar to the Earth? For centuries,these questions baffled ...

  13. Earth Charter and nuclear energy

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter presents Earth Charter, where are listed the principles in 4 sections: 1) respect and take care of the life community; 2) environmental integrity; social and economic welfare; 4) democracy, no-violence and peace

  14. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  15. Earth effect in the MSW analysis of the solar neutrino experiments

    International Nuclear Information System (INIS)

    Hata, N.; Langacker, P.

    1993-01-01

    We consider the Earth effect in the combined Mikheyev-Smirnov-Wolfenstein analysis of the solar neutrino experiments including theoretical uncertainties. Using the time-averaged data, the allowed large-angle region extends to much smaller angles than when the Earth effect is ignored. However, the additional constraint from the Kamiokande II day-night data excludes the parameter space most sensitive to the Earth effect, leaving only a small large-angle region close to maximal mixing at 90% C.L. The nonadiabatic solution remains unaffected by the Earth effect and is still preferred

  16. Fukushima. From the earth quake to the nuclear disaster

    International Nuclear Information System (INIS)

    Coulmas, Florian; Stalpers, Judith

    2011-01-01

    The authors of the booklet who lived in Japan at the time of the earth quake and the following catastrophic nuclear accidents in Fukushima describe their experiences during the earth quake and the following days. Although Japan is used to natural disasters the tsunami and the consequences for the NPP Fukushima Daiichi surmounted any imagination. The challenges for the local authorities as a consequence of the catastrophic progress of the disaster, the suffering of the citizens and at the same time the discipline and serenity to the affected persons are reported.

  17. Can Earth Sciences Help Alleviate Global Poverty?

    Science.gov (United States)

    Mutter, J. C.

    2004-12-01

    Poverty is not properly described solely in terms of economics. Certainly the billion people living on less than a dollar a day are the extreme poor and the two billion people who are living today on two dollars a day or less are poor also. One third of all humans live in poverty today. But poverty concerns deprivation - of good health, adequate nutrition, adequate education, properly paid employment, clean water, adequate housing and good sanitation. It is a fundamental denial of opportunity and a violation of basic human rights. Despite its prevalence and persistence of poverty and the attention given it by many scholars, the causes of poverty are not well understood and hence interventions to bring poor societies out of their condition often fail. One commonly missed component in the search for solutions to poverty is the fundamental co-dependence between the state of the Earth and the state of human well-being. These relationships, are compelling but often indirect and non-linear and sometimes deeply nuanced. They are also largely empirical in nature, lacking theory or models that describe the nature of the relationships. So while it is quite apparent that the poorest people are much more vulnerable than the rich to the Earths excesses and even to relatively small natural variations in places where the base conditions are poor, we do not presently know whether the recognized vulnerability is both an outcome of poverty and a contributing cause. Are societies poor, or held from development out of poverty because of their particular relationship to Earth's natural systems? Does how we live depend on where we live? Providing answers to these questions is one of the most fundamental research challenges of our time. That research lies in a domain squarely at the boundary between the natural and social sciences and cannot be answered by studies in either domain alone. What is clear even now, is that an understanding of the Earth gained from the natural sciences is

  18. Tidal Friction in the Earth and Ocean

    Science.gov (United States)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  19. A umbrella for the Earth

    International Nuclear Information System (INIS)

    Kunzig, R.

    2009-01-01

    In front of the global warming threat, the 'geo-engineers' foresee some solutions to change the climate of the Earth, like for instance, by hiding part of the solar radiation. Among the solutions one can notice: the injection of sulfur dioxide in the stratosphere, the artificial generation of clouds using sea fog generators, or the putting into orbit of disc-shape screens creating a 100000 km x 12000 km elliptical 'umbrella' between the sun and the Earth. (J.S.)

  20. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  1. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  2. IAEA Supports World Cancer Day

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2008-01-01

    Full text: Cancer can strike anyone at anytime, young or old, rich or poor. It knows no borders. World Cancer Day, on 4 February, was initiated to raise global awareness of cancer issues and stimulate new strategies and thinking to combat the killer disease. Nowhere is the need greater than in the developing world, where millions of people are suffering and dying due to lack of cancer prevention and treatment. According to the World Health Organisation (WHO), 84 million people will die of cancer in the next 10 years, more than 70% of them in low-income countries, unless action is taken now. The IAEA's Programme of Action for Cancer Therapy (PACT) was created to help poorer countries confront the growing cancer crisis by integrating radiotherapy into comprehensive cancer control programmes. As it celebrates its third birthday on World Cancer Day, PACT can claim significant progress in building effective relationships with a broad array of stakeholders, initiating six pilot projects and gaining increasing support from Member States. The IAEA commends all organizations, agencies and individuals engaged in the battle to defeat this dreadful disease. We look forward to continued collaboration with international partners to help bring hope to cancer patients, to relieve their suffering and to save lives. (IAEA)

  3. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  4. A Hazy Day in Mexico City

    Science.gov (United States)

    2002-01-01

    . The ancient lakebed valley in which Mexico City is situated became a major source of dust when it was drained in the 16th century. The city basin stretches approximately 70 kilometers wide; it is reported that the local air quality causes the surrounding mountains to be rarely visible from the urban center.The Multi-angle Imaging SpectroRadiometer views almost the entire Earth every 9 days. These images were acquired during Terra orbits 6966 and 10461 and cover an area of 330 kilometers x 464 kilometers. They utilize data from blocks 75 to 77 within World Reference System-2 path 26.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  6. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  7. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  8. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  9. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  10. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  11. Eating Three Times a Day

    Directory of Open Access Journals (Sweden)

    Hensler Douglas A.

    2014-11-01

    Full Text Available In poor countries, the burgeoning middle-class population, people who eat three times a day1, is placing profound worldwide price pressure on food and natural resources. This keynote address examines the implications of the boom in middle-class population on the world economy and innovation. Where not long ago food production was aplenty and the problem was distribution, today growing middle-class demand on food production has prices of food staples such as wheat and corn, and their derivatives, inflating. This follows the trend in the growth of prices of natural resources and durable commodities emanating from economic globalization and the building of infrastructure. This keynote address examines the five prices that are in play in the global economy and a brief perspective through the supply chain window. The address also examines implications of the middle-class boom and the additional importance this places on innovation, particularly in three areas of economic structure.

  12. STS-95 Day 01 Highlights

    Science.gov (United States)

    1998-01-01

    On this first day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, can be seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters.

  13. STS-95 Day 04 Highlights

    Science.gov (United States)

    1998-01-01

    On this forth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, are seen performing an evaluation of bone cell activity under microgravity conditions. Glenn then provides blood samples as part of the Protein Turnover Experiment, which is looking at the balance between the building and breakdown of muscle. He also works with the Advanced Organic Separations (ADSEP) experiment, to provides the capability to separate and purify biological materials in microgravity; and with the Microencapsulation Electrostatic Processing System (MEPS), that studies the formation of anti-tumor capsules containing two kinds of drugs.

  14. STS-95 Day 07 Highlights

    Science.gov (United States)

    1998-01-01

    On this seventh day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, again test the Orbiter Space Vision System. OSVS uses special markings on Spartan and the shuttle cargo bay to provide an alignment aid for the arm's operator using shuttle television images. It will be used extensively on the next Space Shuttle flight in December as an aid in using the arm to join together the first two modules of the International Space Station. Specialist John Glenn will complete a daily back-pain questionnaire by as part of a study of how the muscle, intervertebral discs and bone marrow change after exposure to microgravity.

  15. STS-95 Day 08 Highlights

    Science.gov (United States)

    1998-01-01

    On this eighth day of the STS-95 mission, the flight crew, Cmdr. Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn, continue to perform microgravity experiments. Specialist John Glenn completes a back-pain questionnaire as part of a study of how the muscle, intervertebral discs and bone marrow change due to microgravity. The results will then be compared with data provided by astronauts during previous missions. Glenn continues blood sample analysis and blood processing that are part of the Protein Turnover (PTO) experiment, which is studying the muscle loss that occurs during space flight.

  16. Cleaning lady saves the day

    CERN Multimedia

    2009-01-01

    At lunch time on Wednesday 21 January a guest at the CERN hostel put her food in the microwave oven and switched it on. "Within seconds I smelt plastic. I looked into the oven and saw flames. I switched it off, took my food out. But the flames continued and so I ran for the door." In the corridor she ran into Jane Kiranga, a cleaning lady working for the company ISS. Without hesitation Jane picked up a portable fire extinguisher, returned to the kitchen and stopped the fire. The Fire Brigade arrived a few minutes later and only needed to ventilate the kitchen. "Jane was just in time, because the flames had not left the oven yet. Her model behaviour deserves recognition," said the team leader on duty for the CERN Fire Brigade. A few days later Jane received a gift voucher from the Prevention and Training section of the Safety Commission (photo).

  17. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    Science.gov (United States)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  18. Solar rotation effects on the thermospheres of Mars and Earth.

    Science.gov (United States)

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G

    2006-06-02

    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  19. Channel by Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 17 June 2004 This pair of images shows part of a small channel. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 19.8, Longitude 141.5 East (218.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  20. Lomonosov Crater, Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 16 June 2004 This pair of images shows part of Lomonosov Crater. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 64.9, Longitude 350.7 East (9.3 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  1. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  2. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  3. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  4. Smarter Earth Science Data System

    Science.gov (United States)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  5. Injector machine development days 2017

    CERN Document Server

    Bartosik, H

    2017-01-01

    Following the important progress made in 2016 in the Machine Development (MD) activities that took place in all the accelerators of the LHC injector chain, the days 23-24 March, 2017, have been devoted to summarise the main out- come from the MDs and lay out the plans for the next steps. The event was also triggered by the following motivations and goals: Give a chance to the MD users to present their results; Provide a platform in which MD users, MD coordinators and operations crews meet and discuss openly the optimisation of the MD time and procedures, taking into account of the different perspectives; Provide an overview of all the ongoing activities to better frame their impact in the broader picture of the CERN short and long term projects; Identify the open questions, define and prioritise ma- chine studies in the injectors for 2017; Create the opportunity to obtain and document written reports from MD users. Within this contribution, we just summarise the context and the main points discussed at the ev...

  6. OBESITY : A MODERN DAY PLAGUE.

    Science.gov (United States)

    Yadav, Yatendra Kumar

    2002-01-01

    Obesity is the presence of excess body fat. Unfortunately obesity is taken as a mere cosmetic problem and not a medical one. Today obesity is being 'dealt' with more by the self-proclaimed fitness experts running the rapidly mushrooming fitness centres rather than by medical professionals. But rather than merely a cosmetic problem, obesity should be viewed as a disease because there are multiple biologic hazards at surprisingly low levels of excess fat With the rapid pace of industrialisation and economic progress, today more and more jobs are becoming sedentary and dietary patterns are also changing with a decline in the cereal intake and increase in the intake of sugar and fats. However, inherited physiologic differences in response to eating and exercise are also important factors. Treating obesity can often be a frustrating experience for both the physician and the patient because of the great difficulty in maintaining weight loss over the long term. However, a clear understanding of the causes of obesity and a treatment strategy based on a combination of diet, nutrition, education, exercise, behaviour modification and social support can go a long way in containing this 'modern day plague' before it acquires epidemic proportions.

  7. An Open Day at CERN

    CERN Multimedia

    Burckhart, H; Schmid, P; Schuh, S

    Celebrating its 50 years of existence, its achievements and to communicate its plans for the future, CERN is organizing an "Open Day" on Saturday 16 October 2004. This will be a major event for CERN's public relations; some 10000 visitors from near and far are expected to follow CERN's invitation. ATLAS has to, and will, play its role on this occasion. A small group of people (H. Burckhart, C. Potter, P. Schmid and S. Schuh) from the CERN ATLAS Team is acting as interface to CERN's organizing committee. This is all done in close collaboration with the ATLAS Outreach Coordinators. According to our present plans ATLAS will organize three visit sites: - The ATLAS "headquarters" will be in the future ATLAS control room at the pit. We shall show films (ATLAS specific and general HEP), distribute information material, sell our scarves, ties, T-shirts and watches, explain ATLAS in as many languages as we can and - most likely the major attraction - give the visitors the possibility to go down into the cavern. - ...

  8. Higgs discovered at Open Days

    CERN Multimedia

    2008-01-01

    Like his eponymous particle, Peter Higgs can be elusive. However, for the momentous occasion of the Open Days there was a chance, if you were lucky, to catch a glimpse of him. Peter Higgs marvels at the enormity of the ATLAS experiment. Taking a closer look at CMS.Visiting CERN for the first time in more than 20 years, Peter Higgs has become something of a celebrity in the world of particle physics. During his visit he showed genuine amazement at the sight of the LHC and its experiments. On seeing CMS he said, "It’s very impressive, very dramatic. I’d seen pictures of course, but they can’t compare." Surrounded for most of his stay by an entourage of physicists, the notoriously modest scientist laughs at the almost mythical quality his boson has taken on. For him though, it is just one of many aspects of physics that the CMS and ATLAS experiments can shine a light on. Besides finding ...

  9. A red-letter day !

    CERN Multimedia

    2008-01-01

    Today is a red-letter day for the LHC and CERN as a beam of protons has travelled around the LHC ring for the very first time! The start of LHC operation marks the end of a long period in which you have given your all, and this first particle beam circulating in the accelerator now paves the way for discoveries that will open up a whole new field of knowledge. The history of the LHC began in 1984 with a debate on the possible objectives of a future accelerator, based on the state of our knowledge at that time. The CERN Council then approved the single-stage construction of the LHC in 1996, giving the go-ahead for the work that has now reached completion. For the past twelve years, physicists, engineers and technicians from CERN and its associated institutes have been engaged in constructing the three pillars of the LHC: the accelerator (including the upgrade of the existing accelerator chain), the four experiments, and the computing ...

  10. STS-88 Day 10 Highlights

    Science.gov (United States)

    1998-01-01

    On this tenth day of the STS-88 mission, the flight crew, Commander Robert D. Cabana, Pilot Frederick W. Sturckow, and Mission Specialists Nancy J. Currie, James H. Newman, Jerry L. Ross, and Sergei Krikalev are awakened by the sounds of Elvis Presley's "Hound Dog". Today's activities are devoted mostly to tasks that ready the station for future assembly work. The crew's first job is to release some cable ties on four cables connected on an earlier space walk, three located on Unity's upper mating adapter and one on its lower adapter, to relieve tension on the lines. The space walkers also will check an insulation cover on one cable connection on the lower Pressurized Mating Adapter (PMA 2) to make sure it is fully installed. Near the end of the space walk, the astronauts conduct a detailed photographic survey of the space station from top to bottom. Finally, each astronaut test fires the Simplified Aid for Extravehicular Activity Rescue (SAFER) jet backpacks they are wearing, a type of space "lifejacket," that would allow an astronaut to fly back to the station if they should ever become untethered.

  11. STS-84 Day 08 Highlights

    Science.gov (United States)

    1995-01-01

    On this eighth day of the STS-84 mission, the flight crew, Cmdr. Charles J. Precourt, Pilot Eileen M. Collins, Payload Cmdr, Jean-Francois Clervoy (ESA), Mission Specialists Edward T. Lu, Carlos I. Noriega, Elena V. Kondakova, Jerry M. Linenger (download), and C. Michael Foale (upload) sing 'The Cosmonauts' Song' to Mir-23 crew members Vasily Tsibliev, Alexander Lazutkin and astronaut Mike Foale, who is beginning his four-month research mission on Mir. Foale and his new crewmates played music as Atlantis departed following the joint phase of the flight. Atlantis' undocking from Mir was modified from previous joint missions in that a flyaround of the station for photographic purposes was not conducted. Instead, Pilot Eileen Collins guided Atlantis below the Mir after the two spacecraft completed their physical separation, stopping three times at distances of 90, 300 and 1,500 feet to collect data from a European sensor device designed to assist future rendezvous of a proposed European Space Agency resupply vehicle with the International Space Station. Once the data collection was completed, the shuttle took advantage of natural orbital mechanics to drift beneath and out in front of Mir.

  12. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    Newton, D.

    1990-06-01

    The data on human metabolism and long-term retention of alkaline earth elements ( 133 Ba injected into six healthy male volunteers at age 25-81 y and 45 Ca and 85 Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133 Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  13. Bringing Space Weather Down to Earth

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  14. Did European temperatures in 1540 exceed present-day records?

    Science.gov (United States)

    Orth, Rene; Vogel, Martha M.; Luterbacher, Jürg; Pfister, Christian; Seneviratne, Sonia I.

    2017-04-01

    There is strong evidence that the year 1540 was exceptionally dry and warm in Central Europe. Here we infer 1540 summer temperatures from the number of dry days (NDDs) in spring (March-May) and summer (June-August) in 1540 derived from historical documentary evidence published elsewhere, and compare our estimates with present-day temperatures. We translate the NDD values into temperature distributions using a linear relationship between modeled temperature and NDD from a 3000 year pre-industrial control simulation with the Community Earth System Model (CESM). Our results show medium confidence that summer mean temperatures (T JJA) and maximum temperatures (TXx) in Central Europe in 1540 were warmer than the respective present-day mean summer temperatures (assessed between 1966-2015). The model-based reconstruction suggests further that with a probability of 40%-70%, the highest daily temperatures in 1540 were even warmer than in 2003, while there is at most a 20% probability that the 1540 mean summer temperature was warmer than that of 2003 in Central Europe. As with other state-of-the-art analyses, the uncertainty of the reconstructed 1540 summer weather in this study is considerable, for instance as extrapolation is required because 1540-like events are not captured by the employed Earth system model (ESM), and neither by other ESMs. However, in addition to paleoclimatological approaches we introduce here an independent methodology to estimate 1540 temperatures, and contribute consequently to a reduced overall uncertainty in the analysis of this event. The characterization of such events and the related climate system functioning is particularly relevant in the context of global warming and the corresponding increase of extreme heat wave magnitude and occurrence frequency. Orth, R., M.M. Vogel, J. Luterbacher, C. Pfister, and S.I. Seneviratne, (2016): Did European temperatures in 1540 exceed present-day records? Env. Res. Lett., 11, 114021, doi: 10.1088/1748-9326/11/11/114021

  15. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    Science.gov (United States)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis

  16. Estimation of solid earth tidal parameters and FCN with VLBI

    International Nuclear Information System (INIS)

    Krásná, H.

    2012-01-01

    Measurements of a space-geodetic technique VLBI (Very Long Baseline Interferometry) are influenced by a variety of processes which have to be modelled and put as a priori information into the analysis of the space-geodetic data. The increasing accuracy of the VLBI measurements allows access to these parameters and provides possibilities to validate them directly from the measured data. The gravitational attraction of the Moon and the Sun causes deformation of the Earth's surface which can reach several decimetres in radial direction during a day. The displacement is a function of the so-called Love and Shida numbers. Due to the present accuracy of the VLBI measurements the parameters have to be specified as complex numbers, where the imaginary parts describe the anelasticity of the Earth's mantle. Moreover, it is necessary to distinguish between the single tides within the various frequency bands. In this thesis, complex Love and Shida numbers of twelve diurnal and five long-period tides included in the solid Earth tidal displacement modelling are estimated directly from the 27 years of VLBI measurements (1984.0 - 2011.0). In this work, the period of the Free Core Nutation (FCN) is estimated which shows up in the frequency dependent solid Earth tidal displacement as well as in a nutation model describing the motion of the Earth's axis in space. The FCN period in both models is treated as a single parameter and it is estimated in a rigorous global adjustment of the VLBI data. The obtained value of -431.18 ± 0.10 sidereal days differs slightly from the conventional value -431.39 sidereal days given in IERS Conventions 2010. An empirical FCN model based on variable amplitude and phase is determined, whose parameters are estimated in yearly steps directly within VLBI global solutions. (author) [de

  17. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  18. Revolutions that made the earth

    CERN Document Server

    Lenton, Tim

    2013-01-01

    The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthe...

  19. World Population Day special symposium.

    Science.gov (United States)

    1998-08-01

    This article describes Japan's celebration of World Population Day, and provides excerpts from speeches at the symposium held on July 8, 1998. The symposium, in Tokyo, was attended by about 300 people. The Chairman of JOICFP gave the opening address. The executive director of UNFPA congratulated Japan for its efforts in the field of population awareness and noted Japan's self-sufficiency despite its importation of 40% of its food and most of its raw materials. A keynote address was delivered by the president of CPE and the former UN Secretary General, who stressed income inequities in the 66% of developing countries within the 185 UN member states. The UN has been promoting sustainable development, but is facing the issue of limited arable land and population growth. The Tutsi and Hutus are fighting due to population based issues. The emphasis should be on women's reproductive rights and protection of women's human rights. 1998 is the 50th year of human rights; progress has been made. The UNFPA Goodwill Ambassador spoke about the disparity between the rich and poor in the Philippines. A small donation reaps incredible progress. Manila has high levels of adolescent childbearing. Men appear to be unaware of the disadvantages of childbearing too early. Rural areas are dominated by strict Roman Catholic beliefs. Manila has commercial sex workers who provide services to Japanese men. The 1998 Kato Award was given to women who raised awareness about coercion in the sex trade and female genital mutilation. The economic situation in Japan creates even greater need to promote family planning and reproductive health.

  20. 100 days in the jungle

    Energy Technology Data Exchange (ETDEWEB)

    Ohler, S.; Hall, V.

    2000-07-01

    This book describes the ordeals of 8 oilfield workers, 7 Canadian and 1 American, who were kidnapped in the jungles of Ecuador on September 11, 1999 while on a job to repair a rusted, leaking pipeline. AEC, the largest Canadian player in the country and the owner of the pipeline, contracted United Pipeline Systems to bring its stake of the pipeline up to Canadian standards. The pipeline ran along a gravel highway in the middle of Ecuador's Oriente region between the oil towns of Lago Agrio and Tarapoa where it met a main pipeline that runs all the way to the Pacific seaport of Esmerelda. Before the petroleum industry moved into Ecuador, the region was untouched rain forest. AEC was drawn to Ecuador by its rich crude reserves and the government's desire to lure international investment. Tarapoa is only 40 km from the Columbian border, a violent area controlled by the Revolutionary Armed Forces of Columbia (FARC), a Marxist guerrilla group responsible for most of Columbia's kidnappings. In 1999, there were almost 200 kidnappings in Ecuador alone and thousand others in 1990s were taken hostage in Columbia. The kidnappers ideologically opposed the disparities of wealth created by the oil boom and spent their ransoms on weapons to fight against the government. This book presents a detailed account of the kidnapping from the hostages perspective and describes the efforts made by United Pipeline Systems and the Department of Foreign Affairs to bring the workers safely home after 100 days in captivity. The theory is that the kidnappers, still unidentified at the time that this book was published, either belonged to FARC (or an Ecuadorian offshoot FARE) or they were common, well organized bandits with no political affiliation.

  1. Tritium conference days; Journees tritium

    Energy Technology Data Exchange (ETDEWEB)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-07-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO{sub air} and OBT/HTO{sub free} (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  2. Efficiency in Carrying Cargo to Earth Orbits: Spaceports Repositioning

    Directory of Open Access Journals (Sweden)

    Jakub Hospodka

    2016-10-01

    Full Text Available Space flights are in these days not any more question of technology, but more question of costs. One way how to decrease cost of launch is change of home spaceport. Change of home spaceport for different rockets is a way to achieve more efficient launches to space. The reason is different acceleration achieved from Earth rotation. We added several mathematical calculations of missions to Low Earth Orbit and Geostationary Earth Orbit to show bonuses from Earth rotation and effect of atmospheric drag on specific rockets used these days. We discussed only already used space vessels. Namely Arianne 5, Delta 4 heavy, Proton-M, Zenit and Falcon9. For reaching GEO we discuss possibility of using Hohmman transfer, because none of aforementioned vessels is available for direct GEO entry. As possible place for launch we discussed spaceports Baikonur, Kennedy Space center, Guyana Space center and Sea Launch platform. We present results in form of additional acceleration for each spaceport, and we also project this additional acceleration in means payload increase. In conclusion we find important differences between vessel effectivity based on spaceport used for launch. Change of launch location may bring significant cost decrease for operators.

  3. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  4. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  5. Physical Processes Controlling Earth's Climate

    Science.gov (United States)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  6. Setting to earth for computer

    International Nuclear Information System (INIS)

    Gallego V, Luis Eduardo; Montana Ch, Johny Hernan; Tovar P, Andres Fernando; Amortegui, Francisco

    2000-01-01

    The program GMT allows the analysis of setting to earth for tensions DC and AC (of low frequency) of diverse configurations composed by cylindrical electrodes interconnected, in a homogeneous land or stratified (two layers). This analysis understands among other aspects: calculation of the setting resistance to earth, elevation of potential of the system (GPR), calculation of current densities in the conductors, potentials calculation in which point on the land surface (profile and surfaces), tensions calculation in passing and of contact, also, it carries out the interpretation of resistivity measures for Wenner and Schlumberger methods, finding a model of two layers

  7. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  8. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  9. Radon thematic days - Conference proceedings

    International Nuclear Information System (INIS)

    2011-03-01

    This document brings together the available presentations given at the Radon thematic days organized by the French society of radiation protection (SFRP). Twenty five presentations (slides) are compiled in the document and deal with: 1 - General introduction about radon (Sebastien Baechler, IRA); 2 - Survey of epidemiological studies (Dominique Laurier, IRSN); 3 - Dosimetric model (Eric Blanchardon, Estelle Davesne, IRSN); 4 - Radon issue in Franche-Comte: measurement of the domestic exposure and evaluation of the associated health impact (Francois Clinard, InVS); 5 - WHO's (World Health Organization) viewpoint in limiting radon exposure in homes (Ferid Shannoun, OMS); 6 - Radon measurement techniques (Roselyne Ameon, IRSN); 7 - Quality of radon measurements (Francois Bochud, IRA); 8 - International recommendations (Jean-Francois Lecomte, IRSN); 9 - Radon management strategy in Switzerland - 1994-2014 (Christophe Murith, OFSP); 10 - 2011-2015 action plan for radon risk management (Jean-Luc Godet, Eric Dechaux, ASN); 11 - Radon at work place in Switzerland (Lisa Pedrazzi, SUVA); 12 - Strategies of radiation protection optimization in radon exposure situations (Cynthia Reaud, CEPN); 13 - Mapping of the radon potential of geologic formations in France (Geraldine Ielsch, IRSN); 14 - Radon database in Switzerland (Martha Gruson, OFSP); 15 - Radon 222 in taps water (Jeanne Loyen, IRSN); 16 - Buildings protection methods (Bernard Collignan, CSTB, Roselyne Ameon, IRSN); 17 - Preventive and sanitation measures in Switzerland (Claudio Valsangiacomo, SUPSI); 18 - Training and support approach for building specialists (Joelle Goyette-Pernot, Fribourg engineers and architects' school); 19 - Status of radon bulk activity measurements performed between 2005-2010 in public areas (Cyril Pineau, ASN); 20 - Neuchatel Canton experiments (Didier Racine, SENE); 21 - Montbeliard region experience in the radon risk management (Isabelle Netillard, Pays de Montbeliard Agglomeration); 22

  10. Melas Chasma, Day and Night.

    Science.gov (United States)

    2002-01-01

    This image is a mosaic of day and night infrared images of Melas Chasma taken by the camera system on NASA's Mars Odyssey spacecraft. The daytime temperature images are shown in black and white, superimposed on the martian topography. A single nighttime temperature image is superimposed in color. The daytime temperatures range from approximately -35 degrees Celsius (-31 degrees Fahrenheit) in black to -5 degrees Celsius (23 degrees Fahrenheit) in white. Overlapping landslides and individual layers in the walls of Melas Chasma can be seen in this image. The landslides flowed over 100 kilometers (62 miles) across the floor of Melas Chasma, producing deposits with ridges and grooves of alternating warm and cold materials that can still be seen. The temperature differences in the daytime images are due primarily to lighting effects, where sunlit slopes are warm (bright) and shadowed slopes are cool (dark). The nighttime temperature differences are due to differences in the abundance of rocky materials that retain their heat at night and stay relatively warm (red). Fine grained dust and sand (blue) cools off more rapidly at night. These images were acquired using the thermal infrared imaging system infrared Band 9, centered at 12.6 micrometers.Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL. Aviation and Space Agency and at Los Alamos National Laboratories

  11. The day of the yam.

    Science.gov (United States)

    Rosser, A

    Yam, the staple food in several tropical countries, is a good source of the steroid used in the manufacture of the pill and other sex hormone preparations -- saponin diosgenin. In the early days of production of oral contraceptives (OCs), most yams were gathered from the wild in Mexico. The type richest in steroids takes 3 years to mature and its cultivation has become something of an art. Yams grow best in light, well-drained soil, and for this reason are grown in mounds which have been heavily manured. Propagation is by planting the tops or heads or by small portions of the tuber which is a swollen shoot. Other varieties are planted before the onset of the rains and the crop harvested about 8 months later. In 1970 the Mexican government nationalized the yam industry as a safeguard. This pushed up prices and the drug companies looked elsewhere for a cheap source. Although Mexico still remains the principal grower, India, South Africa, and the Far East supply the industry with plant origin steroids. As more than 90% of the hefty yam tubers consist of water, well over 100,000 tons have to be harvested every year to provide the 600-700 tons of the saponin diosgenin used by the drug companies. In China, where Western corticosteroids are regarded as too expensive for the barefoot doctors, several species of yam are used. Research has been going on to find another source of diosgenin and the most promising seems to be fenugreek, Trigonella foenumgraecum. "Foenum graecum" is Latin for Greek hay and was used by the early Greeks as a culinary and medicinal herb throughout the Mediterranean area. The richness of fenugreek was used to improve the roundness of women's breasts and to stimulate the flow of milk. Bath University has spent 10 years researching the development of a species of fenugreek which will yield large amounts of diosgenin. A certain amount of steroids come from animal sources. Such steroids are given when there is an adverse reaction from the

  12. Correlations between the geomagnetic field variations, the fluctuations of the earth`s rotation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Greiner-Mai, H; Jochmann, H

    1995-03-01

    The amplitude spectra of global geophysical phenomena were investigated to motivate research of physical connections between them. The suggested causality was derived from comparison of the spectra, and from cross correlation functions. The following global parameters were discussed: For the earth rotation by the variations of the length of day, for the geomagnetic variation by the global field intensity, changes of the dipole axis and the westward drift, and for climate change by the atmospheric excitation function derived from air pressure variations, and temperature variations. The model of atmospheric excitation, which can be proved most exactly for the annual variations of length of day, is responsible for the 11 and 22 years periods, too. It failed for longer periods, e.g. partially for the 30 years periods and completely for the 60 to 80 years periods, which were also discovered in the mean temperature and geomagnetic field variations. Therefore, it was suggested that longer periods in climate change and in the variations of the earth`s rotation are caused independently by the same process in the earth core, provided that a physical influence of the geomagnetic field on climate will be accepted in future. The investigation was completed by comparison with the spectra of some local temperature variations in Europe. (orig.)

  13. A brief scenario about the ''space pollution'' around the Earth

    International Nuclear Information System (INIS)

    Brito, T P; Celestino, C C; Moraes, R V

    2013-01-01

    In this work is presented a brief review about the main events generating of space debris around the Earth, occurred up to the present day. How the clouds of debris ''polluted'' the neighborhood of orbits in which the bodies were initially allocated is here analyzed. The implications of the growth of space debris existing on space missions as well as safety rules to control sources of debris are discussed

  14. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Catanzarite, Joseph; Shao, Michael

    2011-01-01

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine η Earth , the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of η Earth is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of η Earth is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  15. Night and Day--It's Obvious How It Works, Isn't It?

    Science.gov (United States)

    Kibble, Bob

    2011-01-01

    How many children entering a classroom already have a day/night explanation that employs a turning Earth? This question ought to be of interest to most teachers, along with questions such as "What are children thinking after one's teaching of this topic?" The author has used a simple diagram and tick-box response sheet to help him assess the range…

  16. Children's Understanding of Night and Day: A Research Report Presented at NCSS, 1984.

    Science.gov (United States)

    Frazee, Bruce M.

    What advanced 4- and 5-year-old children know about night and day in relationship to the earth and sun was studied to test the hypothesis that two teaching activities would help children to understand the cause of the phenomenon. Participants were 21 middle to upper class boys and girls enrolled in a part-time early childhood enrichment program…

  17. The Greatest Show on Earth

    Indian Academy of Sciences (India)

    Darwin and Alfred Russel Wallace: life on earth had evolved ... over long epochs, the pace of change was infinitesimal. ... Thanks to the work of the Japanese theoreti- cian Motoo ... pleasure-minus-expenditure balance is posi- tive. This way of ...

  18. Earth Pressure on Tunnel Crown

    DEFF Research Database (Denmark)

    Andersen, Lars

    Two different analyses have been carried out in order to find the vertical earth pressure, or overburden pressure, at the crown of a tunnel going through a dike. Firstly, a hand calculation is performed using a simple dispersion of the stresses over depth. Secondly, the finite‐element program...

  19. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  20. Studying the Earth from space

    Science.gov (United States)

    ,

    1981-01-01

    Space age technology contains a key to increased knowledge about the Earth's resources; this key is remote sensing detecting the nature or condition of something without actually touching it. An early and still most useful form of remote sensing is photography which records the

  1. A journey through Earth climates

    International Nuclear Information System (INIS)

    Ramstein, Gilles; Brunet, Michel

    2015-01-01

    The author proposes a history of climates all along Earth's history, describes how cold and warm periods have been alternating during these billions of years. He also tries to highlight lessons learned from this long evolution of climate in order to better understand the current global warming. He discusses whether this disruption is unique in Earth's history, and how it threatens our environment and therefore our survival. The chapters describe how Earth could escape a global glaciation, the thermal regulation by greenhouse effect gases in a world without oxygen, the empowerment of oxygen and the first thermal accident, a new oxygenated and warm world, the second accident or how Earth entered and escaped from periods of total glaciation, the possible stabilisation, the succession of deregulations, crisis and extinctions, the slow way down to the cold, the various paleo-indicators during the Quaternary, the high frequency oscillations of climate during the last million of years, and the uncertain projections

  2. Solar Flare Aimed at Earth

    Science.gov (United States)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  3. The Earth as a Polder

    Indian Academy of Sciences (India)

    that the resources of the earth as a whole will .... tion of land and underground water sources as a ... oil; the different visions and desires of old and .... the world, one showing its political hot spots, ... Guns, Germs, and Steel, and The Rise and.

  4. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  5. Lessons from Earth's Deep Time

    Science.gov (United States)

    Soreghan, G. S.

    2005-01-01

    Earth is a repository of data on climatic changes from its deep-time history. Article discusses the collection and study of these data to predict future climatic changes, the need to create national study centers for the purpose, and the necessary cooperation between different branches of science in climatic research.

  6. Refresher Course on Earth Sciences

    Indian Academy of Sciences (India)

    Information and Announcements ... Introduction: Geoscience education in India is in the throes of a serious crisis and any paradigm ... considerations: geology needs to be taught as an earth system science, linked with cognate ... viable and employment-generating management of natural resources: the global trend of.

  7. Paleoseismology: evidence of earth activity

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie

    2016-01-01

    Roč. 105, č. 5 (2016), 1467-1469 ISSN 1437-3254 Institutional support: RVO:67985891 Keywords : Paleoseismology * Colluvial wedge * White Creek Fault _ * Greendale Fault * San Andreas Fault * Paganica Fault Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.283, year: 2016

  8. The two earths of Eratosthenes.

    Science.gov (United States)

    Carman, Christián Carlos; Evans, James

    2015-03-01

    In the third century B.C.E., Eratosthenes of Cyrene made a famous measurement of the circumference of the Earth. This was not the first such measurement, but it is the earliest for which significant details are preserved. Cleomedes gives a short account of Eratosthenes' method, his numerical assumptions, and the final result of 250,000 stades. However, many ancient sources attribute to Eratosthenes a result of 252,000 stades. Historians have attempted to explain the second result by supposing that Eratosthenes later made better measurements and revised his estimate or that the original result was simply rounded to 252,000 to have a number conveniently divisible by 60 or by 360. These explanations are speculative and untestable. However, Eratosthenes' estimates of the distances of the Sun and Moon from the Earth are preserved in the doxographical literature. This essay shows that Eratosthenes' result of 252,000 stades for the Earth's circumference follows from a solar distance that is attributed to him. Thus it appears that Eratosthenes computed not only a lower limit for the size of the Earth, based on the assumption that the Sun is at infinity, but also an upper limit, based on the assumption that the Sun is at a finite distance. The essay discusses the consequences for our understanding of his program.

  9. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    Science.gov (United States)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  10. Iowa Family Day Care Handbook. Second Edition.

    Science.gov (United States)

    Pinsky, Dorothy; And Others

    The Iowa Family Day Care Handbook is designed as an aid for persons entering the business of providing home day care as well as for those persons already in the field. Topics include advantages and disadvantages of family day care for children, parents and providers; getting started in family day care; and a list and description of records that…

  11. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  12. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  13. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  14. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  15. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  16. AAS 228: Day 3 afternoon

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Editors Note:This week were at the 228th AAS Meeting in San Diego, CA. Along with a team ofauthors from astrobites.com, I will bewritingupdates on selectedevents at themeeting and posting twiceeach day. Follow along here or atastrobites.com, or catch ourlive-tweeted updates from the@astrobites Twitter account. The usual posting schedule for AAS Nova will resumenext week.Wikipedia Year of Science Editathon (by Meredith Rawls)Whats your first go-to source for an unfamiliar topic on the internet? If you said Wikipedia, youre not alone. For many people, Wikipedia is the primary source of information about astronomy and science. However, many Wikipedia articles about science topics are incomplete or missing, and women are underrepresented among scientists with biographies.To address this, the AAS Astronomy Education Board teamed up with the Wiki Education Foundation to host an edit-a-thon as part of the Wikipedia Year of Science. More than forty attendees spent the better part of three hours working through tutorials, creating new articles, and editing existing ones. The session was generously sponsored by the Simons Foundation.The Year of Science initiative seeks to bring Wikipedia editing skills to the classroom and help new editors find sustainable ways to contribute to Wikipedia in the long term. Anybody can create a free account and start editing!As a first-time Wikipedia contributor, I took the time to go through nearly all the tutorial exercises and familiarize myself with the process of editing a page. I decided to flesh out one section in an existing page about asteroseismology. Others created biography pages from scratch or selected various astronomical topics to write about. To me, the editing process felt like a cross between writing a blog post and a journal article, in a hack day type environment. Working through the tutorial and some examples renewed my empathy for learners who are tackling a new skill set for the first time. A full summary of our

  17. The Four Day School Week. Research Brief

    Science.gov (United States)

    Muir, Mike

    2013-01-01

    Can four-day school weeks help districts save money? How do districts overcome the barriers of moving to a four-day week? What is the effect of a four-day week on students, staff and the community? This paper enumerates the benefits for students and teachers of four-day school weeks. Recommendations for implementation of a four-day week are also…

  18. Terrestrial planet formation in the presence of migrating super-Earths

    International Nuclear Information System (INIS)

    Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N.

    2014-01-01

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ mig ∼ 0.01-0.1 Myr) only have a modest effect on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.

  19. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  20. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Goldblatt, Colin; Johnson, Benjamin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth’s biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  1. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  2. Considering bioactivity in modelling continental growth and the Earth's evolution

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2013-09-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater vailability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller

  3. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  4. Life on Earth: From Chemicals in Space?

    Science.gov (United States)

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses experimental evidence for the existence of organic material in the solar system prior to the earth's formation. Indicates that the earth could have received much of its organic compounds from meteors falling on its primitive surface. (CC)

  5. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  6. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  7. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  8. ``An Earth-Shaking Experience''

    Science.gov (United States)

    Achenbach, Joel

    2005-03-01

    Last month's annual meeting of the American Geophysical Union in San Francisco drew an estimated 11,000 scientists, teachers, journalists and geophysics groupies. The schedule of talks could be found in a bound volume as thick as a phone book. You never see a geophysicist in ordinary life, but apparently the world is crawling with them. They came to talk about everything from the ozone layer to the big wad of iron at the center of the Earth. Also about other planets. And magnetic fields. Solar wind. Water on Mars. To be at this convention was to be immersed to the eyebrows in scientific knowledge. It is intellectually fashionable to fetishize the unknown, but at AGU, a person will get the opposite feeling-that science is a voracious, relentless and tireless enterprise, and that soon there may not remain on this Earth an unturned stone.

  9. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  10. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (

  11. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato

    2017-01-01

    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  12. Mapping Near-Earth Hazards

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    How can we hunt down all the near-Earth asteroids that are capable of posing a threat to us? A new study looks at whether the upcoming Large Synoptic Survey Telescope (LSST) is up to the job.Charting Nearby ThreatsLSST is an 8.4-m wide-survey telescope currently being built in Chile. When it goes online in 2022, it will spend the next ten years surveying our sky, mapping tens of billions of stars and galaxies, searching for signatures of dark energy and dark matter, and hunting for transient optical events like novae and supernovae. But in its scanning, LSST will also be looking for asteroids that approach near Earth.Cumulative number of near-Earth asteroids discovered over time, as of June 16, 2016. [NASA/JPL/Chamberlin]Near-Earth objects (NEOs) have the potential to be hazardous if they cross Earths path and are large enough to do significant damage when they impact Earth. Earths history is riddled with dangerous asteroid encounters, including the recent Chelyabinsk airburst in 2013, the encounter that caused the kilometer-sized Meteor Crater in Arizona, and the impact thought to contribute to the extinction of the dinosaurs.Recognizing the potential danger that NEOs can pose to Earth, Congress has tasked NASA with tracking down 90% of NEOs larger than 140 meters in diameter. With our current survey capabilities, we believe weve discovered roughly 25% of these NEOs thus far. Now a new study led by Tommy Grav (Planetary Science Institute) examines whether LSST will be able to complete this task.Absolute magnitude, H, of asynthetic NEO population. Though these NEOs are all larger than 140 m, they have a large spread in albedos. [Grav et al. 2016]Can LSST Help?Based on previous observations of NEOs and resulting predictions for NEO properties and orbits, Grav and collaborators simulate a synthetic population of NEOs all above 140 m in size. With these improved population models, they demonstrate that the common tactic of using an asteroids absolute magnitude as a

  13. Rare earth industries: Upstream business

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many factors contribute to the rush to invest in the unprecedented revival of rare earths. One major reason has to do with the rapidly growing world demand. The other reason relates to the attractive price of rare earths which is projected to stay strong in the coming years. This is because supply is predicted to have difficulty keeping pace with demand. Experts believe a major driver of global rare earths demand is the forecasted expansion in the green economy. Climate change is a major driver of the green economy. With climate change, there is concern that the uncontrolled emission of the greenhouse gases, especially carbon dioxide, can lead to catastrophic consequences for the world. This has been documented in countless studies and reports. Another important driver of the green economy is the growing shortfall in many resources. The world is now experiencing declines in key resources to meet a growing global demand. With more than 6 billion people now in the world and growing, the pressure exerted on global resources including energy, water and food is a major concern. Recent demand surge in China and India has dented the supply position of major world resources. The much quoted Stern Report from the UK has warned that, unless immediate steps are taken to reduce greenhouse gas emissions, it may be a costly exercise to undertake the corrections later. Since energy use, especially fossil fuels, is a major contributor to climate change, greener options are being sought. Add to that the fact that the fossil energy resources of the world are declining, the need to seek alternatives becomes even more urgent. One option is to change to renewable energy sources. These include such potentials as solar, wind and biomass. Rare earths have somehow become a critical feature of the technologies in such renewable. Another option is to improve the efficient use of energy in transport, buildings and all the other energy intensive industries. Again the technologies in

  14. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  15. Earth's Paleomagnetosphere and Planetary Habitability

    Science.gov (United States)

    Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.

    2017-12-01

    The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.

  16. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  17. Physics of the earth crust

    International Nuclear Information System (INIS)

    Lauterbach, R.

    1977-01-01

    This book deals in 12 chapters, amongst other things, with the subjects: Structure of the crust and the upper earth mantle, geology and geophysics of sea beds, satellite and aero-methods of geophysics, state of the art of geothermal research, geophysical potential fields and their anomalies, applied seismology, electrical methods of geophysics, geophysics in engineering and rock engineering, borehole geophysics, petrophysics, and geochemistry. (RW) [de

  18. Day-night effect in solar neutrino oscillations with three flavors

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy; Snellman, Haakan

    2004-01-01

    We investigate the effects of a nonzero leptonic mixing angle θ 13 on the solar neutrino day-night asymmetry. Using a constant matter density profile for the Earth and well-motivated approximations, we derive analytical expressions for the ν e survival probabilities for solar neutrinos arriving directly at the detector and for solar neutrinos which have passed through the Earth. Furthermore, we numerically study the effects of a nonzero θ 13 on the day-night asymmetry at detectors and find that they are small. Finally, we show that if the uncertainties in the parameters θ 12 and Δm 2 as well as the uncertainty in the day-night asymmetry itself were much smaller than they are today, this effect could, in principle, be used to determine θ 13

  19. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  20. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  1. External Fuel Tank, Clouds and Earth Limb

    Science.gov (United States)

    1991-01-01

    It's fuel consumed, the expendable external fuel tank was jettisoned moments earlier from the Space Shuttle Atlantis and now begins its plunge back to Earth (20.5N, 36.0W). Backdropped against the void of space and the thin blue line of the Earth's airglow above the Earth Limb, the harshness of the blackness of space is softened by the fleeciness of Earth's cloud cover below.

  2. Effects of resonant matter oscillation in earth on solar neutrino detection

    International Nuclear Information System (INIS)

    Hiroi, Shinichi; Sakuma, Hiroko; Yanagida, Tsutomu; Yoshimura, Motohiko.

    1987-01-01

    A systematic study of the Mikheyev-Smirnov-Wolfenstein (MSW) effect in earth is carried out on the solar neutrino flux from 8 B decay. In Kamiokande type detectors day-night difference of rates, seasonal variation and recoil electron spectrum are found to be good indicators of the earth effect for a range of mixing parameters around δm 2 = 3 x 10 -6 ev 2 and sin 2 2θ = 0.2. (author)

  3. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  4. Mineral evolution and Earth history

    Science.gov (United States)

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  5. Apollo 11 Earth Training Exercises

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, taken at the Manned Spacecraft Center in Houston, Texas, an engineer, Bob Mason, donned in a space suit, goes through some of those training exercises on the mock lunar surface. He performed activites similar to those planned for astronauts Neil Armstrong and Edwin Aldrin during their moon walk. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  6. The Earth Observation Technology Cluster

    Science.gov (United States)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  7. Medication Days Supply, Adherence, Wastage, and Cost

    Data.gov (United States)

    U.S. Department of Health & Human Services — In an attempt to contain Medicaid pharmacy costs, nearly all states impose dispensing limits on medication days supply. Although longer days supply appears to...

  8. Student Poster Days Showcase Young Researchers | Poster

    Science.gov (United States)

    Student interns presented their research to the NCI at Frederick community during the annual Student Poster Days event, held in the Building 549 lobby and the Advanced Technology Research Facility (ATRF) atrium over two days.

  9. PLANETarium - Visualizing Earth Sciences in the Planetarium

    Science.gov (United States)

    Ballmer, M. D.; Wiethoff, T.; Kraupe, T. W.

    2013-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and public education, have advanced from instruments that can visualize the motion of stars as beam spots moving over spherical projection areas to systems that are able to display multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education. A few documentaries on e.g. climate change or volcanic eruptions have been brought to planetariums, but are taking little advantage of the true potential of the medium, as mostly based on standard two-dimensional videos and cartoon-style animations. Along these lines, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100,000,000 per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to directly show visualizations of scientific datasets or models, originally designed for basic research. Such visualizations in solid-Earth, as well as athmospheric and ocean sciences, are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., surface temperature, gravity, magnetic field), or horizontal slices of seismic-tomography images and of spherical computer simulations (e.g., climate evolution, mantle flow or ocean currents) requires almost no rendering at all. Three-dimensional Cartesian datasets or models can be rendered using standard methods. With the appropriate audio support, present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly more

  10. Prediction of length-of-day using extreme learning machine

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2015-03-01

    Full Text Available Traditional artificial neural networks (ANN such as back-propagation neural networks (BPNN provide good predictions of length-of-day (LOD. However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM, to improve the efficiency of LOD predictions. Earth orientation parameters (EOP C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS, which serves as our database. First, the known predictable effects that can be described by functional models—such as the effects of solid earth, ocean tides, or seasonal atmospheric variations—are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN, and adaptive network-based fuzzy inference systems (ANFIS. It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction techniques, the mean-absolute-error (MAE from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC. The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple.

  11. Process for lead removal from rare earth

    International Nuclear Information System (INIS)

    Bollat, A.; Sabot, J.L.

    1987-01-01

    An aqueous solution of rare earth chlorides and lead chlorides, with a chloride concentration of at least 2 moles/liter and a pH between 2 and 4, is extracted by an alkylphosphonic acid ester and rare earth(s) is (are) recovered from the organic phase [fr

  12. Dimension of the Earth's general ellipsoid

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Raděj, K.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2002-01-01

    Roč. 91, č. 1 (2002), s. 31-41 ISSN 0167-9295 Institutional research plan: CEZ:AV0Z1003909 Keywords : Earth's dimensions * Earth's ellipsoid * fundamental constants Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.364, year: 2002

  13. In the Red Shadow of the Earth

    Science.gov (United States)

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  14. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  15. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  16. Earth Systems Science: An Analytic Framework

    Science.gov (United States)

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  17. Observation of the nearly diurnal resonance of the earth using a laser strainmeter

    Science.gov (United States)

    Levine, J.

    1978-01-01

    The response of the Earth to the diurnal and semidiurnal tidal excitations was studied. Results show that there is significant structure in the response of the earth to tidal excitations near one cycle/sidereal day. This structure agrees with the resonance behavior predicted from the calculations of the forced elasticgravitational response of an elliptical, rotating earth with a liquid outer core. The data is used to test for possible preferred frames and spatial anisotropies. Upper bounds on the parameterized post-Newtonian (PPN) parameters were examined.

  18. 31 CFR 800.201 - Business day.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Business day. 800.201 Section 800.201 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF INVESTMENT... FOREIGN PERSONS Definitions § 800.201 Business day. The term business day means Monday through Friday...

  19. Tourette Syndrome: A Training Day for Teachers.

    Science.gov (United States)

    Chowdhury, Uttom; Christie, Deborah

    2002-01-01

    This article describes a Tourette syndrome training day for teachers facilitated by members of the Tic Disorders Clinic at Great Ormond Street Hospital in England. The day provided a mix of information giving and discussion of current practice. Outcomes of the day are related to professional knowledge and experience. (Contains references.) (CR)

  20. 48 CFR 1371.117 - Lay days.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Lay days. 1371.117 Section... REGULATIONS ACQUISITIONS INVOLVING SHIP CONSTRUCTION AND SHIP REPAIR Provisions and Clauses 1371.117 Lay days. Insert clause 1352.271-86, Lay Days, in all solicitations and contracts for ship repair. ...