WorldWideScience

Sample records for grc aerospace technologies

  1. Stirling technology development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  2. Aerospace Technology (Aerospace Engineering Degree)

    OpenAIRE

    Tiseira Izaguirre, Andrés Omar; Blanco Rodríguez, David; Carreres Talens, Marcos; FAJARDO PEÑA, PABLO

    2013-01-01

    Apuntes de la asignatura Tecnología Aeroespacial Tiseira Izaguirre, AO.; Blanco Rodríguez, D.; Carreres Talens, M.; Fajardo Peña, P. (2013). Aerospace Technology (Aerospace Engineering Degree). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/35263

  3. Update on the NASA GRC Stirling Technology development project

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  4. Stirling Technology Development at NASA GRC

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  5. Stirling Technology Development at NASA GRC. Revised

    Science.gov (United States)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  6. Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  7. Using information technology governance, risk management and compliance (GRC as a creator of business values – a case study

    Directory of Open Access Journals (Sweden)

    Sam Lubbe

    2011-08-01

    Full Text Available The relationship between Information Technology (IT Governance, Risk Management and Compliance (GRC and organisation business values continues to interest academics and practitioners (IT Governance Institute, 2003. Like governance, risk management and compliance generally, IT GRC is about the decision rights and accountabilities that encourage desirable behaviour in the use of IT (IT Governance Institute, 2003. A case study approach was used in an organisation with many business units. The organisation selected is a mining company, RioZim, situated in Zimbabwe. Data was collected from business units on IT issues and business values. The interviews centred on the IT GRC practices based on responsibility and authority for IT decision making. The results suggest that IT GRC does not adequately support business values. The study revealed that business values should drive IT GRC and IT GRC should be the responsibility of executives and all business units.

  8. Aerospace materials and material technologies

    CERN Document Server

    Wanhill, R

    2017-01-01

    This book is a comprehensive compilation of chapters on materials (both established and evolving) and material technologies that are important for aerospace systems. It considers aerospace materials in three Parts. Part I covers Metallic Materials (Mg, Al, Al-Li, Ti, aero steels, Ni, intermetallics, bronzes and Nb alloys); Part II deals with Composites (GLARE, PMCs, CMCs and Carbon based CMCs); and Part III considers Special Materials. This compilation has ensured that no important aerospace material system is ignored. Emphasis is laid in each chapter on the underlying scientific principles as well as basic and fundamental mechanisms leading to processing, characterization, property evaluation and applications. A considerable amount of materials data is compiled and presented in appendices at the end of the book. This book will be useful to students, researchers and professionals working in the domain of aerospace materials.

  9. Third Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  10. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    Science.gov (United States)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  11. Summary of 2017 NASA Workshop on Assessment of Advanced Battery Technologies for Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2018-01-01

    A workshop on assessment of battery technologies for future aerospace applications was held in Cleveland, OH on August 16-17. The focus of the workshop, hosted by NASA GRC, was to assess (1) the battery needs for future aerospace missions, (2) the state of battery technology and projected technology advances, and (3) the need for additional investments for future aerospace missions. The workshop had 109 attendees that included internationally recognized technology leaders from academia and national laboratories, high level executives from government and industry, small businesses, and startup companies. A significant portion of the workshop was focused on batteries for electrified aircraft. The presentation will summarize the finding on the state of battery technologies for electrified aircraft and will include assessment of current state of battery technology, gaps in battery technology for application in electrified aircraft, and recommended technology development options for meeting near-term and long-term needs of electrified aircraft.

  12. Aerospace Technology Innovation. Volume 10

    Science.gov (United States)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  13. Second Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  14. Trends in a aerospace technology advanced materials

    International Nuclear Information System (INIS)

    Ogren, J.R.

    1993-01-01

    The purpose of this presentation is to discuss recent trends in aerospace technology and to discuss as they relate to recent trends in the materials technologies. We shall do this within the framework of a large new activity that is, in fact, underway at the present, namely, MISSION TO THE PLANET EARTH. Mission requirements will be described in a hierarchical order. It will be shown that materials technology, in one form or another, is an identified critical technology for every single aspect of the mission. Other critical aspects exist, primarily in the areas of data processing and data management. International cooperation in aerospace-materials activities will be described. (author)

  15. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the...

  16. Technology Applications Team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  17. Aerospace Technology Innovation. Volume 9

    Science.gov (United States)

    Turner, Janelle (Editor); Cousins, Liz (Editor)

    2001-01-01

    Commercializing technology is a daunting task. Of every 11 new product ideas, only one will successfully make it to the marketplace. Fully 46% of new product investment becomes sunk in cost. Yet, a few good companies consistently attain an 80% technology commercialization success rate and have lead the way in establishing best practices. The NASA Incubator program consists of nine incubators, each residing near a NASA research center. The purpose of the incubators is to use the best practices is to use the best practices of technology commercialization to help early stage businesses successfully launch new products that incorporate NASA technology.

  18. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  19. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Science.gov (United States)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  20. Integrated aerospace technologies in precision agriculture support

    International Nuclear Information System (INIS)

    Borfecchia, F.; De Cecco, L.; Martini, S.; Giordano, L.; Trotta, C.; Masci, D.; Di Gioia, V.; Pignatelli, V.; Micheli, C.; Moreno, A.; Taraglio, S.; Nanni, V.; Moriconi, Cl.; Mancini, S.; Pizzuti, A.; Picciucco, P.

    2015-01-01

    In a scenery where agriculture plays a more and more 'decisive and strategic role, the spread, in that sector, of aerospace and advanced robotic technology, more and more' accessible, meets the needs of basing decisions on integrated information, not only for increase production, but also to ensure food quality 'to the world population, minimizing the environmental impacts and climatic problems, and enhancing biodiversity'. [it

  1. Aerospace Communications Security Technologies Demonstrated

    Science.gov (United States)

    Griner, James H.; Martzaklis, Konstantinos S.

    2003-01-01

    In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to

  2. Automation technology for aerospace power management

    Science.gov (United States)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  3. NASA-UVa light aerospace alloy and structures technology program

    Science.gov (United States)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  4. Advances in control system technology for aerospace applications

    CERN Document Server

    2016-01-01

    This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

  5. Commercialization of terrestrial applications of aerospace power technology

    International Nuclear Information System (INIS)

    Landsberg, D.R.

    1992-01-01

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  6. Supporting the industrialisation of aerospace technologies

    CSIR Research Space (South Africa)

    Botha, M

    2015-10-01

    Full Text Available rates do not offer a competitive advantage; an insufficient skills pipeline; loss of skills; and risk of exclusion from secondary markets, due to rising aerospace emerging market economies. The Aerospace Industry Support Initiative (AISI) is a Department...

  7. Aerospace Technologies and Applications for Dual Use

    DEFF Research Database (Denmark)

    Events which occurred over the past years have shown how the threat related to both intentional and natural disasters could bring the civil and the miliary worlds closer in the conception and deployment of countermeasures, as well as in the identification of effective strategies for enhancing...... the Planet safety and security. In this frame, the concept of dual use - the set of technologies and applications that can be exploied for both civil and military purposes - becomes a key-topic. In addition, the aerospace is a strategic building block in the deployment of a network centric environment...... that aims at the global protection of the mankind. Aeropsace is also a natural environment for dual use: many of the related enabling technologies have been first developed for the military world and then applied to civil - including commercial - purposes....

  8. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  9. Aerospace Technology Curriculum Guide. Invest in Success. Vo. Ed. #260.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This document contains standards for an articulated secondary and postsecondary curriculum in aerospace technology. The curriculum standards can be used to ensure that vocational programs meet the needs of local business and industry. The first part of the document contains a task list and student performance standards for the aerospace technology…

  10. A review of multifunctional structure technology for aerospace applications

    Science.gov (United States)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  11. Applications of aerospace technology to petroleum extraction and reservoir engineering

    Science.gov (United States)

    Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.; hide

    1977-01-01

    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.

  12. Aerospace Environmental Technology Conference: Exectutive summary

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  13. Engineering in the 21st century. [aerospace technology prospects

    Science.gov (United States)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  15. Practical Education of Aerospace Field in Muroran Institute of Technology

    Science.gov (United States)

    Tanatsugu, Nobuhiro

    Engineering study in the field of aerospace is an effective way to enhance the student motivation. The young students can be attracted by the research and development aiming at returning its results to the public society. The Muroran Institute of Technology is carrying out the practical education in the field of real research and development by the Aerospace Research Center. The projects of the center is being performed well in cooperation with the national research organization and the private companies and thereby the students have the good opportunity to find the actual situation of the real world.

  16. Nanomaterials and future aerospace technologies: opportunities and challenges

    Science.gov (United States)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  17. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  18. Aerospace Communications Technologies in Support of NASA Mission

    Science.gov (United States)

    Miranda, Felix A.

    2016-01-01

    NASA is endeavoring in expanding communications capabilities to enable and enhance robotic and human exploration of space and to advance aero communications here on Earth. This presentation will discuss some of the research and technology development work being performed at the NASA Glenn Research Center in aerospace communications in support of NASAs mission. An overview of the work conducted in-house and in collaboration with academia, industry, and other government agencies (OGA) to advance radio frequency (RF) and optical communications technologies in the areas of antennas, ultra-sensitive receivers, power amplifiers, among others, will be presented. In addition, the role of these and other related RF and optical communications technologies in enabling the NASA next generation aerospace communications architecture will be also discussed.

  19. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  20. Fuels and Combustion Technologies for Aerospace Propulsion

    Science.gov (United States)

    2016-09-01

    technology, it has been extensively investigated since the late 1980s. Mudawar and (1) Cader, T.; Westra, L. J.; Eden, R. C. IEEE Trans. Device Mater...of this research will be useful for (11) Mudawar , I.; Estes, K. A. J. Heat Transfer 1996, 118, 672–679. (12) Horacek, B.; Kiger, K. T.; Kim, J. Int. J...Lunkad, S. F.; Buwa, V. V.; Nigam, K. D. P. Chem. Eng. Sci. 2007, 62, 7214–7224. (18) Bernardin, J. D.; Stebbins, C. J.; Mudawar , I. Int. J. Heat

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 26: The relationship between technology policy and scientific and technical information within the US and Japanese aerospace industries

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  2. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to the pressure difference of hydrostatic gas on both sides of the sheet. Since the loading medium is gas pressure difference, this forming is different from conventional sheet metal forming technique in that this is stress-controlled rather than strain and strain rate controlled. This method is especially advantageous when several sheet metals are formed into complex shapes. In this study, it is demonstrated that superplastic forming process with titanium and steel alloy can be applied to manufacturing lightweight integral structures of aerospace structural parts and rocket propulsion components. The result shows that the technology to design and develop the forming process of superplastic forming can be applied for near net shape forming of a complex contour of a thrust chamber and a toroidal fuel tank.

  3. NASA Technology Applications Team: Commercial applications of aerospace technology

    Science.gov (United States)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  4. NASA technology applications team: Applications of aerospace technology

    Science.gov (United States)

    1993-01-01

    This report covers the activities of the Research Triangle Institute (RTI) Technology Applications Team for the period 1 October 1992 through 30 September 1993. The work reported herein was supported by the National Aeronautics and Space Administration (NASA), Contract No. NASW-4367. Highlights of the RTI Applications Team activities over the past year are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. Appendix B includes Technology Opportunity Announcements and Spinoff! Sheets prepared by the Team while Appendix C contains a series of technology transfer articles prepared by the Team.

  5. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  6. NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)

    Science.gov (United States)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1992-01-01

    The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  7. Application verification research of cloud computing technology in the field of real time aerospace experiment

    Science.gov (United States)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  8. Face Gear Technology for Aerospace Power Transmission Progresses

    Science.gov (United States)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 33: Technical communications practices and the use of information technologies as reported by Dutch and US aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA ARC (U.S.), and NASA LaRC (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions concerning four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  10. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  11. Aerospace Technology: Technical Data and Information on Foreign Test Facilities

    Science.gov (United States)

    1990-06-22

    referred to in English as the German Aerospace Research Establishment. Foreign acronyms and names with their translations are included in the list of...Unique Characteristics: None Applications/Current Programs: In 1963, the first in a long series of nozzle tests were conducted for SNECMA’s ATAR 9C and...HP compressor RB- 199, IP compressor RB- 199, transonic compressor (single-stage), transonic compressor (six-stage), and ATAR compressor. Turbine

  12. Aerospace Transparency Research Compendium

    National Research Council Canada - National Science Library

    Pinkus, Alan

    2003-01-01

    ... (ARRL), located at Wright-Patterson AFB OH, has advanced aerospace transparency technology through the investigative research of numerous optical and visual parameters inherent in aerospace transparencies...

  13. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXVI - The relationship between technology policy and scientific and technical information within the U.S. and Japanese aerospace industries

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Lahr, Tom; Hoetker, Glenn

    1993-01-01

    Government technology policy has nurtured the growth of the aerospace industry, which is vital to both the U.S. and Japanese economies. Japanese technology policy differs significantly from U.S. technology policy, however, particularly with respect to the production, transfer, and use of scientific and technical information (STI). In this paper, we discuss the unique position of the aerospace industry in the U.S. and Japan, U.S. and Japanese aerospace policy, and the role of STI in the process of aerospace innovation. The information-seeking behaviors of U.S. and Japanese aerospace engineers and scientists are compared. The authors advocate the development of innovation-adoption technology and STI policy goals for U.S. aerospace and the inclusion of an aerospace knowledge diffusion transfer system with an 'active' component for scanning and acquiring foreign aerospace technology and STI.

  14. Aerospace technology transfer to the public sector; Proceedings of the Conference, Crystal City, Va., November 9-11, 1977

    Science.gov (United States)

    Grey, J. (Editor); Newman, M.

    1978-01-01

    The dynamics of aerospace technology transfer is discussed with reference to the agencies which facilitate the transfer to both the public and private sectors. Attention is given to NASA's Technology Utilization Program, and to specific applications of aerospace technology spinoff in the daily life of Americans.

  15. Research and Application of Virtual Simulation Technology in the Aerospace Bearing Design and Manufacture

    Directory of Open Access Journals (Sweden)

    Jiangshan Liu

    2018-01-01

    Full Text Available Bearings are widely used in aerospace and other fields, its performance directly affects the production efficiency and safety. Nowadays, virtual simulation technology has become an indispensable part of intelligent manufacturing field. As a virtual simulation technology, FEA has been widely used in bearing design. China needs to import many aerospace bearings every year in aerospace area, Chinese national defense and other high precision technology is limited because the blockade of advanced bearing technology. We can use dynamics modeling and virtual simulation technology to achieve the predictive design, and strive to achieve foreign level. In this paper, the author proposed a method of bearing design based on virtual simulation technology. The factors of bearing which affect the dynamic characteristics are considered, the process of design bearing based on virtual simulation is also considered. According to the different design parameters, the simulation results are used to verify the rationality, these can reduce the cost and improve the reliability. The virtual simulation technology is applied to design the 7016C angular contact ball bearing which used in aerospace area, and supported decision-making in structure design and data analyze. Finally, The feasibility of this method is verified by experiments..

  16. Advanced Learning Technologies and Learning Networks and Their Impact on Future Aerospace Workforce

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    This document contains the proceedings of the training workshop on Advanced Learning Technologies and Learning Networks and their impact on Future Aerospace Workforce. The workshop was held at the Peninsula Workforce Development Center, Hampton, Virginia, April 2 3, 2003. The workshop was jointly sponsored by Old Dominion University and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to: 1) provide broad overviews of the diverse activities related to advanced learning technologies and learning environments, and 2) identify future directions for research that have high potential for aerospace workforce development. Eighteen half-hour overviewtype presentations were made at the workshop.

  17. Activities of the NASA sponsored SRI technology applications team in transferring aerospace technology to the public sector

    Science.gov (United States)

    Berke, J. G.

    1971-01-01

    The organization and functions of an interdisciplinary team for the application of aerospace generated technology to the solution of discrete technological problems within the public sector are presented. The interdisciplinary group formed at Stanford Research Institute, California is discussed. The functions of the group are to develop and conduct a program not only optimizing the match between public sector technological problems in criminalistics, transportation, and the postal services and potential solutions found in the aerospace data base, but ensuring that appropriate solutions are acutally utilized. The work accomplished during the period from July 1, 1970 to June 30, 1971 is reported.

  18. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  19. Information Technology and Aerospace Knowledge Diffusion: Exploring the Intermediary-End User Interface in a Policy Framework.

    Science.gov (United States)

    Pinelli, Thomas E.; And Others

    1992-01-01

    Discusses U.S. technology policy and the transfer of scientific and technical information (STI). Results of a study of knowledge diffusion in the aerospace industry are reported, including data on aerospace information intermediaries, use of computer and information technologies, and the use of NASA (National Aeronautics and Space Administration)…

  20. NASA 20th Century Explorer . . . Into the Sea of Space. A Guide to Careers in Aero-Space Technology.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet lists career opportunities in aerospace technology announced by the Boards of the U. S. Civil Service for the National Aeronautics and Space Administration (NASA). Information given includes (1) the work of the NASA, (2) technical and administrative specialties in aerospace technology, (3) educational and experience requirements, and…

  1. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  2. Aerospace Oil and Gas: Technologies for New Horizons

    Science.gov (United States)

    Interbartolo, Michael A.

    2014-01-01

    Innovative partnerships will enable NASA to achieve more of its technological goals with less resources Cooperative development with other industries will expand the scope of advanced technologies that will be available to future missions.

  3. Applications of aerospace technology in the public sector

    Science.gov (United States)

    Anuskiewicz, T.; Johnston, J.; Zimmerman, R. R.

    1971-01-01

    Current activities of the program to accelerate specific applications of space related technology in major public sector problem areas are summarized for the period 1 June 1971 through 30 November 1971. An overview of NASA technology, technology applications, and supporting activities are presented. Specific technology applications in biomedicine are reported including cancer detection, treatment and research; cardiovascular diseases, diagnosis, and treatment; medical instrumentation; kidney function disorders, treatment, and research; and rehabilitation medicine.

  4. Accomplishments in free-piston stirling tests at NASA GRC

    Science.gov (United States)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  5. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    Science.gov (United States)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  6. The broad view of nuclear technology for aerospace

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions

  7. X-ray inspection in the aerospace industry - state of the art, challenges, and emerging technologies

    International Nuclear Information System (INIS)

    Mohr, G.A.; Fock, T.

    2004-01-01

    The desire to non-destructively determine the quality and integrity of materials and structures has a long history in the aerospace industry. Through the entire life cycle of aircraft products and components, X-ray inspection technologies play a major role with continuously increasing demand. The requirements for X-ray inspections are continuing to be driven by the need of lower cost methods and solutions with greater reliability, sensitivity, user friendliness and high operation speed as well as applicability of new materials and structures. The presentation will summarize the status of radiographic and radioscopic X-ray inspection technologies in the aerospace industry while showing how X-ray inspection solutions respond to these requirements. Furthermore emerging inspection challenges will be identified and emerging X-ray inspection technologies will be reviewed. (author)

  8. EXPLOSIVE FORMING – ECONOMICAL TECHNOLOGY FOR AEROSPACE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Niculae MARIN

    2010-12-01

    Full Text Available The explosive forming represents a technological alternative for obtaining small-lot parts,with inexpensive and efficient manufacturing preparation. The explosive forming processing methodspresent a series of important advantages, being recommended for the wide-scale application in theaerospace industry. The economic benefit varies from case to case, independent from the part type,manufacturing series and user.

  9. EXPLOSIVE FORMING – ECONOMICAL TECHNOLOGY FOR AEROSPACE STRUCTURES

    OpenAIRE

    Niculae MARIN; Victor GHIZDAVU

    2010-01-01

    The explosive forming represents a technological alternative for obtaining small-lot parts,with inexpensive and efficient manufacturing preparation. The explosive forming processing methodspresent a series of important advantages, being recommended for the wide-scale application in theaerospace industry. The economic benefit varies from case to case, independent from the part type,manufacturing series and user.

  10. integrated aerospace technologies in support of precision agriculture

    International Nuclear Information System (INIS)

    Borfecchia, Flavio; De Cecco, Luigi; Martini, Sandro

    2015-01-01

    In a scenario where agriculture plays a role increasingly important and strategic, dissemination, in this field, these space technologies and advanced robotic, more and more accessible, responds We need to base decisions on information integrated, not only to increase the production, but also to ensure quality food to the people World, minimizing environmental impacts and climate, and enhancing biodiversity. In this context, applications based on these technologies are proving increasingly central role in tackling the challenges of productivity increase in agriculture required by the global market, with a view Environmental sustainability also focused on diffusion of green economy and circular, in which refer some of the experimental applications and on April conducted in ENEA. [it

  11. Making aerospace technology work for the automotive industry, introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  12. Applications of aerospace technology in industry. A technology transfer profile: Food technology

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    Food processing and preservation technologies are reviewed, expected technological advances are considered including processing and market factors. NASA contributions to food technology and nutrition are presented with examples of transfer from NASA to industry.

  13. Innovations, technology and efficiency shaping the aerospace environment

    Directory of Open Access Journals (Sweden)

    Maria MRAZOVA

    2013-06-01

    Full Text Available A major goal for the aviation community is reducing fuel consumption. Nowadays we can see so much effort to design a modern aircrafts that offer weight and low fuel burn savings. This study could help to understand the long way during the production of the next generation aircraft such as Airbus A350 which shows us many advantages in fuel economy. In the first part of this study the author describes the history of fuel efficiency from its beginning. The wing design and aircraft’s engines are introduced in the second part of the thesis. The importance of ways to reduce aircraft’s weights and fuel economy is the main goal for Airbus and this issue is the irreplaceable part of the last chapter of this study. It shows a great visions and practical experience in improving aircraft performance and reducing maintenance expenses. The composites materials and new technologies help to achieve significant weight and fuel reduction and experiments are taking place today to show that this is the right step ahead. It is too early to say which of many researching ways will lead to viable solutions, but the air transport industry is committed to support advanced technological innovations. Anyway, technologies are constantly being deployed and researched by the aviation industry to continuously increase performance.

  14. Auditing and GRC automation in SAP

    CERN Document Server

    Chuprunov, Maxim

    2013-01-01

    Going beyond current literature, this book extends internal controls to efficiency and profitability. Offers an audit guide for an SAP ERP system, covers risks and control descriptions, and shows how to automate compliance management based on SAP GRC.

  15. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    Science.gov (United States)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  16. Quality and productivity drive innovation and improvement at United Technologies Aerospace Operations, Inc.

    Science.gov (United States)

    Jamar, L. G.

    1986-01-01

    Quality and innovation are the hallmarks of the national space program. In programs that preceded the Shuttle Program the emphasis was on meeting the risks and technical challenges of space with safety, quality, reliability, and success. At United Technologies Aerospace Operations, Inc. (UTAO), the battle has developed along four primary fronts. These fronts include programs to motivate and reward people, development and construction of optimized processes and facilities, implementation of specifically tailored management systems, and the application of appropriate measurement and control systems. Each of these initiatives is described. However, to put this quality and productivity program in perspective, UTAO and its role in the Shuttle Program are described first.

  17. Recent advances in AM OLED technologies for application to aerospace and military systems

    Science.gov (United States)

    Sarma, Kalluri R.; Roush, Jerry; Chanley, Charles

    2012-06-01

    While initial AM OLED products have been introduced in the market about a decade ago, truly successful commercialization of OLEDs has started only a couple of years ago, by Samsung Mobile Display (SMD), with small high performance displays for smart phone applications. This success by Samsung has catalyzed significant interest in AM OLED technology advancement and commercialization by other display manufacturers. Currently, significant manufacturing capacity for AM OLED displays is being established by the industry to serve the growing demand for these displays. The current development in the AM OLED industry are now focused on the development and commercialization of medium size (~10") AM OLED panels for Tablet PC applications and large size (~55") panels for TV applications. This significant progress in commercialization of AM OLED technology is enabled by major advances in various enabling technologies that include TFT backplanes, OLED materials and device structures and manufacturing know-how. In this paper we will discuss these recent advances, particularly as they relate to supporting high performance applications such as aerospace and military systems, and then discuss the results of the OLED testing for aerospace applications.

  18. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    Science.gov (United States)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  19. Integration of educational and scientific-technological areas during the process of education of aerospace engineers

    Science.gov (United States)

    Mayorova, Vera

    2011-09-01

    National priorities, defined by modern state of high-tech industries, demand adequate problem solving of training professionals possessing required modern qualifications. Modern tendencies of the development of aerospace technologies, harsh competition in the market of space services and expansion of international cooperation for implementation of space projects, demand sharp increase of the scientific/technical level and competitiveness of the developed projects. Especially important is to be able to solve technological problems, which in turn define the cost and quality attributes of the designed item, as well as the ability to utilize the most modern design principles. Training of highly efficient, creative professionals who are capable of generating and implementing new ideas is a very important factor driving not only the development of national economy and industry, but also enriching the human capital of the country. Moscow State Technical University named after N.E. Bauman developed and successfully implemented the project-oriented technology of professional training for aerospace industry. It assumes a multitude of forms, methodologies and organizational events, which allow preparing the specialists - on the basis of integration of scientific/technological and educational environment - who are adapted to the conditions of the intellectual market. The Youth Space Center of the University is the base where graduate and post-graduate students attend unique lectures as a part of the facultative course "Applied Cosmonautics", participate in annual International Youth Science School "Space Development: Theory and Practice" and develop innovative technical projects aimed at creation of real-life space hardware. Microsatellite technologies are being developed in Bauman University through various projects, which are implemented in a coordinated manner by way of accomplishing the following steps: development of small-size satellites by universities, using them as

  20. Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle

    Science.gov (United States)

    2015-08-03

    AND SUBTITLE Mobile STEMship Discovery Center: K-12 Aerospace-Based Science, Technology, Engineering, and Mathematics (STEM) Mobile Teaching Vehicle...Center program to be able to expose Science Technology, Engineering and Mathematics (STEM) space-inspired science centers for DC Metro beltway schools

  1. Advanced Stirling Convertor Testing at GRC

    Science.gov (United States)

    Schifer, Nick; Oriti, Salvatore M.

    2013-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). The latest version of the ASC, deemed ASC-E3, is of a design identical to the forthcoming flight convertors. The first pair of ASC-E3 units was delivered in December 2012. GRC has begun the process of adding these units to the catalog of ongoing Stirling convertor operation. This process includes performance verification, which examines the data from various tests to validate the convertors performance to the product specification.

  2. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Science.gov (United States)

    Gangloff, Richard P.; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.

  3. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  4. 75 FR 10694 - Airworthiness Directives; AeroSpace Technologies of Australia Pty Ltd Models N22B, N22S, and N24A...

    Science.gov (United States)

    2010-03-09

    ... Airworthiness Directives; AeroSpace Technologies of Australia Pty Ltd Models N22B, N22S, and N24A Airplanes... authority for Australia, has issued AD GAF-N22-52, Amendment 1, dated January 2010 (referred to after this... examining the MCAI in the AD docket. Relevant Service Information AeroSpace Technologies of Australia...

  5. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    Science.gov (United States)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  6. Aviation Technology Life Cycle Management: Importance for Aviation Companies, Aerospace Industry Organizations and Relevant Stakeholders

    Directory of Open Access Journals (Sweden)

    Stanislav Szabo

    2017-04-01

    Full Text Available The paper in the introductory part underlines some aspects concerning the importance of Aviation Technology Life Cycle Management and informs on basic international standards for the processes and stages of life cycle. The second part is focused on definition and main objectives of system life cycle management. The authors subsequently inform on system life cycle stages (in general and system life cycle processes according to ISO/IEC/IEEE 15288:2015 standard. Following the fact, that life cycle cost (LCC is inseparable part and has direct connection to the life cycle management, the paper contains brief information regarding to LCC (cost categories, cost breakdown structure, cost estimation a.o.. Recently was issued the first part of Aviation Technology Life Cycle Management monograph (in Slovak: ”Manažment životného cyklu leteckej techniky I”, written by I.Koblen and S.Szabo. Following this fact and direct relation to the topic of article it is a part of article briefly introduced the content of two parts of this monograph (the 2nd part of monograph it has been prepared for the print. The last part of article is focused on issue concerning main assumptions and conditions for successful application of aviation technology life cycle management in aviation companies, aerospace industry organizations as well as from the relevant stakeholders side.

  7. Innovative Education and Science in Information Technologies: Experience of M.Ye. Zhukovsky National Aerospace University «KhAI»

    Directory of Open Access Journals (Sweden)

    Kryvtsov, V.S.

    2015-05-01

    Full Text Available Information technologies are among the most promising and fastest growing sectors in the world and Ukrainian industry. In the paper the authors share the experience of National Aerospace University «KhAI» in personnel education and training for the IT industry and the results of successful cooperation with IT companies. Innovative education programs, scientific and practical researches in information technologies, which are implementing in KhAI are also discussed.

  8. Performance and technological feasibility of rocket powered HTHL-SSTO with take-off assist (aerospace plane/ekranoplane)

    Science.gov (United States)

    Tomita, Nobuyuki; Nebylov, Alexander V.; Sokolov, Victor V.; Ohkami, Yoshiaki

    It might be said that it is common understanding that rocket-powered single stage to orbit (SSTO) aerospace planes will become feasible with near-term technology as described in [1] (Koelle, D. E. Survey and comparison of winged launch vehicle options, ISTS 94-g-11 V 1994) and [2] (Bekey, I. Why SSTO rocket launch vehicles are now feasible and practical, IAF-94-V.1.524 1994). Among two methods of launching aerospace planes into orbit, vertical take-off (VT) and horizontal take-off (HT), it seems that VT takes the lead from HT [1, 2]. The decision for the X-33 program by NASA, also, seems to favor VT. In retrospect, almost all of the launch vehicles in the past have been VT, mainly because VT solved the problem of exit from atmosphere to space. However, broadening the range of requirements for space transportation systems from military to commercial and unmanned to manned seems to favor the need for HT. In this paper, the authors are going to prove that aerospace plane/ekranoplane system, which is a reusable launch vehicle system based on the HT concept, with ekranoplane as a take-off and possibly, landing assist, could be competitive with the VT concept from both technological and economical view points. Ekranoplane is a wing-in-ground-effect craft (WIG), which moves at a speed of approximately 0.5 M, carrying heavy loads above the sea surface. Combination of high initial velocity and high performance tri-propellant engine for aerospace plane makes it possible to configure an aerospace plane which is competitive with VT. Other specific features of HT in comparison with VT are discussed.

  9. Renewable Energy: Solar Fuels GRC and GRS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan [California Inst. of Technology (CalTech), Pasadena, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2010-02-26

    sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

  10. 2017 Laser Diagnostics in Combustion GRC/GRS

    Science.gov (United States)

    2017-10-06

    scientists and engineers . The goal of GRC was to bring together scientists and engineers with a strong interest in laser-based combustion diagnostics to...processes. The GRS, held the weekend before the GRC, was organized to bring together emerging leaders in the field at an early stage in their careers ...coupled multi-scale combustion processes. The GRC on Laser Diagnostics in Combustion was designed to bring together scientists and engineers working at

  11. Turbine Seal Research at NASA GRC

    Science.gov (United States)

    Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.

    2011-01-01

    Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.

  12. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    Science.gov (United States)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  13. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    Science.gov (United States)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  14. Study of Delft aerospace alumni

    NARCIS (Netherlands)

    Smits, G.N.

    2008-01-01

    This thesis reports on an alumni study of the Faculty Aerospace Engineering at Delft University of Technology to discover what the impact is of the degree in aerospace engineering on an alumnus' professional success and comment on what are important qualities for aerospace engineers to have in order

  15. Aerospace Plane Technology: Research and Development Efforts in Japan and Australia

    Science.gov (United States)

    1991-10-01

    However, only with the develop- Aerospace Planes ment of better test facility instruments and more trained personnel, together with the renovation and...necessary. Such a rocket booster (the H-IID) would be one of the largest launchers in the world after the Soviet Energia booster and U.S. Titan IV launch

  16. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  17. ScienceScope: Aerospace

    CSIR Research Space (South Africa)

    CSIR

    2006-12-01

    Full Text Available In this edition of ScienceScope, innovations in and around aerodynamics research and development is explored. The publication explores activities in environmentally friendly aerospace technologies to enhance the aviation industry....

  18. Aerospace Medicine

    Science.gov (United States)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  19. Analysis of Light Emitting Diode Technology for Aerospace Suitability in Human Space Flight Applications

    Science.gov (United States)

    Treichel, Todd H.

    Commercial space designers are required to manage space flight designs in accordance with parts selections made from qualified parts listings approved by Department of Defense and NASA agencies for reliability and safety. The research problem was a government and private aerospace industry problem involving how LEDs cannot replace existing fluorescent lighting in manned space flight vehicles until such technology meets DOD and NASA requirements for reliability and safety, and effects on astronaut cognition and health. The purpose of this quantitative experimental study was to determine to what extent commercial LEDs can suitably meet NASA requirements for manufacturer reliability, color reliability, robustness to environmental test requirements, and degradation effects from operational power, while providing comfortable ambient light free of eyestrain to astronauts in lieu of current fluorescent lighting. A fractional factorial experiment tested white and blue LEDs for NASA required space flight environmental stress testing and applied operating current. The second phase of the study used a randomized block design, to test human factor effects of LEDs and a qualified ISS fluorescent for retinal fatigue and eye strain. Eighteen human subjects were recruited from university student members of the American Institute of Aeronautics and Astronautics. Findings for Phase 1 testing showed that commercial LEDs met all DOD and NASA requirements for manufacturer reliability, color reliability, robustness to environmental requirements, and degradation effects from operational power. Findings showed statistical significance for LED color and operational power variables but degraded light output levels did not fall below the industry recognized <70%. Findings from Phase 2 human factors testing showed no statistically significant evidence that the NASA approved ISS fluorescent lights or blue or white LEDs caused fatigue, eye strain and/or headache, when study participants perform

  20. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    Science.gov (United States)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  1. Reliability of objects in aerospace technologies and beyond: Holistic risk management approach

    Science.gov (United States)

    Shai, Yair; Ingman, D.; Suhir, E.

    Species” of military aircraft, commercial aircraft and private cars have been chosen in our analysis as illustrations of the fruitfulness of the “ holistic” approach. The obtained data show that both commercial “ species” exhibit similar “ survival dynamics” in compare with those of the military species of aircraft: lifetime distributions were found to be Weibull distributions for all “ species” however for commercial vehicles, the shape parameters were a little higher than 2, and scale parameters were 19.8 years (aircraft) and 21.7 (cars) whereas for military aircraft, the shape parameters were much higher and the mean time to failure much longer. The difference between the lifetime characteristics of the “ species” can be attributed to the differences in the social, operational, economic and safety-and-reliability requirements and constraints. The obtained information can be used to make tentative predictions for the most likely trends in the given field of vehicular technology. The following major conclusions can be drawn from our analysis: 1) The suggested concept based on the use of HLPFs reflects the current state and the general perceptions in the given field of engineering, including aerospace technologies, and allows for all the inherent and induced factors to be taken into account: any type of failures, usage profiles, economic factors, environmental conditions, etc. The concept requires only very general input data for the entire population. There is no need for the less available information about individual articles. 2) Failure modes are not restricted to the physical type of failures and include economic, cultural or social effects. All possible causes, which might lead to making a decision to terminate the use of a particular type

  2. Application of Chemistry in Materials Research at NASA GRC

    Science.gov (United States)

    Kavandi, Janet L.

    2016-01-01

    Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.

  3. Technological Innovation and Technical Communications: Their Place in Aerospace Engineering Curricula. A Survey of European, Japanese and US Aerospace Engineers and Scientists.

    Science.gov (United States)

    Pinelli, Thomas E.; And Others

    1991-01-01

    Reports on results from 260 aerospace engineers and scientists in United States, Europe, and Japan regarding their opinions about professional importance of technical communications; generation and utilization of technical communications; and relevant content of an undergraduate course in technical communications. The fields of cryogenics,…

  4. Langley Research Highlights 1999: Advanced Aerospace Technology Clouds That Help Create the Ozone Hole Capturing Comet Dust

    Science.gov (United States)

    2000-01-01

    This report contains highlights of some of the major accomplishments and applications made by NASA Langley Research Center and its university partners and industry colleagues during 1999. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. The Center's historic national role since 1917 continues in Aerospace Technology research with an additional major role in Earth Science research. Langley also partners closely with other NASA Centers and the Jet Propulsion Laboratory in Space Science and the Human Exploration and Development of Space. A color version is available at http://larcpubs.larc.nasa.gov/randt/1999/. For further information, contact Dennis Bushnell, Senior Scientist, Mail Stop 110, NASA Langley Research Center, Hampton, Virginia 23681-2199, (757)-864-8987, e-mail address: d.m.bushnell@larc.nasa.gov.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  6. MAVEN Information Security Governance, Risk Management, and Compliance (GRC): Lessons Learned

    Science.gov (United States)

    Takamura, Eduardo; Gomez-Rosa, Carlos A.; Mangum, Kevin; Wasiak, Fran

    2014-01-01

    As the first interplanetary mission managed by the NASA Goddard Space Flight Center, the Mars Atmosphere and Volatile EvolutioN (MAVEN) had three IT security goals for its ground system: COMPLIANCE, (IT) RISK REDUCTION, and COST REDUCTION. In a multiorganizational environment in which government, industry and academia work together in support of the ground system and mission operations, information security governance, risk management, and compliance (GRC) becomes a challenge as each component of the ground system has and follows its own set of IT security requirements. These requirements are not necessarily the same or even similar to each other's, making the auditing of the ground system security a challenging feat. A combination of standards-based information security management based on the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF), due diligence by the Mission's leadership, and effective collaboration among all elements of the ground system enabled MAVEN to successfully meet NASA's requirements for IT security, and therefore meet Federal Information Security Management Act (FISMA) mandate on the Agency. Throughout the implementation of GRC on MAVEN during the early stages of the mission development, the Project faced many challenges some of which have been identified in this paper. The purpose of this paper is to document these challenges, and provide a brief analysis of the lessons MAVEN learned. The historical information documented herein, derived from an internal pre-launch lessons learned analysis, can be used by current and future missions and organizations implementing and auditing GRC.

  7. H.E. Professor Wang Liheng, Minister of Aviation of the People's Republic of China, President, China Aerospace Science & Technology Corporation

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    H. E. Professor Wang Liheng, Minister of Aviation, and President, China Aerospace Science & Technology Corporation, People's Republic of China (2nd from left) with (from left to right) Professor Hans Hofer, Professor Roger Cashmore, Research Director for Collider Programmes, Professor Samuel C. C. Ting, CERN and Professor Lei Gang, Secretary to the Minister, September 2001.

  8. Micro-Electromechanical-Systems (MEMS) technologies for aerospace applications in Canada

    International Nuclear Information System (INIS)

    Pimprikar, M.

    2001-01-01

    During the last decade, research and development of Micro-Electro-Mechanical Systems (MEMS) have shown significant promise for a variety of aerospace applications. The advantages of drastic size and weight reduction of MEMS enables consideration of developing low-cost, high-performance, ultra-portable, MEMS-based devices and systems for aircraft, space and defense requirements. 'Microelectromechanical Systems, or MEMS', are integrated microdevices or systems combining electrical and mechanical components, fabricated using integrated circuit compatible batch-processing techniques, and varying in size from micrometers to millimeters. In the 1990's, MEMS were used as laboratory curiosities with very low power, short lifetimes and few concrete applications. One decade later, MEMS have taken major roles in several industries, the total world market is expected to grow from $14 billion to over $40 billion by the year 2002. A typical device contains micromechanical structures that move by flexing (membranes, cantilevers, springs) and MEMS/MOEMS level where the integration of microelectronics, micromechanics and optics form a complete system (sensor, actuator, photonic device). (author)

  9. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  10. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  11. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  12. An Annotated Bibliography of Hypobaric Decompression Sickness Research Conducted at the Crew Technology Division, USAF School of Aerospace Medicine, Brooks AFB, Texas from 1983 to 1988

    Science.gov (United States)

    1990-06-01

    AN ANNOTATED BIBLIOGRAPHY OF HYPOBARIC DECOMPRESSION SICKNESS RESEARCH CONDUCTED AT THE CREW TECHNOLOGY DIVISION, USAF SCHOOL OF AEROSPACE MEDICINE...190 man-flights to four selected altitudes (30000, 27500, 25000, and 22500 ft pressure equivalent) in a hypobaric chamber. The subjects’ ages ranged...conditions and two of these developed delayed sy~rtcms. Three of these five subjects underwent hyperbaric oxygen treatment. Conclusion. Female subjects

  13. Transference of advanced LMFBR control technology to the aerospace power system program

    International Nuclear Information System (INIS)

    Chisholm, G.H.

    1984-01-01

    Much recent R and D has been devoted to the safety of liquid metal fast breeder reactors (LMFBR's). Part of the resulting technology, especially advanced control systems, appears to be directly transferable to the space nuclear power program. Some of the ideas described herein have been already culminated in successful products that are available for application, e.g. analytical redundancy and fault-tolerant computers. Others, in various stages of R and D, are being developed as elements to support the design goals outlined in the following section, e.g. automated software verification, automated hardware verification, and system validation

  14. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  15. Aplicaciones del GRC en España y Argelia

    Directory of Open Access Journals (Sweden)

    Rodríguez Santiago, Jesús

    1986-09-01

    Full Text Available Not Available.Este artículo resume la experiencia obtenida en la utilización del mortero de cemento reforzado con fibra de vidrio (GRC en el campo de la construcción. Se describen en primer lugar las características del material y el proceso de fabricación en factoría de paneles de GRC. Se exponen a continuación algunas realizaciones llevadas a cabo con este material destacando, por su volumen y rapidez de ejecución, el conjunto de fachadas para edificios de viviendas, hospitales y centros escolares construidos en Argelia. También se comentan otras aplicaciones del GRC para la rehabilitación y decoración interior de edificios y para la construcción de elementos singulares. Finalmente, en el apartado de las conclusiones se menciona la necesidad de seguir investigando en el comportamiento a largo plazo de este material para poder aumentar su utilización en la construcción.

  16. Green Aerospace Fuels from Nonpetroleum Sources

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; DeLaRee, Ana B.; Zubrin, Robert; Berggren, Mark; Hensel, Joseph D.; Kimble, Michael C.

    2011-01-01

    Efforts to produce green aerospace propellants from nonpetroleum sources are outlined. The paper begins with an overview of feedstock processing and relevant small molecule or C1 chemistry. Gas-to-liquid technologies, notably Fischer-Tropsch (FT) processing of synthesis gas (CO and H2), are being optimized to enhance the fraction of product stream relevant to aviation (and other transportation) fuels at the NASA Glenn Research Center (GRC). Efforts to produce optimized catalysts are described. Given the high cost of space launch, the recycling of human metabolic and plastic wastes to reduce the need to transport consumables to orbit to support the crew of a space station has long been recognized as a high priority. If the much larger costs of transporting consumables to the Moon or beyond are taken into account, the importance of developing waste recycling systems becomes still more imperative. One promising way to transform organic waste products into useful gases is steam reformation; this well-known technology is currently being optimized by a Colorado company for exploration and planetary surface operations. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs. A technology that has successfully demonstrated production of fuels and related chemicals from waste plastics developed in Northeast Ohio is described. Technologies being developed by a Massachusetts company to remove sulfur impurities are highlighted. Common issues and concerns for nonpetroleum fuel production are emphasized. Energy utilization is a concern for production of fuels whether a terrestrial operation or on the lunar (or Martian) surface; the term green relates to not only mitigating excess carbon release but also to the efficiency of grid-energy usage. For space exploration, energy efficiency can be an essential concern. Other issues of great concern include minimizing

  17. Aerospace dermatology

    Directory of Open Access Journals (Sweden)

    Sandeep Arora

    2017-01-01

    Full Text Available Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  18. Aerospace Dermatology.

    Science.gov (United States)

    Arora, Sandeep

    2017-01-01

    Evolutionarily, man is a terrestrial mammal, adapted to land. Aviation and now space/microgravity environment, hence, pose new challenges to our physiology. Exposure to these changes affects the human body in acute and chronic settings. Since skin reflects our mental and physical well-being, any change/side effects of this environment shall be detected on the skin. Aerospace industry offers a unique environment with a blend of all possible occupational disorders, encompassing all systems of the body, particularly the skin. Aerospace dermatologists in the near future shall be called upon for their expertise as we continue to push human physiological boundaries with faster and more powerful military aircraft and look to colonize space stations and other planets. Microgravity living shall push dermatology into its next big leap-space, the final frontier. This article discusses the physiological effects of this environment on skin, effect of common dermatoses in aerospace environment, effect of microgravity on skin, and occupational hazards of this industry.

  19. Aerospace Engineering Systems

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: Physics-based analysis tools for filling the design space database; Distributed computational resources to reduce response time and cost; Web-based technologies to relieve machine-dependence; and Artificial intelligence technologies to accelerate processes and reduce process variability. Activities such as the Advanced Design Technologies Testbed (ADTT) project at NASA Ames Research Center study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities will be reported.

  20. Aerospace gerontology

    Science.gov (United States)

    Comfort, A.

    1982-01-01

    The relevancy of gerontology and geriatrics to the discipline of aerospace medicine is examined. It is noted that since the shuttle program gives the facility to fly passengers, including specially qualified older persons, it is essential to examine response to acceleration, weightlessness, and re-entry over the whole adult lifespan, not only its second quartile. The physiological responses of the older person to weightlessness and the return to Earth gravity are reviewed. The importance of the use of the weightless environment to solve critical problems in the fields of fundamental gerontology and geriatrics is also stressed.

  1. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    Science.gov (United States)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  2. Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System

    Science.gov (United States)

    2016-08-01

    Rebounding Brake System by David Gray, Robert Kaste, and Bradley Lawrence Approved for public release; distribution is...Research Laboratory Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System by David Gray and...Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  3. Research on the Application of GRC Material in Exhibition Decoration Engineering

    Science.gov (United States)

    Cai, Yan

    2018-03-01

    Glass fiber reinforced cement (GRC) is a kind of new building material which is based on cement and take the alkali resistant glass fiber as reinforcing material. It is mainly used in building decoration project and it has many advantages like environmental protection, economical, practical modeling and others. This paper mainly studies the concrete application of GRC material in exhibition building decoration project.

  4. The relationship of document and quantitative literacy with learning styles and selected personal variables for aerospace technology students at Indiana State University

    Science.gov (United States)

    Martin, Royce Ann

    The purpose of this study was to determine the extent that student scores on a researcher-constructed quantitative and document literacy test, the Aviation Documents Delineator (ADD), were associated with (a) learning styles (imaginative, analytic, common sense, dynamic, and undetermined), as identified by the Learning Type Measure, (b) program curriculum (aerospace administration, professional pilot, both aerospace administration and professional pilot, other, or undeclared), (c) overall cumulative grade point average at Indiana State University, and (d) year in school (freshman, sophomore, junior, or senior). The Aviation Documents Delineator (ADD) was a three-part, 35 question survey that required students to interpret graphs, tables, and maps. Tasks assessed in the ADD included (a) locating, interpreting, and describing specific data displayed in the document, (b) determining data for a specified point on the table through interpolation, (c) comparing data for a string of variables representing one aspect of aircraft performance to another string of variables representing a different aspect of aircraft performance, (d) interpreting the documents to make decisions regarding emergency situations, and (e) performing single and/or sequential mathematical operations on a specified set of data. The Learning Type Measure (LTM) was a 15 item self-report survey developed by Bernice McCarthy (1995) to profile an individual's processing and perception tendencies in order to reveal different individual approaches to learning. The sample used in this study included 143 students enrolled in Aerospace Technology Department courses at Indiana State University in the fall of 1996. The ADD and the LTM were administered to each subject. Data collected in this investigation were analyzed using a stepwise multiple regression analysis technique. Results of the study revealed that the variables, year in school and GPA, were significant predictors of the criterion variables, document

  5. Aplicaciones del cemento reforzado con fibra de vidrio (GRC

    Directory of Open Access Journals (Sweden)

    Barros Llerena, Ángel

    1981-12-01

    Full Text Available Not available.

    El presente artículo tiene como objeto dar a conocer la utilización de fibras de vidrio como refuerzo de los cementos. Se da una breve reseña histórica, se mencionan sus características y comportamiento. Además se presenta un caso práctico y reciente de utilización en la fabricación de elementos de fachada del Estadio «Santiago Bernabéu» del Real Madrid C. de F., y se completa con una relación de los actuales y futuros usos del G.R.C. (glass reinforced cement, denominación inglesa del material más comúnmente utilizado.

  6. Meaning and value of cloud manufacturing platform for aerospace enterprises

    Science.gov (United States)

    Tang, Wei; Xu, Wei; Xin, Xin

    2017-08-01

    Aerospace manufacturing engineering technology status it is important symbol to measure the comprehensive strength of nation. This paper analyzes the meaning and value of aerospace enterprises, based on the concept of cloud manufacturing to the practical production and application, combined with the characteristics of aerospace enterprises.

  7. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    Science.gov (United States)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  8. Nanomaterials: Opportunities and Challenges for Aerospace

    National Research Council Canada - National Science Library

    Obieta, Isabel; Marcos, J

    2005-01-01

    Nanomaterials are regarded world-wide as key materials of the 21st Century. Also, in aerospace a high potential for nanomaterials applications is postulated and technological breakthroughs are expected in this area...

  9. 1991 P/M in aerospace and defense technologies; Proceedings of the Symposium, Tampa, FL, Mar. 4-6, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The present conference discusses high-performance injection-molded metal components, the importance of phosphorus in P/M alloys, particle-metallurgy steels for antifriction bearings, P/M processing of metal-matrix composites (MMCs), SiC- and B4C-reinforced Mg MMCs for satellite applications, N13Al-based intermetallic MMCs, the synthesis and properties of nanophase ceramics, MMC spray-forming, the microstructure and properties of spray-cast Cu alloys, and the spray casting of hypoeutectic Cu-Cr alloy. Also discussed are the application of the Osprey preform process to light alloys and MMCs, P/M in lightweight aircraft engine components, the fabrication of oriented single-crystal wafer stock from Ni-Al-Mo-X alloy powders, higher-performance P/M Be materials for aerospace applications, the characteristics of electrodischarge compaction, and fatigue crack propagation in dispersion-strengthened P/M Al alloys at elevated and room temperatures

  10. 'GRC1.5': Uptower Gearbox Testing to Investigate Bearing Axial Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan; Vaes, David; McNiff, Brian

    2016-02-16

    This presentation focuses on the investigation of bearing axial cracking using the GRC1.5 uptower gearbox. Topics covered include the testing options considered, the project goal, and current and near-term activities.

  11. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    Science.gov (United States)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  12. 2009 Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes GRC

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Harry [Univ. of Newcastle, Callaghan, NSW (Australia)

    2009-07-26

    your application/abstract to the GRC web site as soon as possible.

  13. Green Propellant Infusion Mission Program Development and Technology Maturation

    Science.gov (United States)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  14. Crew factors in the aerospace workplace

    Science.gov (United States)

    Kanki, Barbara G.; Foushee, H. C.

    1990-01-01

    The effects of technological change in the aerospace workplace on pilot performance are discussed. Attention is given to individual and physiological problems, crew and interpersonal problems, environmental and task problems, organization and management problems, training and intervention problems. A philosophy and conceptual framework for conducting research on these problems are presented and two aerospace studies are examined which investigated: (1) the effect of leader personality on crew effectiveness and (2) the working undersea habitat known as Aquarius.

  15. Introduction to NASA's Academy of Aerospace Quality

    OpenAIRE

    Smith, Alice; Smith, Jeffrey

    2016-01-01

    The NASA Academy of Aerospace Quality (AAQ) is an internet-based public domain forum of quality assurance-related educational modules for students and faculty at academic institutions targeting those involved in aerospace research, technology development, and payload design and development including Cube Sats, Small Sats, Nano Sats, Rockets and High Altitude Balloons. The target users are university project and research teams but the academy has also been used by K-12 teams, independent space...

  16. Nanotechnology in Aerospace Applications

    National Research Council Canada - National Science Library

    Meyyappan, M

    2007-01-01

    The aerospace applications for nanotechnology include high strength, low weight composites, improved electronics and displays with low power consumption, variety of physical sensors, multifunctional...

  17. Intersubjective management in aerospace engineering

    Directory of Open Access Journals (Sweden)

    Arpentieva Mariam

    2017-01-01

    Full Text Available This article presents a postnonclassical approach to create the science of management processes organization in a developing society, the focus of which is “the man of culture”, i.e. the man, not just adhering to cultural norms, but also creating new concepts and products of culture. This science is proposed to be called Evergetics. The purpose of the study is the analysis science of management processes organization in a developing aerospace engineering and other industrial areas of society. The authors describe the main aspects and procedures evergetics management in aerospace engineering. They uses the comparison method, compares classical and modern approaches and technologies of management. In evergetics management model each member of society or organization is interested in augmenting his cultural heritage he is producing, which entails a raise of stability in process of engineering actions and a raise cultural potential of the society as a whole and, as a consequence, an increase in the proportion of moral and ethical managerial decisions and corresponding to them benevolent actions in organizational life. Summarize the article’s main findings, authors may in some main conclusions about necessity evergetics model and intersubjective technologies in the creation and development of aerospace engineering.

  18. Aerospace Systems Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  19. The effect of silica fume and metakaolin on glass-fibre reinforced concrete (GRC ageing

    Directory of Open Access Journals (Sweden)

    Enfedaque Díaz, A.

    2010-12-01

    Full Text Available The deterioration of the mechanical properties of glassfibre reinforced concrete (GRC over time rules out the use of this material in load-bearing structures. While one possible solution to this problem is the addition of pozzolans or metakaolin to the cement mortar, the amounts needed to ensure GRC integrity raise its price to non-competitive levels. Experimental research has been conducted to analyze whether the addition of small amounts of silica fume or metakaolin can prevent or mitigate the ageing issue. Unfortunately, the findings indicate that the addition of small proportions of metakaolin or silica fume to GRC are ineffective in improving its long-term performance.

    Para el uso del mortero de cemento reforzado con fibras de vidrio (GRC en estructuras portantes se han de solucionar los problemas de reducción de las propiedades mecánicas que aparecen con el paso del tiempo. Estos problemas pueden ser solucionados mediante la adición de puzolanas o de metacaolín, a la pasta de mortero de cemento. Sin embargo, la cantidad de metacaolín que ha de ser añadida es elevada y el precio del GRC fabricado está fuera del mercado. Se ha realizado una campaña experimental que analiza si la adición de humo de sílice o de metacaolín en proporciones reducidas consigue evitar o paliar el problema del envejecimiento, que supone un freno al uso del GRC en elementos estructurales. Desgraciadamente, los resultados experimentales muestran que proporciones bajas de metacaolín o de humo de sílice no son efectivas para reducir el problema de pérdida de propiedades mecánicas.

  20. Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1

    Science.gov (United States)

    Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)

    2001-01-01

    The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.

  1. KIBO Industry, innovates in aerospace

    Science.gov (United States)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  2. Wind Turbine Drivetrain Condition Monitoring During GRC Phase 1 and Phase 2 Testing

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Link, H.; LaCava, W.; van Dam, J.; McNiff, B.; Veers, P.; Keller, J.; Butterfield, S.; Oyague, F.

    2011-10-01

    This report will present the wind turbine drivetrain condition monitoring (CM) research conducted under the phase 1 and phase 2 Gearbox Reliability Collaborative (GRC) tests. The rationale and approach for this drivetrain CM research, investigated CM systems, test configuration and results, and a discussion on challenges in wind turbine drivetrain CM and future research and development areas, will be presented.

  3. Workability of glass reinforced concrete (GRC) with granite and silica sand aggregates

    Science.gov (United States)

    Moceikis, R.; Kičaitė, A.; Keturakis, E.

    2017-10-01

    Glass fiber reinforced concrete (GRC) opens the door for lightweight and complex shaped innovative construction, adding architectural value to buildings. With panel thickness down to 15 mm, considerable amount of total loads and materials per square meter of facade can be saved, if compared to conventionally used 80 mm thickness outer layer in insulated precast concrete wall elements. Even though GRC is used for over 50 years in such countries as Great Britain, USA and Japan, there are very few examples and little research done in Eastern Europe with this building material. European Commission propagates sustainable design as commitment to energy efficiency, environmental stewardship and conservation. For this reason, GRC plays important role in mowing toward these goals. In this paper, GRC premix recipes including fine granite and silica sands, reinforced with 13mm length alkali resistant glass fibers are investigated. Two CEM I 52,5R cements with different particle sizes were used and severe water dissociation noticed in one of concrete mixes. Cement particle size distribution determined with laser diffraction particle analyser Cilas 1090LD. To determine modulus of rupture (M.O.R.) and limit of proportionality (L.O.P), plates thickness 15 and 20 mm were produced and tested for flexural resistance according to 4-point bending scheme. Concrete workability tests were made according EN 1170-1.

  4. An example of active learning in Aerospace Engineering

    NARCIS (Netherlands)

    Brugemann, V.P.; Brummelen, van E.H.; Melkert, J.A.; Kamp, A.; Saunders-Smits, G.N.; Reith, B.A.; Zandbergen, B.T.C.; Graaf, de E.; Saunders-Smits, G.N.; Nieweg, M.R.

    2005-01-01

    This paper is a showcase for an on-going active learning capstone design project in the BSe. programme at the Faculty of Aerospace Engineering at Delft University of Technology. In multi-disciplinary teams supervised by tutors from different backgrounds students work towards an Aerospace (related)

  5. Wireless Sensing Opportunities for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    William Wilson

    2008-07-01

    Full Text Available Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  6. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Supplement: Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.

    1997-01-01

    This report documents the progress achieved over the past 6 to 12 months on four graduate student projects conducted within the NASA-UVA Light Aerospace Alloy and Structures Technology Program. These studies were aimed specifically at light metallic alloy issues relevant to the High Speed Civil Transport. Research on Hydrogen-Enhanced Fracture of High-Strength Titanium Alloy Sheet refined successfully the high resolution R-curve method necessary to characterize initiation and growth fracture toughnesses. For solution treated and aged Low Cost Beta without hydrogen precharging, fracture is by ductile transgranular processes at 25 C, but standardized initiation toughnesses are somewhat low and crack extension is resolved at still lower K-levels. This fracture resistance is degraded substantially, by between 700 and 1000 wppm of dissolved hydrogen, and a fracture mode change is affected. The surface oxide on P-titanium alloys hinders hydrogen uptake and complicates the electrochemical introduction of low hydrogen concentrations that are critical to applications of these alloys. Ti-15-3 sheet was obtained for study during the next reporting period. Research on Mechanisms of deformation and Fracture in High-Strength Titanium Alloys is examining the microstructure and fatigue resistance of very thin sheet. Aging experiments on 0. 14 mm thick (0.0055 inch) foil show microstructural agility that may be used to enhance fatigue performance. Fatigue testing of Ti-15-3 sheet has begun. The effects of various thermo-mechanical processing regimens on mechanical properties will be examined and deformation modes identified. Research on the Effect of Texture and Precipitates on Mechanical Property Anisotropy of Al-Cu-Mg-X and Al-Cu alloys demonstrated that models predict a minor influence of stress-induced alignment of Phi, caused by the application of a tensile stress during aging, on the yield stress anisotropy of both modified AA2519 and a model Al-Cu binary alloy. This project

  7. Aerospace Accident - Injury Autopsy Data System -

    Data.gov (United States)

    Department of Transportation — The Aerospace Accident Injury Autopsy Database System will provide the Civil Aerospace Medical Institute (CAMI) Aerospace Medical Research Team (AMRT) the ability to...

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 54: The technical communications practices of engineering technology students: Results of the NASA/DOD Aerospace Knowledge Diffusion Research Project phase 3 student surveys

    Science.gov (United States)

    Pinelli, Thomas E.; England, Mark; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    Engineering technology programs are characterized by their focus on application and practice, and by their approximately 50/50 mix of theory and laboratory experience. Engineering technology graduates are employed across the technological spectrum and are often found in areas that deal with application, implementation, and production. Yet we know very little about the communications practices and information-use skills of engineering technology students. In this paper, we report selected results of an exploratory study of engineering technology students enrolled in three U.S. institutions of higher education. Data are presented for the following topics: career goals and aspirations; the importance of, receipt of, and helpfulness of communications and information-use skills instruction; collaborative writing; use of libraries; and the use of electronic (computer) networks.

  9. Aerospace engineering educational program

    Science.gov (United States)

    Craft, William; Klett, David; Lai, Steven

    1992-01-01

    The principle goal of the educational component of NASA CORE is the creation of aerospace engineering options in the mechanical engineering program at both the undergraduate and graduate levels. To accomplish this goal, a concerted effort during the past year has resulted in detailed plans for the initiation of aerospace options in both the BSME and MSME programs in the fall of 1993. All proposed new courses and the BSME aerospace option curriculum must undergo a lengthy approval process involving two cirriculum oversight committees (School of Engineering and University level) and three levels of general faculty approval. Assuming approval is obtained from all levels, the options will officially take effect in Fall '93. In anticipation of this, certain courses in the proposed curriculum are being offered during the current academic year under special topics headings so that current junior level students may graduate in May '94 under the BSME aerospace option. The proposed undergraduate aerospace option curriculum (along with the regular mechanical engineering curriculum for reference) is attached at the end of this report, and course outlines for the new courses are included in the appendix.

  10. Nanotechnology research for aerospace applications

    Science.gov (United States)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  11. Research and Technology 2003

    Science.gov (United States)

    2004-01-01

    to the Cleveland Hopkins International Airport, Glenn comprises more than 140 buildings, including 24 major facilities and over 500 specialized research and test facilities. Additional facilities are located at Plum Brook Station, which is about 50 miles west of Cleveland. Plum Brook Station has four large, major, world-class facilities for space research available for Government and industry programs. Knowledge is the end product of our activities. The R&T reports help make this knowledge fully available to potential users the aircraft engine industry, the space industry, the energy industry, the automotive industry, the aerospace industry, and others. It is organized so that a broad cross section of the community can readily use it. Each article begins with a short introductory paragraph that should prove valuable for the layperson. These articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Glenn s technology programs. We hope that this information is useful to all. If additional information is desired, readers are encouraged to contact the researchers identified at the end of each article and to visit Glenn on the World Wide Web at http://www.grc.nasa.gov.

  12. Aerospace manpower transfer to small business enterprises

    Science.gov (United States)

    Green, M. K.

    1972-01-01

    The feasibility of a program to effect transfer of aerospace professional people from the ranks of the unemployed into gainful employment in the small business community was investigated. The effectiveness of accomplishing transfer of technology from the aerospace effort into the private sector through migration of people rather than products or hardware alone was also studied. Two basic methodologies were developed. One involves the matching of ex-aerospace professionals and small companies according to their mutual needs. A training and indoctrination program is aimed at familiarizing the professional with the small company environment, and a program of follow-up counseling is defined. The second methodology incorporates efforts to inform and arouse interest among the nonaerospace business community toward affirmative action programs that will serve mutual self-interests of the individuals, companies, and communities involved.

  13. Ultrasonic characterization of GRC with high percentage of fly ash substitution.

    Science.gov (United States)

    Genovés, V; Gosálbez, J; Miralles, R; Bonilla, M; Payá, J

    2015-07-01

    New applications of non-destructive techniques (NDT) with ultrasonic tests (attenuation and velocity by means of ultrasonic frequency sweeps) have been developed for the characterization of fibre-reinforced cementitious composites. According to new lines of research on glass-fibre reinforced cement (GRC) matrix modification, two similar GRC composites with high percentages of fly ash and different water/binder ratios will be studied. Conventional techniques have been used to confirm their low Ca(OH)(2) content (thermogravimetry), fibre integrity (Scanning Electron Microscopy), low porosity (Mercury Intrusion Porosimetry) and good mechanical properties (compression and four points bending test). Ultrasound frequency sweeps allowed the estimation of the attenuation and pulse velocity as functions of frequency. This ultrasonic characterization was correlated successfully with conventional techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. GRC: Composite material from an inorganic matrix reinforced with AR glass fibres

    Directory of Open Access Journals (Sweden)

    Comino Almenara, P. I.

    1996-06-01

    Full Text Available This article describes the historical background of Cem-FIL. Alkali Resistant Glass Fibre, as well as the composite characteristics of the element they generate: GRC. The most important advantages and properties of this type of Composite Material are also detailed.

    En este artículo se detallan cuáles son las bases históricas de las Fibras de Vidrio Álcali-Resistentes Cem-FIL así como las características del elemento compuesto que ellas generan: GRC. En este documento también se pueden encontrar indicaciones sobre las principales ventajas y propiedades de este tipo de Material Compuesto.

  15. Aerospace Safety Advisory Panel

    Science.gov (United States)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a five-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASA's safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are 'one deep.' The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting 'brain drain' could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. The major NASA programs are also limited in their ability to plan property for the future. This is of particular concern for the Space Shuttle and ISS because these programs are scheduled to operate well into the next century. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has

  16. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Science.gov (United States)

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  17. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  18. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 8: The role of the information intermediary in the diffusion of aerospace knowledge

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The United States aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. Presented here is a conceptual framework for understanding the diffusion of technology. A conceptual framework is given for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  20. Aerogels in Aerospace: An Overview

    Directory of Open Access Journals (Sweden)

    Nadiir Bheekhun

    2013-01-01

    Full Text Available Aerogels are highly porous structures prepared via a sol-gel process and supercritical drying technology. Among the classes of aerogels, silica aerogel exhibits the most remarkable physical properties, possessing lower density, thermal conductivity, refractive index, and dielectric constant than any solids. Its acoustical property is such that it can absorb the sound waves reducing speed to 100 m/s compared to 332 m/s for air. However, when it comes to commercialization, the result is not as expected. It seems that mass production, particularly in the aerospace industry, has dawdled behind. This paper highlights the evolution of aerogels in general and discusses the functions and significances of silica aerogel in previous astronautical applications. Future outer-space applications have been proposed as per the current research trend. Finally, the implementation of conventional silica aerogel in aeronautics is argued with an alternative known as Maerogel.

  1. INFLUENCE OF AEROSPACE MEDICINE ACHIEVEMENTS ON THE DEVELOPMENT OF SPORT MEDICINE METHODOLOGY.

    Science.gov (United States)

    R Yashina, E R; Kurashvili, V A; Turzin, P S

    Modern technologies of aerospace medicine develop at rapid pace pulling on its orbit all spheres of the human activity, including sport. Innovations play a major role in the progress of sport medicine areas related to the biomedical support of precontest training. Overview of the most important aerospace medicine achievements and their methodical implications for sport medicine is presented. Discussion is devoted to how the aerospace medicine technologies can raise effectiveness of the biomedical support to different sectors of sport and fitness.

  2. International symposium on NDT in aerospace. Proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    The emerging use of modern materials, especially in the aerospace industry, has initiated a new discussion about the current status and performance of Non Destructive Testing and Evaluation regarding their capability and reliability in material inspection and characterization. The substitution of mono materials, like aluminium, by composite materials, especially carbon fiber reinforced plastics, requires the development of advanced testing methods or even the combination of different methods. The symposium will bridge a gap between the different experts in NDT and E and will help to intensify the dialogue between basic NDT research and industrial NDT challenges. In April 2005 the project ''Development Center for Non-Destructive Testing of New Materials in Aerospace'' (''ZeLuR'') was authorized at the ''Technikum Neue Materialien'' in Fuerth. This project with a term of 4 years is funded by the Free State of Bavaria with the support of the Objective 2 Programme Bavaria 2002 - 2006 of the European Union. This project is addressing the various demands of different methods for the non-destructive testing of new materials in the aerospace industry. The sessions of the conference include thermal imaging, ultrasound technology, optics and all aspects of X-ray testing as well as structural health monitoring, reliability and adhesive bonding. Moreover the latest results of the project ''ZeLuR'' will be presented, covering various aspects of NDT in aerospace. (orig.)

  3. Challenges for Insertion of Structural Nanomaterials in Aerospace Applications

    Science.gov (United States)

    Sochi, Emilie J.

    2012-01-01

    In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.

  4. IT Data Mining Tool Uses in Aerospace

    Science.gov (United States)

    Monroe, Gilena A.; Freeman, Kenneth; Jones, Kevin L.

    2012-01-01

    Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure.

  5. An Aerospace Nation

    Science.gov (United States)

    2016-05-25

    of world commerce , informa- tion, and finance. Its education system was second to none, and its cur- rency was the world’s benchmark. In the early...professionals than the United States. An estimate by the US Department of Commerce predicts that by 2018 “the U.S. will have more than 1.2 million unfilled...taxpayer.30 Thus, being an advanced aerospace nation will help balance the federal budget and extend the benefits of prosperity to a new generation

  6. The Effect of Online Systems Analysis Training on Aerospace Industry Business Performance: A Qualitative Study

    Science.gov (United States)

    Burk, Erlan

    2012-01-01

    Aerospace companies needed additional research on technology-based training to verify expectations when enhancing human capital through online systems analysis training. The research for online systems analysis training provided aerospace companies a means to verify expectations for systems analysis technology-based training on business…

  7. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  8. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    Science.gov (United States)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  9. Experience with system safety approach in railroad technology in Europe and Far East and in aerospace technology; Erfahrungen mit Ansaetzen zur Systemsicherheit in der Bahntechnik in Europa und im Fernen Osten sowie in der Raumfahrttechnik

    Energy Technology Data Exchange (ETDEWEB)

    Schaebe, H. [Technischer Ueberwachungs-Verein InterTraffic GmbH, Koeln (Germany). Inst fuer Software, Elektronik, Bahntechnik

    2000-07-01

    Safety analyses play an important role in assessing railroad technology, especially in the light of the CENELEC Standards EN 50126 and EN 50129. The European approach to system safety is based on the EN standards, whereas in Asia we had to deal with the British DEF-STAN standards. Although the approach is inspired by the European one, in the particular case specific changes have been observed. On the other hand there is a long tradition in space technology which is based in Europe on the PSS standards edited by ESA and the ECSS standards which have followed them. The EN series of standards focuses on the safety case approach. It must be shown that the system is sufficiently safe. Analyses as hazard analyses, Failure Modes, Effects, and Criticality Analyses and Risk analyses are used together with other methods. An important problem is the definition of the target for safety characteristics. We present experience from assessment of driverless people mover systems. On the other hand we have performed analyses for locomotives that have been supplied for the North East Line and the Changi Airport Line of the metro in Singapore. Here, the approach was based on the British DEF-STAN series. In this particular project, however, the approach led to a larger number of exhaustive analyses for a workshop locomotive which is equipped with a driver. In aerospace, often a large number of analyses is necessary. However, the analyses are adopted regarding their number and level of detail depending on the system. As an example, test facilities used at ESTEC (technical centre of the European Space Association) are presented. The experience gained in different areas of technology and in different geographic areas are compared. It will be shown how the EN standards can be used effectively. (orig.) [German] Sicherheitsanalysen spielen eine wichtige Rolle bei der Beurteilung der Bahntechnik, insbesondere im Rahmen der CENELEC Normen EN 50126 und EN 50129. Der Europaeische Ansatz der

  10. Scenario-Based Performance Observation Tool for Learning in Team Environments Aerospace Crew-Centered Technologies (SPOTLITE-ACT), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The insertion of new technology in the cockpit, especially "smart" technology designed to become an additional crewmember, will necessarily impact flight-related...

  11. NASA/DoD aerospace knowledge diffusion research project. VIII - The role of the information intermediary in the diffusion of aerospace knowledge

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1990-01-01

    The U.S. aerospace industry is experiencing profound changes created by a combination of domestic actions and circumstances such as airline deregulation. Other changes result from external trends such as emerging foreign competition. These circumstances intensify the need to understand the production, transfer, and utilization of knowledge as a precursor to the rapid diffusion of technology. This article presents a conceptual framework for understanding the diffusion of aerospace knowledge. The framework focuses on the information channels and members of the social system associated with the aerospace knowledge diffusion process, placing particular emphasis on aerospace librarians as information intermediaries.

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  13. 44th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Compiler)

    2018-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms.

  14. Smart antennas in aerospace applications

    NARCIS (Netherlands)

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with

  15. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  16. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  17. Advantage of resonant power conversion in aerospace applications

    Science.gov (United States)

    Hansen, I. G.

    1983-01-01

    An ultrasonic, sinusoidal aerospace power distribution system is shown to have many advantages over other candidate power systems. These advantages include light weight, ease of fault clearing, versatility in handling many loads including motors, and the capability of production within the limits of present technology. References are cited that demonstrate the state of resonant converter technology and support these conclusions.

  18. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 59: Japanese Technological Innovation. Implications for Large Commercial Aircraft and Knowledge Diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kotler, Mindy L.

    1997-01-01

    This paper explores three factors-public policy, the Japanese (national) innovation system, and knowledge-that influence technological innovation in Japan. To establish a context for the paper, we examine Japanese culture and the U.S. and Japanese patent systems in the background section. A brief history of the Japanese aircraft industry as a source of knowledge and technology for other industries is presented. Japanese and U.S. alliances and linkages in three sectors-biotechnology, semiconductors, and large commercial aircraft (LCA)-and the importation, absorption, and diffusion of knowledge and technology are examined next. The paper closes with implications for diffusing knowledge and technology, U.S. public policy, and LCA.

  20. Aerospace engineering training: universities experience

    Directory of Open Access Journals (Sweden)

    Mertins Kseniya

    2016-01-01

    Full Text Available Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used to design a master’s program aiming at providing students with the required knowledge, know-how and attitudes needed to succeed as professionals in industrial companies.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 6: Aerospace knowledge diffusion in the academic community: A report of phase 3 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    Descriptive and analytical data regarding the flow of aerospace-based scientific and technical information (STI) in the academic community are presented. An overview is provided of the Federal Aerospace Knowledge Diffusion Research Project, illustrating a five-year program on aerospace knowledge diffusion. Preliminary results are presented of the project's research concerning the information-seeking habits, practices, and attitudes of U.S. aerospace engineering and science students and faculty. The type and amount of education and training in the use of information sources are examined. The use and importance ascribed to various information products by U.S. aerospace faculty and students including computer and other information technology is assessed. An evaluation of NASA technical reports is presented and it is concluded that NASA technical reports are rated high in terms of quality and comprehensiveness, citing Engineering Index and IAA as the most frequently used materials by faculty and students.

  2. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  3. Resilient and Corrosion-proof Rolling Element Bearings Made from Ni-ti Alloys for Aerospace Mechanism Applications and the Ultimate Space Technology Development Platform

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    The International Space Station provides a unique microgravity laboratory environment for research. The ISS also serves as an effective platform for the development of technologies and engineered solutions related to living and working in space. The space environment also challenges our capabilities related to lubrication and tribology. In this seminar, Dr. DellaCorte will review the basics of space mechanism tribology and the challenges of providing good lubrication and long-life in the harsh space environment. He will also discuss recent tribological challenges associated with the Solar Alpha Rotary Joint (SARJ) bearings and life support hardware that must operate under severe conditions that are literally out of this world. Each tribology challenge is unique and their solutions often result in new technologies that benefit the tribology community everywhere, even back on Earth

  4. The Small Payload Access to Space Experiment (SPASE): Using Non-Traditional Aerospace Technology to Enable a New Generation of Low-Cost Missions

    OpenAIRE

    McDermott, Scott; Aamot, L. Eric

    2001-01-01

    Launching on STS-108 Endeavour in late 2001, the Small Payload Access to Space Experiment (SPASE) demonstrates a number of new technologies, efficient ways to conduct a nanospacecraft development program, and how to take such a spacecraft through the Shuttle Hitchhiker safety and integration process. This paper describes the essential “lessons learned” in each of these areas. Commercial solar panels, batteries, imagers, photocells, integrated circuits, and manufacturing techniques are used th...

  5. International conference on Recent Advances in Aerospace Engineering (ICRAAE-2017)

    Science.gov (United States)

    2017-10-01

    Introduction The First International conference on Recent Advances in Aerospace Engineering (ICRAAE-2017) will be conducted by the Department of Aerospace Engineering at Karunya University, Coimbatore, Tamilnadu, India, on 3rd and 4th March, 2017. The conference aims to bring together students, academicians, leading scientists, researchers and industrialists working in diverse fields of Aerospace Engineering. This conference provides an inter-disciplinary platform for the educators, researchers and practitioners to present, share and discuss the recent trends, innovations, concerns and solutions in the cutting edge technologies of Aerospace Engineering for mutual benefit and the growth of the nation. Objectives The conference is devoted to benefit the participants who will have the opportunity to gain insight into state-of-the-art technologies in the field of Aerospace Engineering by the expert lectures of scientists and pioneering researchers from India and abroad. In addition, the two-day conference will enable knowledge sharing by personnel involved in active research working on the recent developments in this diverse field. List of International Deep Drawing Research Group, Conference Topics, Facts and Statistics, Achknowledgement, Keynote Speakers, Scientific Committee, Editors all are available in this PDF.

  6. ExMC Technology Watch

    Science.gov (United States)

    Krihak, M.; Barr, Y.; Watkins, S.; Fung, P.; McGrath, T.; Baumann, D.

    2012-01-01

    The Technology Watch (Tech Watch) project is a NASA endeavor conducted under the Human Research Program's (HRP) Exploration Medical Capability (ExMC) element, and focusing on ExMC technology gaps. The project involves several NASA centers, including the Johnson Space Center (JSC), Glenn Research Center (GRC), Ames Research Center (ARC), and the Langley Research Center (LaRC). The objective of Tech Watch is to identify emerging, high-impact technologies that augment current NASA HRP technology development efforts. Identifying such technologies accelerates the development of medical care and research capabilities for the mitigation of potential health issues encountered during human space exploration missions. The aim of this process is to leverage technologies developed by academia, industry and other government agencies and to identify the effective utilization of NASA resources to maximize the HRP return on investment. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion and further NASA's goal to provide a safe and healthy environment for human exploration. In 2011, the major focus areas for Tech Watch included information dissemination, education outreach and public accessibility to technology gaps and gap reports. The dissemination of information was accomplished through site visits to research laboratories and/or companies, and participation at select conferences where Tech Watch objectives and technology gaps were presented. Presentation of such material provided researchers with insights on NASA ExMC needs for space exploration and an opportunity to discuss potential areas of common interest. The second focus area, education outreach, was accomplished via two mechanisms. First, several senior student projects, each related to an ExMC technology gap, were sponsored by the various NASA centers. These projects presented ExMC related technology problems firsthand to collegiate laboratories

  7. Integration of NASA-Developed Lifing Technology for PM Alloys into DARWIN (registered trademark)

    Science.gov (United States)

    McClung, R. Craig; Enright, Michael P.; Liang, Wuwei

    2011-01-01

    In recent years, Southwest Research Institute (SwRI) and NASA Glenn Research Center (GRC) have worked independently on the development of probabilistic life prediction methods for materials used in gas turbine engine rotors. The two organizations have addressed different but complementary technical challenges. This report summarizes a brief investigation into the current status of the relevant technology at SwRI and GRC with a view towards a future integration of methods and models developed by GRC for probabilistic lifing of powder metallurgy (P/M) nickel turbine rotor alloys into the DARWIN (Darwin Corporation) software developed by SwRI.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  9. Aeromedical solutions for aerospace safety.

    Science.gov (United States)

    Kapoor, Pawan; Gaur, Deepak

    2017-10-01

    All facets of activity in the speciality of Aviation Medicine are essentially aimed at enhancing aerospace safety. This paper highlights some innovative changes brought about by Aerospace Medicine in the three major fields of the speciality namely, medical evaluation, aeromedical training and research. Based on lab and field studies, military aircrew are now permitted flying with Modifinil as 'Go' Pill and Zolpidem as 'No-Go' Pill during sustained operations. Several other drugs for disabilities like Hypertension and CAD are now permitted for aviators. Comprehensive revision of policy permitting early return to flying is an on-going process. OPRAM courses for all three streams of aircrew in IAF have contributed to reduce aircraft accident rates. Human Engineering Consultancy and expert advice is provided by specialists at IAM as well as those in the field. In future, the country needs to provide better post-service opportunities to aerospace medicine specialists. This, in turn, will attract bright young minds to the specialty. The ISRO Humanin-Space programme will be an exciting challenge for all in this unique field. Aerospace Medicine continues to provide aerospace safety solutions to the IAF and the aviation industry. The nation needs to continue to utilize and support this specialty.

  10. An electrochemical study of the flow rate effect on the oxide film of SA106 Gr.C piping

    International Nuclear Information System (INIS)

    Hong, S. M.; Kim, J. H.; Kim, I. S.

    2002-01-01

    Effect of water flow rate on the oxide film of SA106 Gr.C piping was evaluated quantitatively through electrochemical method. It was carried out with weight change experiments, polarization tests, and EIS tests with rig that simulates water flow. Without water flow, the oxide film is so stable that it effectively blocks current exchange. With water flow, the oxide film was damaged and electrochemical current density and oxide film properties, C dl and R p were significantly changed

  11. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik [Korea Power Engineering Company, Seoul (Korea, Republic of)

    1997-04-01

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  12. Effect of environment on the propagation of electromagnetic waves in GRC 408E digital radiorelay devices

    Directory of Open Access Journals (Sweden)

    Vojkan M. Radonjić

    2011-01-01

    Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception

  13. Challenges in aerospace medicine education.

    Science.gov (United States)

    Grenon, S Marlene; Saary, Joan

    2011-11-01

    Aerospace medicine training and research represents a dream for many and a challenge for most. In Canada, although some opportunities exist for the pursuit of education and research in the aerospace medicine field, they are limited despite the importance of this field for enabling safe human space exploration. In this commentary, we aim to identify some of the challenges facing individuals wishing to get involved in the field as well as the causal factors for these challenges. We also explore strategies to mitigate against these.

  14. CORBASec Used to Secure Distributed Aerospace Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    The NASA Glenn Research Center and its industry partners are developing a Common Object Request Broker (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines. It was developed by Glenn and is being managed by the NASA Ames Research Center as the lead center reporting directly to NASA Headquarters' Aerospace Technology Enterprise. Glenn is an active domain member of the Object Management Group: an open membership, not-for-profit consortium that produces and manages computer industry specifications (i.e., CORBA) for interoperable enterprise applications. When NPSS is deployed, it will assemble a distributed aerospace propulsion simulation scenario from proprietary analytical CORBA servers and execute them with security afforded by the CORBASec implementation. The NPSS CORBASec test bed was initially developed with the TPBroker Security Service product (Hitachi Computer Products (America), Inc., Waltham, MA) using the Object Request Broker (ORB), which is based on the TPBroker Basic Object Adaptor, and using NPSS software across different firewall products. The test bed has been migrated to the Portable Object Adaptor architecture using the Hitachi Security Service product based on the VisiBroker 4.x ORB (Borland, Scotts Valley, CA) and on the Orbix 2000 ORB (Dublin, Ireland, with U.S. headquarters in Waltham, MA). Glenn, GE Aircraft Engines, and Pratt & Whitney Aircraft are the initial industry partners contributing to the NPSS CORBASec test bed. The test bed uses Security SecurID (RSA Security Inc., Bedford, MA) two-factor token-based authentication together with Hitachi Security Service digital-certificate-based authentication to validate the various NPSS users. The test

  15. Aerospace Training. Washington's Community and Technical Colleges

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  16. Ceramic composites: Enabling aerospace materials

    Science.gov (United States)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  17. 2008 GRC Iron Sulfur Enzymes-Conference to be held June 8-13, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Stephen [Univ. of California, Davis, CA (United States); Gray, Nancy Ryan [Gordon Research Conferences, West Kingston, RI (United States)

    2009-01-01

    Iron-sulfur proteins are among the most common and ancient enzymes and electron-transfer agents in nature. They play key roles in photosynthesis, respiration, and the metabolism of small molecules such as H2, CO, and N2. The Iron Sulfur Enzyme Gordon Research Conference evolved from an earlier GRC on Nitrogen Fixation that began in 1994. The scope of the current meeting has broadened to include all enzymes or metalloproteins in which Fe-S bonds play a key role. This year's meeting will focus on the biosynthesis of Fe-S clusters, as well as the structure and mechanism of key Fe-S enzymes such as hydrogenase, nitrogenase and its homologues, radical SAM enzymes, and aconitase-related enzymes. Recent progress on the role of Fe-S enzymes in health, disease, DNA/RNA-processing, and alternative bio-energy systems will also be highlighted. This conference will assemble a broad, diverse, and international group of biologists and chemists who are investigating fundamental issues related to Fe-S enzymes, on atomic, molecular, organism, and environmental scales. The topics to be addressed will include: Biosynthesis & Genomics of Fe-S Enzymes; Fundamental Fe-S Chemistry; Hydrogen and Fe-S Enzymes; Nitrogenase & Homologous Fe-S Enzymes; Fe-S Enzymes in Health & Disease; Radical SAM and Aconitase-Related Fe-S Enzymes; Fe-S Enzymes and Synthetic Analogues in BioEnergy; and Fe-S Enzymes in Geochemistry and the Origin of Life.

  18. Distributed propulsion and future aerospace technologies

    OpenAIRE

    Ameyugo, Gregorio

    2007-01-01

    This thesis describes an Engineering Doctorate project in Distributed Propulsion carried out from 2004 to 2007 at Cranfield University. Distributed propulsion is a propulsion system arrangement that consists in spreading the engine thrust along the aircraft span. This can be accomplished by distributing a series of driven fans or the engines themselves. The aim of this project is to determine the feasibility of ...

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  20. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  1. Photonics for aerospace sensors

    Science.gov (United States)

    Pellegrino, John; Adler, Eric D.; Filipov, Andree N.; Harrison, Lorna J.; van der Gracht, Joseph; Smith, Dale J.; Tayag, Tristan J.; Viveiros, Edward A.

    1992-11-01

    The maturation in the state-of-the-art of optical components is enabling increased applications for the technology. Most notable is the ever-expanding market for fiber optic data and communications links, familiar in both commercial and military markets. The inherent properties of optics and photonics, however, have suggested that components and processors may be designed that offer advantages over more commonly considered digital approaches for a variety of airborne sensor and signal processing applications. Various academic, industrial, and governmental research groups have been actively investigating and exploiting these properties of high bandwidth, large degree of parallelism in computation (e.g., processing in parallel over a two-dimensional field), and interconnectivity, and have succeeded in advancing the technology to the stage of systems demonstration. Such advantages as computational throughput and low operating power consumption are highly attractive for many computationally intensive problems. This review covers the key devices necessary for optical signal and image processors, some of the system application demonstration programs currently in progress, and active research directions for the implementation of next-generation architectures.

  2. Research and Technology 2002

    Science.gov (United States)

    Kim, Walter S.

    2003-01-01

    This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2002. It comprises 166 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/WWW/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov/GLTRS/).

  3. Research and Technology 2001

    Science.gov (United States)

    2002-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2001. It comprises 156 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and, where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/www/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov/GLTRS).

  4. Science, Engineering, Mathematics and Aerospace Academy

    Science.gov (United States)

    1997-01-01

    This is an annual report on the Science, Engineering, Mathematics, and Aerospace Academy (SEMAA), which is run as a collaborative effort of NASA Lewis Research Center, and Cuyahgoga Community College. The purpose of SEMA is to increase the percentage of African Americans, and Hispanics in the fields of science and technology. The SEMAA program reaches from kindergarden, to grade 12, involving the family of under-served minorities in the education of the children. The year being reported (i.e., 1996-1997) saw considerable achievement. The program served over 1,939 students, and 120 parents were involved in various seminars. The report goes on to review the program and its implementation for each grade level. It also summarizes the participation, by gender and ethnicity.

  5. Damping in aerospace composite materials

    Science.gov (United States)

    Agneni, A.; Balis Crema, L.; Castellani, A.

    Experimental results are presented on specimens of carbon and Kevlar fibers in epoxy resin, materials used in many aerospace structures (control surfaces and wings in aircraft, large antennas in spacecraft, etc.). Some experimental methods of estimating damping ratios are first reviewed, either in the time domain or in the frequency domain. Some damping factor estimates from experimental tests are then shown; in order to evaluate the effects of the aerospace environment, damping factors have been obtained in a typical range of temperature, namely between +120 C and -120 C, and in the pressure range from room pressure to 10 exp -6 torr. Finally, a theoretical approach for predicting the bounds of the damping coefficients is shown, and prediction data are compared with experimental results.

  6. Damage growth in aerospace composites

    CERN Document Server

    2015-01-01

    This book presents novel methods for the simulation of damage evolution in aerospace composites that will assist in predicting damage onset and growth and thus foster less conservative designs which realize the promised economic benefits of composite materials. The presented integrated numerical/experimental methodologies are capable of taking into account the presence of damage and its evolution in composite structures from the early phases of the design (conceptual design) through to the detailed finite element method analysis and verification phase. The book is based on the GARTEUR Research Project AG-32, which ran from 2007 to 2012, and documents the main results of that project. In addition, the state of the art in European projects on damage evolution in composites is reviewed. While the high specific strength and stiffness of composite materials make them suitable for aerospace structures, their sensitivity to damage means that designing with composites is a challenging task. The new approaches describ...

  7. Interactive Web-Based and Hands-On Engineering Education: A Freshman Aerospace Design Course at MIT.

    Science.gov (United States)

    Newman, Dava J.

    "Introduction to Aerospace and Design" is a 3-hour per week freshman elective course at Massachusetts Institute of Technology (MIT) that culminates in a Lighter-Than-Air (LTA) vehicle design competition, exposing freshmen to the excitement of aerospace engineering design typically taught in the junior or senior years. In addition to the…

  8. Research and Technology 1999

    Science.gov (United States)

    2000-01-01

    This report selectively summarizes the NASA Glenn Research Center's research and technology accomplishments for the fiscal year 1999. It comprises 130 short articles submitted by the staff scientists and engineers. The report is organized into four major sections: Aeronautics. Research and Technology, Space, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at NASA Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available on the World Wide Web (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (GLTRS) on the World Wide Web (http://gltrs.grc.nasa.gov/GLTRS/).

  9. Complex monitoring of aerospace and mountain environment at Beo Mussala

    International Nuclear Information System (INIS)

    Angelov, I.; Angelov, C.; Barnekov, L. and others

    2006-01-01

    The mission of BEO Moussala is the observing, complex monitoring and studies of global change processes, aerospace and mountain environment, natural hazards and technological risks. BEO Moussala is the focal point of the BEO Centre of Excellence established and promoted in the framework of FP5 project HIMONTONET essentially improving its research capacities in frame of the FP6 project BEOBAL. The basic fields of current and future activities and studies at BEO Moussala are: global change, aerospace and mountain environment, natural hazards and technological risks and not at least development, design and enhancement of measurement devices and systems. The basic parameters and characteristics of the new measuring facilities are given and discussed from the point of view of the requirements of Global Atmospheric Watch (GAW) and Global Change Programs

  10. Projected progress in the engineering state-of-the-art. [for aerospace

    Science.gov (United States)

    Nicks, O. W.

    1978-01-01

    Projected advances in discipline areas associated with aerospace engineering are discussed. The areas examined are propulsion and power, materials and structures, aerothermodynamics, and electronics. Attention is directed to interdisciplinary relationships; one example would be the application of communications technology to the solution of propulsion problems. Examples involving projected technology changes are presented, and technology integration and societal effects are considered.

  11. IPAD: Integrated Programs for Aerospace-vehicle Design

    Science.gov (United States)

    Miller, R. E., Jr.

    1985-01-01

    Early work was performed to apply data base technology in support of the management of engineering data in the design and manufacturing environments. The principal objective of the IPAD project is to develop a computer software system for use in the design of aerospace vehicles. Two prototype systems are created for this purpose. Relational Information Manager (RIM) is a successful commercial product. The IPAD Information Processor (IPIP), a much more sophisticated system, is still under development.

  12. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  13. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  14. An e-learning platform for aerospace medicine.

    Science.gov (United States)

    Bamidis, P D; Konstantinidis, S; Papadelis, C L; Perantoni, E; Styliadis, C; Kourtidou-Papadeli, C; Kourtidou-Papadeli, C; Pappas, C

    2008-08-01

    The appeal of online education and distance learning as an educational alternative is ever increasing. To support and accommodate the over-specialized knowledge available by different experts, information technology can be employed to develop virtual distributed pools of autonomous specialized educational modules and provide the mechanisms for retrieving and sharing them. New educational standards such as SCORM and Healthcare LOM enhance this process of sharing by offering qualities like interoperability, accessibility, and reusability, so that learning material remains credible, up-to-date and tracks changes and developments of medical techniques and standards through time. Given that only a few e-learning courses exist in aerospace medicine the material of which may be exchanged among teachers, the aim of this paper is to illustrate the procedure of creating a SCORM compliant course that incorporates notions of recent advances in social web technologies. The course is in accordance with main educational and technological details and is specific to pulmonary disorders in aerospace medicine. As new educational trends place much emphasis in continuing medical education, the expansion of a general practitioner's knowledge in topics such as aviation and aerospace pulmonary disorders for crew and passengers becomes a societal requirement.

  15. Aerospace Activities in the Elementary School

    Science.gov (United States)

    Jones, Robert M.; Wiggins, Kenneth E.

    1974-01-01

    Describes 17 activities which are aerospace oriented and yet provide an interdisciplinary approach to learning. Some of the activities described involve paper airplanes, parachutes, model rockets, etc. (BR)

  16. Information processing for aerospace structural health monitoring

    Science.gov (United States)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  17. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  18. Aerospace reliability applied to biomedicine.

    Science.gov (United States)

    Lalli, V. R.; Vargo, D. J.

    1972-01-01

    An analysis is presented that indicates that the reliability and quality assurance methodology selected by NASA to minimize failures in aerospace equipment can be applied directly to biomedical devices to improve hospital equipment reliability. The Space Electric Rocket Test project is used as an example of NASA application of reliability and quality assurance (R&QA) methods. By analogy a comparison is made to show how these same methods can be used in the development of transducers, instrumentation, and complex systems for use in medicine.

  19. Aerospace Payloads Leak Test Methodology

    Science.gov (United States)

    Lvovsky, Oleg; Grayson, Cynthia M.

    2010-01-01

    Pressurized and sealed aerospace payloads can leak on orbit. When dealing with toxic or hazardous materials, requirements for fluid and gas leakage rates have to be properly established, and most importantly, reliably verified using the best Nondestructive Test (NDT) method available. Such verification can be implemented through application of various leak test methods that will be the subject of this paper, with a purpose to show what approach to payload leakage rate requirement verification is taken by the National Aeronautics and Space Administration (NASA). The scope of this paper will be mostly a detailed description of 14 leak test methods recommended.

  20. Cognitive engineering in aerospace applications

    Science.gov (United States)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  1. Aerospace Medical Support in Russia

    Science.gov (United States)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  6. 76 FR 19147 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2011-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-030)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel.... Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  7. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-088)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics and Space...

  8. 78 FR 56941 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-09-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-114] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  9. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-04-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-030)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel... FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive Director...

  10. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-044] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  11. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-01-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-001] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel..., Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  12. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10- 020)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel... FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National...

  13. 75 FR 61219 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-10-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-116)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel... Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space Administration...

  14. 77 FR 58413 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-074] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announces a forthcoming meeting of the Aerospace Safety Advisory Panel.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and Space...

  15. Communication for performance in aerospace

    Directory of Open Access Journals (Sweden)

    Aurelian Virgil BALUTA

    2016-12-01

    Full Text Available The paper outlines rules for employees in the aerospace field about general procedures, accounting, budgets, employees involvement in the companies goals as a team or as a group. The quality of all communications activities is presented in correlation with performance. For us, performance means economic and social references, stability and credibility of the business and, not least, a good communication within the existing groups or teams. We take in account long-term, medium and short performance for a new and modern field such as the aerospace industry. The paper highlights the group communication aspects, the process needed to optimize communication within a group, the team characteristics and mission, the team involvement versus group involvement, organization of the work team and defining/definition of roles in a team according to individual skills and some technics; to apply the Belbin test for determining the role of individuals within the team, for identifying the types of communication in order to get the information transmitted to the different types of individuals such as “analytical type”, “director type”, “friendly type”, “expressive type”, the needs and interest of these individuals, assessing how the information was received and the impact of the feedback.

  16. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  17. High Flight. Aerospace Activities, K-12.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  18. Index of International Publications in Aerospace Medicine

    Science.gov (United States)

    2010-10-01

    Aerospace Medicine technical reports are available in full-text from the Civil Aerospace Medical Institute’s publications Web site: www.faa.gov/library...System in Space and Other Extreme Conditions. England – USA: Harwood Academic Publishers, 1991. Konstantinova IV, Petrov RV. Sistema Immuniteta v

  19. iSTEM: The Aerospace Engineering Challenge

    Science.gov (United States)

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  20. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap

    2018-01-01

    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  1. Online reinforcement learning control for aerospace systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Reinforcement Learning (RL) methods are relatively new in the field of aerospace guidance, navigation, and control. This dissertation aims to exploit RL methods to improve the autonomy and online learning of aerospace systems with respect to the a priori unknown system and environment, dynamical

  2. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  3. Fiscal 1999 research report on long-term energy technology strategy. Basic research on industrial technology strategy (Individual technology strategy). Aerospace technology field (Aircraft technology field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (kokuki gijutsu bun'ya))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 basic research result on industrial technology strategy of an aircraft technology field. In an aircraft field, since the major theme is application of new technologies to new airframe development, with joining in international cooperative development of aircraft, Japanese initiative development of airframes based on the domestic market demands and profitability should be started as early as possible. Because there is no airframe development by only one country including U.S.A., Japan is profitable to unite with some overseas companies, and invest selectively in specific leading fields. Positive technical support to safety, reliability, comfort and environment harmony are also important. More important theme than establishment of elementary technologies is preparation of an integrated flight demonstration system to expand application chances of development results, and preparation of various test facilities for tests required during development activities. Application of information technologies to the whole aircraft industry, and organic cooperation between the private and public sectors are also important. (NEDO)

  4. 43rd Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  5. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  6. Hybrid planar lightwave circuits for defense and aerospace applications

    Science.gov (United States)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  7. Resource Management and Contingencies in Aerospace Concurrent Engineering

    Science.gov (United States)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  8. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    Science.gov (United States)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  9. Requirements for effective use of CFD in aerospace design

    Science.gov (United States)

    Raj, Pradeep

    1995-01-01

    This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.

  10. FY15 GRC CIF -Sulfur Cathode for High-Energy Li-Sulfur Battery

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the Power Energy and Conversion Roadmap TA03 future NASA missions will require high specific energy battery technologies, > 400 Wh/kg. NASA's current...

  11. Liquid Nitrogen Removal of Critical Aerospace Materials

    Science.gov (United States)

    Noah, Donald E.; Merrick, Jason; Hayes, Paul W.

    2005-01-01

    Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly

  12. Research progress in mutational effects of aerospace on crop and ground simulation on aerospace environment factors

    International Nuclear Information System (INIS)

    Liu Luxiang; Wang Jing; Zhao Linshu; Guo Huijun; Zhao Shirong; Zheng Qicheng; Yang Juncheng

    2004-01-01

    In this paper, the current status of aerospace botany research in aboard was briefly introduced. The research progress of mutational effects of aerospace on crop seed and its application in germplasm enhancement and new variety development by using recoverable satellite techniques in China has been reviewed. The approaches and its experimental advances of ground simulation on aerospace environmental factors were analyzed at different angles of particle biology, physical field biology and gravity biology

  13. Integrated Vehicle Health Management (IVHM) for Aerospace Systems

    Science.gov (United States)

    Baroth, Edmund C.; Pallix, Joan

    2006-01-01

    To achieve NASA's ambitious Integrated Space Transportation Program objectives, aerospace systems will implement a variety of new concept in health management. System level integration of IVHM technologies for real-time control and system maintenance will have significant impact on system safety and lifecycle costs. IVHM technologies will enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. IVHM also has the potential to reduce, or even eliminate many of the costly inspections and operations activities required by current and future aerospace systems. This presentation will describe the array of NASA programs participating in the development of IVHM technologies for NASA missions. Future vehicle systems will use models of the system, its environment, and other intelligent agents with which they may interact. IVHM will be incorporated into future mission planners, reasoning engines, and adaptive control systems that can recommend or execute commands enabling the system to respond intelligently in real time. In the past, software errors and/or faulty sensors have been identified as significant contributors to mission failures. This presentation will also address the development and utilization of highly dependable sohare and sensor technologies, which are key components to ensure the reliability of IVHM systems.

  14. Closing the transatlantic technology gap

    NARCIS (Netherlands)

    Heerkens, Johannes M.G.

    1999-01-01

    Looks at how Europe can catch up with the United States in several critical areas of aerospace technology. Creation of a business-friendly atmosphere for civil aviation manufacturers; Promotion of cooperation between aerospace research institutes; Sponsorship of technology demonstrator programs at

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 35: The use of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1995-01-01

    This research used survey research to explore and describe the use of computer networks by aerospace engineers. The study population included 2000 randomly selected U.S. aerospace engineers and scientists who subscribed to Aerospace Engineering. A total of 950 usable questionnaires were received by the cutoff date of July 1994. Study results contribute to existing knowledge about both computer network use and the nature of engineering work and communication. We found that 74 percent of mail survey respondents personally used computer networks. Electronic mail, file transfer, and remote login were the most widely used applications. Networks were used less often than face-to-face interactions in performing work tasks, but about equally with reading and telephone conversations, and more often than mail or fax. Network use was associated with a range of technical, organizational, and personal factors: lack of compatibility across systems, cost, inadequate access and training, and unwillingness to embrace new technologies and modes of work appear to discourage network use. The greatest positive impacts from networking appear to be increases in the amount of accurate and timely information available, better exchange of ideas across organizational boundaries, and enhanced work flexibility, efficiency, and quality. Involvement with classified or proprietary data and type of organizational structure did not distinguish network users from nonusers. The findings can be used by people involved in the design and implementation of networks in engineering communities to inform the development of more effective networking systems, services, and policies.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 20: Engineers as information processors: A survey of US aerospace engineering faculty and students

    Science.gov (United States)

    Holland, Maurita Peterson; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1991-01-01

    U.S. aerospace engineering faculty and students were surveyed as part of the NASA/DoD Aerospace Knowledge Research Project. Faculty and students were viewed as information processors within a conceptual framework of information seeking behavior. Questionnaires were received from 275 faculty members and 640 students, which were used to determine: (1) use and importance of information sources; (2) use of specific print sources and electronic data bases; (3) use of information technology; and (4) the influence of instruction on the use of information sources and the products of faculty and students. Little evidence was found to support the belief that instruction in library or engineering information use has significant impact either on broadening the frequency or range of information products and sources used by U.S. aerospace engineering students.

  17. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  18. 2012 aerospace medical certification statistical handbook.

    Science.gov (United States)

    2013-12-01

    The annual Aerospace Medical Certification Statistical Handbook reports descriptive : characteristics of all active U.S. civil aviation airmen and the aviation medical examiners (AMEs) that : perform the required medical examinations. The 2012 annual...

  19. 2011 aerospace medical certification statistical handbook.

    Science.gov (United States)

    2013-01-01

    The annual Aerospace Medical Certification Statistical Handbook reports descriptive characteristics of all active U.S. civil aviation airmen and the aviation medical examiners (AMEs) that perform the required medical examinations. The 2011 annual han...

  20. National Aerospace Leadership Initiative - Phase 2

    Science.gov (United States)

    2010-03-01

    BNB Manufacturing, HMR Associates, PWA, UTRC, Sikorsky Helicopter, TCI MRO, Schwerdtle, Unilever , University of Hartford. In several cases parts were...HMR Associates, PWA, UTRC, Sikorsky Helicopter, TCI MRO, Schwerdtle, Unilever , University of Hartford National Aerospace Leadership Initiative

  1. 2012 Aerospace Medical Certification Statistical Handbook

    Science.gov (United States)

    2013-12-01

    2012 Aerospace Medical Certification Statistical Handbook Valerie J. Skaggs Ann I. Norris Civil Aerospace Medical Institute Federal Aviation...Certification Statistical Handbook December 2013 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Skaggs VJ, Norris AI 9...2.57 Hayfever 14,477 2.49 Asthma 12,558 2.16 Other general heart pathology (abnormal ECG, open heart surgery, etc.). Wolff-Parkinson-White syndrome

  2. Probability and Statistics in Aerospace Engineering

    Science.gov (United States)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  3. Protons, Aerospace, and Electronics: A National Interest

    Science.gov (United States)

    LaBel, Kenneth A.; Turflinger, Thomas L.

    2018-01-01

    The aerospace and semiconductor industries lost approx. 2000 hours annually of research access when IUCF closed. An ad hoc team between the U.S. government and industry was formed to evaluate other facility options. In this presentation, we will discuss: 1) Why aerospace, semiconductor manufacturers, and others are interested in proton facility access, as well as, 2) Some of the basics of a typical test for electronics, and 3) We"ll conclude with the brief current status on progress.

  4. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  5. Optimal control with aerospace applications

    CERN Document Server

    Longuski, James M; Prussing, John E

    2014-01-01

    Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...

  6. Materials Selection for Aerospace Systems

    Science.gov (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  7. Calculation of hybrid joints used in modern aerospace structures

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2011-12-01

    Full Text Available The state – of - the art of aeronautical structures show that parts are manufactured and subsequently assembled with the use of fasteners and/ or bonding. Adhesive bonding is a key technology to low weight, high fatigue resistance, robustness and an attractive design for cost structures.The paper results resolve significant problems for two groups of end-users:1 for the aerospace design office: a robust procedure for the design of the hybrid joint structural components;2 for the aeronautical repair centres: a useful procedure for structural design and analysis with significant cost savings.

  8. Automated procedures for sizing aerospace vehicle structures /SAVES/

    Science.gov (United States)

    Giles, G. L.; Blackburn, C. L.; Dixon, S. C.

    1972-01-01

    Results from a continuing effort to develop automated methods for structural design are described. A system of computer programs presently under development called SAVES is intended to automate the preliminary structural design of a complete aerospace vehicle. Each step in the automated design process of the SAVES system of programs is discussed, with emphasis placed on use of automated routines for generation of finite-element models. The versatility of these routines is demonstrated by structural models generated for a space shuttle orbiter, an advanced technology transport,n hydrogen fueled Mach 3 transport. Illustrative numerical results are presented for the Mach 3 transport wing.

  9. Advanced composites for aerospace, marine, and land applications

    CERN Document Server

    Srivatsan, T; Peretti, Michael

    2016-01-01

    The papers in this volume cover a broad spectrum of topics that represent the truly diverse nature of the field of composite materials. This collection presents research and findings relevant to the latest advances in composites materials, specifically their use in aerospace, maritime, and even land applications. The editors have made every effort to bring together authors who put forth recent advances in their research while concurrently both elaborating on and thereby enhancing our prevailing understanding of the salient aspects related to the science, engineering, and far-reaching technological applications of composite materials.

  10. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    Science.gov (United States)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  11. 2012 THIN FILM AND SMALL SCALE MECHANICAL BEHAVIOR GRS/GRC, JULY 21-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Balk, Thomas

    2012-07-27

    The mechanical behavior of materials with small dimension(s) is of both fundamental scientific interest and technological relevance. The size effects and novel properties that arise from changes in deformation mechanism have important implications for modern technologies such as thin films for microelectronics and MEMS devices, thermal and tribological coatings, materials for energy production and advanced batteries, etc. The overarching goal of the 2012 Gordon Research Conference on "Thin Film and Small Scale Mechanical Behavior" is to discuss recent studies and future opportunities regarding elastic, plastic and time-dependent deformation, as well as degradation and failure mechanisms such as fatigue, fracture and wear. Specific topics of interest include, but are not limited to: fundamental studies of physical mechanisms governing small-scale mechanical behavior; advances in test techniques for materials at small length scales, such as nanotribology and high-temperature nanoindentation; in-situ mechanical testing and characterization; nanomechanics of battery materials, such as swelling-induced phenomena and chemomechanical behavior; flexible electronics; mechanical properties of graphene and carbon-based materials; mechanical behavior of small-scale biological structures and biomimetic materials. Both experimental and computational work will be included in the oral and poster presentations at this Conference.

  12. Using the Engineering Design Cycle to Develop Integrated Project Based Learning in Aerospace Engineering

    NARCIS (Netherlands)

    Saunders-Smits, G.N.; Roling, P.; Brügemann, V.; Timmer, N.; Melkert, J.

    2012-01-01

    Over the past four years the Faculty of Aerospace Engineering at Delft University of Technology in the Netherlands has redeveloped its BSc curriculum to mimic an engineering design cycle. Each semester represents a step in the design cycle: exploration; system design; sub-system design; test,

  13. Revolutionary composite joining method; from an aerospace thesis research to founding a new company

    NARCIS (Netherlands)

    Bergman, A.

    2014-01-01

    In 2011, Peter Madlener started his graduation thesis at the Aerospace Engineering faculty on a new joining technology for composite sandwich panels. The promising results gained in this thesis led to the foundation of MOCS: a young company with the ambitious goal of introducing a revolutionary

  14. Linear-array systems for aerospace NDE

    International Nuclear Information System (INIS)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-01-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations

  15. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  16. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18:] Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    Science.gov (United States)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 18: Scientific and Technical Information (STI) policy and the competitive position of the US aerospace industry

    Science.gov (United States)

    Hernon, Peter; Pinelli, Thomas E.

    1992-01-01

    With its contribution to trade, its coupling with national security, and its symbolism of U.S. technological strength, the U.S. aerospace industry holds a unique position in the Nation's industrial structure. Federal science and technology policy and Federal scientific and technical information (STI) policy loom important as strategic contributions to the U.S. aerospace industry's leading competitive position. However, three fundamental policy problems exist. First, the United States lacks a coherent STI policy and a unified approach to the development of such a policy. Second, policymakers fail to understand the relationship of STI to science and technology policy. Third, STI is treated as a part of general information policy, without any recognition of its uniqueness. This paper provides an overview of the Federal information policy structure as it relates to STI and frames the policy issues that require resolution.

  18. Adopting exergy analysis for use in aerospace

    Science.gov (United States)

    Hayes, David; Lone, Mudassir; Whidborne, James F.; Camberos, José; Coetzee, Etienne

    2017-08-01

    Thermodynamic analysis methods, based on an exergy metric, have been developed to improve system efficiency of traditional heat driven systems such as ground based power plants and aircraft propulsion systems. However, in more recent years interest in the topic has broadened to include applying these second law methods to the field of aerodynamics and complete aerospace vehicles. Work to date is based on highly simplified structures, but such a method could be shown to have benefit to the highly conservative and risk averse commercial aerospace sector. This review justifies how thermodynamic exergy analysis has the potential to facilitate a breakthrough in the optimization of aerospace vehicles based on a system of energy systems, through studying the exergy-based multidisciplinary design of future flight vehicles.

  19. Knowledge-based diagnosis for aerospace systems

    Science.gov (United States)

    Atkinson, David J.

    1988-01-01

    The need for automated diagnosis in aerospace systems and the approach of using knowledge-based systems are examined. Research issues in knowledge-based diagnosis which are important for aerospace applications are treated along with a review of recent relevant research developments in Artificial Intelligence. The design and operation of some existing knowledge-based diagnosis systems are described. The systems described and compared include the LES expert system for liquid oxygen loading at NASA Kennedy Space Center, the FAITH diagnosis system developed at the Jet Propulsion Laboratory, the PES procedural expert system developed at SRI International, the CSRL approach developed at Ohio State University, the StarPlan system developed by Ford Aerospace, the IDM integrated diagnostic model, and the DRAPhys diagnostic system developed at NASA Langley Research Center.

  20. Polymer and ceramic nanocomposites for aerospace applications

    Science.gov (United States)

    Rathod, Vivek T.; Kumar, Jayanth S.; Jain, Anjana

    2017-11-01

    This paper reviews the potential of polymer and ceramic matrix composites for aerospace/space vehicle applications. Special, unique and multifunctional properties arising due to the dispersion of nanoparticles in ceramic and metal matrix are briefly discussed followed by a classification of resulting aerospace applications. The paper presents polymer matrix composites comprising majority of aerospace applications in structures, coating, tribology, structural health monitoring, electromagnetic shielding and shape memory applications. The capabilities of the ceramic matrix nanocomposites to providing the electromagnetic shielding for aircrafts and better tribological properties to suit space environments are discussed. Structural health monitoring capability of ceramic matrix nanocomposite is also discussed. The properties of resulting nanocomposite material with its disadvantages like cost and processing difficulties are discussed. The paper concludes after the discussion of the possible future perspectives and challenges in implementation and further development of polymer and ceramic nanocomposite materials.

  1. A critical review of nanotechnologies for composite aerospace structures

    Science.gov (United States)

    Kostopoulos, Vassilis; Masouras, Athanasios; Baltopoulos, Athanasios; Vavouliotis, Antonios; Sotiriadis, George; Pambaguian, Laurent

    2017-03-01

    The past decade extensive efforts have been invested in understanding the nano-scale and revealing the capabilities offered by nanotechnology products to structural materials. Integration of nano-particles into fiber composites concludes to multi-scale reinforced composites and has opened a new wide range of multi-functional materials in industry. In this direction, a variety of carbon based nano-fillers has been proposed and employed, individually or in combination in hybrid forms, to approach the desired performance. Nevertheless, a major issue faced lately more seriously due to the interest of industry is on how to incorporate these nano-species into the final composite structure through existing manufacturing processes and infrastructure. This interest originates from several industrial applications needs that request the development of new multi-functional materials which combine enhanced mechanical, electrical and thermal properties. In this work, an attempt is performed to review the most representative processes and related performances reported in literature and the experience obtained on nano-enabling technologies of fiber composite materials. This review focuses on the two main composite manufacturing technologies used by the aerospace industry; Prepreg/Autoclave and Resin Transfer technologies. It addresses several approaches for nano-enabling of composites for these two routes and reports latest achieved results focusing on performance of nano-enabled fiber reinforced composites extracted from literature. Finally, this review work identifies the gap between available nano-technology integration routes and the established industrial composite manufacturing techniques and the challenges to increase the Technology Readiness Level to reach the demands for aerospace industry applications.

  2. Research and Technology 2000

    Science.gov (United States)

    2001-01-01

    This report selectively summarizes the NASA Glenn Research Center's research and technology accomplishments for the fiscal year 2000. It comprises 138 short articles submitted by staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology, a table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that was reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information about research at NASA Glenn, visit us on the World Wide Web (http://www.grc.nasa.gov). This document is available online (http://www.grc.nasa.gov/WWW/RT). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.gre.nasa.gov/GLTRS).

  3. Review: laser ignition for aerospace propulsion

    Directory of Open Access Journals (Sweden)

    Steven A. O’Briant

    2016-03-01

    This paper aims to provide the reader an overview of advanced ignition methods, with an emphasis on laser ignition and its applications to aerospace propulsion. A comprehensive review of advanced ignition systems in aerospace applications is performed. This includes studies on gas turbine applications, ramjet and scramjet systems, and space and rocket applications. A brief overview of ignition and laser ignition phenomena is also provided in earlier sections of the report. Throughout the reading, research papers, which were presented at the 2nd Laser Ignition Conference in April 2014, are mentioned to indicate the vast array of projects that are currently being pursued.

  4. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  5. Chromatography–mass spectrometry in aerospace industry

    International Nuclear Information System (INIS)

    Buryak, Alexey K; Serduk, T M

    2013-01-01

    The applications of chromatography–mass spectrometry in aerospace industry are considered. The primary attention is devoted to the development of physicochemical grounds of the use of various chromatography–mass spectrometry procedures to solve topical problems of this industry. Various methods for investigation of the composition of rocket fuels, surfaces of structural materials and environmental media affected by aerospace activities are compared. The application of chromatography–mass spectrometry for the development and evaluation of processes for decontaminations of equipment, industrial wastes and soils from rocket fuel components is substantiated. The bibliography includes 135 references.

  6. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    Science.gov (United States)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  7. The Center for Aerospace Research: A NASA Center of Excellence at North Carolina Agricultural and Technical State University

    Science.gov (United States)

    Lai, Steven H.-Y.

    1992-01-01

    This report documents the efforts and outcomes of our research and educational programs at NASA-CORE in NCA&TSU. The goal of the center was to establish a quality aerospace research base and to develop an educational program to increase the participation of minority faculty and students in the areas of aerospace engineering. The major accomplishments of this center in the first year are summarized in terms of three different areas, namely, the center's research programs area, the center's educational programs area, and the center's management area. In the center's research programs area, we focus on developing capabilities needed to support the development of the aerospace plane and high speed civil transportation system technologies. In the educational programs area, we developed an aerospace engineering option program ready for university approval.

  8. Background-Oriented Schlieren used in a hypersonic inlet test at NASA GRC

    Science.gov (United States)

    Clem, Michelle; Woike, Mark; Saunders, John

    2016-01-01

    Background Oriented Schlieren (BOS) is a derivative of the classical schlieren technology, which is used to visualize density gradients, such as shock wave structures in a wind tunnel. Changes in refractive index resulting from density gradients cause light rays to bend, resulting in apparent motion of a random background pattern. The apparent motion of the pattern is determined using cross-correlation algorithms (between no-flow and with-flow image pairs) producing a schlieren-like image. One advantage of BOS is its simplified setup which enables a larger field-of-view (FOV) than traditional schlieren systems. In the present study, BOS was implemented into the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) in the 10x10 Supersonic Wind Tunnel at NASA Glenn Research Center. The model hardware for the CCE LIMX accommodates a fully integrated turbine based combined cycle propulsion system. To date, inlet mode transition between turbine and ramjet operation has been successfully demonstrated. High-speed BOS was used to visualize the behavior of the flow structures shock waves during unsteady inlet unstarts, a phenomenon known as buzz. Transient video images of inlet buzz were recorded for both the ramjet flow path (high speed inlet) and turbine flow path (low speed inlet). To understand the stability limits of the inlet, operation was pushed to the point of unstart and buzz. BOS was implemented in order to view both inlets simultaneously, since the required FOV was beyond the capability of the current traditional schlieren system. An example of BOS data (Images 1-6) capturing inlet buzz are presented.

  9. Variational analysis and aerospace engineering mathematical challenges for the aerospace of the future

    CERN Document Server

    Mohammadi, Bijan; Pironneau, Olivier; Cipolla, Vittorio

    2016-01-01

    This book presents papers surrounding the extensive discussions that took place from the ‘Variational Analysis and Aerospace Engineering’ workshop held at the Ettore Majorana Foundation and Centre for Scientific Culture in 2015. Contributions to this volume focus on advanced mathematical methods in aerospace engineering and industrial engineering such as computational fluid dynamics methods, optimization methods in aerodynamics, optimum controls, dynamic systems, the theory of structures, space missions, flight mechanics, control theory, algebraic geometry for CAD applications, and variational methods and applications. Advanced graduate students, researchers, and professionals in mathematics and engineering will find this volume useful as it illustrates current collaborative research projects in applied mathematics and aerospace engineering.

  10. Environmentally friendly power sources for aerospace applications

    Science.gov (United States)

    Lapeña-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Ortí, Fortunato; Dudfield, Christopher; Orsillo, Alessandro

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO 2 emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR&TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NO x, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power management

  11. Environmentally friendly power sources for aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Lapena-Rey, Nieves; Mosquera, Jonay; Bataller, Elena; Orti, Fortunato [Boeing Research and Technology Europe Ltd., Environmental Technologies, C/ Canada Real de las Merinas 1-3, Building 4, 4th floor, Madrid 28042 (Spain); Dudfield, Christopher; Orsillo, Alessandro [Intelligent Energy Ltd., The Innovation Centre, Epinal Way, Loughborough LE11 3EH (United Kingdom)

    2008-07-01

    One of the crucial challenges of the aviation industry in upcoming years is to reduce emissions not only in the vicinity of airfields but also in cruise. Amongst other transport methods, airplanes emissions count for 3% of the CO{sub 2} emissions. Initiatives to reduce this include not only investing in more fuel-efficient aircrafts or adapting existing ones to make them more efficient (e.g. by fitting fuel-saving winglets), but also more actively researching novel propulsion systems that incorporate environmentally friendly technologies. The Boeing Company through its European subsidiary, Boeing Research and Technology Europe (BR and TE) in collaboration with industry partners throughout Europe is working towards this goal by studying the possible application of advanced batteries and fuel-cell systems in aeronautical applications. One example is the development of a small manned two-seater prototype airplane powered only by proton exchange membrane (PEM) fuel-cell stacks, which runs on compressed hydrogen gas as fuel and pressurized air as oxidant, and Li-ion batteries. The efficient all composite motorglider is an all electric prototype airplane which does not produce any of the noxious engine exhaust by-products, such as carbon dioxide, carbon monoxide or NOx, that can contribute to climate change and adversely affect local air quality. Water and heat are the only exhaust products. The main objective is to demonstrate for the first time in aviation history a straight level manned flight with fuel-cells as the only power source. For this purpose, the original engine of a super Dimona HK36TTC glider from Diamond Aircraft Industries (Austria) was replaced by a hybrid power system, which feeds a brushless dc electrical motor that rotates a variable pitch propeller. Amongst the many technical challenges encountered when developing this test platform are maintaining the weight and balance of the aircraft, designing the thermal management system and the power

  12. Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering

    OpenAIRE

    Soler, Manuel

    2014-01-01

    Fundamentals of Aerospace Engineering is a text book that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering.

  13. Former Virginia Tech Aerospace and Ocean Engineering Department Head Dies

    OpenAIRE

    Gilbert, Karen

    2003-01-01

    James B. Eades, Jr., retired aerospace research scientist from Bluefield, W. Wa., and former professor and department head of aerospace and ocean engineering at Virginia Tech, died Dec. 14 at Veteran's Hospital in Washington, D.C. He was 80.

  14. Total quality management - It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle.

  15. The Hypersonic Revolution. Case Studies in the History of Hypersonic Technology. Volume III: The Quest for the Orbital Jet: The National Aero-Space Plane Program (1983-1995)

    National Research Council Canada - National Science Library

    Schwelkart, Larry

    1998-01-01

    ... that could fly fast enough to attain orbital velocity, is considered a success by many of the participants.1 They contend that by "showing up," NASP survived long enough to produce what many deem critical technologies for hypersonic flight...

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 66: Emerging Trends in the Globalization of Knowledge: The Role of the Technical Report in Aerospace Research and Development

    Science.gov (United States)

    Pinelli,Thomas E.; Golich, Vicki L.

    1997-01-01

    Economists, management theorists, business strategists, and governments alike recognize knowledge as the single most important resource in today's global economy. Because of its relationship to technological progress and economic growth, many governments have taken a keen interest in knowledge; specifically its production, transfer, and use. This paper focuses on the technical report as a product for disseminating the results of aerospace research and development (R&D) and its use and importance to aerospace engineers and scientists. The emergence of knowledge as an intellectual asset, its relationship to innovation, and its importance in a global economy provides the context for the paper. The relationships between government and knowledge and government and innovation are used to place knowledge within the context of publicly-funded R&D. Data, including the reader preferences of NASA technical reports, are derived from the NASA/DoD Aerospace Knowledge Diffusion Research Project, a ten-year study of knowledge diffusion in the U.S. aerospace industry.

  17. Polymer-based composites for aerospace: An overview of IMAST results

    Science.gov (United States)

    Milella, Eva; Cammarano, Aniello

    2016-05-01

    This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).

  18. Guides to Aerospace Research and Development in NATO Countries.

    Science.gov (United States)

    1984-01-01

    The directory contains worldwide information Administrations et Services Aeroautiques. Designadores de Empresas Explotadoras about aviation/aerospace...ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT (ORGANISATION DU TRAITE DE L’ATLANTIQUE NORD) AGARD Report No.7 18 * GUIDES TO AEROSPACE RESEARCH...and transport containing also The Tithe and Keyword Index includes titles of all establishments listed in this highly professional photographs received

  19. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-06-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-068] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel..., Huntsville, AL 35805 FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel...

  20. 78 FR 57903 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2013-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-116] Aerospace Safety Advisory Panel... and amendment of the charter of the Aerospace Safety Advisory Panel. SUMMARY: Pursuant to sections 14... determined that renewal and amendment of the charter of the Aerospace Safety Advisory Panel is in the public...

  1. 76 FR 70042 - Airworthiness Directives; Pacific Aerospace Limited Airplanes

    Science.gov (United States)

    2011-11-10

    ... Airworthiness Directives; Pacific Aerospace Limited Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for Pacific Aerospace Limited Model FU24 Airplanes. This AD results from mandatory continuing... Schletzbaum, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri...

  2. 78 FR 72554 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Science.gov (United States)

    2013-12-03

    ... Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes AGENCY: Federal Aviation Administration... Gulfstream Aerospace Corporation Model GV and GV-SP airplanes. This AD was prompted by reports of two... Aerospace Corporation, Technical Publications Dept., P.O. Box 2206, Savannah, GA 31402-2206; telephone 800...

  3. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-105)] Aerospace Safety Advisory Panel... and amendment of the charter of the NASA Aerospace Safety Advisory Panel. SUMMARY: Pursuant to... determined that a renewal and amendment of the charter of the NASA Aerospace Safety Advisory Panel is in the...

  4. 75 FR 36697 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-071)] Aerospace Safety Advisory Panel... Aeronautics and Space Administration announce a forthcoming meeting of the Aerospace Safety Advisory Panel..., Room 116, Hampton, VA 23681. FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety...

  5. 32 CFR 705.30 - Aerospace Education Workshop.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... of Naval Operations has cognizance of all assistance provided by the Navy to all Aerospace Education...

  6. 77 FR 54787 - Airworthiness Directives; M7 Aerospace LLC Airplanes

    Science.gov (United States)

    2012-09-06

    ... Airworthiness Directives; M7 Aerospace LLC Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Aerospace LLC Models SA226-AT, SA226-T, SA226-T(B), SA226-TC, SA227-AC (C-26A), SA227-BC (C-26A), SA227-CC..., contact M7 Aerospace LP, 10823 NE Entrance Road, San Antonio, Texas 78216; phone: (210) 824- 9421; fax...

  7. 78 FR 9781 - Airworthiness Directives; Pacific Aerospace Limited Airplanes

    Science.gov (United States)

    2013-02-12

    ... Airworthiness Directives; Pacific Aerospace Limited Airplanes AGENCY: Federal Aviation Administration (FAA... directive (AD) for all Pacific Aerospace Limited Models FU24-954 and FU24A-954 airplanes. This AD results... Aerospace Limited, Hamilton Airport, Private Bag, 3027 Hamilton, New Zealand; telephone: +64 7 843 6144; fax...

  8. CSIR ScienceScope: Aerospace

    CSIR Research Space (South Africa)

    CSIR

    2006-12-01

    Full Text Available gas turbine technology smartens up future aircraft ................29 CSIR activities in light detection and ranging ..............................31 CSIR expertise to contribute to environmentally friendly aircraft aero-engine design... aerofoils for best performance ....................................9 Research in support of flutter-free aircraft ....................................10 CSIR moves into civil aviation research ......................................11 Acumen in advanced...

  9. Scoping Aerospace: Tracking Federal Procurement and R&D Spending in the Aerospace Sector

    National Research Council Canada - National Science Library

    Hogan, Thor; Fossum, Donna; Johnson, Dana J; Painter, Lawrence S

    2005-01-01

    .... The study provides a detailed examination of the Federal Procurement Data System (FPDS), with the specific purpose of tracking all government aerospace procurement and research and development (R AND D...

  10. Servant Leadership: How does NASA Serve the Interests of Humankind in Aerospace Exploration and the Role STEM Plays in it?

    Science.gov (United States)

    Miranda, Felix A.

    2013-01-01

    This presentation provides a description of technology efforts illustrative of NASA Glenn Research Center Core competencies and which exemplifies how NASA serves the interest of humankind in aerospace exploration. Examples are provided as talking points to illustrate the role that career paths in science, technology, engineering and mathematics (STEM) plays in the aforementioned endeavor.

  11. Thermal Expansion Properties of Aerospace Materials

    Science.gov (United States)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  12. Research & Technology 2005

    Science.gov (United States)

    2006-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2005. It comprises 126 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  13. Research and Technology 2004

    Science.gov (United States)

    2005-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2004. It comprises 133 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  14. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; hide

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  15. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  16. Application of aerospace failure-reporting systems to power plants. Final report

    International Nuclear Information System (INIS)

    Koukol, J.F.; Lapin, E.E.; Leverton, W.F.; Pickering, W.H.

    1980-06-01

    Failure reporting and analysis is a principal element of the overall quality assurance scheme that helped achieve, and now sustains, a high level of reliability in our national aerospace effort. The aerospace endeavor has many points of congruence with other highly technological activities. These are marked by great economic investment, an extended interval between concept and final implementation, the involvement of many independent entities with the government exercising a dominating influence, a considerable exposure to public view and review by public bodies, a notoriety accompanying untoward events, and extreme consequences attending failure. This report is written in the expectation that the lessons learned in arriving at the present state in aerospace can be adopted by others. It is the object of the report to illuminate the essential features of the aerospace failure reporting system. Two schemes are described. One typifies that which is currently employed by the Jet Propulsion Laboratory (JPL) operated by the California Institute of Technology for the NASA/JPL Voyager project and is based on procedures developed over several decades of deep space exploration. The other is typical of that employed by the Space Divison of the Air Force for military space programs

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  18. Mobility Research for Future Vehicles: A Methodology to Create a Unified Trade-Off Environment for Advanced Aerospace Vehicle

    Science.gov (United States)

    2016-11-15

    structure weight technology factor TECH_air air induction system weight technology factor TECH_eng engine weight technology factor TECH_exh exhaust...required) eta_d engine inlet efficiency Nspec_tech Kspa0 piecewise linear Kspa = Kspa0 + Kspa1*theta, Kspa is static lapse rate Kspa0 Kspa0...Systems Design Laboratory Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 www.asdl.gatech.edu

  19. Recent advances in the development of aerospace materials

    Science.gov (United States)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  20. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  1. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  2. An overview of Ball Aerospace cryogen storage and delivery systems

    International Nuclear Information System (INIS)

    Marquardt, J; Keller, J; Mills, G; Schmidt, J

    2015-01-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described. (paper)

  3. Fraud in Rights and Contracts: A Review of Bankruptcy Case of Livent Inc. Based on Governance, Risk, and Compliance (GRC Framework

    Directory of Open Access Journals (Sweden)

    Samuel Anindyo Widhoyoko

    2017-05-01

    Full Text Available This research discussed the accounting scandal in the perspective of governance, risk, and compliance using Governance, Risk, and Compliance (GRC framework. Unlike other fraud’s framework, GRC framework combinedthree different aspects of business sustainability of reporting. The purpose of the research was to highlight early business fraud that usually initiated by the company in boosting up the revenue during the Initial public offering(IPO processes. When other research discussed the business’ fraud schemes through the document alteration, this research focused on a case showing how a business could make the wrong statement to the investors through real and lawful future contracts with unqualified audit opinion. Structurally, this research was done through the action research method in pointing out all the directors’ failures in their function to hold the fiduciary duty to exercise their responsibility. Based on the analysis with the accordance with the framework used, it is highlighted that directors in the aspect of (1 governance decisive, they fail to set proportional target, provide ethical value, and react positively to maintain the company sustainability; (2 compliance submissive, they do not submit the accounting standards through undisclosed third-party agreement, misrepresentation of revenue recognition, and mistreatment of expense omission; (3 risk preventive, they fail to assess the risk occurs from legal aspect of conflict of interest, long-term contractual and engagement risks, and insufficient future cash flow.

  4. Big Data in the Aerospace Industry

    Directory of Open Access Journals (Sweden)

    Victor Emmanuell BADEA

    2018-01-01

    Full Text Available This paper presents the approaches related to the need for large volume data analysis, Big Data, and also the information that the beneficiaries of this analysis can interpret. Aerospace companies understand better the challenges of Big Data than the rest of the industries. Also, in this paper we describe a novel analytical system that enables query processing and predictive analytics over streams of large aviation data.

  5. Metals Technology for Aerospace Applications in 2020: Development of High Temperature Aluminum Alloys For Aerospace Applications

    Science.gov (United States)

    Dicus, Dennis (Technical Monitor); Starke, Edgar A., Jr.

    2003-01-01

    The role of trace additions on the nucleation and stability of the primary strengthening phase, omega, is of paramount importance for the enhancement of mechanical properties for moderate temperature application of Al-Cu-Mg-(Ag) alloys. In order to better understand the competition for solute, which governs the microstructural evolution of these alloys, a series of Al-Cu-Mg-Si quaternary alloys were prepared to investigate the role of trace Si additions on the nucleation of the omega phase. Si additions were found to quell omega nucleation in conjunction with the enhanced matrix precipitation of competing phases. These initial results indicate that it is necessary to overcome a critical Mg/Si ratio for omega precipitation, rather than a particular Si content.

  6. Determinants of Competitiveness in Companies that Comprise the Aerospace Cluster in the State of Sonora

    Directory of Open Access Journals (Sweden)

    Erika OLIVAS-VALDEZ

    2018-04-01

    Full Text Available Most of the leading countries in the world production of the aerospace sector, over time, have triangulated their production, by installing plants in other countries, to reduce costs. The United States concentrates most of the world production of aircraft. Consequently, Mexico has joined this dynamic production process through the operation of almost four hundred companies in this industrial sector. The states of Baja California, Chihuahua, Nuevo Leon, Querétaro and Sonora, lead the production of this sector in Mexico. The objective of this work is to determine if the companies in the aerospace sector of the state of Sonora are competitive in a regional context with respect to the growth of the entire sector in the country. The degree of competitiveness was calculated using the Competitive Advantage Index in two levels –the aerospace sector at the national level and at the state level-. The results of this research confirm that the competitiveness of companies in the aerospace sector in Sonora is high and that their competitiveness is determined mainly by the technological development of their products, quality of service, guarantees offered, price, and the operation and production costs.

  7. Capital raising of aerospace companies: equities or debts?

    Science.gov (United States)

    Hui-Shan, L.; Taw-Onn, Y.; Wai-Mun, H.

    2016-10-01

    Aerospace products enhance national and economic activities, thus maintaining the sustainability of aerospace industry is crucial. One of the perspectives in ensuring sustainability of aerospace companies is expansion of firms by raising funds for research and development in order to provide a reasonable profitability to the firms. This study comprises a sample of 47 aerospace companies from 2009 to 2015 to analyze the impact of raising fund by equities or debts to the profitability of the firms. The result indicates that capital raising through equities is preferable than debts. Moreover, the study also identifies that the profit of aerospace industry is volatile and there is cyclical reduction of the net income in the first quarter of the year. The management needs to make wise decisions in raising fund to ensure a healthy growth of the aerospace company.

  8. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    Science.gov (United States)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  9. The upper atmosphere and solar-terrestrial relations - An introduction to the aerospace environment

    International Nuclear Information System (INIS)

    Hargreaves, J.K.

    1979-01-01

    A theoretical and observational overview of earth's aerospace environment is presented in this book. Emphasis is placed on the principles and observed phenomena of the neutral upper atmosphere, particularly in relation to solar activity. Topics include the structure of the ionosphere and magnetosphere, waves in the magnetosphere, solar flares and solar protons, and storms and other disturbance phenomena, while applications to communications, navigation and space technology are also discussed

  10. FY 1999 New Sunshine Project survey research project - Survey on the long-term energy technology strategy, etc. Fundamental survey to decide on the industrial technology strategy - Technology strategy by field (Aerospace technology field - Airplane technology field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (koku uchu gijutsu bun'ya (kokuki gijutsu bun'ya)))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The survey/study were conducted to contribute to proposing technology strategies such as the analysis of the present state of technical competitive force and the forecast in the airplane technology field. In future airplane industry, to meet the requests/restrictions from the society in the international airplane industry in the recent years, it is predicted that technology innovation will advance centering on the following four fields: next generation airplane technology to enable the innovative cost reduction in development/production, technology to realize the substantial reduction in flight cost of airline, technology to enhance reliability for the next generation flight which meets the multi-frequency flight/increasing demand for small plane, and airplane frontier technology. Moreover, regulations especially on noise, CO2 reduction and NOx reduction are becoming very strict internationally because of the increasing concern about global environmental problems. It is urgently needed to establish technology to cope with these trends. As the comprehensive strategy, the following are considered: development of airframe under the leadership of Japan and securing of the demand, efficient arrangement and operation of large-scale experimental facilities, IT adoption to the airplane industry, organic cooperation by industry/university/government, etc. (NEDO)

  11. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-153] NASA Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of Meeting...

  12. Aerospace Structures Test Facility Environmental Test Chambers (ETC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The ETCs test the structural integrity of aerospace structures in representative operating temperatures and aerodynamic load distributions. The test article...

  13. Hierarchical Composites with Nanostructured Reinforcement for Multifunctional Aerospace Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced nano-engineered composites hold great potential for augmenting aerospace composites material performance by reducing spacecraft weight, increasing payload...

  14. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    Science.gov (United States)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  16. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  17. Oklahoma Aerospace Intellectual Capital/Educational Recommendations: An Inquiry of Oklahoma Aerospace Executives

    Science.gov (United States)

    Nelson, Erin M.

    2010-01-01

    Scope and Method of Study: The purpose of this qualitative study was to conduct detailed personal interviews with aerospace industry executives/managers from both the private and military sectors from across Oklahoma to determine their perceptions of intellectual capital needs of the industry. Interviews with industry executives regarding…

  18. Towards a new titanium sector: Aerospace

    CSIR Research Space (South Africa)

    Du Preez, W

    2012-10-01

    Full Text Available Commercial partners Downstream Products LAM large parts (Aeroswift) Upscaling, Qualification, Industrialisation Additive Manufacturing Potential Impact on South African Aerospace ? CSIR 2012 Slide 16 Se rvi ce s AERONAUTICS SPACE Lau n ch V... ehic le s Sa tel lit e s Long h aul a ir cr af t R egi o n al a ir cr af t Gene ra l a ir cr af t He lico p te rs Se cu rit y U A V ?s Se rvi ce s Other Systems Avionics Propulsion Aero structures...

  19. Dielectric barrier discharge processing of aerospace materials

    International Nuclear Information System (INIS)

    Scott, S J; Figgures, C C; Dixon, D G

    2004-01-01

    We report the use of atmospheric pressure, air based, dielectric barrier discharges (DBD) to treat materials commonly used in the aerospace industries. The material samples were processed using a test-bed of a conventional DBD configuration in which the sample formed one of the electrodes and was placed in close proximity to a ceramic electrode. The discharges generated a powerful, cold oxidizing environment which was able to remove organic contaminants, etch primer and paint layers, oxidize aluminium and roughen carbon fibre composites by the selective removal of resin

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 28: The technical communication practices of aerospace engineering and science students: Results of the phase 4 cross-national surveys

    Science.gov (United States)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate aerospace engineering and science students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an aerospace engineer or a scientist, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication skills, practices, habits, and training of aerospace engineering and science students. The reported data were obtained from a survey of students enrolled in aerospace engineering and science programs at universities in India, Japan, Russia, and the United Kingdom. The surveys were undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance, use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  1. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic.

    Directory of Open Access Journals (Sweden)

    Indranil Mukhopadhyay

    Full Text Available Cough is a protective reflex action that helps clear the respiratory tract which is continuously exposed to airborne environmental irritants. However, chronic cough presents itself as a disease in its own right and despite its global occurrence; the molecular mechanisms responsible for cough are not completely understood. Transient receptor potential ankyrin1 (TRPA1 is robustly expressed in the neuronal as well as non-neuronal cells of the respiratory tract and is a sensor of a wide range of environmental irritants. It is fast getting acceptance as a key biological sensor of a variety of pro-tussive agents often implicated in miscellaneous chronic cough conditions. In the present study, we demonstrate in vitro direct functional activation of TRPA1 receptor by citric acid which is routinely used to evoke cough in preclinical and clinical studies. We also show for the first time that a potent and selective TRPA1 antagonist GRC 17536 inhibits citric acid induced cellular Ca(+2 influx in TRPA1 expressing cells and the citric acid induced cough response in guinea pigs. Hence our data provides a mechanistic link between TRPA1 receptor activation in vitro and cough response induced in vivo by citric acid. Furthermore, we also show evidence for TRPA1 activation in vitro by the TLR4, TLR7 and TLR8 ligands which are implicated in bacterial/respiratory virus pathogenesis often resulting in chronic cough. In conclusion, this study highlights the potential utility of TRPA1 antagonist such as GRC 17536 in the treatment of miscellaneous chronic cough conditions arising due to diverse causes but commonly driven via TRPA1.

  2. A Program of Research and Education in Aerospace Structures at the Joint Institute for Advancement of Flight Sciences

    Science.gov (United States)

    Tolson, Robert H.

    2000-01-01

    The objectives of the cooperative effort with NASA was to conduct research related to aerospace structures and to increase the quality and quantity of highly trained engineers knowledgeable about aerospace structures. The program has successfully met the objectives and has been of significant benefit to NASA LARC, the GWU and the nation. The program was initiated with 3 students in 1994 under the direction of Dr. Robert Tolson as the Principal Investigator. Since initiation, 14 students have been involved in the program, resulting in 11 MS degrees with 2 more expected in 2000. The 11 MS theses and projects are listed. For technology transfer purposes some research is not reported in thesis form. Graduates from the program have been hired at aerospace and other companies across the nation, providing GWU and LARC with important industry and government contacts.

  3. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    Science.gov (United States)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  4. Frequency Response Function Based Damage Identification for Aerospace Structures

    Science.gov (United States)

    Oliver, Joseph Acton

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite

  5. Summary of aerospace and nuclear engineering activities

    Science.gov (United States)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  6. Pathways and Challenges to Innovation in Aerospace

    Science.gov (United States)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  7. Managing human fallibility in critical aerospace situations

    Science.gov (United States)

    Tew, Larry

    2014-11-01

    Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.

  8. Proposal for a EU quality label for aerospace education

    NARCIS (Netherlands)

    Bernelli-Zazzera, Franco; Angeles, Maria; Prats, Martin; Marulo, Francesco; Hanus, Daniel; Melkert, J.A.; Guglieri, Giorgio; Bauer, Pascal; Pantelaki, Irene; Wasser, Iring; Deconinck, Herman; Bosilca, Ruxandra; Saari, Hanna-Kaisa; Gherman, B.; Porumbel, I.

    2018-01-01

    The paper presents a possible roadmap for the definition of a European quality label for aerospace related higher education degrees. The proposal is the result of a two-years long Horizon 2020 project that has involved a great portion of the European stakeholders in aerospace: Universities, research

  9. The Relationship of Skilled Aerospace Manufacturing Workforce Performance to Training

    Science.gov (United States)

    Malsberry, Suzanne

    2014-01-01

    A major economic driver, the aerospace industry contributes to exports and higher wage jobs, which the United States requires to maintain robust economic health. Despite the investment in vocational educational training programs, insufficient workers have been available to aerospace companies. The purpose of this study was to investigate the…

  10. 76 FR 23339 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-04-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-043)] Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of meeting... Register of April 6, 2011, announcing a meeting of the Aerospace Safety Advisory Panel (ASAP) to take place...

  11. The Status and Future of Aerospace Engineering Education in Turkey.

    Science.gov (United States)

    Hale, Francis J.

    There is no aerospace industry in Turkey, and the level of operational activity is low even though the potential for the exploitation of aviation is high. The government of Turkey hopes to establish an aircraft factory in conjunction with a foreign contractor and is aware of the need for aerospace engineering education. This paper describes the…

  12. Current Trends in Aerospace Engineering Education on Taiwan.

    Science.gov (United States)

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan,…

  13. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  14. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  15. Possibilities of Mexican SMEs insertion in the aerospace industry value chain, the Baja California case

    Directory of Open Access Journals (Sweden)

    Juana Hernández Chavarria

    2018-01-01

    Full Text Available The goal of this article is to analyze the aerospace industry in Baja California, Mexico. The methodology is based on the application of an electronic questionnaire and face-to-face in depth interviews. Our results shows that the insertion of companies has been conditioned by several factors: the basic certification is only the first step; the real challenge is to find niches of opportunity and bargaining power to achieve a productive contract, which demands entrepreneurial, legal and economic skills. This analysis is a pioneer in the study of Mexican companies participating in this emerging sector. The main limitations were the access to the companies’ information and the rejection to participate in the study. The main finding is there are very few Mexican suppliers integrated to the global value aerospace chain but if the trend of growth is maintained, it may had greater integration in the near future, and possibly a greater economic spill and technology transfer.

  16. Total quality management: It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle. Four projects are described that utilize cross-functional, problem-solving teams for identifying requirements and defining tasks and task standards, management participation, attention to critical processes, and measurable long-term goals. The implementation of these projects provides the customer with measurably improved access to information that is provided through several channels: the NASA STI Database, document requests for microfiche and hardcopy, and the Centralized Help Desk.

  17. Engineering derivatives from biological systems for advanced aerospace applications

    Science.gov (United States)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  18. 78 FR 76035 - Airworthiness Directives; Maule Aerospace Technology, Inc. Airplanes

    Science.gov (United States)

    2013-12-16

    ..., 2013) or on the determination of the cost to the public. Conclusion We reviewed the relevant data and... 39-10669 (63 FR 39018, July 21, 1998), was issued, the AD format has been revised, and certain... back and forth and experiment with the angle of contact to produce the lowest thickness reading...

  19. Consortium for Nanomaterials for Aerospace Commerce and Technology (CONTACT)

    Science.gov (United States)

    2013-02-01

    57. "Anomalous hysteresis as evidence for a magnetic-field-induced chiral superconducting state in LiFeAs," G. Li, R. R. Urbano , P. Goswami, C... planned to study mechanisms for achieving light confinement in photonic-crystal nanocavities with the goal of developing various ways to control the...coupled to the photonic-crystal nanocavity. In other words, by feeding back this error signal to the laser one can control the nanocavity. We plan to

  20. Bio-mimetic Concepts towards Next-Generation Aerospace Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Harbor Seal whisker samples were obtained from the San Diego Zoo for analysis using both microscopes and computed tomography (CT) to obtain an accurate 3D geometry....

  1. 78 FR 49207 - Airworthiness Directives; Maule Aerospace Technology, Inc. Airplanes

    Science.gov (United States)

    2013-08-13

    ... Park, Georgia 30337; phone: (404) 474-5551; fax: (404) 474-5606; email: [email protected] inspector certified using the guidelines established by the American Society for Non-destructive Testing or..., 1701 Columbia Avenue, College Park, Georgia 30337; phone: (404) 474-5551; fax: (404) 474- 5606; email...

  2. Leveraging Active Knit Technologies for Aerospace Pressure Suit Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Anti-Gravity Suits (AGS) are garments used in astronautics to prevent crew from experiencing orthostatic intolerance (OI) and consequential blackouts while...

  3. Skill gap analysis and training needs in Indian aerospace industry

    Directory of Open Access Journals (Sweden)

    Premkumar Balaraman

    2016-12-01

    Full Text Available Purpose: The main objective of the paper is on assessing the global aerospace industry as well as Indian scenario, and attempts to assess the skill gaps and training needs of Indian aerospace industry.  Design/methodology/approach: The study is qualitative in nature, and employs wide array of qualitative tools which includes desktop study, focus group interviews and secondary sources of information. Around 10 focus groups were used in the study, with each focus group having a minimum of 6 members of experts in the aerospace and allied industries. The study evolved into a 2 staged one, with the first study elucidating the growing importance and potential of aerospace industry, justifying the significance to take forward the second part of the study. And the second study specifically focuses on skill gaps and training needs. Findings and Originality/value: The Study yields varied results on existing generic expectations of aerospace industry, specific needs of aerospace industry, identification of aerospace job categories unique to aerospace industry, key issues of training in Indian scenario and recommendations. The paper in summary reflects the current scenario of aerospace industry potentials for India and its likely impact on skills gap and training needs. Practical implications: Skills gap is a significant gap between an organization’s current capabilities and the skills it needs to achieve its goals. As a number of Global forecasts project, India as an emerging aviation market, the skill gaps in this sector is predicted to be huge and necessitates the study on assessing the skill gaps and its allied training needs. Originality/value: The Study is highly original and first one of its kind in reflecting the current situation of the skills gap and training needs in Indian Aerospace industry. The focus group interviews were conducted with the experts at various levels in the industyr without any bias yielding valid and realtime data for the

  4. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    Science.gov (United States)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  5. Mobility Research for Future Vehicles: A Methodology to Create a Unified Trade-Off Environment for Advanced Aerospace Vehicle

    Science.gov (United States)

    2018-01-31

    road-mapping and analogies. Technology road-mapping consists of projecting major technological elements of product design and manufacturing together...relevant to the UH-60 Blackhawk upgrades. GE is expected to begin production of the engine in 2025. It is designed to produce 50% more power at SL...Boeing Prof. Advanced Systems Design dimitri.mavris@aserospace.gatech.edu Kyle Collins Research Faculty kyle.collins@asdl.gatech.edu Aerospace

  6. Small Business Innovation Research GRC Phase I, Phase II, and Post-Phase II Opportunity Assessment for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report outlines the 2015 Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) Phase I, Phase II, and Post-Phase II opportunity contract award results associated with NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD) for NASA Glenn Research Center. The report also highlights the number of Phase I, Phase II, and Post-Phase II contracts awarded by mission directorate. The 2015 Phase I contract awards to companies in Ohio and their corresponding technologies are also discussed.

  7. Weakly ionized plasmas in aerospace applications

    International Nuclear Information System (INIS)

    Semenov, V E; Bondarenko, V G; Gildenburg, V B; Gubchenko, V M; Smirnov, A I

    2002-01-01

    This paper is an overview of the activity and state-of-the-art in the field of plasma aerospace applications. Both experimental results and theoretical ideas are analysed. Principal attention is focused on understanding the physical mechanisms of the plasma effect on hypersonic aerodynamics. In particular, it is shown that drag reduction can be achieved using a proper distribution of heat sources around a flying body. Estimates of the energetic efficiency of the thermal mechanism of aerodynamic drag reduction are presented. The non-thermal effect caused by the interaction of a plasma flow with a magnetic field is also analysed. Specifically, it is shown that appropriate spatial distribution of volumetric forces around a hypersonic body allows for complete elimination of shock wave generation. It should be noted that in an ideal case, shock waves could be eliminated without energy consumption

  8. Predicting Production Costs for Advanced Aerospace Vehicles

    Science.gov (United States)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  9. Design search and optimization in aerospace engineering.

    Science.gov (United States)

    Keane, A J; Scanlan, J P

    2007-10-15

    In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams.

  10. Out-of-Autoclave Manufacturing of Aerospace Representative Parts

    Science.gov (United States)

    Cauberghs, Julien

    The use of carbon fibre reinforced composites for aerospace structures has seen a high increase in recent years, and is still growing. The high stiffness-to-weight ratio of these materials makes them ideal for primary structures on airplanes, satellites, and spacecrafts. Nevertheless, the manufacturing of composites remains very costly since it requires equipment investment such as an autoclave, and very qualified workers. Out-of-autoclave manufacturing technology is very promising since it only requires a traditional oven, while still aiming at similar part quality. However, the absence of positive pressure compared with an autoclave makes it more difficult to achieve low porosity parts. This research investigates the manufacturing of complex features with out-of autoclave prepreg technology. The features studied are tight-radius corners with a curvature change, and ply drop-offs. Ply drop-offs tests were conducted to identify if porosity is higher at ply terminations. In corners, the bagging arrangement was modified to achieve the most uniform thickness in areas of curvature change, even with small radii. The conclusions from these studies provided us with guidelines to manufacture larger representative parts, which included these features. The representative parts were tested for porosity, thickness uniformity, mechanical performance, and glass transition temperature (Tg). A total of four representative parts were manufactured with out-of-autoclave technology, and one more was manufactured with an autoclave to allow for a proper comparison between the two processes. The materials used were MTM45-1 5 harness satin and CYCOM5320 plain weave for the out-of-autoclave parts, and CYCOM5276-1 plain weave for the autoclave part. The effect of ply drop-offs on porosity was found to be negligible. Thickness deviation in corners was attributed to a combination of consumable bridging, prepreg's bulk factor and inter-ply shear. Overall, out-of-autoclave prepregs showed

  11. Technology Transfer: Technocultures, Power and Communication--The Australian Experience.

    Science.gov (United States)

    More, Elizabeth; Irwin, Harry

    1995-01-01

    Discusses issues of communication and power in the organizational dimensions of international technology transfer, including technoculture differences and strategic political alliances. Theoretical discussion is supplemented by analysis of international technology transfer activities involving Australian participation in the aerospace and…

  12. ASRC Aerospace Corporation Selects Dynamically Reconfigurable Anadigm(Registered Trademark) FPAA For Advanced Data Acquisition System

    Science.gov (United States)

    Mata, Carlos T.

    2003-01-01

    Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.

  13. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  15. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

    Science.gov (United States)

    Eldred, Lloyd B.

    2011-01-01

    Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

  16. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  17. Energetic Combustion Devices for Aerospace Propulsion and Power

    Science.gov (United States)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  18. A Methodology for Engineering Competencies Definition in the Aerospace Industry

    Directory of Open Access Journals (Sweden)

    Laura Fortunato

    2011-10-01

    Full Text Available The need to cut off lead times, to increase the products innovation, to respond to changing customer requirements and to integrate new technologies into business process pushes companies to increase the collaboration. In particular, collaboration, knowledge sharing and information exchange in the Aerospace Value Network, need to a clear definition and identification of competencies of several actors. Main contractors, stakeholders, customers, suppliers, partners, have different expertise and backgrounds and in this collaborative working environment are called to work together in projects, programs and process. To improve collaboration and support the knowledge sharing, a competencies definition methodology and the related dictionary result useful tools among actors within an extended supply chain. They can use the same terminology and be informed on the competencies available. It becomes easy to specify who knows to do required activities stimulating collaboration and improving communication. Based on an action research developed in the context of the iDesign Foundation project, the paper outlines a competency definition methodology and it presents examples from the implementation in Alenia Aeronautica company. A new definition of competency is suggested supporting by a new method to specify the structural relationship between competencies and activities of aeronautical processes.

  19. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    Science.gov (United States)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  20. Technician Career Opportunities in Engineering Technology.

    Science.gov (United States)

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  1. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    Science.gov (United States)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    Science.gov (United States)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  3. Global Optimization using Interval Analysis : Interval Optimization for Aerospace Applications

    NARCIS (Netherlands)

    Van Kampen, E.

    2010-01-01

    Optimization is an important element in aerospace related research. It is encountered for example in trajectory optimization problems, such as: satellite formation flying, spacecraft re-entry optimization and airport approach and departure optimization; in control optimization, for example in

  4. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    NARCIS (Netherlands)

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their

  5. Design and Fabrication of Aerospace-Grade Digital Composite Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to advance design rules and fabrication approaches to create aerospace-grade structures from digital composite materials. Digital materials are...

  6. Risk communication strategy development using the aerospace systems engineering process

    Science.gov (United States)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  7. The Effects of the Single Process Initiative on Aerospace Subcontractors

    National Research Council Canada - National Science Library

    Winicki, Anthony

    1998-01-01

    .... The methodology used to identify the apparent inequities faced by the subcontractors was a review of current literature and 40 telephone interviews with representatives of aerospace prime contractors and subcontractors...

  8. HETEROGENEOUS INTEGRATION TECHNOLOGY

    Science.gov (United States)

    2017-08-24

    AFRL-RY-WP-TR-2017-0168 HETEROGENEOUS INTEGRATION TECHNOLOGY Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...Final September 1, 2016 – May 1, 2017 4. TITLE AND SUBTITLE HETEROGENEOUS INTEGRATION TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A...provide a structure for this review. The history and the current status of integration technologies in each category are examined and product examples are

  9. A Surface Modeling Paradigm for Electromagnetic Applications in Aerospace Structures

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakar, V; Mahapatra, PR

    1989-01-01

    A systematic approach has been developed to model the surfaces encountered in aerospace engineering for EM applications. The basis of this modeling is the quadric canonical shapes which are the coordinate surfaces of the Eisenhart Coordinate systems. The building blocks are visualized as sections of quadric cylinders and surfaces of revolution. These truncated quadrics can successfully model realistic aerospace structures which are termed a s hybrid quadrics, of which the satellite launch veh...

  10. CSIR in aerospace: An engine for future industrial growth

    CSIR Research Space (South Africa)

    Naidoo, Kavendra

    2017-10-01

    Full Text Available for industry impact 3 A brief summary of previous and current activities in SA aerospace Argos-II Airborne Observation System SumbandilaSat Satellite 4 RAVIN Light Aircraft JS1 Championship Glider Sling Light Sport Aircraft AIRBUS SUPPLIER... BOEING SUPPLIER SAAB Light Fighter Aircraft Airbus Military Transport Agusta Military Helicopter A brief summary of previous and current activities in SA aerospace A-Darter Short Range Air to Air Missile 5 Test flight centre Alkantpan...

  11. Modulation and control of matrix converter for aerospace application

    Science.gov (United States)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix

  12. Development of Synthesis and Large Scale Production Technology for Ultrahigh Energy and Density Fluoro-Organic Compounds

    National Research Council Canada - National Science Library

    Yang, Jing; Knight, Travis W; Dolfier, Jr., William R; Segal, Corin

    2005-01-01

    .... The project combined the scientific research base of the University of Florida Department of Chemistry and Department of Mechanical and Aerospace Engineering with the analytical skills and technology...

  13. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  14. Nanocomposites as Advanced Materials for Aerospace Industry

    Directory of Open Access Journals (Sweden)

    George PELIN

    2012-12-01

    Full Text Available Polymer nanocomposites, consisting of nanoparticles dispersed in polymer matrix, have gained interest due to the attractive properties of nanostructured fillers, as carbon nanotubes and layered silicates. Low volume additions (1- 5% of nanoparticles provide properties enhancements comparable to those achieved by conventional loadings (15- 40% of traditional fillers.Structural nanocomposites represent reinforcement structures based on carbon or glass fibers embedded into polymeric matrix modified with nanofillers.Structural composites are the most important application of nanaocomposites, in aerospace field, as, laminates and sandwich structures. Also, they can by used as anti-lightning, anti-radar protectors and paints. The paper presents the effects of sonic dispersion of carbon nanotubes and montmorrilonite on the mechanical, electrical, rheological and trybological properties of epoxy polymers and laminated composites, with carbon or glass fiber reinforcement, with nanoadditivated epoxy matrix. One significant observation is that nanoclay contents higher than 2% wt generate an increase of the resin viscosity, from 1500 to 50000- 100000 cP, making the matrix impossible to use in high performance composites.Also, carbon nanotubes provide the resin important electrical properties, passing from dielectric to semi- conductive class. These effects have also been observed for fiber reinforced composites.Contrarily to some opinions in literature, the results of carbon nanotubes or nanoclays addition on the mechanical characteristics of glass or carbon fiber composites seem to be rather low.

  15. Impact source localisation in aerospace composite structures

    Science.gov (United States)

    De Simone, Mario Emanuele; Ciampa, Francesco; Boccardi, Salvatore; Meo, Michele

    2017-12-01

    The most commonly encountered type of damage in aircraft composite structures is caused by low-velocity impacts due to foreign objects such as hail stones, tool drops and bird strikes. Often these events can cause severe internal material damage that is difficult to detect and may lead to a significant reduction of the structure’s strength and fatigue life. For this reason there is an urgent need to develop structural health monitoring systems able to localise low-velocity impacts in both metallic and composite components as they occur. This article proposes a novel monitoring system for impact localisation in aluminium and composite structures, which is able to determine the impact location in real-time without a-priori knowledge of the mechanical properties of the material. This method relies on an optimal configuration of receiving sensors, which allows linearization of well-known nonlinear systems of equations for the estimation of the impact location. The proposed algorithm is based on the time of arrival identification of the elastic waves generated by the impact source using the Akaike Information Criterion. The proposed approach was demonstrated successfully on both isotropic and orthotropic materials by using a network of closely spaced surface-bonded piezoelectric transducers. The results obtained show the validity of the proposed algorithm, since the impact sources were detected with a high level of accuracy. The proposed impact detection system overcomes current limitations of other methods and can be retrofitted easily on existing aerospace structures allowing timely detection of an impact event.

  16. Robust and Adaptive Control With Aerospace Applications

    CERN Document Server

    Lavretsky, Eugene

    2013-01-01

    Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems.  The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: ·         case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; ·         detailed background material for each chapter to motivate theoretical developments; ·         realistic examples and simulation data illustrating key features ...

  17. Technology Education Professional Enhancement Project

    Science.gov (United States)

    Hughes, Thomas A., Jr.

    1996-01-01

    The two goals of this project are: the use of integrative field of aerospace technology to enhance the content and instruction delivered by math, science, and technology teachers through the development of a new publication entitled NASA Technology Today, and to develop a rationale and structure for the study of technology, which establishes the foundation for developing technology education standards and programs of the future.

  18. Experimental Investigation of Brazilian 14-X B Hypersonic Scramjet Aerospace Vehicle

    OpenAIRE

    de Araujo Martos, João Felipe; da Silveira Rêgo, Israel; Pachon Laiton, Sergio Nicholas; Lima, Bruno Coelho; Costa, Felipe Jean; de Paula Toro, Paulo Gilberto

    2017-01-01

    The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet) to be tested in flight into the Earth’s atmosphere at an altitude of 30 km and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, Institute for Advanced Studies (IEAv), Brazil. The IEAv T3 Hypersonic Shock Tunnel is a ground-test facility...

  19. Emerging Trends in the Globalization of Knowledge: The Role of the Technical Report in Aerospace Research and Development

    Science.gov (United States)

    Pinelli, Thomas E.; Golich, Vicki L.

    1997-01-01

    Economists, management theorists, business strategists, and governments alike recognize knowledge as the single most important resource in today's global economy. Because of its relationship to technological progress and economic growth, many governments have taken a keen interest in knowledge, specifically its production, transfer, and use. This paper focuses on the technical report as a product for disseminating the results of aerospace research and development (R&D) and its use and importance to aerospace engineers and scientists. The emergence of knowledge as an intellectual asset, its relationship to innovation, and its importance in a global economy provides the context for the paper. The relationships between government and knowledge and between government and innovation are used to placed knowledge within the context of publicly-funded R&D. Data, including the reader preferences of NASA technical reports, are derived from the NASA/DOD Aerospace Knowledge Diffusion Research Project, a ten-year study of knowledge diffusion in the U.S. aerospace industry.

  20. Research and technology, 1993

    Science.gov (United States)

    1994-01-01

    Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These activities exemplify the center's varied and productive research efforts for 1993. This year's report presents some of the challenging work recently accomplished in the areas of aerospace systems, flight operations and research, aerophysics, and space research.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 69: Writing for the Aerospace Industry. Chapter 3; The Practice of Technical and Scientific Communication: Writing in Professional Contexts

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.

    1997-01-01

    The large and complex aerospace industry, which employed approximately 850,000 people in 1994 (Aerospace Facts, 1994-95, p. 11), plays a vital role in the nation's economy. Although only a small percentage of those employed in aerospace are technical communicators, they perform a wide variety of communication duties in government and the private sector.

  2. A Briefing on Metrics and Risks for Autonomous Decision-Making in Aerospace Applications

    Science.gov (United States)

    Frost, Susan; Goebel, Kai Frank; Galvan, Jose Ramon

    2012-01-01

    Significant technology advances will enable future aerospace systems to safely and reliably make decisions autonomously, or without human interaction. The decision-making may result in actions that enable an aircraft or spacecraft in an off-nominal state or with slightly degraded components to achieve mission performance and safety goals while reducing or avoiding damage to the aircraft or spacecraft. Some key technology enablers for autonomous decision-making include: a continuous state awareness through the maturation of the prognostics health management field, novel sensor development, and the considerable gains made in computation power and data processing bandwidth versus system size. Sophisticated algorithms and physics based models coupled with these technological advances allow reliable assessment of a system, subsystem, or components. Decisions that balance mission objectives and constraints with remaining useful life predictions can be made autonomously to maintain safety requirements, optimal performance, and ensure mission objectives. This autonomous approach to decision-making will come with new risks and benefits, some of which will be examined in this paper. To start, an account of previous work to categorize or quantify autonomy in aerospace systems will be presented. In addition, a survey of perceived risks in autonomous decision-making in the context of piloted aircraft and remotely piloted or completely autonomous unmanned autonomous systems (UAS) will be presented based on interviews that were conducted with individuals from industry, academia, and government.

  3. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  4. Microstructure, mechanical behavior and corrosion properties of friction stir welded aluminum alloys used in the aerospace industry

    OpenAIRE

    Alfaro Mercado, Ulises

    2011-01-01

    Friction stir welding (FSW) has been identified as “key” technology for the production of primary aerospace structures, being able to substitute conventional riveted airframes. FSW is a solid state welding process that avoids any problems caused by the solidification of the melted weld pool. Besides the production of high quality similar joints from high strength aluminum alloys, it allows for joining materials of different metallurgical characteristics. However, problems concerning the corro...

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 26: The technical communication practices of aerospace engineering students: Results of the phase 3 AIAA National Student Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate engineering students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of aerospace engineering students. The reported data were obtained from a survey of student members of the American Institute of Aeronautics and Astronautics (AIAA). The survey was undertaken as a phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance; use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  6. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  7. Ultralight Core Shell Architectures for Aerospace Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the impact of integrating nanomaterials into current technology is of great importance to design composite structures to meet our application needs....

  8. CICT Computing, Information, and Communications Technology Program

    Science.gov (United States)

    Laufenberg, Lawrence; Tu, Eugene (Technical Monitor)

    2002-01-01

    The CICT Program is part of the NASA Aerospace Technology Enterprise's fundamental technology thrust to develop tools. processes, and technologies that enable new aerospace system capabilities and missions. The CICT Program's four key objectives are: Provide seamless access to NASA resources- including ground-, air-, and space-based distributed information technology resources-so that NASA scientists and engineers can more easily control missions, make new scientific discoveries, and design the next-generation space vehicles, provide high-data delivery from these assets directly to users for missions, develop goal-oriented human-centered systems, and research, develop and evaluate revolutionary technology.

  9. Smart Aerospace eCommerce: Using Intelligent Agents in a NASA Mission Services Ordering Application

    Science.gov (United States)

    Moleski, Walt; Luczak, Ed; Morris, Kim; Clayton, Bill; Scherf, Patricia; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes how intelligent agent technology was successfully prototyped and then deployed in a smart eCommerce application for NASA. An intelligent software agent called the Intelligent Service Validation Agent (ISVA) was added to an existing web-based ordering application to validate complex orders for spacecraft mission services. This integration of intelligent agent technology with conventional web technology satisfies an immediate NASA need to reduce manual order processing costs. The ISVA agent checks orders for completeness, consistency, and correctness, and notifies users of detected problems. ISVA uses NASA business rules and a knowledge base of NASA services, and is implemented using the Java Expert System Shell (Jess), a fast rule-based inference engine. The paper discusses the design of the agent and knowledge base, and the prototyping and deployment approach. It also discusses future directions and other applications, and discusses lessons-learned that may help other projects make their aerospace eCommerce applications smarter.

  10. Didactic communication in the training of specialists in aerospace engineering

    Directory of Open Access Journals (Sweden)

    Arpentieva Mariam

    2018-01-01

    Full Text Available The article is devoted to the study of the problems of didactic communication in the training of engineering personnel for the aerospace industry and to the study of the problems of the communication of subjects concerning the training and education of highly qualified engineering personnel for the aerospace industry. In the training of engineering personnel for the aerospace industry the integrated model of didactic communication involves the identification and description of its various components, typical modes of interaction (modes that reflect different aspects of the person's understanding of the world around him and himself in the process of different types of education and upbringing. Didactic communication in the process of training engineering personnel for the aerospace industry is a multi-level, multi-stage and multi-component phenomenon. The modes, possibilities and limitations of this communication are related to the level and direction of personal, interpersonal and professional development of interaction subjects. The productivity of preparing engineering personnel for the aerospace industry is related to the choice of a model of didactic communication, which is addressed in different ways to the development of cognitive, value-semantic and meta-cognitive structures that form one or another type of education and upbringing.

  11. Factors Influencing Advancement of Women Senior Leaders in Aerospace Companies

    Science.gov (United States)

    Garrett-Howard, Camille Elaine

    The problem researched in this study was the limited number of women in senior leadership positions in the aerospace industry. The purpose of this qualitative phenomenological research study was to interview women senior leaders in the aerospace industry to explore the factors they perceived as beneficial to their advancement to senior leadership positions in the aerospace industry. The research study was guided by a central research question relating to what professional and personal factors might have led to promotional opportunities into senior leadership roles. Transformational leadership was the conceptual framework used to inform the study. The qualitative, phenomenological approach was selected to gain insights of the lived experiences and perceptions relating to career advancement of women to senior leadership positions in the aerospace industry. Data were collected using a modified Van Kaam method, coded, and analyzed to discern themes or patterns. Findings were that the attributes participants contributed to their success, included a focus on leadership, personal development, and the importance of mentoring relationships. This study presented a positive direction in addressing the gaps in the body of knowledge related to women and leadership development by exploring the experiences of women in senior leadership positions in the aerospace industry. Implications for social change include informing organizations and women about specific leadership development practices as one way to promote more women into leadership positions thus reducing the gap between the number of men and women leaders.

  12. Actively controlled shaft seals for aerospace applications

    Science.gov (United States)

    Salant, Richard F.

    1995-07-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  13. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    Science.gov (United States)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  14. In-service inspection guidelines for composite aerospace structures

    International Nuclear Information System (INIS)

    Heida, Jaap H.; Platenkamp, Derk J.

    2012-01-01

    The in-service inspection of composite aerospace structures is reviewed, using the results of a evaluation of promising, mobile non-destructive inspection (NDI) methods. The evaluation made use of carbon fibre reinforced specimens representative for primary composite aerospace structures, including relevant damage types such as impact damage, delaminations and disbonds. A range of NDI methods were evaluated such as visual inspection, vibration analysis, phased array ultrasonic inspection, shearography and thermography inspection. Important aspects of the evaluation were the capability for defect detection and characterization, portability of equipment, field of view, couplant requirements, speed of inspection, level of training required and the cost of equipment. The paper reviews the damage tolerance design approach for composites, and concludes with guidelines for the in-service inspection of composite aerospace structures.

  15. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 2, Part 3; Appendices

    Science.gov (United States)

    Jung, David S,; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume II Appendices to Part 3 - Volume I.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 60: Culture and Workplace Communications: A Comparison of the Technical Communications Practices of Japanese and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The advent of global markets elevates the role and importance of culture as a mitigating factor in the diffusion of knowledge and technology and in product and process innovation. This is especially true in the Large Commercial Aircraft (LCA) sector where the production and market aspects are becoming increasingly international. As firms expand beyond their national borders, using such methods as risk- sharing partnerships, joint ventures, outsourcing, and alliances, they have to contend with national and corporate cultures. Our focus is on Japan, a 'program participant' in the production of the Boeing Company's 777; the influence of Japanese culture on the diffusion of knowledge and technology in aerospace at the national and international levels; those cultural determinants-the propensity to work together, a willingness to subsume individual interests to a greater good, and an emphasis on consensual decisionmaking-that have a direct bearing on the ability of Japanese firms to form alliances and compete in international markets; and those cultural determinants thought to influence the information- seeking behaviors and workplace communication practices of Japanese aerospace engineers and scientists. In this paper, we report selective results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on workplace communications. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communication, use of libraries, use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports.

  17. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  18. National Aerospace Leadership Initiative - Phase I

    National Research Council Canada - National Science Library

    Mansfield, Jr., Robert E; Dalton, Jeffrey; Churchill, Philip

    2008-01-01

    .... Task III resulted in the formation of a world-class Laser Applications Laboratory that, combined with modeling and simulation, is key to transitioning next generation manufacturing technologies to small-medium size U.S...

  19. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  20. Philosophy and ethics of aerospace engineering

    OpenAIRE

    Mendes, António Luis Martins

    2016-01-01

    Engineering was a recognized human activity at a certain period of the history (17th / 18th centuries) when some militaries designed, constructed, operated, and maintained fortifications and engines of war, and then those activities were transferred into non-military applications. Engineering has continued to change geographically and socially and presently is extremely broad and its relevance it’s not solely technology based. However, its role in technology is decisive since is largely by te...

  1. Aerospace toxicology overview: aerial application and cabin air quality.

    Science.gov (United States)

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  2. Advances in Computational Stability Analysis of Composite Aerospace Structures

    International Nuclear Information System (INIS)

    Degenhardt, R.; Araujo, F. C. de

    2010-01-01

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  3. Study of combined cycle engine for aerospace plane

    OpenAIRE

    苅田, 丈士; KANDA, Takeshi; 工藤, 賢司; KUDO, Kenji

    2002-01-01

    At the Ramjet Propulsion Research Center, the scramjet engine for an aerospace plane has been studied. Other engines are required for the plane to go into orbit. Recently, a combined cycle engine including scramjet mode has been also studied to complete the engine system for the plane. The scramjet and the combined cycle engine are most effective with application to the Single-Stage-to-Orbit (SSTO) aerospace plane, as shown in Figure 1. Recent activity on the combined cycle engine and the SST...

  4. Development and integration of modern laboratories in aerospace education

    Science.gov (United States)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  5. Aerospace engineering curriculum for the 21st century

    Science.gov (United States)

    Simitses, George J.

    1995-01-01

    The second year of the study was devoted to completing the information-gathering phase of this redesign effort, using the conclusions from that activity to prepare the initial structure for the new curriculum, publicizing activities to a wider engineering forum, and preparing the department faculty (Aerospace Engineering and Engineering Mechanics at University of Cincinnati) for the roles they will play in the curriculum redesign and implementation. These activities are summarized briefly in this progress report. Attached is a paper resulting from the data acquisition of this effort, 'Educating Aerospace Engineers for the Twenty-First Century: Results of a Survey.'

  6. High-End Computing Challenges in Aerospace Design and Engineering

    Science.gov (United States)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  7. 78 FR 47546 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2013-08-06

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model... Aviation Authority of Israel (CAAI), which is the aviation authority for Israel, has issued Israeli...

  8. 76 FR 41041 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction of Systems...

    Science.gov (United States)

    2011-07-13

    ... Conditions No. 25-439-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction... special conditions are issued for the Gulfstream Aerospace LP (GALP) Model G250 airplane. This airplane...

  9. A qualitative inquiry of educational requirements of selected professions in the Oklahoma aerospace industry

    Science.gov (United States)

    Walker, Casey Jerry Kennon

    Interview of incumbents of intellectual capital positions at Boeing. The aerospace industry is a dynamic industry that requires continual skill updates to keep up with advancements in technology and operational trends within the industry. The purpose of this study was to examine intellectual capital requirements of selected professional positions within the Boeing Company in Oklahoma. Data obtained through interviews was used to determine if educational skills gaps existed. The findings of the study can be used to develop an aerospace educational pipeline based on collaborative relationships between industry and higher education to facilitate educational and training programs. Three broad research questions were used to address and support the findings of this study related to educational background, career progression, and gaps. A purposive sample of 10 professional positions was selected for interview using an interview guide containing 18 questions. Data was analyzed using manual coding techniques. Findings and conclusions. The study found that minimum education requirements for selected professional positions consisted of a bachelor's degree. Although the majority of participants identified a business degree as optimal, several participants indicated that an education background from multiple disciplines would provide the greatest benefit. Data from interviews showed educational degrees were not specialized enough and skills required to perform job functions were obtained through direct on the job experience or through corporate training. Indications from participant responses showed employees with a thorough knowledge of government acronyms had a decided advantage over those that did not. Recommendations included: expanding the study to multiple organizations by conducting a survey; expanding industry and academic partnerships; establishing a structured educational pipeline to fill critical positions; creating broad aerospace curricula degree programs tailored

  10. Technology R&D for space commerce

    Science.gov (United States)

    Sadin, Stanley R.; Christensen, Carissa B.; Steen, Robert G.

    1992-01-01

    The potential effects of reserach conducted by the NASA Office of Aeronautics and Space Technology, OAST, on the aerospace industry are addressed. Program elements aimed at meeting commercial needs and those aimed at meeting NASA needs which have secondary effects benefiting aerospace firms are considered. Particular attention is given to current and future NASA programs for cooperating with industry and the potential effects of OAST research on nonaerospace industries.

  11. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  12. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V

    2013-01-01

    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  13. Study on the control mechanism of China aerospace enterprises' binary multinational operation

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Li Hanling; Wu Weiwei

    2008-01-01

    China's aerospace enterprises carry on the multinational operation and participate in the international competition and the international division of labor and cooperation positively.This article first analyzs China aerospace enterprises' binary multinational business control objective and constructes its model.Then the article analyzes the tangible and intangible control mechanism of China aerospace enterprises' binary multinational operation respectively.Finally,the article constructs the model of China aerospace enterprises' binary multinational operation mechanisms.

  14. Intelligent Systems For Aerospace Engineering: An Overview

    Science.gov (United States)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  15. 78 FR 11567 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2013-02-19

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.) Model Gulfstream G150... Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft Industries, Ltd.): Amendment 39...

  16. 76 FR 70040 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2011-11-10

    ... Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft... Aerospace LP (type certificate previously held by Israel Aircraft Industries, Ltd.) Model Galaxy and... new AD: 2011-23-07 Gulfstream Aerospace LP (Type Certificate Previously Held by Israel Aircraft...

  17. 75 FR 30282 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    Science.gov (United States)

    2010-06-01

    ... Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This AD requires you... reference of certain publications listed in this AD. ADDRESSES: Quartz Mountain Aerospace, Inc. is in...

  18. 75 FR 12468 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes

    Science.gov (United States)

    2010-03-16

    ... Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This proposed AD would... 5 p.m., Monday through Friday, except Federal holidays. Quartz Mountain Aerospace, Inc. is in...

  19. 75 FR 61345 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes

    Science.gov (United States)

    2010-10-05

    ... Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes AGENCY: Federal Aviation Administration... service information identified in this AD, contact Eclipse Aerospace Incorporated, 2503 Clark Carr Loop... Kinney, Aerospace Engineer, Ft. Worth Aircraft Certification Office, FAA, 2601 Meacham Blvd., Fort Worth...

  20. 76 FR 435 - Airworthiness Directives; B/E Aerospace Protective Breathing Equipment (PBE) Part Number 119003...

    Science.gov (United States)

    2011-01-05

    ... Airworthiness Directives; B/E Aerospace Protective Breathing Equipment (PBE) Part Number 119003-11 Installed on... February 9, 2011. ADDRESSES: For service information identified in this AD, contact B/E Aerospace, Inc... Jersey Avenue, SE., Washington, DC 20590. FOR FURTHER INFORMATION CONTACT: David Fairback, Aerospace...

  1. 76 FR 71865 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Windshield Coating in...

    Science.gov (United States)

    2011-11-21

    ...; Special Conditions No. 25-452-SC] Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane... Aerospace Corporation Model GVI airplane. This airplane will have a novel or unusual design feature(s..., Gulfstream Aerospace Corporation (GAC) applied for an FAA type certificate for its new Model GVI passenger...

  2. 48 CFR 1852.244-70 - Geographic participation in the aerospace program.

    Science.gov (United States)

    2010-10-01

    ... the aerospace program. 1852.244-70 Section 1852.244-70 Federal Acquisition Regulations System NATIONAL... Provisions and Clauses 1852.244-70 Geographic participation in the aerospace program. As prescribed in 1844.204-70, insert the following clause: Geographic Participation in the Aerospace Program (APR 1985) (a...

  3. Research and Development of Rapid Design Systems for Aerospace Structure

    Science.gov (United States)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  4. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Science.gov (United States)

    2011-01-11

    ... this mission. U.S. companies already doing business in the target markets as well as U.S. companies... market. Canada has the fifth largest aerospace industry in the world; in 2009 it generated over $22 billion in revenues. Participating U.S. companies will receive market briefings by Canadian industry...

  5. Personality and organizational influences on aerospace human performance

    Science.gov (United States)

    Helmreich, Robert L.

    1989-01-01

    Individual and organizational influences on performance in aerospace environments are discussed. A model of personality with demonstrated validity is described along with reasons why personality's effects on performance have been underestimated. Organizational forces including intergroup conflict and coercive pressures are also described. It is suggested that basic and applied research in analog situations is needed to provide necessary guidance for planning future space missions.

  6. THE OFFICE OF AEROSPACE RESEARCH SCIENTIFIC AND TECHNICAL INFORMATION PROGRAM

    Science.gov (United States)

    The document outlines the mission and organization of the Office of Aerospace Research (OAR), then describes how its principal product, scientific...effective technical information program, are documented by examples. The role of the Office of Scientific and Technical Information within OAR as performed

  7. Strain characterization of embedded aerospace smart materials using shearography

    NARCIS (Netherlands)

    Anisimov, A.; Muller, B.; Sinke, J.; Groves, R.M.

    2015-01-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities

  8. Aerospace Medicine and Biology. A continuing bibliography with indexes

    Science.gov (United States)

    1982-01-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.

  9. 78 FR 49908 - Airworthiness Directives; Eclipse Aerospace, Inc. Airplanes

    Science.gov (United States)

    2013-08-16

    ... FURTHER INFORMATION CONTACT: Scott Fohrman, Aerospace Engineer, FAA, Chicago Aircraft Certification Office... result in uncommanded fire suppression system activation and simultaneous shutdown of both engines. (f... Manager, Chicago Aircraft Certification Office (ACO), FAA, has the authority to approve AMOCs for this AD...

  10. Aerospace medicine and biology. A continuing bibliography with indexes

    International Nuclear Information System (INIS)

    1982-03-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

  11. 77 FR 74579 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Science.gov (United States)

    2012-12-17

    ... Certification Office (ACO), 1701 Columbia Avenue, College Park, Georgia 30337; phone: 404-474-5566; fax: 404-474... Management Branch, ACE-102A, FAA, Atlanta Aircraft Certification Office (ACO), 1701 Columbia Avenue, College... directive (AD) for certain Gulfstream Aerospace Corporation Model GIV-X airplanes. This AD requires...

  12. 77 FR 41891 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Science.gov (United States)

    2012-07-17

    ... Certification Office, 1701 Columbia Avenue, College Park, GA 30337; phone 404-474-5548; fax 404-474-5605; email... directive (AD) for certain Gulfstream Aerospace Corporation Model G-IV, GIV-X, GV, and GV-SP airplanes. This... received, and other information. The street address for the Docket Office (phone: 800-647-5527) is in the...

  13. Advanced materials for application in the aerospace and automotive industries

    CSIR Research Space (South Africa)

    Damm, O

    2008-11-01

    Full Text Available The CSIR conducts research and development (R&D) involving advanced materials with applications in the local automotive and aerospace industries. The relevance of these R&D programmes is illustrated by positioning them in the context of key industry...

  14. Six Aerospace design projects to learn how to engineer

    NARCIS (Netherlands)

    Kamp, A.

    2013-01-01

    Tomorrow’s engineers are required to have a good balance of deep working knowledge of engineering sciences and engineering skills. In the Bachelor in Aerospace Engineering at TU Delft, students are educated to master these competences so that they are ready to engineer when they graduate. The

  15. Aerospace Power Journal. Volume 16, Number 1, Spring 2002

    Science.gov (United States)

    2002-01-01

    America and Europe qualify, as do many in Asia, such as Singapore; Kuala Lumpur, Malaysia ; and Tokyo, Japan. At the opposite end of the spectrum are...such as tanks Notes 68 AEROSPACE POWER JOURNAL SPRING 2002 and armored personnel carriers, nestled between tall buildings. The results are

  16. The Role of Computer Networks in Aerospace Engineering.

    Science.gov (United States)

    Bishop, Ann Peterson

    1994-01-01

    Presents selected results from an empirical investigation into the use of computer networks in aerospace engineering based on data from a national mail survey. The need for user-based studies of electronic networking is discussed, and a copy of the questionnaire used in the survey is appended. (Contains 46 references.) (LRW)

  17. Evaluation MUMIE Online Math Education Pilot Aerospace Engineering

    NARCIS (Netherlands)

    Vuik, K.; Daalderop, F.; Van Kints, R.; Schaap, B.

    2011-01-01

    In this document the Mumie pilot that took place in March 2010 for the Linear Algebra course (wi1403lr) at Aerospace Engineering will be evaluated. This pilot is the result of an interest in using an e-learning platform that can improve the level of education for first year mathematical courses at

  18. Airborne aerospace; interview with business development manager space

    NARCIS (Netherlands)

    Woldendorp, S.; Nevinskala, A.; Gupta, S.

    2013-01-01

    Airborne Composites designs and manufactures composite parts for the Aerospace, Oil & Gas, Marine and other industries since 1995. They are involved in notable hightech projects, from the Galileo Satellites, to the Gulfstream aircraft for Fokker and the ALMA astronomical telescope. The Leonardo

  19. Value-leverage by Aerospace Original Equipment Manufacturers

    NARCIS (Netherlands)

    Beelaerts van Blokland, W.W.A.

    2010-01-01

    With the creation of new aircraft products; Embraer E-170/190, Dassault 7X, Airbus A380 and Boeing B787, aerospace original equipment manufacturers (OEMs) involve suppliers not only with the co-production of aircraft sub systems, but also with the entire development of sub systems, like fuselage and

  20. 2009 Clusters, Nanocrystals & Nanostructures GRC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai-Sheng [Washington State Univ., Pullman, WA (United States)

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Because of the important role that students and postdocs play in the future of this field, we also anticipate to select several posters from young investigators for oral presentations.

  1. The link between aerospace industry and NASA during the Apollo years

    Science.gov (United States)

    Turcat, Nicolas

    2008-01-01

    " just" creating commercial spin-offs for the civil society, Apollo create one of the first political stake of our modern technology. The power delivered for reaching the goal is one of the best examples given these last 60 years. Space became an economical ambition after being led by a political will. The link created between this two main part of the program (NASA and aerospace industries) is one of the most valuable spin-offs for Apollo.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 42: An analysis of the transfer of Scientific and Technical Information (STI) in the US aerospace industry

    Science.gov (United States)

    Kennedy, John M.; Pinelli, Thomas E.; Hecht, Laura F.; Barclay, Rebecca O.

    1994-01-01

    The U.S. aerospace industry has a long history of federal support for research related to its needs. Since the establishment of the National Advisory Committee for Aeronautics (NACA) in 1915, the federal government has provided continuous research support related to flight and aircraft design. This research has contributed to the international preeminence of the U.S. aerospace industry. In this paper, we present a sociological analysis of aerospace engineers and scientists and how their attitudes and behaviors impact the flow of scientific and technical information (STI). We use a constructivist framework to explain the spotty dissemination of federally funded aerospace research. Our research is aimed towards providing federal policymakers with a clearer understanding of how and when federally funded aerospace research is used. This understanding will help policymakers design improved information transfer systems that will aid the competitiveness of the U.S. aerospace industry.

  4. Aerospace Fuels From Nonpetroleum Raw Materials

    Science.gov (United States)

    Palaszewski, Bryan A.; Hepp, Aloysius F.; Kulis, Michael J.; Jaworske, Donald A.

    2013-01-01

    Recycling human metabolic and plastic wastes minimizes cost and increases efficiency by reducing the need to transport consumables and return trash, respectively, from orbit to support a space station crew. If the much larger costs of transporting consumables to the Moon and beyond are taken into account, developing waste recycling technologies becomes imperative and possibly mission enabling. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs; several relevant technologies are briefly compared, contrasted and assessed for space applications. A two-step approach to nonpetroleum raw materials utilization is presented; the first step involves production of supply or producer gas. This is akin to synthesis gas containing carbon oxides, hydrogen, and simple hydrocarbons. The second step involves production of fuel via the Sabatier process, a methanation reaction, or another gas-to-liquid technology, typically Fischer-Tropsch processing. Optimization to enhance the fraction of product stream relevant to transportation fuels via catalytic (process) development at NASA Glenn Research Center is described. Energy utilization is a concern for production of fuels whether for operation on the lunar or Martian surface, or beyond. The term green relates to not only mitigating excess carbon release but also to the efficiency of energy usage. For space, energy usage can be an essential concern. Another issue of great concern is minimizing impurities in the product stream(s), especially those that are potential health risks and/or could degrade operations through catalyst poisoning or equipment damage; technologies being developed to remove heteroatom impurities are discussed. Alternative technologies to utilize waste fluids, such as a propulsion option called the resistojet, are discussed. The resistojet is an electric propulsion technology with a powered

  5. From Landsat through SLI: Ball Aerospace Instrument Architecture for Earth Surface Monitoring

    Science.gov (United States)

    Wamsley, P. R.; Gilmore, A. S.; Malone, K. J.; Kampe, T. U.; Good, W. S.

    2017-12-01

    The Landsat legacy spans more than forty years of moderate resolution, multi-spectral imaging of the Earth's surface. Applications for Landsat data include global environmental change, disaster planning and recovery, crop and natural resource management, and glaciology. In recent years, coastal water science has been greatly enhanced by the outstanding on-orbit performance of Landsat 8. Ball Aerospace designed and built the Operational Land Imager (OLI) instrument on Landsat 8, and is in the process of building OLI 2 for Landsat 9. Both of these instruments have the same design however improved performance is expected from OLI 2 due to greater image bit depth (14 bit on OLI 2 vs 12 bit on OLI). Ball Aerospace is currently working on two novel instrument architectures applicable to Sustainable Land Imaging for Landsat 10 and beyond. With increased budget constraints probable for future missions, technological improvements must be included in future instrument architectures to enable increased capabilities at lower cost. Ball presents the instrument architectures and associated capabilities enabling new science in past, current, and future Landsat missions.

  6. Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry

    Science.gov (United States)

    Granda, Jose J.; Montgomery, Raymond C.

    2003-01-01

    Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.

  7. Experimental Investigation of Brazilian 14-X B Hypersonic Scramjet Aerospace Vehicle

    Directory of Open Access Journals (Sweden)

    João Felipe de Araujo Martos

    2017-01-01

    Full Text Available The Brazilian hypersonic scramjet aerospace vehicle 14-X B is a technological demonstrator of a hypersonic airbreathing propulsion system based on the supersonic combustion (scramjet to be tested in flight into the Earth’s atmosphere at an altitude of 30 km and Mach number 7. The 14-X B has been designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, Institute for Advanced Studies (IEAv, Brazil. The IEAv T3 Hypersonic Shock Tunnel is a ground-test facility able to produce high Mach number and high enthalpy flows in the test section close to those encountered during the flight of the 14-X B into the Earth’s atmosphere at hypersonic flight speeds. A 1 m long stainless steel 14-X B model was experimentally investigated at T3 Hypersonic Shock Tunnel, for freestream Mach numbers ranging from 7 to 8. Static pressure measurements along the lower surface of the 14-X B, as well as high-speed Schlieren photographs taken from the 5.5° leading edge and the 14.5° deflection compression ramp, provided experimental data. Experimental data was compared to the analytical theoretical solutions and the computational fluid dynamics (CFD simulations, showing good qualitative agreement and in consequence demonstrating the importance of these methods in the project of the 14-X B hypersonic scramjet aerospace vehicle.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 49: Becoming an aerospace engineer: A cross-gender comparison

    Science.gov (United States)

    Hecht, Laura M.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    We conducted a mail (self-reported) survey of 4300 student members of the American Institute of Aeronautics and Astronautics (AIAA) during the spring of 1993 as a Phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. The survey was designed to explore students' career goals and aspirations, communications skills training, and their use of information sources, products, and services. We received 1723 completed questionnaires for an adjusted response rate of 42%. In this article, we compare the responses of female and male aerospace engineering students in the context of two general aspects of their educational experience. First, we explore the extent to which women and men differ in regard to factors that lead to the choice to study aerospace engineering, their current level of satisfaction with that choice, and their career-related goals and aspirations. Second, we examine students' responses to questions about communications skills training and the helpfulness of that training, and their use of and the importance to them of selected information sources, products, and services. The cross-gender comparison revealed more similarities than differences. Female students appear to be more satisfied than their male counterparts with the decision to major in aerospace engineering. Both female and male student respondents consider communications skills important for professional success, but females place a higher value than males do on oral communications skills. Women students also place a higher value than men do on the roles of other students and faculty members in satisfying their needs for information.

  9. Mechanics for materials and technologies

    CERN Document Server

    Goldstein, Robert; Murashkin, Evgenii

    2017-01-01

    This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.

  10. ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY

    Science.gov (United States)

    2017-08-01

    AFRL-RY-WP-TR-2017-0167 ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY Burhan Bayraktaroglu Devices for Sensing Branch Aerospace...TITLE AND SUBTITLE ASSESSMENT OF GALLIUM OXIDE TECHNOLOGY 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6...report summarizes the current status of the Ga2O3 technology based on published results on theoretical electronic structure, materials growth, and

  11. Valuation of design adaptability in aerospace systems

    Science.gov (United States)

    Fernandez Martin, Ismael

    design is under production is referred to as adaptability. This thesis contains two relevant examples regarding the decision of introducing new technologies. First, the case study of Southwest Airlines, and the decision it took to retrofit blended winglets technology in its already delivered Boeing 737-700, is introduced as a validation exercise and for calibration purposes. Such case also demonstrates that the method is applicable to a real life example with simple technologies. The second example analyzes the decision of introducing new technologies into the design of the new jet engine to power the next generation of narrow body aircraft. The development of such aircraft, set to replace the Boeing 737 and Airbus 320 models, is currently at conceptual levels. In this case, the manufacturer evaluates whether technologies should be included in the design, left out, or offered as an option to retrofit in the future. This case demonstrates the benefits of each of these actions and the monetary value of offering retrofitting options as upgrades to the airlines when the value of the technology fluctuates considerably between profitable and not profitable. The purpose of this case is to demonstrate the applicability of the method to the preliminary design phases of complex systems while accounting for uncertainty of external factors over time.

  12. An analysis of the effect of STEM initiatives on socially responsible diversity management in the US aerospace and defense industry

    Science.gov (United States)

    Johnson-Oliver, Patrick

    Workforce diversity is a growing concern at a global level and enlightened economic self-interest and corporate image compels industries to leverage it as a competitive advantage. The US aerospace and defense industry (US ADI) addresses workforce diversity through socially responsible diversity management. Prior research into the topic of approaching workforce diversity as a business rationale and a moral imperative has been limited. Scharmer and Kaufer's (2013) Theory U guided this longitudinal explanatory quantitative study, leading from the future as it emerged relative to socially responsible diversity management to compel industry to remove blind spots and co-create an economy that benefits all by promoting workforce diversity as a dual agenda. This study filled a research gap investigating the business case for diversity as a dual agenda in aerospace industry science, technology, engineering, and mathematics (STEM) disciplines. The study also investigated the America COMPETES Act as a moderator of the relationship between historically black colleges and universities (HBCUs) and industry. Data was retrieved for secondary data analysis from the National Science Foundation (NSF) and other public government services and agency websites. Two hypotheses were tested using quantitative analysis including descriptive statistics, linear regression, ANOVA, and two factor analysis. The statistical results were analyzed and deductive logic employed to develop conclusions for the study. There was a significant relationship found between both predictors and socially responsible diversity management. The results reinforce the necessity for the aerospace defense industry to promote the dual agenda of the business case for diversity as complementary; not as competing mandates.

  13. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  14. Intelligent hypertext systems for aerospace engineering applications

    Science.gov (United States)

    Lo, Ching F.

    1989-01-01

    This paper is a progress report on the utilization of AI technology for assisting users locating and understanding technical information in manuals used for planning and conducting wind tunnel test. The specific goal is to create an Intelligent Hypertext System (IHS) for wind tunnel testing which combines the computerized manual in the form of hypertext and an advisory system that stores experts' knowledge and experiences. A prototype IHS for conducting transonic wind tunnel testing has been constructed with limited knowledge base. The prototype is being evaluated by potential users.

  15. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    Science.gov (United States)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  16. Eggplant variety breeding aerospace Hangqie No.4

    International Nuclear Information System (INIS)

    Wang Fuquan; Song Jianrong; Guo Zhenfang; Ding Yaohong; Kong Xiaojuan

    2012-01-01

    Hangqie No.4 is on the Shenzhou spacecraft carrying no. 3 local variety reported by four generations enterprise round tomato breeding 03-4-15-2-3-1 has breeding for female to the 18th retuning-type science technology and experimental satellite launch of the optimal tomato after 0448-1-3-1 has breeding for male parent, mixture of the generation of hybrid. Medium-early maturity, 667 m 2 production 5000 kg around. Plant growth potential of half erect, with strong sex is strong, leaves thicker, purple-brown, heart-shaped, flower violet, pulp green white, The weight of per fruit 0.15 ∼ 0.35 kg. It's can be planted in open land and protected area, and grow well. (authors)

  17. Eggplant variety breeding aerospace Hangqie No.4

    International Nuclear Information System (INIS)

    Wang Fuquan; Song Jianrong; Guo Zhenfang; Ding Yaohong; Kong Xiaojuan

    2011-01-01

    Hangqie No.4 is on the shenzhou spacecraft carrying no.3 local variety reported by four generations enterprise round tomato breeding 03-4-15-2-3-1 has breeding for female to the 18th retuning-type science technology and experimental satellite launch of the optimal tomato after 04-4-8-1-3-1 has breeding for male parent, mixture of the generation of hybrid. Medium-early maturity, 667 m 2 production 5000 kg around. Plant growth potential of half erect, with strong sex is strong, leaves thicker, purple-brown, heart-shaped, flower violet, pulp green white, The weight of per fruit 0.15∼0.35 kg. It's can be planted in open land and protected area, and grow well. (authors)

  18. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  19. International Conference on Innovative Design and Development Practices in Aerospace and Automotive Engineering

    CERN Document Server

    Chandrasekhar, U

    2017-01-01

    The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2016)”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

  20. Innovative design, analysis and development practices in aerospace and automotive engineering

    CERN Document Server

    Chandrasekhar, U; Arankalle, Avinash

    2014-01-01

    The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

  1. Prediction of the mechanical properties of zeolite pellets for aerospace molecular decontamination applications

    Directory of Open Access Journals (Sweden)

    Guillaume Rioland

    2016-11-01

    Full Text Available Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression of these pellets for arbitrary dimensions (height and diameter using a design of experiments (DOE methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10–23 mm, a height of 1–3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications.

  2. Zero sequence blocking transformers for multi-pulse rectifier in aerospace applications

    DEFF Research Database (Denmark)

    Yao, Wenli; Blaabjerg, Frede; Zhang, Xiaobin

    2014-01-01

    The power electronics technology plays an even more important role in the aerospace applications of More Electric Aircrafts (MEA). AutoTransformer Rectifier Units (ATRU) have been widely adopted in aircrafts due to its simplicity and reliability. In this paper, Zero Sequence Blocking Transformers...... (ZSBT) are employed in the DC link to realize parallel rectifier bridges for ATRU, being the proposed 24-pulse rectifier. A star-connected autotransformer is used in this topology to divide the primary side voltage into four three-phase voltage groups, among which there is a phase shift of 15......°. The autotransformer then feeds the load through rectifier bridges, which are in parallel with ZSBTs. Compared to the traditional method that is using six interphase transformers to parallel the rectifier bridges; the proposed 24-pulse rectifier only requires four ZSBTs. This will contribute to a reduction of weight...

  3. An integrated aerodynamic/propulsion study for generic aero-space planes based on waverider concepts

    Science.gov (United States)

    Emanuel, G.; Rasmussen, M. L.

    1991-01-01

    Research efforts related to the development of a unified aerospace plane analysis based on waverider technology are summarized. Viscous effects on the forebodies of cone-derived waverider configurations were studied. A simple means for determining the average skin friction coefficient of laminar boundary layers was established. This was incorporated into a computer program that provides lift and drag coefficients and lift/drag ratio for on-design waveriders when the temperature and Reynolds number based on length are specified. An effort was made to carry out parabolized Navier-Stokes (PNS) calculations for cone-derived waveriders. When the viscous terms were turned off (in the Euler mode) computations for elliptic cone-derived waveriders could be carried out for a wide range of on-design and off-design situations. Work related to waveriders derived from power law shocks is described in some detail.

  4. Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles from theory to application

    CERN Document Server

    Zolghadri, Ali; Cieslak, Jerome; Efimov, Denis; Goupil, Philippe

    2014-01-01

    Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace demonstrates the attractive potential of recent developments in control for resolving such issues as improved flight performance, self-protection and extended life of structures. Importantly, the text deals with a number of practically significant considerations: tuning, complexity of design, real-time capability, evaluation of worst-case performance, robustness in harsh environments, and extensibility when development or adaptation is required. Coverage of such issues helps to draw the advanced concepts arising from academic research back towards the technological concerns of industry. Initial coverage of basic definitions and ideas and a literature review gives way to a treatment of important electrical flight control system failures: the oscillatory failure case, runaway, and jamming. Advanced fault detection and diagnosis for linear and nonlinear systems are described. Lastly recovery strategies appropriate to remaining acuator/sensor/c...

  5. High performance sealing - meeting nuclear and aerospace requirements

    International Nuclear Information System (INIS)

    Wensel, R.; Metcalfe, R.

    1994-11-01

    Although high performance sealing is required in many places, two industries lead all others in terms of their demand-nuclear and aerospace. The factors that govern the high reliability and integrity of seals, particularly elastomer seals, for both industries are discussed. Aerospace requirements include low structural weight and a broad range of conditions, from the cold vacuum of space to the hot, high pressures of rocket motors. It is shown, by example, how a seal can be made an integral part of a structure in order to improve performance, rather than using a conventional handbook design. Typical processes are then described for selection, specification and procurement of suitable elastomers, functional and accelerated performance testing, database development and service-life prediction. Methods for quality assurance of elastomer seals are summarized. Potentially catastrophic internal dejects are a particular problem for conventional non-destructive inspection techniques. A new method of elastodynamic testing for these is described. (author)

  6. 7th International symposium on NDT in aerospace 2015

    International Nuclear Information System (INIS)

    2015-01-01

    Non-Destructive Testing and Evaluation is one of the major requirements in aerospace structural design. Hardly any of the components manufactured is not allowed to pass quality assurance without having gone through any of the various NDT procedures being around. For damage tolerant design as used in aviation NDT is a prerequisite. Appropriate use of NDT guarantees safety in aerospace and is thus a subject of highest attention. Major topics to be discussed among others at this event will include the physics of NDT, sensors and material interaction, design of complete inspection systems and data evaluation such as for automated image processing. A special focus will also be towards improvement in inspection speed and transfer of laboratory NDT into production and manufacturing process integrated testing for in-line inspection.

  7. Standard Guide for Testing Materials for Aerospace Plastic Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide is intended to summarize the standard test methods available on individual and composite materials utilized in fabrication of aerospace plastic transparent enclosures. As such, it is intended to specifically include transparent thermoplastics, transparent elastomers, and reinforced plastics, whether thermoplastic or thermosetting. 1.2 This guide is intended as an aid in the search for test methods pertinent to Aerospace Plastic Transparent Enclosures. It should be understood that all methods listed may not apply to all enclosures. 1.3 The standards included refer to the properties or aspects listed in Table 1. The properties or aspects are listed in alphabetical order and the descriptions used are intended to facilitate the search. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  8. Characterization of 2024-T3: An aerospace aluminum alloy

    International Nuclear Information System (INIS)

    Huda, Zainul; Taib, Nur Iskandar; Zaharinie, Tuan

    2009-01-01

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al 2 CuMg (S-phase) and the CuAl 2 (θ') phases indicated precipitation strengthening in the aluminum alloy

  9. Characterization of 2024-T3: An aerospace aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huda, Zainul [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: drzainulhuda@hotmail.com; Taib, Nur Iskandar [Department of Geology, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: ntaib@alumni.indiana.edu; Zaharinie, Tuan [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: rinie_3483@hotmail.com

    2009-02-15

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al{sub 2}CuMg (S-phase) and the CuAl{sub 2} ({theta}') phases indicated precipitation strengthening in the aluminum alloy.

  10. Measurement of baseline and orientation between distributed aerospace platforms.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    Distributed platforms play an important role in aerospace remote sensing, radar navigation, and wireless communication applications. However, besides the requirement of high accurate time and frequency synchronization for coherent signal processing, the baseline between the transmitting platform and receiving platform and the orientation of platform towards each other during data recording must be measured in real time. In this paper, we propose an improved pulsed duplex microwave ranging approach, which allows determining the spatial baseline and orientation between distributed aerospace platforms by the proposed high-precision time-interval estimation method. This approach is novel in the sense that it cancels the effect of oscillator frequency synchronization errors due to separate oscillators that are used in the platforms. Several performance specifications are also discussed. The effectiveness of the approach is verified by simulation results.

  11. 7{sup th} International symposium on NDT in aerospace 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Non-Destructive Testing and Evaluation is one of the major requirements in aerospace structural design. Hardly any of the components manufactured is not allowed to pass quality assurance without having gone through any of the various NDT procedures being around. For damage tolerant design as used in aviation NDT is a prerequisite. Appropriate use of NDT guarantees safety in aerospace and is thus a subject of highest attention. Major topics to be discussed among others at this event will include the physics of NDT, sensors and material interaction, design of complete inspection systems and data evaluation such as for automated image processing. A special focus will also be towards improvement in inspection speed and transfer of laboratory NDT into production and manufacturing process integrated testing for in-line inspection.

  12. Elements of a collaborative systems model within the aerospace industry

    Science.gov (United States)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been

  13. RISC-type microprocessors may revolutionize aerospace simulation

    Science.gov (United States)

    Jackson, Albert S.

    The author explores the application of RISC (reduced instruction set computer) processors in massively parallel computer (MPC) designs for aerospace simulation. The MPC approach is shown to be well adapted to the needs of aerospace simulation. It is shown that any of the three common types of interconnection schemes used with MPCs are effective for general-purpose simulation, although the bus-or switch-oriented machines are somewhat easier to use. For partial differential equation models, the hypercube approach at first glance appears more efficient because the nearest-neighbor connections required for three-dimensional models are hardwired in a hypercube machine. However, the data broadcast ability of a bus system, combined with the fact that data can be transmitted over a bus as soon as it has been updated, makes the bus approach very competitive with the hypercube approach even for these types of models.

  14. Design of a K/Q-Band Beacon Receiver for the Alphasat Technology Demonstration Payload (TDP) #5 Experiment

    Science.gov (United States)

    Morse, Jacquelynne R.

    2014-01-01

    This paper describes the design and performance of a coherent KQ-band (2040 GHz) beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed at the Politecnico di Milano (POLIMI) for use in the Alphasat Technology Demonstration Payload 5 (TDP5) beacon experiment. The goal of this experiment is to characterize rain fade attenuation at 40 GHz to improve the performance of existing statistical rain attenuation models in the Q-band. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation. The receiver system has been characterized in the lab and demonstrates a system dynamic range performance of better than 58 dB at 1 Hz and better than 48 dB at 10 Hz rates.

  15. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  16. Liquid crystalline thermosetting polymers as protective coatings for aerospace

    OpenAIRE

    Guerriero, G.L.

    2012-01-01

    Environmental regulations are driving the development of new aerospace coating systems, mainly to eliminate chromates and reduce volatile organic compound (VOC) emissions. Among the various potential options for new coating materials, liquid crystalline polymers (LCPs) are attractive due to their unique combination of mechanical properties and chemical resistance. Their use, however, has been limited mainly due to poor adhesion properties. Thermotropic liquid crystalline thermosets displayed ...

  17. First international conference on nonlinear problems in aviation and aerospace

    International Nuclear Information System (INIS)

    Sivasundaram, S.

    1994-01-01

    The International Conference on Nonlinear Problems in Aviation and Aerospace was held at Embry-Riddle Aeronautical University, Daytona Beach, Florida on May 9-11, 1996. This conference was sponsored by the International Federation of Nonlinear Analysts, International Federation of Information Processing, and Embry-Riddle Aeronautical University. Over one hundred engineers, scientists, and mathematicians from seventeen countries attended. These proceedings include keynote addresses, invited lectures, and contributed papers presented during the conference

  18. Development of fault tolerant adaptive control laws for aerospace systems

    Science.gov (United States)

    Perez Rocha, Andres E.

    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov's direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov's direct method and Barbalat's Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers.

  19. Output Feedback M-MRAC Backstepping With Aerospace Applications

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje Sriniva

    2014-01-01

    The paper presents a certainty equivalence output feedback backstepping adaptive control design method for the systems of any relative degree with unmatched uncertainties without over-parametrization. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The approach is applied to aerospace control problems and tested in numerical simulations.

  20. Industrial Design in Aerospace/Role of Aesthetics

    Science.gov (United States)

    Bushnell, Dennis M.

    2006-01-01

    Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.