WorldWideScience

Sample records for grb jet structure

  1. The Structure and Dynamics of GRB Jets

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; /KIPAC, Menlo Park

    2006-10-25

    There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.

  2. GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817

    Science.gov (United States)

    Lamb, Gavin P.; Kobayashi, Shiho

    2018-05-01

    Fermi/GBM (Gamma-ray Burst Monitor) and INTEGRAL (the International Gamma-ray Astrophysics Laboratory) reported the detection of the γ-ray counterpart, GRB 170817A, to the LIGO (Light Interferometer Gravitational-wave Observatory)/Virgo gravitational wave detected binary neutron star merger, GW 170817. GRB 170817A is likely to have an internal jet or another origin such as cocoon emission, shock-breakout, or a flare from a viscous disc. In this paper we assume that the γ-ray emission is caused by energy dissipation within a relativistic jet and we model the afterglow synchrotron emission from a reverse- and forward-shock in the outflow. We show the afterglow for a low-luminosity γ-ray burst (GRB) jet with a high Lorentz-factor (Γ); a low-Γ and low-kinetic energy jet; a low-Γ, high kinetic energy jet; structured jets viewed at an inclination within the jet-half-opening angle; and an off-axis `typical' GRB jet. All jet models will produce observable afterglows on various timescales. The late-time afterglow from 10-110 days can be fit by a Gaussian structured jet viewed at a moderate inclination, however the GRB is not directly reproduced by this model. These jet afterglow models can be used for future GW detected NS merger counterparts with a jet afterglow origin.

  3. GRB 170817A: a short GRB seen off-axis

    Science.gov (United States)

    He, Xin-Bo; Tam, Pak-Hin Thomas; Shen, Rong-Feng

    2018-04-01

    The angular distribution of gamma-ray burst (GRB) jets is not yet clear. The observed luminosity of GRB 170817A is the lowest among all known short GRBs, which is best explained by the fact that our line of sight is outside of the jet opening angle, θ obs > θ j , where θ obs is the angle between our line of sight and the jet axis. As inferred by gravitational wave observations, as well as radio and X-ray afterglow modeling of GRB 170817A, it is likely that θ obs ∼ 20° – 28°. In this work, we quantitatively consider two scenarios of angular energy distribution of GRB ejecta: a top-hat jet and a structured jet with a power law index s. For the top-hat jet model, we get a large θ j (e.g., θ j > 10°), a rather high local (i.e., z 7.5 × 104, keV (∼500, keV for a typical short GRB). For the structured jet model, we use θ obs to give limits on s and θj for typical on-axis luminosity of a short GRB (e.g., 1049 erg s‑1 ∼ 1051 erg s‑1), and a low on-axis luminosity case (e.g., 1049 erg s‑1) gives more reasonable values of s. The structured jet model is more feasible for GRB 170817A than the top-hat jet model due to the rather high local short GRB rate, and the extremely high on-axis E peak,0 almost rules out the top-hat jet model. GRB 170817A is likely a low on-axis luminosity GRB (1049 erg s‑1) with a structured jet.

  4. Relativistic Hydrodynamics and Spectral Evolution of GRB Jets

    Science.gov (United States)

    Cuesta-Martínez, C.

    2017-09-01

    In this thesis we study the progenitor systems of long gamma-ray bursts (GRBs) using numerical models of their dynamics and the electromagnetic emission. Of all the possible classes of events, we focus on those showing a prominent component of thermal emission, which might be generated due to the interaction of a relativistic jet with the medium into which it is propagating. The main part of the thesis is devoted to modelling GRBs from two different clases of progenitors: ultra-long GRBs dominated by blackbody emission and GRBs associated with core-collapse supernovae (SNe). The study of GRB jets and their radiative emission has been basically divided into two steps. First, the dynamical evolution of relativistic jets can be simulated by means of multidimensional special relativistic hydrodynamic simulations which have been performed with the MRGENESIS code. Second, the synthetic emission from such jets is computed with the relativistic radiative transfer code SPEV in a post-processing stage assuming different radiative processes in which we follow the temporal and spectral evolution of the emitted radiation. An instrumental part of this project consisted in extending SPEV to include thermal processes, such as thermal bremsstrahlung, in order to account for the thermal signal that may arise in some GRBs. In the first part of this thesis, we extend an existing theoretical model to explain the class of blackbody-dominated GRBs (BBD-GRBs), i.e., long lasting events characterized by the presence of a notable thermal component trailing the GRB prompt emission, and a rather weak traditional afterglow. GRB 101225A, the "Christmas burst", is the most prominent member of this class. It has been suggested that BBD-GRBs could result from the merger of a binary system formed by a neutron star and the Helium core of an evolved, massive star. We model in 2D the propagation of ultrarelativistic jets through the environments created by such mergers. We outline the most relevant

  5. The GRB-SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures

    Science.gov (United States)

    Margalit, Ben; Metzger, Brian D.; Thompson, Todd A.; Nicholl, Matt; Sukhbold, Tuguldur

    2018-04-01

    Multiple lines of evidence support a connection between hydrogen-poor superluminous supernovae (SLSNe) and long-duration gamma-ray bursts (GRBs). Both classes of events require a powerful central energy source, usually attributed to a millisecond magnetar or an accreting black hole. The GRB-SLSN link raises several theoretical questions: What distinguishes the engines responsible for these different phenomena? Can a single engine power both a GRB and a luminous SN in the same event? We propose a unifying model for magnetar thermalization and jet formation: misalignment between the rotation (Ω) and magnetic dipole (μ) axes dissipates a fraction of the spin-down power by reconnection in the striped equatorial wind, providing a guaranteed source of `thermal' emission to power the supernova. The remaining unthermalized power energizes a relativistic jet. We show that even weak relativistic jets of luminosity ˜1046 erg s-1 can escape the expanding SN ejecta implying that escaping relativistic jets may accompany many SLSNe. We calculate the observational signature of these jets. We show that they may produce transient ultraviolet (UV) cocoon emission lasting a few hours when the jet breaks out of the ejecta surface. A longer lived optical/UV signal may originate from a mildly relativistic wind driven from the interface between the jet and the ejecta walls, which could explain the secondary early-time maximum observed in some SLSNe light curves, such as LSQ14bdq. Our scenario predicts a population of GRB from on-axis jets with extremely long durations, potentially similar to the population of `jetted-tidal disruption events', in coincidence with a small subset of SLSNe.

  6. ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Adam [Space Science Office, VP62, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Connaughton, Valerie [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Briggs, Michael S.; Burns, Eric, E-mail: adam.m.goldstein@nasa.gov [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States)

    2016-02-10

    We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate the probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.

  7. PROPAGATION OF RELATIVISTIC, HYDRODYNAMIC, INTERMITTENT JETS IN A ROTATING, COLLAPSING GRB PROGENITOR STAR

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Jin-Jun [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China); Zhang, Bing [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States); Kuiper, Rolf, E-mail: gengjinjun@gmail.com, E-mail: zhang@physics.unlv.edu [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany)

    2016-12-10

    The prompt emission of gamma-ray bursts (GRBs) is characterized by rapid variabilities, which may be a direct reflection of the unsteady central engine. We perform a series of axisymmetric 2.5-dimensional simulations to study the propagation of relativistic, hydrodynamic, intermittent jets through the envelope of a GRB progenitor star. A realistic rapidly rotating star is incorporated as the background of jet propagation, and the star is allowed to collapse due to the gravity of the central black hole. By modeling the intermittent jets with constant-luminosity pulses with equal on and off durations, we investigate how the half period, T , affects the jet dynamics. For relatively small T values (e.g., 0.2 s), the jet breakout time t {sub bo} depends on the opening angle of the jet, with narrower jets more penetrating and reaching the surface at shorter times. For T  ≤ 1 s, the reverse shock (RS) crosses each pulse before the jet penetrates through the stellar envelope. As a result, after the breakout of the first group of pulses at t {sub bo}, several subsequent pulses vanish before penetrating the star, causing a quiescent gap. For larger half periods ( T = 2.0 and 4.0 s), all the pulses can successfully penetrate through the envelope, since each pulse can propagate through the star before the RS crosses the shell. Our results may interpret the existence of a weak precursor in some long GRBs, given that the GRB central engine injects intermittent pulses with a half period T  ≤ 1 s. The observational data seem to be consistent with such a possibility.

  8. Afterglow Imaging and Polarization of Misaligned Structured GRB Jets and Cocoons: Breaking the Degeneracy in GRB 170817A

    Science.gov (United States)

    Gill, Ramandeep; Granot, Jonathan

    2018-05-01

    The X-ray to radio afterglow emission of GRB 170817A / GW 170817 so far scales as Fν∝ν-0.6t0.8 with observed frequency and time, consistent with a single power-law segment of the synchrotron spectrum from the external shock going into the ambient medium. This requires the effective isotropic equivalent afterglow shock energy in the visible region to increase as ˜t1.7. The two main channels for such an energy increase are (i) radial: more energy carried by slower material (in the visible region) gradually catches up with the afterglow shock and energizes it, and (ii) angular: more energy in relativistic outflow moving at different angles to our line of sight, whose radiation is initially beamed away from us but its beaming cone gradually reaches our line of sight as it decelerates. One cannot distinguish between these explanations (or combinations of them) using only the X-ray to radio Fν(t). Here we demonstrate that the most promising way to break this degeneracy is through afterglow imaging and polarization, by calculating the predicted evolution of the afterglow image (its size, shape and flux centroid) and linear polarization Π(t) for different angular and/or radial outflow structures that fit Fν(t). We consider two angular profiles - a Gaussian and a narrow core with power-law wings in energy per solid angle, as well as a (cocoon motivated) (quasi-) spherical flow with radial velocity profile. For a jet viewed off-axis (and a magnetic field produced in the afterglow shock) Π(t) peaks when the jet's core becomes visible, at ≈2tp where the lightcurve peaks at tp, and the image can be elongated with aspect ratios ≳ 2. A quasi-spherical flow has an almost circular image and a much lower Π(t) (peaking at ≈tp) and flux centroid displacement θfc (a spherical flow has Π(t) = θfc = 0 and a perfectly circular image).

  9. The latest two GRB detected by Hete-2: GRB 051022 and GRB 051028

    International Nuclear Information System (INIS)

    Castro-Tirado, A. J.; Jelinek, M.; Pandey, S. B.; Ugarte Postigo, A. de; Gorosabel, J.; McBreen, S.; Bremer, M.; Guziy, S.; Bihain, G.; Caballero, J. A.; Ferrero, P.; Jong, J de; Misra, K.; Sahu, D. K.

    2006-01-01

    We present multiwavelength observations of the latest two GRB detected by Hete-2 in 2005. For GRB 051022, no optical/nIR afterglow has been detected, in spite of the strong gamma-ray emission and the reported X-ray afterglow discovered by Swift. A mm afterglow was discovered at PdB confirming the association of this event with a luminous (MV = - 21.5) galaxy within the X-ray error box. Spectroscopy of this galaxy shows strong a strong [O II] emission line at z = 0.807, besides weaker [O III] emission. The X-ray spectrum showed evidence of considerable absorption by neutral gas with NH,X-ray = 4.5 x 1022 cm2 (at rest frame). ISM absorption by dust in the host galaxy at z = 0.807 cannot certainly account for the non-detection of the optical afterglow, unless the dust-to-gas ratio is quite different than that seen in our Galaxy. It is possible then that GRB 051022 was produced in an obscured, stellar forming region in its parent host galaxy.For GRB 051028, the data can be interpreted by collimated emission (a jet model with p = 2.4) moving in an homogeneous ISM and with a cooling frequency vc still above the X-rays at 0.5 days after the burst onset. GRB 051028 can be classified as a 'gray' or 'potentially dark' GRB. The Swift/XRT data are consistent with the interpretation that the reason for the optical dimness is not extra absorption in the host galaxy, but rather the GRB taking place at high-redshift

  10. Variable jet properties in GRB 110721A: time resolved observations of the jet photosphere

    Science.gov (United States)

    Iyyani, S.; Ryde, F.; Axelsson, M.; Burgess, J. M.; Guiriec, S.; Larsson, J.; Lundman, C.; Moretti, E.; McGlynn, S.; Nymark, T.; Rosquist, K.

    2013-08-01

    Fermi Gamma-ray Space Telescope observations of GRB 110721A have revealed two emission components from the relativistic jet: emission from the photosphere, peaking at ˜100 keV, and a non-thermal component, which peaks at ˜1000 keV. We use the photospheric component to calculate the properties of the relativistic outflow. We find a strong evolution in the flow properties: the Lorentz factor decreases with time during the bursts from Γ ˜ 1000 to ˜150 (assuming a redshift z = 2; the values are only weakly dependent on unknown efficiency parameters). Such a decrease is contrary to the expectations from the internal shocks and the isolated magnetar birth models. Moreover, the position of the flow nozzle measured from the central engine, r0, increases by more than two orders of magnitude. Assuming a moderately magnetized outflow we estimate that r0 varies from 106 to ˜109 cm during the burst. We suggest that the maximal value reflects the size of the progenitor core. Finally, we show that these jet properties naturally explain the observed broken power-law decay of the temperature which has been reported as a characteristic for gamma-ray burst pulses.

  11. THE LATE PEAKING AFTERGLOW OF GRB 100418A

    International Nuclear Information System (INIS)

    Marshall, F. E.; Holland, S. T.; Sakamoto, T.; Antonelli, L. A.; Burrows, D. N.; Siegel, M. H.; Covino, S.; Fugazza, D.; De Pasquale, M.; Oates, S. R.; Evans, P. A.; O'Brien, P. T.; Osborne, J. P.; Pagani, C.; Liang, E. W.; Wu, X. F.; Zhang, B.

    2011-01-01

    GRB 100418A is a long gamma-ray burst (GRB) at redshift z = 0.6235 discovered with the Swift Gamma-ray Burst Explorer with unusual optical and X-ray light curves. After an initial short-lived, rapid decline in X-rays, the optical and X-ray light curves observed with Swift are approximately flat or rising slightly out to at least ∼7 x 10 3 s after the trigger, peak at ∼5 x 10 4 s, and then follow an approximately power-law decay. Such a long optical plateau and late peaking is rarely seen in GRB afterglows. Observations with Rapid Eye Mount during a gap in the Swift coverage indicate a bright optical flare at ∼2.5 x 10 4 s. The long plateau phase of the afterglow is interpreted using either a model with continuous injection of energy into the forward shock of the burst or a model in which the jet of the burst is viewed off-axis. In both models the isotropic kinetic energy in the late afterglow after the plateau phase is ≥10 2 times the 10 51 erg of the prompt isotropic gamma-ray energy release. The energy injection model is favored because the off-axis jet model would require the intrinsic T 90 for the GRB jet viewed on-axis to be very short, ∼10 ms, and the intrinsic isotropic gamma-ray energy release and the true jet energy to be much higher than the typical values of known short GRBs. The non-detection of a jet break up to t ∼ 2 x 10 6 s indicates a jet half-opening angle of at least ∼14 0 , and a relatively high-collimation-corrected jet energy of E jet ≥ 10 52 erg.

  12. Relativistic hydrodynamic simulation of jet deceleration in GRB

    International Nuclear Information System (INIS)

    Meliani, Z.; Keppens, R.; Casse, F.

    2008-01-01

    Using the novel adaptive mesh refinement code, AMRVAC, we investigate the interaction between collimated ejecta (jetlike fireball models with various opening angle) with its surrounding cold Interstellar Medium (ISM). This is relevant for Gamma Ray Bursts, and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell-ISM matter. We determine the deceleration from an initial Lorentz factor γ = 100 up to the almost Newtonian γ∼O(3) phase of the flow. We discuss the effect of varying the opening angle on the deceleration, and pay attention to differences with their 1D isotropic GRB equivalents. These are due to thermally induced sideways expansions of both shocked shell and shocked ISM regions. The propagating 2D ultrarelativistic shell does not accrete all the surrounding medium located within its initial opening angle. The difference with isotropic GRB models is quite pronounced for shells with small opening angle. In the most collimated ejecta (open angle of 1 deg.), the deceleration phase (once the reverse shock has traversed the shell structure) shows distinct modulation, attributed to repeated rarefactions traversing the shell. These may have a clear impact on the emitted afterglow radiation

  13. Solution structure of the human Grb7-SH2 domain/erbB2 peptide complex and structural basis for Grb7 binding to ErbB2

    International Nuclear Information System (INIS)

    Ivancic, Monika; Daly, Roger J.; Lyons, Barbara A.

    2003-01-01

    The solution structure of the hGrb7-SH2 domain in complex with a ten amino acid phosphorylated peptide ligand representative of the erbB2 receptor tyrosine kinase (pY1139) is presented as determined by nuclear magnetic resonance methods. The hGrb7-SH2 domain structure reveals the Src homology 2 domain topology consisting of a central β-sheet capped at each end by an α-helix. The presence of a four residue insertion in the region between β-strand E and the EF loop and resulting influences on the SH2 domain/peptide complex structure are discussed. The binding conformation of the erbB2 peptide is in a β-turn similar to that found in phosphorylated tyrosine peptides bound to the Grb2-SH2 domain. To our knowledge this is only the second example of an SH2 domain binding its naturally occurring ligands in a turn, instead of extended, conformation. Close contacts between residues responsible for binding specificity in hGrb7-SH2 and the erbB2 peptide are characterized and the potential effect of mutation of these residues on the hGrb7-SH2 domain structure is discussed

  14. Prompt gamma-ray emission of GRB 170817A associated to GW 170817: A consistent picture

    Science.gov (United States)

    Ziaeepour, Houri

    2018-05-01

    The short GRB 170817A associated to the first detection of gravitation waves from a Binary Neutron Star (BNS) merger was in many ways unusual. Possible explanations are emission from a cocoon or cocoon break out, off-axis view of a structured or uniform jet, and on-axis ultra-relativistic jet with reduced density and Lorentz factor. Here we use a phenomenological model of shock evolution and synchrotron/self-Compton emission to simulate the prompt emission of GRB 170817A and to test above proposals. We find that synchrotron emission from a mildly relativistic cocoon with a Lorentz factor of 2-3, as considered in the literature, generates a too soft, too long, and too bright prompt emission. Off-axis view of an structured jet with a Lorentz factor of about 10 can reproduce observations, but needs a very efficient transfer of kinetic energy to electrons in internal shocks, which is disfavored by particle in cell simulations. We also comment on cocoon breakout as a mechanism for generation of the prompt gamma-ray. A relativistic jet with a Lorentz factor of about 100 and a density lower than typical short GRBs seems to be the most plausible model and we conclude that GRB 170817A was intrinsically faint. Based on this result and findings of relativistic magnetohydrodynamics simulations of BNS merger in the literature we discuss physical and astronomical conditions, which may lead to such faint short GRBs. We identify small mass difference of progenitor neutron stars, their old age and reduced magnetic field, and anti-alignment of spin-orbit angular momentum induced by environmental gravitational disturbances during the lifetime of the BNS as causes for the faintness of GRB 170817A. We predict that BNS mergers at lower redshifts generate on average fainter GRBs.

  15. Evolution of the polarization of the optical afterglow of the gamma-ray burst GRB030329.

    Science.gov (United States)

    Greiner, Jochen; Klose, Sylvio; Reinsch, Klaus; Schmid, Hans Martin; Sari, Re'em; Hartmann, Dieter H; Kouveliotou, Chryssa; Rau, Arne; Palazzi, Eliana; Straubmeier, Christian; Stecklum, Bringfried; Zharikov, Sergej; Tovmassian, Gaghik; Bärnbantner, Otto; Ries, Christoph; Jehin, Emmanuel; Henden, Arne; Kaas, Anlaug A; Grav, Tommy; Hjorth, Jens; Pedersen, Holger; Wijers, Ralph A M J; Kaufer, Andreas; Park, Hye-Sook; Williams, Grant; Reimer, Olaf

    2003-11-13

    The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).

  16. Structural basis for the interaction of the adaptor protein grb14 with activated ras.

    Directory of Open Access Journals (Sweden)

    Rohini Qamra

    Full Text Available Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA domain, a pleckstrin-homology (PH domain, a family-specific BPS (between PH and SH2 region, and a C-terminal Src-homology-2 (SH2 domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-Å resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V. The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.

  17. The ultraluminous GRB 110918A

    International Nuclear Information System (INIS)

    Frederiks, D. D.; Svinkin, D. S.; Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Mazets, E. P.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Kokomov, A. A.; Hurley, K.; Mangano, V.; Burrows, D. N.; Sbarufatti, B.; Siegel, M. H.; Oates, S.; Cline, T. L.; Krimm, H. A.; Pagani, C.; Mitrofanov, I. G.

    2013-01-01

    GRB 110918A is the brightest long gamma-ray burst (GRB) detected by Konus-WIND during its almost 19 yr of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final Interplanetary Network localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderate peak energy of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z = 0.984, a huge isotropic-equivalent energy release E iso = (2.1 ± 0.1) × 10 54 erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity L iso = (4.7 ± 0.2) × 10 54 erg s –1 . A tail of the soft γ-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. The Swift/X-Ray Telescope and the Swift/Ultraviolet Optical Telescope observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and interstellar-medium-like circumburst environment implied. We conclude that, among the multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.°7-3.°4 results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z ∼ 7.5 for Konus-WIND and z ∼ 12 for the Swift/Burst Alert Telescope, which stresses the importance of GRBs as probes of the early Universe.

  18. Solution structure of the Grb2 SH2 domain complexed with a high-affinity inhibitor

    International Nuclear Information System (INIS)

    Ogura, Kenji; Shiga, Takanori; Yokochi, Masashi; Yuzawa, Satoru; Burke, Terrence R.; Inagaki, Fuyuhiko

    2008-01-01

    The solution structure of the growth factor receptor-bound protein 2 (Grb2) SH2 domain complexed with a high-affinity inhibitor containing a non-phosphorus phosphate mimetic within a macrocyclic platform was determined by nuclear magnetic resonance (NMR) spectroscopy. Unambiguous assignments of the bound inhibitor and intermolecular NOEs between the Grb2 SH2 domain and the inhibitor was accomplished using perdeuterated Grb2 SH2 protein. The well-defined solution structure of the complex was obtained and compared to those by X-ray crystallography. Since the crystal structure of the Grb2 SH2 domain formed a domain-swapped dimer and several inhibitors were bound to a hinge region, there were appreciable differences between the solution and crystal structures. Based on the binding interactions between the inhibitor and the Grb2 SH2 domain in solution, we proposed a design of second-generation inhibitors that could be expected to have higher affinity

  19. Nucleosynthesis in Jets from Collapsars

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Nishimura, Nobuya; Hashimoto, Masa-aki

    2008-01-01

    We investigate nucleosynthesis inside magnetically driven jets ejected from collapsars, or rotating magnetized stars collapsing to a black hole, based on two-dimensional magnetohydrodynamic simulation of the collapsars during the core collapse. We follow the evolution of the abundances of about 4000 nuclides from the collapse phase to the ejection phase using a large nuclear reaction network. We find that the r-process successfully operates only in the energetic jets (>10 51 erg), so that U and Th are synthesized abundantly, even when the collapsars have a relatively small magnetic field (10 10 G) and a moderately rotating core before the collapse. The abundance patterns inside the jets are similar to that of the r-elements in the solar system. The higher energy jets have larger amounts of 56 Ni. Less energetic jets, which have small amounts of 56 Ni, could induce GRB without supernova, such as GRB060505 and GRB060614

  20. Jet models of X-Ray Flashes

    International Nuclear Information System (INIS)

    Lamb, D.Q.; Donaghy, T.Q.; Graziani, C.

    2005-01-01

    One third of all HETE-2-localized bursts are X-Ray Flashes (XRFs), a class of events first identified by Heise in which the fluence in the 2-30 keV energy band exceeds that in the 30-400 keV energy band We summarize recent HETE-2 and other results on the properties of XRFs. These results show that the properties of XRFs, X-ray-rich gamma-ray bursts (GRBs), and GRBs form a continuum, and thus provide evidence that all three kinds of bursts are closely related phenomena. As the most extreme burst population, XRFs provide severe constraints on burst models and unique insights into the structure of GRB jets, the GRB rate, and the nature of Type Ib/Ic supernovae. We briefly mention a number of the physical models that have been proposed to explain XRFs. We then consider two fundamentally different classes of phenomenological jet models: universal jet models, in which it is posited that all GRBs jets are identical and that differences in the observed properties of the bursts are due entirely to differences in the viewing angle; and variable-opening angle jet models, in which it is posited that GRB jets have a distribution of jet opening angles and that differences in the observed properties of the bursts are due to differences in the emissivity and spectra of jets having different opening angles. We consider three shapes far the emissivity as a function of the viewing angle θ ν from the axis of the jet: power law, top hat (or uniform) , and Gaussian (or Fisher). We then discuss the effect of relativistic beaming on each of these models. We show that observations can distinguish between these various models

  1. Polarized Emission from Gamma-Ray Burst Jets

    Directory of Open Access Journals (Sweden)

    Shiho Kobayashi

    2017-11-01

    Full Text Available I review how polarization signals have been discussed in the research field of Gamma-Ray Bursts (GRBs. I mainly discuss two subjects in which polarimetry enables us to study the nature of relativistic jets. (1 Jet breaks: Gamma-ray bursts are produced in ultra-relativistic jets. Due to the relativistic beaming effect, the emission can be modeled in a spherical model at early times. However, as the jet gradually slows down, we begin to see the edge of the jet together with polarized signals at some point. (2 Optical flash: later time afterglow is known to be insensitive to the properties of the original ejecta from the GRB central engine. However, a short-lived, reverse shock emission would enable us to study the nature of of GRB jets. I also briefly discuss the recent detection of optical circular polarization in GRB afterglow.

  2. A magnetically driven origin for the low luminosity GRB 170817A associated with GW170817

    Science.gov (United States)

    Tong, Hao; Yu, Cong; Huang, Lei

    2018-06-01

    The gamma-ray burst GR170817A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out. However, the luminosity and energetics of GRB 170817A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.

  3. A tale of two GRB-SNe at a common redshift of ζ = 0.54

    International Nuclear Information System (INIS)

    Cano, Z.; Bersier, D.; Kobayashi, S.; Clay, N.; Mottram, C.; Mundell, C.G.; Small, E.; Smith, R.J.; Steele, I.; Guidorzi, C.; Curran, P.A.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z=0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral energy distributions (SEDs) of the OT resemble those of local Type Ic supernovae (SNe). For GRB 090618, the dense sampling of our optical observations has allowed us to detect well-defined bumps in the optical LCs, as well as a change in colour, that are indicative of light coming from a core-collapse SN. The accompanying SNe for both events are individually compared with SN1998bw, a known GRB supernova, and SN1994I, a typical Type Ic supernova without a known GRB counterpart, and in both cases the brightness and temporal evolution more closely resemble SN1998bw. We also exploit our extensive optical and radio data for GRB 090618, as well as the publicly available Swift-XRT data, and discuss the properties of the afterglow at early times. In the context of a simple jet-like model, the afterglow of GRB 090618 is best explained by the presence of a jet-break at t - t 0 ≥ 0.5 d. We then compare the rest-frame, peak V-band absolute magnitudes of all of the GRB and X-Ray Flash (XRF)-associated SNe with a large sample of local Type Ibc SNe, concluding that, when host extinction is considered, the peak magnitudes of the GRB/XRF-SNe cannot be distinguished from the peak magnitudes of non-GRB/XRF SNe. (authors)

  4. Modeling the Multiband Afterglows of GRB 060614 and GRB 060908: Further Evidence for a Double Power-law Hard Electron Energy Spectrum

    Science.gov (United States)

    Zhang, Q.; Xiong, S. L.; Song, L. M.

    2018-04-01

    Electrons accelerated in relativistic collisionless shocks are usually assumed to follow a power-law energy distribution with an index of p. Observationally, although most gamma-ray bursts (GRBs) have afterglows that are consistent with p > 2, there are still a few GRBs suggestive of a hard (p law hard electron energy (DPLH) spectrum with 1 2 and an “injection break” assumed as γ b ∝ γ q in the highly relativistic regime, where γ is the bulk Lorentz factor of the jet. In this paper, we show that GRB 060614 and GRB 060908 provide further evidence for such a DPLH spectrum. We interpret the multiband afterglow of GRB 060614 with the DPLH model in a homogeneous interstellar medium by taking into account a continuous energy injection process, while, for GRB 060908, a wind-like circumburst density profile is used. The two bursts, along with GRB 091127, suggest a similar behavior in the evolution of the injection break, with q ∼ 0.5. Whether this represents a universal law of the injection break remains uncertain and more afterglow observations such as these are needed to test this conjecture.

  5. How Special Is GRB 170817A?

    Science.gov (United States)

    Yue, Chuan; Hu, Qian; Zhang, Fu-Wen; Liang, Yun-Feng; Jin, Zhi-Ping; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2018-01-01

    GRB 170817A is the first short gamma-ray burst (GRB) with direct detection of the gravitational-wave radiation and also the spectroscopically identified macronova emission (i.e., AT 2017gfo). The prompt emission of this burst, however, is underluminous in comparison with the other short GRBs with known redshift. In this work, we examine whether GRB 170817A is indeed unique. We first show that GRB 130603B/macronova may be the on-axis “analogs” of GRB 170817A/AT 2017gfo, and the extremely dim but long-lasting afterglow emission of GRB 170817A may suggest a low number density (∼ {10}-5 {{cm}}-3) of its circumburst medium and a structured outflow. We then discuss whether GRB 070923, GRB 080121, GRB 090417A, GRB 111005A, and GRB 170817A form a new group of very nearby underluminous GRBs originated from neutron star mergers. If the short events GRB 070923, GRB 080121, and GRB 090417A are indeed at a redshift of ∼ 0.076, 0.046, 0.088, respectively, their isotropic energies of the prompt emission are ∼ {10}47 erg and thus comparable to the other two events. The non-detection of optical counterparts of GRB 070923, GRB 080121, GRB 090417A, and GRB 111005A, however, strongly suggests that the macronovae from neutron star mergers are significantly diverse in luminosities or, alternatively, there is another origin channel (for instance, the white dwarf and black hole mergers). We finally suggest that GW170817/GRB 170817A are likely not alone and similar events will be detected by the upgraded/upcoming gravitational-wave detectors and the electromagnetic monitors.

  6. GRB060206 and the quandary of achromatic breaks in afterglow light curves

    NARCIS (Netherlands)

    Curran, P.A.; van der Horst, A.J.; Wijers, R.A.M.J.; Starling, R.L.C.; Castro-Tirado, A.J.; Fynbo, J.P.U.; Gorosabel, J.; Järvinen, A.S.; Malesani, D.; Rol, E.; Tanvir, N.R.; Wiersema, K.; Burleigh, M.R.; Casewell, S.L.; Dobbie, P.D.; Guziy, S.; Jakobsson, P.; Jelínek, M.; Laursen, P.; Levan, A.J.; Mundell, C.G.; Näränen, J.; Piranomonte, S.

    2007-01-01

    Gamma-ray burst afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared with the BeppoSAX era. We present our multi-wavelength analysis of GRB060206 as an illustrative example of how inferences of jet breaks from optical and X-ray data might differ. The

  7. UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment

    International Nuclear Information System (INIS)

    D'Elia, V.; Fiore, F.; Piranomonte, S.; Sbordone, L.; Stella, L.; Antonelli, L.A.; Fontana, A.; Giannini, T.; Guetta, D.; Israel, G.; Testa, V.; Meurs, E.J.A.; Vergani, S.D.; Ward, P.; Chincarini, G.; Tagliaferri, G.; Campana, S.; Fugazza, D.; Molinari, E.; Moretti, A.; Chincarini, G.; Melandri, A.; Norci, L.; Vergani, S.D.; Pellizza, L.; Filliatre, P.; Perna, R.; Lazzati, D.

    2007-01-01

    Aims. The aim of this paper is to study the Gamma Ray Burst (GRB) environment through the analysis of the optical absorption features due to the gas surrounding the GRB. Methods. To this purpose we analyze high resolution spectroscopic observations (R = 20000-45000, corresponding to 14 kms -1 at 4200 Angstroms and 6.6 kms -1 at 9000 Angstroms of the optical afterglow of GRB050730, obtained with UVES-VLT ∼ 4 h after the GRB trigger. Results. The spectrum shows that the ISM of the GRB host galaxy at z = 3.967 is complex, with at least five components contributing to the main absorption system. We detect strong CII*, SiII*, OI* and FeII* fine structure absorption lines associated to the second and third component. Conclusions. For the first three components we derive information on the relative distance from the site of the GRB explosion. Component 1, which has the longest wavelength, highest positive velocity shift, does not present any fine structure nor low ionization lines; it only shows very high ionization features, such as C IV and O VI, suggesting that this component is very close to the GRB site. From the analysis of low and high ionization lines and fine structure lines, we find evidences that the distance of component 2 from the site of the GRB explosion is 10-100 times smaller than that of component 3. We evaluated the mean metallicity of the z = 3.967 system obtaining values approximate to 10 -2 of the solar metallicity or less. However, this should not be taken as representative of the circum-burst medium, since the main contribution to the hydrogen column density comes from the outer regions of the galaxy while that of the other elements presumably comes from the ISM closer to the GRB site. Furthermore, difficulties in evaluating dust depletion correction can modify significantly these values. The mean [C/Fe] ratio agrees well with that expected by single star-formation event models. Interestingly the [C/Fe] of component 2 is smaller than that of

  8. GRB 080503 LATE AFTERGLOW RE-BRIGHTENING: SIGNATURE OF A MAGNETAR-POWERED MERGER-NOVA

    International Nuclear Information System (INIS)

    Gao, He; Ding, Xuan; Wu, Xue-Feng; Dai, Zi-Gao; Zhang, Bing

    2015-01-01

    GRB 080503 is a short gamma-ray burst (GRB) detected by Swift and has been classified as a GRB originating from a compact star merger. The soft extended emission and the simultaneous late re-brightening in both the X-ray and optical afterglow light curves raise interesting questions regarding its physical origin. We show that the broadband data of GRB 080503 can be well explained within the framework of the double neutron star merger model, provided that the merger remnant is a rapidly rotating massive neutron star with an extremely high magnetic field (i.e., a millisecond magnetar). We show that the late optical re-brightening is consistent with the emission from a magnetar-powered “merger-nova.” This adds one more case to the growing sample of merger-novae associated with short GRBs. The soft extended emission and the late X-ray excess emission are well connected through a magnetar dipole spin-down luminosity evolution function, suggesting that direct magnetic dissipation is the mechanism to produce these X-rays. The X-ray emission initially leaks from a hole in the merger ejecta pierced by the short GRB jet. The hole subsequently closes after the magnetar spins down and the magnetic pressure drops below ram pressure. The X-ray photons are then trapped behind the merger-nova ejecta until the ejecta becomes optically thin at a later time. This explains the essentially simultaneous re-brightening in both the optical and X-ray light curves. Within this model, future gravitational-wave sources could be associated with a bright X-ray counterpart along with the merger-nova, even if the short GRB jet beams away from Earth

  9. DETECTION OF GAMMA-RAY POLARIZATION IN PROMPT EMISSION OF GRB 100826A

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Sakashita, Tomonori; Morihara, Yoshiyuki; Takahashi, Takuya; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan); Kubo, Shin, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Clear Pulse Co. Ltd., 6-25-17, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan)

    2011-12-20

    We report the polarization measurement in prompt {gamma}-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter on board the small solar-power-sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the prompt emission with 99.9% (3.5{sigma}) confidence level, and the average polarization degree ({Pi}) of 27% {+-} 11% with 99.4% (2.9{sigma}) confidence level. Here the quoted errors are given at 1{sigma} confidence level for the two parameters of interest. The systematic errors have been carefully included in this analysis, unlike other previous reports. Such a high {Pi} can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of {approx}{Gamma}{sup -1}. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more detail.

  10. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    Science.gov (United States)

    Troja, E.; Lipunov, V. M.; Mundell, C. G.; Butler, N. R.; Watson, A. M.; Kobayashi, S.; Cenko, S. B.; Marshall, F. E.; Ricci, R.; Fruchter, A.; Wieringa, M. H.; Gorbovskoy, E. S.; Kornilov, V.; Kutyrev, A.; Lee, W. H.; Toy, V.; Tyurina, N. V.; Budnev, N. M.; Buckley, D. A. H.; González, J.; Gress, O.; Horesh, A.; Panasyuk, M. I.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rebolo Lopez, R.; Richer, M. G.; Roman-Zuniga, C.; Serra-Ricart, M.; Yurkov, V.; Gehrels, N.

    2017-07-01

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent - consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  11. MODELING THE EARLY AFTERGLOW IN THE SHORT AND HARD GRB 090510

    Energy Technology Data Exchange (ETDEWEB)

    Fraija, N.; Lee, W. H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, 04510 Ciudad de México, DF (Mexico); Veres, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Duran, R. Barniol, E-mail: nifraija@astro.unam.mx, E-mail: wlee@astro.unam.mx, E-mail: pv0004@uah.edu, E-mail: rbarniol@purdue.edu [Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States)

    2016-11-01

    The bright, short, and hard GRB 090510 was detected by all instruments aboard the Fermi and Swift satellites. The multiwavelength observations of this burst presented similar features to the Fermi -LAT-detected gamma-ray bursts. In the framework of the external shock model of early afterglow, a leptonic scenario that evolves in a homogeneous medium is proposed to revisit GRB 090510 and explain the multiwavelength light curve observations presented in this burst. These observations are consistent with the evolution of a jet before and after the jet break. The long-lasting LAT, X-ray, and optical fluxes are explained in the synchrotron emission from the adiabatic forward shock. Synchrotron self-Compton emission from the reverse shock is consistent with the bright LAT peak provided that the progenitor environment is entrained with strong magnetic fields. It could provide compelling evidence of magnetic field amplification in the neutron star merger.

  12. GRB 120521C at z ∼ 6 and the properties of high-redshift γ-ray bursts

    Energy Technology Data Exchange (ETDEWEB)

    Laskar, Tanmoy; Berger, Edo; Zauderer, B. Ashley; Margutti, Raffaella; Fong, Wen-fai [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, Nial; Wiersema, Klaas [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Levan, Andrew [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Perley, Daniel [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Menten, Karl [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Hrudkova, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain)

    2014-01-20

    We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm{sup –3}. The radio observations reveal the presence of a jet break at t {sub jet} ≈ 7 d, corresponding to a jet opening angle of θ{sub jet} ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E {sub γ} ≈ E{sub K} ≈ 3 × 10{sup 50} erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t {sub jet} ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

  13. Tyrosine phosphorylation of Grb14 by Tie2

    Directory of Open Access Journals (Sweden)

    Dumont Daniel J

    2010-10-01

    Full Text Available Abstract Background Growth factor receptor bound (Grb proteins 7, 10 and 14 are a family of structurally related multi-domain adaptor proteins involved in a variety of biological processes. Grb7, 10 and 14 are known to become serine and/or threonine phosphorylated in response to growth factor (GF stimulation. Grb7 and 10 have also been shown to become tyrosine phosphorylated under certain conditions. Under experimental conditions Grb7 is tyrosine phosphorylated by the Tie2/Tie-2/Tek angiogenic receptor tyrosine kinase (RTK. Furthermore, Grb14 has also been shown to interact with Tie2, however tyrosine phosphorylation of this Grb family member has yet to be reported. Results Here we report for the first time tyrosine phosphorylation of Grb14. This phosphorylation requires a kinase competent Tie2 as well as intact tyrosines 1100 and 1106 (Y1100 and Y1106 on the receptor. Furthermore, a complete SH2 domain on Grb14 is required for Grb14 tyrosine phosphorylation by Tie2. Grb14 was also able to become tyrosine phosphorylated in primary endothelial cells when treated with a soluble and potent variant of the Tie2 ligand, cartilage oligomeric matrix protein (COMP Ang1. Conclusion Our results show that Grb14, like its family members Grb7 and Grb10, is able to be tyrosine phosphorylated. Furthermore, our data indicate a role for Grb14 in endothelial signaling downstream of the Tie2 receptor.

  14. Five Years of Multi-frequency Monitoring of GRB030329 Afterglow Using the GMRT and WSRT

    International Nuclear Information System (INIS)

    Kamble, Atish; Wijers, Ralph; Rol, Evert; Horst, A. J. van der; Kouveliotou, Chryssa; Bhattacharya, D.; Chandra, C. H. Ishwara; Resmi, L.; Strom, R.

    2009-01-01

    GRB 030329 displayed one of the brightest optical afterglows ever. We have followed the radio afterglow of GRB 030329 for over 5 years using the GMRT and WSRT at low radio frequencies. This is the longest as well as the lowest frequency follow up of any GRB afterglow ever.Radio observations of a GRB afterglow provide a unique probe of the physics of the blast wave at late times, when the expansion of the fireball slows down to non-relativistic speeds. Our GMRT-WSRT observations suggest that the afterglow of GRB030329 entered the non-relativistic phase around 60 days after the burst. The estimate of the fireball energy content, ∼10 51 erg, in this near-isotropic phase is much less susceptible to the collimation-related uncertainties arising in the relativistic phase. We have also been closely monitoring the evolution of the afterglow to look for possible signatures of emission from a counter jet, but no conclusive evidence has so far been found.

  15. The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Montes, Gabriela [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); De Colle, Fabio [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543 04510 D. F. (Mexico); Rezzolla, Luciano; Takami, Kentaro [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Rosswog, Stephan [Astronomy and Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Perego, Albino [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264 04510 D. F. (Mexico)

    2017-02-01

    The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to break out and produce an sGRB. We find that jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ≈20°. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low-luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to break out. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.

  16. GRB 091024A and the nature of ultra-long gamma-ray bursts

    International Nuclear Information System (INIS)

    Virgili, F. J.; Mundell, C. G.; Harrison, R.; Kobayashi, S.; Steele, I. A.; Mottram, C. J.; Clay, N. R.; Pal'shin, V.; Guidorzi, C.; Margutti, R.; Chornock, R.; Melandri, A.; Henden, A.; Updike, A. C.; Cenko, S. B.; Tanvir, N. R.; Cucchiara, A.; Gomboc, A.; Levan, A.; Cano, Z.

    2013-01-01

    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ∼1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R B ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (≳1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.

  17. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    OpenAIRE

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) t...

  18. Simulations of Gamma-Ray Burst Jets in a Stratified External Medium: Dynamics, Afterglow Light Curves, Jet Breaks, and Radio Calorimetry

    Science.gov (United States)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-05-01

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with ρextvpropr -k for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle θ0 = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor Γ drops below θ-1 0. For larger k values, however, the lateral expansion is faster at early times (when Γ > θ-1 0) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for θobs <= θ0) than by the slope of the external density profile (for 0 <= k <= 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light curve. However, for larger k values the jet decelerates more

  19. Extremely Bright GRB 160625B with Multiple Emission Episodes: Evidence for Long-term Ejecta Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Hou-Jun; Lü, Jing; Zhong, Shu-Qing; Huang, Xiao-Li; Zhang, Hai-Ming; Lan, Lin; Lu, Rui-Jing; Liang, En-Wei [Guangxi Key Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004 (China); Xie, Wei, E-mail: lhj@gxu.edu.edu, E-mail: lew@gxu.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2017-11-01

    GRB 160625B is an extremely bright GRB with three distinct emission episodes. By analyzing its data observed with the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi mission, we find that a multicolor blackbody (mBB) model can be used to fit very well the spectra of the initial short episode (Episode I) within the hypothesis of photosphere emission of a fireball model. The time-resolved spectra of its main episode (Episode II), which was detected with both GBM and LAT after a long quiescent stage (∼180 s) following the initial episode, can be fitted with a model comprising an mBB component plus a cutoff power-law (CPL) component. This GRB was detected again in the GBM and LAT bands with a long extended emission (Episode III) after a quiescent period of ∼300 s. The spectrum of Episode III is adequately fitted with CPL plus single power-law models, and no mBB component is required. These features may imply that the emission of the three episodes are dominated by distinct physics processes, i.e., Episode I is possible from the cocoon emission surrounding the relativistic jet, Episode II may be from photosphere emission and internal shock of the relativistic jet, and Episode III is contributed by internal and external shocks of the relativistic jet. On the other hand, both X-ray and optical afterglows are consistent with the standard external shocks model.

  20. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation

    Directory of Open Access Journals (Sweden)

    Pero Stephanie C

    2007-09-01

    Full Text Available Abstract Background Human growth factor receptor bound protein 7 (Grb7 is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines. Results As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding. Conclusion Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of

  1. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Yamaoka, Kazutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sayamihara 229-8558 (Japan); Tashiro, Makoto S., E-mail: urata@astro.ncu.edu.tw [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan)

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  2. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-01-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7 +132.6 –106.6 keV and E iso of 34.5 +2.0 –1.8 × 10 52 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = –2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5. 0 8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak -E iso and E src peak -E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  3. Long-term continuous energy injection in the afterglow of GRB 060729

    International Nuclear Information System (INIS)

    Xu Ming; Huang Yongfeng; Lu Tan

    2009-01-01

    A long plateau phase and an amazing level of brightness have been observed in the X-ray afterglow of GRB 060729. This peculiar light curve is likely due to long-term energy injection in external shock. Here, we present a detailed numerical study of the energy injection process of magnetic dipole radiation from a strongly magnetized millisecond pulsar and model the multi-band afterglow observations. It is found that this model can successfully explain the long plateaus in the observed X-ray and optical afterglow light curves. The sharp break following the plateaus could be due to the rapid decline of the emission power of the central pulsar. At an even later time (∼ 5 x 10 6 s), an obvious jet break appears, which implies a relatively large half opening angle of θ ∼ 0.3 for the GRB ejecta. Due to the energy injection, the Lorentz factor of the outflow is still larger than two even at 10 7 s after the GRB trigger, making the X-ray afterglow of this burst detectable by Chandra even 642 d after the burst.

  4. SIMULATIONS OF GAMMA-RAY BURST JETS IN A STRATIFIED EXTERNAL MEDIUM: DYNAMICS, AFTERGLOW LIGHT CURVES, JET BREAKS, AND RADIO CALORIMETRY

    International Nuclear Information System (INIS)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-01-01

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with ρ ext ∝r –k for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle θ 0 = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor Γ drops below θ –1 0 . For larger k values, however, the lateral expansion is faster at early times (when Γ > θ –1 0 ) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for θ obs ≤ θ 0 ) than by the slope of the external density profile (for 0 ≤ k ≤ 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light curve. However, for larger k values the jet

  5. SIMULATIONS OF GAMMA-RAY BURST JETS IN A STRATIFIED EXTERNAL MEDIUM: DYNAMICS, AFTERGLOW LIGHT CURVES, JET BREAKS, AND RADIO CALORIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-05-20

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with {rho}{sub ext}{proportional_to}r{sup -k} for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle {theta}{sub 0} = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor {Gamma} drops below {theta}{sup -1}{sub 0}. For larger k values, however, the lateral expansion is faster at early times (when {Gamma} > {theta}{sup -1}{sub 0}) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for {theta}{sub obs} {<=} {theta}{sub 0}) than by the slope of the external density profile (for 0 {<=} k {<=} 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results

  6. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    International Nuclear Information System (INIS)

    McKinney, Jonathan

    2012-01-01

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r ∼ 10 13 -10 14 cm), by which the jet obtains a high Lorentz factor (γ ∼ 100-1000), has a luminosity of L j ∼ 10 50 -10 51 erg s -1 , has observer variability timescales of order 1s (ranging from 0.001-10s), achieves γθ j ∼ 10-20 (for opening half-angle θ j ) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the development of self-consistent radiative compressible relativistic

  7. Ten per cent polarized optical emission from GRB 090102.

    Science.gov (United States)

    Steele, I A; Mundell, C G; Smith, R J; Kobayashi, S; Guidorzi, C

    2009-12-10

    The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material. To distinguish between the models the degree of polarization in early-time emission must be measured; however, previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at 10 +/- 1 per cent, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-second exposure, then the peak polarization may have been larger than ten per cent.

  8. GRB 111005A at z = 0.0133 and the Prospect of Establishing Long-Short GRB/GW Association

    Science.gov (United States)

    Wang, Yuan-Zhu; Huang, Yong-Jia; Liang, Yun-Feng; Li, Xiang; Jin, Zhi-Ping; Zhang, Fu-Wen; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2017-12-01

    GRB 111005A, a long-duration gamma-ray burst (GRB) that occurred within a metal-rich environment that lacks massive stars with {M}{ZAMS}≥slant 15 {M}⊙ , is not coincident with supernova emission down to a stringent limit and thus should be classified as a “long-short” GRB (lsGRB; also known as an SN-less long GRB or hybrid GRB), like GRB 060505 and GRB 060614. In this work, we show that in the neutron star merger model the non-detection of the optical/infrared emission of GRB 111005A requires sub-relativistic neutron-rich ejecta with a mass of ≤slant 0.01 {M}⊙ , which is (significantly) less massive than that of GRB 130603B, GRB 060614, GRB 050709, and GRB 170817A. The lsGRBs are found to have a high rate density and the neutron star merger origin model can be unambiguously tested by the joint observations of the second-generation gravitational-wave (GW) detectors and the full-sky gamma-ray monitors such as Fermi-GBM and the proposed GECAM. If no lsGRB/GW association is observed in the 2020s, alternative scenarios have to be systematically investigated. With the detailed environmental information achievable for the nearby events, a novel kind of merger or explosion origin may be identified.

  9. Exploring short-GRB afterglow parameter space for observations in coincidence with gravitational waves

    Science.gov (United States)

    Saleem, M.; Resmi, L.; Misra, Kuntal; Pai, Archana; Arun, K. G.

    2018-03-01

    Short duration Gamma Ray Bursts (SGRB) and their afterglows are among the most promising electromagnetic (EM) counterparts of Neutron Star (NS) mergers. The afterglow emission is broad-band, visible across the entire electromagnetic window from γ-ray to radio frequencies. The flux evolution in these frequencies is sensitive to the multidimensional afterglow physical parameter space. Observations of gravitational wave (GW) from BNS mergers in spatial and temporal coincidence with SGRB and associated afterglows can provide valuable constraints on afterglow physics. We run simulations of GW-detected BNS events and assuming that all of them are associated with a GRB jet which also produces an afterglow, investigate how detections or non-detections in X-ray, optical and radio frequencies can be influenced by the parameter space. We narrow down the regions of afterglow parameter space for a uniform top-hat jet model, which would result in different detection scenarios. We list inferences which can be drawn on the physics of GRB afterglows from multimessenger astronomy with coincident GW-EM observations.

  10. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Gunji, Shuichi; Toukairin, Noriyuki [Department of Physics, Faculty of Science, Yamagata University, 1-4-12, Koshirakawa, Yamagata, Yamagata 990-8560 (Japan); Mihara, Tatehiro [Cosmic Radiation Laboratory, RIKEN, 2-1, Hirosawa, Wako City, Saitama 351-0198 (Japan); Toma, Kenji, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan)

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  11. Dimerization in the Grb7 Protein

    OpenAIRE

    Peterson, Tabitha A.; Benallie, Renee L.; Bradford, Andrew M.; Pias, Sally C.; Yazzie, Jaron.; Lor, Siamee N.; Haulsee, Zachary M.; Park, Chad K.; Johnson, Dennis L.; Rohrschneider, Larry R.; Spuches, Anne.; Lyons, Barbara A.

    2012-01-01

    In previous studies, we showed that the tyrosine phosphorylation state of growth factor receptor–bound protein 7 (Grb7) affects its ability to bind to the transcription regulator FHL2 and the cortactin-interacting protein, human HS-1-associated protein-1. Here, we present results describing the importance of dimerization in the Grb7–Src homology 2 (SH2) domain in terms of its structural integrity and the ability to bind phosphorylated tyrosine peptide ligands. A tyrosine phosphorylation-mimic...

  12. Photospheric Emission in the Joint GBM and Konus Prompt Spectra of GRB 120323A

    Energy Technology Data Exchange (ETDEWEB)

    Guiriec, S.; Kouveliotou, C. [Department of Physics, The George Washington University, 725 21st Street NW, Washington, DC 20052 (United States); Gehrels, N.; McEnery, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hartmann, D. H., E-mail: sylvain.guiriec@nasa.gov [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics (United States)

    2017-09-10

    GRB 120323A is a very intense short gamma -ray burst (GRB) detected simultaneously during its prompt γ -ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Wind satellite. GBM and Konus operate in the keV–MeV regime; however, the GBM range is broader toward both the low and the high parts of the γ -ray spectrum. Analyses of such bright events provide a unique opportunity to check the consistency of the data analysis as well as cross-calibrate the two instruments. We performed time-integrated and coarse time-resolved spectral analysis of GRB 120323A prompt emission. We conclude that the analyses of GBM and Konus data are only consistent when using a double-hump spectral shape for both data sets; in contrast, the single hump of the empirical Band function, traditionally used to fit GRB prompt emission spectra, leads to significant discrepancies between GBM and Konus analysis results. Our two-hump model is a combination of a thermal-like and a non-thermal component. We interpret the first component as a natural manifestation of the jet photospheric emission.

  13. High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28.

    Directory of Open Access Journals (Sweden)

    Kunitake Higo

    Full Text Available Src homology 2 (SH2 domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2 specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.

  14. High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28.

    Science.gov (United States)

    Higo, Kunitake; Ikura, Teikichi; Oda, Masayuki; Morii, Hisayuki; Takahashi, Jun; Abe, Ryo; Ito, Nobutoshi

    2013-01-01

    Src homology 2 (SH2) domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY) with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2) specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K) recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M) by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.

  15. Looking inside jets: optical polarimetry as a probe of Gamma-Ray Bursts physics

    Science.gov (United States)

    Kopac, D.; Mundell, C.

    2015-07-01

    It is broadly accepted that gamma-ray bursts (GRBs) are powered by accretion of matter by black holes, formed during massive stellar collapse, which launch ultra-relativistic, collimated outflows or jets. The nature of the progenitor star, the structure of the jet, and thus the underlying mechanisms that drive the explosion and provide collimation, remain some of the key unanswered questions. To approach these problems, and in particular the role of magnetic fields in GRBs, early time-resolved polarimetry is the key, because it is the only direct probe of the magnetic fields structure. Using novel fast RINGO polarimeter developed for use on the 2-m robotic optical Liverpool Telescope, we have made the first measurements of optical linear polarization of the early optical afterglows of GRBs, finding linear percentage polarization as high as 30% and, for the first time, making time-resolved polarization measurements. I will present the past 8 years of RINGO observations, discuss how the results fit into the GRB theoretical picture, and highlight recent data, in particular high-time resolution multi-colour optical photometry performed during the prompt GRB phase, which also provides some limits on polarization.

  16. On the existence of a luminosity threshold of GRB jets in massive stars

    Science.gov (United States)

    Aloy, M. A.; Cuesta-Martínez, C.; Obergaulinger, M.

    2018-05-01

    Motivated by the many associations of γ-ray bursts (GRBs) with energetic supernova (SN) explosions, we study the propagation of relativistic jets within the progenitor star in which a SN shock wave may be launched briefly before the jets start to propagate. Based on analytic considerations and verified with an extensive set of 2D axisymmetric relativistic hydrodynamic simulations, we have estimated a threshold intrinsic jet luminosity, L_j^thr, for successfully launching a jet. This threshold depends on the structure of the progenitor and, thus, it is sensitive to its mass and to its metallicity. For a prototype host of cosmological long GRBs, a low-metallicity star of 35 M⊙, it is L_j^thr˜eq 1.35× 10^{49} erg s-1. The observed equivalent isotropic γ-ray luminosity, L_{γ ,iso,BO} ˜eq 4 ɛ _γ L_j θ _BO^{-2}, crucially depends on the jet opening angle after breakout, θBO, and on the efficiency for converting the intrinsic jet luminosity into γ-radiation, ɛγ. Highly energetic jets can produce low-luminosity events if either their opening angle after the breakout is large, which is found in our models, or if the conversion efficiency of kinetic and internal energy into radiation is low enough. Beyond this theoretical analysis, we show how the presence of a SN shock wave may reduce this luminosity threshold by means of numerical simulations. We foresee that the high-energy transients released by jets produced near the luminosity threshold will be more similar to llGRBs or XRFs than to GRBs.

  17. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide.

    Science.gov (United States)

    Papaioannou, Danai; Geibel, Sebastian; Kunze, Micha B A; Kay, Christopher W M; Waksman, Gabriel

    2016-03-01

    The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C-terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique β-turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre-organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide. © 2015 The Protein Society.

  18. Structure of pulsed plasma jets

    International Nuclear Information System (INIS)

    Cavolowsky, J.A.

    1987-01-01

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and enhancing combustion. Having shown the ability to ignite lean fuel mixtures, it now offers the potential for real-time control of combustion processes. This study explored the fluid-mechanical and chemical properties of such jets. The fluid-mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. It revealed that plasma jets behave either totally subsonic or embody a supersonic core. The turbulent, thermal evolution of the jet was explored using high-speed-laser schlieren cinematography. By examining plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. These records revealed the production of thermal stratifications in the cavity that could account for the plasma particles in the jet core. After the electrical discharges ceased, the turbulent jet behaved as a self-similar plume. Molecular-beam mass spectrometry was used to determine temperature and species concentration in the jet. Both non-combustible and combustible jets were studied

  19. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  20. SWIFT GRB GRB071010B: OUTLIER OF THE E srcpeak - E γ AND E iso - E srcpeak - t srcjet CORRELATIONS

    International Nuclear Information System (INIS)

    Urata, Yuji; Lee, Induk; Ip, Wing Huen; Huang, Kuiyun; Im, Myungshin; Deng Jinsong; Liping Xin; Qiu Yulei; Wei Jianyan; Zheng Weikang; Krimm, Hans; Ohno, Masanori; Sugita, Satoshi; Tashiro, Makoto; Yamaoka, Kazutaka

    2009-01-01

    We present multi-band results for GRB071010B based on Swift, Suzaku, and ground-based optical observations. This burst is an ideal target to evaluate the robustness of the E src peak - E iso and E src peak - E γ relations, whose studies have been in stagnation due to the lack of the combined estimation of E src peak and long-term optical monitoring. The joint prompt spectral fitting using Swift/Burst Alert Telescope and Suzaku/Wide-band All-sky Monitor data yielded the spectral peak energy as E src peak of 86.5 +6.4 -6.3 keV and E iso of 2.25 +0.19 -0.16 x 10 52 erg with z = 0.947. The optical afterglow light curve is well fitted by a simple power law with temporal index α = -0.60 ± 0.02. The lower limit of temporal break in the optical light curve is 9.8 days. Our multi-wavelength analysis reveals that GRB071010B follows E src peak - E iso but violates the E src peak - E γ and E iso - E src peak - t src jet at more than the 3σ level.

  1. Grb7 binds to Hax-1 and undergoes an intramolecular domain association that offers a model for Grb7 regulation

    OpenAIRE

    Siamakpour-Reihani, Sharareh; Peterson, Tabitha A.; Bradford, Andrew M.; Argiros, Haroula J.; Haas, Laura Lowell; Lor, Siamee N.; Haulsee, Zachary M.; Spuches, Anne M.; Johnson, Dennis L.; Rohrschneider, Larry R.; Shuster, Charles Brad; Lyons, Barbara A.

    2011-01-01

    Adaptor proteins mediate signal transduction from cell surface receptors to downstream signaling pathways. The Grb7 protein family of adaptor proteins is constituted by Grb7, Grb10, and Grb14. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7-mediated cell migration has been shown to proceed through a focal adhesion kinase (FAK)/Grb7 pathway, although the specific participants downstream of Grb7 in cell migration signaling have not been full...

  2. The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z=2.04

    DEFF Research Database (Denmark)

    Jensen, B.L.; Fynbo, J.U.; Gorosabel, J.

    2001-01-01

    We present Ulysses and NEAR data from the detection of the short or intermediate duration (2 s) gamma-ray burst GRB 000301C (2000 March 1.41 UT). The gamma-ray burst (GRB) was localised by the Inter Planetary Network (IPN) and RXTE to an area of similar to 50 arcmin(2). A fading optical counterpa...

  3. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy.

    Science.gov (United States)

    Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio; Burke, Terrence R; Bottaro, Donald P

    2006-01-01

    Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.

  4. The sub-energetic gamma-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425.

    Science.gov (United States)

    Soderberg, A M; Kulkarni, S R; Berger, E; Fox, D W; Sako, M; Frail, D A; Gal-Yam, A; Moon, D S; Cenko, S B; Yost, S A; Phillips, M M; Persson, S E; Freedman, W L; Wyatt, P; Jayawardhana, R; Paulson, D

    2004-08-05

    Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.

  5. THE PROMPT, HIGH-RESOLUTION SPECTROSCOPIC VIEW OF THE 'NAKED-EYE' GRB080319B

    International Nuclear Information System (INIS)

    D'Elia, V.; Fiore, F.; Nicastro, F.; Antonelli, L. A.; Guetta, D.; Perna, R.; Lazzati, D.; Krongold, Y.; Covino, S.; Fugazza, D.; Campana, S.; Chincarini, G.; D'Avanzo, P.; Guidorzi, C.; Molinari, E.; Valle, M. Della; Goldoni, P.; Meurs, E. J. A.; Mirabel, F.; Norci, L.

    2009-01-01

    GRB080319B reached fifth optical magnitude during the burst prompt emission. Thanks to the Very Large Telescope (VLT)/Ultraviolet and Visual Echelle Spectrograph (UVES) rapid response mode, we observed its afterglow just 8m:30s after the gamma-ray burst (GRB) onset when the magnitude was R ∼ 12. This allowed us to obtain the best signal-to-noise (S/N), high-resolution spectrum of a GRB afterglow ever (S/N per resolution element ∼50). The spectrum is rich of absorption features belonging to the main system at z = 0.937, divided in at least six components spanning a total velocity range of 100 km s -1 . The VLT/UVES observations caught the absorbing gas in a highly excited state, producing the strongest Fe II fine structure lines ever observed in a GRB. A few hours later, the optical depth of these lines was reduced by a factor of 4-20, and the optical/UV flux by a factor of ∼60. This proves that the excitation of the observed fine structure lines is due to 'pumping' by the GRB UV photons. A comparison of the observed ratio between the number of photons absorbed by the excited state and those in the Fe II ground state suggests that the six absorbers are ∼2-6 kpc from the GRB site, with component I ∼ 3 times closer to the GRB site than components III-VI. Component I is characterized also by the lack of Mg I absorption, unlike all other components. This may be both due to a closer distance and a lower density, suggesting a structured interstellar matter in this galaxy complex.

  6. Hyper-Eddington accretion in GRB

    International Nuclear Information System (INIS)

    Janiuk, A.; Czerny, B.; Perna, R.; Di Matteo, T.

    2005-01-01

    Popular models of the GRB origin associate this event with a cosmic explosion, birth of a stellar mass black ho le and jet ejection. Due to the shock collisions that happen in the jet, the gamma rays are produced and we detect a burst of duration up to several tens of seconds. This burst duration is determined by the lifetime of the central engine, which may be different in various scenarios. Characteristically, the observed bursts have a bimodal distribution and constitute the two classes: short (t < 2 s) and long bursts. Theoretical models invoke the mergers of two neutron stars or a neutron star with a black hole, or, on the other hand, a massive star explosion (collapsar). In any of these models we have a phase of disc accretion onto a newly born black hole: the di se is formed from the disrupted neutron star or fed by the material fallback from the ejected collapsar envelope. The disc is extremely hot and dense, and the accretion rate is orders of magnitude higher than the Eddington rate. In such physical conditions the main cooling mechanism is neutrino emission, and one of possible ways of energy extraction from the accretion disc is the neutrino-antineutrino annihilation

  7. Magnetosheath jets: MMS observations of internal structures and jet interactions with ambient plasma

    Science.gov (United States)

    Plaschke, F.; Karlsson, T.; Hietala, H.; Archer, M. O.; Voros, Z.; Nakamura, R.; Magnes, W.; Baumjohann, W.; Torbert, R. B.; Russell, C. T.; Giles, B. L.

    2017-12-01

    The dayside magnetosheath downstream of the quasi-parallel bow shock is commonly permeated by high-speed jets. Under low IMF cone angle conditions, large scale jets alone (with cross-sectional diameters of over 2 Earth radii) have been found to impact the subsolar magnetopause once every 6 minutes - smaller scale jets occurring much more frequently. The consequences of jet impacts on the magnetopause can be significant: they may trigger local reconnection and waves, alter radiation belt electron drift paths, disturb the geomagnetic field, and potentially generate diffuse throat aurora at the dayside ionosphere. Although some basic statistical properties of jets are well-established, their internal structure and interactions with the surrounding magnetosheath plasma are rather unknown. We present Magnetospheric Multiscale (MMS) observations which reveal a rich jet-internal structure of high-amplitude plasma moment and magnetic field variations and associated currents. These variations/structures are generally found to be in thermal and magnetic pressure balance; they mostly (but not always) convect with the plasma flow. Small velocity differences between plasma and structures are revealed via four-spacecraft timing analysis. Inside a jet core region, where the plasma velocity maximizes, structures are found to propagate forward (i.e., with the jet), whereas backward propagation is found outside that core region. Although super-magnetosonic flows are detected by MMS in the spacecraft frame of reference, no fast shock is seen as the jet plasma is sub-magnetosonic with respect to the ambient magnetosheath plasma. Instead, the fast jet plasma pushes ambient magnetosheath plasma ahead of the jet out of the way, possibly generating anomalous sunward flows in the vicinity, and modifies the magnetic field aligning it with the direction of jet propagation.

  8. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    Science.gov (United States)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118

  9. Using GRB 080723B to cross-calibrate Fermi/GBM and INTEGRAL

    International Nuclear Information System (INIS)

    Kienlin, A. von; Briggs, M. S.; Connoughton, V.; Preece, R. D.; McBreen, S.; Sazonov, Sergey; Tsygankov, Sergey; Wilson-Hodge, C. A.

    2009-01-01

    On July 23, 2008 GRB 080723B, a bright GRB lasting about 105 s was detected by the INTEGRAL burst alert system. This burst was also detected by the Fermi Gamma-ray burst monitor. At this time no Fermi/GBM GCN notices were distributed to the public because Fermi was still in commissioning phase. The simultaneous detection of a bright GRB by both satellites gives us the opportunity to cross-calibrate the GBM with the already well-calibrated instruments on-board INTEGRAL, the Spectrometer SPI and the Imager IBIS. Time-resolved spectroscopy of this long and structured GRB is of special importance because Fermi was slewing during the GRB was still ongoing. In this paper we present a first and still preliminary analysis of the GBM spectra and compare them to those obtained by SPI for the same selection of time intervals. A more accurate cross-calibration will be forthcoming when the improved in-flight calibration of GBM is available and the corresponding data and responses can be reprocessed.

  10. The Macronova in GRB 050709 and the GRB-macronova connection

    Science.gov (United States)

    Jin, Zhi-Ping; Hotokezaka, Kenta; Li, Xiang; Tanaka, Masaomi; D'Avanzo, Paolo; Fan, Yi-Zhong; Covino, Stefano; Wei, Da-Ming; Piran, Tsvi

    2016-01-01

    GRB 050709 was the first short Gamma-ray Burst (sGRB) with an identified optical counterpart. Here we report a reanalysis of the publicly available data of this event and the discovery of a Li-Paczynski macronova/kilonova that dominates the optical/infrared signal at t>2.5 days. Such a signal would arise from 0.05 r-process material launched by a compact binary merger. The implied mass ejection supports the suggestion that compact binary mergers are significant and possibly main sites of heavy r-process nucleosynthesis. Furthermore, we have reanalysed all afterglow data from nearby short and hybrid GRBs (shGRBs). A statistical study of shGRB/macronova connection reveals that macronova may have taken place in all these GRBs, although the fraction as low as 0.18 cannot be ruled out. The identification of two of the three macronova candidates in the I-band implies a more promising detection prospect for ground-based surveys. PMID:27659791

  11. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun; Takahashi, Satoko [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Im, Myungshin; Kim, Jae-Woo; Jang, Minsung [Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, FPRD, Seoul National University, Shillim-dong, San 56-1, Kwanak-gu, Seoul (Korea, Republic of); Yamaoka, Kazutaka [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Tashiro, Makoto [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan); Pak, Soojong, E-mail: urata@astro.ncu.edu.tw [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-10

    We present multi-wavelength observations of a typical long duration GRB 120326A at z = 1.798, including rapid observations using a Submillimeter Array (SMA) and a comprehensive monitoring in the X-ray and optical. The SMA observation provided the fastest detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku, yielded a spectral peak energy of E{sub peak}{sup src}=107.8{sub −15.3}{sup +15.3} keV and an equivalent isotropic energy of E{sub iso} as 3.18{sub −0.32}{sup +0.40}×10{sup 52} erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation (6.°69 ± 0.°16). The forward shock modeling, using a two-dimensional relativistic hydrodynamic jet simulation, was also determined by the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical (αo – α{sub X} = –1.45 ± 0.10) indicated different radiation processes in each of them. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties, as well as forward shock modeling parameters, enabled us to determine reasonable functions to describe the afterglow properties. Because half of the events share similar properties in the X-ray and optical as the current event, GRB 120326A will be a benchmark with further rapid follow-ups, using submillimeter instruments such as an SMA and the Atacama Large Millimeter/submillimeter Array.

  12. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A

    International Nuclear Information System (INIS)

    Urata, Yuji; Huang, Kuiyun; Takahashi, Satoko; Im, Myungshin; Kim, Jae-Woo; Jang, Minsung; Yamaoka, Kazutaka; Tashiro, Makoto; Pak, Soojong

    2014-01-01

    We present multi-wavelength observations of a typical long duration GRB 120326A at z = 1.798, including rapid observations using a Submillimeter Array (SMA) and a comprehensive monitoring in the X-ray and optical. The SMA observation provided the fastest detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku, yielded a spectral peak energy of E peak src =107.8 −15.3 +15.3 keV and an equivalent isotropic energy of E iso as 3.18 −0.32 +0.40 ×10 52 erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation (6.°69 ± 0.°16). The forward shock modeling, using a two-dimensional relativistic hydrodynamic jet simulation, was also determined by the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical (αo – α X = –1.45 ± 0.10) indicated different radiation processes in each of them. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties, as well as forward shock modeling parameters, enabled us to determine reasonable functions to describe the afterglow properties. Because half of the events share similar properties in the X-ray and optical as the current event, GRB 120326A will be a benchmark with further rapid follow-ups, using submillimeter instruments such as an SMA and the Atacama Large Millimeter/submillimeter Array.

  13. On the structure of pulsed plasma jets

    Science.gov (United States)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  14. LFsGRB: Binary neutron star merger rate via the luminosity function of short gamma-ray bursts

    Science.gov (United States)

    Paul, Debdutta

    2018-04-01

    LFsGRB models the luminosity function (LF) of short Gamma Ray Bursts (sGRBs) by using the available catalog data of all short GRBs (sGRBs) detected till 2017 October, estimating the luminosities via pseudo-redshifts obtained from the Yonetoku correlation, and then assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. The data are fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs is derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks.

  15. Two Early Gamma-ray Bursts Optical Afterglow Detections with TAOS Telescopes--GRB 071010B and GRB 071112C

    International Nuclear Information System (INIS)

    Huang, K. Y.; Wang, S. Y.; Urata, Y.

    2009-01-01

    We present on two early detections of GRB afterglows with the Taiwanese-American Occltation Sruvey (TAOS) telescopes. The robotic TAOS system has been devised so that the routine Kuiper Belt Object (KBO) survey is interrupted when a GRB alert is triggered. Our first detection, GRB 071010B was detected by TAOS 62 s after the burst and showed a weak early brightening during the observations. No significant correction with the prompt gamma-ray emission indicated that our optical emission detected is afterglow emission. The second detection of TAOS, GRB 071112C was detected 96 s after the burst, also showed a possible initial raising then followed a steep decay in the R-band light curve.

  16. Magnetars in Ultra-Long Gamma-Ray Bursts and GRB 111209A

    Energy Technology Data Exchange (ETDEWEB)

    Gompertz, B.; Fruchter, A., E-mail: bgompertz@stsci.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2017-04-10

    Supernova 2011kl, associated with the ultra-long gamma-ray burst (ULGRB) 111209A, exhibited a higher-than-normal peak luminosity, placing it in the parameter space between regular supernovae and super-luminous supernovae. Its light curve can only be matched by an abnormally high fraction of {sup 56}Ni that appears inconsistent with the observed spectrum, and as a result it has been suggested that the supernova, and by extension the gamma-ray burst, are powered by the spin-down of a highly magnetized millisecond pulsar, known as a magnetar. We investigate the broadband observations of ULGRB 111209A and find two independent measures that suggest a high density circumburst environment. However, the light curve of the GRB afterglow shows no evidence of a jet break (the steep decline that would be expected as the jet slows due to the resistance of the external medium) out to three weeks after trigger, implying a wide jet. Combined with the high isotropic energy of the burst, this implies that only a magnetar with a spin period of ∼1 ms or faster can provide enough energy to power both ULGRB 111209A and Supernova 2011kl.

  17. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    Science.gov (United States)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  18. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    Science.gov (United States)

    Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2011-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.

  19. GRB 081029: A GAMMA-RAY BURST WITH A MULTI-COMPONENT AFTERGLOW

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen T.; Sakamoto, Takanori [Astrophysics Science Division, Code 660.1, 8800 Greenbelt Road, Goddard Space Flight Centre, Greenbelt, MD 20771 (United States); De Pasquale, Massimiliano; Schady, Patricia [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking RH5 6NT (United Kingdom); Mao, Jirong; Covino, Stefano; Jin, Zhi-Ping; D' Avanzo, Paolo; Chincarini, Guido [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Saint Lucia) (Italy); Fan, Yi-Zhong [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Antonelli, Angelo; D' Elia, Valerio; Fiore, Fabrizio [INAF-Osservatorio Astronomico di Roma, Via de Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy); Pandey, Shashi Bhushan [Randall Laboratory of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040 (United States); Cobb, Bethany E., E-mail: Stephen.T.Holland@nasa.gov [Department of Physics, The George Washington University, 725 21st St NW, Washington, DC 20052 (United States)

    2012-01-20

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3 m telescopes to construct a detailed data set extending from 86 s to {approx}100000 s after the BAT trigger. Our data cover a wide energy range from 10 keV to 0.77 eV (1.24 A-16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray-burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray-burst jets are complex and will require detailed modeling to fully understand them.

  20. The supernova-gamma-ray burst-jet connection.

    Science.gov (United States)

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  1. Investigation of supersonic jets shock-wave structure

    Science.gov (United States)

    Zapryagaev, V. I.; Gubanov, D. A.; Kavun, I. N.; Kiselev, N. P.; Kundasev, S. G.; Pivovarov, A. A.

    2017-10-01

    The paper presents an experimental studies overview of the free supersonic jet flow structure Ma = 1.0, Npr = 5, exhausting from a convergent profiled nozzle into a ambient space. Also was observed the jets in the presence of artificial streamwise vortices created by chevrons and microjets located on the nozzle exit. The technique of experimental investigation, schlieren-photographs and schemes of supersonic jets, and Pitot pressure distributions, are presented. A significant effect of vortex generators on the shock-wave structure of the flow is shown.

  2. Effect of outer stagnation pressure on jet structure in supersonic coaxial jet

    International Nuclear Information System (INIS)

    Kim, Myoung Jong; Woo, Sang Woo; Lee, Byeong Eun; Kwon, Soon Bum

    2001-01-01

    The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with 40 .deg. C converging angle with the variation of outer nozzle stagnation pressure are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressure of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream

  3. CGRO/BATSE Data Support the New Paradigm For GRB Prompt Emission and the New L-i(nTh)-E-peak,i(nTh,rest) Relation

    Science.gov (United States)

    Guiriec, S.; Gonzalez, M.M.; Sacahui, J.R.; Kouveliotou, C.; Gehrels, N.; McEnery, J.

    2016-01-01

    The paradigm for gamma-ray burst (GRB) prompt emission is changing. Since early in the Compton Gamma RayObservatory (CGRO) era, the empirical Band function has been considered a good description of the keV-MeV-gamma-ray prompt emission spectra despite the fact that its shape was very often inconsistent with the theoretical predictions, especially those expected in pure synchrotron emission scenarios. We have recently established a new observational model analyzing data of the NASA Fermi Gamma-ray Space Telescope. In this model, GRB prompt emission would be a combination of three main emission components: (i) a thermal-like component that we have interpreted so far as emission from the jet photosphere, (ii) a non-thermal component that we have interpreted so far as either synchrotron radiation from the propagating and accelerated charged particles within the jet or reprocessed jet photospheric emission, and (iii) an additional non-thermal (cutoff) power law (PL) extending from low to high energies in gamma-rays and most likely of inverse Compton origin. In this article we reanalyze some of the bright GRBs, namely GRBs 941017, 970111, and 990123, observed with the Burst And Transient Source Experiment (BATSE) on board CGRO with the new model. We conclude that BATSE data for these three GRBs are fully consistent with the recent results obtained with Fermi: some bright BATSE GRBs exhibit three separate components during the prompt phase with similar spectral parameters as those reported from Fermi data. In addition, the analysis of the BATSE GRBs with the new prompt emission model results in a relation between the time-resolved energy flux of the non-thermal component, F(in)(Th), and its corresponding nuFnu spectral peak energy,Epeak,inTh (i.e., FinThEpeak,inTh ), which has a similar index when fitted to a PL as the one initially derived from Fermi data. For GRBs with known redshifts (z) this results in a possible universal relation between the luminosity of the non

  4. GRB 080913 at redshift 6.7

    DEFF Research Database (Denmark)

    Greiner, J.; Krühler, T.; Fynbo, J. P. U.

    2009-01-01

    We report on the detection by Swift of GRB 080913, and subsequent optical/near-infrared follow-up observations by GROND, which led to the discovery of its optical/NIR afterglow and the recognition of its high-z nature via the detection of a spectral break between the i' and z' bands. Spectroscopy...... obtained at the ESO-VLT revealed a continuum extending down to ¿ = 9400 Å, and zero flux for 7500 Åinterpret as the onset of a Gunn-Peterson trough at z = 6.695± 0.025 (95.5% confidence level), making GRB 080913 the highest-redshift gamma-ray burst (GRB) to date, and more distant than...

  5. Single jet structure in e+e- annihilation

    International Nuclear Information System (INIS)

    Bianchi, F.; Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1993-01-01

    By using JETSET 7.2 as e + e - event generator at different c.m. energies, we studied single jet multiplicity distributions in different rapidity and p T intervals. Good NB behavior is found and related clan structure analysis is performed. Observed differences in the behavior of the 2- and 3-jet samples can be understood in terms of the relative contribution of single quark and gluon jet to the 3-jet sample, which are obtained by selecting event by event in this sample the highest and the lowest energy jet respectively. (orig.)

  6. Study of WATCH GRB error boxes

    DEFF Research Database (Denmark)

    Gorosabel, J.; Castro-Tirado, A. J.; Lund, Niels

    1995-01-01

    We have studied the first WATCH GRB Catalogue ofγ-ray Bursts in order to find correlations between WATCH GRB error boxes and a great variety of celestial objects present in 33 different catalogues. No particular class of objects has been found to be significantly correlated with the WATCH GRBs....

  7. GRB 070610: A Curious Galactic Transient

    Science.gov (United States)

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; Pollack, L. K.; Barthelmy, S.; Cummings, J.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Sato, G.; Chandra, P.; Frail, D.; Fox, D. B.; Price, P. A.; Berger, E.; Grebenev, S. A.; Krivonos, R. A.; Sunyaev, R. A.

    2008-05-01

    GRB 070610 is a typical high-energy event with a duration of 5 s. Yet within the burst localization we detect a highly unusual X-ray and optical transient, Swift J195509.6+261406. We see high-amplitude X-ray and optical variability on very short timescales even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of Swift J195509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the counterpart to be fainter than a K-dwarf, assuming it is of Galactic origin. It is possible that GRB 070610 and Swift J195509.6+261406 are unrelated sources. However, the absence of a typical X-ray afterglow from GRB 070610 in conjunction with the spatial and temporal coincidence of the two motivate us to suggest that the sources are related. The closest (imperfect) analog to Swift J195509.6+261406 is V4641 Sgr, an unusual black hole binary. We suggest that Swift J195509.6+261406 along with V4641 Sgr define a subclass of stellar black hole binaries—the fast X-ray novae. We further suggest that fast X-ray novae are associated with bursts of gamma rays. If so, GRB 070610 defines a new class of celestial gamma-ray bursts and these bursts dominate the long-duration GRB demographics.

  8. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  9. GRB 110530A: Peculiar Broad Bump and Delayed Plateau in Early Optical Afterglows

    Science.gov (United States)

    Zhong, Shu-Qing; Xin, Li-Ping; Liang, En-Wei; Wei, Jian-Yan; Urata, Yuji; Huang, Kui-Yun; Qiu, Yu-Lei; Deng, Can-Min; Wang, Yuan-Zhu; Deng, Jin-Song

    2016-11-01

    We report our very early optical observations of GRB 110530A and investigate its jet properties together with its X-ray afterglow data. A peculiar broad onset bump followed by a plateau is observed in its early R band afterglow light curve. The optical data in the other bands and the X-ray data are well consistent with the temporal feature of the R band light curve. Our joint spectral fits of the optical and X-ray data show that they are in the same regime, with a photon index of ∼1.70. The optical and X-ray afterglow light curves are well fitted with the standard external shock model by considering a delayed energy injection component. Based on our modeling results, we find that the radiative efficiency of the gamma-ray burst jet is ∼ 1 % and the magnetization parameter of the afterglow jet is \\lt 0.04 with a derived extremely low {ε }B (the ratio of shock energy to the magnetic field) of (1.64+/- 0.25)× {10}-6. These results indicate that the jet may be matter dominated. A discussion on delayed energy injection from the accretion of the late fall-back material of its pre-supernova star is also presented.

  10. Study on corrosion resistance of A106Gr.B and A672Gr.B60 in dynamic water loop with high temperature and pressure

    International Nuclear Information System (INIS)

    Tian Jue; Wang Hui; Li Xinmin

    2014-01-01

    Due to the low carbon and low alloy Cr content, flow accelerates corrosion prone to have a serious impact on safety. AP1000 is the most advanced nuclear power technology in recent years. The plant used A672Gr.B60 as an alternative feed pipe to reduce the impact of flow accelerated corrosion. The impact of different flow rates, alkaline agent type and material property on A672Gr.B60 and A106Gr.B were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectronic spectroscopy (XPS). After 336 h experiments were conducted, results show that the corrosion rate of A672Gr.B60 is much lower than that of A106Gr.B, and the density of oxidation film on A672Gr.B60 is superior to A106Gr.B. Ethanolamine (ETA) as an alkaline agent is better to reduce FAC to A106Gr.B, and it also can make the oxidation film become denser. Changes in flow rate will affect the size, shape and distribution of the oxide particles, and will also affect the thickness of the oxide film. Both of two materials were composed by Fe 3 O 4 . (authors)

  11. GRB 110731A within the IGC paradigm

    Directory of Open Access Journals (Sweden)

    Primorac Daria

    2018-01-01

    Full Text Available Bright gamma-ray burst (GRB 110731A was simultaneously observed by Fermi and Swift observatories, with a follow up optical observation which inferred the redshift of z = 2.83. Thus, available data are spanning from optical to high energy (GeV emission. We analyze these data within the induced gravitational collapse (IGC paradigm, recently introduced to explain temporal coincidence of some long GRBs with type Ic supernovae. The case of binary-driven hypcrnova (BdHN assumes a close system, which starts as an evolved core - neutron star binary. After the core-collapse event, the new NS - black hole system is formed, emitting the GRB in the process. We performed the time-resolved and time-integrated analysis of the Fermi data. Preliminary results gave isotropic energy Eiso = 6.05 × 1053 erg and the total P-GRB energy of Ep–GRB = 3.7 × 1052 erg. At transparency point we found a Lorentz factor Γ ~ 2.17 × 103 laboratory radius of 8.33 x 1013 cm, P-GRB observed temperature of 168 keV and a baryon load B = 4.35 × 10-4. Simulated light-curve and prompt emission spectra showed the average circum burst medium density to be n ~ 0.03 particles per cm3. We reproduced the X-ray light-curve within the rest-frame of the source, finding the common late power-law behavior, with α = –1.22. Considering these results, we interpret GRB 110731A as a member of a BdHNe group.

  12. GRB 110731A within the IGC paradigm

    Science.gov (United States)

    Primorac, Daria; Ruffini, Remo; Pisani, Giovanni Battista; Aimuratov, Yerlan; Biancol, Carlo Luciano; Karlica, Mile; Melon Fuksman, Julio David; Moradi, Rahim; Muccino, Marco; Penacchioni, Ana Virginia; Rueda, Jorge Armando; Wang, Yu

    2018-01-01

    Bright gamma-ray burst (GRB) 110731A was simultaneously observed by Fermi and Swift observatories, with a follow up optical observation which inferred the redshift of z = 2.83. Thus, available data are spanning from optical to high energy (GeV) emission. We analyze these data within the induced gravitational collapse (IGC) paradigm, recently introduced to explain temporal coincidence of some long GRBs with type Ic supernovae. The case of binary-driven hypcrnova (BdHN) assumes a close system, which starts as an evolved core - neutron star binary. After the core-collapse event, the new NS - black hole system is formed, emitting the GRB in the process. We performed the time-resolved and time-integrated analysis of the Fermi data. Preliminary results gave isotropic energy Eiso = 6.05 × 1053 erg and the total P-GRB energy of Ep-GRB = 3.7 × 1052 erg. At transparency point we found a Lorentz factor Γ 2.17 × 103 laboratory radius of 8.33 x 1013 cm, P-GRB observed temperature of 168 keV and a baryon load B = 4.35 × 10-4. Simulated light-curve and prompt emission spectra showed the average circum burst medium density to be n 0.03 particles per cm3. We reproduced the X-ray light-curve within the rest-frame of the source, finding the common late power-law behavior, with α = -1.22. Considering these results, we interpret GRB 110731A as a member of a BdHNe group.

  13. Search for high-energy muon neutrinos from the "naked-eye" GRB 080319B with the IceCube neutrino telescope

    DEFF Research Database (Denmark)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.

    2009-01-01

    We report on a search with the IceCube detector for high-energy muon neutrinos from GRB 080319B, one of the brightest gamma-ray bursts (GRBs) ever observed. The fireball model predicts that a mean of 0.1 events should be detected by IceCube for a bulk Lorentz boost of the jet of 300. In both the ......V and 2.2 PeV, which contains 90% of the expected events....

  14. Sub-jet structure as a discriminating quenching probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Apolinário, L. [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Milhano, J.G. [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Płoskoń, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2016-12-15

    In this work, we propose a new class of jet substructure observables which, unlike fragmentation functions, are largely insensitive to the poorly known physics of hadronization. We show that sub-jet structures provide us with a large discriminating power between different jet quenching Monte Carlo implementations.

  15. A scale invariant covariance structure on jet space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2005-01-01

    This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As par...

  16. REM observations of GRB060418 and GRB060607A: the onset of the afterglow and the initial fireball Lorentz factor determination

    Energy Technology Data Exchange (ETDEWEB)

    Molinari, E.; Covino, S.; D' Avanzo, P.; Chincarini, G.; Zerbi, F.M.; Conconi, P.; Malaspina, G.; Campana, S.; Rizzuto, D.; Tagliaferri, G. [Osserv Astron Brera, INAF, I-23807 Merate, LC, (Italy); Vergani, S.D.; Meurs, E.J.A.; Ward, P.A. [DIAS, Dunsink Observ, Dublin 15, (Ireland); Vergani, S.D.; Norci, L. [Dublin City Univ, Sch Phys Sci, NCPST, Dublin 9, (Ireland); Malesani, D. [SISSA, ISAS, I-34014 Trieste, (Italy); Malesani, D. [Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, (Denmark); D' Avanzo, P. [Univ Insubria, Dipartimento Matemat and Fis, I-22100 Como, (Italy); Chincarini, G.; Rizzuto, D. [Univ Milan, I-20126 Milan, (Italy); Antonelli, L.A.; Testa, V.; Vitali, F.; D' Alessio, F.; Guetta, D.; Piranomonte, S.; Stella, L. [Osserv Astron Roma, INAF, I-00040 Monte Porzio Catone, (Italy); Tosti, G. [Univ Perugia, Dipartimento Fis, Osservatorio Astron, I-06123 Perugia, (Italy); Nicastro, L.; Palazzi, E.; Masetti, N. [IASF Bologna, INAF, I-40129 Bologna, (Italy); Goldoni, P. [APC, Lab Astroparticule and Cosmol, UMR 7164, F-75231 Paris 05, (France); Goldoni, P. [CEA Saclay, DSM, DAPNIA, Serv Astrophys, F-91191 Gif Sur Yvette, (France)] (and others)

    2007-07-01

    Context. Gamma-ray burst (GRB) emission is believed to originate in highly relativistic fireballs. Aims. Currently, only lower limits were securely set to the initial fireball Lorentz factor {gamma}{sub 0}. We aim to provide a direct measure of {gamma}{sub 0}. Methods. The early-time afterglow light curve carries information about {gamma}{sub 0}, which determines the time of the afterglow peak. We have obtained early observations of the near-infrared afterglows of GRB060418 and GRB060607A with the REM robotic telescope. Results. For both events, the afterglow peak could be clearly singled out, allowing a firm determination of the fireball Lorentz of {gamma}{sub 0} similar to 400, fully confirming the highly relativistic nature of GRB fireballs. The deceleration radius was inferred to be R-dec approximate to 10{sup 17} cm. This is much larger than the internal shocks radius (believed to power the prompt emission), thus providing further evidence for a different origin of the prompt and afterglow stages of the GRB. (authors)

  17. LFlGRB: Luminosity function of long gamma-ray bursts

    Science.gov (United States)

    Paul, Debdutta

    2018-04-01

    LFlGRB models the luminosity function (LF) of long Gamma Ray Bursts (lGRBs) by using a sample of Swift and Fermi lGRBs to re-derive the parameters of the Yonetoku correlation and self-consistently estimate pseudo-redshifts of all the bursts with unknown redshifts. The GRB formation rate is modeled as the product of the cosmic star formation rate and a GRB formation efficiency for a given stellar mass.

  18. QUASI-STATIC MODEL OF MAGNETICALLY COLLIMATED JETS AND RADIO LOBES. II. JET STRUCTURE AND STABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Colgate, Stirling A.; Li, Hui [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Fowler, T. Kenneth [University of California, Berkeley, CA 94720 (United States); Hooper, E. Bickford [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McClenaghan, Joseph; Lin, Zhihong [University of California, Irvine, CA 92697 (United States)

    2015-11-10

    This is the second in a series of companion papers showing that when an efficient dynamo can be maintained by accretion disks around supermassive black holes in active galactic nuclei, it can lead to the formation of a powerful, magnetically driven, and mediated helix that could explain both the observed radio jet/lobe structures and ultimately the enormous power inferred from the observed ultrahigh-energy cosmic rays. In the first paper, we showed self-consistently that minimizing viscous dissipation in the disk naturally leads to jets of maximum power with boundary conditions known to yield jets as a low-density, magnetically collimated tower, consistent with observational constraints of wire-like currents at distances far from the black hole. In this paper we show that these magnetic towers remain collimated as they grow in length at nonrelativistic velocities. Differences with relativistic jet models are explained by three-dimensional magnetic structures derived from a detailed examination of stability properties of the tower model, including a broad diffuse pinch with current profiles predicted by a detailed jet solution outside the collimated central column treated as an electric circuit. We justify our model in part by the derived jet dimensions in reasonable agreement with observations. Using these jet properties, we also discuss the implications for relativistic particle acceleration in nonrelativistically moving jets. The appendices justify the low jet densities yielding our results and speculate how to reconcile our nonrelativistic treatment with general relativistic MHD simulations.

  19. THE PROPERTIES OF THE 2175 Å EXTINCTION FEATURE DISCOVERED IN GRB AFTERGLOWS

    International Nuclear Information System (INIS)

    Zafar, Tayyaba; Watson, Darach; Elíasdóttir, Árdís; Fynbo, Johan P. U.; Krühler, Thomas; Leloudas, Giorgos; Schady, Patricia; Greiner, Jochen; Jakobsson, Páll; Thöne, Christina C.; Perley, Daniel A.; Morgan, Adam N.; Bloom, Joshua

    2012-01-01

    The unequivocal, spectroscopic detection of the 2175 Å bump in extinction curves outside the Local Group is rare. To date, the properties of the bump have been examined in only two gamma-ray burst (GRB) afterglows (GRB 070802 and GRB 080607). In this work, we analyze in detail the detections of the 2175 Å extinction bump in the optical spectra of two further GRB afterglows: GRB 080605 and 080805. We gather all available optical/near-infrared photometric, spectroscopic, and X-ray data to construct multi-epoch spectral energy distributions (SEDs) for both GRB afterglows. We fit the SEDs with the Fitzpatrick and Massa model with a single or broken power law. We also fit a sample of 38 GRB afterglows, known to prefer a Small Magellanic Cloud (SMC)-type extinction curve, with the same model. We find that the SEDs of GRB 080605 and GRB 080805 at two epochs are fit well with a single power law with a derived extinction of A V = 0.52 +0.13 –0.16 and 0.50 +0.13 –0.10 , and 2.1 +0.7 –0.6 and 1.5 ± 0.2, respectively. While the slope of the extinction curve of GRB 080805 is not well constrained, the extinction curve of GRB 080605 has an unusual very steep far-UV rise together with the 2175 Å bump. Such an extinction curve has previously been found in only a small handful of sightlines in the Milky Way. One possible explanation of such an extinction curve may be dust arising from two different regions with two separate grain populations, however we cannot distinguish the origin of the curve. We finally compare the four 2175 Å bump sightlines to the larger GRB afterglow sample and to Local Group sightlines. We find that while the width and central positions of the bumps are consistent with what is observed in the Local Group, the relative strength of the detected bump (A bump ) for GRB afterglows is weaker for a given A V than for almost any Local Group sightline. Such dilution of the bump strength may offer tentative support to a dual dust-population scenario.

  20. GRB 030329: 3 years of radio afterglow monitoring

    NARCIS (Netherlands)

    van der Horst, A.J.; Kamble, A.; Wijers, R.A.M.J.; Resmi, L.; Bhattacharya, D.; Rol, E.; Strom, R.; Kouveliotou, C.; Oosterloo, T.; Ishwara-Chandra, C.H.

    2007-01-01

    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a three-year monitoring

  1. GRB 030227: The first multiwavelength afterglow of an INTEGRAL GRB

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Gorosabel, J.; Guziy, S.

    2003-01-01

    We present multiwavelength observations of a gamma-ray burst detected by INTEGRAL (GRB 030227) between 5.3 hours and similar to1.7 days after the event. Here we report the discovery of a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R ...

  2. GRB 051008

    DEFF Research Database (Denmark)

    Volnova, A. A.; Pozanenko, A. S.; Gorosabel, J.

    2014-01-01

    due to the presence of a clear, strong Lyman-break feature. The host galaxy is a small starburst galaxy with moderate intrinsic extinction (AV = 0.3) and has a star formation rate of ∼60 M⊙ yr−1 typical for LBGs. It is one of the few cases where a GRB host has been found to be a classical LBG. Using...

  3. Single jet structure in e[sup +]e[sup -] annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, F. (Turin Univ. (Italy). Dipt. di Fisica Sperimentale INFN, Turin (Italy)); Giovannini, A.; Lupia, S.; Ugoccioni, R. (Turin Univ. (Italy). Dipt. di Fisica Teorica INFN, Turin (Italy))

    1993-04-01

    By using JETSET 7.2 as e[sup +]e[sup -] event generator at different c.m. energies, we studied single jet multiplicity distributions in different rapidity and p[sub T] intervals. Good NB behavior is found and related clan structure analysis is performed. Observed differences in the behavior of the 2- and 3-jet samples can be understood in terms of the relative contribution of single quark and gluon jet to the 3-jet sample, which are obtained by selecting event by event in this sample the highest and the lowest energy jet respectively. (orig.).

  4. VLT/X-shooter spectroscopy of the GRB 120327A afterglow

    DEFF Research Database (Denmark)

    D'Elia, V.; Fynbo, Johan Peter Uldall; Goldoni, P.

    2014-01-01

    we used to derive information on the distance between the host absorbing gas and the site of the GRB explosion. The variability of the FeI\\lambda2396 excited line between the two epochs proves that these features are excited by the GRB UV flux. Moreover, the distance of component I is found to be d......I=200+100-60 pc, while component II is located closer to the GRB, at dII=100+40-30 pc. These values are among the lowest found in GRBs. Component III does not show excited transitions, so it should be located farther away from the GRB. The presence of H2 molecules is firmly established, with a molecular...

  5. The two-component afterglow of Swift GRB 050802

    Science.gov (United States)

    Oates, S. R.; de Pasquale, M.; Page, M. J.; Blustin, A. J.; Zane, S.; McGowan, K.; Mason, K. O.; Poole, T. S.; Schady, P.; Roming, P. W. A.; Page, K. L.; Falcone, A.; Gehrels, N.

    2007-09-01

    This paper investigates GRB 050802, one of the best examples of a Swift gamma-ray burst afterglow that shows a break in the X-ray light curve, while the optical counterpart decays as a single power law. This burst has an optically bright afterglow of 16.5 mag, detected throughout the 170-650nm spectral range of the Ultraviolet and Optical Telescope (UVOT) onboard Swift. Observations began with the X-ray Telescope and UVOT telescopes 286s after the initial trigger and continued for 1.2 ×106s. The X-ray light curve consists of three power-law segments: a rise until 420s, followed by a slow decay with α =0.63 +/-0.03 until 5000s, after which, the light curve decays faster with a slope of α3 =1.59 +/-0.03. The optical light curve decays as a single power law with αO =0.82 +/-0.03 throughout the observation. The X-ray data on their own are consistent with the break at 5000s being due to the end of energy injection. Modelling the optical to X-ray spectral energy distribution, we find that the optical afterglow cannot be produced by the same component as the X-ray emission at late times, ruling out a single-component afterglow. We therefore considered two-component jet models and find that the X-ray and optical emission is best reproduced by a model in which both components are energy injected for the duration of the observed afterglow and the X-ray break at 5000s is due to a jet break in the narrow component. This bright, well-observed burst is likely a guide for interpreting the surprising finding of Swift that bursts seldom display achromatic jet breaks.

  6. Numerical study of jet noise radiated by turbulent coherent structures

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, F.

    1995-08-01

    a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)

  7. Turbulent flow field structure of initially asymmetric jets

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo

    2000-01-01

    The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases

  8. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; hide

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  9. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    International Nuclear Information System (INIS)

    Chipps, K.A.; Greife, U.; Bardayan, D.W.; Blackmon, J.C.; Kontos, A.; Linhardt, L.E.; Matos, M.; Pain, S.D.; Pittman, S.T.; Sachs, A.; Schatz, H.; Schmitt, K.T.; Smith, M.S.; Thompson, P.

    2014-01-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10 18 atoms/cm 2 of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far

  10. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    Science.gov (United States)

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  11. CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM GRB 130427A

    International Nuclear Information System (INIS)

    Aliu, E.; Errando, M.; Aune, T.; Barnacka, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Biteau, J.; Byrum, K.; Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D.; Chen, X.; Ciupik, L.; Connaughton, V.; Cui, W.; Falcone, A.

    2014-01-01

    Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for ∼70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ∼71 ks (∼20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst

  12. Broadband Study of GRB 091127: A Sub-energetic Burst at Higher Redshift?

    Science.gov (United States)

    Troja, E.; Sakamoto, T.; Guidorzi, C.; Norris, J. P.; Panaitescu, A.; Kobayashi, S.; Omodei, N.; Brown, J. C.; Burrows, D. N.; Evans, P. A.; Gehrels, N.; Marshall, F. E.; Mawson, N.; Melandri, A.; Mundell, C. G.; Oates, S. R.; Pal'shin, V.; Preece, R. D.; Racusin, J. L.; Steele, I. A.; Tanvir, N. R.; Vasileiou, V.; Wilson-Hodge, C.; Yamaoka, K.

    2012-12-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E γ < 3 × 1049 erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  13. BROADBAND STUDY OF GRB 091127: A SUB-ENERGETIC BURST AT HIGHER REDSHIFT?

    Energy Technology Data Exchange (ETDEWEB)

    Troja, E.; Sakamoto, T.; Brown, J. C.; Gehrels, N.; Marshall, F. E.; Racusin, J. L. [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Guidorzi, C. [Physics Department, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Norris, J. P. [Physics Department, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Panaitescu, A. [Space Science and Applications, MS D466, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Kobayashi, S.; Mawson, N.; Melandri, A.; Mundell, C. G.; Steele, I. A. [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, CH41 1LD Birkenhead (United Kingdom); Omodei, N. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Burrows, D. N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Evans, P. A. [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Oates, S. R. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Pal' shin, V. [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Preece, R. D. [Department of Physics, University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); and others

    2012-12-10

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z = 0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low-energy release (E{sub {gamma}} < 3 Multiplication-Sign 10{sup 49} erg), soft spectrum, and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion.

  14. A recombined fusion protein PTD-Grb2-SH2 inhibits the proliferation of breast cancer cells in vitro.

    Science.gov (United States)

    Yin, Jikai; Cai, Zhongliang; Zhang, Li; Zhang, Jian; He, Xianli; Du, Xilin; Wang, Qing; Lu, Jianguo

    2013-03-01

    The growth factor receptor bound protein 2 (Grb2) is one of the affirmative targets for cancer therapy, especially for breast cancer. In this study, we hypothesized the Src-homology 2 (SH2) domain in Grb2 may serve as a competitive protein-binding agent to interfere with the proliferation of breast cancer cells in vitro. We designed, constructed, expressed and purified a novel fusion protein containing the protein transduction domain (PTD) and Grb2-SH2 domain (we named it after PTD-Grb2-SH2). An immunofluorescence assay was used to investigate the location of PTD-Grb2-SH2 in cells. MTT assay and EdU experiments were applied to detect the proliferation of breast cancer cells. The ultra-structure was observed using transmission electron microscopy. Flow cytometry was used to determine the cytotoxicity of PTD-Grb2-SH2 on cell proliferation. We successfully obtained the PTD-Grb2-SH2 fusion protein in soluble form using a prokaryotic expression system. The new fusion protein successfully passed through both the cellular and nuclear membranes of breast cancer cells. The MTT assay showed that PTD-Grb2-SH2 exhibited significant toxicity to breast cancer cells in a dose- and time-dependent manner in vitro. EdU identified the decreased proliferation rates in treated MDA-MB-231 and SK-BR-3 cells. Observation by transmission electron microscopy and flow cytometry further confirmed the cytotoxicity as apoptosis. Our results show that the HIV1-TAT domain is a useful tool for transporting a low molecular weight protein across the cell membrane in vitro. The PTD-Grb2-SH2 may be a novel agent for breast cancer therapy.

  15. Firework Model: Time Dependent Spectral Evolution of GRB

    Science.gov (United States)

    Barbiellini, Guido; Longo, Francesco; Ghirlanda, G.; Celotti, A.; Bosnjak, Z.

    2004-09-01

    The energetics of the long duration GRB phenomenon is compared with models of a rotating BH in a strong magnetic field generated by an accreting torus. The GRB energy emission is attributed to magnetic field vacuum breakdown that gives origin to a e +/- fireball. Its subsequent evolution is hypothesized in analogy with the in-flight decay of an elementary particle. An anisotropy in the fireball propagation is thus naturally produced. The recent discovery in some GRB of an initial phase characterized by a thermal spectrum could be interpreted as the photon emission of the fireball photosphere when it becomes transparent. In particular, the temporal evolution of the emission can be explained as the effect of a radiative deceleration of the out-moving ejecta.

  16. The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling.

    Science.gov (United States)

    Giorgetti-Peraldi, S; Murdaca, J; Mas, J C; Van Obberghen, E

    2001-07-05

    Vascular endothelial growth factor (VEGF) is an important regulator of vasculogenesis and angiogenesis. Activation of VEGF receptors leads to the recruitment of SH2 containing proteins which link the receptors to the activation of signaling pathways. Here we report that Grb10, an adapter protein of which the biological role remains unknown, is tyrosine phosphorylated in response to VEGF in endothelial cells (HUVEC) and in 293 cells expressing the VEGF receptor KDR. An intact SH2 domain is required for Grb10 tyrosine phosphorylation in response to VEGF, and this phosphorylation is mediated in part through the activation of Src. In HUVEC, VEGF increases Grb10 mRNA level. Expression of Grb10 in HUVEC or in KDR expressing 293 cells results in an increase in the amount and in the tyrosine phosphorylation of KDR. In 293 cells, this is correlated with the activation of signaling molecules, such as MAP kinase. By expressing mutants of Grb10, we found that the positive action of Grb10 is independent of its SH2 domain. Moreover, these Grb10 effects on KDR seem to be specific since Grb10 has no effect on the insulin receptor, and Grb2, another adapter protein, does not mimic the effect of Grb10 on KDR. In conclusion, we propose that VEGF up-regulates Grb10 level, which in turn increases KDR molecules, suggesting that Grb10 could be involved in a positive feedback loop in VEGF signaling.

  17. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10 m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10 +/+ mice. After total body irradiation (TBI), Grb10 m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10 +/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis

    International Nuclear Information System (INIS)

    Di Fulvio, Mauricio; Henkels, Karen M.; Gomez-Cambronero, Julian

    2007-01-01

    Grb2 is an SH2-SH3 protein adaptor responsible for linking growth factor receptors with intracellular signaling cascades. To study the role of Grb2 in cell growth, we have generated a new COS7 cell line (COS7 shGrb2 ), based on RNAi technology, as null mutations in mammalian Grb2 genes are lethal in early development. This novel cell line continuously expresses a short hairpin RNA that targets endogenous Grb2. Stable COS7 shGrb2 cells had the shGrb2 integrated into the genomic DNA and carried on SiL construct (made refractory to the shRNA-mediated interference), but not with an SH2-deficient mutant (R86K). Thus, a viable knock-down and rescue protocol has demonstrated that Grb2 is crucial for cell proliferation

  19. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...... - I colour than the eastern component, suggesting the presence of at least some dust. We do not detect the host galaxy of GRB 000301C in neither Lyalpha emission nor in U and I broad-band images. The strongest limit comes from combining the narrow and U-band imaging where we infer a limit of U...

  20. Revealing Physical Activity of GRB Central Engine with Macronova/Kilonova Data

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhao-Qiang; Jin, Zhi-Ping; Liang, Yun-Feng; Li, Xiang; Fan, Yi-Zhong; Wei, Da-Ming, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [Key Laboratory of dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Science, Nanjing 210008 (China)

    2017-02-01

    The modeling of Li-Paczyński macronova/kilonova signals gives a reasonable estimate on the neutron-rich material ejected during the neutron star mergers. Usually the accretion disk is more massive than the macronova ejecta, with which the efficiencies of converting the disk mass into prompt emission of three merger-driven GRBs can hence be directly constrained. Supposing the macronovae/kilonovae associated with GRB 050709, GRB 060614, and GRB 130603B arose from radioactive decay of the r -process material, the upper limit on energy conversion efficiencies are found to be as low as ∼10{sup −6}–10{sup −4}. Moreover, for all three events, neutrino annihilation is likely powerful enough to account for the brief gamma-ray flashes. Neutrino annihilation can also explain the “extended” emission lasting ∼100 s in GRB 050709, but does not work for the one in GRB 060614. These progresses demonstrate that the macronova can serve as a novel probe of the central engine activity.

  1. On the design and structural analysis of jet engine fan blade structures

    Science.gov (United States)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  2. Thermal interaction in crusted melt jets with large-scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Ken-ichiro; Sotome, Fuminori; Ishikawa, Michio [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering

    1998-01-01

    The objective of the present study is to experimentally observe thermal interaction which would be capable of triggering due to entrainment, or entrapment in crusted melt jets with `large-scale structure`. The present experiment was carried out by dropping molten zinc and molten tin of 100 grams, of which mass was sufficient to generate large-scale structures of melt jets. The experimental results show that the thermal interaction of entrapment type occurs in molten-zinc jets with rare probability, and the thermal interaction of entrainment type occurs in molten tin jets with high probability. The difference of thermal interaction between molten zinc and molten tin may attribute to differences of kinematic viscosity and melting point between them. (author)

  3. TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars.

    Science.gov (United States)

    Murase, Kohta; Ioka, Kunihito

    2013-09-20

    We study high-energy neutrino production in collimated jets inside progenitors of gamma-ray bursts (GRBs) and supernovae, considering both collimation and internal shocks. We obtain simple, useful constraints, using the often overlooked point that shock acceleration of particles is ineffective at radiation-mediated shocks. Classical GRBs may be too powerful to produce high-energy neutrinos inside stars, which is consistent with IceCube nondetections. We find that ultralong GRBs avoid such constraints and detecting the TeV signal will support giant progenitors. Predictions for low-power GRB classes including low-luminosity GRBs can be consistent with the astrophysical neutrino background IceCube may detect, with a spectral steepening around PeV. The models can be tested with future GRB monitors.

  4. Infrared Emission from Kilonovae: The Case of the Nearby Short Hard Burst GRB 160821B

    Energy Technology Data Exchange (ETDEWEB)

    Kasliwal, Mansi M.; Lau, Ryan M. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Korobkin, Oleg; Wollaeger, Ryan; Fryer, Christopher L. [Computational Methods Group (CCS-2), Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545 (United States)

    2017-07-10

    We present constraints on Ks-band emission from one of the nearest short hard gamma-ray bursts, GRB 160821B, at z = 0.16, at three epochs. We detect a red relativistic afterglow from the jetted emission in the first epoch but do not detect any excess kilonova emission in the second two epochs. We compare upper limits obtained with Keck I/MOSFIRE to multi-dimensional radiative transfer models of kilonovae, that employ composition-dependent nuclear heating and LTE opacities of heavy elements. We discuss eight models that combine toroidal dynamical ejecta and two types of wind and one model with dynamical ejecta only. We also discuss simple, empirical scaling laws of predicted emission as a function of ejecta mass and ejecta velocity. Our limits for GRB 160821B constrain the ejecta mass to be lower than 0.03 M {sub ⊙} for velocities greater than 0.1 c. At the distance sensitivity range of advanced LIGO, similar ground-based observations would be sufficiently sensitive to the full range of predicted model emission including models with only dynamical ejecta. The color evolution of these models shows that I – K color spans 7–16 mag, which suggests that even relatively shallow infrared searches for kilonovae could be as constraining as optical searches.

  5. The VLT/X-shooter GRB afterglow legacy survey

    Science.gov (United States)

    Kaper, Lex; Fynbo, Johan P. U.; Pugliese, Vanna; van Rest, Daan

    2017-11-01

    The Swift satellite allows us to use gamma-ray bursts (GRBs) to peer through the hearts of star forming galaxies through cosmic time. Our open collaboration, representing most of the active European researchers in this field, builds a public legacy sample of GRB X-shooter spectroscopy while Swift continues to fly. To date, our spectroscopy of more than 100 GRB afterglows covers a redshift range from 0.059 to about 8 (Tanvir et al. 2009, Nature 461, 1254), with more than 20 robust afterglow-based metallicity measurements (over a redshift range from 1.7 to 5.9). With afterglow spectroscopy (throughout the electromagnetic spectrum from X-rays to the sub-mm) we can hence characterize the properties of star-forming galaxies over cosmic history in terms of redshift, metallicity, molecular content, ISM temperature, UV-flux density, etc.. These observations provide key information on the final evolution of the most massive stars collapsing into black holes, with the potential of probing the epoch of the formation of the first (very massive) stars. VLT/X-shooter (Vernet et al. 2011, A&A 536, A105) is in many ways the ideal GRB follow-up instrument and indeed GRB follow-up was one of the primary science cases behind the instrument design and implementation. Due to the wide wavelength coverage of X-shooter, in the same observation one can detect molecular H2 absorption near the atmospheric cut-off and many strong emission lines from the host galaxy in the near-infrared (e.g., Friis et al. 2015, MNRAS 451, 167). For example, we have measured a metallicity of 0.1 Z ⊙ for GRB 100219A at z = 4.67 (Thöne et al. 2013, MNRAS 428, 3590), 0.02 Z ⊙ for GRB 111008A at z = 4.99 (Sparre et al. 2014, ApJ 785, 150) and 0.05 Z ⊙ for GRB 130606A at z = 5.91 (Hartoog et al. 2015, A&A 580, 139). In the latter, the very high value of [Al/Fe]=2.40 +/- 0.78 might be due to a proton capture process and may be a signature of a previous generation of massive (perhaps even the first) stars

  6. Hierarchical structure of correlation functions for single jets

    International Nuclear Information System (INIS)

    Lupia, S.; Giovannini, A.; Ugoccioni, R.

    1993-01-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p T intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e + e - annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  7. Preliminary crystallographic characterization of the Grb2 SH2 domain in complex with a FAK-derived phosphotyrosyl peptide

    International Nuclear Information System (INIS)

    Chen, Hsiao-Hsin; Chen, Cuei-Wen; Chang, Yu-Yung; Shen, Tang-Long; Hsu, Chun-Hua

    2010-01-01

    Crystals of the Grb2 SH2 domain in complex with a phosphotyrosyl peptide corresponding to residues 921–930 of focal adhesion kinase (FAK) have been obtained using the sitting-drop vapour-diffusion technique. Data have been collected to 2.49 Å resolution. Growth factor receptor-bound protein 2 (Grb2) is an adaptor protein with a single SH2 domain that specifically binds to focal adhesion kinase (FAK) when residue Tyr925 of FAK is phosphorylated. The Grb2–FAK interaction is associated with cellular integrin-activated signal transduction events leading to the activation of the Ras-MAPK pathway. Crystals of the Grb2 SH2 domain in complex with a phosphopeptide corresponding to residues 921–930 of FAK have been obtained using the sitting-drop vapour-diffusion technique. The crystals belonged to space group P3 1 21, with unit-cell parameters a = b = 102.7, c = 127.6 Å, α = β = 90.0, γ = 120.0°. A diffraction data set was collected from a flash-cooled crystal at 100 K to 2.49 Å resolution using synchrotron radiation. Structure determination by molecular replacement and analysis of the detailed structure of the complex are currently in progress

  8. The Composition of GRB Jets and the ICMART Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [University of Nevada, Las Vegas; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Models of gamma ray bursts (GRBs) are drawn from observations of light curves, spectra, and spectral evolution. The ICMART (Internal Collision-induced MAgnetic Reconnection & Turbulence) model and some of its features are presented. Increasing evidence points towards Poynting-flux-dominated jets in at least some (even a good fraction of) GRBs. The main emission component (Band) is of a synchrotron emission origin, produced by electrons accelerated in the emission region. The data seem to require that magnetic reconnection in the moderately-high sigma regime is the mechanism to accelerate particles. Extensive numerical simulations are needed to verify physical details of such a model, and some encouraging results have been obtained.

  9. Modeling and simulation of aggregation of membrane protein LAT with molecular variability in the number of binding sites for cytosolic Grb2-SOS1-Grb2.

    Directory of Open Access Journals (Sweden)

    Ambarish Nag

    Full Text Available The linker for activation of T cells (LAT, the linker for activation of B cells (LAB, and the linker for activation of X cells (LAX form a family of transmembrane adaptor proteins widely expressed in lymphocytes. These scaffolding proteins have multiple binding motifs that, when phosphorylated, bind the SH2 domain of the cytosolic adaptor Grb2. Thus, the valence of LAT, LAB and LAX for Grb2 is variable, depending on the strength of receptor activation that initiates phosphorylation. During signaling, the LAT population will exhibit a time-varying distribution of Grb2 valences from zero to three. In the cytosol, Grb2 forms 1:1 and 2:1 complexes with the guanine nucleotide exchange factor SOS1. The 2:1 complex can bridge two LAT molecules when each Grb2, through their SH2 domains, binds to a phosphorylated site on a separate LAT. In T cells and mast cells, after receptor engagement, receptor phosphoyrlation is rapidly followed by LAT phosphorylation and aggregation. In mast cells, aggregates containing more than one hundred LAT molecules have been detected. Previously we considered a homogeneous population of trivalent LAT molecules and showed that for a range of Grb2, SOS1 and LAT concentrations, an equilibrium theory for LAT aggregation predicts the formation of a gel-like phase comprising a very large aggregate (superaggregate. We now extend this theory to investigate the effects of a distribution of Grb2 valence in the LAT population on the formation of LAT aggregates and superaggregate and use stochastic simulations to calculate the fraction of the total LAT population in the superaggregate.

  10. Pulsating jet-like structures in magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P. [A. M. Obukhov Institute of Atmospheric Physics RAS, 109017 Moscow (Russian Federation); Pavlov, V. I. [UFR des Mathématiques Pures et Appliquées, Univ. Lille, CNRS FRE 3723 - LML, F-59000 Lille (France)

    2016-08-15

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as “radio pulsars.” The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  11. The structure of a jet in cross flow at low velocity ratios

    International Nuclear Information System (INIS)

    Gopalan, Shridhar; Abraham, Bruce M.; Katz, Joseph

    2004-01-01

    This paper examines in detail the flow structure and associated wall pressure fluctuations caused by the injection of a round, turbulent jet into a turbulent boundary layer. The velocity ratio, r, ratio of mean jet velocity to the mean cross flow, varies from 0.5 to 2.5 and the Reynolds number based on the cross flow speed and jet diameter is 1.9x10 4 . Particle image velocimetry is used to measure the flow and flush mounted pressure sensors installed at several locations used to determine the wall pressure. The results consist of sample instantaneous flow structures, distributions of mean velocity, vorticity and turbulence intensity, as well as wall pressure spectra. The flow structure depends strongly on the velocity ratio and there are two distinctly different regions. At low velocity ratios, namely r 2, the near-wall flow behind the jet resembles a Karman vortex street and the wall-normal vortical structures contain cross flow boundary layer vorticity. Autospectra of the pressure signals show that the effect of the jet is mainly in the 15-100 Hz range. At r 2, the wall pressure levels reach a plateau demonstrating the diminishing effect of the jet on the near-wall flow. Consistent with the flow structure, the highest wall pressure fluctuations occur off the jet centerline for r 2. Also, the advection speed of near-wall vortical structures increase with r at r 2 it is a constant

  12. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    International Nuclear Information System (INIS)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-01-01

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to δt ≈ 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A host V ≈ 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N H, i nt (z = 1.3) ≈ 2 × 10 22 cm –2 , is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at ≈0.9-11 days reveal a constant flux density of F ν (5.8 GHz) = 35 ± 4 μJy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z ≈ 1.3, with a resulting star formation rate of x ≈ 300 M ☉ yr –1 . The inferred extinction and small projected offset (2.2 ± 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n ∼ 10 –3 cm –3 , an isotropic-equivalent energy scale of E γ, i so ≈ E K, i so ≈ 7 × 10 51 erg, and a jet opening angle of θ j ∼> 11°. The expected fraction of luminous infrared galaxies in the short GRB host sample is ∼0.01 and ∼0.25 (for pure stellar mass and star formation weighting, respectively). Thus, the observed fraction of two events in about 25 hosts (GRBs 120804A and 100206A) appears to support our previous conclusion that short

  13. Hierarchical structure of correlation functions for single jets

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy))

    1993-08-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p[sub T] intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e[sup +]e[sup -] annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  14. The prompt to late-time multiwavelength analysis of GRB 060210

    NARCIS (Netherlands)

    Curran, P.A.; van der Horst, A.J.; Beardmore, A.P.; Page, K.L.; Rol, E.; Melandri, A.; Steele, I.A.; Mundell, C.G.; Gomboc, A.; O'Brien, P.T.; Bersier, D.F.; Bode, M.F.; Carter, D.; Guidorzi, C.; Hill, J.E.; Hurkett, C.P.; Kobayashi, S.; Monfardini, A.; Mottram, C.J.; Smith, R.J.; Wijers, R.A.M.J.; Willingale, R.

    2007-01-01

    Aims.We present our analysis of the multiwavelength photometric & spectroscopic observations of GRB 060210 and discuss the results in the overall context of current GRB models. Methods: All available optical data underwent a simultaneous temporal fit, while X-ray and gamma-ray observations were

  15. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts.

    Science.gov (United States)

    Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari

    2014-12-26

    The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Radioactive decay of the late-time light curves of GRB-SNe

    Science.gov (United States)

    Misra, Kuntal; Fruchte, Andrew Steven

    2018-04-01

    We present the late-time Hubble Space Telescope observations of two GRB associated supernovae, GRB 030329/SN 2003dh and XRF 060218/SN 2006aj. Using the multi-color data upto ˜ 320 days after the burst, we constrain the late-time decay nature of these supernovae. The decay rates of SN 2003dh are steeper than SN 2006aj. A comparison with two other GRB supernovae, GRB 980425/SN 1998bw and the supernova associated with XRF 020903, shows that the decay rates of SN 2003dh are similar to XRF 020903 and those of SN 2006aj are similar to SN 1998bw. The late-time decay rates are steeper than the 56Co?56Fe radioactive decay rate (0.0098 mag day-1) indicating that there is some leakage of gamma-rays.

  17. Structural bifurcation of microwave helium jet discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kitoh, Masakazu; Soga, Tadasuke

    2008-01-01

    Structural bifurcation of microwave-sustained jet discharge at atmospheric gas pressure was found to produce a stable helium plasma jet, which may open the possibility of a new type of high-flux test plasma beam for plasma-wall interactions in fusion devices. The fundamental discharge properties are presented including hysteresis characteristics, imaging of discharge emissive structure, and stable ignition parameter area. (author)

  18. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  19. The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta

    Science.gov (United States)

    Bromberg, O.; Tchekhovskoy, A.; Gottlieb, O.; Nakar, E.; Piran, T.

    2018-04-01

    We present the first relativistic magnetohydrodynamics numerical simulation of a magnetic jet that propagates through and emerges from the dynamical ejecta of a binary neutron star merger. Generated by the magnetized rotation of the merger remnant, the jet propagates through the ejecta and produces an energetic cocoon that expands at mildly relativistic velocities and breaks out of the ejecta. We show that if the ejecta has a low-mass (˜10-7 M⊙) high-velocity (v ˜ 0.85c) tail, the cocoon shock breakout will generate γ-ray emission that is comparable to the observed short GRB170817A that accompanied the recent gravitational wave event GW170817. Thus, we propose that this gamma-ray burst (GRB), which is quite different from all other short GRBs observed before, was produced by a different mechanism. We expect, however, that such events are numerous and many will be detected in coming LIGO-Virgo runs.

  20. Swirl effect on flow structure and mixing in a turbulent jet

    Science.gov (United States)

    Kravtsov, Z. D.; Sharaborin, D. K.; Dulin, V. M.

    2018-03-01

    The paper reports on experimental study of turbulent transport in the initial region of swirling turbulent jets. The particle image velocimetry and planar laser-induced fluorescence techniques are used to investigate the flow structure and passive scalar concentration, respectively, in free air jet with acetone vapor. Three flow cases are considered, viz., non-swirling jets and swirling jets with and without vortex breakdown and central recirculation zone. Without vortex breakdown, the swirl is shown to promote jet mixing with surrounding air and to decrease the jet core length. The vortex core breakdown further enhances mixing as the jet core disintegrates at the nozzle exit.

  1. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  2. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.

    2009-01-01

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  3. On the structure and origin of HH jets.

    Science.gov (United States)

    De Colle, Fabio

    2011-10-01

    The goal of this proposal is to study the structure and origin of jets from young stellar objects by using HST observations of T Tauri jets. To this end, we propose to use three different but complementary approaches: tomographic reconstruction to recover the jet velocity cross-section, numerical simulations to compare the predictions of jet ejection models with the observations, and a statistical analysis of the data. First, we plan to use standard tomographic reconstruction techniques to derive the cross-section {i.e. perpendicular to the jet axis} velocity and physical parameters {electron density, temperature and ionization fraction} of the jets. This will allow a reliable estimation of mass- and momentum-flux from the central star-disk system, which, together with the cross-sectional velocity constraints, will help to distinguish between different jet ejection models. Second, we will focus our study on understanding recent observations of stellar jets showing transverse velocity shifts in several emission lines. The origin of these velocity shift is still debated: they can be interpreted as evidence of rotation, or they can be originated by side-to-side asymmetries in the flow or in the ambient medium. To distinguish between these two scenarios, we plan to uncover the origin of transverse velocity shift by a statistical approach based on the presence {or absence} of correlations between the velocity shifts and the degree of asymmetries in the flow. Finally, we will use our adaptive mesh refinement code to compare the observations with a large number of numerical simulations constructed on different jet ejection mechanisms.

  4. Preparation and crystallization of the Grb7 SH2 domain in complex with the G7-18NATE nonphosphorylated cyclic inhibitor peptide

    International Nuclear Information System (INIS)

    Yap, Min Y.; Wilce, Matthew C. J.; Clayton, Daniel J.; Perlmutter, Patrick; Aguilar, Marie-Isabel; Wilce, Jacqueline A.

    2010-01-01

    The preparation and successful crystallization of the Grb7 SH2 domain in complex with the specific cyclic peptide inhibitor G7-18NATE are reported. This structure is anticipated to reveal the basis of the binding affinity and specificity and to assist with the development of second-generation inhibitors of Grb7, which is involved in cancer progression. Grb7 is an adapter protein that is involved in signalling pathways that mediate eukaryotic cell proliferation and migration. Its overexpression in several cancer types has implicated it in cancer progression and led to the development of the G7-18NATE cyclic peptide inhibitor. Here, the preparation of crystals of G7-18NATE in complex with its Grb7 SH2 domain target is reported. Crystals of the complex were grown by the hanging-drop vapour-diffusion method using PEG 3350 as the precipitant at room temperature. X-ray diffraction data were collected from crystals to 2.4 Å resolution using synchrotron X-ray radiation at 100 K. The diffraction was consistent with space group P2 1 , with unit-cell parameters a = 52.7, b = 79.1, c = 54.7 Å, α = γ = 90.0, β = 104.4°. The structure of the G7-18NATE peptide in complex with its target will facilitate the rational development of Grb7-targeted cancer therapeutics

  5. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence...

  6. On the shock cell structure and noise of supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.

    1983-01-01

    A linear solution modeling the shock cell structure of an axisymmetric supersonic jet operated at off-design conditions is developed by the method of multiple-scales. The model solution takes into account the gradual spatial change of the mean flow in the downstream direction. Turbulence in the mixing layer of the jet has the tendency of smoothing out the sharp velocity and density gradients induced by the shocks. To simulate this effect, eddy viscosity terms are incorporated in the model. It is known that the interaction between the quasi-periodic shock cells and the downstream propagating large turbulence structures in the mixing layer of the jet is responsible for the generation of broadband shock associated noise. Experimentally, the dominant part of this noise has been found to originate from the part of the jet near the end of the potential core. Calculated shock cell spacing at the end of the jet core according to the present model is used to estimate the peak frequencies of the shock associated noise for a range of observation angles. Very favorable agreement with experimental measurements is found.

  7. Jet structure in lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Kitazoe, T.; Morii, T.

    1980-01-01

    Materialization processes are studied in lepton-nucleon scattering on the assumption that all incoming and outgoing hadrons have a localized space-time structure described in terms of the Bethe-Salpeter (BS) amplitude. It is shown on the basis of loop diagrams that a coordination of strongly Lorentz contracted BS amplitudes has a key role in deriving two-jet structure. The formalism manifests two distinct models, depending on the parameters which represent the ranges of a BS amplitude. One is a strongly ordered cascade model which is in accordance with a naive quark cascade model. The other is an uncorrelated jet model which corresponds to an uncorrelated Monte Carlo calculation and it fails to be described as a cascade process. The former model predicts an equal spacing momentum distribution in rapidity space. The latter predicts symmetrical distributions in Feynman x-space. Several observable quantities are presented to discriminate between these two models. (orig.)

  8. Calibration and Simulation of the GRB trigger detector of the Ultra Fast Flash Observatory

    DEFF Research Database (Denmark)

    Huang, M.-H.A.; Ahmad, S.; Barrillon, P.

    2013-01-01

    The UFFO (Ultra-Fast Flash Observatory) is a GRB detector on board the Lomonosov satellite, to be launched in 2013. The GRB trigger is provided by an X-ray detector, called UBAT (UFFO Burst Alarm & Trigger Telescope), which detects X-rays from the GRB and then triggers to determine the direction ...

  9. Broadband observations of the naked-eye gamma-ray burst GRB 080319B.

    Science.gov (United States)

    Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N

    2008-09-11

    Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

  10. VizieR Online Data Catalog: GRB prompt emission fitted with the DREAM model (Ahlgren+, 2015)

    Science.gov (United States)

    Ahlgren, B.; Larsson, J.; Nymark, T.; Ryde, F.; Pe'Er, A.

    2018-01-01

    We illustrate the application of the DREAM model by fitting it to two different, bright Fermi GRBs; GRB 090618 and GRB 100724B. While GRB 090618 is well fitted by a Band function, GRB 100724B was the first example of a burst with a significant additional BB component (Guiriec et al. 2011ApJ...727L..33G). GRB 090618 is analysed using Gamma-ray Burst Monitor (GBM) data (Meegan et al. 2009ApJ...702..791M) from the NaI and BGO detectors. For GRB 100724B, we used GBM data from the NaI and BGO detectors as well as Large Area Telescope Low Energy (LAT-LLE) data. For both bursts we selected NaI detectors seeing the GRB at an off-axis angle lower than 60° and the BGO detector as being the best aligned of the two BGO detectors. The spectra were fitted in the energy ranges 8-1000 keV (NaI), 200-40000 keV (BGO) and 30-1000 MeV (LAT-LLE). (2 data files).

  11. A PHOTOMETRIC REDSHIFT OF z ∼ 9.4 FOR GRB 090429B

    International Nuclear Information System (INIS)

    Cucchiara, A.; Fox, D. B.; Wu, X. F.; Toma, K.; Levan, A. J.; Tanvir, N. R.; Rowlinson, A.; Ukwatta, T. N.; Berger, E.; Kruehler, T.; Greiner, J.; Olivares, F. E.; Yoldas, A. Kuepcue; Amati, L.; Sakamoto, T.; Roth, K.; Stephens, A.; Fritz, Alexander; Fynbo, J. P. U.; Hjorth, J.

    2011-01-01

    Gamma-ray bursts (GRBs) serve as powerful probes of the early universe, with their luminous afterglows revealing the locations and physical properties of star-forming galaxies at the highest redshifts, and potentially locating first-generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal-to-noise spectroscopy, or photometry. Here we present a photometric redshift of z ∼ 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming a Small Magellanic Cloud dust law (which has been found in a majority of GRB sight lines), the 90% likelihood range for the redshift is 9.06 7. The non-detection of the host galaxy to deep limits (Y(AB) ∼ 28, which would correspond roughly to 0.001L* at z = 1) in our late-time optical and infrared observations with the Hubble Space Telescope strongly supports the extreme-redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs and suggest that its progenitor is not greatly different from those of lower redshift bursts.

  12. CONSTRAINING THE GRB-MAGNETAR MODEL BY MEANS OF THE GALACTIC PULSAR POPULATION

    Energy Technology Data Exchange (ETDEWEB)

    Rea, N. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, NL-1090 GE Amsterdam (Netherlands); Gullón, M.; Pons, J. A.; Miralles, J. A. [Departament de Fisica Aplicada, Universitat d’Alacant, Ap. Correus 99, E-03080 Alacant (Spain); Perna, R. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Dainotti, M. G. [Physics Department, Stanford University, Via Pueblo Mall 382, Stanford, CA (United States); Torres, D. F. [Instituto de Ciencias de l’Espacio (ICE, CSIC-IEEC), Campus UAB, Carrer Can Magrans s/n, E-08193 Barcelona (Spain)

    2015-11-10

    A large fraction of Gamma-ray bursts (GRBs) displays an X-ray plateau phase within <10{sup 5} s from the prompt emission, proposed to be powered by the spin-down energy of a rapidly spinning newly born magnetar. In this work we use the properties of the Galactic neutron star population to constrain the GRB-magnetar scenario. We re-analyze the X-ray plateaus of all Swift GRBs with known redshift, between 2005 January and 2014 August. From the derived initial magnetic field distribution for the possible magnetars left behind by the GRBs, we study the evolution and properties of a simulated GRB-magnetar population using numerical simulations of magnetic field evolution, coupled with Monte Carlo simulations of Pulsar Population Synthesis in our Galaxy. We find that if the GRB X-ray plateaus are powered by the rotational energy of a newly formed magnetar, the current observational properties of the Galactic magnetar population are not compatible with being formed within the GRB scenario (regardless of the GRB type or rate at z = 0). Direct consequences would be that we should allow the existence of magnetars and “super-magnetars” having different progenitors, and that Type Ib/c SNe related to Long GRBs form systematically neutron stars with higher initial magnetic fields. We put an upper limit of ≤16 “super-magnetars” formed by a GRB in our Galaxy in the past Myr (at 99% c.l.). This limit is somewhat smaller than what is roughly expected from Long GRB rates, although the very large uncertainties do not allow us to draw strong conclusion in this respect.

  13. The MUSE view of the host galaxy of GRB 100316D

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.

    2017-12-01

    The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.

  14. Conformation of an Shc-derived phosphotyrosine-containing peptide complexed with the Grb2 SH2 domain

    International Nuclear Information System (INIS)

    Ogura, Kenji; Tsuchiya, Shigeo; Terasawa, Hiroaki; Yuzawa, Satoru; Hatanaka, Hideki; Mandiyan, Valsan; Schlessinger, Joseph; Inagaki, Fuyuhiko

    1997-01-01

    We have determined the structure of an Shc-derived phosphotyrosine-containing peptide complexed with Grb2 SH2 based on intra-and intermolecular NOE correlations observed by a series of isotope-filtered NMR experiments using a PFG z-filter. In contrast to an extended conformation of phosphotyrosine-containing peptides bound to Src, Syp and PLC γ SH2s, the Shc-derived peptide formed a turn at the +1 and +2 positions next to the phosphotyrosine residue. Trp 121 , located at the EF1 site of Grb2 SH2, blocked the peptide binding in an extended conformation. The present study confirms that each phosphotyrosine-containing peptide binds to the cognate SH2 with a specific conformation, which gives the structural basis for the binding specificity between SH2s and target proteins

  15. Direct association between the Ret receptor tyrosine kinase and the Src homology 2-containing adapter protein Grb7.

    Science.gov (United States)

    Pandey, A; Liu, X; Dixon, J E; Di Fiore, P P; Dixit, V M

    1996-05-03

    Adapter proteins containing Src homology 2 (SH2) domains link transmembrane receptor protein-tyrosine kinases to downstream signal transducing molecules. A family of SH2 containing adapter proteins including Grb7 and Grb10 has been recently identified. We had previously shown that Grb10 associates with Ret via its SH2 domain in an activation-dependent manner (Pandey, A., Duan, H., Di Fiore, P.P., and Dixit, V.M. (1995) J. Biol, Chem. 270, 21461-21463). We now demonstrate that the related adapter molecule Grb7 also associates with Ret in vitro and in vivo, and that the binding of the SH2 domain of Grb7 to Ret is direct. This binding is dependent upon Ret autophosphorylation since Grb7 is incapable of binding a kinase-defective mutant of Ret. Thus two members of the Grb family, Grb7 and Grb10, likely relay signals emanating from Ret to other, as yet, unidentified targets within the cell.

  16. METALLICITY IN THE GRB 100316D/SN 2010bh HOST COMPLEX

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Berger, Edo; Soderberg, Alicia M.; Chornock, Ryan

    2011-01-01

    The recent long-duration GRB 100316D, associated with supernova SN 2010bh and detected by Swift, is one of the nearest gamma-ray burst (GRB)-supernovae (SNe) ever observed (z = 0.059). This provides us with a unique opportunity to study the explosion environment on ∼kpc scale in relation to the host galaxy complex. Here we present spatially resolved spectrophotometry of the host galaxy, focusing on both the explosion site and the brightest star-forming regions. Using these data, we extract the spatial profiles of the relevant emission features (Hα, Hβ, [O III]λ5007, and [N II]λ6584) and use these profiles to examine variations in metallicity and star formation rate (SFR) as a function of position in the host galaxy. We conclude that GRB 100316D/SN2010bh occurred in a low-metallicity host galaxy, and that the GRB-SN explosion site corresponds to the region with the lowest metallicity and highest SFR sampled by our observations.

  17. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    Science.gov (United States)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E external magnetic field, we show that due to the fast variation of other quantities, its signature in the Power Distribution Spectrum (PDS) is significantly suppressed and only when the duration of the burst is few times longer than the oscillation period it can be detected, otherwise either it is confused with the Poisson noise or with intrinsic variations of the emission. Therefore, low significant oscillations observed in the PDS of GRB 090709a are most probably due to a precessing magnetic field.

  18. Time evolution of the spectral break in the high-energy extra component of GRB 090926A

    Science.gov (United States)

    Yassine, M.; Piron, F.; Mochkovitch, R.; Daigne, F.

    2017-10-01

    Aims: The prompt light curve of the long GRB 090926A reveals a short pulse 10 s after the beginning of the burst emission, which has been observed by the Fermi observatory from the keV to the GeV energy domain. During this bright spike, the high-energy emission from GRB 090926A underwent a sudden hardening above 10 MeV in the form of an additional power-law component exhibiting a spectral attenuation at a few hundreds of MeV. This high-energy break has been previously interpreted in terms of gamma-ray opacity to pair creation and has been used to estimate the bulk Lorentz factor of the outflow. In this article, we report on a new time-resolved analysis of the GRB 090926A broadband spectrum during its prompt phase and on its interpretation in the framework of prompt emission models. Methods: We characterized the emission from GRB 090926A at the highest energies with Pass 8 data from the Fermi Large Area Telescope (LAT), which offer a greater sensitivity than any data set used in previous studies of this burst, particularly in the 30-100 MeV energy band. Then, we combined the LAT data with the Fermi Gamma-ray Burst Monitor (GBM) in joint spectral fits to characterize the time evolution of the broadband spectrum from keV to GeV energies. We paid careful attention to the systematic effects that arise from the uncertainties on the LAT response. Finally, we performed a temporal analysis of the light curves and we computed the variability timescales from keV to GeV energies during and after the bright spike. Results: Our analysis confirms and better constrains the spectral break, which has been previously reported during the bright spike. Furthermore, it reveals that the spectral attenuation persists at later times with an increase of the break characteristic energy up to the GeV domain until the end of the prompt phase. We discuss these results in terms of keV-MeV synchroton radiation of electrons accelerated during the dissipation of the jet energy and inverse Compton

  19. CUSP-SHAPED STRUCTURE OF A JET OBSERVED BY IRIS AND SDO

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuzong; Zhang, Jun, E-mail: yuzong@nao.cas.cn, E-mail: zjun@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-01-01

    On 2014 August 29, the trigger and evolution of a cusp-shaped jet were captured in detail at 1330 Å by the Interface Region Imaging Spectrograph . At first, two neighboring mini-prominences arose in turn from the low solar atmosphere and collided with a loop-like system over them. The collisions between the loop-like system and the mini-prominences lead to the blowout, and then a cusp-shaped jet formed with a spire and an arch-base. In the spire, many brightening blobs originating from the junction between the spire and the arch-base moved upward in a rotating manner and then in a straight line in the late phase of the jet. In the arch-base, dark and bright material simultaneously tracked in a fan-like structure, and the majority of the material moved along the fan's threads. At the later phase of the jet's evolution, bidirectional flows emptied the arch-base, while downflows emptied the spire, thus making the jet entirely vanish. The extremely detailed observations in this study shed new light on how magnetic reconnection alters the inner topological structure of a jet and provides a beneficial complement for understanding current jet models.

  20. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Levan, A.; Tunnicliffe, R. L. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mangano, V. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Fox, D. B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Menten, K. M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Hjorth, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Roth, K. [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared

  1. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    NARCIS (Netherlands)

    Ackermann, M.; et al., [Unknown; van der Horst, A.J.

    2014-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest

  2. The structure of turbulent jets, vortices and boundary layer: laboratory and field observations

    International Nuclear Information System (INIS)

    Sekula, E.; Redondo, J.M.

    2008-01-01

    The main aim of this work is research, understand and describe key aspects of the turbulent jets and effects connected with them such as boundary layer interactions on the effect of a 2D geometry. Work is based principally on experiments but there are also some comparisons between experimental and field results. A series of experiments have been performed consisting in detailed turbulent measurements of the 3 velocity components to understand the processes of interaction that lead to mixing and mass transport between boundaries and free shear layers. The turbulent wall jet configuration occurs often in environmental and industrial processes, but here we apply the laboratory experiments as a tool to understand jet/boundary interactions in the environment. We compare the structure of SAR (Synthetic Aperture Radar) images of coastal jets and vortices and experimental jets (plumes) images searching for the relationship between these two kinds of jets at very different Reynolds numbers taking advantage of the self-similarity of the processes. In order to investigate the structure of ocean surface detected jets (SAR) and vortices near the coast, we compare wall and boundary effects on the structure of turbulent jets (3D and 2D) which are non-homogeneous, developing multifractal and spectral techniques useful for environmental monitoring in space.

  3. The structural and dynamic characteristics of a water-polimer high-speed jet

    Directory of Open Access Journals (Sweden)

    Андрій Володимирович Погребняк

    2017-07-01

    Full Text Available The aim is to study the structural and dynamic characteristics of the water-polymer jet, what is of decisive importance for understanding the nature of the abnormally high cutting ability. A complex study of the structure and dynamics of a water-polymer high-speed jet has been carried out. Analysis of the photographs of jets of aqueous PEO solution indicates that adding polyethylene oxide (PEO into water results in a significant increase in the initial sections of the water-polymer jet, which characterizes the quality of its formation, and leads to compactness due to a reduction of its diameter. The obtained experimental data made it possible to propose a relationship for determining the dimensionless value of the initial sections of jets of aqueous PEO solutions of different concentration and molecular mass of PEO, taking into account the real parameters of the jet forming head. Investigation of changes in the energy capabilities of water-polymer jets, which were estimated by the force of the jet impact on the steel obstacle, made it possible to establish the features of their dynamics. The obtained experimental data explain the nature of the change in the cutting properties of the water-polymer jet as a function of the distance between the surface of the material that is being cut and the cut of the nozzle. If the distance from the nozzle to the surface of the material is less than the size of the initial sections of the water-polymer jet, an increase in the diameter of the nozzle outlet hole will lead to a reduction in the depth of the cut. If, however, the distance from the nozzle to the surface of the material approaches or exceeds the size of the main part of the water-polymer jet, then the depth of the cut will increase with increasing diameter of the nozzle at a constant pressure. The use of structural and dynamic characteristics of water-polymer jets is substantiated when establishing rational parameters of equipment for water

  4. The LAGO Collaboration: Searching for high energy GRB emissions in Latin America

    Science.gov (United States)

    Barros, H.; Lago Collaboration

    2012-02-01

    During more than a decade Gamma Ray Bursts (GRB a cosmological phenomena of tremendous power) have been extensively studied in the keV - MeV energy range. However, the higher energy emission still remains a mystery. The Large Aperture GRB Observatory (L.A.G.O.) is an international collaboration started in 2005 aiming at a better understanding of the GRB by studying their emission at high energies (> 1 GeV), where the fluxes are low and measurements by satellites are difficult. This is done using the Single Particle Technique, by means of ground-based Water Cherenkov Detectors (WCD) at sites of high altitude. At those altitudes it is possible to detect air showers produced by high energy photons from the GRB, i. e. a higher rate of events on a short time scale, of the order of the second. The Pierre Auger Observatory could detect such GRB given its large number of detectors, but at 1400 m.a.s.l. the expected signal is quite small. At higher altitudes, similar performance is expected with only a very small number of WCD. As of 2011, high altitude WCD are in operation at Sierra Negra (Mexico, 4650 m.a.s.l.), Chacaltaya (Bolivia, 5200 m.a.s.l.), Maracapomacocha (Peru, 4200 m.a.s.l.), and new WCDs are being installed in Venezuela (Pico Espejo, 4750 m.a.s.l.), Argentina, Brazil, Chile, Colombia and Guatemala. Most of the new WCDs will not be at high enough altitude to detect GRB, never the less it will allow obtaining valuable measurements of secondaries at ground level, which are relevant for solar physics. The LAGO sensitivity to GRB is determined from simulations (under a sudden increase of 1 GeV - 1 TeV photons from a GRB) of the gamma initiated particle shower in the atmosphere and the WCD response to secondaries. We report on WDC calibration and operation at high altitude, GRB detectability, background rates, search for bursts in several months of preliminary data, as well as search for signals at ground level when satellite burst is reported, all these show the

  5. Large p sub( t) phenomena and the structure of jets

    International Nuclear Information System (INIS)

    Sosnowski, R.

    1979-01-01

    The modern history of high transverse momentum phenomena started in 1972 when it was found that the spectrum of the transverse momentum p sub(T) of secondaries produced in hadronic collisions did not drop as fast as expected from its behavior at low transverse momentum. Now it is possible to study the production of secondaries at transverse momenta as high as 16 GeV/c. The aim of this review is to systematize the existing experimental knowledge in this field. It is believed that the production of objects with high transverse momenta in the collision of two hadrons is due to the hard scattering of their constituents. According to this hard scattering picture, in the collision causing hard scattering, two scattered constituents with high transverse momenta should show up as two jets of hadrons, trigger jet and away jet. Two incoming hadrons, one constituent is removed by hard scattering from each, are expected to create two spectator jets. The present review is made through the four-jet world. The experimental studies of high p sub(T) phenomena in hadronic collision showed this four-jet structure. The observed structure is consistent with the assumption that high p sub(T) objects originate from scattered hadronic constituents. Many aspects of the collision indicate that the scattering constituents are quarks. (Kako, I.)

  6. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2017-03-01

    Full Text Available The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite and low amount of MAC (self-tempered martensite, retained austenite, carbide phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Micro-jet cooling after welding can find serious application in automotive industry very soon. Until that moment only argon, helium and nitrogen were tested as micro-jet gases. In that paper first time various gas mixtures (gas mixtures Ar-CO2 were tested for micro-jet cooling after welding.

  7. Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles

    Science.gov (United States)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1994-09-01

    One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.

  8. Structure of strongly underexpanded gas jets submerged in liquids – Application to the wastage of tubes by aggressive jets

    Energy Technology Data Exchange (ETDEWEB)

    Roger, Francis, E-mail: roger@ensma.fr [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Carreau, Jean-Louis; Gbahoué, Laurent; Hobbes, Philippe [Institut PPRIME, Département Fluides, Thermique, Combustion CNRS ENSMA Université de Poitiers UPR 3346, ENSMA BP 109, 86960 Futuroscope Cedex (France); Allou, Alexandre; Beauchamp, François [CEA, DEN, Cadarache, DTN/STPA/LTRS, 13108 Saint-Paul lez, Durance Cedex (France)

    2014-07-01

    Highlights: • Underexpanded gas jets submerged in liquids behave similarly to homogeneous gas jets. • The counter rotating vortex pairs of jet produce discrete imprints on the targets. • The shape of hollows made on the targets is explained by the jet structure. • The erosion–corrosion phenomenon well explains the wastage of exchange tubes. - Abstract: Strongly underexpanded gas jets submerged in a liquid at rest behave similarly to underexpanded homogeneous gas jets. The existence of the Taylor-Görtler vortices around the inner zone of the gas jets is demonstrated in free gas jets submerged in water by means of optical probe. In the near field, the same phenomenon produces discrete imprints, approximately distributed in a circle, when underexpanded nitrogen jet submerged in liquid sodium hydroxide and underexpanded water vapour jet submerged in liquid sodium impact onto AU{sub 4}G-T{sub 4} and Incoloy 800{sup ®} alloy targets respectively. For a jet-target couple, the volume of the hollow is satisfactorily related to the strain energy density of the material and the kinetic energy of the gas jet. However, the comparison between volumes of hollows produced by both jets also indicates strong corrosive action of the medium on targets. This allows better understanding of the mechanism of wastage of tubes employed in steam generators integrated in liquid metal fast breeder reactors.

  9. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...... structures (like dust lanes, spiral arms or disks). A natural scenario which accounts of all the above results is a nuclear starburst that harbours a young population of stars from which the GRB originated....

  10. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chomiuk, Laura [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005 (India); Hurley, Kevin [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, CA 94720 (United States); Bietenholz, Michael [Department of Physics and Astronomy, York University, 4700 Keele St., M3J 1P3 Ontario (Canada); Brunthaler, Andreas [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Pian, Elena [Scuola Normale Superiore, Piazza Dei Cavalieri 7—I-56126 Pisa (Italy); Mazzali, Paolo [Liverpool John Moores University, IC2, 146 Brownlow Hill, Liverpool (United Kingdom); Fransson, Claes [Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Bartel, Norbert [Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdrop, 1740 (South Africa); Hamuy, Mario [Departamento de Astronoma, Universidad de Chile (Chile); Levesque, Emily [University of Colorado, C327A, Boulder, CO 80309 (United States); MacFadyen, Andrew, E-mail: schakraborti@fas.harvard.edu [New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2015-06-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.

  11. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    International Nuclear Information System (INIS)

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason; Chomiuk, Laura; Yadav, Naveen; Ray, Alak; Hurley, Kevin; Bietenholz, Michael; Brunthaler, Andreas; Pignata, Giuliano; Pian, Elena; Mazzali, Paolo; Fransson, Claes; Bartel, Norbert; Hamuy, Mario; Levesque, Emily; MacFadyen, Andrew

    2015-01-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs

  12. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target.

    Science.gov (United States)

    Watson, Gabrielle M; Lucas, William A H; Gunzburg, Menachem J; Wilce, Jacqueline A

    2017-01-01

    Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.

  13. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target

    Directory of Open Access Journals (Sweden)

    Gabrielle M. Watson

    2017-09-01

    Full Text Available Growth factor receptor bound protein 7 (Grb7 is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine, however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.

  14. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target

    Science.gov (United States)

    Watson, Gabrielle M.; Lucas, William A. H.; Gunzburg, Menachem J.; Wilce, Jacqueline A.

    2017-01-01

    Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors. PMID:29018805

  15. Fusion protein based on Grb2-SH2 domain for cancer therapy

    International Nuclear Information System (INIS)

    Saito, Yuriko; Furukawa, Takako; Arano, Yasushi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2010-01-01

    Research highlights: → Grb2 mediates EGFR signaling through binding to phosphorylate EGFR with SH2 domain. → We generated fusion proteins containing 1 or 2 SH2 domains of Grb2 added with TAT. → The one with 2 SH2 domains (TSSF) interfered ERK phosphorylation. → TSSF significantly delayed the growth of EGFR overexpressing tumor in a mouse model. -- Abstract: Epidermal growth factor receptor (EGFR) is one of the very attractive targets for cancer therapy. In this study, we generated fusion proteins containing one or two Src-homology 2 (SH2) domains of growth factor receptor bound protein 2 (Grb2), which bind to phosphorylated EGFR, added with HIV-1 transactivating transcription for cell membrane penetration (termed TSF and TSSF, respectively). We examined if they can interfere Grb2-mediated signaling pathway and suppress tumor growth as expected from the lack of SH3 domain, which is necessary to intermediate EGFR-Grb2 cell signaling, in the fusion proteins. The transduction efficiency of TSSF was similar to that of TSF, but the binding activity of TSSF to EGFR was higher than that of TSF. Treatment of EGFR-overexpressing cells showed that TSSF decreased p42-ERK phosphorylation, while TSF did not. Both the proteins delayed cell growth but did not induce cell death in culture. TSSF also significantly suppressed tumor growth in vivo under consecutive administration. In conclusion, TSSF showed an ability to inhibit EGFR-Grb2 signaling and could have a potential to treat EGFR-activated cancer.

  16. DUST PROPERTIES IN THE AFTERGLOW OF GRB 071025 AT z {approx} 5

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minsung; Im, Myungshin [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Lee, Induk; Urata, Yuji [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun; Hirashita, Hiroyuki [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Fan Xiaohui; Jiang Linhua, E-mail: msjang.astro@gmail.com, E-mail: mim@astro.snu.ac.kr [Steward Observatory, University of Arizona, Tucson, AZ (United States)

    2011-11-15

    At high redshift, the universe is so young that core-collapse supernovae (SNe) are suspected to be the dominant source of dust production. However, some observations indicate that the dust production by SNe is an inefficient process, casting doubts on the existence of abundant SNe-dust in the early universe. Recently, Perley et al. reported that the afterglow of GRB 071025-an unusually red gamma-ray burst (GRB) at z {approx} 5-shows evidence for SNe-produced dust. Since this is perhaps the only high-redshift GRB exhibiting compelling evidence for SNe-dust but the result could easily be affected by small systematics in photometry, we re-examined the extinction properties of GRB 071025 using our own optical/near-infrared data at a different epoch. In addition, we tested SNe-dust models with different progenitor masses and dust destruction efficiencies to constrain the dust formation mechanisms. By searching for the best-fit model of the afterglow spectral energy distribution, we confirm the previous claim that the dust in GRB 071025 is most likely to originate from SNe. We also find that the SNe-dust model of 13 or 25 M{sub Sun} without dust destruction fits the extinction property of GRB 071025 best, while pair-instability SNe models with a 170 M{sub Sun} progenitor poorly fit the data. Our results indicate that, at least in some systems at high redshift, SNe with intermediate initial masses within 10-30 M{sub Sun} were the main contributors for the dust enrichment, and the dust destruction effect due to reverse shock was negligible.

  17. Jets in DIS and the virtual photon structure

    International Nuclear Information System (INIS)

    Maxfield, Stephen

    2001-01-01

    Single-inclusive jet cross sections in deep-inelastic scattering for photon virtualities 5 2 2 are measured in a data sample corresponding to an integrated luminosity of 20.9 pb-1 as a function of the jet transverse energy E T , of the ratio E T 2 /Q 2 and of the Bjorken scaling variable x Bj . Data are compared to next-to-leading order perturbative QCD calculations using the squared four momentum transfer Q 2 and the squared jet E T as renormalisation scale. Neither choice is able to describe the data over the full phase space region, in particular in the forward region towards the proton remnant. Possible explanations of this discrepancies are discussed. Dijet event rates, R 2 , have also been measured for deep inelastic scattering in the low x Bj and low Q 2 . R 2 is measured as a function of both x Bj and Q 2 extending a single differential analysis recently published by H1. This allows a more detailed study of jet production at low x Bj in a regime where both scales, Q 2 and jet E T 2 , are comparable. The data are confronted with next-to-leading order QCD calculations including both point-like and non-pointlike structure of the virtual photon

  18. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen [Department of Physics, Xiamen University, Xiamen (China); Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan, E-mail: fangt@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen (China)

    2016-06-20

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  19. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  20. Angular structure of jet quenching within a hybrid strong/weak coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2017-03-27

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the

  1. Prompt Neutrino Emission of Gamma-ray Bursts in the Dissipative Photospheric Scenario Revisited: Possible Contributions from Cocoons

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Di; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Mészáros, Peter, E-mail: dzg@nju.edu.cn [Center for Particle and Gravitational Astrophysics, Department of Physics, Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-07-01

    High-energy neutrinos are expected to originate from different stages in a gamma-ray burst (GRB) event. In this work, we revisit the dissipative photospheric scenario, in which the GRB prompt emission is produced around the photospheric radius. Meanwhile, possible dissipation mechanisms (e.g., internal shocks or magnetic reconnection) could accelerate cosmic-rays (CRs) to ultra-high energies and then produce neutrinos via hadronuclear and photohadronic processes, which are referred to as prompt neutrinos . In this paper, we obtain the prompt neutrino spectrum of a single GRB within a self-consistent analytical framework, in which the jet-cocoon structure and possible collimation effects are included. We investigate a possible neutrino signal from the cocoon, which has been ignored in the previous studies. We show that if a GRB event happens at a distance of the order of Mpc, there is a great chance to observe the neutrino emission from the cocoon by IceCube, which is even more promising than jet neutrinos, as the opening angle of the cocoon is much larger. We also determine the diffuse neutrino flux of GRB cocoons and find that it could be comparable with that of the jets. Our results are consistent with the latest result reported by the IceCube collaboration that no significant correlation between neutrino events and observed GRBs is seen in the new data.

  2. New potentional of high-speed water jet technology for renovating concrete structures

    Science.gov (United States)

    Bodnárová, L.; Sitek, L.; Hela, R.; Foldyna, J.

    2011-06-01

    The paper discusses the background and results of research focused on the action of a high-speed water jet on concrete with different qualities. The sufficient and careful removal of degraded concrete layers is very important for the renovation of concrete structures. High-speed water jet technology is one of the most common methods used for removing degraded concrete layers. Different types of high-speed water jets were tested in the experimental part. The classical technology of a single continuous water jet generated with one nozzle was tested as well as the technology of revolving water jets generated by multiple nozzles (used mainly for the renovation of larger areas). A continuous flat water jet and pulsating flat water jet were tested the first time, because the connection of a water jet with the acoustic generator of a pulsating jet offers new possibilities for the use of a water jet (see [1] and [2]). A water jet with such a modification is capable of efficient action and can even be used for cutting solid concrete with a relatively low consumption of energy. A flat pulsating water jet which can be newly used for renovation seems to be a promising technology.

  3. SPECTROSCOPIC EVIDENCE FOR SN 2010ma ASSOCIATED WITH GRB 101219B

    International Nuclear Information System (INIS)

    Sparre, M.; Fynbo, J. P. U.; Malesani, D.; De Ugarte Postigo, A.; Hjorth, J.; Leloudas, G.; Milvang-Jensen, B.; Watson, D. J.; Sollerman, J.; Goldoni, P.; Covino, S.; Tagliaferri, G.; D'Elia, V.; Flores, H.; Hammer, F.; Jakobsson, P.; Schulze, S.; Kaper, L.; Levan, A. J.; Tanvir, N. R.

    2011-01-01

    We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second- and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E iso = 4.2 x 10 51 erg), a bright afterglow, and obeys the 'Amati' relation, thus being fully consistent with the cosmological population of GRBs.

  4. Influence of coherent structures on the evolution of an axisymmetric turbulent jet

    Science.gov (United States)

    Breda, Massimiliano; Buxton, Oliver R. H.

    2018-03-01

    The role of initial conditions in affecting the evolution toward self-similarity of an axisymmetric turbulent jet is examined. The jet's near-field coherence was manipulated by non-circular exit geometries of identical open area, De2, including a square and a fractal exit, for comparison with a classical round orifice jet. Hot-wire anemometry and 2D-planar particle image velocimetry experiments were performed between the exit and a location 26De downstream, where the Reynolds stress profiles are self-similar. This study shows that a fractal geometry significantly changes the near-field structure of the jet, breaking up the large-scale coherent structures, thereby affecting the entrainment rate of the background fluid into the jet stream. It is found that many of the jet's turbulent characteristics scale with the number of eddy turnover times rather than simply the streamwise coordinate, with the entrainment rate (amongst others) found to be comparable across the different jets after approximately 3-4 eddies have been overturned. The study is concluded by investigating the jet's evolution toward a self-similar state. No differences are found for the large-scale spreading rate of the jets in the weakly self-similar region, so defined as the region for which some, but not all of the terms of the mean turbulent kinetic energy equation are self-similar. However, the dissipation rate of the turbulent kinetic energy was found to vary more gradually in x than predicted according to the classical equilibrium theories of Kolmogorov. Instead, the dissipation was found to vary in a non-equilibrium fashion for all three jets tested.

  5. Flow structure of conical distributed multiple gas jets injected into a water chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiajun; Yu, Yonggang [Nanjing University of Science and Technology, Nanjing (China)

    2017-04-15

    Based on an underwater gun firing project, a mock bullet with several holes on the head was designed and experimented to observe the combustion gas injected into a cylindrical water chamber through this mock bullet. The combustion gas jets contain one vertical central jet and 4 to 8 slant lateral jets. A high speed camera system was used to record the expansion of gas jets in the experimental study. In numerical simulations, the Euler two-fluid model and volume of fluid method were adopted to describe the gas-liquid flow. The results show the backflow zone in lateral jet is the main factor influencing the gas-liquid turbulent mixing in downstream. On cross sections, the gas volume fraction increased with time but the growth rate decreased. With a change of nozzle structure, the gas fraction was more affected than the shock structure.

  6. A metal-rich molecular cloud surrounds GRB 050904 at redshift 6.3

    NARCIS (Netherlands)

    Campana, S.; Lazzati, D.; Ripamonti, Emanuele; Perna, R.; Covino, S.; Tagliaferri, G.; Moretti, A.; Romano, P.; Cusumano, G.; Chincarini, G.

    2007-01-01

    GRB 050904 is the gamma-ray burst with the highest measured redshift. We performed time-resolved X-ray spectroscopy of the late GRB and early afterglow emission. We find robust evidence for a decrease with time of the soft X-ray-absorbing column. We model the evolution of the column density due to

  7. Structure of a swirling jet with vortex breakdown and combustion

    Science.gov (United States)

    Sharaborin, D. K.; Dulin, V. M.; Markovich, D. M.

    2018-03-01

    An experimental investigation is performed in order to compare the time-averaged spatial structure of low- and high-swirl turbulent premixed lean flames by using the particle image velocimetry and spontaneous Raman scattering techniques. Distributions of the time-average velocity, density and concentration of the main components of the gas mixture are measured for turbulent premixed swirling propane/air flames at atmospheric pressure for the equivalence ratio Φ = 0.7 and Reynolds number Re = 5000 for low- and high-swirl reacting jets. For the low-swirl jet (S = 0.41), the local minimum of the axial mean velocity is observed within the jet center. The positive value of the mean axial velocity indicates the absence of a permanent recirculation zone, and no clear vortex breakdown could be determined from the average velocity field. For the high-swirl jet (S = 1.0), a pronounced vortex breakdown took place with a bubble-type central recirculation zone. In both cases, the flames are stabilized in the inner mixing layer of the jet around the central wake, containing hot combustion products. O2 and CO2 concentrations in the wake of the low-swirl jet are found to be approximately two times smaller and greater than those in the recirculation zone of the high-swirl jet, respectively.

  8. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    Science.gov (United States)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  9. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bhat, P. N.; Briggs, M. S.; Bissaldi, E.; Bonamente, E.; Brigida, M.

    2010-01-01

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9σ. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to ∼1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  10. Gas Kinematics in GRB Host Galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam

    towards a relation between gas kinematics and mass. This also provides information on how the metallicities measured from absorption and emission methods differ from each other. Finally, in a direct study I show that gas velocity widths in both phases can be used as a proxy of stellar mass...... that their interstellar media imprint on the GRBs’ spectra. Hence they are invaluable tools to probe the star formation history of the Universe back to the earliest cosmic epochs. To this end, it is essential to achieve a comprehensive picture of the interplay between star formation and its fuel, neutral gas, in GRB...... simultaneously with a high velocity resolution. For the large GRB sample, I find the spatially averaged velocity to correlate with metallicity in both gas phases. This is an indicator of a mass-metallicity relation. Moreover, the velocity widths in the two gas phases correlate with each other which too points...

  11. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  12. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action.

    Science.gov (United States)

    Deng, Youping; Bhattacharya, Sujoy; Swamy, O Rama; Tandon, Ruchi; Wang, Yong; Janda, Robert; Riedel, Heimo

    2003-10-10

    The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling

  13. Search for a Signature of Interaction between Relativistic Jet and Progenitor in Gamma-Ray Bursts

    Science.gov (United States)

    Yoshida, Kazuki; Yoneoku, Daisuke; Sawano, Tatsuya; Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro

    2017-11-01

    The time variability of prompt emission in gamma-ray bursts (GRBs) is expected to originate from the temporal behavior of the central engine activity and the jet propagation in the massive stellar envelope. Using a pulse search algorithm for bright GRBs, we investigate the time variability of gamma-ray light curves to search a signature of the interaction between the jet and the inner structure of the progenitor. Since this signature might appear in the earlier phase of prompt emission, we divide the light curves into the initial phase and the late phase by referring to the trigger time and the burst duration of each GRB. We also adopt this algorithm for GRBs associated with supernovae/hypernovae that certainly are accompanied by massive stars. However, there is no difference between each pulse interval distribution described by a lognorma distribution in the two phases. We confirm that this result can be explained by the photospheric emission model if the energy injection of the central engine is not steady or completely periodic but episodic and described by the lognormal distribution with a mean of ˜1 s.

  14. Search for a Signature of Interaction between Relativistic Jet and Progenitor in Gamma-Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuki; Yoneoku, Daisuke; Sawano, Tatsuya [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192 (Japan); Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro, E-mail: yoshida@astro.s.kanazawa-u.ac.jp, E-mail: yonetoku@astro.s.kanazawa-u.ac.jp [Astrophysical Big Ban Laboratory, RIKEN, Saitama 351-0198 (Japan)

    2017-11-01

    The time variability of prompt emission in gamma-ray bursts (GRBs) is expected to originate from the temporal behavior of the central engine activity and the jet propagation in the massive stellar envelope. Using a pulse search algorithm for bright GRBs, we investigate the time variability of gamma-ray light curves to search a signature of the interaction between the jet and the inner structure of the progenitor. Since this signature might appear in the earlier phase of prompt emission, we divide the light curves into the initial phase and the late phase by referring to the trigger time and the burst duration of each GRB. We also adopt this algorithm for GRBs associated with supernovae/hypernovae that certainly are accompanied by massive stars. However, there is no difference between each pulse interval distribution described by a lognorma distribution in the two phases. We confirm that this result can be explained by the photospheric emission model if the energy injection of the central engine is not steady or completely periodic but episodic and described by the lognormal distribution with a mean of ∼1 s.

  15. Evidence for jet structure in hadron production by e+e- annihilation

    International Nuclear Information System (INIS)

    Hanson, G.; Abrams, G.S.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Chinowsky, W.; Feldman, G.J.; Friedberg, C.E.; Fryberger, D.; Goldhaber, G.; Hartill, D.L.; Jean-Marie, B.; Kadyk, J.A.; Larsen, R.R.; Litke, A.M.; Luke, D.; Lulu, B.A.; Luth, V.; Lynch, H.L.; Morehouse, C.C.; Paterson, J.M.; Perl, M.L.; Pierre, F.M.; Pun, T.P.; Rapidis, P.A.; Richter, B.; Sadoulet, B.; Schwitters, R.F.; Tanenbaum, W.; Trilling, G.H.; Vannucci, F.; Whitaker, J.S.; Winkelmann, F.C.; Wiss, J.E.

    1975-01-01

    We have found evidence for jet structure in e + e - →hadrons at center-of-mass energies of 6.2 and 7.4 GeV. At 7.4 GeV the jet-axis angular distribution integrated over azimuthal angle was determined to be proportional to 1+(0.78 +-0.12)cos 2 theta

  16. Structure Optimization and Numerical Simulation of Nozzle for High Pressure Water Jetting

    Directory of Open Access Journals (Sweden)

    Shuce Zhang

    2015-01-01

    Full Text Available Three kinds of nozzles normally used in industrial production are numerically simulated, and the structure of nozzle with the best jetting performance out of the three nozzles is optimized. The R90 nozzle displays the most optimal jetting properties, including the smooth transition of the nozzle’s inner surface. Simulation results of all sample nozzles in this study show that the helix nozzle ultimately displays the best jetting performance. Jetting velocity magnitude along Y and Z coordinates is not symmetrical for the helix nozzle. Compared to simply changing the jetting angle, revolving the jet issued from the helix nozzle creates a grinding wheel on the cleaning surface, which makes not only an impact effect but also a shearing action on the cleaning object. This particular shearing action improves the cleaning process overall and forms a wider, effective cleaning range, thus obtaining a broader jet width.

  17. Deletion of the calmodulin-binding domain of Grb7 impairs cell attachment to the extracellular matrix and migration

    Energy Technology Data Exchange (ETDEWEB)

    García-Palmero, Irene; Villalobo, Antonio, E-mail: antonio.villalobo@iib.uam.es

    2013-06-28

    Highlights: •Grb7 is a calmodulin (CaM)-binding protein. •Deleting the CaM-binding site impairs cell attachment and migration. •CaM antagonists inhibit Grb7-mediated cell migration. •We conclude that CaM controls Grb7-mediated cell migration. -- Abstract: The adaptor Grb7 is a calmodulin (CaM)-binding protein that participates in signaling pathways involved in cell migration, proliferation and the control of angiogenesis, and plays a significant role in tumor growth, its metastatic spread and tumor-associated neo-vasculature formation. In this report we show that deletion of the CaM-binding site of Grb7, located in the proximal region of its pleckstrin homology (PH) domain, impairs cell migration, cell attachment to the extracellular matrix, and the reorganization of the actin cytoskeleton occurring during this process. Moreover, we show that the cell-permeable CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide (W-13) both retard the migration of cells expressing wild type Grb7, but not the migration of cells expressing the mutant protein lacking the CaM-binding site (Grb7Δ), underscoring the proactive role of CaM binding to Grb7 during this process.

  18. A novel explosive process is required for the gamma-ray burst GRB 060614.

    Science.gov (United States)

    Gal-Yam, A; Fox, D B; Price, P A; Ofek, E O; Davis, M R; Leonard, D C; Soderberg, A M; Schmidt, B P; Lewis, K M; Peterson, B A; Kulkarni, S R; Berger, E; Cenko, S B; Sari, R; Sharon, K; Frail, D; Moon, D-S; Brown, P J; Cucchiara, A; Harrison, F; Piran, T; Persson, S E; McCarthy, P J; Penprase, B E; Chevalier, R A; MacFadyen, A I

    2006-12-21

    Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.

  19. A central role for GRB10 in regulation of islet function in man.

    Directory of Open Access Journals (Sweden)

    Inga Prokopenko

    2014-04-01

    Full Text Available Variants in the growth factor receptor-bound protein 10 (GRB10 gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.

  20. STRUCTURAL TRANSITION IN THE NGC 6251 JET: AN INTERPLAY WITH THE SUPERMASSIVE BLACK HOLE AND ITS HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chih-Yin; Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping, E-mail: cytseng@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2016-12-20

    The structure of the NGC 6251 jet on the milliarcsecond scale is investigated using images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1–2) × 10{sup 5} times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M87 jet, suggests a fundamental process of structural transition in the jets of active galactic nuclei (AGNs). Collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  1. GRB 161219B / SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating

    DEFF Research Database (Denmark)

    Cano, Z.; Izzo, L.; De Ugarte Postigo, A.

    2017-01-01

    Since the first discovery of a broad-lined type Ic supernova (SN) with a long-duration gamma-ray burst (GRB) in 1998, fewer than fifty gamma-ray burst supernovae (GRB-SNe) have been discovered. The intermediate-luminosity Swift GRB 161219B and its associated supernova SN 2016jca, which occurred a...

  2. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi -GBM Detection of GRB 170817A

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A.; Roberts, O. J.; Connaughton, V. [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Veres, P.; Briggs, M. S.; Hamburg, R.; Preece, R. D.; Poolakkil, S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Burns, E.; Racusin, J.; Canton, T. Dal [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kocevski, D.; Wilson-Hodge, C. A.; Hui, C. M.; Littenberg, T. [Astrophysics Office, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kienlin, A. von [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Christensen, N.; Broida, J. [Physics and Astronomy, Carleton College, MN 55057 (United States); Siellez, K. [Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Blackburn, L., E-mail: Adam.M.Goldstein@nasa.gov [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); and others

    2017-10-20

    On 2017 August 17 at 12:41:06 UTC the Fermi Gamma-ray Burst Monitor (GBM) detected and triggered on the short gamma-ray burst (GRB) 170817A. Approximately 1.7 s prior to this GRB, the Laser Interferometer Gravitational-wave Observatory triggered on a binary compact merger candidate associated with the GRB. This is the first unambiguous coincident observation of gravitational waves and electromagnetic radiation from a single astrophysical source and marks the start of gravitational-wave multi-messenger astronomy. We report the GBM observations and analysis of this ordinary short GRB, which extraordinarily confirms that at least some short GRBs are produced by binary compact mergers.

  3. Segmentation and fragmentation of melt jets due to generation of large-scale structures. Observation in low subcooling conditions

    International Nuclear Information System (INIS)

    Sugiyama, Ken-ichiro; Yamada, Tsuyoshi

    1999-01-01

    In order to clarify a mechanism of melt-jet breakup and fragmentation entirely different from the mechanism of stripping, a series of experiments were carried out by using molten tin jets of 100 grams with initial temperatures from 250degC to 900degC. Molten tin jets with a small kinematic viscosity and a large thermal diffusivity were used to observe breakup and fragmentation of melt jets enhanced thermally and hydrodynamically. We observed jet columns with second-stage large-scale structures generated by the coalescence of large-scale structures recognized in the field of fluid mechanics. At a greater depth, the segmentation of jet columns between second-stage large-scale structures and the fragmentation of the segmented jet columns were observed. It is reasonable to consider that the segmentation and the fragmentation of jet columns are caused by the boiling of water hydrodynamically entrained within second-stage large-scale structures. (author)

  4. GRB 090902B: AFTERGLOW OBSERVATIONS AND IMPLICATIONS

    International Nuclear Information System (INIS)

    Pandey, S. B.; Akerlof, C.; McKay, T. A.; Swenson, C. A.; Perley, D. A.; Kleiser, I. K. W.; Guidorzi, C.; Wiersema, K.; Malesani, D.; Ashley, M. C. B.; Bersier, D.; Cano, Z.; Kobayashi, S.; Melandri, A.; Mottram, C. J.; Gomboc, A.; Ilyin, I.; Jakobsson, P.; Kouveliotou, C.; Levan, A. J.

    2010-01-01

    The optical-infrared afterglow of the Large Area Telescope (LAT)-detected long-duration burst, GRB 090902B, has been observed by several instruments. The earliest detection by ROTSE-IIIa occurred 80 minutes after detection by the Gamma-ray Burst Monitor instrument on board the Fermi Gamma-Ray Space Telescope, revealing a bright afterglow and a decay slope suggestive of a reverse shock origin. Subsequent optical-IR observations followed the light curve for 6.5 days. The temporal and spectral behavior at optical-infrared frequencies is consistent with synchrotron fireball model predictions; the cooling break lies between optical and XRT frequencies ∼1.9 days after the burst. The inferred electron energy index is p = 1.8 ± 0.2, which would however imply an X-ray decay slope flatter than observed. The XRT and LAT data have similar spectral indices and the observed steeper value of the LAT temporal index is marginally consistent with the predicted temporal decay in the radiative regime of the forward shock model. Absence of a jet break during the first 6 days implies a collimation-corrected γ-ray energy E γ > 2.2 x 10 52 erg, one of the highest ever seen in a long-duration gamma-ray bursts. More events combining GeV photon emission with multiwavelength observations will be required to constrain the nature of the central engine powering these energetic explosions and to explore the correlations between energetic quanta and afterglow emission.

  5. Multiwavelength analysis of the intriguing GRB 061126: The reverse shock scenario and magnetization

    NARCIS (Netherlands)

    Gomboc, A.; Kobayashi, S.; Guidorzi, C.; Melandri, A.; Mangano, V.; Sbarufatti, B.; Mundell, C.G.; Schady, P.; Smith, R.J.; Updike, A.C.; Kann, D.A.; Misra, K.; Rol, E.; Pozanenko, A.; Castro-Tirado, A.J.; Anupama, G.C.; Bersier, D.; Bode, M.F.; Carter, D.; Curran, P.; Fruchter, A.; Graham, J.; Hartmann, D.H.; Ibrahimov, M.; Levan, A.; Monfardini, A.; Mottram, C.J.; O'Brien, P.T.; Prema, P.; Sahu, D.K.; Steele, I.A.; Tanvir, N.R.; Wiersema, K.

    2008-01-01

    We present a detailed study of the prompt and afterglow emission from Swift GRB 061126 using BAT, XRT, UVOT data and multicolor optical imaging from 10 ground-based telescopes. GRB 061126 was a long burst (T90 = 191 s) with four overlapping peaks in its γ-ray light curve. The X-ray afterglow,

  6. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology

    Science.gov (United States)

    Sukhodolov, Alexander N.; Krick, Julian; Sukhodolova, Tatiana A.; Cheng, Zhengyang; Rhoads, Bruce L.; Constantinescu, George S.

    2017-06-01

    Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field-based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet-like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet-like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.

  7. On the Dynamical Structure of the Jet System in the Disk with the Keplerian Rotation

    Directory of Open Access Journals (Sweden)

    Kyung-Sook Jeong

    1989-06-01

    Full Text Available The classical sloar wind theory proposed by Parker(1963 explains well the dynamics of the wind pheonomena such as stellar wind accretion disk. While the stellar wind system like the solar wind has the spherically symmetric wind structure, there are various jet phenomena which collimate the system into the narrow space. We can find these dynamical structures in SS433, in the optical jet of M87, and around the active galactic nulei. We present the dynamical structure of the jet system in disks, which conserves the angular momentum, with the Keplerian rotation and the strong relation between the geometrical cross section and the physical change of the jet stream on the basis of the hydrodynamic equations.

  8. Measurement of internal jet structure in dijet production in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Adloff, C.; Andreev, V.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Baehr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Berndt, T.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D.P.; Brueckner, W.; Bruel, P.; Bruncko, D.; Buerger, J.; Buesser, F.W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A.J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J.G.; Cormack, C.; Coughlan, J.A.; Cousinou, M.-C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E.A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K.T.; Dowell, J.D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Farh, A.B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Fluegge, G.; Fomenko, A.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Graessler, H.; Greenshaw, T.; Griffiths, R.K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Hampel, M.; Haustein, V.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K.H.; Hilton, C.D.; Hladky, J.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Jansen, D.M.; Joensson, L.; Johnson, D.P.; Jung, H.; Kaestli, H.K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Keller, N.; Kenyon, I.R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Koehne, J.H.; Kolanoski, H.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Kraemerkaemper, T.; Krasny, M.W.; Krehbiel, H.; Kruecker, D.; Krueger, K.; Kuepper, A.; Kuester, H.; Kuhlen, M.; Kurca, T.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lueders, S.; Lueke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krueger, H.; Malden, N.; Malinovsky, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S.J.; McMahon, S.J.; McMahon, T.R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Mohr, R.; Mohrdieck, S.; Mondragon, M.; Moreau, F.; Morozov, A.; Morris, J.V.; Mueller, D.; Mueller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Negri, I.; Newman, P.R.; Nguyen, H.K.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J.E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G.D.; Pawletta, H.; Perez, E.; Phillips, J.P.; Pieuchot, A.; Pitzl, D.; Poeschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schacht, P.; Scheins, J.; Schilling, F.-P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schroeder, V.; Schultz-Coulon, H.-C.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Sonnenschein, L.; Spaskov, V.; Specka, A.; Spitzer, H.; Squinabol, F.; Stamen, R.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Ste llberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J.P.; Swart, M.; Tapprogge, S.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P.D.; Tobien, N.; Todenhagen, R.; Traynor, D.; Truoel, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L.R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wissing, Ch.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wuensch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    1999-01-01

    Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies E T,Breit > 5 GeV are selected in the Breit frame employing k perpendicular and cone jet algorithms. In the kinematic region of ssquared momentum transfers 10 2 2 and Bjorken-x values 2 -4 Bj -3 , jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e. towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data

  9. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  10. A JET BREAK IN THE X-RAY LIGHT CURVE OF SHORT GRB 111020A: IMPLICATIONS FOR ENERGETICS AND RATES

    International Nuclear Information System (INIS)

    Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Czekala, I.; Chornock, R.; Troja, E.; Gehrels, N.; Sakamoto, T.; Fox, D. B.; Podsiadlowski, P.

    2012-01-01

    We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning ∼100 s to 10 days after the burst, reveals a significant break at δt ≈ 2 days with pre- and post-break decline rates of α X,1 ≈ –0.78 and α X,2 ∼ j ≈ 3°-8°. The resulting beaming-corrected γ-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) × 10 48 erg and (0.3-2) × 10 49 erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of c X , constrains the circumburst density to n 0 ∼ 0.01-0.1 cm –3 . Optical observations provide an afterglow limit of i ∼> 24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i ≈ 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0.''80 ± 0.''11 (1σ) from this galaxy corresponding to an offset of 5-7 kpc for z 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5 ± 2.0) × 10 21 cm –2 (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of ∼> 100-1000 Gpc –3 yr –1 , in good agreement with the NS-NS merger rate of ≈200-3000 Gpc –3 yr –1 . This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.

  11. Short GRB afterglows observed with GROND

    DEFF Research Database (Denmark)

    Nicuesa Guelbenzu, A.; Klose, S.; Rossi, A.

    2013-01-01

    We report on follow-up observations of 20 short-duration gamma-ray bursts (T90 < 2s) performed in g′r′i′z′JHK s with the Gamma-Ray Burst Optical Near-Infrared Detector (GROND) between mid-2007 and the end of 2010. This is the most homogeneous and comprehensive data set on GRB afterglow observatio...

  12. Grb2 mediates semaphorin-4D-dependent RhoA inactivation.

    Science.gov (United States)

    Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M

    2012-08-01

    Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.

  13. The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae

    DEFF Research Database (Denmark)

    Ferrero, P.; Kann, D. A.; Zeh, A.

    2006-01-01

    Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct.......Gamma rays: bursts: X-rays: individuals: GRB 060218, supernovae: individual: SN 2006aj Udgivelsesdato: Oct....

  14. VLT identification of the optical afterglow of the gamma-ray burst GRB000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M.I.; Hjorth, J.; Jesen, B.L.

    2000-01-01

    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent...... Angstrom. This places GRB 000131 at a redshift of 4.500 +/- 0.015. The inferred isotropic energy release in gamma rays alone was similar to 10(54) erg (depending on the assumed cosmology). The rapid power-law decay of the afterglow (index alpha = 2.25, similar to bursts with a prior break in the lightcurve...

  15. VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z=4.50

    DEFF Research Database (Denmark)

    Andersen, M.I.; Hjorth, J.; Pedersen, H.

    2000-01-01

    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent...... Angstrom. This places GRB 000131 at a redshift of 4.500 +/- 0.015. The inferred isotropic energy release in gamma rays alone was similar to 10(54) erg (depending on the assumed cosmology). The rapid power-law decay of the afterglow (index alpha = 2.25, similar to bursts with a prior break in the lightcurve...

  16. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.; Hadryś D.; Wszołek Ł.

    2017-01-01

    The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD) was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite) and low amount of MAC (self-tempered martensite, retained austenite, carbide) phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Mic...

  17. THREE-DIMENSIONAL SIMULATIONS OF LONG DURATION GAMMA-RAY BURST JETS: TIMESCALES FROM VARIABLE ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    López-Cámara, D. [CONACYT—Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264, Cd. Universitaria, México DF 04510, México (Mexico); Lazzati, Davide [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States); Morsony, Brian J., E-mail: diego@astro.unam.mx [Department of Astronomy, University of Maryland, 4296 Stadium Drive, College Park, MD 20742-2421 (United States)

    2016-08-01

    Gamma-ray burst (GRB) light curves are characterized by marked variability, each showing unique properties. The origin of this variability, at least for a fraction of long GRBs, may be the result of an unsteady central engine. It is thus important to study the effects that an episodic central engine has on the jet propagation and, eventually, on the prompt emission within the collapsar scenario. Thus, in this study we follow the interaction of pulsed outflows with their progenitor stars with hydrodynamic numerical simulations in both two and three dimensions. We show that the propagation of unsteady jets is affected by the interaction with the progenitor material well after the break-out time, especially for jets with long quiescent times comparable to or larger than a second. We also show that this interaction can lead to an asymmetric behavior in which pulse durations and quiescent periods are systematically different. After the pulsed jets drill through the progenitor and the interstellar medium, we find that, on average, the quiescent epochs last longer than the pulses (even in simulations with symmetrical active and quiescent engine times). This could explain the asymmetry detected in the light curves of long quiescent time GRBs.

  18. The optical afterglow of the short gamma-ray burst GRB 050709.

    Science.gov (United States)

    Hjorth, Jens; Watson, Darach; Fynbo, Johan P U; Price, Paul A; Jensen, Brian L; Jørgensen, Uffe G; Kubas, Daniel; Gorosabel, Javier; Jakobsson, Páll; Sollerman, Jesper; Pedersen, Kristian; Kouveliotou, Chryssa

    2005-10-06

    It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than approximately 2 s), which ultimately linked them with energetic type Ic supernovae, came from the discovery of their long-lived X-ray and optical 'afterglows', when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration burst: GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.

  19. Association between receptor protein-tyrosine phosphatase RPTPalpha and the Grb2 adaptor. Dual Src homology (SH) 2/SH3 domain requirement and functional consequences

    DEFF Research Database (Denmark)

    Su, J; Yang, L T; Sap, J

    1996-01-01

    domain in Grb2 (, ). We show here that association of Grb2 with RPTPalpha also involves a critical function for the C-terminal SH3 domain of Grb2. Furthermore, Grb2 SH3 binding peptides interfere with RPTPalpha-Grb2 association in vitro, and the RPTPalpha protein can dissociate the Grb2-Sos complex...... in vivo. These observations constitute a novel mode of Grb2 association and suggest a model in which association with a tyrosine-phosphorylated protein restricts the repertoire of SH3 binding proteins with which Grb2 can simultaneously interact. The function of the Tyr798 tyrosine phosphorylation/Grb2...... binding site in RPTPalpha was studied further by expression of wild type or mutant RPTPalpha proteins in PC12 cells. In these cells, wild type RPTPalpha interferes with acidic fibroblast growth factor-induced neurite outgrowth; this effect requires both the catalytic activity and the Grb2 binding Tyr798...

  20. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2013-01-01

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree

  1. Jet structures in high psub(T) proton-proton collisions at the CERN ISR

    International Nuclear Information System (INIS)

    Boeggild, H.

    1979-01-01

    Results of recent analysis of event structures associated to the production of a large psub(T) identified hadron at thetasub(cm)=90 0 are presented. Some properties of AWAY SIDE jets, and the resonance contributions to the TRIGGER SIDE jets are discussed. (Auth.)

  2. HIGH-ENERGY EMISSION OF GRB 130427A: EVIDENCE FOR INVERSE COMPTON RADIATION

    International Nuclear Information System (INIS)

    Fan, Yi-Zhong; Zhang, Fu-Wen; He, Hao-Ning; Zhou, Bei; Yang, Rui-Zhi; Jin, Zhi-Ping; Wei, Da-Ming; Tam, P. H. T.; Liang, Yun-Feng

    2013-01-01

    A nearby superluminous burst GRB 130427A was simultaneously detected by six γ-ray space telescopes (Swift, the Fermi GLAST Burst Monitor (GBM)/Large Area Telescope, Konus-Wind, SPI-ACS/INTEGRAL, AGILE, and RHESSI) and by three RAPTOR full-sky persistent monitors. The isotropic γ-ray energy release is ∼10 54 erg, rendering it the most powerful explosion among gamma-ray bursts (GRBs) with a redshift z ≤ 0.5. The emission above 100 MeV lasted about one day, and four photons are at energies greater than 40 GeV. We show that the count rate of 100 MeV-100 GeV emission may be mainly accounted for by the forward shock synchrotron radiation and the inverse Compton radiation likely dominates at GeV-TeV energies. In particular, an inverse Compton radiation origin is favored for the ∼(95.3, 47.3, 41.4, 38.5, 32) GeV photons arriving at t ∼ (243, 256.3, 610.6, 3409.8, 34366.2) s after the trigger of Fermi-GBM. Interestingly, the external inverse Compton scattering of the prompt emission (the second episode, i.e., t ∼ 120-260 s) by the forward-shock-accelerated electrons is expected to produce a few γ-rays at energies above 10 GeV, while five were detected in the same time interval. A possible unified model for the prompt soft γ-ray, optical, and GeV emission of GRB 130427A, GRB 080319B, and GRB 090902B is outlined. Implications of the null detection of >1 TeV neutrinos from GRB 130427A by IceCube are discussed

  3. HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Chornock, Ryan; Soderberg, Alicia M.; Berger, Edo; Lunnan, Ragnhild, E-mail: Emily.Levesque@colorado.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-10-20

    GRB 120422A is a nearby (z = 0.283) long-duration gamma-ray burst (LGRB) detected by Swift with E {sub {gamma},iso} {approx} 4.5 Multiplication-Sign 10{sup 49} erg. It is also associated with the spectroscopically confirmed broad-lined Type Ic SN 2012bz. These properties establish GRB 120422A/SN 2012bz as the sixth and newest member of the class of subluminous GRBs supernovae (SNe). Observations also show that GRB 120422A/SN 2012bz occurred at an unusually large offset ({approx}8 kpc) from the host galaxy nucleus, setting it apart from other nearby LGRBs and leading to speculation that the host environment may have undergone prior interaction activity. Here, we present spectroscopic observations using the 6.5 m Magellan telescope at Las Campanas. We extract spectra at three specific locations within the GRB/SN host galaxy, including the host nucleus, the explosion site, and the 'bridge' of diffuse emission connecting these two regions. We measure a metallicity of log(O/H) + 12 = 8.3 {+-} 0.1 and a star formation rate (SFR) per unit area of 0.08 M {sub Sun} yr{sup -1} kpc{sup -2} at the host nucleus. At the GRB/SN explosion site we measure a comparable metallicity of log(O/H) + 12 = 8.2 {+-} 0.1 but find a much lower SFR per unit area of 0.01 M {sub Sun} yr{sup -1} kpc{sup -2}. We also compare the host galaxy of this event to the hosts of other LGRBs, including samples of subluminous LGRBs and cosmological LGRBs, and find no systematic metallicity difference between the environments of these different subtypes.

  4. Preparation of crystals for characterizing the Grb7 SH2 domain before and after complex formation with a bicyclic peptide antagonist.

    Science.gov (United States)

    Ambaye, Nigus D; Gunzburg, Menachem J; Traore, Daouda A K; Del Borgo, Mark P; Perlmutter, Patrick; Wilce, Matthew C J; Wilce, Jacqueline A

    2014-02-01

    Human growth factor receptor-bound protein 7 (Grb7) is an adapter protein involved in cell growth, migration and proliferation. It is now recognized that Grb7 is an emerging therapeutic target in specific cancer subtypes. Recently, the discovery of a bicyclic peptide inhibitor that targets the Grb7 SH2 domain, named G7-B1, was reported. In an attempt to probe the foundation of its interaction with Grb7, the crystallization and preliminary data collection of both the apo and G7-B1-bound forms of the Grb7 SH2 domain are reported here. Diffraction-quality crystals were obtained using the hanging-drop vapour-diffusion method. After several rounds of microseeding, crystals of the apo Grb7 SH2 domain were obtained that diffracted to 1.8 Å resolution, while those of the G7-B1-Grb7 SH2 domain complex diffracted to 2.2 Å resolution. The apo Grb7 SH2 domain crystallized in the trigonal space group P63, whereas the G7-B1-Grb7 SH2 domain complex crystallized in the monoclinic space group P21. The experimental aspects of crystallization, crystal optimization and data collection and the preliminary data are reported.

  5. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  6. The Origin and Structure of the Magnetic Fields and Currents of AGN Jets

    Directory of Open Access Journals (Sweden)

    Denise Gabuzda

    2017-02-01

    Full Text Available This paper reviews observational evidence obtained to date about the overall structure of the magnetic fields in the jets of Active Galactic Nuclei (AGN. Because they are sensitive to the line-of-sight magnetic-field component, Faraday rotation observations of AGN jets provide an effective tool for searching for toroidal jet magnetic fields, whose line-of-sight component changes systematically across the jet. Transverse Faraday rotation measure (RM gradients providing direct evidence for helical/toroidal magnetic fields have been reliably detected in nearly 40 AGN on parsec scales. Helical magnetic fields are believed to form due to the combined action of the rotation of the central black hole and accretion disk, and these observations demonstrate that at least some of this helical field survives to distances well beyond the Very Long Baseline Interferometry (VLBI core. Observations of reversals in the direction of the transverse RM gradients in a number of AGN provide evidence for a“return”magnetic field forming a nested helical-field structure with oppositely directed azimuthal components in the inner and outer regions of the helical magnetic field. The collected data now provide firm evidence for a predominance of inward jet currents on parsec scales and outward currents on scales greater than a few tens of parsecs. This suggests a global pattern of magnetic fields and currents with an inward current near the jet axis and an outward current farther from the jet axis, with these currents closing in the accretion disk and far out in the radio lobes, forming a self-consistent set of fields and currents together with the implied nested helical-field structure.

  7. Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins

    DEFF Research Database (Denmark)

    Salcini, A E; McGlade, J; Pelicci, G

    1994-01-01

    The mammalian SHC gene encodes three overlapping proteins which all contain a carboxy-terminal SH2 domain. Shc proteins are phosphorylated on tyrosine by a variety of receptor and cytoplasmic tyrosine kinases. Phosphorylated Shc proteins form a complex with the SH2-SH3 containing Grb2 protein which...... of Grb2 to Shc proteins requires phosphorylation of Shc at Tyr317, which lies within the high affinity binding motif for the Grb2 SH2 domain, pYVNV, where Asn at the +2 position is crucial for complex formation. In vivo, Tyr317 is the major, but not the only, site for Shc phosphorylation, and is the sole...... aminoterminal deletion, but retain the Tyr317 site and the SH2 domain conserve the capacity to be phosphorylated, to bind to Grb2 and to induce cell transformation. These data indicate that the formation of the Shc-Grb2 complex is a crucial event in the transformation induced by overexpression of Shc...

  8. Experimental study on breakup and fragmentation behavior of molten material jet in complicated structure of BWR lower plenum

    International Nuclear Information System (INIS)

    Saito, Ryusuke; Abe, Yutaka; Yoshida, Hiroyuki

    2014-01-01

    To estimate the state of reactor pressure vessel of Fukushima Daiichi nuclear power plant, it is important to clarify the breakup and fragmentation of molten material jet in the lower plenum of boiling water reactor (BWR) by a numerical simulation. To clarify the effects of complicated structures on the jet behavior experimentally and validate the simulation code, we conduct the visualized experiments simulating the severe accident in the BWR lower plenum. In this study, jet breakup, fragmentation and surrounding velocity profiles of the jet were observed by the backlight method and the particle image velocimetry (PIV) method. From experimental results using the backlight method, it was clarified that jet tip velocity depends on the conditions whether complicated structures exist or not and also clarified that the structures prevent the core of the jet from expanding. From measurements by the PIV method, the surrounding velocity profiles of the jet in the complicated structures were relatively larger than the condition without structure. Finally, fragment diameters measured in the present study well agree with the theory suggested by Kataoka and Ishii by changing the coefficient term. Thus, it was suggested that the fragmentation mechanism was mainly controlled by shearing stress. (author)

  9. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  10. miR-411-5p inhibits proliferation and metastasis of breast cancer cell via targeting GRB2

    International Nuclear Information System (INIS)

    Zhang, Yunda; Xu, Guoxing; Liu, Gang; Ye, Yongzhi; Zhang, Chuankai; Fan, Chuannan; Wang, Haibin; Cai, Huali; Xiao, Rui; Huang, Zhengjie; Luo, Qi

    2016-01-01

    miR-411-5p (previously called miR-411) is severely involved in human diseases, however, the relationship between miR-411-5p and breast cancer has not been investigated thoroughly. Here, we found that the expression of miR-411-5p was downregulated in breast cancer tissues compared with their matched adjacent non-neoplastic tissues. In addition, the expression of miR-411-5p was also lower in breast cancer cell lines in contrast with MCF-10A. Moreover, we investigated the target and mechanism of miR-411-5p in breast cancer using mimic and inhibitor, and demonstrated the involvement of GRB2 and Ras activation. Ectopic expression of miR-411-5p suppressed the breast cancer cell proliferation, migration and invasion while low expression of miR-411-5p exhibited the opposite effect. Furthermore, GRB2 was demonstrated to be significantly overexpressed in breast cancer tissues compared with normal tissues, and low expression of GRB2 had a longer overall survival compared with high expression of GRB2 in breast cancer. In general, our study shed light on the miR-411-5p related mechanism in the progression of breast cancer and, miR-411-5p/GRB2/Ras axis is potential to be molecular target for breast cancer therapy. - Highlights: • miR-411-5p is downregulated in breast cancer tissues and cell lines. • miR-411-5p inhibits breast cancer cells growth, migration and invasion in vitro. • GRB2 is a direct target of miR-411-5p in breast cancer. • GRB2 is overexpressed in breast cancer and associates with disease outcome. • miR-411-5p suppresses breast cancer progression though GRB2-SOS-Ras pathway.

  11. miR-411-5p inhibits proliferation and metastasis of breast cancer cell via targeting GRB2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yunda [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Xu, Guoxing [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Liu, Gang; Ye, Yongzhi [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Zhang, Chuankai [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Fan, Chuannan [State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102 (China); Wang, Haibin; Cai, Huali; Xiao, Rui [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Huang, Zhengjie, E-mail: huangzhengjie@xmu.edu.cn [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China); Luo, Qi, E-mail: luoqixmzsh@126.com [Department of Gastrointestinal Surgery, First Affiliated Hospital of Xiamen University, Xiamen 361003 (China); Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350005 (China)

    2016-08-05

    miR-411-5p (previously called miR-411) is severely involved in human diseases, however, the relationship between miR-411-5p and breast cancer has not been investigated thoroughly. Here, we found that the expression of miR-411-5p was downregulated in breast cancer tissues compared with their matched adjacent non-neoplastic tissues. In addition, the expression of miR-411-5p was also lower in breast cancer cell lines in contrast with MCF-10A. Moreover, we investigated the target and mechanism of miR-411-5p in breast cancer using mimic and inhibitor, and demonstrated the involvement of GRB2 and Ras activation. Ectopic expression of miR-411-5p suppressed the breast cancer cell proliferation, migration and invasion while low expression of miR-411-5p exhibited the opposite effect. Furthermore, GRB2 was demonstrated to be significantly overexpressed in breast cancer tissues compared with normal tissues, and low expression of GRB2 had a longer overall survival compared with high expression of GRB2 in breast cancer. In general, our study shed light on the miR-411-5p related mechanism in the progression of breast cancer and, miR-411-5p/GRB2/Ras axis is potential to be molecular target for breast cancer therapy. - Highlights: • miR-411-5p is downregulated in breast cancer tissues and cell lines. • miR-411-5p inhibits breast cancer cells growth, migration and invasion in vitro. • GRB2 is a direct target of miR-411-5p in breast cancer. • GRB2 is overexpressed in breast cancer and associates with disease outcome. • miR-411-5p suppresses breast cancer progression though GRB2-SOS-Ras pathway.

  12. An optical study of the GRB 970111 field beginning 19 hours after the gamma-ray burst

    DEFF Research Database (Denmark)

    Gorosabel, J.; Castro-Tirado, A.J.; Wolf, Christian

    1998-01-01

    to estimate photometric redshifts in the range 0.2 4 for several galaxies in this field and we did not find any conspicuous unusual object. We note that GRB 970111 and GRB 980329 could belong to the same class of GRBs, which may be related to nearby sources (2 similar to 1) in which high intrinsic...... with B galaxy with redshift z = 0.657, which we propose as the optical counterpart of the X-ray source. Further observations allowed to perform...... multicolour photometry for objects in the GRB 970111 error box. The colour-colour diagrams do not show any object with unusual colours. We applied a photometric classification method to the objects inside the GRB error box, that can distinguish stars from galaxies and estimate redshifts. We were able...

  13. Characteristics and structure of turbulent 3D offset jets

    International Nuclear Information System (INIS)

    Agelin-Chaab, M.; Tachie, M.F.

    2011-01-01

    Highlights: → We investigated three-dimensional turbulent offset jets using particle image velocimetry. → We examined the effects of offset height and Reynolds number on the structure of 3D offset jets. → Effects of Reynolds number and offset height on the decay and growth rates exist close to the exit. → This study provides additional insight and comprehensive data for validating numerical models. - Abstract: Three-dimensional turbulent offset jets were investigated using a particle image velocimetry technique. The measurements were performed at three different exit Reynolds numbers and for four offset heights. The results in the early region of flow development clearly show significant effects of Reynolds number and offset height on the decay of maximum mean velocity and growth of the shear layer. On the contrary, the decay and spread rates were found to be nearly independent of offset height at larger downstream distances. The decay rates of 1.18 ± 0.03 as well as the spread rates of 0.055 ± 0.001 and 0.250 ± 0.005 obtained, respectively, in the wall-normal and lateral directions fall in the range of values reported in previous studies. The locations of the maximum mean velocities increased nearly linearly with streamwise distance in the self-similar region. Analysis from two-point velocity correlations revealed substantially larger structures in the outer layer and self-similar region than in the inner layer and developing region. It was also observed that the hairpin vortices in the inner regions of the wall jets are inclined at angles of 11.2 o ± 0.6 o , which are in good agreement with reported values in boundary layer studies.

  14. Wide-Field Gamma-Spectrometer BDRG: GRB Monitor On-Board the Lomonosov Mission

    Science.gov (United States)

    Svertilov, S. I.; Panasyuk, M. I.; Bogomolov, V. V.; Amelushkin, A. M.; Barinova, V. O.; Galkin, V. I.; Iyudin, A. F.; Kuznetsova, E. A.; Prokhorov, A. V.; Petrov, V. L.; Rozhkov, G. V.; Yashin, I. V.; Gorbovskoy, E. S.; Lipunov, V. M.; Park, I. H.; Jeong, S.; Kim, M. B.

    2018-02-01

    The study of GRB prompt emissions (PE) is one of the main goals of the Lomonosov space mission. The payloads of the GRB monitor (BDRG) with the wide-field optical cameras (SHOK) and the ultra-fast flash observatory (UFFO) onboard the Lomonosov satellite are intended for the observation of GRBs, and in particular, their prompt emissions. The BDRG gamma-ray spectrometer is designed to obtain the temporal and spectral information of GRBs in the energy range of 10-3000 keV as well as to provide GRB triggers on several time scales (10 ms, 1 s and 20 s) for ground and space telescopes, including the UFFO and SHOK. The BDRG instrument consists of three identical detector boxes with axes shifted by 90° from each other. This configuration allows us to localize a GRB source in the sky with an accuracy of ˜ 2°. Each BDRG box contains a phoswich NaI(Tl)/CsI(Tl) scintillator detector. A thick CsI(Tl) crystal in size of \\varnothing 130 × 17 mm is placed underneath the NaI(Tl) as an active shield in the soft energy range and as the main detector in the hard energy range. The ratio of the CsI(Tl) to NaI(Tl) event rates at varying energies can be employed as an independent metric to distinguish legitimate GRB signals from false positives originating from electrons in near-Earth vicinities. The data from three detectors are collected in a BA BDRG information unit, which generates a GRB trigger and a set of data frames in output format. The scientific data output is ˜ 500 Mb per day, including ˜ 180 Mb of continuous data for events with durations in excess of 100 ms for 16 channels in each detector, detailed energy spectra, and sets of frames with ˜ 5 Mb of detailed information for each burst-like event. A number of pre-flight tests including those for the trigger algorithm and calibration were carried out to confirm the reliability of the BDRG for operation in space.

  15. A new gamma-ray burst classification scheme from GRB 060614.

    Science.gov (United States)

    Gehrels, N; Norris, J P; Barthelmy, S D; Granot, J; Kaneko, Y; Kouveliotou, C; Markwardt, C B; Mészáros, P; Nakar, E; Nousek, J A; O'Brien, P T; Page, M; Palmer, D M; Parsons, A M; Roming, P W A; Sakamoto, T; Sarazin, C L; Schady, P; Stamatikos, M; Woosley, S E

    2006-12-21

    Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at approximately 2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star-black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its approximately 102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts.

  16. The redshift and afterglow of the extremely energetic gamma-ray burst GRB 080916C

    CERN Document Server

    Greiner, J.; Kruehler, T.; Kienlin, A.v.; Rau, A.; Sari, R.; Fox, Derek B.; Kawai, N.; Afonso, P.; Ajello, M.; Berger, E.; Cenko, S.B.; Cucchiara, A.; Filgas, R.; Klose, S.; Yoldas, A.Kuepue; Lichti, G.G.; Loew, S.; McBreen, S.; Nagayama, T.; Rossi, A.; Sato, S.; Szokoly, G.; Yoldas, A.; Zhang, X.-L.

    2009-01-01

    The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the accurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a dista...

  17. Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink

    International Nuclear Information System (INIS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-01-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  18. RESOLVING THE INNER JET STRUCTURE OF 1924-292 WITH THE EVENT HORIZON TELESCOPE

    International Nuclear Information System (INIS)

    Lu Rusen; Fish, Vincent L.; Doeleman, Sheperd S.; Weintroub, Jonathan; Moran, James M.; Primiani, Rurik; Young, Ken H.; Bower, Geoffrey C.; Plambeck, Richard; Wright, Melvyn; Freund, Robert; Marrone, Daniel P.; Friberg, Per; Tilanus, Remo P. J.; Ho, Paul T. P.; Inoue, Makoto; Honma, Mareki; Oyama, Tomoaki; Krichbaum, Thomas P.; Shen Zhiqiang

    2012-01-01

    We present the first 1.3 mm (230 GHz) very long baseline interferometry model image of an active galactic nucleus (AGN) jet using closure phase techniques with a four-element array. The model image of the quasar 1924-292 was obtained with four telescopes at three observatories: the James Clerk Maxwell Telescope on Mauna Kea in Hawaii, the Arizona Radio Observatory's Submillimeter Telescope in Arizona, and two telescopes of the Combined Array for Research in Millimeter-wave Astronomy in California in 2009 April. With the greatly improved resolution compared with previous observations and robust closure phase measurement, the inner jet structure of 1924-292 was spatially resolved. The inner jet extends to the northwest along a position angle of –53° at a distance of 0.38 mas from the tentatively identified core, in agreement with the inner jet structure inferred from lower frequencies, and making a position angle difference of ∼80° with respect to the centimeter jet. The size of the compact core is 0.15 pc with a brightness temperature of 1.2 × 10 11 K. Compared with those measured at lower frequencies, the low brightness temperature may argue in favor of the decelerating jet model or particle-cascade models. The successful measurement of closure phase paves the way for imaging and time resolving Sgr A* and nearby AGNs with the Event Horizon Telescope.

  19. a new approach of Analysing GRB light curves

    International Nuclear Information System (INIS)

    Varga, B.; Horvath, I.

    2005-01-01

    We estimated the T xx quantiles of the cumulative GRB light curves using our recalculated background. The basic information of the light curves was extracted by multivariate statistical methods. The possible classes of the light curves are also briefly discussed

  20. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets

    Science.gov (United States)

    Tam, C. K. W.; Jackson, J. A.; Seiner, J. M.

    1985-01-01

    The present investigation is concerned with the development of an analytical model of the quasi-periodic shock-cell structure of an imperfectly expanded supersonic jet. The investigation represents a part of a program to develop a mathematical theory of broadband shock-associated noise of supersonic jets. Tam and Tanna (1982) have suggested that this type of noise is generated by the weak interaction between the quasi-periodic shock cells and the downstream-propagating large turbulence structures in the mixing layer of the jet. In the model developed in this paper, the effect of turbulence in the mixing layer of the jet is simulated by the addition of turbulent eddy-viscosity terms to the momentum equation. Attention is given to the mean-flow profile and the numerical solution, and a comparison of the numerical results with experimental data.

  1. Gamma-ray Burst Formation Environment: Comparison of Redshift Distributions of GRB Afterglows

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2005-12-01

    Full Text Available Since gamma-ray bursts(GRBs have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of wavelengths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRB environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributions as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.

  2. Receptor tyrosine phosphatase R-PTP-alpha is tyrosine-phosphorylated and associated with the adaptor protein Grb2

    DEFF Research Database (Denmark)

    Su, J; Batzer, A; Sap, J

    1994-01-01

    Receptor tyrosine phosphatases (R-PTPases) have generated interest because of their suspected involvement in cellular signal transduction. The adaptor protein Grb2 has been implicated in coupling receptor tyrosine kinases to Ras. We report that a ubiquitous R-PTPase, R-PTP-alpha, is tyrosine......-phosphorylated and associated in vivo with the Grb2 protein. This association can be reproduced in stably and transiently transfected cells, as well as in vitro using recombinant Grb2 protein. Association requires the presence of an intact SH2 domain in Grb2, as well as tyrosine phosphorylation of R-PTP-alpha. This observation...... links a receptor tyrosine phosphatase with a key component of a central cellular signalling pathway and provides a basis for addressing R-PTP-alpha function....

  3. Transverse magnetic field penetration through the JET toroidal coil and support structure

    International Nuclear Information System (INIS)

    Core, W.G.F.; Noll, P.

    1988-01-01

    This report contains the results of a study of transverse magnetic field penetration through the JET magnetic field coil systems and supporting structures. The studies were carried out during the initial JET design phase (1973-78) and were part of a major radius compression plasma heating feasibility study. In view of the interest in this problem the authors have decided to re-issue the original work as a JET report. The material basically remains unchanged although better estimates of the penetration times have been obtained and typographical errors which occurred in the original have been corrected. (author)

  4. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2018-06-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  5. Flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations

    Science.gov (United States)

    Huang, Rong Fung; Kivindu, Reuben Mwanza; Hsu, Ching Min

    2017-12-01

    The flame behavior and thermal structure of combusting plane jets with and without self-excited transverse oscillations were investigated experimentally. The transversely-oscillating plane jet was generated by a specially designed fluidic oscillator. Isothermal flow patterns were observed using the laser-assisted smoke flow visualization method. Meanwhile, the flame behaviour was studied using instantaneous and long-exposure photography techniques. Temperature distributions and combustion-product concentrations were measured using a fine-wire type R thermocouple and a gas analyzer, respectively. The results showed that the combusting transversely-oscillating plane jets had distributed turbulent blue flames with plaited-like edges, while the corresponding combusting non-oscillating plane jet had laminar blue-edged flames in the near field. At a high Reynolds number, the transversely-oscillating jet flames were significantly shorter and wider with shorter reaction-dominated zones than those of the non-oscillating plane jet flames. In addition, the transversely-oscillating combusting jets presented larger carbon dioxide and smaller unburned hydrocarbon concentrations, as well as portrayed characteristics of partially premixed flames. The non-oscillating combusting jets presented characteristics of diffusion flames, and the transversely-oscillating jet flame had a combustion performance superior to its non-oscillating plane jet flame counterpart. The high combustion performance of the transversely-oscillating jets was due to the enhanced entrainment, mixing, and lateral spreading of the jet flow, which were induced by the vortical flow structure generated by lateral periodic jet oscillations, as well as the high turbulence created by the breakup of the vortices.

  6. GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION

    International Nuclear Information System (INIS)

    Kopač, D.; Gomboc, A.; Japelj, J.; Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.; Guidorzi, C.; Melandri, A.

    2013-01-01

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks (Δt/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission

  7. African Easterly Jet: Structure and Maintenance

    Science.gov (United States)

    Wu, Man-Li C.; Reale, Oreste; Schubert, Siegfried D.; Suarez, Max J.; Koster, Randy D.; Pegion, Philip J.

    2009-01-01

    This article investigates the African Easterly Jet (AEJ), its structure and the forcings contributing to its maintenance, critically revisiting previous work which attributed the maintenance of the jet to soil moisture gradients over tropical Africa. A state-of-the-art global model in a high-end computer framework is used to produce a 3-member 73-year ensemble run forced by observed SST to represent the Control run. The AEJ as produced by the Control is compared with the representation of the AEJ in the European Center for Medium Range Forecast Reanalyses (ERA-40) and other observational data sets and found very realistic. Five Experiments are then performed, each represented by sets of 3-member 22 year long (1980-2001) ensemble runs. The goal of the Experiments is to investigate the role of meridional soil moisture gradients, different land surface properties and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated landsurface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients, but a unique combination of geographical features present only in northern tropical Africa, which causes and maintains the jet.

  8. Collapsar γ-ray bursts: how the luminosity function dictates the duration distribution

    Science.gov (United States)

    Petropoulou, Maria; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2017-12-01

    Jets in long-duration γ-ray bursts (GRBs) have to drill through the collapsing star in order to break out of it and produce the γ-ray signal while the central engine is still active. If the breakout time is shorter for more powerful engines, then the jet-collapsar interaction acts as a filter of less luminous jets. We show that the observed broken power-law GRB luminosity function is a natural outcome of this process. For a theoretically motivated breakout time that scales with jet luminosity as L-χ with χ ∼ 1/3-1/2, we show that the shape of the γ-ray duration distribution can be uniquely determined by the GRB luminosity function and matches the observed one. This analysis has also interesting implications about the supernova-central engine connection. We show that not only successful jets can deposit sufficient energy in the stellar envelope to power the GRB-associated supernovae, but also failed jets may operate in all Type Ib/c supernovae.

  9. The angular structure of jet quenching within a hybrid strong/weak coupling model

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna

    2017-08-01

    Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.

  10. Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources

    Science.gov (United States)

    Komissarov, Serguei S.; Vlahakis, Nektarios; Königl, Arieh

    2010-09-01

    When a magnetically dominated superfast-magnetosonic long/soft gamma-ray burst (GRB) jet leaves the progenitor star, the external pressure support will drop and the jet may enter the regime of ballistic expansion, during which additional magnetic acceleration becomes ineffective. However, recent numerical simulations by Tchekhovskoy et al. have suggested that the transition to this regime is accompanied by a spurt of acceleration. We confirm this finding numerically and attribute the acceleration to a sideways expansion of the jet, associated with a strong magnetosonic rarefaction wave that is driven into the jet when it loses pressure support, which induces a conversion of magnetic energy into kinetic energy of bulk motion. This mechanism, which we dub rarefaction acceleration, can only operate in a relativistic outflow because in this case the total energy can still be dominated by the magnetic component even in the superfast-magnetosonic regime. We analyse this process using the equations of relativistic magnetohydrodynamics and demonstrate that it is more efficient at converting internal energy into kinetic energy when the flow is magnetized than in a purely hydrodynamic outflow, as was found numerically by Mizuno et al. We show that, just as in the case of the magnetic acceleration of a collimating jet that is confined by an external pressure distribution - the collimation-acceleration mechanism - the rarefaction-acceleration process in a magnetized jet is a consequence of the fact that the separation between neighbouring magnetic flux surfaces increases faster than their cylindrical radius. However, whereas in the case of effective collimation-acceleration the product of the jet opening angle and its Lorentz factor does not exceed ~1, the addition of the rarefaction-acceleration mechanism makes it possible for this product to become >>1, in agreement with the inference from late-time panchromatic breaks in the afterglow light curves of long/soft GRBs.

  11. RESOLVING THE INNER JET STRUCTURE OF 1924-292 WITH THE EVENT HORIZON TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Lu Rusen; Fish, Vincent L.; Doeleman, Sheperd S. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Weintroub, Jonathan; Moran, James M.; Primiani, Rurik; Young, Ken H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bower, Geoffrey C.; Plambeck, Richard; Wright, Melvyn [Department of Astronomy, Radio Astronomy Laboratory, University of California Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411 (United States); Freund, Robert; Marrone, Daniel P. [Arizona Radio Observatory, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Friberg, Per; Tilanus, Remo P. J. [James Clerk Maxwell Telescope, Joint Astronomy Centre, 660 North A' ohoku Place, University Park, Hilo, HI 96720 (United States); Ho, Paul T. P.; Inoue, Makoto [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Honma, Mareki; Oyama, Tomoaki [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Krichbaum, Thomas P. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Shen Zhiqiang, E-mail: rslu@haystack.mit.edu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); and others

    2012-09-20

    We present the first 1.3 mm (230 GHz) very long baseline interferometry model image of an active galactic nucleus (AGN) jet using closure phase techniques with a four-element array. The model image of the quasar 1924-292 was obtained with four telescopes at three observatories: the James Clerk Maxwell Telescope on Mauna Kea in Hawaii, the Arizona Radio Observatory's Submillimeter Telescope in Arizona, and two telescopes of the Combined Array for Research in Millimeter-wave Astronomy in California in 2009 April. With the greatly improved resolution compared with previous observations and robust closure phase measurement, the inner jet structure of 1924-292 was spatially resolved. The inner jet extends to the northwest along a position angle of -53 Degree-Sign at a distance of 0.38 mas from the tentatively identified core, in agreement with the inner jet structure inferred from lower frequencies, and making a position angle difference of {approx}80 Degree-Sign with respect to the centimeter jet. The size of the compact core is 0.15 pc with a brightness temperature of 1.2 Multiplication-Sign 10{sup 11} K. Compared with those measured at lower frequencies, the low brightness temperature may argue in favor of the decelerating jet model or particle-cascade models. The successful measurement of closure phase paves the way for imaging and time resolving Sgr A* and nearby AGNs with the Event Horizon Telescope.

  12. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase.

    Science.gov (United States)

    Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P

    The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.

  13. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    Science.gov (United States)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  14. A Decade of GRB Follow-Up by BOOTES in Spain (2003–2013

    Directory of Open Access Journals (Sweden)

    Martin Jelínek

    2016-01-01

    Full Text Available This article covers ten years of GRB follow-ups by the Spanish BOOTES stations: 71 follow-ups providing 23 detections. Follow-ups by BOOTES-1B from 2005 to 2008 were given in a previous article and are here reviewed and updated, and additional detection data points are included as the former article merely stated their existence. The all-sky cameras CASSANDRA have not yet detected any GRB optical afterglows, but limits are reported where available.

  15. Jet mass spectra in Higgs+one jet at NNLL

    International Nuclear Information System (INIS)

    Jouttenus, Teppo T.; Stewart, Iain W.; Waalewijn, Wouter J.

    2013-02-01

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m 2 jet /p jet T scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  16. Multicolour modelling of SN 2013dx associated with GRB 130702A★

    Science.gov (United States)

    Volnova, A. A.; Pruzhinskaya, M. V.; Pozanenko, A. S.; Blinnikov, S. I.; Minaev, P. Yu.; Burkhonov, O. A.; Chernenko, A. M.; Ehgamberdiev, Sh. A.; Inasaridze, R.; Jelinek, M.; Khorunzhev, G. A.; Klunko, E. V.; Krugly, Yu. N.; Mazaeva, E. D.; Rumyantsev, V. V.; Volvach, A. E.

    2017-05-01

    We present optical observations of SN 2013dx, related to the Fermi burst GRB 130702A, which occurred at red shift z = 0.145. It is the second-best sampled gamma-ray burst (GRB)/supernova (SN) after SN 1998bw. The observational light curves contain more than 280 data points in the uBgrRiz filters until 88 d after the burst, and the data were collected from our observational collaboration (Maidanak Observatory, Abastumani Observatory, Crimean Astrophysical Observatory, Mondy Observatory, National Observatory of Turkey and Observatorio del Roque de los Muchachos) and from the literature. We model numerically the multicolour light curves using the one-dimensional radiation hydrodynamical code stella, previously widely implemented for modelling typical non-GRB SNe. The best-fitting model has the following parameters: pre-SN star mass M = 25 M⊙; mass of the compact remnant MCR = 6 M⊙; total energy of the outburst Eoburst = 3.5 × 1052 erg; pre-supernova star radius R = 100 R⊙; M_^{56Ni} = 0.2 M_{⊙}, which is totally mixed through the ejecta; MO = 16.6 M⊙; MSi = 1.2 M⊙ and MFe = 1.2 M⊙, and the radiative efficiency of the SN is 0.1 per cent.

  17. DDC and COBL, flanking the imprinted GRB10 gene on 7p12, are biallelically expressed.

    Science.gov (United States)

    Hitchins, Megan P; Bentley, Louise; Monk, David; Beechey, Colin; Peters, Jo; Kelsey, Gavin; Ishino, Fumitoshi; Preece, Michael A; Stanier, Philip; Moore, Gudrun E

    2002-12-01

    Maternal duplication of human 7p11.2-p13 has been associated with Silver-Russell syndrome (SRS) in two familial cases. GRB10 is the only imprinted gene identified within this region to date. GRB10 demonstrates an intricate tissue- and isoform-specific imprinting profile in humans, with paternal expression in fetal brain and maternal expression of one isoform in skeletal muscle. The mouse homolog is maternally transcribed. The GRB10 protein is a potent growth inhibitor and represents a candidate for SRS, which is characterized by pre- and postnatal growth retardation and a spectrum of additional dysmorphic features. Since imprinted genes tend to be grouped in clusters, we investigated the imprinting status of the dopa-decarboxylase gene (DDC) and the Cordon-bleu gene (COBL) which flank GRB10 within the 7p11.2-p13 SRS duplicated region. Although both genes were found to replicate asynchronously, suggestive of imprinting, SNP expression analyses showed that neither gene was imprinted in multiple human fetal tissues. The mouse homologues, Ddc and Cobl, which map to the homologous imprinted region on proximal Chr 11, were also biallelically expressed in mice with uniparental maternal or paternal inheritance of this region. With the intent of using mouse Grb10 as an imprinted control, biallelic expression was consistently observed in fetal, postnatal, and adult brain of these mice, in contrast to the maternal-specific transcription previously demonstrated in brain in inter-specific F1 progeny. This may be a further example of over-expression of maternally derived transcripts in inter-specific mouse crosses. GRB10 remains the only imprinted gene identified within 7p11.2-p13.

  18. Relationship Between Quantitative GRB7 RNA Expression and Recurrence after Adjuvant Anthracycline Chemotherapy in Triple Negative Breast Cancer

    Science.gov (United States)

    Sparano, Joseph A.; Goldstein, Lori J.; Childs, Barrett H.; Shak, Steven; Brassard, Diana; Badve, Sunil; Baehner, Frederick L.; Bugarini, Roberto; Rowley, Steve; Perez, Edith; Shulman, Lawrence N.; Martino, Silvana; Davidson, Nancy E.; Kenny, Paraic A.; Sledge, George W.; Gray, Robert

    2012-01-01

    Purpose To perform an exploratory analysis of the relationship between gene expression and recurrence in patients with operable triple negative breast cancer (TNBC) treated with adjuvant doxorubicin-containing chemotherapy. Experimental design RNA was extracted from archived tumor samples derived from 246 patients with stage I-III TNBC treated with adjuvant doxorubicin-containing chemotherapy, and was analyzed by quantitative RT-PCR for a panel of 374 genes. The relationship between gene expression and recurrence was evaluated using weighted Cox proportional hazards model score tests. Results GRB7 was the only gene for which higher expression was significantly associated with increased recurrence in TNBC (Korn’s adjusted p value=0.04). In a Cox proportional hazards model adjusted for clinicopathologic features, higher GRB7 expression was associated with an increased recurrence risk (HR 2.31, p=0.04 using the median as the split). The 5-year recurrence rates were 10.5% (95% confidence intervals [CI] 7.8%, 14.1%) in the low and 20.4% (95% CI 16.5%, 25.0%) in the high GRB7 groups. External validation in other datasets indicated that GRB7 expression was not prognostic in two adjuvant trials including variable systemic therapy, but in two other trials showed that high GBR7 expression was associated with resistance to neoadjuvant doxorubicin and taxane therapy. Conclusions GRB7 was associated with an increased risk of recurrence in TNBC, suggesting that GRB7 or GRB7-dependent pathways may serve as potential biomarkers for therapeutic targets. Therapeutic targeting of one or more factors identified which function as interaction nodes or effectors should also be considered. PMID:21933890

  19. Relationship between quantitative GRB7 RNA expression and recurrence after adjuvant anthracycline chemotherapy in triple-negative breast cancer.

    Science.gov (United States)

    Sparano, Joseph A; Goldstein, Lori J; Childs, Barrett H; Shak, Steven; Brassard, Diana; Badve, Sunil; Baehner, Frederick L; Bugarini, Roberto; Rowley, Steve; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Davidson, Nancy E; Kenny, Paraic A; Sledge, George W; Gray, Robert

    2011-11-15

    To conduct an exploratory analysis of the relationship between gene expression and recurrence in patients with operable triple-negative breast cancer (TNBC) treated with adjuvant doxorubicin-containing chemotherapy. RNA was extracted from archived tumor samples derived from 246 patients with stage I-III TNBC treated with adjuvant doxorubicin-containing chemotherapy, and was analyzed by quantitative reverse transcriptase PCR for a panel of 374 genes. The relationship between gene expression and recurrence was evaluated using weighted Cox proportional hazards model score tests. Growth factor receptor bound protein 7 (GRB7) was the only gene for which higher expression was significantly associated with increased recurrence in TNBC (Korn's adjusted P value = 0.04). In a Cox proportional hazards model adjusted for clinicopathologic features, higher GRB7 expression was associated with an increased recurrence risk (HR = 2.31; P = 0.04 using the median as the split). The 5-year recurrence rates were 10.5% [95% confidence intervals (CI), 7.8-14.1] in the low and 20.4% (95% CI, 16.5-25.0) in the high GRB7 groups. External validation in other datasets indicated that GRB7 expression was not prognostic in two adjuvant trials including variable systemic therapy, but in two other trials showed that high GBR7 expression was associated with resistance to neoadjuvant doxorubicin and taxane therapy. GRB7 was associated with an increased risk of recurrence in TNBC, suggesting that GRB7 or GRB7-dependent pathways may serve as potential biomarkers for therapeutic targets. Therapeutic targeting of one or more factors identified which function as interaction nodes or effectors should also be considered.

  20. Aging Evaluation Programs for Jet Transport Aircraft Structural Integrity

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2012-10-01

    Full Text Available The paper deals with criteria and procedures in evaluationof timely preventive maintenance recommendations that willsupport continued safe operation of aging jet transports untiltheir retirement from service. The active service life of commercialaircraft has increased in recent years as a result of low fuelcost, and increasing costs and delivery times for fleet replacements.Air transport industry consensus is that older jet transportswill continue in service despite anticipated substantial increasesin required maintenance. Design concepts, supportedby testing, have worked well due to the system that is used to ensureflying safety. Continuing structural integrity by inspectionand overhaul recommendation above the level contained inmaintenance and service bulletins is additional requirement, insuch cases. Airplane structural safety depends on the performanceof all participants in the system and the responsibility forsafety cannot be delegated to a single participant. This systemhas three major participants: the manufacturers who design,build and support airplanes in service, the airlines who operate,inspect and mantain airplanes and the airworthiness authoritieswho establish rules and regulations, approve the design andpromote airline maintenance performance.

  1. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  2. Jet-images: computer vision inspired techniques for jet tagging

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel [SLAC National Accelerator Laboratory,Menlo Park, CA 94028 (United States)

    2015-02-18

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  3. Jet-images: computer vision inspired techniques for jet tagging

    International Nuclear Information System (INIS)

    Cogan, Josh; Kagan, Michael; Strauss, Emanuel; Schwarztman, Ariel

    2015-01-01

    We introduce a novel approach to jet tagging and classification through the use of techniques inspired by computer vision. Drawing parallels to the problem of facial recognition in images, we define a jet-image using calorimeter towers as the elements of the image and establish jet-image preprocessing methods. For the jet-image processing step, we develop a discriminant for classifying the jet-images derived using Fisher discriminant analysis. The effectiveness of the technique is shown within the context of identifying boosted hadronic W boson decays with respect to a background of quark- and gluon-initiated jets. Using Monte Carlo simulation, we demonstrate that the performance of this technique introduces additional discriminating power over other substructure approaches, and gives significant insight into the internal structure of jets.

  4. NuSTARobservations of grb 130427a establish a single component synchrotron afterglow origin for the late optical to multi-gev emission

    DEFF Research Database (Denmark)

    Kouveliotou, C.; Granot, J.; Racusin, J. L.

    2013-01-01

    GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (simil...

  5. Visualization of the structure of vortex breakdown in free swirling jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    In this paper we investigate the three dimensional flow structures in a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved Tomographic Particle Image Velocimetry measurements. Both time-averaged and instantaneous flow structures are

  6. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  7. Polarization and Structure of Relativistic Parsec-Scale AGN Jets

    International Nuclear Information System (INIS)

    Lyutikov, M

    2004-01-01

    We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron-positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor Λ. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. Our computations predict and explain the following behavior. (1) For jets unresolved in the direction perpendicular to their direction of propagation, the position angle of the electric vector of the linear polarization has a bimodal distribution, being oriented either parallel or perpendicular to the jet. (2) If an ultra-relativistic jet with Λ >> 1 whose axis makes a small angle to the line of sight, θ ∼ 1/Λ, experiences a relatively small change in the direction of propagation, velocity or pitch angle of the magnetic fields, the polarization is likely to remain parallel or perpendicular; on the other hand, in some cases, the degree of polarization can exhibit large variations and the polarization position angle can experience abrupt 90 o changes. This change is more likely to occur in jets with flatter spectra. (3) In order for the jet polarization to be oriented along the jet axis, the intrinsic toroidal magnetic field (in the frame of the jet) should be of the order of or stronger than the intrinsic poloidal field; in this case, the highly relativistic motion of the jet implies that, in the observer's frame, the jet is strongly dominated by the toroidal magnetic field B φ /B z (ge) Λ. (4) The emission-weighted average pitch angle of the intrinsic helical field in the jet must not be too small to produce polarization along the jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be generated in a limited range of radii not too close to the jet core. (5) For

  8. Jet mass spectra in Higgs+one jet at NNLL

    Energy Technology Data Exchange (ETDEWEB)

    Jouttenus, Teppo T.; Stewart, Iain W. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Waalewijn, Wouter J. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    2013-02-15

    The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m{sup 2}{sub jet}/p{sup jet}{sub T} scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in Pythia. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

  9. Statistics of turbulent structures in a thermal plasma jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Šonský, Jiří; Něnička, Václav; Zachar, Andrej

    2005-01-01

    Roč. 38, - (2005), s. 1760-1768 ISSN 0022-3727 R&D Projects: GA AV ČR(CZ) IAA1057202; GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : turbulent structures * thermal plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.957, year: 2005

  10. Structure and variability of the Oman coastal low-level jet

    Directory of Open Access Journals (Sweden)

    Raza Ranjha

    2015-06-01

    Full Text Available In this study, reanalysis and regional atmospheric modelling was used to resolve the climatology and mesoscale structure, spatial variability and temporal characteristics of the Oman coastal low-level jet (CLLJ. The limited area model COAMPS® was used at a 6-km horizontal resolution for a 5-month period (May–September during 2009. Analysis of high-resolution model fields reveals the mesoscale structure of the Oman CLLJ, clearly distinguishing it from the large-scale South Asia monsoon circulation farther offshore, and from the previously identified Findlater (or Somali jet, which occurs at a higher altitude. The Oman CLLJ is closer to the coast and spreads northeastward along the coast of Oman, clearly interacting with the coastal topography and headlands. It has a very strong annual cycle, related to the South Asia monsoon, with July exhibiting the highest CLLJ frequency of occurrence (around 80% and highest wind speeds (around 27 ms−1, and May and September being the transition months. The southerly location of the Oman CLLJ, along with the very strong inland summer heating in the Arabian Peninsula, affects its diurnal cycle, with highest number of occurrences early in the morning, whereas the highest wind speeds occur during late afternoon, setting this CLLJ apart from other coastal jets in mid-latitude areas along eastern boundary currents.

  11. GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST

    International Nuclear Information System (INIS)

    Gendre, B.; Stratta, G.; Atteia, J. L.; Klotz, A.; Boër, M.; Colas, F.; Vachier, F.; Kugel, F.; Rinner, C.; Laas-Bourez, M.; Strajnic, J.

    2012-01-01

    The Swift burst GRB 110205A was a very bright burst visible in the Northern Hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A: the detection of prompt optical emission strongly correlated with the Burst Alert Telescope light curve, with no temporal lag between the two; the absence of correlation of the X-ray emission compared to the optical and high-energy gamma-ray ones during the prompt phase; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a gamma-ray burst with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high energies (from 0.5 keV to 150 keV); the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.

  12. Manufacture and installation of JET MKII divertor support structure

    International Nuclear Information System (INIS)

    Celentano, G.; Altmann, H.; Macklin, B.; Miele, P.; Pick, M.A.; Tait, J.; Moletta, L.; Romagnolo, A.; Shaw, R.

    1995-01-01

    The water cooled support structure, comprising twenty-four modules is the main component of the JET MKII divertor system. It is to be installed in the vacuum vessel with high accuracy with respect to the magnetic center and the other in-vessel components. The paper describes the design and manufacturing cycle including the required tolerances, the assembly and installation method and the material production process required to ensure the accuracy and reliability of the MKII support structure system. The water cooling holes, machined into the support structure require the procurement of special material to prevent risks of leaks inside the vacuum vessel

  13. THE STRUCTURE AND LINEAR POLARIZATION OF THE KILOPARSEC-SCALE JET OF THE QUASAR 3C 345

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David H.; Wardle, John F. C.; Marchenko, Valerie V., E-mail: roberts@brandeis.edu [Department of Physics MS-057, Brandeis University, Waltham, MA 02454-0911 (United States)

    2013-02-01

    Deep Very Large Array imaging of the quasar 3C 345 at 4.86 and 8.44 GHz has been used to study the structure and linear polarization of its radio jet on scales ranging from 2 to 30 kpc. There is a 7-8 Jy unresolved core with spectral index {alpha} {approx_equal} -0.24 (I{sub {nu}}{proportional_to}{nu}{sup {alpha}}). The jet (typical intensity 15 mJy beam{sup -1}) consists of a 2.''5 straight section containing two knots, and two additional non-co-linear knots at the end. The jet's total projected length is about 27 kpc. The spectral index of the jet varies over -1.1 {approx}< {alpha} {approx}< -0.5. The jet diverges with a semi-opening angle of about 9 Degree-Sign , and is nearly constant in integrated brightness over its length. A faint feature northeast of the core does not appear to be a true counter-jet, but rather an extended lobe of this FR-II radio source seen in projection. The absence of a counter-jet is sufficient to place modest constraints on the speed of the jet on these scales, requiring {beta} {approx}> 0.5. Despite the indication of jet precession in the total intensity structure, the polarization images suggest instead a jet re-directed at least twice by collisions with the external medium. Surprisingly, the electric vector position angles in the main body of the jet are neither longitudinal nor transverse, but make an angle of about 55 Degree-Sign with the jet axis in the middle while along the edges the vectors are transverse, suggesting a helical magnetic field. There is no significant Faraday rotation in the source, so that is not the cause of the twist. The fractional polarization in the jet averages 25% and is higher at the edges. In a companion paper, Roberts and Wardle show that differential Doppler boosting in a diverging relativistic velocity field can explain the electric vector pattern in the jet.

  14. Optically selected GRB afterglows, a real time analysis system at the CFHT

    International Nuclear Information System (INIS)

    Malacrino, F.; Atteia, J.-L.; Klotz, A.; Boer, M.; Kavelaars, J.J.; Cuillandre, J.-C.

    2005-01-01

    We attempt to detect optical GRB afterglows on images taken by the Canada France Hawaii Telescope for the Very Wide survey, component of the Legacy Survey. To do so, a Real Time Analysis System called Optically Selected GRB Afterglows has been installed on a dedicated computer in Hawaii. This pipeline automatically and quickly analyzes Mega cam images and extracts from them a list of variable objects which is displayed on a web page far validation by a member of the collaboration. The Very Wide survey covers 1200 square degrees down to i 1 = 23.5. This paper briefly explain the RTAS process

  15. Observation of X-ray lines from a gamma-ray burst (GRB991216): evidence of moving ejecta from the progenitor.

    Science.gov (United States)

    Piro, L; Garmire, G; Garcia, M; Stratta, G; Costa, E; Feroci, M; Mészáros, P; Vietri, M; Bradt, H; Frail, D; Frontera, F; Halpern, J; Heise, J; Hurley, K; Kawai, N; Kippen, R M; Marshall, F; Murakami, T; Sokolov, V V; Takeshima, T; Yoshida, A

    2000-11-03

    We report on the discovery of two emission features observed in the x-ray spectrum of the afterglow of the gamma-ray burst (GRB) of 16 December 1999 by the Chandra X-ray Observatory. These features are identified with the Ly(alpha) line and the narrow recombination continuum by hydrogenic ions of iron at a redshift z = 1.00 +/- 0.02, providing an unambiguous measurement of the distance of a GRB. Line width and intensity imply that the progenitor of the GRB was a massive star system that ejected, before the GRB event, a quantity of iron approximately 0.01 of the mass of the sun at a velocity approximately 0.1 of the speed of light, probably by a supernova explosion.

  16. Novel nonphosphorylated peptides with conserved sequences selectively bind to Grb7 SH2 domain with affinity comparable to its phosphorylated ligand.

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    Full Text Available The Grb7 (growth factor receptor-bound 7 protein, a member of the Grb7 protein family, is found to be highly expressed in such metastatic tumors as breast cancer, esophageal cancer, liver cancer, etc. The src-homology 2 (SH2 domain in the C-terminus is reported to be mainly involved in Grb7 signaling pathways. Using the random peptide library, we identified a series of Grb7 SH2 domain-binding nonphosphorylated peptides in the yeast two-hybrid system. These peptides have a conserved GIPT/K/N sequence at the N-terminus and G/WD/IP at the C-terminus, and the region between the N-and C-terminus contains fifteen amino acids enriched with serines, threonines and prolines. The association between the nonphosphorylated peptides and the Grb7 SH2 domain occurred in vitro and ex vivo. When competing for binding to the Grb7 SH2 domain in a complex, one synthesized nonphosphorylated ligand, containing the twenty-two amino acid-motif sequence, showed at least comparable affinity to the phosphorylated ligand of ErbB3 in vitro, and its overexpression inhibited the proliferation of SK-BR-3 cells. Such nonphosphorylated peptides may be useful for rational design of drugs targeted against cancers that express high levels of Grb7 protein.

  17. CONSTRAINTS ON THE EMISSION MODEL OF THE 'NAKED-EYE BURST' GRB 080319B

    International Nuclear Information System (INIS)

    Abdo, A. A.; Abeysekara, A. U.; Linnemann, J. T.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; DeYoung, T.; Dingus, B. L.; Hoffman, C. M.; Ellsworth, R. W.; Gonzalez, M. M.; Granot, J.; Hays, E.; McEnery, J. E.; Hüntemeyer, P. H.

    2012-01-01

    On 2008 March 19, one of the brightest gamma-ray bursts (GRBs) ever recorded was detected by several ground- and space-based instruments spanning the electromagnetic spectrum from radio to gamma rays. With a peak visual magnitude of 5.3, GRB 080319B was dubbed the 'naked-eye' GRB, as an observer under dark skies could have seen the burst without the aid of an instrument. Presented here are results from observations of the prompt phase of GRB 080319B taken with the Milagro TeV observatory. The burst was observed at an elevation angle of 47°. Analysis of the data is performed using both the standard air shower method and the scaler or single-particle technique, which results in a sensitive energy range that extends from ∼5 GeV to >20 TeV. These observations provide the only direct constraints on the properties of the high-energy gamma-ray emission from GRB 080319B at these energies. No evidence for emission is found in the Milagro data, and upper limits on the gamma-ray flux above 10 GeV are derived. The limits on emission between ∼25 and 200 GeV are incompatible with the synchrotron self-Compton model of gamma-ray production and disfavor a corresponding range (2 eV-16 eV) of assumed synchrotron peak energies. This indicates that the optical photons and soft (∼650 keV) gamma rays may not be produced by the same electron population.

  18. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Aloy, M. A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Becsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderon; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerda-Duran, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrion, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dalya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Costa, C. F. Da Silva; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; Debra, D.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Alvarez, M. Dovale; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kraemer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lueck, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Hernandez, I. Magana; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; Mcrae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosinska, D.; Ross, M. P.; Rowan, S.; Ruediger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, R. J. E.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forne, A.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; Van den Brand, J. F. J.; Van den Broeck, C.; Vander-Hyde, D. C.; Van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrozny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Burns, E.; Veres, P.; Kocevski, D.; Racusin, J.; Goldstein, A.; Connaughton, V.; Briggs, M. S.; Blackburn, L.; Hamburg, R.; Hui, C. M.; von Kienlin, A.; McEnery, J.; Preece, R. D.; Wilson-Hodge, C. A.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Roberts, O. J.; Stanbro, M.; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev, R.; Ubertini, P.

    2017-01-01

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International

  19. Magnetized jets driven by the Sun: The structure of the heliosphere revisited—Updates

    Energy Technology Data Exchange (ETDEWEB)

    Opher, M., E-mail: mopher@bu.edu [Astronomy Department, Boston University, Boston, Massachusetts 02215 (United States); Drake, J. F.; Swisdak, M. [University of Maryland, College Park, Maryland 20742 (United States); Zieger, B. [Center for Space Physics, Boston University, Massachusetts 02215 (United States); Toth, G. [Department of Climate and Space, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-05-15

    As the solar system moves through the interstellar medium, the solar wind is deflected forming the heliosphere. The standard picture of the heliosphere is a comet-shape like structure with the tail extending for 1000s of astronomical units. This standard picture stems from a view where magnetic forces are negligible and the solar magnetic field is convected passively down the tail. Recently, we showed that the magnetic tension of the solar magnetic field plays a crucial role on organizing the solar wind in the heliosheath into two jet-like structures. The two jets are separated by the interstellar medium that flows between them. The heliosphere then has a “croissant”-like shape where the distance to the heliopause downtail is almost the same as towards the nose. This new view of the heliosphere is in agreement with the energetic neutral atoms maps taken by the Interstellar Boundary Explorer and INCA/CASSINI. We developed as well an analytic model of the heliosheath in the axisymmetric limit that shows how the magnetic tension force is the driver for the north and south jets. We confirmed that the formation of these jets with magnetohydrodynamic (MHD) simulations. The main reason why previous global MHD simulations did not see these jets is due to spurious magnetic dissipation that was present at the heliospheric current sheet. We instead kept the same polarity for the interplanetary (solar) magnetic field in both the northern and southern hemispheres, eliminating spurious magnetic dissipation effects at the heliospheric current sheet. In this paper, we extend these previous results to include additional cases where we used: (a) weaker solar magnetic field; (b) solar magnetic field that reverses polarity at the solar equator in the axisymmetric limit; and (c) slower motion through the interstellar system. We discuss as well future challenges regarding the structure of the heliosphere.

  20. Measurements of the structure of quark and gluon jets in hadronic Z decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Merle, E; Minard, M N; Nief, J Y; Pietrzyk, B; Alemany, R; Boix, G; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Bright-Thomas, P G; Casper, David William; Cattaneo, M; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Cerutti, F; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Halley, A W; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Etienne, F; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Kroha, H; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Reeve, J; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G

    2000-01-01

    An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for tests of QCD over a wide range of transverse momentum scales. The observables include distributions of jet-shape variables, the mean and standard deviation of the subjet multiplicity distribution and the fragmentation function for charged particles. The data are compared with predictions of perturbative QCD as well as QCD-based Monte Carlo models. In certain kinematic regions the measurements are sensitive mainly to perturbatively calculable effects, allowing for a test of QCD. The comparisons are also extended into regions where nonperturbative effects become large, and in this way the transition from hard to soft QCD is investigated. It is found that by including leading and next-to-leading logarithmic contributions in the QCD predictions, the agreement with the data can be extended to lower transverse momentum sca...

  1. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  2. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  3. A molecular gas-rich GRB host galaxy at the peak of cosmic star formation

    Science.gov (United States)

    Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.

    2018-05-01

    We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.

  4. The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics

    Science.gov (United States)

    Wang, Hao; Zhang, Fu-Wen; Wang, Yuan-Zhu; Shen, Zhao-Qiang; Liang, Yun-Feng; Li, Xiang; Liao, Neng-Hui; Jin, Zhi-Ping; Yuan, Qiang; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2017-12-01

    On 2017 August 17, a gravitational-wave event (GW170817) and an associated short gamma-ray burst (GRB 170817A) from a binary neutron star merger had been detected. The follow-up optical/infrared observations also identified the macronova/kilonova emission (AT 2017gfo). In this work, we discuss some implications of the remarkable GW170817/GRB 170817A/AT 2017gfo association. We show that the ∼1.7 s time delay between the gravitational-wave (GW) and GRB signals imposes very tight constraints on the superluminal movement of gravitational waves (i.e., the relative departure of GW velocity from the speed of light is ≤slant 4.3× {10}-16) or the possible violation of the weak equivalence principle (i.e., the difference of the gamma-ray and GW trajectories in the gravitational field of the galaxy and the local universe should be within a factor of ∼ 3.4× {10}-9). The so-called Dark Matter Emulators and a class of contender models for cosmic acceleration (“Covariant Galileon”) are ruled out as well. The successful identification of lanthanide elements in the macronova/kilonova spectrum also excludes the possibility that the progenitors of GRB 170817A are a binary strange star system. The high neutron star merger rate (inferred from both the local sGRB data and the gravitational-wave data) together with the significant ejected mass strongly suggest that such mergers are the prime sites of heavy r-process nucleosynthesis.

  5. Photon structure and the production of jets, hadrons, and prompt photons

    International Nuclear Information System (INIS)

    Klasen, M.

    1999-01-01

    We give a pedagogical introduction to hard photoproduction processes at HERA, including the production of jets, hadrons, and prompt photons. Recent theoretical developments in the three areas are reviewed. In summary, hard photoproduction processes can provide very useful information on the hadronic structure of the photon, in particular on the gluon density, which is complimentary to the information coming from deep inelastic photon-photon scattering at electron-positron colliders. Among the different hadronic final states, jets are most easily accessible experimentally and phenomenologically. On the other hand, inclusive hadron production offers the possibility to test the universality of hadron fragmentation functions and measure the photon structure down to very low values of p T and x γ . Prompt photon production suffers from a reduced cross section and limited data, but allows for the additional testing of photon fragmentation functions

  6. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    DEFF Research Database (Denmark)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    2017-01-01

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gam...

  7. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  8. IceCube and GRB neutrinos propagating in quantum spacetime

    Directory of Open Access Journals (Sweden)

    Giovanni Amelino-Camelia

    2016-10-01

    Full Text Available Two recent publications have reported intriguing analyses, tentatively suggesting that some aspects of IceCube data might be manifestations of quantum-gravity-modified laws of propagation for neutrinos. We here propose a strategy of data analysis which has the advantage of being applicable to several alternative possibilities for the laws of propagation of neutrinos in a quantum spacetime. In all scenarios here of interest one should find a correlation between the energy of an observed neutrino and the difference between the time of observation of that neutrino and the trigger time of a GRB. We select accordingly some GRB-neutrino candidates among IceCube events, and our data analysis finds a rather strong such correlation. This sort of study naturally lends itself to the introduction of a “false alarm probability”, which for our analysis we estimate conservatively to be of 1%. We therefore argue that our findings should motivate a vigorous program of investigation following the strategy here advocated.

  9. Discovery of the optical counterpart and early optical observations of GRB 990712

    DEFF Research Database (Denmark)

    Sahu, K.C.; Vreesvijk, P.; Bakos, G.

    2000-01-01

    We present the discovery observations of the optical counterpart of the gamma-ray burst GRB 990712 taken 4.16 hr after the outburst and discuss its light curve observed in the V, R, and I bands during the first similar to 35 days after the outburst. The observed light curves were fitted with a po......We present the discovery observations of the optical counterpart of the gamma-ray burst GRB 990712 taken 4.16 hr after the outburst and discuss its light curve observed in the V, R, and I bands during the first similar to 35 days after the outburst. The observed light curves were fitted...

  10. Observation of the prompt and early afterglow of GRB 050904 by TAROT

    International Nuclear Information System (INIS)

    Boeer, M.; Damerdji, Y.; Atteia, J. L.; Stratta, G.; Gendre, B.; Klotz, A.

    2006-01-01

    We present the recent observation of the very high redshift burst source GRB 050904 made by the TAROT robotized telescope. We have compared our data with the SWIFT XRT light curve to analyze the broad ban spectrum. We show that the luminosity and the behavior of this event is comparable with that of GRB 990123, suggesting the existence of very bright events. They can be detected at very high redshifts, even with small or moderate aperture telescopes, and they may constitute a powerful means for the exploration of the young universe. An update of the last TAROT observations performed as a response from SWIFT alerts is made

  11. Observation of four-jet structure in e+e--annihilation at √s = 33 GeV

    International Nuclear Information System (INIS)

    Bartel, W.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Haidt, D.; Krehbiel, H.; Meier, K.; Naroska, B.; O'Neill, L.H.

    1982-03-01

    Topological distributions of hadrons from the reaction e + e - → hadrons are studied at center of mass energies of about 33 GeV. The experimental distributions in the parameters acoplanarity and tripodity, both sensitive to events with a four-jet structure, show significant deviations from the expectations for two- and three-jet events. They can be described well by the inclusion of four-jet events. The relative magnitude of the observed effect indicates second order QCD as its probable origin. (orig.)

  12. Analysis of multiplicities in e+e- interactions using 2-jet rates from different jet algorithms

    International Nuclear Information System (INIS)

    Dahiya, S.; Kaur, M.; Dhamija, S.

    2002-01-01

    The shoulder structure of charged particle multiplicity distribution measured in full phase space in e + e - interactions at various c.m. energies from 91 to 189 GeV has been analysed in terms of weighted superposition of two negative binomial distributions associated with 2-jet and multi-jet production. The 2-jet rates have been obtained from various jet algorithms. This phenomenological parametrization reproduces the shoulder structure behaviour quantitatively and improves the agreement with the experimental distributions than the conventional negative binomial distribution. The analysis at the higher energies where the shoulder structure appears more prominently, is important for the understanding of underlying structure. (author)

  13. The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.

    Science.gov (United States)

    Berger, E; Price, P A; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D-S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L

    2005-12-15

    Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

  14. Concluding Remarks: The Current Status and Future Prospects for GRB Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2009-01-01

    We are in a remarkable period of discovery in GRB astronomy. The current satellites including Swift, Fermi. AGILE and INTEGRAL are detecting and observing bursts of all varieties. Increasing capabilities for follow-up observations on the ground and in space are leading to rapid and deep coverage across the electromagnetic spectrum, The future will see continued operation of the current experiments and with future missions like SVOM plus possible rni_Ssions like JANUS and EXIST. An exciting expansion of capabilities is occurring in areas of gravitational waves and neutrinos that could open new windows on the GRB phenomenon. Increased IR capabilities on the ground and with missions like JWST will enable further exploration of high redshift bursts. The future is bright.

  15. Early GRB optical and infrared afterglow observations with the 2-m robotic Liverpool Telescope

    International Nuclear Information System (INIS)

    Gomboc, A.; Ljubljana Univ., Ljubljana; Mundell, C.G.; Guidorzi, C.

    2005-01-01

    We present the first optical observations of a Gamma Ray Burst IGRB) afterglow using the 2-m robotic Liverpool Telescope (LT), which is owned and operated by Liverpool John Moores University and situated on La Palma. We briefly discuss the capabilities of LT and its suitability for rapid follow-up observations of early optical and infrared GRB light curves. In particular, the combination of aperture, site, instrumentation and rapid response (robotic over-ride mode aided by telescope's rapid slew and fully-opening enclosure) makes the LT ideal for investigating the nature of short bursts, optically-dark bursts, and GRB blast-wave physics in general. We briefly describe the LT's key position in the RoboNet-1.0 network of robotic telescopes. We present the LT observations of GRB041006 and use its gamma-ray properties to predict the time of the break in optical light curve, a prediction consistent with the observations

  16. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  17. Role of jet spacing and strut geometry on the formation of large scale structures and mixing characteristics

    Science.gov (United States)

    Soni, Rahul Kumar; De, Ashoke

    2018-05-01

    The present study primarily focuses on the effect of the jet spacing and strut geometry on the evolution and structure of the large-scale vortices which play a key role in mixing characteristics in turbulent supersonic flows. Numerically simulated results corresponding to varying parameters such as strut geometry and jet spacing (Xn = nDj such that n = 2, 3, and 5) for a square jet of height Dj = 0.6 mm are presented in the current study, while the work also investigates the presence of the local quasi-two-dimensionality for the X2(2Dj) jet spacing; however, the same is not true for higher jet spacing. Further, the tapered strut (TS) section is modified into the straight strut (SS) for investigation, where the remarkable difference in flow physics is unfolded between the two configurations for similar jet spacing (X2: 2Dj). The instantaneous density and vorticity contours reveal the structures of varying scales undergoing different evolution for the different configurations. The effect of local spanwise rollers is clearly manifested in the mixing efficiency and the jet spreading rate. The SS configuration exhibits excellent near field mixing behavior amongst all the arrangements. However, in the case of TS cases, only the X2(2Dj) configuration performs better due to the presence of local spanwise rollers. The qualitative and quantitative analysis reveals that near-field mixing is strongly affected by the two-dimensional rollers, while the early onset of the wake mode is another crucial parameter to have improved mixing. Modal decomposition performed for the SS arrangement sheds light onto the spatial and temporal coherence of the structures, where the most dominant structures are found to be the von Kármán street vortices in the wake region.

  18. A Strong Limit on the Very-high-energy Emission from GRB 150323A

    Science.gov (United States)

    Abeysekara, A. U.; Archer, A.; Benbow, W.; Bird, R.; Brose, R.; Buchovecky, M.; Bugaev, V.; Connolly, M. P.; Cui, W.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Park, N.; Perkins, J. S.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Tyler, J.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Vurm, Indrek; Beloborodov, Andrei

    2018-04-01

    On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only ∼2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to ∼50% at 100–200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below ∼100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A ≳ 3 × 1011 g cm‑1, consistent with a standard Wolf–Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.

  19. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  20. The outflow structure of GW170817 from late time broadband observations

    Science.gov (United States)

    Troja, E.; Piro, L.; Ryan, G.; van Eerten, H.; Ricci, R.; Wieringa, M.; Lotti, S.; Sakamoto, T.; Cenko, S. B.

    2018-04-01

    We present our broadband study of GW170817 from radio to hard X-rays, including NuSTAR and Chandra observations up to 165 days after the merger, and a multi-messenger analysis including LIGO constraints. The data are compared with predictions from a wide range of models, providing the first detailed comparison between non-trivial cocoon and jet models. Homogeneous and power-law shaped jets, as well as simple cocoon models are ruled out by the data, while both a Gaussian shaped jet and a cocoon with energy injection can describe the current dataset for a reasonable range of physical parameters, consistent with the typical values derived from short GRB afterglows. We propose that these models can be unambiguously discriminated by future observations measuring the post-peak behaviour, with Fν∝t˜-1.0 for the cocoon and Fν∝t˜-2.5 for the jet model.

  1. A binary neutron star GRB model

    International Nuclear Information System (INIS)

    Wilson, J.R.; Salmonson, J.D.; Wilson, J.R.; Mathews, G.J.

    1998-01-01

    In this paper we present the preliminary results of a model for the production of gamma-ray bursts (GRBs) through the compressional heating of binary neutron stars near their last stable orbit prior to merger. Recent numerical studies of the general relativistic (GR) hydrodynamics in three spatial dimensions of close neutron star binaries (NSBs) have uncovered evidence for the compression and heating of the individual neutron stars (NSs) prior to merger 12. This effect will have significant effect on the production of gravitational waves, neutrinos and, ultimately, energetic photons. The study of the production of these photons in close NSBs and, in particular, its correspondence to observed GRBs is the subject of this paper. The gamma-rays arise as follows. Compressional heating causes the neutron stars to emit neutrino pairs which, in turn, annihilate to produce a hot electron-positron pair plasma. This pair-photon plasma expands rapidly until it becomes optically thin, at which point the photons are released. We show that this process can indeed satisfy three basic requirements of a model for cosmological gamma-ray bursts: (1) sufficient gamma-ray energy release (>10 51 ergs) to produce observed fluxes, (2) a time-scale of the primary burst duration consistent with that of a 'classical' GRB (∼10 seconds), and (3) the peak of the photon number spectrum matches that of 'classical' GRB (∼300 keV). copyright 1998 American Institute of Physics

  2. GRB 070610: a curious galactic transient

    OpenAIRE

    Kasliwal, M. M.; Cenko, S. B.; Kulkarni, S. R.; Cameron, P. B.; Nakar, E.; Ofek, E. O.; Rau, A.; Soderberg, A. M.; Campana, S.; Bloom, J. S.; Perley, D. A.; Pollack, L. K.; Barthelmy, S.; Cummings, J.; Gehrels, N.

    2008-01-01

    GRB 070610 is a typical high-energy event with a duration of 5 s. Yet within the burst localization we detect a highly unusual X-ray and optical transient, Swift J195509.6+261406. We see high-amplitude X-ray and optical variability on very short timescales even at late times. Using near-infrared imaging assisted by a laser guide star and adaptive optics, we identified the counterpart of Swift J195509.6+261406. Late-time optical and near-infrared imaging constrain the spectral type of the coun...

  3. Spatial Dynamics of Coherent Structures in a Thermal Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Sekerešová, Zuzana; Šonský, Jiří

    2008-01-01

    Roč. 36, č. 4 (2008), s. 1066-1067 ISSN 0093-3813 R&D Projects: GA ČR GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : charge-coupled-device (CCD) camera * coherent structure * thermal plasma jet * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.447, year: 2008

  4. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Sokolov, V.V.; Gorosabel, J.

    2001-01-01

    that GRB 991208 is at 3.7 Gpc (for H-0 = 60 km s(-1) Mpc(-1), Omega (0) = 1 and Lambda (0) = 0), implying an isotropic energy release of 1.15 10(53) erg which may. be relaxed by beaming by a factor >10(2). Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting...... a massive star origin. The absolute magnitude of the galaxy is M-B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) M-circle dot yr(-1), which is much larger than the present-day rate in our Galaxy. The quasi simultaneous broad...

  5. Preliminary Results on VLT K-band Imaging Observations of GRB ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    E. Le Floc'h, I. F. Mirabel & P.-A. Duc Service d'Astrophysique, CEA-Saclay, ... internal extinction by dust in several GRB hosts has probably led to under- .... We acknowledge our referee for his/her comments which improved the quality of the.

  6. f (T ) gravity after GW170817 and GRB170817A

    Science.gov (United States)

    Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin

    2018-05-01

    The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.

  7. OBSERVATION OF CORRELATED OPTICAL AND GAMMA EMISSIONS FROM GRB 081126

    International Nuclear Information System (INIS)

    Klotz, A.; Boer, M.; Gendre, B.; Atteia, J. L.; Coward, D. M.; Imerito, A. C.

    2009-01-01

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, using BAT data from the Swift spacecraft, and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time lag of 8.4 ± 3.9 s. This is the first well-resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma-ray burst early emissions. Furthermore, observations of time lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  8. A Correlated Optical and Gamma Emission from GRB 081126A

    International Nuclear Information System (INIS)

    Gendre, B.; Klotz, A.; Atteia, J. L.; Boeer, M.; Coward, D. M.; Imerito, A. C.

    2010-01-01

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4±3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  9. A GRB and Broad-lined Type Ic Supernova from a Single Central Engine

    Science.gov (United States)

    Barnes, Jennifer; Duffell, Paul C.; Liu, Yuqian; Modjaz, Maryam; Bianco, Federica B.; Kasen, Daniel; MacFadyen, Andrew I.

    2018-06-01

    Unusually high velocities (≳0.1c) and correspondingly high kinetic energies have been observed in a subset of Type Ic supernovae (so-called “broad-lined Ic” supernovae; SNe Ic-BL), prompting a search for a central engine model capable of generating such energetic explosions. A clue to the explosion mechanism may lie in the fact that all supernovae that accompany long-duration gamma-ray bursts (GRBs) belong to the SN Ic-BL class. Using a combination of two-dimensional relativistic hydrodynamics and radiation transport calculations, we demonstrate that the central engine responsible for long GRBs can also trigger an SN Ic-BL. We find that a reasonable GRB engine injected into a stripped Wolf–Rayet progenitor produces a relativistic jet with energy ∼1051 erg, as well as an SN whose synthetic light curves and spectra are fully consistent with observed SNe Ic-BL during the photospheric phase. As a result of the jet’s asymmetric energy injection, the SN spectra and light curves depend on viewing angle. The impact of viewing angle on the spectrum is particularly pronounced at early times, while the viewing-angle dependence for the light curves (∼10% variation in bolometric luminosity) persists throughout the photospheric phase.

  10. Early danish GRB experiments - And some for the future?

    DEFF Research Database (Denmark)

    Lund, Niels

    2013-01-01

    by a japanese report of a balloon instrument for GRB studies based on a Rotation Modulation Collimator we at the Danish Space Research Institute started the development of an RMC detector for GRBs, the WATCH wide field monitor. Four WATCH units were flown on the Soviet Granat satellites, and one on ESA's EURECA...

  11. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  12. Analysis of the flow structure of a turbulent thermal plasma jet

    International Nuclear Information System (INIS)

    Spores, R.A.

    1989-01-01

    The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process

  13. Observational study on the fine structure and dynamics of a solar jet. II. Energy release process revealed by spectral analysis

    Science.gov (United States)

    Sakaue, Takahito; Tei, Akiko; Asai, Ayumi; Ueno, Satoru; Ichimoto, Kiyoshi; Shibata, Kazunari

    2018-01-01

    We report on a solar jet phenomenon associated with the C5.4 class flare on 2014 November 11. The data of the jet was provided by the Solar Dynamics Observatory, the X-Ray Telescope (XRT) aboard Hinode, and the Interface Region Imaging Spectrograph and Domeless Solar Telescope (DST) at Hida Observatory, Kyoto University. These plentiful data enabled us to present this series of papers to discuss all the processes of the observed phenomena, including energy storage, event trigger, and energy release. In this paper, we focus on the energy release process of the observed jet, and mainly describe our spectral analysis on the Hα data of DST to investigate the internal structure of the Hα jet and its temporal evolution. This analysis reveals that in the physical quantity distributions of the Hα jet, such as line-of-sight velocity and optical thickness, there is a significant gradient in the direction crossing the jet. We interpret this internal structure as the consequence of the migration of the energy release site, based on the idea of ubiquitous reconnection. Moreover, by measuring the horizontal flow of the fine structures in the jet, we succeeded in deriving the three-dimensional velocity field and the line-of-sight acceleration field of the Hα jet. The analysis result indicates that part of the ejecta in the Hα jet experienced additional acceleration after it had been ejected from the lower atmosphere. This secondary acceleration was found to occur in the vicinity of the intersection between the trajectories of the Hα jet and the X-ray jet observed by Hinode/XRT. We propose that a fundamental cause of this phenomenon is magnetic reconnection involving the plasmoid in the observed jet.

  14. The hidden X-ray breaks in afterglow light curves

    International Nuclear Information System (INIS)

    Curran, P. A.; Wijers, R. A. M. J.; Horst, A. J. van der; Starling, R. L. C.

    2008-01-01

    Gamma-Ray Burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX, or pre-Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences for the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as standard candles.Here we address the issue of X-ray breaks which are possibly 'hidden' and hence the light curves are misinterpreted as being single power-laws. We show how a number of precedents, including GRB 990510 and GRB 060206, exist for such hidden breaks and how, even with the well sampled light curves of the Swift era, these breaks may be left misidentified. We do so by synthesising X-ray light curves and finding general trends via Monte Carlo analysis. Furthermore, in light of these simulations, we discuss how to best identify achromatic breaks in afterglow light curves via multi-wavelength analysis

  15. ASTROSAT CZT IMAGER OBSERVATIONS OF GRB 151006A: TIMING, SPECTROSCOPY, AND POLARIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A. R.; Chand, Vikas; Hingar, M. K.; Iyyani, S.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Paul, D. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai (India); Bhalerao, V. B.; Bhattacharya, D.; Dewangan, G. C.; Pawar, Pramod; Vibhute, A. M. [Inter University Center for Astronomy and Astrophysics, Pune (India); Chattopadhyay, T.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N. [Physical Research Laboratory, Ahmedabad (India); Basak, R. [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Pradeep, P.; Samuel, Essy, E-mail: arrao@tifr.res.in [Vikram Sarabhai Space Centre, Thiruvananthapuram (India); and others

    2016-12-10

    AstroSat is a multi-wavelength satellite launched on 2015 September 28. The CZT Imager of AstroSat on its very first day of operation detected a long duration gamma-ray burst (GRB), namely GRB 151006A. Using the off-axis imaging and spectral response of the instrument, we demonstrate that the CZT Imager can localize this GRB correctly to about a few degrees, and it can provide, in conjunction with Swift , spectral parameters similar to those obtained from Fermi /GBM. Hence, the CZT Imager would be a useful addition to the currently operating GRB instruments ( Swift and Fermi ). Specifically, we argue that the CZT Imager will be most useful for the short hard GRBs by providing localization for those detected by Fermi and spectral information for those detected only by Swift . We also provide preliminary results on a new exciting capability of this instrument: the CZT Imager is able to identify Compton scattered events thereby providing polarization information for bright GRBs. GRB 151006A, in spite of being relatively faint, shows hints of a polarization signal at 100–300 keV (though at a low significance level). We point out that the CZT Imager should provide significant time resolved polarization measurements for GRBs that have fluence three times higher than that of GRB 151006A. We estimate that the number of such bright GRBs detectable by the CZT Imager is five to six per year. The CZT Imager can also act as a good hard X-ray monitoring device for possible electromagnetic counterparts of gravitational wave events.

  16. ON THE NEUTRINO NON-DETECTION OF GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Gao Shan; Kashiyama, Kazumi; Meszaros, Peter, E-mail: sxg324@psu.edu, E-mail: kzk15@psu.edu, E-mail: pmeszaros@astro.psu.edu [Department of Physics, Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-07-20

    The recent gamma-ray burst GRB 130427A has an isotropic electromagnetic energy E{sup iso} {approx} 10{sup 54} erg, suggesting an ample supply of target photons for photo-hadronic interactions, which at its low redshift of z {approx} 0.34 would appear to make it a promising candidate for neutrino detection. However, the IceCube collaboration has reported a null result based on a search during the prompt emission phase. We show that this neutrino non-detection can provide valuable information about this gamma-ray burst's (GRB's) key physical parameters such as the emission radius R{sub d} , the bulk Lorentz factor {Gamma}, and the energy fraction converted into cosmic rays {epsilon}{sub p}. The results are discussed both in a model-independent way and in the specific scenarios of an internal shock (IS) model, a baryonic photospheric (BPH) model, and a magnetic photospheric (MPH) model. We find that the constraints are most stringent for the MPH model considered, but the constraints on the IS and the BPH models are fairly modest.

  17. GRB follow-up observations in the East-Asian region

    International Nuclear Information System (INIS)

    Tamagawa, T.; Urata, Y.; Tokyo Institute of Technology, Tokyo; Huang, K. Y.; Ip, W.H.; Qiu, Y.; Hu, J.Y.; Zhou, Xn.; Onda, K.; Tokyo Univ. of Sciences, Tokyo; Makishima, K.; Tokyo Univ., Tokyo

    2005-01-01

    In 2004, we established a Japan-Taiwan-China collaboration for GBR study in the East-Asian region. This serves as a valuable addiction to the world-wide optical and infrared follow-up network, because the East-Asia region would otherwise be blank. We have been carrying out imaging and spectroscopy follow-up observations at Lulin (Taiwan), Kiso (Japan), WIDGET (Japan) and Xinglong (China). From Xinglong and Kiso, we can locate candidates and obtain early time spectra for afterglows. While WIDGET provides early time observations before the bursts, the high-time resolution for multi-band light curves can be obtained at Lulin. With the data from these sites, we can obtain detailed information about the light curve and redshift of GRBs, which are important to understand the mechanism of the afterglows. Up to March 2005, ten follow-up observations have been provided by this East-Asia cooperation. Two optical afterglows were detected, GRB 040924 and GRB 041006. The results of the two detected afterglows are reported in this paper

  18. GRB follow-up observations in the East-Asian region

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, T. [RIKEN, Saitama (Japan); Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Huang, K. Y.; Ip, W.H. [National Centre University, Tokyo (Japan). Institute of Astronomy; Qiu, Y.; Hu, J.Y.; Zhou, Xn. [Chinese Academy of Sciences, Beijing (China). National Astronomical Observatoires; Onda, K. [RIKEN, Saitama (Japan); Tokyo Univ. of Sciences, Tokyo (Japan). Department of Physics; Makishima, K. [RIKEN, Saitama (Japan); Tokyo Univ., Tokyo (Japan). Department of Physics

    2005-07-15

    In 2004, we established a Japan-Taiwan-China collaboration for GBR study in the East-Asian region. This serves as a valuable addiction to the world-wide optical and infrared follow-up network, because the East-Asia region would otherwise be blank. We have been carrying out imaging and spectroscopy follow-up observations at Lulin (Taiwan), Kiso (Japan), WIDGET (Japan) and Xinglong (China). From Xinglong and Kiso, we can locate candidates and obtain early time spectra for afterglows. While WIDGET provides early time observations before the bursts, the high-time resolution for multi-band light curves can be obtained at Lulin. With the data from these sites, we can obtain detailed information about the light curve and redshift of GRBs, which are important to understand the mechanism of the afterglows. Up to March 2005, ten follow-up observations have been provided by this East-Asia cooperation. Two optical afterglows were detected, GRB 040924 and GRB 041006. The results of the two detected afterglows are reported in this paper.

  19. SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY

    Energy Technology Data Exchange (ETDEWEB)

    Abeysekara, A. U. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Alfaro, R. [Instituto de Física, Universidad Nacional Autónoma de México, México D. F. (Mexico); Alvarez, C.; Arceo, R. [CEFyMAP, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas (Mexico); Álvarez, J. D.; Arteaga-Velázquez, J. C.; Cotti, U.; De León, C. [Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán (Mexico); Solares, H. A. Ayala [Department of Physics, Michigan Technological University, Houghton, MI (United States); Barber, A. S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT (United States); Baughman, B. M.; Braun, J. [Department of Physics, University of Maryland, College Park, MD (United States); Bautista-Elivar, N. [Universidad Politécnica de Pachuca, Municipio de Zempoala, Hidalgo (Mexico); BenZvi, S. Y. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Rosales, M. Bonilla; Carramiñana, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla (Mexico); Caballero-Mora, K. S. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F. (Mexico); Castillo, M.; Cotzomi, J. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla (Mexico); De la Fuente, E., E-mail: dirk.lennarz@gatech.edu [Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara (Mexico); Collaboration: HAWC collaboration; and others

    2015-02-20

    The first limits on the prompt emission from the long gamma-ray burst (GRB) 130427A in the >100 GeV energy band are reported. GRB 130427A was the most powerful burst ever detected with a redshift z ≲ 0.5 and featured the longest lasting emission above 100 MeV. The energy spectrum extends at least up to 95 GeV, clearly in the range observable by the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory, a new extensive air shower detector currently under construction in central Mexico. The burst occurred under unfavorable observation conditions, low in the sky and when HAWC was running 10% of the final detector. Based on the observed light curve at MeV-GeV energies, eight different time periods have been searched for prompt and delayed emission from this GRB. In all cases, no statistically significant excess of counts has been found and upper limits have been placed. It is shown that a similar GRB close to zenith would be easily detected by the full HAWC detector, which will be completed soon. The detection rate of the full HAWC detector may be as high as one to two GRBs per year. A detection could provide important information regarding the high energy processes at work and the observation of a possible cut-off beyond the Fermi Large Area Telescope energy range could be the signature of gamma-ray absorption, either in the GRB or along the line of sight due to the extragalactic background light.

  20. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    Science.gov (United States)

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  1. Fermi Observations of high-energy gamma-ray emissions from GRB 080916C

    CERN Document Server

    Abdo, A A; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, Guido; Baring, Matthew G; Bastieri, Denis; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, Elliott D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, Thompson H; Burrows, David N; Busetto, Giovanni; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, Annalisa; Charles, E; Chekhtman, A; Cheung, C.C.Teddy; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, Johann; Cominsky, Lynn R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; DeKlotz, M; Dermer, C D; De Angelis, Alessandro; de Palma, F; Digel, S W; Dingus, B L; do Couto e Silva, Eduardo; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, Justin D; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, Thomas Lynn; Godfrey, Gary L; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M H; Grove, J.Eric; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, Alice K; Hayashida, M; Hays, Elizabeth A; Hernando Morata, J A; Hoover, A; Hughes, R E; Johannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, Tsuneyoshi; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knodlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, Frederick Gabriel Ivar; Kuss, Michael; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, Pasquale; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, Sheila; McEnery, J E; McGlynn, S; Meegan, C; Miszaros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, Igor Vladimirovich; Murgia, Simona; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, Takashi; Okumura, Akira; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, Vahe; Pinchera, M; Piron, F; Porter, Troy A; Preece, R; Rainr, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, Soebur; Rea, N; Reimer, A; Reimer, O; Reposeur, Thierry; Reyes, Luis C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F W; Sanchez, D; Sander, A; Parkinson, P.M.Saz; Scargle, J D; Schalk, T L; Segal, K N; Sgro, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, Jean-Luc; Stecker, Floyd William; Steinle, H; Stephens, T E; Strickman, M S; Suson, Daniel J; Tagliaferri, G.; Tajima, Hiroyasu; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, Diego F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  2. The 1.4 GHZ light curve of GRB 970508

    NARCIS (Netherlands)

    Galama, TJ; Wijers, RAMJ; Groot, PJ; Strom, RG; De Bruyn, AG; Kouveliotou, C; Robinson, CR; van Paradus, J

    1998-01-01

    We report on Westerbork 1.4 GHz radio observations of the radio counterpart to gamma-ray burst GRB 970508, between 0.80 and 138 days after this event. The 1.4 GHz light curve shows a transition from optically thick to thin emission between 39 and 54 days after the event. We derive the slope p of the

  3. Controlling the development of coherent structures in high speed jets and the resultant near field

    Science.gov (United States)

    Speth, Rachelle

    This work uses Large-Eddy Simulations to examine the effect of actuator parameters and jet exit properties on the evolution of coherent structures and their impact on the near-acoustic field without and with control. For the controlled cases, Localized Arc Filament Plasma Actuators (LAFPAs) are considered, and modeled with a simple heating approach that successfully reproduces the main observations and trends of experiments. A parametric study is first conducted, using the flapping mode (m = +/-1), to investigate the sensitivity of the results to various actuator parameters including: actuator model temperature, actuator duty cycle, and excitation frequency. It is shown by considering a Mach 1.3 jet at Reynolds number of 1 x 106 that the response of the jet is relatively insensitive to actuator model temperature within the limits of the experimentally measured temperature values. Furthermore, duty cycles in the range of 20%--90% were observed to be effective in reproducing the characteristic coherent structures of the flapping mode. Next, jet flow parameters were explored to determine the control authority under different operating conditions. To begin, the effect of the laminar nozzle exit boundary layer thickness was examined by varying its value from essentially uniform flow to 25% of the diameter. In the absence of control, the distance between the nozzle lip and the initial appearance of breakdown is proportional to the boundary-layer thickness, which is consistent with theory and previous results obtained by other researchers at Mach 0.9. The second flow parameter studied was the effect of Reynolds number on a Mach 1.3 jet controlled by the flapping mode at an excitation Strouhal number of 0.3. The higher Reynolds number (Re=1,100,000) jet exhibited reduced control authority compared to the Re=100,000 jet. Like the effect of increasing the nozzle exit boundary layer thickness, increasing the Reynolds number cause a reduction in spreading on the flapping plane

  4. Go Long, Go Deep: Finding Optical Jet Breaks for Swift-Era GRBs with the LBT

    Science.gov (United States)

    Dai, X.; Garnavich, P. M.; Prieto, J. L.; Stanek, K. Z.; Kochanek, C. S.; Bechtold, J.; Bouche, N.; Buschkamp, P.; Diolaiti, E.; Fan, X.; Giallongo, E.; Gredel, R.; Hill, J. M.; Jiang, L.; McClelland, C.; Milne, P.; Pedichini, F.; Pogge, R. W.; Ragazzoni, R.; Rhoads, J.; Smareglia, R.; Thompson, D.; Wagner, R. M.

    2008-08-01

    Using the 8.4 m Large Binocular Telescope, we observed six GRB afterglows from 2.8 hr to 30.8 days after the burst triggers to systematically probe the late-time behaviors of afterglows including jet breaks, flares, and supernova bumps. We detected five afterglows with Sloan r' magnitudes ranging from 23.0 to 26.3 mag. The depth of our observations allows us to extend the temporal baseline for measuring jet breaks by another decade in timescale. We detected two jet breaks and a third candidate, all of which are not detectable without deep, late-time optical observations. In the other three cases, we do not detect the jet breaks either because of contamination from the host galaxy light, the presence of a supernova bump, or the intrinsic faintness of the optical afterglow. This suggests that the basic picture that GRBs are collimated is still valid and that the apparent lack of Swift jet breaks is due to poorly sampled afterglow light curves, particularly at late times. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, the University of Minnesota, and the University of Virginia.

  5. DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Xu, D.; Krühler, T.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Watson, D. J.; Geier, S. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); De Ugarte Postigo, A.; Thöne, C. C.; Sánchez-Ramírez, R. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Leloudas, G. [The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Cano, Z.; Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Schulze, S. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Kaper, L. [Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam (Netherlands); Sollerman, J. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Cabrera-Lavers, A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Cao, C. [Department of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China); Covino, S. [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807 Merate (Italy); Flores, H., E-mail: dong@dark-cosmology.dk [Laboratoire Galaxies Etoiles Physique et Instrumentation, Observatoire de Paris, 5 place Jules Janssen, F-92195 Meudon (France); and others

    2013-10-20

    Long-duration gamma-ray bursts (GRBs) at z < 1 are found in most cases to be accompanied by bright, broad-lined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detect observationally. Here, we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift, z = 0.3399 ± 0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of E{sub iso} ∼ 9.6 × 10{sup 53} erg, more than an order of magnitude more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with that expected from an emerging SN, ∼0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of an SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy, long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.

  6. First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system

    Science.gov (United States)

    Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.

    2015-11-01

    We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.

  7. Four Years of Real-Time GRB Followup by BOOTES-1B (2005–2008

    Directory of Open Access Journals (Sweden)

    Martin Jelínek

    2010-01-01

    Full Text Available Four years of BOOTES-1B GRB follow-up history are summarised for the first time in the form of a table. The successfully followed events are described case by case. Further, the data are used to show the GRB trigger rate in Spain on a per-year basis, resulting in an estimate of 18 triggers and about 51 hours of telescope time per year for real-time triggers. These numbers grow to about 22 triggers and 77 hours per year if we include also the GRBs observable within 2 hours after the trigger.

  8. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    International Nuclear Information System (INIS)

    Ratta, G.A.; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la; Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H.; Santos, M.; Pajares, G.; Murari, A.

    2008-01-01

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions

  9. First applications of structural pattern recognition methods to the investigation of specific physical phenomena at JET

    Energy Technology Data Exchange (ETDEWEB)

    Ratta, G.A. [Asociacion EURATOM/CIEMAT para Fusion (Spain)], E-mail: giuseppe.ratta@ciemat.es; Vega, J.; Pereira, A.; Portas, A.; Luna, E. de la [Asociacion EURATOM/CIEMAT para Fusion (Spain); Dormido-Canto, S.; Farias, G.; Dormido, R.; Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica-UNED, 28040 Madrid (Spain); Santos, M.; Pajares, G. [Dpto. Arquitectura de Computadores y Automatica-UCM, 28040 Madrid (Spain); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, Padua (Italy)

    2008-04-15

    Structural pattern recognition techniques allow the identification of plasma behaviours. Physical properties are encoded in the morphological structure of signals. Intelligent access methods have been applied to JET databases to retrieve data according to physical criteria. On the one hand, the structural form of signals has been used to develop general purpose data retrieval systems to search for both similar entire waveforms and similar structural shapes inside waveforms. On the other hand, domain dependent knowledge was added to the structural information of signals to create particular data retrieval methods for specific physical phenomena. The inclusion of explicit knowledge assists in data analysis. The latter has been applied in JET to look for first, cut-offs in ECE heterodyne radiometer signals and, second, L-H transitions.

  10. Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore.

    Science.gov (United States)

    Bartos, I; Beloborodov, A M; Hurley, K; Márka, S

    2013-06-14

    Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.

  11. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. III. REDSHIFT DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Jakobsson, P.; Chapman, R.; Vreeswijk, P. M. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Tanvir, N. R.; Starling, R. L. C. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Letawe, G. [Departement d' Astrophysique, Geophysique et Oceanographie, ULg, Allee du 6 aout, 17-Bat. B5c B-4000 Liege (Sart-Tilman) (Belgium)

    2012-06-10

    We present 10 new gamma-ray burst (GRB) redshifts and another five redshift limits based on host galaxy spectroscopy obtained as part of a large program conducted at the Very Large Telescope (VLT). The redshifts span the range 0.345 {<=} z {approx}< 2.54. Three of our measurements revise incorrect values from the literature. The homogeneous host sample researched here consists of 69 hosts that originally had a redshift completeness of 55% (with 38 out of 69 hosts having redshifts considered secure). Our project, including VLT/X-shooter observations reported elsewhere, increases this fraction to 77% (53/69), making the survey the most comprehensive in terms of redshift completeness of any sample to the full Swift depth, analyzed to date. We present the cumulative redshift distribution and derive a conservative, yet small, associated uncertainty. We constrain the fraction of Swift GRBs at high redshift to a maximum of 14% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be (z) {approx}> 2.2, with the 10 new redshifts reducing it significantly. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift (z {approx}> 3) appears to be in excess of predictions based on assumptions that it should follow conventional determinations of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example, due to a dominant contribution from faint, undetected galaxies, or that GRB production is enhanced in the conditions of early star formation, beyond that usually ascribed to lower metallicity.

  12. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  13. The Ultra-long GRB 111209A. II. Prompt to Afterglow and Afterglow Properties

    Science.gov (United States)

    Stratta, G.; Gendre, B.; Atteia, J. L.; Boër, M.; Coward, D. M.; De Pasquale, M.; Howell, E.; Klotz, A.; Oates, S.; Piro, L.

    2013-12-01

    The "ultra-long" gamma-ray burst GRB 111209A at redshift z = 0.677 is the longest GRB ever observed thus far, with a rest frame prompt emission duration of ~4 hr. In order to explain the burst exceptional longevity, a low-metallicity blue supergiant progenitor was invoked. In this article we further constrain the phenomenology and progenitor properties of this peculiar GRB by performing a multiband temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus WIND, XMM-Newton, and TAROT, as well as from other ground-based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: (1) an unprecedented large optical delay of 410 ± 50 s between the peak time in gamma-rays and the peak time in the optical of a marked multiwavelength flare; (2) multiwavelength prompt emission spectral modeling requires a certain amount of dust in the circumburst environment. The dust produces a rest frame visual extinction of AV = 0.3-1.5 mag, and may undergo destruction at late times; and (3) we detect the presence of a hard spectral extra power-law component at the end of the X-ray steep steep decay phase and before the start of the X-ray afterglow, which has never been revealed thus far in past GRBs. The optical afterglow shows more usual properties; it has a flux power-law decay with an index of 1.6 ± 0.1 and a late rebrightening feature observed at ~1.1 the day after the first Burst Alert Telescope trigger. We discuss our findings in the context of several possible interpretations that have been given thus far of the complex multiband GRB phenomenology and propose a binary channel formation for the blue supergiant progenitor.

  14. Inclusive jet cross sections and jet shapes at CDF

    International Nuclear Information System (INIS)

    Wainer, N.

    1991-09-01

    The inclusive jet cross section and jet shapes at √s = 1.8 TeV have been measured by CDF at the Fermilab Tevatron Collider. results are compared to recent next-to-leading order QCD calculations, which predict variation of the cross section with cone size, as well as variation of the jet shape with energy. A lower limit on the parameter Λ c , which characterize a contact interaction associated with quark sub-structure is determined to be 1400 GeV at the 95% confidence level. 3 refs., 4 figs

  15. INTEGRAL and XMM-Newton observations of the low-luminosity and X-ray-rich burst GRB 040223

    Energy Technology Data Exchange (ETDEWEB)

    McGlynn, S.; Hanlon, L.; Foley, S. [College Univ., Dublin (Iran, Islamic Republic of). Department of Experimental Physics; McBreen, S. [ESTEC, Noordwijk (Netherlands). Astrophysics Mission Division, RSSD of ESA; Moran, L. [Southampton Univ., Southampton (United Kingdom). School of Physics and Astronomy; Preece, R. [Alabama Univ., Huntsville (United States); Kienlin, A. von [Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany); Williams, O.R. [SCI-SDG, Noordwijk (Netherlands). Science Operation and Data Systems Division of ESA-ESTEC

    2005-07-15

    GRB 040223 was observed by INTEGRAL and XMM-Newton. GRB 040223 has a peak flux of (1.6{+-}0.13) x 10{sup -8} ergs cm{sup -2} s{sup -1}, a fluence of (4.4{+-}0.4) x 10{sup -7} ergs cm{sup -2} and a steep photon power law index of -2.3{+-}0.2, in the energy range 20-200 keV. The steep spectrum implies it is an X-ray-rich GRB with emission up to 200 keV and E{sub peak} < 20 keV. If E{sub peak} is < 10 keV, it would qualify as an X-ray flash with high-energy emission. The X-ray data has a spectral index {beta}{sub x} = -1.7{+-}0.2, a temporal decay of t{sup -0.75{+-}}{sup 0.25} and a large column density of 1.8 x 10{sup 22} cm{sup -2}. The luminosity-lag relationship was used to obtain a redshift z 0.1{sub -0.02}{sup +0.04}. The isotropic energy radiated in {gamma}-rays and X-ray luminosity after 10 hours are factors of 1000 and 100 less than classical GRBs. GRB 040223 is consistent with the extrapolation of the Amati relation into the region that includes XRF 030723 and XRF 020903.

  16. The GRB coordinates network (GCN): A status report

    International Nuclear Information System (INIS)

    Barthelmy, S. D.; Takeshima, T.; Butterworth, P.; Cline, T. L.; Gehrels, N.; Marshall, F.; Connaughton, V.; Kippen, R. M.; Kouveliotou, C.; Robinson, C. R.

    1998-01-01

    A review of the GRB Coordinates Network (GCN) will be given. The GCN has recently replaced the BATSE Coordinates Distribution Network (BACODINE), maintaining all of BACODINE's original capabilities and services, but also providing new sources of GRB location information. These are: (1) source locations using the MSFC LOCBURST algorithm, (2) the Rossi-XTE detections (PCA and ASM), (3) the Interplanetary Network (IPN) locations, and (4) CGRO-COMPTEL locations. These new sources of locations are available for distribution in the minutes-to-hours-to-days time delay ranges, and they also have increasingly and significantly reduced error boxes, thus providing a broad range of time delays and error box sizes to fit within the observing capabilities of a broad range of follow-up instruments in the radio, optical, and TeV gamma-ray bands. Extreme-UV transients from ALEXIS are also now distributed. For all sources of location information, all the distribution methods are available (Internet Socket, E-mail, Alpha-numeric and Numeric Pagers, and Phone/modem) and several filters. Sites can choose which sources to receive and what filters to be applied. The GCN web site has been expanded to include a globally inclusive table of locations, light-curves, and fluence information which is automatically updated in real-time

  17. Jet quenching at ALICE

    International Nuclear Information System (INIS)

    Bianchi, Nicola

    2007-01-01

    RHIC results on leading hadron suppression indicate that the jets produced in hard processes are strongly quenched by the dense medium created in heavy ion collisions. Most of the energy lost by the leading parton remains within the jet cone, but several questions on the medium modification of the jet structure have not been addressed. These include the longitudinal and transverse structures of the quenched jet, the associated radiation observables, and the dependence on the parton flavor. These topics will be studied by ALICE thanks to both the robustness of its tracking and the charged particle identification system. Large medium effects are expected in both the low pt and in the high pt regions. To make ALICE better suited for jet physics, the performances on high p t particles and jets can be significantly improved by completing the present set-up with a large Electromagnetic Calorimeter (EmCal). This will significantly improve the resolution on the jet energy and on the particle composition (with the detection of both charged and neutral particles). It will also allow to calibrate the jet energy by measuring the high energy photon emitted in the opposite direction. EmCal will be used to trigger on the jet energy itself, thus allowing a significant improvement of the statistics achievable for jets of high energy. Finally, due too both the γ/π 0 and the electron/hadron discrimination, EmCal will enhance the ALICE capabilities at high p t for direct photons and heavy quarks measurements

  18. Surprise in simplicity: an unusual spectral evolution of a single pulse GRB 151006A

    Science.gov (United States)

    Basak, R.; Iyyani, S.; Chand, V.; Chattopadhyay, T.; Bhattacharya, D.; Rao, A. R.; Vadawale, S. V.

    2017-11-01

    We present a detailed analysis of GRB 151006A, the first gamma-ray burst (GRB) detected by AstroSat Cadmium-Zinc-Telluride Imager (CZTI). We study the long-term spectral evolution by exploiting the capabilities of Fermi and Swift satellites at different phases, which is complemented by the polarization measurement with the CZTI. While the light curve of the GRB in different energy bands shows a simple pulse profile, the spectrum shows an unusual evolution. The first phase exhibits a hard-to-soft evolution until ∼16-20 s, followed by a sudden increase in the spectral peak reaching a few MeV. Such a dramatic change in the spectral evolution in the case of a single pulse burst is reported for the first time. This is captured by all models we used namely, Band function, blackbody+Band and two blackbodies+power law. Interestingly, the Fermi Large Area Telescope also detects its first photon (>100 MeV) during this time. This new injection of energy may be associated with either the beginning of afterglow phase, or a second hard pulse of the prompt emission itself that, however, is not seen in the otherwise smooth pulse profile. By constructing Bayesian blocks and studying the hardness evolution we find a good evidence for a second hard pulse. The Swift data at late epochs (>T90 of the GRB) also show a significant spectral evolution consistent with the early second phase. The CZTI data (100-350 keV), though having low significance (1σ), show high values of polarization in the two epochs (77-94 per cent), in agreement with our interpretation.

  19. Constraints on millisecond magnetars as the engines of prompt emission in gamma-ray bursts

    Science.gov (United States)

    Beniamini, Paz; Giannios, Dimitrios; Metzger, Brian D.

    2017-12-01

    We examine millisecond magnetars as central engines of gamma-ray bursts' (GRBs) prompt emission. Using the protomagnetar wind model of Metzger et al., we estimate the temporal evolution of the magnetization and power injection at the base of the GRB jet and apply these to different prompt emission models to make predictions for the GRB energetics, spectra and light curves. We investigate both shock and magnetic reconnection models for the particle acceleration, as well as the effects of energy dissipation across optically thick and thin regions of the jet. The magnetization at the base of the jet, σ0, is the main parameter driving the GRB evolution in the magnetar model and the emission is typically released for 100 ≲σ0 ≲3000. Given the rapid increase in σ0 as the protomagnetar cools and its neutrino-driven mass loss subsides, the GRB duration is typically limited to ≲100 s. This low baryon loading at late times challenges magnetar models for ultralong GRBs, though black hole models likely run into similar difficulties without substantial entrainment from the jet walls. The maximum radiated gamma-ray energy is ≲5 × 1051 erg, significantly less than the magnetar's total initial rotational energy and in strong tension with the high end of the observed GRB energy distribution. However, the gradual magnetic dissipation model applied to a magnetar central engine, naturally explains several key observables of typical GRBs, including energetics, durations, stable peak energies, spectral slopes and a hard to soft evolution during the burst.

  20. The very red afterglow of GRB 000418: Further evidence for dust extinction in a gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Klose, S.; Stecklum, B.; Masetti, N.

    2000-01-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near......) bursts are associated with events in star-forming regions....

  1. Search for GRB related prompt optical emission and other fast varying objects with ``Pi of the Sky'' detector

    Science.gov (United States)

    Ćwiok, M.; Dominik, W.; Małek, K.; Mankiewicz, L.; Mrowca-Ciułacz, J.; Nawrocki, K.; Piotrowski, L. W.; Sitek, P.; Sokołowski, M.; Wrochna, G.; Żarnecki, A. F.

    2007-06-01

    Experiment “Pi of the Sky” is designed to search for prompt optical emission from GRB sources. 32 CCD cameras covering 2 steradians will monitor the sky continuously. The data will be analysed on-line in search for optical flashes. The prototype with 2 cameras operated at Las Campanas (Chile) since 2004 has recognised several outbursts of flaring stars and has given limits for a few GRB.

  2. A serendipitous observation of the gamma-ray burst GRB 921013b field with EUVE

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Gorosabel, J.; Bowyer, S.

    1999-01-01

    hours after the burst is 1.8 x10(-16) erg s(-1) cm(-2) after correction for absorption by the Galactic interstellar medium. Even if we exclude an intrinsic absorption, this is well below the detection limit of the EUVE measurement. Although it is widely accepted that gamma-ray bursts are at cosmological......We report a serendipitous extreme ultraviolet observation by EUVE of the field containing GRB 921013b, similar to 11 hours after its occurrence. This burst was detected on 1992 October 13 by the WATCH and PHEBUS on Granat, and by the GRB experiment on Ulysses. The lack of any transient (or...

  3. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1987-01-01

    The properties of gluon jets are reviewed, and the measured characteristics are compared to the theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, in general the agreement between experiment and theory is remarkable. There are some intriguing differences. Since the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed

  4. A cocoon shock breakout as the origin of the γ-ray emission in GW170817

    Science.gov (United States)

    Gottlieb, Ore; Nakar, Ehud; Piran, Tsvi; Hotokezaka, Kenta

    2018-06-01

    The short Gamma-Ray Burst, GRB170817A, that followed the binary neutron star merger gravitational waves signal, GW170817, is not a usual sGRB. It is weaker by three orders of magnitude than the weakest sGRB seen before and its spectra, showing a hard early signal followed by a softer thermal spectrum, is unique. We show, first, that the γ-rays must have emerged from at least mildly relativistic outflow, implying that a relativistic jet was launched following the merger. We then show that the observations are consistent with the predictions of a mildly relativistic shock breakout: a minute γ-ray energy as compared with the total energy and a rather smooth light curve with a hard to soft evolution. We present here a novel analytic study and detailed numerical 2D and 3D relativistic hydrodynamic and radiation simulations that support the picture in which the observed γ-rays arose from a shock breakout of a cocoon from the merger's ejecta (Kasliwal et al. 2017). The cocoon can be formed by either a choked jet which does not generate a sGRB (in any direction) or by a successful jet which generates an undetected regular sGRB along the system's axis pointing away from us. Remarkably, for the choked jet model, the macronova signal produced by the ejecta (which is partially boosted to high velocities by the cocoon's shock) and the radio that is produced by the interaction of the shocked cocoon material with the surrounding matter, agree with the observed UV/optical/IR emission and with current radio observations. Finally, we discuss the possibility that the jet propagation within the ejecta may photodissociate some of of the heavy elements and may affect the composition of a fraction of ejecta and, in turn, the opacity and the early macronova light.

  5. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg2: iPTF13bxl AND GRB 130702A

    International Nuclear Information System (INIS)

    Singer, Leo P.; Brown, Duncan A.; Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie; Kasliwal, Mansi M.; Mulchaey, John; Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf; Ofek, Eran O.; Arcavi, Iair; Nugent, Peter E.; Bloom, Joshua S.; Corsi, Alessandra; Frail, Dale A.; Masci, Frank J.

    2013-01-01

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg 2 surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era

  6. Jet shapes in hadron and electron colliders

    International Nuclear Information System (INIS)

    Wainer, N.

    1993-05-01

    High energy jets are observed both in hadronic machines like the Tevatron and electron machines like LEP. These jets have an extended structure in phase space which can be measured. This distribution is usually called the jet shape. There is an intrinsic relation between jet variables, like energy and direction, the jet algorithm used, and the jet shape. Jet shape differences can be used to separate quark and gluon jets

  7. A Collapsar Model with Disk Wind: Implications for Supernovae Associated with Gamma-Ray Bursts

    Science.gov (United States)

    Hayakawa, Tomoyasu; Maeda, Keiichi

    2018-02-01

    We construct a simple but self-consistent collapsar model for gamma-ray bursts (GRBs) and SNe associated with GRBs (GRB-SNe). Our model includes a black hole, an accretion disk, and the envelope surrounding the central system. The evolutions of the different components are connected by the transfer of the mass and angular momentum. To address properties of the jet and the wind-driven SNe, we consider competition of the ram pressure from the infalling envelope and those from the jet and wind. The expected properties of the GRB jet and the wind-driven SN are investigated as a function of the progenitor mass and angular momentum. We find two conditions that should be satisfied if the wind-driven explosion is to explain the properties of the observed GRB-SNe: (1) the wind should be collimated at its base, and (2) it should not prevent further accretion even after the launch of the SN explosion. Under these conditions, some relations seen in the properties of the GRB-SNe could be reproduced by a sequence of different angular momentum in the progenitors. Only the model with the largest angular momentum could explain the observed (energetic) GRB-SNe, and we expect that the collapsar model can result in a wide variety of observational counterparts, mainly depending on the angular momentum of the progenitor star.

  8. Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets

    International Nuclear Information System (INIS)

    Lebedev, S V; Ciardi, A; Ampleford, D J; Bland, S N; Bott, S C; Chittenden, J P; Hall, G N; Rapley, J; Jennings, C; Sherlock, M; Frank, A; Blackman, E G

    2005-01-01

    We present results of high energy density laboratory experiments on the production of supersonic radiatively cooled plasma jets with dimensionless parameters (Mach number ∼30, cooling parameter ∼1 and density contrast ρ j /ρ a ∼ 10) similar to those in young stellar objects jets. The jets are produced using two modifications of wire array Z-pinch driven by 1 MA, 250 ns current pulse of MAGPIE facility at Imperial College, London. In the first set of experiments the produced jets are purely hydrodynamic and are used to study deflection of the jets by the plasma cross-wind, including the structure of internal oblique shocks in the jets. In the second configuration the jets are driven by the pressure of the toroidal magnetic field and this configuration is relevant to the astrophysical models of jet launching mechanisms. Modifications of the experimental configuration allowing the addition of the poloidal magnetic field and angular momentum to the jets are also discussed. We also present three-dimensional resistive magneto-hydrodynamic simulations of the experiments and discuss the scaling of the experiments to the astrophysical systems

  9. Swift captures the spectrally evolving prompt emission of GRB070616

    Science.gov (United States)

    Starling, R. L. C.; O'Brien, P. T.; Willingale, R.; Page, K. L.; Osborne, J. P.; de Pasquale, M.; Nakagawa, Y. E.; Kuin, N. P. M.; Onda, K.; Norris, J. P.; Ukwatta, T. N.; Kodaka, N.; Burrows, D. N.; Kennea, J. A.; Page, M. J.; Perri, M.; Markwardt, C. B.

    2008-02-01

    The origins of gamma-ray burst (GRB) prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku Wide-Band All-Sky Monitor (WAM). The high-energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285s after the trigger and extending to 1200s. We track the movement of the spectral peak energy, whilst observing a softening of the low-energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the late prompt emission. We also discuss origins for the early optical emission and the physics of the afterglow. The case of GRB070616 clearly demonstrates that both broad-band coverage and good time resolution are crucial to pin down the origins of the complex prompt emission in GRBs. This paper is dedicated to the memory of Dr Francesca Tamburelli who died during its production. Francesca played a fundamental role within the team which is in charge of the development of the Swift X-Ray Telescope (XRT) data analysis software at the Italian Space Agency's Science Data Centre in Frascati. She is sadly missed. E-mail: rlcs1@star.le.ac.uk

  10. Experimental investigation of the effects of heat release on mixing processes and flow structure in a high-speed subsonic turbulent H{sub 2} jet

    Energy Technology Data Exchange (ETDEWEB)

    Theron, M.; Bellenoue, M. [Laboratoire de Combustion et de Detonique, CNRS UPR 9028, Poitiers (France)

    2006-06-15

    In this paper, we explore the effects of heat release on mixing and flow structure in a high-speed subsonic turbulent H{sub 2} jet in an air coflow. Heat release effects are determined from the comparison of nonreacting and reacting jet behavior, boundary conditions being identical in both cases. Experiments are performed in a wind tunnel specifically designed for this purpose. Planar laser induced fluorescence on OH radicals and on acetone (seeded in the hydrogen jet) are used to characterize the cartography of scalars, and laser Doppler velocimetry is used to characterize velocity profiles in the far field of the H{sub 2} jet. Results show significant effects of heat release on mixing and flow structure, indicating an overall reduction of mixing and entrainment in the reacting jet compared to the nonreacting jet. First, a change is observed in the orientation of coherent structures originating from Kelvin-Helmholtz type instabilities, and responsible for air entrainment within the jet, which appear 'flatter' in the jet flame. Then, the flame length is increased over what would be predicted from the intersection of the mean stoichiometric contour with the centerline of the nonreacting jet. And finally, the longitudinal average velocity decrease along the jet axis is quicker in the nonreacting jet, and nondimensional transverse velocity fluctuations are about half as high in the reacting jet as in the nonreacting jet, indicating a reduction of the turbulence intensity of the flow in this direction in the jet flame. (author)

  11. Structural evolution of Ge-rich Si1−xGex films deposited by jet-ICPCVD

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-11-01

    Full Text Available Amorphous Ge-rich Si1−xGex films with local Ge-clustering were deposited by dual-source jet-type inductively coupled plasma chemical-vapor deposition (jet-ICPCVD. The structural evolution of the deposited films annealed at various temperatures (Ta is investigated. Experimental results indicate that the crystallization occurs to form Ge and Si clusters as Ta = 500 °C. With raising Ta up to 900 °C, Ge clusters percolate together and Si diffuses and redistributes to form a Ge/SiGe core/shell structure, and some Ge atoms partially diffuse to the surface as a result of segregation. The present work will be helpful in understanding the structural evolution process of a hybrid SiGe films and beneficial for further optimizing the microstructure and properties.

  12. THE OPTICAL AFTERGLOW AND z = 0.92 EARLY-TYPE HOST GALAXY OF THE SHORT GRB 100117A

    International Nuclear Information System (INIS)

    Fong, W.; Berger, E.; Chornock, R.; Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Graham, J. F.; Cucchiara, A.; Fox, D. B.

    2011-01-01

    We present the discovery of the optical afterglow and early-type host galaxy of the short-duration GRB 100117A. The faint afterglow is detected 8.3 hr after the burst with r AB = 25.46 ± 0.20 mag. Follow-up optical and near-infrared observations uncover a coincident compact red galaxy, identified as an early-type galaxy at a spectroscopic redshift of z ∼ 0.915 with a mass of ∼3 x 10 10 M sun , an age of ∼1 Gyr, and a luminosity of L B ≅ 0.5 L * . From a possible weak detection of [O II]λ3727 emission at z = 0.915 we infer an upper bound on the star formation rate of ∼0.1 M sun yr -1 , leading to a specific star formation rate of ∼ -1 . Thus, GRB 100117A is only the second short burst to date with a secure early-type host (the other being GRB 050724 at z = 0.257) and it has one of the highest short gamma-ray burst (GRB) redshifts. The offset between the host center and the burst position, 470 ± 310 pc, is the smallest to date. Combined with the old stellar population age, this indicates that the burst likely originated from a progenitor with no significant kick velocity. However, from the brightness of the optical afterglow we infer a relatively low density of n ∼ 3 x 10 -4 ε -3 e,-1 ε -1.75 B,-1 cm -3 . The combination of an optically faint afterglow and host suggests that previous such events may have been missed, thereby potentially biasing the known short GRB host population against z ∼> 1 early-type hosts.

  13. GRB 090227B: THE MISSING LINK BETWEEN THE GENUINE SHORT AND LONG GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Muccino, M.; Ruffini, R.; Bianco, C. L.; Izzo, L.; Penacchioni, A. V. [Dip. di Fisica and ICRA, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Rome (Italy)

    2013-02-15

    The time-resolved spectral analysis of GRB 090227B, made possible by the Fermi-GBM data, allows us to identify in this source the missing link between the genuine short and long gamma-ray bursts (GRBs). Within the Fireshell model of the GRBs we predict genuine short GRBs: bursts with the same inner engine of the long bursts but endowed with a severely low value of the baryon load, B {approx}< 5 Multiplication-Sign 10{sup -5}. A first energetically predominant emission occurs at the transparency of the e {sup +} e {sup -} plasma, the Proper-GRB (P-GRB), followed by a softer emission, the extended afterglow. The typical separation between the two emissions is expected to be of the order of 10{sup -3}-10{sup -2} s. We identify the P-GRB of GRB 090227B in the first 96 ms of emission, where a thermal component with the temperature kT = (517 {+-} 28) keV and a flux comparable with the non-thermal part of the spectrum is observed. This non-thermal component as well as the subsequent emission, where there is no evidence for a thermal spectrum, is identified with the extended afterglow. We deduce a theoretical cosmological redshift z = 1.61 {+-} 0.14. We then derive the total energy E{sup tot}{sub e{sup +}e{sup -}}= (2.83{+-}0.15) Multiplication-Sign 10{sup 53} erg, the baryon load B = (4.13 {+-} 0.05) Multiplication-Sign 10{sup -5}, the Lorentz {Gamma} factor at transparency {Gamma}{sub tr} = (1.44 {+-} 0.01) Multiplication-Sign 10{sup 4}, and the intrinsic duration {Delta}t' {approx} 0.35 s. We also determine the average density of the circumburst medium (CBM), (n {sub CBM}) = (1.90 {+-} 0.20) Multiplication-Sign 10{sup -5} particles cm{sup -3}. There is no evidence of beaming in the system. In view of the energetics and of the baryon load of the source, as well as of the low interstellar medium and of the intrinsic timescale of the signal, we identify the GRB progenitor as a binary neutron star. From the recent progress in the theory of neutron stars, we obtain

  14. THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Nagai, Hiroshi; Honma, Mareki; Hagiwara, Yoshiaki; Kawaguchi, Noriyuki [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-09-20

    We investigated the detailed inner jet structure of M87 using Very Long Baseline Array data at 2, 5, 8.4, 15, 23.8, 43, and 86 GHz, especially focusing on the multi-frequency properties of the radio core at the jet base. First, we measured the size of the core region transverse to the jet axis, defined as W{sub c}, at each frequency ν, and found a relation between W{sub c} and ν: W{sub c}(ν)∝ν{sup –0.71±0.05}. Then, by combining W{sub c}(ν) and the frequency dependence of the core position r{sub c}(ν), which was obtained in our previous study, we constructed a collimation profile of the innermost jet W{sub c}(r) down to ∼10 Schwarzschild radii (R{sub s}) from the central black hole. We found that W{sub c}(r) smoothly connects with the width profile of the outer edge-brightened, parabolic jet and then follows a similar radial dependence down to several tens of R{sub s}. Closer to the black hole, the measured radial profile suggests a possible change in the jet collimation shape from the outer parabolic one, where the jet shape tends to become more radially oriented. This result could be related to a magnetic collimation process or/and interactions with surrounding materials at the jet base. The present results shed light on the importance of higher-sensitivity/resolution imaging studies of M87 at 86, 43, and 22 GHz; these studies should be examined more rigorously.

  15. Beam On Target (BOT) Produces Gamma Ray Burst (GRB) Fireballs and Afterglows

    Science.gov (United States)

    Greyber, H. D.

    1997-12-01

    Unlike the myriads of ad hoc models that have been offered to explain GRB, the BOT process is simply the very common process used worldwide in accelerator laboratories to produce gamma rays. The Strong Magnetic Field (SMF) model postulates an extremely intense, highly relativistic current ring formed during the original gravitational collapse of a distant galaxy when the plasma cloud was permeated by a primordial magnetic field. GRB occur when solid matter (asteroid, white dwarf, neutron star, planet) falls rapidly through the Storage Ring beam producing a very strongly collimated electromagnetic shower, and a huge amount of matter from the target, in the form of a giant, hot, expanding plasma cloud, or ``Fireball,'' is blown off. BOT satisfies all the ``severe constraints imposed on the source of this burst --'' concluded by the CGRO team (Sommer et al, Astrophys. J. 422 L63 (1994)) for the huge intense burst GRB930131, whereas neutron star merger models are ``difficult to reconcile.'' BOT expects the lowest energy gamma photons to arrive very slightly later than higher energy photons due to the time for the shower to penetrate the target. The millisecond spikes in bursts are due to the slender filaments of current that make up the Storage Ring beam. Delayed photons can be explained by a broken target ``rock.'' See H. Greyber in the book ``Compton Gamma Ray Observatory,'' AIP Conf. Proc. 280, 569 (1993).

  16. 76 FR 35912 - Business Jet Aircraft Industry: Structure and Factors Affecting Competitiveness; Institution of...

    Science.gov (United States)

    2011-06-20

    ... structure of the global industry, including supply chain relationships and foreign direct investment; 2. An... competitiveness of the business jet aircraft industry in the United States, Brazil, Canada, Europe, and China. To...

  17. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  18. Limits on optical polarization duringt the prompt phase of GRB 140430a

    Czech Academy of Sciences Publication Activity Database

    Kopač, D.; Mundell, C. G.; Japelj, J.; Arnold, D. M.; Steele, I.A.; Guidorzi, C.; Dichiara, S.; Kobayashi, S.; Gomboc, A.; Harrison, R. M.; Lamb, G. P.; Melandri, A.; Smith, R. J.; Virgili, F. J.; Castro-Tirado, A.J.; Gorosabel, J.; Järvinen, A.; Sánchez-Ramírez, R.; Oates, S.R.; Jelínek, Martin

    2015-01-01

    Roč. 813, č. 1 (2015), 1/1-1/14 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : gamma-ray burst * GRB 140430A * polarimeters Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  19. DARK JETS IN SOLAR CORONAL HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-03-10

    A new solar feature termed a dark jet is identified from observations of an extended solar coronal hole that was continuously monitored for over 44 hr by the Extreme Ultraviolet Imaging Spectrometer on board the Hinode spacecraft in 2011 February 8–10 as part of Hinode Operation Plan No. 177 (HOP 177). Line of sight (LOS) velocity maps derived from the coronal Fe xii λ195.12 emission line, formed at 1.5 MK, revealed a number of large-scale, jet-like structures that showed significant blueshifts. The structures had either weak or no intensity signal in 193 Å filter images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, suggesting that the jets are essentially invisible to imaging instruments. The dark jets are rooted in bright points and occur both within the coronal hole and at the quiet Sun–coronal hole boundary. They exhibit a wide range of shapes, from narrow columns to fan-shaped structures, and sometimes multiple jets are seen close together. A detailed study of one dark jet showed LOS speeds increasing along the jet axis from 52 to 107 km s{sup −1} and a temperature of 1.2–1.3 MK. The low intensity of the jet was due either to a small filling factor of 2% or to a curtain-like morphology. From the HOP 177 sample, dark jets are as common as regular coronal hole jets, but their low intensity suggests a mass flux around two orders of magnitude lower.

  20. Properties of gluon jets

    International Nuclear Information System (INIS)

    Sugano, K.

    1988-01-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on understanding of QCD. The future prospects are discussed

  1. Hadron production by e+e- annihilation at center-of-mass energies between 2.6 and 7.8 GeV. II. Jet structure and related inclusive distributions

    International Nuclear Information System (INIS)

    Hanson, G.; Alam, M.S.; Boyarski, A.M.; Breidenbach, M.; Bulos, F.; Dakin, J.T.; Dorfan, J.M.; Feldman, G.J.; Fischer, G.E.; Fryberger, D.; Hartill, D.L.; Jaros, J.A.; Jean-Marie, B.; Larsen, R.R.; Lueth, V.; Lynch, H.L.; Lyon, D.; Morehouse, C.C.; Paterson, J.M.; Perl, M.L.; Peruzzi, I.; Piccolo, M.; Pun, T.P.; Rapidis, P.; Richter, B.; Schindler, R.H.; Schwitters, R.F.; Siegrist, J.L.; Tanenbaum, W.; Vannucci, F.; Abrams, G.S.; Briggs, D.; Carithers, W.C.; Chinowsky, W.; Cooper, S.; DeVoe, R.G.; Friedberg, C.E.; Goldhaber, G.; Hollebeek, R.J.; Johnson, A.D.; Kadyk, J.A.; Litke, A.M.; Madaras, R.J.; Nguyen, H.K.; Pierre, F.M.; Sadoulet, B.; Trilling, G.H.; Whitaker, J.S.; Winkelmann, F.C.; Wiss, J.E.

    1982-01-01

    We present results on the jet structure observed in multihadronic events produced by e + e - annihilation in the Mark I magnetic detector at SPEAR. The evidence for jet structure and the jet-axis angular distribution are reported. We give inclusive distributions of the hadrons in Feynman x, rapidity, and transverse momentum relative to the jet axis

  2. Transient thermo-structural and static magnetic characteristics of 1:1 prototype JET ELM control coils

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Ananya; Pradhan, Subrata, E-mail: pradhan@ipr.res.in; Ghate, Mahesh; Kanabar, Deven; Roy, Swati; Kumar, Nitish

    2017-01-15

    3D transient thermo-structural analyses and steady state magnetic field analyses of 1:1 prototyped JET Edge Localized Mode (ELM) coils have been carried out. Temperature distribution within the magnet winding as well as the temperature evolution have also been simulated as a function of pulsed transport currents in both large and small ELM coils as per the operational scenarios. The induced thermal stresses along with the shear stress components acting on the winding elements have also been analyzed. The deformations caused by thermal stresses have been calculated for the case, the conductor bundle and the insulation layers within the coils. In addition to thermo-structural analyses, steady state magnetic field analyses have also been carried out in the current carrying ELM coils. These values have been compared with the experimental values. The experimentally obtained values matches well with those obtained in simulations indicating that the prototyped ELM coils can operate successfully in JET operational scenarios. Additionally, the R & D and technologies developed in the context of JET ELM coils have also been validated with the magnet performances experimentally.

  3. Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Tokitani, M., E-mail: tokitani.masayuki@LHD.nifs.ac.jp [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, M. [Shimane University, Matsue, Shimane 690-8504 (Japan); Masuzaki, S. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Fujii, Y. [Shimane University, Matsue, Shimane 690-8504 (Japan); Sakamoto, R. [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Oya, Y. [Shizuoka University, Shizuoka 422-8529 (Japan); Hatano, Y. [University of Toyama, Toyama 930-8555 (Japan); Otsuka, T. [Kindai University, Higashi-Osaka, Osaka, 577-8502 (Japan); Oyaidzu, M.; Kurotaki, H.; Suzuki, T.; Hamaguchi, D.; Isobe, K.; Asakura, N. [National Institute for Quantum and Radiological Science and Technology (QST), Rokkasho Aomori 039-3212 (Japan); Widdowson, A. [EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Rubel, M. [Royal Institute of Technology (KTH), 100 44 Stockholm (Sweden)

    2017-03-15

    Highlights: • Micro-/nano-characterization of the surface structures on the divertor tiles from JET ITER-like wall were studied. • The stratified mixed-material deposition layer composed by W, C, O, Mo and Be with the thickness of ∼1.5 μm was formed on the apron of Tile 1. • The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. - Abstract: Micro-/nano-characterization of the surface structures on the divertor tiles used in the first campaign (2011–2012) of the JET tokamak with the ITER-like wall (JET ILW) were studied. The analyzed tiles were a single poloidal section of the tile numbers of 1, 3 and 4, i.e., upper, vertical and horizontal targets, respectively. A sample from the apron of Tile 1 was deposition-dominated. Stratified mixed-material layers composed of Be, W, Ni, O and C were deposited on the original W-coating. Their total thickness was ∼1.5 μm. By means of transmission electron microscopy, nano-size bubble-like structures with a size of more than 100 nm were identified in that layer. They could be related to deuterium retention in the layer dominated by Be. The surface microstructure of the sample from Tile 4 also showed deposition: a stratified mixed-material layer with the total thickness of 200–300 nm. The electron diffraction pattern obtained with transmission electron microscope indicated Be was included in the layer. No bubble-like structures have been identified. The surface of Tile 3, originally coated by Mo, was identified as the erosion zone. This is consistent with the fact that the strike point was often located on that tile during the plasma operation. The study revealed the micro- and nano-scale modification of the inner tile surface of the JET ILW. In particular, a complex mixed-material deposition layer could affect hydrogen isotope retention and dust formation.

  4. The ultra-long GRB 111209A. II. Prompt to afterglow and afterglow properties

    Energy Technology Data Exchange (ETDEWEB)

    Stratta, G. [Osservatorio Astronomico di Roma (OAR/INAF), via Frascati 33, I-00040 Monte Porzio Catone (Italy); Gendre, B.; Boër, M. [ARTEMIS, UMR 7250 (CNRS/OCA/UNS), boulevard de l' Observatoire, BP 4229, F-06304 Nice Cedex (France); Atteia, J. L. [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Coward, D. M.; Howell, E. [School of Physics, University of Western Australia (UWA), Crawley, WA 6009 (Australia); De Pasquale, M.; Oates, S. [Mullard Space Science Laboratory (MSSL), University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom); Klotz, A. [IRAP, 14, avenue Edouard Belin, F-31400 Toulouse (France); Piro, L. [Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS/INAF), via fosso del cavaliere 100, I-00133 Roma (Italy)

    2013-12-10

    The 'ultra-long' gamma-ray burst GRB 111209A at redshift z = 0.677 is the longest GRB ever observed thus far, with a rest frame prompt emission duration of ∼4 hr. In order to explain the burst exceptional longevity, a low-metallicity blue supergiant progenitor was invoked. In this article we further constrain the phenomenology and progenitor properties of this peculiar GRB by performing a multiband temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus WIND, XMM-Newton, and TAROT, as well as from other ground-based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: (1) an unprecedented large optical delay of 410 ± 50 s between the peak time in gamma-rays and the peak time in the optical of a marked multiwavelength flare; (2) multiwavelength prompt emission spectral modeling requires a certain amount of dust in the circumburst environment. The dust produces a rest frame visual extinction of A{sub V} = 0.3-1.5 mag, and may undergo destruction at late times; and (3) we detect the presence of a hard spectral extra power-law component at the end of the X-ray steep steep decay phase and before the start of the X-ray afterglow, which has never been revealed thus far in past GRBs. The optical afterglow shows more usual properties; it has a flux power-law decay with an index of 1.6 ± 0.1 and a late rebrightening feature observed at ∼1.1 the day after the first Burst Alert Telescope trigger. We discuss our findings in the context of several possible interpretations that have been given thus far of the complex multiband GRB phenomenology and propose a binary channel formation for the blue supergiant progenitor.

  5. The ultra-long GRB 111209A. II. Prompt to afterglow and afterglow properties

    International Nuclear Information System (INIS)

    Stratta, G.; Gendre, B.; Boër, M.; Atteia, J. L.; Coward, D. M.; Howell, E.; De Pasquale, M.; Oates, S.; Klotz, A.; Piro, L.

    2013-01-01

    The 'ultra-long' gamma-ray burst GRB 111209A at redshift z = 0.677 is the longest GRB ever observed thus far, with a rest frame prompt emission duration of ∼4 hr. In order to explain the burst exceptional longevity, a low-metallicity blue supergiant progenitor was invoked. In this article we further constrain the phenomenology and progenitor properties of this peculiar GRB by performing a multiband temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus WIND, XMM-Newton, and TAROT, as well as from other ground-based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: (1) an unprecedented large optical delay of 410 ± 50 s between the peak time in gamma-rays and the peak time in the optical of a marked multiwavelength flare; (2) multiwavelength prompt emission spectral modeling requires a certain amount of dust in the circumburst environment. The dust produces a rest frame visual extinction of A V = 0.3-1.5 mag, and may undergo destruction at late times; and (3) we detect the presence of a hard spectral extra power-law component at the end of the X-ray steep steep decay phase and before the start of the X-ray afterglow, which has never been revealed thus far in past GRBs. The optical afterglow shows more usual properties; it has a flux power-law decay with an index of 1.6 ± 0.1 and a late rebrightening feature observed at ∼1.1 the day after the first Burst Alert Telescope trigger. We discuss our findings in the context of several possible interpretations that have been given thus far of the complex multiband GRB phenomenology and propose a binary channel formation for the blue supergiant progenitor.

  6. The Signature of the Central Engine in the Weakest Relativistic Explosions: GRB 100316D

    Science.gov (United States)

    Margutti, R.; Soderberg, A. M.; Wieringa, M. H.; Edwards, P. G.; Chevalier, R. A.; Morsony, B. J.; Barniol Duran, R.; Sironi, L.; Zauderer, B. A.; Milisavljevic, D.; Kamble, A.; Pian, E.

    2013-11-01

    We present late-time radio and X-ray observations of the nearby sub-energetic gamma-ray burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB 100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ~1049 erg is coupled to mildly relativistic (Γ = 1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with a rate of \\dot{M}\\, {\\sim }\\, 10^{-5}\\,M_{\\odot }\\,yr^{-1} (for an assumed wind density profile and wind velocity vw = 1000 km s-1). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB 100316D as one of the weakest central-engine-driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation that dominates over the standard afterglow at late times (t > 10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.

  7. The signature of the central engine in the weakest relativistic explosions: GRB 100316D

    International Nuclear Information System (INIS)

    Margutti, R.; Soderberg, A. M.; Sironi, L.; Zauderer, B. A.; Milisavljevic, D.; Kamble, A.; Wieringa, M. H.; Edwards, P. G.; Chevalier, R. A.; Morsony, B. J.; Duran, R. Barniol; Pian, E.

    2013-01-01

    We present late-time radio and X-ray observations of the nearby sub-energetic gamma-ray burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB 100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ∼10 49 erg is coupled to mildly relativistic (Γ = 1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with a rate of M-dot ∼ 10 −5 M ⊙ yr −1 (for an assumed wind density profile and wind velocity v w = 1000 km s –1 ). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB 100316D as one of the weakest central-engine-driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation that dominates over the standard afterglow at late times (t > 10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.

  8. Coupling between p210bcr-abl and Shc and Grb2 adaptor proteins in hematopoietic cells permits growth factor receptor-independent link to ras activation pathway.

    Science.gov (United States)

    Tauchi, T; Boswell, H S; Leibowitz, D; Broxmeyer, H E

    1994-01-01

    Enforced expression of p210bcr-abl transforms interleukin 3 (IL-3)-dependent hematopoietic cell lines to growth factor-independent proliferation. It has been demonstrated that nonreceptor tyrosine kinase oncogenes may couple to the p21ras pathway to exert their transforming effect. In particular, p210bcr-abl was recently found to effect p21ras activation in hematopoietic cells. In this context, experiments were performed to evaluate a protein signaling pathway by which p210bcr-abl might regulate p21ras. It was asked whether Shc p46/p52, a protein containing a src-homology region 2 (SH2) domain, and known to function upstream from p21ras, might form specific complexes with p210bcr-abl and thus, possibly alter p21ras activity by coupling to the guanine nucleotide exchange factor (Sos/CDC25) through the Grb2 protein-Sos complex. This latter complex has been previously demonstrated to occur ubiquitously. We found that p210bcr-abl formed a specific complex with Shc and with Grb2 in three different murine cell lines transfected with a p210bcr-abl expression vector. There appeared to be a higher order complex containing Shc, Grb2, and bcr-abl proteins. In contrast to p210bcr-abl transformed cells, in which there was constitutive tight association between Grb2 and Shc, binding between Grb2 and Shc was Steel factor (SLF)-dependent in a SLF-responsive, nontransformed parental cell line. The SLF-dependent association between Grb2 and Shc in nontransformed cells involved formation of a complex of Grb2 with c-kit receptor after SLF treatment. Thus, p210bcr-abl appears to function in a hematopoietic p21ras activation pathway to allow growth factor-independent coupling between Grb2, which exists in a complex with the guanine nucleotide exchange factor (Sos), and p21ras. Shc may not be required for Grb2-c-kit interaction, because it fails to bind strongly to c-kit.

  9. ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS

    International Nuclear Information System (INIS)

    Lyubarsky, Yuri

    2009-01-01

    In relativistic, Poynting-dominated outflows, acceleration and collimation are intimately connected. An important point is that the Lorentz force is nearly compensated by the electric force; therefore the acceleration zone spans a large range of scales. We derived the asymptotic equations describing relativistic, axisymmetric magnetohydrodynamic flows far beyond the light cylinder. These equations do not contain either intrinsic small scales (like the light cylinder radius) or terms that nearly cancel each other (like the electric and magnetic forces); therefore they could be easily solved numerically. They also suit well for qualitative analysis of the flow and, in many cases, they could even be solved analytically or semianalytically. We show that there are generally two collimation regimes. In the first regime, the residual of the hoop stress and the electric force is counterbalanced by the pressure of the poloidal magnetic field so that, at any distance from the source, the structure of the flow is the same as the structure of an appropriate cylindrical equilibrium configuration. In the second regime, the pressure of the poloidal magnetic field is negligibly small so that the flow could be conceived as composed from coaxial magnetic loops. In the two collimation regimes, the flow is accelerated in different ways. We study in detail the structure of jets confined by the external pressure with a power-law profile. In particular, we obtained simple scalings for the extent of the acceleration zone, for the terminal Lorentz factor, and for the collimation angle.

  10. Fermi Observation of GRB 080916C

    International Nuclear Information System (INIS)

    Piron, F.

    2009-01-01

    We present the observations of the long-duration Gamma-Ray Burst GRB 080916C by the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT). This event was observed from 8 keV to a photon with an energy of 13.2 GeV. It develops over a 1400 s interval during which the highest number of photons with energy above 100 MeV are detected from a burst. The onset of the high-energy (>100 MeV) emission is delayed by ∼4.5 s with respect to the low-energy (<1 MeV) emission, which is not detected past 200 s. The broad-band spectrum of the burst is consistent with a single spectral form.

  11. Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations

    Science.gov (United States)

    Coppejans, D. L.; Margutti, R.; Guidorzi, C.; Chomiuk, L.; Alexander, K. D.; Berger, E.; Bietenholz, M. F.; Blanchard, P. K.; Challis, P.; Chornock, R.; Drout, M.; Fong, W.; MacFadyen, A.; Migliori, G.; Milisavljevic, D.; Nicholl, M.; Parrent, J. T.; Terreran, G.; Zauderer, B. A.

    2018-03-01

    The energy source powering the extreme optical luminosity of hydrogen-stripped superluminous supernovae (SLSNe-I) is not known, but recent studies have highlighted the case for a central engine. Radio and/or X-ray observations are best placed to track the fastest ejecta and probe the presence of outflows from a central engine. We compile all the published radio observations of SLSNe-I to date and present three new observations of two new SLSNe-I. None were detected. Through modeling the radio emission, we constrain the subparsec environments and possible outflows in SLSNe-I. In this sample, we rule out on-axis collimated relativistic jets of the kind detected in gamma-ray bursts (GRBs). We constrain off-axis jets with opening angles of 5° (30°) to energies of {E}{{k}}values {ε }e=0.1 and {ε }B=0.01. The deepest limits rule out emission of the kind seen in faint uncollimated GRBs (with the exception of GRB 060218) and from relativistic SNe. Finally, for the closest SLSN-I, SN 2017egm, we constrain the energy of an uncollimated nonrelativistic outflow like those observed in normal SNe to {E}{{k}}≲ {10}48 erg.

  12. EARLY-TIME VLA OBSERVATIONS AND BROADBAND AFTERGLOW ANALYSIS OF THE FERMI/LAT DETECTED GRB 130907A

    International Nuclear Information System (INIS)

    Veres, Péter; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Perley, Daniel A.

    2015-01-01

    We present multi-wavelength observations of the hyper-energetic gamma-ray burst (GRB) 130907A, a Swift-discovered burst with early radio observations starting at ≈4 hr after the γ-ray trigger. GRB 130907A was also detected by the Fermi/LAT instrument and at late times showed a strong spectral evolution in X-rays. We focus on the early-time radio observations, especially at >10 GHz, to attempt to identify reverse shock signatures. While our radio follow-up of GRB 130907A ranks among the earliest observations of a GRB with the Karl G. Jansky Very Large Array, we did not see an unambiguous signature of a reverse shock. While a model with both reverse and forward shock can correctly describe the observations, the data is not constraining enough to decide upon the presence of the reverse-shock component. We model the broadband data using a simple forward-shock synchrotron scenario with a transition from a wind environment to a constant density interstellar medium (ISM) in order to account for the observed features. Within the confines of this model, we also derive the underlying physical parameters of the fireball, which are within typical ranges except for the wind density parameter (A * ), which is higher than those for bursts with wind-ISM transition, but typical for the general population of bursts. We note the importance of early-time radio observations of the afterglow (and of well-sampled light curves) for unambiguously identifying the potential contribution of the reverse shock

  13. Ring and jet-like structures and two-dimensional intermittency in nucleus-nucleus collisions at 200 AGeV/c

    International Nuclear Information System (INIS)

    Ghosh, M.K.; Haldar, P.K.; Manna, S.K.; Mukhopadhyay, A.; Singh, G.

    2011-01-01

    We have investigated the presence of ring and/or jet-like structures in the angular emission of secondary charged mesons (shower tracks) coming out of 16 O-Ag/Br and 32 S-Ag/Br interactions, each at an incident momentum of 200 AGeV/c. Nuclear photographic emulsion technique has been used to collect the experimental data. The experimental results have been compared with the results simulated by Monte Carlo method. The analysis indicates presence of ring and jet-like structures in the experimental data beyond statistical noise. This kind of jet structure is expected to give rise to a strong two-dimensional (2d) intermittency. The self-affine behaviour of 2d scaled factorial moments (SFM) has therefore been investigated and the strength of 2d intermittency has been determined. For each set of data the 2d results have been compared with the respective one-dimensional (1d) intermittency results.

  14. Numerical analyses of flashing jet structure and droplet size characteristics

    International Nuclear Information System (INIS)

    Duan Riqiang; Jiang Shengyao; Koshizuka, Seiichi; Oka, Yoshiaki; Yamaguchi, Akira; Takata, Takashi

    2006-01-01

    In this paper, flashing jets are numerically simulated using the MPS method. The boiling mode for flashing is identified as surface boiling mode, based on the postulation of jets from a short nozzle under high depressurization. The Homogeneous Non-equilibrium Relaxation Model (HRM) is used for calculating the evaporation rate of flashing. The numerical simulation results show that flashing jets comprise an inner intact core which is surrounded by two-phase droplet flow. The effect of degree of superheat on the jet topological geometry is investigated. With increasing degree of superheat, the topological shape of flashing jets evolves from cylindrical core for low degree of superheat to cone-shaped core for high degree of superheat, and meanwhile the extinction length comes to decrease and tends asymptotically constant as the injection temperature approaches the saturation temperature corresponding to the injection pressure. The analyses of the droplet size distribution engendered from primary breakup of flashing jets show that: two peaks exist for droplet size distribution at lower degree of superheat; however, merely one peak for higher degree of superheat. From droplet size distribution, it is revealed that the primary breakup mechanism of flashing jets can be attributed to dominant mechanical breakup mode plus enhancement via surface evaporation. (author)

  15. Magnetar Central Engine and Possible Gravitational Wave Emission of Nearby Short GRB 160821B

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Hou-Jun; Zhang, Hai-Ming; Zhong, Shu-Qing; Liang, En-Wei [GXU-NAOC Center for Astrophysics and Space Sciences, Department of Physics, Guangxi University, Nanning 530004 (China); Hou, Shu-Jin [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China); Sun, Hui [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Rice, Jared, E-mail: lhj@gxu.edu.edu [Department of Physics and Astronomy, University of Nevada Las Vegas, NV 89154 (United States)

    2017-02-01

    GRB 160821B is a short gamma-ray burst (SGRB) at redshift z = 0.16, with a duration less than 1 s and without any “extended emission” detected up to more than 100 s in both Swift /BAT and Fermi /GBM bands. An X-ray plateau with a sharp drop 180 s after the BAT trigger was observed with Swift /XRT. No supernova or kilo-nova signature was detected. Assuming the central engine of this SGRB is a recently born supra-massive magnetar, we can explain the SGRB as jet radiation and its X-ray plateau as the internal energy dissipation of the pulsar wind as it spins down. We constrain its surface magnetic field to B {sub p} < 3.12 × 10{sup 16} G and initial spin period to P{sub 0} < 8.5 × 10{sup −3} s. Its equation of state is consistent with the GM1 model with M{sub TOV} ∼ 2.37 M {sub ⊙} and ellipticity ϵ < 0.07. Its gravitational wave (GW) radiation may be detectable with the future Einstein Telescope, but is much weaker than the current detectability limit of Advanced LIGO. The GW radiation of such an event would be detectable by Advanced LIGO if it occurred at a distance of 100 Mpc ( z = 0.023).

  16. Estimating detection rates for the LIGO-Virgo search for gravitational-wave burst counterparts to gamma-ray bursts using inferred local GRB rates

    International Nuclear Information System (INIS)

    Leonor, I; Frey, R; Sutton, P J; Jones, G; Marka, S; Marka, Z

    2009-01-01

    One of the ongoing searches performed using the LIGO-Virgo network of gravitational-wave interferometers is the search for gravitational-wave burst (GWB) counterparts to gamma-ray bursts (GRBs). This type of analysis makes use of GRB time and position information from gamma-ray satellite detectors to trigger the GWB search, and the GWB detection rates possible for such an analysis thus strongly depend on the GRB detection efficiencies of the satellite detectors. Using local GRB rate densities inferred from observations which are found in the science literature, we calculate estimates of the GWB detection rates for different configurations of the LIGO-Virgo network for this type of analysis.

  17. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases.

    Science.gov (United States)

    Schlaepfer, D D; Hunter, T

    1996-10-01

    Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.

  18. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg{sup 2}: iPTF13bxl AND GRB 130702A

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Brown, Duncan A. [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kasliwal, Mansi M.; Mulchaey, John [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Ofek, Eran O.; Arcavi, Iair [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Nugent, Peter E.; Bloom, Joshua S. [Department of Astronomy, University of California Berkeley, B-20 Hearst Field Annex 3411, Berkeley, CA 94720-3411 (United States); Corsi, Alessandra [George Washington University, Corcoran Hall, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Masci, Frank J., E-mail: lsinger@caltech.edu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2013-10-20

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg{sup 2} surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  19. RECONSTRUCTING THREE-DIMENSIONAL JET GEOMETRY FROM TWO-DIMENSIONAL IMAGES

    Science.gov (United States)

    Avachat, Sayali; Perlman, Eric S.; Li, Kunyang; Kosak, Katie

    2018-01-01

    Relativistic jets in AGN are one of the most interesting and complex structures in the Universe. Some of the jets can be spread over hundreds of kilo parsecs from the central engine and display various bends, knots and hotspots. Observations of the jets can prove helpful in understanding the emission and particle acceleration processes from sub-arcsec to kilo parsec scales and the role of magnetic field in it. The M87 jet has many bright knots as well as regions of small and large bends. We attempt to model the jet geometry using the observed 2 dimensional structure. The radio and optical images of the jet show evidence of presence of helical magnetic field throughout. Using the observed structure in the sky frame, our goal is to gain an insight into the intrinsic 3 dimensional geometry in the jets frame. The structure of the bends in jet's frame may be quite different than what we see in the sky frame. The knowledge of the intrinsic structure will be helpful in understanding the appearance of the magnetic field and hence polarization morphology. To achieve this, we are using numerical methods to solve the non-linear equations based on the jet geometry. We are using the Log Likelihood method and algorithm based on Markov Chain Monte Carlo (MCMC) simulations.

  20. Isothermal and Reactive Turbulent Jets in Cross-Flow

    Science.gov (United States)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  1. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  2. GRB 120422A: a Low-Luminosity Gamma-Ray Burst Driven by a Central Engine

    Science.gov (United States)

    Zhang, Bin-Bin; Fan, Yi-Zhong; Shen, Rong-Feng; Xu, Dong; Zhang, Fu-Wen; Wei, Da-Ming; Burrows, David N.; Zhang, Bing; Gehrels, Neil

    2012-01-01

    GRB 120422A is a low-luminosity gamma-ray burst (GRB) associated with a bright supernova, which distinguishesitself by its relatively short T(sub 90) (approximately 5 s) and an energetic and steep-decaying X-ray tail. We analyze the Swift BurstAlert Telescope and X-ray Telescope data and discuss the physical implications. We show that the steep declineearly in the X-ray light curve can be interpreted as the curvature tail of a late emission episode around 58-86 s,with a curved instantaneous spectrum at the end of the emission episode. Together with the main activity in thefirst 20 s and the weak emission from 40 s to 60 s, the prompt emission is variable, which points to a centralengine origin in contrast to a shock-breakout origin, which is used to interpret some other nearby low-luminosity supernova GRBs. Both the curvature effect model and interpreting the early shallow decay as the coasting externalforward shock emission in a wind medium provide a constraint on the bulk Lorentz factor to be around several.Comparing the properties ofGRB 120422A and other supernova GRBs,we find that themain criterion to distinguish engine-driven GRBs from shock-breakout GRBs is the time-averaged -ray luminosity. Engine-driven GRBs likelyhave a luminosity above approximately 10(sup 48) erg s(sup -1).

  3. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X.; Werk, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Perley, D.; Cao, Y. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Cardwell, A.; Turner, J. [Gemini South Observatory, AURA, Casilla 603, La Serena (Chile); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cobb, B. E., E-mail: acucchia@ucolick.org [The George Washington University, Washington, DC (United States)

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial

  4. Gasdynamic structure of free argon plasma jet

    International Nuclear Information System (INIS)

    Dunder, J.

    1973-01-01

    The paper deals with the experimental results of research conducted on the argon plasma jet. Special miniaturized water cooled Pitot probes (1.45 and 2.5 mm. dia.) were used for the measurement of the total head. The results correlate the length of the arc chamber and other main parameters of the plasma generator with the length of the core and maximum values of the total pressure and velocity in the core of the jet. For the plasma generator used for the experiments the axial and radial distributions of the pressure as well as the generalized volt-ampere dependence were obtained. (author)

  5. The relationship between coherent structures and heat transfer processes in the initial region of a round jet

    Energy Technology Data Exchange (ETDEWEB)

    Drobniak, S.; Elsner, J.W. [Tech. Univ. of Czestochowa (Poland). Inst. of Thermal Machinary; El-Kassem, E.S.A. [Cairo University, Faculty of Engineering, Giza (Egypt)

    1998-03-19

    This paper describes an experimental study of the relationship between coherent vortical structures and the intensity of heat transport in the initial region of a round, free jet. Simultaneous measurements of velocity and temperature were taken with a four-wire combined probe in a jet that was acoustically stimulated with a frequency corresponding to the jet-column mode. The obtained results suggest that the mutual phase relations between oscillatory and random components of velocity and temperature lead to substantial intensification of the radial heat transport. Due to the same reason the longitudinal heat flux does not reveal a significant change in the presence of coherent structures and, as a result, a much wider spread of the temperature field in comparison with velocity may be observed as a characteristic feature of this flow. It was also observed that heat transfer processes are realized in substantial part by random turbulence generated due to the action of coherent motion. (orig.) With 13 figs., 27 refs.

  6. Very forward jet, Mueller Navelet jets and jet gap jet measurements in CMS

    CERN Document Server

    Cerci, Salim

    2018-01-01

    The measurements of very forward jet, Mueller-Navelet jets and jet-gap-jet events are presented for different collision energies. The analyses are based on data collected with the CMS detector at the LHC. Jets are defined through the anti-$k_\\mathrm{t}$ clustering algorithm for different cone sizes. Jet production studies provide stringent tests of quantum chromodynamics (QCD) and contribute to tune Monte Carlo (MC) simulations and phenomenological models. The measurements are compared to predictions from various Monte Carlo event generators.

  7. An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure

    Science.gov (United States)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.; hide

    2016-01-01

    Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.

  8. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  9. Search algorithm for a gravitational wave signal in association with gamma ray burst GRB030329 using the LIGO detectors

    International Nuclear Information System (INIS)

    Mohanty, S D; Marka, Sz; Rahkola, R; Mukherjee, S; Leonor, I; Frey, R; Cannizzo, J; Camp, J

    2004-01-01

    One of the brightest gamma ray bursts ever recorded, GRB030329, occurred during the second science run of the LIGO detectors. At that time, both interferometers at the Hanford, WA LIGO site were in lock and were acquiring data. The data collected from the two Hanford detectors were analysed for the presence of a gravitational wave signal associated with this GRB. This paper presents a detailed description of the search algorithm implemented in the current analysis

  10. Gamma-Ray Burst Afterglows with ALMA

    Science.gov (United States)

    Urata, Y.; Huang, K.; Takahashi, S.

    2015-12-01

    We present multi-wavelength observations including sub-millimeter follow-ups for two GRB afterglows. The rapid SMA and multi-wavelength observations for GRB120326A revealed their complex emissions as the synchrotron self-inverse Compton radiation from reverse shock. The observations including ALMA for GRB131030A also showed the significant X-ray excess from the standard forward shock synchrotron model. Based on these results, we also discuss further observations for (A) constraining of the mass of progenitor with polarization, (B) the first confirmation of GRB jet collimation, and (C) revealing the origin of optically dark GRBs.

  11. Growth of chronic myeloid leukemia cells is inhibited by infection with Ad-SH2-HA adenovirus that disrupts Grb2-Bcr-Abl complexes.

    Science.gov (United States)

    Peng, Zhi; Luo, Hong-Wei; Yuan, Ying; Shi, Jing; Huang, Shi-Feng; Li, Chun-Li; Cao, Wei-Xi; Huang, Zong-Gan; Feng, Wen-Li

    2011-05-01

    The persistence of Bcr-Abl-positive cells in patients on imatinib therapy indicates that inhibition of the Bcr-Abl kinase activity alone might not be sufficient to eradicate the leukemia cells. Many downstream effectors of Bcr-Abl have been described, including activation of both the Grb2-SoS-Ras-MAPK and Grb2-Gab2-PI3K-Akt pathways. The Bcr-Abl-Grb2 interaction, which is mediated by the direct interaction of the Grb2 SH2 domain with the phospho-Bcr-Abl Y177, is required for activation of these signaling pathways. Therefore, disrupting their interaction represents a potential therapeutic strategy for inhibiting the oncogenic downstream signals of Bcr-Abl. Adenovirus Ad-SH2-HA expressing the Grb2 SH2 domain was constructed and applied in this study. As expected, Ad-SH2-HA efficiently infected CML cells and functioned by binding to the phospho-Bcr-Abl Y177 site, competitively disrupting the Grb2 SH2-phospho-Bcr-Abl Y177 complex. They induced potent anti-proliferation and apoptosis-inducing effects in CML cell lines. Moreover, the Ras, MAPK and Akt activities were significantly reduced in the Ad-SH2-HA treated cells. These were not observed with the point-mutated control adenovirus Ad-Sm-HA with abolished phospho-Bcr-Abl Y177 binding sites. These data indicate that, in addition to the direct targeting of Bcr-Abl, selective inhibition of its downstream signaling pathways may be a therapeutic option for CML, and the Ad-SH2-HA-mediated killing strategy could be explored as a promising anti-leukemia agent in CML.

  12. On the Variability of the East Australian Current: Jet Structure, Meandering, and Influence on Shelf Circulation

    Science.gov (United States)

    Archer, Matthew R.; Roughan, Moninya; Keating, Shane R.; Schaeffer, Amandine

    2017-11-01

    Given the importance of western boundary currents over a wide range of scales in the ocean, it is crucial that we understand their dynamics to accurately predict future changes. For this, we need detailed knowledge of their structure and variability. Here we investigate the jet structure of the East Australian Current (EAC), using observations from HF radars and moorings deployed at 30°S-31°S. Meandering, core velocity, width, and eddy kinetic energy (EKE) are quantified from 4 years of hourly 1.5 km resolution surface current maps (2012-2016), to obtain the most detailed representation of the surface EAC jet to date. The EAC flows predominantly over the ˜1,500 m isobath 50 km offshore but makes large amplitude displacements eastward every 65-100 days—the time scale associated with mesoscale eddy shedding at the EAC separation. Smaller-amplitude, higher-frequency meanders occur every 20-45 days. Using a coordinate frame that follows the jet, we show core velocity and EKE exhibit seasonality in both magnitude and variance, being maximum in summer (1.55 m s-1 mean core velocity), minimum in winter (0.8 m s-1). However, it is the eddy-shedding time scale that dominates jet variability. As the EAC moves shoreward, shelf temperature and along-stream velocity vary linearly with jet movement, within ˜35 km of the core. The EAC is within this range 75% of the time, demonstrating its importance to the shelf circulation. Temperature and velocity fluctuations at the 70 m (100 m) isobath are more influenced by wind (EAC encroachment), with the strongest response occurring when wind and EAC act constructively.

  13. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    International Nuclear Information System (INIS)

    Allard, D.; Allekotte, I.; Alvarez, C.; Asorey, H.; Barros, H.; Bertou, X.; Burgoa, O.; Gomez Berisso, M.; Martinez, O.; Miranda Loza, P.; Murrieta, T.; Perez, G.; Rivera, H.; Rovero, A.; Saavedra, O.; Salazar, H.; Tello, J.C.; Ticona Peralda, R.; Velarde, A.; Villasenor, L.

    2008-01-01

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst

  14. Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO)

    Energy Technology Data Exchange (ETDEWEB)

    Allard, D. [APC, CNRS et Universite Paris 7 (France); Allekotte, I. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Alvarez, C. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Asorey, H. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Barros, H. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Bertou, X. [Centro Atomico Bariloche, Instituto Balseiro (Argentina)], E-mail: bertou@cab.cnea.gov.ar; Burgoa, O. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Gomez Berisso, M. [Centro Atomico Bariloche, Instituto Balseiro (Argentina); Martinez, O. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Miranda Loza, P. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Murrieta, T.; Perez, G. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Rivera, H. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Rovero, A. [Instituto de Astronomia y Fisica del Espacio (Argentina); Saavedra, O. [Dipartimento di Fisica Generale and INFN, Torino (Italy); Salazar, H. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Tello, J.C. [Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Ticona Peralda, R.; Velarde, A. [Instituto de Investigaciones Fisicas, UMSA (Bolivia); Villasenor, L. [Facultad de Ciencias Fisico-Matematicas de la BUAP (Mexico); Instituto de Fisica y Matematicas, Universidad de Michoacan (Mexico)

    2008-09-21

    The Large Aperture GRB Observatory (LAGO) project aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique in ground-based water-Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on detector calibration and operation at high altitude, search for bursts in 4 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  15. The origin of the early-time optical emission of Swift GRB 080310

    NARCIS (Netherlands)

    Littlejohns, O.M.; Willingale, R.; O'Brien, P.T.; Beardmore, A.P.; Covino, S.; Perley, D.A.; Tanvir, N.R.; Rol, E.; Yuan, F.; Akerlof, C.; D'Avanzo, P.; Bersier, D.F.; Castro-Tirado, A.J.; Christian, P.; Cobb, B.E.; Evans, P.A.; Filippenko, A.V.; Flewelling, H.; Fugazza, D.; Hoversten, E.A.; Kamble, A.P.; Kobayashi, S.; Li, W.; Morgan, A.N.; Mundell, C.G.; Page, K.; Palazzi, E.; Quimby, R.M.; Schulze, S.; Steele, I.A.; de Ugarte Postigo, A.

    2012-01-01

    We present broad-band multiwavelength observations of GRB 080310 at redshift z= 2.43. This burst was bright and long-lived, and unusual in having extensive optical and near-infrared (IR) follow-up during the prompt phase. Using these data we attempt to simultaneously model the gamma-ray, X-ray,

  16. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led...

  17. The jet membrane experiment: downstream sampling

    International Nuclear Information System (INIS)

    Campargue, R.

    1976-01-01

    This review lecture is devoted to an invasion separation effect through a free jet structure, found in 1966 at Saclay and used as the basis for an initial French patent on the separation of gas molecules of different masses. It operates by the differential penetration of a gas or isotopic mixture into the structure of a free jet

  18. Investigating the Structures of Turbulence in a Multi-Stream, Rectangular, Supersonic Jet

    Science.gov (United States)

    Magstadt, Andrew S.

    Supersonic flight has become a standard for military aircraft, and is being seriously reconsidered for commercial applications. Engine technologies, enabling increased mission capabilities and vehicle performance, have evolved nozzles into complex geometries with intricate flow features. These engineering solutions have advanced at a faster rate than the understanding of the flow physics, however. The full consequences of the flow are thus not known, and using predictive tools becomes exceedingly difficult. Additionally, the increasing velocities associated with supersonic flight exacerbate the preexisting jet noise problem, which has troubled the engineering community for nearly 65 years. Even in the simplest flows, the full consequences of turbulence, e.g. noise production, are not fully understood. For composite flows, the fluid mechanics and acoustic properties have been studied even less sufficiently. Before considering the aeroacoustic problem, the development, structure, and evolution of the turbulent flow-field must be considered. This has prompted an investigation into the compressible flow of a complex nozzle. Experimental evidence is sought to explain the stochastic processes of the turbulent flow issuing from a complex geometry. Before considering the more complicated configuration, an experimental campaign of an axisymmetric jet is conducted. The results from this study are presented, and guide research of the primary flow under investigation. The design of a nozzle representative of future engine technologies is then discussed. Characteristics of this multi-stream rectangular supersonic nozzle are studied via time-resolved schlieren imaging, stereo PIV measurements, dynamic pressure transducers, and far-field acoustics. Experiments are carried out in the anechoic chamber at Syracuse University, and focus primarily on the flow-field. An extensive data set is generated, which reveals a detailed view of a very complex flow. Shear, shock waves, unequal

  19. The rapidly flaring afterglow of the very bright and energetic GRB 070125

    NARCIS (Netherlands)

    Updike, A.C.; Haislip, J.B.; Nysewander, M.C.; Fruchter, A.S.; Kann, D.A.; Klose, S.; Milne, P.A.; Williams, G.G.; Zheng, W.; Hergenrother, C.W.; Prochaska, J.X.; Halpern, J.P.; Mirabal, N.; Thorstensen, J.R.; van der Horst, A.J.; Starling, R.L.C.; Racusin, J.L.; Burrows, D.N.; Kuin, N.P.M.; Roming, P.W.A.; Bellm, E.; Hurley, K.; Li, W.; Filippenko, A.V.; Blake, C.; Starr, D.; Falco, E.E.; Brown, W.R.; Dai, X.; Deng, J.; Xin, L.; Qiu, Y.; Wei, J.; Urata, Y.; Nanni, D.; Maiorano, E.; Palazzi, E.; Greco, G.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Pizzichini, G.; Terra, F.; Misra, K.; Bhatt, B.C.; Anupama, G.C.; Fan, X.; Jiang, L.; Wijers, R.A.M.J.; Reichart, D.E.; Eid, H.A.; Bryngelson, G.; Puls, J.; Goldthwaite, R.C.; Hartmann, D.H.

    2008-01-01

    We report on multiwavelength observations, ranging from X-ray to radio wave bands, of the IPN-localized gamma-ray burst GRB 070125. Spectroscopic observations reveal the presence of absorption lines due to O I, Si II, and C IV, implying a likely redshift of z = 1.547. The well-sampled light curves,

  20. Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere

    International Nuclear Information System (INIS)

    Pasko, V P

    2008-01-01

    An overview of general phenomenology and proposed physical mechanisms of large scale electrical discharges termed 'blue jets' and 'gigantic jets' observed at high altitude in the Earth's atmosphere above thunderstorms is presented. The primary emphasis is placed on summarizing available experimental data on the observed morphological features of upward jet discharges and on the discussion of recently advanced theories describing electrodynamic conditions, which facilitate escape of conventional lightning leaders from thundercloud tops and their upward propagation toward the ionosphere. It is argued that the filamentary plasma structures observed in blue jet and gigantic jet discharges are directly linked to the processes in streamer zones of lightning leaders, scaled by a significant reduction of air pressure at high altitudes.

  1. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  2. The bright optical flash and afterglow from the gamma-ray burst GRB 130427A.

    Science.gov (United States)

    Vestrand, W T; Wren, J A; Panaitescu, A; Wozniak, P R; Davis, H; Palmer, D M; Vianello, G; Omodei, N; Xiong, S; Briggs, M S; Elphick, M; Paciesas, W; Rosing, W

    2014-01-03

    The optical light generated simultaneously with x-rays and gamma rays during a gamma-ray burst (GRB) provides clues about the nature of the explosions that occur as massive stars collapse. We report on the bright optical flash and fading afterglow from powerful burst GRB 130427A. The optical and >100-megaelectron volt (MeV) gamma-ray flux show a close correlation during the first 7000 seconds, which is best explained by reverse shock emission cogenerated in the relativistic burst ejecta as it collides with surrounding material. At later times, optical observations show the emergence of emission generated by a forward shock traversing the circumburst environment. The link between optical afterglow and >100-MeV emission suggests that nearby early peaked afterglows will be the best candidates for studying gamma-ray emission at energies ranging from gigaelectron volts to teraelectron volts.

  3. Saturn's equatorial jet structure from Cassini/ISS

    Science.gov (United States)

    García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo

    2010-05-01

    Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.

  4. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    Energy Technology Data Exchange (ETDEWEB)

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Japelj, J.; Gomboc, A. [Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C.; Dichiara, S. [Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Harrison, R. M. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Melandri, A. [INAF—Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R. [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Järvinen, A. [AIP—Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Jelínek, M., E-mail: drejc.kopac@fmf.uni-lj.si [ASU-CAS—Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondřejov (Czech Republic)

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  5. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    International Nuclear Information System (INIS)

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Dichiara, S.; Harrison, R. M.; Melandri, A.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R.; Järvinen, A.; Jelínek, M.

    2015-01-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles

  6. Grb-IR: A SH2-Domain-Containing Protein that Binds to the Insulin Receptor and Inhibits Its Function

    Science.gov (United States)

    Liu, Feng; Roth, Richard A.

    1995-10-01

    To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

  7. Gas jet structure influence on high harmonic generation

    OpenAIRE

    Grant-Jacob, James; Mills, Benjamin; Butcher, Thomas J.; Chapman, Richard T.; Brocklesby, William S.; Frey, Jeremy G.

    2011-01-01

    Gas jets used as sources for high harmonic generation (HHG) have a complex three-dimensional density and velocity profile. This paper describes how the profile influences the generation of extreme-UV light. As the position of the laser focus is varied along the jet flow axis, we show that the intensity of the output radiation varies by approximately three times, with the highest flux being observed when the laser is focused into the Mach disc. The work demonstrated here will aid in the optimi...

  8. Time-frequency analysis of submerged synthetic jet

    Science.gov (United States)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  9. Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance

    Directory of Open Access Journals (Sweden)

    Can Zhou

    2018-04-01

    Full Text Available To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement.

  10. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at contamination by the host galaxy light at short wavelengths so that the scenario with an extreme 2175 Å extinction bump can be excluded. We localise the GRB to be at a projected distance of approximately 4 kpc from the centre of the host galaxy. Based on emission-line diagnostics of the four detected nebular lines, Hα, Hβ, [O II] and [O III], we find the host to be a modestly star forming (SFR = 1.34 ± 0.04 M⊙ yr-1) and relatively metal poor (Z=0.35+0.15-0.11 Z⊙) galaxy with a large dust content, characterised by a measured visual attenuation of AV = 1.74 ± 0.41 mag. We compare the host to other GRB hosts at similar redshifts and find that it is unexceptional in all its physical properties. We model the extinction curve of the host-corrected afterglow and show that the standard dust properties causing the reddening seen in the Local Group are inadequate in describing the steep drop. We thus conclude that the steep extinction curve seen in the afterglow towards the GRB is of exotic origin and issightline-dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2

  11. Energy dependence of jet-structures and determination of the strong coupling constant αsub(s) in e+e- annihilation with the CELLO detector

    International Nuclear Information System (INIS)

    Hopp, G.

    1985-07-01

    We considered multihadronic events and we studied the energy dependence of the jet-structure of those events. We confirmed the existence of 3-jet and 4-jet events in high energy data as predicted by QCD. In parallel we checked the energy dependence of different jet-measures which is predicted by the fragmentation models. We determined the strong coupling constant αsub(s) using different methods and we found a strong model dependence of the αsub(s) determination in second order QCD. The study of the particle density between the jet-axes resulted in a light preference for the LUND-String model as compared to models with independent jet-fragmentation. (orig.) [de

  12. Detection of GRB 060927 at z = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NARCIS (Netherlands)

    Ruiz-Velasco, A.E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J.P.U.; Starling, R.L.C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M.I.; Ashley, M.C.B.; Barthelmy, S.D.; Bersier, D.F.; Cerón, J.M.; Castro-Tirado, A.J.; Gehrels, N.; Gögüs, E.; Gorosabel, J.; Guidorzi, C.; Güver, T.; Hjorth, J.; Horns, D.; Huang, K.Y.; Jakobsson, P.; Jensen, B.L.; Kiziloglu, Ü.; Kouveliotou, C.; Krimm, H.A.; Ledoux, C.; Levan, A.J.; Marsh, T.; McKay, T.; Melandri, A.; Milvang-Jensen, B.; Mundell, C.G.; O'Brien, P.T.; Özel, M.; Phillips, A.; Quimby, R.; Rowell, G.; Rujopakarn, W.; Rykoff, E.S.; Schaefer, B.E.; Sollerman, J.; Tanvir, N.R.; Thöne, C.C.; Urata, Y.; Vestrand, W.T.; Vreeswijk, P.M.; Watson, D.; Wheeler, J.C.; Wijers, R.A.M.J.; Wren, J.; Yost, S.A.; Yuan, F.; Zhai, M.; Zheng, W.K.

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture ground-based telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB.

  13. Direct numerical simulation of free and forced square jets

    International Nuclear Information System (INIS)

    Gohil, Trushar B.; Saha, Arun K.; Muralidhar, K.

    2015-01-01

    Highlights: • Free square jet at Re = 500–2000 is studied using DNS. • Forced square jet at Re = 1000 subjected to varicose perturbation is also investigated at various forcing frequencies. • Vortex interactions within the jet and jet spreading are affected both for free and forced jets. • Perturbation at higher frequency shows axis-switching. - Abstract: Direct numerical simulation (DNS) of incompressible, spatially developing square jets in the Reynolds number range of 500–2000 is reported. The three-dimensional unsteady Navier–Stokes equations are solved using high order spatial and temporal discretization. The objective of the present work is to understand the evolution of free and forced square jets by examining the formation of large-scale structures. Coherent structures and related interactions of free jets suggest control strategies that can be used to achieve enhanced spreading and mixing of the jet with the surrounding fluid. The critical Reynolds number for the onset on unsteadiness in an unperturbed free square jet is found to be 875–900 while it reduces to the range 500–525 in the presence of small-scale perturbations. Disturbances applied at the flow inlet cause saturation of KH-instability and early transition to turbulence. Forced jet calculations have been carried out using varicose perturbation with amplitude of 15%, while frequency is independently varied. Simulations show that the initial development of the square jet is influenced by the four corners leading to the appearance hairpin structures along with the formation of vortex rings. Farther downstream, adjacent vortices strongly interact leading to their rapid breakup. Excitation frequencies in the range 0.4–0.6 cause axis-switching of the jet cross-section. Results show that square jets achieve greater spreading but are less controllable in comparison to the circular ones

  14. Flame Structure and Dynamics for an Array of Premixed Methane-Air Jets

    Science.gov (United States)

    Nigam, Siddharth P.; Lapointe, Caelan; Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Rieker, Gregory B.; Hamlington, Peter E.

    2017-11-01

    Premixed flames have been studied extensively, both experimentally and computationally, and their properties are reasonably well characterized for a range of conditions and configurations. However, the premixed combustion process is potentially much more difficult to predict when many such flames are arranged in a closely spaced array. These arrays must be better understood, in particular, for the design of industrial burners used in chemical and heat treatment processes. Here, the effects of geometric array parameters (e.g., angle and diameter of jet inlets, number of inlets and their respective orientation) and operating conditions (e.g., jet velocities, fuel-air ratio) on flame structure and dynamics are studied using large eddy simulations (LES). The simulations are performed in OpenFOAM using multi-step chemistry for a methane-air mixture, and temperature and chemical composition fields are characterized for a variety of configurations as functions of height above the array. Implications of these results for the design and operation of industrial burners are outlined.

  15. Theoretical Developments in QCD Jet Energy Loss

    Energy Technology Data Exchange (ETDEWEB)

    Mehtar-Tani, Yacine

    2016-12-15

    We review the recent developments in the theory of jet-quenching. First, we analyze the coherent vacuum cascade and incoherent medium-induced cascade separately. We then discuss the interplay between the two kinds of cascade and the resulting partial decoherence of the inner jet structure. Finally, we report on recent calculations of higher-order corrections. In particular, the dominant radiative corrections to jet observables that yield the renormalization of the jet-quenching parameter are addressed.

  16. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  17. The Accuracy of GBM GRB Localizations

    Science.gov (United States)

    Briggs, Michael Stephen; Connaughton, V.; Meegan, C.; Hurley, K.

    2010-03-01

    We report an study of the accuracy of GBM GRB localizations, analyzing three types of localizations: those produced automatically by the GBM Flight Software on board GBM, those produced automatically with ground software in near real time, and localizations produced with human guidance. The two types of automatic locations are distributed in near real-time via GCN Notices; the human-guided locations are distributed on timescale of many minutes or hours using GCN Circulars. This work uses a Bayesian analysis that models the distribution of the GBM total location error by comparing GBM locations to more accurate locations obtained with other instruments. Reference locations are obtained from Swift, Super-AGILE, the LAT, and with the IPN. We model the GBM total location errors as having systematic errors in addition to the statistical errors and use the Bayesian analysis to constrain the systematic errors.

  18. PHOTOSPHERIC EMISSION FROM STRATIFIED JETS

    International Nuclear Information System (INIS)

    Ito, Hirotaka; Nagataki, Shigehiro; Ono, Masaomi; Lee, Shiu-Hang; Mao, Jirong; Yamada, Shoichi; Pe'er, Asaf; Mizuta, Akira; Harikae, Seiji

    2013-01-01

    We explore photospheric emissions from stratified two-component jets, wherein a highly relativistic spine outflow is surrounded by a wider and less relativistic sheath outflow. Thermal photons are injected in regions of high optical depth and propagated until the photons escape at the photosphere. Because of the presence of shear in velocity (Lorentz factor) at the boundary of the spine and sheath region, a fraction of the injected photons are accelerated using a Fermi-like acceleration mechanism such that a high-energy power-law tail is formed in the resultant spectrum. We show, in particular, that if a velocity shear with a considerable variance in the bulk Lorentz factor is present, the high-energy part of observed gamma-ray bursts (GRBs) photon spectrum can be explained by this photon acceleration mechanism. We also show that the accelerated photons might also account for the origin of the extra-hard power-law component above the bump of the thermal-like peak seen in some peculiar bursts (e.g., GRB 090510, 090902B, 090926A). We demonstrate that time-integrated spectra can also reproduce the low-energy spectrum of GRBs consistently using a multi-temperature effect when time evolution of the outflow is considered. Last, we show that the empirical E p -L p relation can be explained by differences in the outflow properties of individual sources

  19. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.; Kupschus, P.

    1984-09-01

    The report is in sections, as follows. (1) Introduction and summary. (2) A brief description of the origins of the JET Project within the EURATOM fusion programme and the objectives and aims of the device. The basic JET design and the overall philosophy of operation are explained and the first six months of operation of the machine are summarised. The Project Team Structure adopted for the Operation Phase is set out. Finally, in order to set JET's progress in context, other large tokamaks throughout the world and their achievements are briefly described. (3) The activities and progress within the Operation and Development Department are set out; particularly relating to its responsibilities for the operation and maintenance of the tokamak and for developing the necessary engineering equipment to enhance the machine to full performance. (4) The activities and progress within the Scientific Department are described; particularly relating to the specification, procurement and operation of diagnostic equipment; definition and execution of the programme; and the interpretation of experimental results. (5) JET's programme plans for the immediate future and a broad outline of the JET Development Plan to 1990 are given. (author)

  20. Spectroscopy of the short-hard GRB 130603B

    DEFF Research Database (Denmark)

    Postigo, A. de Ugarte; Thoene, C. C.; Rowlinson, A.

    2014-01-01

    with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary........3565+/-0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of A_V = 0.86+/-0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), N_HX / A_V is consistent...

  1. The role of the intense vorticity structures in the turbulent structure of the jet edge

    Science.gov (United States)

    Reis, Ricardo J. N.; da Silva, Carlos B.; Pereira, José C. F.

    In free shear flows (jets, mixing layers and wakes) there is an highly contorted interface dividing the turbulent from the non-turbulent flow: the turbulent/non-turbulent (T/NT) interface. Across this interface important exchanges of mass, momentum and heat take place, in a process known as turbulent entrainment. Recently, the classical idea of the turbulent entrainment caused by engulfing [1] have been questioned, and it has been shown that the entrainment is mainly caused by small scale eddy motions (nibbling) [2, 3]). However, it is still argued that the entrainment rate is still largely governed by the large scale motions induced by the intense vorticity structures (IVS). The goal of the present work is to assess characterize the geometry and analyze the influence of these large scales structures in shaping the turbulent/nonturbulent interface.

  2. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.

    Science.gov (United States)

    Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D

    1993-05-06

    Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.

  3. The physics of gamma-ray bursts & relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pawan, E-mail: pk@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics & Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2015-02-24

    We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to 100s GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short duration bursts are associated with old, roughly solar mass, compact stars. The question of whether a black-hole or a strongly magnetized, rapidly rotating neutron star is produced in these explosions is also discussed. We provide a brief summary of what we have learned about relativistic collisionless shocks and particle acceleration from GRB afterglow studies, and discuss the current understanding of radiation mechanism during the prompt emission phase. We discuss theoretical predictions of possible high-energy neutrino emission from GRBs and the current observational constraints. Finally, we discuss how these explosions may be used to study cosmology, e.g. star formation, metal enrichment, reionization history, as well as the formation of first stars and galaxies in the universe.

  4. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  5. Gas Mixtures for Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.

    2015-01-01

    Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechani...

  6. GIANT X-RAY BUMP IN GRB 121027A: EVIDENCE FOR FALL-BACK DISK ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xuefeng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Hou Shujin [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Lei Weihua, E-mail: xfwu@pmo.ac.cn, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-04-20

    A particularly interesting discovery in observations of GRB 121027A is that of a giant X-ray bump detected by the Swift/X-Ray Telescope. The X-ray afterglow re-brightens sharply at {approx}10{sup 3} s after the trigger by more than two orders of magnitude in less than 200 s. This X-ray bump lasts for more than 10{sup 4} s. It is quite different from typical X-ray flares. In this Letter we propose a fall-back accretion model to interpret this X-ray bump within the context of the collapse of a massive star for a long-duration gamma-ray burst. The required fall-back radius of {approx}3.5 Multiplication-Sign 10{sup 10} cm and mass of {approx}0.9-2.6 M{sub Sun} imply that a significant part of the helium envelope should survive through the mass loss during the last stage of the massive progenitor of GRB 121027A.

  7. Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jun-Jie; Wu, Xue-Feng; Shao, Lang [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Zhang, Bin-Bin [Instituto de Astrofísica de Andalucá (IAA-CSIC), P.O. Box 03004, E-18080 Granada (Spain); Mészáros, Peter [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Kostelecký, V. Alan, E-mail: xfwu@pmo.ac.cn, E-mail: kostelec@indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States)

    2017-06-20

    Violations of Lorentz invariance can lead to an energy-dependent vacuum dispersion of light, which results in arrival-time differences of photons with different energies arising from a given transient source. In this work, direction-dependent dispersion constraints are obtained on nonbirefringent Lorentz-violating effects using the observed spectral lags of the gamma-ray burst GRB 160625B. This burst has unusually large high-energy photon statistics, so we can obtain constraints from the true spectral time lags of bunches of high-energy photons rather than from the rough time lag of a single highest-energy photon. Also, GRB 160625B is the only burst to date having a well-defined transition from positive lags to negative lags, providing a unique opportunity to distinguish Lorentz-violating effects from any source-intrinsic time lag in the emission of photons of different energy bands. Our results place comparatively robust two-sided constraints on a variety of isotropic and anisotropic coefficients for Lorentz violation, including the first bounds on Lorentz-violating effects from operators of mass dimension 10 in the photon sector.

  8. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  9. The spatial structure of cathode plasma jets in a vacuum arc

    International Nuclear Information System (INIS)

    Krinberg, I.A.; Zverev, E.A.

    1999-01-01

    It is shown that, in cathode plasma jets of a vacuum arc with an interelectrode gap of up to 1 m and a current of 10 2 -10 3 A, there exist three characteristic regions with different ratios β of the plasma pressure to the magnetic field pressure. The plasma emitted from cathode microspots, in the form of microjets, is heated and accelerated predominantly in the region near the cathode (z -2 ), in which β≅10 2 -10 3 . After the microjets merge into one jet, the plasma in the region z≅0.03-3 cm begins to move toward the jet axis because of the compression of the jet by its own magnetic field (β<1). Just before the compression reaches its maximum, the density, temperature, and potential sharply increase, and the compression comes to an end. In the region z≥3 cm, the cathode plasma jet looks like a paraboloid of revolution, whose surface oscillates about the equilibrium position (β≅1), which causes the density, temperature, and potential to oscillate in a similar fashion

  10. Experimental study for thermal striping phenomena of parallel triple-jet. Effects of the difference between hot jets and cold jet in discharged temperature and velocity on convective mixing

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Tokuhiro, A.; Miyakoshi, Hiroyuki

    1996-10-01

    Elucidation on thermal hydraulic behavior of Thermal Striping is of importance for a reactor safety, which is arisen form exit temperature difference of fuel subassemblies. Since its temperature fluctuation may cause thermal cycle fatigue on upper internal structure (UIS). A series of experiments was performed using the Thermal Striping water test facility in order to investigate the mixing phenomena on three vertical jets with exit velocity and temperature differences. The parameters were the velocity and temperature of the jets at discharge nozzles. The local velocities were measured by Ultrasound Velocity Profile (UVP) monitor and Laser Doppler Anemometry (LDA), and temperature distributions were measured by thermocouples. This report mainly examined the experimental results of temperature measurements. There is a typical region where the gradient of the temperature variation in the triple-jet: that is the Convective Mixing region. This region is independent of the discharged temperature difference, and spreads with larger velocity difference among the jets. For isovelocity discharge conditions, non-dimensional temperature fields are almost independent of discharged temperature differences within Convective Mixing region. Consequently, the effect of temperature difference is negligible compared to that of velocity difference on the flow field. There are remarkable frequencies of 2-5Hz in temperature fluctuation due to a oscillation of the central jet (cold jet) for this condition. While, for non-isovelocity discharge condition, there are no remarkable frequencies. Hence, it is clear that there is the region where a large thermal fatigue is imposed by Thermal Striping against structures of Fast Reactor. It is suggested that the structures have to be placed outside of Convective Mixing region. Also, it is considered that typical frequencies in temperature fluctuation are controlled by giving a discharge velocity difference between cold and hot jets. (J.P.N.)

  11. The jet membrane-experiment: downstream sampling

    International Nuclear Information System (INIS)

    Campargue, R.

    1976-01-01

    The invasion separation effect of the free jet structure was found in 1966 at Saclay. In the Downstream Sampling Configuration patended by Campargue (1967), the light fraction is withdrawn from the supersonic central core, by skimming the separating free jet. From experimental and theoretical results obtained for gas and isotopic mixtures, the following points linked to operation and equipment costs, are considered: system description; influence of mass ratio, expansion ratio, nature of separating gas, ratio of upflow to separating jet flow, rarefaction. Fron an uninteresting aspect of Jet Membrane (elimination of background penetration), a new principle has been discovered to produce nozzle beams which may be of great interest for other separation processes involving free jets and/or molecular beams [fr

  12. The bright optical afterglow of the long GRB 001007

    DEFF Research Database (Denmark)

    Ceron, J.M.C.; Castro-Tirado, A.J.; Gorosabel, J.

    2002-01-01

    We present optical follow up observations of the long GRB 001007 between 6.14 hours and similar to468 days after the event. An unusually bright optical afterglow (OA) was seen to decline following a steep power law decay with index alpha = -2.03 +/- 0.11, possibly indicating a break in the light...... curve at t - t(0) hours after the gamma ray event provide tentative (1.2σ) evidence for a break in the optical light curve. The spectral index β of the OA yields -1.24 +/- 0.57. These values may be explained both...

  13. Laser cutting technology using water jet waveguide

    International Nuclear Information System (INIS)

    Akiba, Miyuki; Shiihara, Katsunori; Chida, Itaru

    2013-01-01

    Laser with water jet is examined to cut in-vessel structure. However, it is necessary to increase the break-up length of water jet to cut a thick plate. Therefore, the effects of the water jet parameter (water pressure, assist gas, laser power) on break-up length were investigated. It was found from observation results of water jet that the longest break-up length is about 135mm under condition of water pressure 40 MPa, laser power 30W and helium assist gas 1L/min. (author)

  14. Constraints on the optical afterglow emission of the short/hard burst GRB 010119

    DEFF Research Database (Denmark)

    Gorosabel, J.; Andersen, M.I.; Hjorth, J.

    2002-01-01

    We report optical observations of the short/hard burst GRB 010119 error box, one of the smallest error boxes reported to date for short/hard GRBs. Limits of R >22.3 and I >21.2 are imposed by observations carried out 20.31 and 20.58 hours after the gamma-ray event, respectively. They represent th...

  15. Deep Photometry of GRB 041006 Afterglow: Hypernova Bump at Redshift z = 0.716

    Science.gov (United States)

    Stanek, K. Z.; Garnavich, P. M.; Nutzman, P. A.; Hartman, J. D.; Garg, A.; Adelberger, K.; Berlind, P.; Bonanos, A. Z.; Calkins, M. L.; Challis, P.; Gaudi, B. S.; Holman, M. J.; Kirshner, R. P.; McLeod, B. A.; Osip, D.; Pimenova, T.; Reiprich, T. H.; Romanishin, W.; Spahr, T.; Tegler, S. C.; Zhao, X.

    2005-06-01

    We present deep optical photometry of the afterglow of gamma-ray burst (GRB) 041006 and its associated hypernova obtained over 65 days after detection (55 R-band epochs on 10 different nights). Our early data (tVatican Advanced Technology Telescope, the Magellan 6.5 m Baade and Clay telescopes, and the Keck II 10 m telescope.

  16. Design and research on nuclear power plant EAS jet pump

    International Nuclear Information System (INIS)

    Chen Xingjiang; Fang Xiquan; Xie Jian; Yang Bin; Wang Xueling; Qi Yanli

    2014-01-01

    The jet pump is an important part of the PWR containment spray system. It will be performed the security functions under the accident conditions, which the containment spray system adds the right amount of sodium hydroxide through the jet pump to spray water. This paper describes the principle of jet pump. And the optimum structure dimensions were calculated according to the performance parameter and requirement of the jet pump. On the basis of foreign EAS jet pump design experience, the structure dimensions were modified according to the CFD analysis and performance test. Finally, the results of CFD analysis and performance test were provided. (authors)

  17. More Insight of Piezoelectric-based Synthetic Jet Actuators

    Science.gov (United States)

    Housley, Kevin; Amitay, Michael

    2016-11-01

    Increased understanding of the internal flow of piezoelectric-based synthetic jet actuators is needed for the development of specialized actuator cavity geometries to increase jet momentum coefficients and tailor acoustic resonant frequencies. Synthetic jet actuators can benefit from tuning of the structural resonant frequency of the piezoelectric diaphragm(s) and the acoustic resonant frequency of the actuator cavity such that they experience constructive coupling. The resulting coupled behavior produces increased jet velocities. The ability to design synthetic jet actuators to operate with this behavior at select driving frequencies allows for them to be better used in flow control applications, which sometimes require specific jet frequencies in order to utilize the natural instabilities of a given flow field. A parametric study of varying actuator diameters was conducted to this end. Phase-locked data were collected on the jet velocity, the cavity pressure at various locations, and the three-dimensional deformation of the surface of the diaphragm. These results were compared to previous analytical work on the interaction between the structural resonance of the diaphragm and the acoustic resonance of the cavity. Funded by the Boeing Company.

  18. Jet supercooling and molecular jet spectroscopy

    International Nuclear Information System (INIS)

    Wharton, L.; Levy, D.

    1979-01-01

    The marriage of the laser and the seeded supersonic jet has generated a family of new optical spectroscopic results. We shall discuss the essential features of the technique and some results. The results will include structural and dynamical views of NO 2 , NaAr, and I 2 -noble gas complexes. The extension of the method to heavier systems is illustrated with free base phthalocyanine

  19. THE BURST CLUSTER: DARK MATTER IN A CLUSTER MERGER ASSOCIATED WITH THE SHORT GAMMA-RAY BURST, GRB 050509B

    International Nuclear Information System (INIS)

    Dahle, H.; Sarazin, C. L.; Lopez, L. A.; Kouveliotou, C.; Patel, S. K.; Rol, E.; Van der Horst, A. J.; Wijers, R. A. M. J.; Fynbo, J.; Michałowski, M. J.; Burrows, D. N.; Grupe, D.; Gehrels, N.; Ramirez-Ruiz, E.

    2013-01-01

    We have identified a merging galaxy cluster with evidence of two distinct subclusters. The X-ray and optical data suggest that the subclusters are presently moving away from each other after closest approach. This cluster merger was discovered from observations of the first well-localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope error position of the source is coincident with a cluster of galaxies ZwCl 1234.0+02916, while the subsequent Swift/X-Ray Telescope localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained in this field to constrain the evolution of the GRB afterglow, including a total of 27,480 s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys, among the deepest imaging ever obtained toward a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis based on these data, including mapping of the total mass distribution of the merger system with high spatial resolution. When combined with Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and Swift/XRT observations, we are able to investigate the dynamical state of the merger to better understand the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, which is somewhat similar to that of the famous 'Bullet cluster', and we conclude that this 'Burst cluster' adds another candidate to the previously known merger systems for determining the nature of dark matter, as well as for studying the environment of a short GRB. Finally, we discuss potential connections between the cluster dynamical state and/or matter composition, and compact object mergers, which is currently the leading model for the origin of short GRBs

  20. THE BURST CLUSTER: DARK MATTER IN A CLUSTER MERGER ASSOCIATED WITH THE SHORT GAMMA-RAY BURST, GRB 050509B

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Sarazin, C. L. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Lopez, L. A. [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664H, Cambridge, MA 02139 (United States); Kouveliotou, C. [Space Science Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Patel, S. K. [Optical Sciences Corporation, 6767 Old Madison Pike, Suite 650, Huntsville, AL 35806 (United States); Rol, E.; Van der Horst, A. J.; Wijers, R. A. M. J. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam (Netherlands); Fynbo, J.; Michalowski, M. J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries vej 30, DK-2100 Copenhagen (Denmark); Burrows, D. N.; Grupe, D. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gehrels, N. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ramirez-Ruiz, E., E-mail: hdahle@astro.uio.no [Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95060 (United States)

    2013-07-20

    We have identified a merging galaxy cluster with evidence of two distinct subclusters. The X-ray and optical data suggest that the subclusters are presently moving away from each other after closest approach. This cluster merger was discovered from observations of the first well-localized short-duration gamma-ray burst (GRB), GRB 050509B. The Swift/Burst Alert Telescope error position of the source is coincident with a cluster of galaxies ZwCl 1234.0+02916, while the subsequent Swift/X-Ray Telescope localization of the X-ray afterglow found the GRB coincident with 2MASX J12361286+2858580, a giant red elliptical galaxy in the cluster. Deep multi-epoch optical images were obtained in this field to constrain the evolution of the GRB afterglow, including a total of 27,480 s exposure in the F814W band with Hubble Space Telescope Advanced Camera for Surveys, among the deepest imaging ever obtained toward a known galaxy cluster in a single passband. We perform a weak gravitational lensing analysis based on these data, including mapping of the total mass distribution of the merger system with high spatial resolution. When combined with Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and Swift/XRT observations, we are able to investigate the dynamical state of the merger to better understand the nature of the dark matter component. Our weak gravitational lensing measurements reveal a separation of the X-ray centroid of the western subcluster from the center of the mass and galaxy light distributions, which is somewhat similar to that of the famous 'Bullet cluster', and we conclude that this 'Burst cluster' adds another candidate to the previously known merger systems for determining the nature of dark matter, as well as for studying the environment of a short GRB. Finally, we discuss potential connections between the cluster dynamical state and/or matter composition, and compact object mergers, which is currently the leading model for the

  1. GRB 090926A AND BRIGHT LATE-TIME FERMI LARGE AREA TELESCOPE GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Swenson, C. A.; Roming, P. W. A.; Vetere, L.; Kennea, J. A.; Maxham, A.; Zhang, B. B.; Zhang, B.; Schady, P.; Holland, S. T.; Kuin, N. P. M.; Oates, S. R.; De Pasquale, M.; Page, K. L.

    2010-01-01

    GRB 090926A was detected by both the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. Swift follow-up observations began ∼13 hr after the initial trigger. The optical afterglow was detected for nearly 23 days post trigger, placing it in the long-lived category. The afterglow is of particular interest due to its brightness at late times, as well as the presence of optical flares at T0+10 5 s and later, which may indicate late-time central engine activity. The LAT has detected a total of 16 gamma-ray bursts; nine of these bursts, including GRB 090926A, also have been observed by Swift. Of the nine Swift-observed LAT bursts, six were detected by UVOT, with five of the bursts having bright, long-lived optical afterglows. In comparison, Swift has been operating for five years and has detected nearly 500 bursts, but has only seen ∼30% of bursts with optical afterglows that live longer than 10 5 s. We have calculated the predicted gamma-ray fluence, as would have been seen by the Burst Alert Telescope (BAT) on board Swift, of the LAT bursts to determine whether this high percentage of long-lived optical afterglows is unique, when compared to BAT-triggered bursts. We find that, with the exception of the short burst GRB 090510A, the predicted BAT fluences indicate that the LAT bursts are more energetic than 88% of all Swift bursts and also have brighter than average X-ray and optical afterglows.

  2. Algorithm for the real-structure design of neutron supermirrors

    International Nuclear Information System (INIS)

    Pleshanov, N.K.

    2004-01-01

    The effect of structure imperfections of neutron supermirrors on their performance is well known. Nevertheless, supermirrors are designed with the algorithms based on the theories of reflection from perfect layered structures. In the present paper an approach is suggested, in which the design of a supermirror is made on the basis of its real-structure model (the RSD algorithm) with the use of exact numerical methods. It allows taking the growth laws and the reflectance of real structures into account. The new algorithm was compared with the Gukasov-Ruban-Bedrizova (GRB) algorithm and with the most frequently used algorithm of Hayter and Mook (HM). Calculations showed that, when the parameters of the algorithms are chosen so that the supermirrors designed for a given angular acceptance m have the same number of bilayers, (a) for perfect layers the GRB, HM and RSD algorithms generate sequences of practically the same reflectance; (b) for real structures with rough interfaces and interdiffusion the GRB and HM algorithms generate sequences with insufficient number of thinner layers and the RSD algorithm turns out to be more responsive and efficient. The efficiency of the RSD algorithm increases for larger m. In addition, calculations have been carried out to demonstrate the effect of fabrication errors and absorption on the reflectance of Ni/Ti supermirrors

  3. Jet production in photon-photon interactions

    International Nuclear Information System (INIS)

    Berger, C.; Genzel, H.; Lackas, W.; Pielorz, J.; Raupach, F.; Wagner, W.; Buerger, J.; Criegee, L.; Deuter, A.; Franke, G.; Gerke, C.; Knies, G.; Lewendel, B.; Meyer, J.; Michelsen, U.; Pape, K.H.; Timm, U.; Winter, G.G.; Zimmermann, W.; Zachara, M.; Ferrarotto, F.; Gaspero, M.; Stella, B.; Bussey, P.J.; Cartwright, S.L.; Dainton, J.B.; Hendry, D.; King, B.T.; Raine, C.; Scarr, J.M.; Skillicorn, I.O.; Smith, K.M.; Thomson, J.C.; Achterberg, O.; Blobel, V.; Burkart, D.; Diehlmann, K.; Feindt, M.; Kapitza, H.; Koppitz, B.; Krueger, M.; Poppe, M.; Spitzer, H.; Staa, R. van; Almeida, F.; Baecker, A.; Barreiro, F.; Brandt, S.; Derikum, K.; Grupen, C.; Meyer, H.J.; Mueller, H.; Neumann, B.; Rost, M.; Stupperich, K.; Zech, G.; Alexander, G.; Bella, G.; Gnat, Y.; Grunhaus, J.; Junge, H.; Kraski, K.; Maxeiner, C.; Maxeiner, H.; Meyer, H.; Schmidt, D.

    1987-01-01

    We present results on jet production in γγ interactions where both photons are quasi-real. The invariant masses of the hadronic system are limited to the range 4≤W vis 12 GeV/c 2 . The data approach the Quark-Parton-Model (QPM) expectation at the highest p T jet values (≥4 GeV/c). Jet production at low p T (≤1 GeV/c) can be described by a Vector Dominance derived model. The data also have a component with no apparent jet structure in the range, 1.0≤p T jet ≤4.0 GeV/c which can be described by phase space or by models of the QCD hard scattering processes γγ→qanti qg and γγ→qanti qqanti q. (orig.)

  4. Jet measurements in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Havener, Laura Brittany; The ATLAS collaboration

    2017-01-01

    In relativistic heavy-ion collisions, a hot medium with a high density of unscreened colour charges is produced. Jets are produced by parton-parton scatterings in the early stages of the collision, and are observed to be attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of energy loss is the modification of both dijet transverse energy balance, and a similar modification of photon-jet correlations. Finally, the internal structure of jets is also observed to be modified, from a careful study of fragmentation functions. In this talk, the latest ATLAS results on single jet suppression, dijet suppression, photon-jet correlations, and modification of the jet internal structure in both p+Pb and Pb+Pb collisions, compared to pp, will be presented.

  5. Constraining reconnection region conditions using imaging and spectroscopic analysis of a coronal jet

    Science.gov (United States)

    Brannon, Sean; Kankelborg, Charles

    2017-08-01

    Coronal jets typically appear as thin, collimated structures in EUV and X-ray wavelengths, and are understood to be initiated by magnetic reconnection in the lower corona or upper chromosphere. Plasma that is heated and accelerated upward into coronal jets may therefore carry indirect information on conditions in the reconnection region and current sheet located at the jet base. On 2017 October 14, the Interface Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA) observed a series of jet eruptions originating from NOAA AR 12599. The jet structure has a length-to-width ratio that exceeds 50, and remains remarkably straight throughout its evolution. Several times during the observation bright blobs of plasma are seen to erupt upward, ascending and subsequently descending along the structure. These blobs are cotemporal with footpoint and arcade brightenings, which we believe indicates multiple episodes of reconnection at the structure base. Through imaging and spectroscopic analysis of jet and footpoint plasma we determine a number of properties, including the line-of-sight inclination, the temperature and density structure, and lift-off velocities and accelerations of jet eruptions. We use these properties to constrain the geometry of the jet structure and conditions in reconnection region.

  6. Light speed variation from gamma ray burst GRB 160509A

    Directory of Open Access Journals (Sweden)

    Haowei Xu

    2016-09-01

    Full Text Available It is postulated in Einstein's relativity that the speed of light in vacuum is a constant for all observers. However, the effect of quantum gravity could bring an energy dependence of light speed. Even a tiny speed variation, when amplified by the cosmological distance, may be revealed by the observed time lags between photons with different energies from astrophysical sources. From the newly detected long gamma ray burst GRB 160509A, we find evidence to support the prediction for a linear form modification of light speed in cosmological space.

  7. Light speed variation from gamma ray burst GRB 160509A

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Haowei [School of Physics, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Ma, Bo-Qiang, E-mail: mabq@pku.edu.cn [School of Physics, State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Center for History and Philosophy of Science, Peking University, Beijing 100871 (China)

    2016-09-10

    It is postulated in Einstein's relativity that the speed of light in vacuum is a constant for all observers. However, the effect of quantum gravity could bring an energy dependence of light speed. Even a tiny speed variation, when amplified by the cosmological distance, may be revealed by the observed time lags between photons with different energies from astrophysical sources. From the newly detected long gamma ray burst GRB 160509A, we find evidence to support the prediction for a linear form modification of light speed in cosmological space.

  8. Searching for jets using a transverse-energy trigger

    International Nuclear Information System (INIS)

    Singer, R.; Fields, T.; Selove, W.

    1982-01-01

    We have studied the question of whether prominent jet structure would be expected in hadron-hadron collision events which are selected on the basis of having a large amount of transverse energy carried by the final-state hadrons. Using a computer simulation based on the Field-Feynman parton scattering model, we find that such a transverse-energy selection does not yield events predominantly having clear jet structure; this finding is in agreement with data from experiment NA5 at CERN. The basic reason for this effect is that high-multiplicity fragmentation of the beam and target spectator partons will contribute a substantial fraction of the transverse energy while also diluting the jet structure

  9. A tale of two GRB-SNe at a common redshift of z=0.54

    NARCIS (Netherlands)

    Cano, Z.; Bersier, D.; Guidorzi, C.; Margutti, R.; Svensson, K.M.; Kobayashi, S.; Melandri, A.; Wiersema, K.; Pozanenko, A.; van der Horst, A.J.; Pooley, G.G.; Fernandez-Soto, A.; Castro-Tirado, A.J.; de Ugarte Postigo, A.; Im, M.; Kamble, A.P.; Sahu, D.; Alonso-Lorite, J.; Anupama, G.; Bibby, J.L.; Burgdorf, M.J.; Clay, N.; Curran, P.A.; Fatkhullin, T.A.; Fruchter, A.S.; Garnavich, P.; Gomboc, A.; Gorosabel, J.; Graham, J.F.; Gurugubelli, U.; Haislip, J.; Huang, K.; Huxor, A.; Ibrahimov, M.; Jeon, Y.; Jeon, Y.B.; Ivarsen, K.; Kasen, D.; Klunko, E.; Kouveliotou, C.; Lacluyze, A.; Levan, A.J.; Loznikov, V.; Mazzali, P.A.; Moskvitin, A.S.; Mottram, C.; Mundell, C.G.; Nugent, P.E.; Nysewander, M.; O'Brien, P.T.; Park, W.K.; Peris, V.; Pian, E.; Reichart, D.; Rhoads, J.E.; Rol, E.; Rumyantsev, V.; Scowcroft, V.; Shakhovskoy, D.; Small, E.; Smith, R.J.; Sokolov, V.V.; Starling, R.L.C.; Steele, I.; Strom, R.G.; Tanvir, N.R.; Tsapras, Y.; Urata, Y.; Vaduvescu, O.; Volnova, A.; Volvach, A.; Wijers, R.A.M.J.; Woosley, S.E.; Young, D.R.

    2011-01-01

    We present ground-based and Hubble Space Telescope optical observations of the optical transients (OTs) of long-duration Gamma Ray Bursts (GRBs) 060729 and 090618, both at a redshift of z= 0.54. For GRB 060729, bumps are seen in the optical light curves (LCs), and the late-time broad-band spectral

  10. From Mach Cone to Reappeared Jet: What Do We Learn from PHENIX Results on Non-Identified Jet Correlation?

    International Nuclear Information System (INIS)

    Jia Jiangyong

    2006-01-01

    Jet properties, extracted from two particle azimuth correlation, are found to be strongly modified in Au + Au collisions at √(s NN ) = 200 GeV. At intermediate pT and in central Au + Au collisions, the modifications appear as a broadening of jet width at the near side and a cone structure at the away side. As one increase the pT for both hadrons, the away side cone structure seems to gradually evolve into a peak structure. The interpretation of these results requires careful separation of various medium effects and surface bias

  11. Relativistic jet with shock waves like model of superluminal radio source. Jet relativista con ondas de choque como modelo de radio fuentes superluminales

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A.; Gomez, J.L.; Marcaide, J.M.

    1993-01-01

    The structure of the compact radio sources at milliarcsecond angular resolution can be explained in terms of shock waves propagating along bent jets. These jets consist of narrow-angle cones of plasma flowing at bulk relativistic velocities, within tangled magnetic fields, emitting synchrotron radiation. We have developed a numerical code which solves the synchrotron radiation transfer equations to compute the total and polarized emission of bent shocked relativistic jets, and we have applied it to reproduce the compact structure, kenimatic evolution and time flux density evolution of the superluminal radio source 4C 39.25 and to obtain its jet physical parameters. (Author) 23 ref.

  12. Large-scale vortex structures and local heat release in lean turbulent swirling jet-flames under vortex breakdown conditions

    Science.gov (United States)

    Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal

    2017-11-01

    We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).

  13. The deterministic chaos and random noise in turbulent jet

    International Nuclear Information System (INIS)

    Yao, Tian-Liang; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng

    2014-01-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion

  14. Vorticity Dynamics in Single and Multiple Swirling Reacting Jets

    Science.gov (United States)

    Smith, Travis; Aguilar, Michael; Emerson, Benjamin; Noble, David; Lieuwen, Tim

    2015-11-01

    This presentation describes an analysis of the unsteady flow structures in two multinozzle swirling jet configurations. This work is motivated by the problem of combustion instabilities in premixed flames, a major concern in the development of modern low NOx combustors. The objective is to compare the unsteady flow structures in these two configurations for two separate geometries and determine how certain parameters, primarily distance between jets, influence the flow dynamics. The analysis aims to differentiate between the flow dynamics of single nozzle and triple nozzle configurations. This study looks at how the vorticity in the shear layers of one reacting swirling jet can affect the dynamics of a nearby similar jet. The distance between the swirling jets is found to have an effect on the flow field in determining where swirling jets merge and on the dynamics upstream of the merging location. Graduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.

  15. A cluster algorithm for jet studies

    International Nuclear Information System (INIS)

    Daum, H.J.; Meyer, H.; Buerger, J.

    1980-10-01

    A procedure is described which determines the number of jets in hadronic final states by means of a cluster algorithm. In addition it yields a measurement of the energy and the direction of each jet. The properties of this method are studied using Monte Carlo simulations of different types of e + e - -annihilation final states. It is shown that in case of 3-jet events direct comparison with the underlying parton structure can be made. Possible further applications of this method are discussed. (orig.)

  16. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation

    International Nuclear Information System (INIS)

    Giannoni, Elisa; Raugei, Giovanni; Chiarugi, Paola; Ramponi, Giampietro

    2006-01-01

    Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment

  17. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    Science.gov (United States)

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  18. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  19. A Precessing Jet in the CH Cyg Symbiotic System

    Science.gov (United States)

    Karovska, Margarita; Gaetz, Terrance J.; Carilli, Christopher L.; Hack, Warren; Raymond, John C.; Lee, Nicholas P.

    2010-02-01

    Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ~300 AU to ~1400 AU, with the shock front propagating with velocity <100 km s-1. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ~170 AU, and a SW component ending in several clumps extending out to ~750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ~500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

  20. A PRECESSING JET IN THE CH Cyg SYMBIOTIC SYSTEM

    International Nuclear Information System (INIS)

    Karovska, Margarita; Gaetz, Terrance J.; Raymond, John C.; Lee, Nicholas P.; Carilli, Christopher L.; Hack, Warren

    2010-01-01

    Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ∼300 AU to ∼1400 AU, with the shock front propagating with velocity -1 . The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ∼170 AU, and a SW component ending in several clumps extending out to ∼750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ∼500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

  1. Characteristics of polar coronal hole jets

    Science.gov (United States)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  2. A common central engine for long gamma-ray bursts and Type Ib/c supernovae

    Science.gov (United States)

    Sobacchi, E.; Granot, J.; Bromberg, O.; Sormani, M. C.

    2017-11-01

    Long-duration, spectrally soft gamma-ray bursts (GRBs) are associated with Type Ic core collapse (CC) supernovae (SNe), and thus arise from the death of massive stars. In the collapsar model, the jet launched by the central engine must bore its way out of the progenitor star before it can produce a GRB. Most of these jets do not break out, and are instead 'choked' inside the star, as the central engine activity time, te, is not long enough. Modelling the long-soft GRB duration distribution assuming a power-law distribution for their central engine activity times, ∝ t_e^{-α } for te > tb, we find a steep distribution (α ∼ 4) and a typical GRB jet breakout time of tb ∼ 60s in the star's frame. The latter suggests the presence of a low-density, extended envelope surrounding the progenitor star, similar to that previously inferred for low-luminosity GRBs. Extrapolating the range of validity of this power law below what is directly observable, to te < tb, by only a factor of ∼4-5 produces enough events to account for all Type Ib/c SNe. Such extrapolation is necessary to avoid fine-tuning the distribution of central engine activity times with the breakout time, which are presumably unrelated. We speculate that central engines launching relativistic jets may operate in all Type Ib/c SNe. In this case, the existence of a common central engine would imply that (i) the jet may significantly contribute to the energy of the SN; (ii) various observational signatures, like the asphericity of the explosion, could be directly related to jet's interaction with the star.

  3. Jet angularity measurements for single inclusive jet production

    Science.gov (United States)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  4. Very high column density and small reddening toward GRB 020124 at z=3.20

    DEFF Research Database (Denmark)

    Hjorth, J.; Møller, Per; Gorosabel, J.

    2003-01-01

    We present optical and near-infrared observations of the dim afterglow of GRB 020124, obtained between 2 and 68 hr after the gamma-ray burst. The burst occurred in a very faint (Rgreater than or similar to29.5) damped Lyalpha absorber (DLA) at a redshift of z=3.198+/-0.004. The derived column...

  5. Four Years of Observations of GRB Localizations with TAROT

    International Nuclear Information System (INIS)

    Boeer, M.; Thiebaud, C.; Atteia, J.-L.; Malina, R.; Freitas Pacheco, J. de; Pedersen, H.; Klotz, A.

    2004-01-01

    We present a summary of the observations performed with the Telescope a Action Rapide pour les Objets Transitoires (TAROT - Rapid Action Telescope for Transient Objects) performed over the period 1999 - 2003. Seventeen GRB localization observations where performed shortly after the burst (10s - 90min.), and in at least one case, even while the source was still active in gamma-rays. During this period CGRO. HETE-2 and INTEGRAL were in operation. Though no alert was missed, no source was detected, to a magnitude limit between R = 15 and R = 20. Future plans are also presented, featuring the duplication of TAROT at ESO - La Silla

  6. A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor.

    Science.gov (United States)

    Zhang, B-B; Zhang, B; Sun, H; Lei, W-H; Gao, H; Li, Y; Shao, L; Zhao, Y; Hu, Y-D; Lü, H-J; Wu, X-F; Fan, X-L; Wang, G; Castro-Tirado, A J; Zhang, S; Yu, B-Y; Cao, Y-Y; Liang, E-W

    2018-01-31

    Double neutron star (DNS) merger events are promising candidates of short gamma-ray burst (sGRB) progenitors as well as high-frequency gravitational wave (GW) emitters. On August 17, 2017, such a coinciding event was detected by both the LIGO-Virgo gravitational wave detector network as GW170817 and Gamma-Ray Monitor on board NASA's Fermi Space Telescope as GRB 170817A. Here, we show that the fluence and spectral peak energy of this sGRB fall into the lower portion of the distributions of known sGRBs. Its peak isotropic luminosity is abnormally low. The estimated event rate density above this luminosity is at least [Formula: see text] Gpc -3  yr -1 , which is close to but still below the DNS merger event rate density. This event likely originates from a structured jet viewed from a large viewing angle. There are similar faint soft GRBs in the Fermi archival data, a small fraction of which might belong to this new population of nearby, low-luminosity sGRBs.

  7. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Robert [Purdue Univ., West Lafayette, IN (United States); Anderson, William [Purdue Univ., West Lafayette, IN (United States)

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  8. Fluorescence Imaging Study of Impinging Underexpanded Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  9. Ultra light weight jet engine JR100; Chokeiryo jet engine JR100

    Energy Technology Data Exchange (ETDEWEB)

    Matsuki, M. [Nippon Institute of Technology, Saitama (Japan)

    1999-03-20

    As a part of the jet lift V/STOL research by National Aerospace Laboratory, a study of trial manufacture of ultra light weight jet engine JR 100 started in FY 1964. The study was aimed at obtaining a lift engine for VTOL and founding the base for the future jet lift VTOL, and at taking in the results of the jet engine element study accumulated so far and manufacturing an advanced engine. Decided on the use of domestic materials for JR 100, the materials to be used are almost iron-based ones. Through the efforts for weight reduction in structure and processing, a thrust/weight ratio of 10 was realized. At the same time, the production/processing of light weight materials such as titanium alloys was proceeded with, and by adopting the materials to JR 200 system, a thrust/weight ratio of 15 was realized. Together with these, for the purpose of reducing the fuel consumption rate, studies started on fan for lift fan engine and high temperature turbine (an inlet temperature of 1250 degrees C was achieved), to get low noise/high efficiency fan. By the research results, the basis for jet lift VTOL was established, and it became the basis for the development of turbo fan engine FJR 710. (NEDO)

  10. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    Science.gov (United States)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  11. Quark jets, gluon jets and the three-gluon vertex

    International Nuclear Information System (INIS)

    Fodor, Z.

    1989-11-01

    Using hadronic jets in electron-positron annihilation, we suggest a simple and model-independent method to see the differences between quark and gluon jets. We define and analyse special energy dependent moments of jets and choose those which are the most characteristic to the jet type. The method handles the energy of a jet in an adequate way. We discuss new methods using jet flavor tagging, ordinary flavor tagging of a definite quark jet or discrimination between quark and gluon jets, to test the triple-gluon vertex in electron-positron annihilation. An enriched sample of gluon jets, jets with the smallest energy in four-jet events, as well as a continuous tagging variable are also studied. 21 refs., 6 figs. (Author)

  12. Gas inflow and outflow in an interacting high-redshift galaxy. The remarkable host environment of GRB 080810 at z = 3.35

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Krühler, T.; Yates, R. M.; Greiner, J.

    2017-11-01

    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH I ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH I ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A107

  13. Jet calculus beyond leading logarithms

    International Nuclear Information System (INIS)

    Kalinowski, J.; Konishi, K.; Taylor, T.R.

    1981-01-01

    It is shown that the evolution of hadronic jets produced in hard processes can be studied in terms of a simple parton branching picture, beyond the leading log approximation of QCD. The jet calculus is generalized to any given order of logs (but always to all orders of αsub(s)). We discuss the general structure of the formalism. Universality of jet evolution is discussed. We consider also a jet calorimetry measure and the multiplicity distribution of final states in a form which allows a systematic improvement of approximation. To the next-to-leading order, we prove the finiteness and elucidate the scheme dependence of parton subprocess probabilities. The physical inclusive cross section is shown to be scheme independent: next-to-leading results for e + e - → q (nonsinglet) + X agree with those of Curci and others. (orig.)

  14. Precision studies of proton structure and jet energy scale with the CMS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Haitz, Dominik

    2016-05-20

    events can be utilized for studies of the proton structure. In the parton model, this structure is expressed by the parton distribution functions (PDFs) which predict the probability to nd a certain proton constituent (a parton) with a proton momentum fraction x at an energy scale Q. The PDFs are not predicted by perturbative QCD but have to be experimentally determined. In this thesis, a method to constrain the parameters of the PDFs by measuring the distributions of kinematic quantities of Z bosons is explored. This method exploits the correlation between the PDFs and the expected number of events with Z bosons in particular phase space regions. By fitting the PDFs to these data, the PDF parameters can be determined. If the measurement is precise enough, the uncertainties in the PDFs can be reduced. Z+jet events can also be used for jet energy calibration: All physics analyses at the LHC rely on the precise reconstruction of the objects produced in a collision. Among the most important of these objects are jets, collimated streams of particles produced by the hadronization of partons. As there are numerous effects that bias the jet measurement, the precise determination of jet energies is among the most challenging experimental tasks. Sophisticated techniques have been developed to deal with the various systematic biases. One of the most important steps is the data-driven calibration with balancing methods: Exploiting momentum conservation, the jet transverse momentum is compared with the transverse momentum of a well-measured reference object and consequently corrected. In this thesis, the jet energy scale is calibrated by studying Z(→μ{sup +}μ{sup -})+jet events.

  15. Four Years of Real-Time GRB Followup by BOOTES-1B (2005-2008)

    Czech Academy of Sciences Publication Activity Database

    Jelínek, M.; Castro-Tirado, A.J.; de Ugarte Postigo, A.; Kubánek, P.; Guziy, S.; Gorosabel, J.; Cunniffe, R.; Vítek, S.; Hudec, René; Reglero, V.; Sabau-Graziati, L.

    2010-01-01

    Roč. 2010, č. 1 (2010), 432172/1-432172/10 ISSN 1687-7969 R&D Projects: GA ČR GA205/08/1207 Grant - others:GA ČR(CZ) GA102/09/0997; ESA(XE) PECS project No. 98023 Institutional research plan: CEZ:AV0Z10030501 Keywords : observing * GRB * Spain Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science)

  16. Neutronic analysis of JET external neutron monitor response

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka, E-mail: luka.snoj@ijs.si [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Lengar, Igor; Čufar, Aljaž [Reactor Physics Division, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Syme, Brian; Popovichev, Sergey [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom (United Kingdom); Batistoni, Paola [ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Conroy, Sean [VR Association, Uppsala University, Department of Physics and Astronomy, PO Box 516, SE-75120 Uppsala (Sweden)

    2016-11-01

    Highlights: • We model JET tokamak containing JET remote handling system. • We investigate effect of remote handling system on external neutron monitor response. • Remote handling system correction factors are calculated. • Integral correction factors are relatively small, i.e up to 8%. - Abstract: The power output of fusion devices is measured in terms of the neutron yield which relates directly to the fusion yield. JET made a transition from Carbon wall to ITER-Like Wall (Beryllium/Tungsten/Carbon) during 2010–11. Absolutely calibrated measurement of the neutron yield by JET neutron monitors was ensured by direct measurements using a calibrated {sup 252}Cf neutron source (NS) deployed by the in-vessel remote handling system (RHS) inside the JET vacuum vessel. Neutronic calculations were required in order to understand the neutron transport from the source in the vacuum vessel to the fission chamber detectors mounted outside the vessel on the transformer limbs of the tokamak. We developed a simplified computational model of JET and the JET RHS in Monte Carlo neutron transport code MCNP and analyzed the paths and structures through which neutrons reach the detectors and the effect of the JET RHS on the neutron monitor response. In addition we performed several sensitivity studies of the effect of substantial massive structures blocking the ports on the external neutron monitor response. As the simplified model provided a qualitative picture of the process only, some calculations were repeated using a more detailed full 3D model of the JET tokamak.

  17. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  18. Large Eddy Simulation of Film-Cooling Jets

    Science.gov (United States)

    Iourokina, Ioulia

    2005-11-01

    Large Eddy Simulation of inclined jets issuing into a turbulent boundary layer crossflow has been performed. The simulation models film-cooling experiments of Pietrzyk et al. (J. of. Turb., 1989), consisting of a large plenum feeding an array of jets inclined at 35° to the flat surface with a pitch 3D and L/D=3.5. The blowing ratio is 0.5 with unity density ratio. The numerical method used is a hybrid combining external compressible solver with a low-Mach number code for the plenum and film holes. Vorticity dynamics pertinent to jet-in-crossflow interactions is analyzed and three-dimensional vortical structures are revealed. Turbulence statistics are compared to the experimental data. The turbulence production due to shearing in the crossflow is compared to that within the jet hole. The influence of three-dimensional coherent structures on the wall heat transfer is investigated and strategies to increase film- cooling performance are discussed.

  19. The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts

    Science.gov (United States)

    Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.

    2002-12-01

    We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.

  20. Vector boson tagged jets and jet substructure

    Directory of Open Access Journals (Sweden)

    Vitev Ivan

    2018-01-01

    Full Text Available In these proceedings, we report on recent results related to vector boson-tagged jet production in heavy ion collisions and the related modification of jet substructure, such as jet shapes and jet momentum sharing distributions. Z0-tagging and γ-tagging of jets provides new opportunities to study parton shower formation and propagation in the quark-gluon plasma and has been argued to provide tight constrains on the energy loss of reconstructed jets. We present theoretical predictions for isolated photon-tagged and electroweak boson-tagged jet production in Pb+Pb collisions at √sNN = 5.02 TeV at the LHC, addressing the modification of their transverse momentum and transverse momentum imbalance distributions. Comparison to recent ATLAS and CMS experimental measurements is performed that can shed light on the medium-induced radiative corrections and energy dissipation due to collisional processes of predominantly quark-initiated jets. The modification of parton splitting functions in the QGP further implies that the substructure of jets in heavy ion collisions may differ significantly from the corresponding substructure in proton-proton collisions. Two such observables and the implication of tagging on their evaluation is also discussed.

  1. Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming, E-mail: liangyf@pmo.ac.cn, E-mail: jin@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Science, Nanjing, 210008 (China)

    2017-02-10

    GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 10{sup 52} erg or even ∼8 × 10{sup 52} erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.

  2. Two-dimensional, two-phase jet loading on containment structures during blowdown

    International Nuclear Information System (INIS)

    Mohammadian, S.; Slegers, L.

    1983-01-01

    Pressure profiles of impinging jets are calculated using the computer code BEACON/MOD3. The code is used in post - as well as precalculations of experiments to demonstrate its applicability in 2-phase jet load calculation. Comparisons between measurements and predictions show that the code predicts pressure profiles within 15% accuracy. (orig./RW)

  3. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  4. ELLERMAN BOMBS WITH JETS: CAUSE AND EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Scullion, E.; Gallagher, P. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Doyle, J. G. [Armagh Observatory, College Hill, Armagh, BT61 9DG (United Kingdom); Shelyag, S., E-mail: areid29@qub.ac.uk [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, Victoria, 3800 (Australia)

    2015-05-20

    Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1 m Solar Telescope to study EB events on the solar disk and at the limb. Both data sets show that EBs are connected to the foot points of forming chromospheric jets. The limb observations show that a bright structure in the Hα blue wing connects to the EB initially fueling it, leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of Hα. In the disk data set, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame. The EB then splits into two, with associated brightenings in the inter-granular lanes. Micro-jets are then observed, extending to 500 km with a lifetime of a few minutes. Observed velocities of the micro-jets are approximately 5–10 km s{sup −1}, while their chromospheric counterparts range from 50 to 80 km s{sup −1}. MURaM simulations of quiet Sun reconnection show that micro-jets with properties similar to those of the observations follow the line of reconnection in the photosphere, with associated Hα brightening at the location of increased temperature.

  5. Jets with ALICE: from vacuum to high-temperature QCD

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    ALICE measures jets in pp, p-Pb and Pb-Pb collisions to study modifications of the jet fragmentation due to cold nuclear and hot QCD matter. In pp collisions ALICE has measured inclusive jet yields, the ratio of yields with different resolution R, a variety of jet shapes and the semi-inclusive rate of jets recoiling against a high transverse momentum hadron trigger. These measurements are compared to NLO calculations including hadronization corrections and to MC models. Jets in pp are primarily conceived as a vacuum reference for jet observables in p-Pb and Pb-Pb collisions. In p-Pb collisions ALICE explores cold nuclear matter effects on jet yields, jet fragmentation and dijet acoplanarity. The hot and dense medium created in heavy-ion collisions is expected to modify the fragmentation of high energy partonic projectiles leading to changes in the energy and structure of the reconstructed jets with respect to pp jets. The study of modified jets aims at understanding the detailed mechanisms of in-medium energy...

  6. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn, E-mail: chongsin@faculty.nctu.edu.tw

    2017-02-01

    Graphical abstract: Atmospheric-pressure plasma enhances cell growth on two different pore sizes of honeycomb pattern on polylactide surface. - Highlights: • Different pore sizes of honeycomb pattern on PLA film are created. • The two-step plasma treatment provided the oxygen- and nitrogen-containing functional groups that had a major impact on cell cultivation. • The plasma treatment had a significant effect for cell proliferation. • The surface structures are the main influence on cell cultivation, while plasma treatment can indeed improve the growth environment. - Abstract: In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3–4 μm and 7–8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  7. Jet suppression measurement with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00443411; The ATLAS collaboration

    2016-01-01

    A hot medium with a high density of unscreened color charges is produced in relativistic heavy ion collisions. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. Another manifestation of the energy loss is the modification of the dijet balance and the modification of fragmentation functions. In these proceedings, the latest ATLAS results on single jet suppression, dijet suppression, and modification of the jet internal structure in \\PbPb~collisions are presented.

  8. JET Joint Undertaking

    International Nuclear Information System (INIS)

    Keen, B.E.

    1986-03-01

    This is an overview summary of the scientific and technical advances at JET during the year 1985, supplemented by appendices of detailed contributions (in preprint form) of eight of the more important JET articles produced during that year. It is aimed not only at specialists and experts but also at a more general scientific community. Thus there is a brief summary of the background to the project, a description of the basic objectives of JET and the principle design features of the machine. The new structure of the Project Team is also explained. Developments and future plans are included. Improvements considered are those which are designed to overcome certain limitations encountered generally on Tokamaks, particularly those concerned with density limits, with plasma MHD behaviour, with impurities and with plasma transport. There is also a complete list of articles, reports and conference papers published in 1985 - there are 167 such items listed. (UK)

  9. Machine learning, computer vision, and probabilistic models in jet physics

    CERN Multimedia

    CERN. Geneva; NACHMAN, Ben

    2015-01-01

    In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet images enabled the connection between jet substructure and tagging with the fields of computer vision and image processing for the first time, improving the performance to identify highly boosted W bosons with respect to state-of-the-art methods, and providing a new way to visualize the discriminant features of different classes of jets, adding a new capability to understand the physics within jets and to design more powerful jet tagging methods. Second, we will present Fuzzy jets: a new paradigm for jet clustering using machine learning methods. Fuzzy jets view jet clustering as an unsupervised learning task and incorporate a probabilistic assignment of particles to jets to learn new features of the jet structure. In particular, we wi...

  10. Measurements of jet fragmentation and the angular distributions of charged particles within and around jets in $pp$ and Pb+Pb with ATLAS

    CERN Document Server

    Rybar, Martin; The ATLAS collaboration

    2018-01-01

    Highly energetic jets produced in ultra-relativistic nuclear collisions are considered to be direct probes to study the properties of the hot and dense QCD matter created in these collisions. The measurement of the fragmentation functions of jets into charged particles in Pb+Pb collisions is sensitive to the strength and mechanism of jet quenching. In this talk, we present the latest measurement of the internal structure of jets and the angular distributions of charged particles within and around jets performed with the ATLAS detector. Fragmentation functions in Pb+Pb collisions and distributions of the transverse momentum of charged particles are compared to the same quantities measured in pp collisions at the same collision energy. Measurements are presented as a function of collision centrality, jet transverse momentum, and jet rapidity at 2.76 and 5.02 TeV. Furthermore, a new measurement of the angular distributions of charged-particles with respect to jet axis extended to distances outside the jet radius...

  11. A Reverse Shock and Unusual Radio Properties in GRB 160625B

    Science.gov (United States)

    Alexander, K. D.; Laskar, T.; Berger, E.; Guidorzi, C.; Dichiara, S.; Fong, W.; Gomboc, A.; Kobayashi, S.; Kopac, D.; Mundell, C. G.; Tanvir, N. R.; Williams, P. K. G.

    2017-10-01

    We present multi-wavelength observations and modeling of the exceptionally bright long γ-ray burst GRB 160625B. The optical and X-ray data are well fit by synchrotron emission from a collimated blastwave with an opening angle of {θ }j≈ 3\\buildrel{\\circ}\\over{.} 6 and kinetic energy of {E}K≈ 2× {10}51 erg, propagating into a low-density (n≈ 5× {10}-5 cm-3) medium with a uniform profile. The forward shock is sub-dominant in the radio band; instead, the radio emission is dominated by two additional components. The first component is consistent with emission from a reverse shock, indicating an initial Lorentz factor of {{{Γ }}}0≳ 100 and an ejecta magnetization of {R}B≈ 1{--}100. The second component exhibits peculiar spectral and temporal evolution and is most likely the result of scattering of the radio emission by the turbulent Milky Way interstellar medium (ISM). Such scattering is expected in any sufficiently compact extragalactic source and has been seen in GRBs before, but the large amplitude and long duration of the variability seen here are qualitatively more similar to extreme scattering events previously observed in quasars, rather than normal interstellar scintillation effects. High-cadence, broadband radio observations of future GRBs are needed to fully characterize such effects, which can sensitively probe the properties of the ISM and must be taken into account before variability intrinsic to the GRB can be interpreted correctly.

  12. Structural Dynamics of a Pulsed-Jet Propulsion System for Underwater Soft Robots

    Directory of Open Access Journals (Sweden)

    Federico Renda

    2015-06-01

    Full Text Available This paper entails the study of the pulsed-jet propulsion inspired by cephalopods in the frame of underwater bioinspired robotics. This propulsion routine involves a sequence of consecutive cycles of inflation and collapse of an elastic bladder, which, in the robotics artefact developed by the authors, is enabled by a cable-driven actuation of a deformable shell composed of rubber-like materials. In the present work an all-comprehensive formulation is derived by resorting to a coupled approach that comprises of a model of the structural dynamics of the cephalopod-like elastic bladder and a model of the pulsed-jet thrust production. The bladder, or mantle, is modelled by means of geometrically exact, axisymmetric, nonlinear shell theory, which yields an accurate estimation of the forces involved in driving the deformation of the structure in water. By coupling these results with those from a standard thrust model, the behaviour of the vehicle propelling itself in water is derived. The constitutive laws of the shell are also exploited as control laws with the scope of replicating the muscle activation routine observed in cephalopods. The model is employed to test various shapes, material properties and actuation routines of the mantle. The results are compared in terms of speed performance in order to identify suitable design guidelines. Altogether, the model is tested in more than 50 configurations, eventually providing useful insight for the development of more advanced vehicles and bringing evidence of its reliability in studying the dynamics of both man-made cephalopod-inspired robots and live specimens.

  13. Empirical model of the M 87 jet

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1984-01-01

    The nature of the M87 jet is discussed. Recent observations of the M87 jet in radio, optical and X-ray regions, carried out with a sufficiently high resolving power, have revealed an identity of the brightness distribution at all frequencies. This points to a decisive role of the regular magnetic field variations along the jet for its overall structure. The bright knots of the jet are in the places where the field is enhanced. In the same places, a small fraction of relativistic electrons acquires large pitch-angles due to the interaction with plasma waves, leading to the synchrotron emission of the knots. The velocity of the plasma ejected from the nucleus of M87 should be 0.1 c. Thus, the M87 jet is one-sided

  14. Jet physics at the LHC with ALICE

    International Nuclear Information System (INIS)

    Morsch, A.

    2005-01-01

    In central Pb-Pb collisions at the LHC, jet rates are expected to be high at energies at which ALICE can reconstruct jets over the background of the underlying event. This will open the possibility to quantify the effect of partonic energy loss through medium induced gluon radiation, jet quenching, by detailed measurement of the modification of the longitudinal and transverse structure of identified jets. In order to obtain probes sensitive to the properties of the QCD medium, it is mandatory to measure the high-p T parton fragments together with the low-p T particles from the radiated gluons. Hence, the excellent charged particle tracking capabilities of ALICE combined with the proposed electromagnetic calorimeter for ALICE, EMCAL, represent an ideal tool for jet quenching studies at the LHC. (orig.)

  15. Saturation and forward jets at HERA

    International Nuclear Information System (INIS)

    Marquet, C.; Peschanski, R.; Royon, C.

    2004-01-01

    We analyse forward-jet production at HERA in the framework of the Golec-Biernat and Wusthoff saturation models. We obtain a good description of the forward-jet cross-sections measured by the H1 and ZEUS Collaborations in the two-hard-scale region (k T∼ Q >> Λ QCD ) with two different parametrizations with either significant or weak saturation effects. The weak saturation parametrization gives a scale compatible with the one found for the proton structure function F2. We argue that Mueller-Navelet jets at the Tevatron and the LHC could help distinguishing between both options

  16. Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors

    International Nuclear Information System (INIS)

    Abbott, B.; Anderson, S.B.; Araya, M.; Armandula, H.; Asiri, F.; Barish, B.C.; Barnes, M.; Barton, M.A.; Bhawal, B.; Billingsley, G.; Black, E.; Blackburn, K.; Bogue, L.; Bork, R.; Busby, D.; Cardenas, L.; Chandler, A.; Chapsky, J.; Charlton, P.; Coyne, D.

    2005-01-01

    We have performed a search for bursts of gravitational waves associated with the very bright gamma ray burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80--2048 Hz), and we specifically targeted signals shorter than ≅150 ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational-wave signal strength larger than a predetermined threshold. We report frequency-dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around ≅250 Hz, our root-sum-square (RSS) gravitational-wave strain sensitivity for optimally polarized bursts was better than h RSS ≅6x10 -21 Hz -1/2 . Our result is comparable to the best published results searching for association between gravitational waves and gamma ray bursts

  17. Investigating the anatomy of magnetosheath jets - MMS observations

    Science.gov (United States)

    Karlsson, Tomas; Plaschke, Ferdinand; Hietala, Heli; Archer, Martin; Blanco-Cano, Xóchitl; Kajdič, Primož; Lindqvist, Per-Arne; Marklund, Göran; Gershman, Daniel J.

    2018-04-01

    We use Magnetosphere Multiscale (MMS) mission data to investigate a small number of magnetosheath jets, which are localized and transient increases in dynamic pressure, typically due to a combined increase in plasma velocity and density. For two approximately hour-long intervals in November, 2015 we found six jets, which are of two distinct types. (a) Two of the jets are associated with the magnetic field discontinuities at the boundary between the quasi-parallel and quasi-perpendicular magnetosheath. Straddling the boundary, the leading part of these jets contains an ion population similar to the quasi-parallel magnetosheath, while the trailing part contains ion populations similar to the quasi-perpendicular magnetosheath. Both populations are, however, cooler than the surrounding ion populations. These two jets also have clear increases in plasma density and magnetic field strength, correlated with a velocity increase. (b) Three of the jets are found embedded within the quasi-parallel magnetosheath. They contain ion populations similar to the surrounding quasi-parallel magnetosheath, but with a lower temperature. Out of these three jets, two have a simple structure. For these two jets, the increases in density and magnetic field strength are correlated with the dynamic pressure increases. The other jet has a more complicated structure, and no clear correlations between density, magnetic field strength and dynamic pressure. This jet has likely interacted with the magnetosphere, and contains ions similar to the jets inside the quasi-parallel magnetosheath, but shows signs of adiabatic heating. All jets are associated with emissions of whistler, lower hybrid, and broadband electrostatic waves, as well as approximately 10 s period electromagnetic waves with a compressional component. The latter have a Poynting flux of up to 40 µW m-2 and may be energetically important for the evolution of the jets, depending on the wave excitation mechanism. Only one of the jets is

  18. Macrospicule Jets in On-Disk Coronal Holes

    Science.gov (United States)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  19. The influence of Reynolds numbers on resistance properties of jet pumps

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, G. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); State Key laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry (China)

    2014-01-29

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  20. MMS observations of guide field reconnection at the interface between colliding reconnection jets inside flux rope-like structures at the magnetopause

    Science.gov (United States)

    Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.

    2017-12-01

    The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.