The Imperfect Fluid behind Kinetic Gravity Braiding
Pujolas, Oriol; Vikman, Alexander
2011-01-01
We present a standard hydrodynamical description for non-canonical scalar field theories with kinetic gravity braiding. In particular, this picture applies to the simplest galileons and k-essence. The fluid variables not only have a clear physical meaning but also drastically simplify the analysis of the system. The fluid carries charges corresponding to shifts in field space. This shift-charge current contains a spatial part responsible for diffusion of the charges. Moreover, in the incompressible limit, the equation of motion becomes the standard diffusion equation. The fluid is indeed imperfect because the energy flows neither along the field gradient nor along the shift current. The fluid has zero vorticity and is not dissipative: there is no entropy production, the energy-momentum is exactly conserved, the temperature vanishes and there is no shear viscosity. Still, in an expansion around a perfect fluid one can identify terms which correct the pressure in the manner of bulk viscosity. We close by formul...
Fluid Interfaces of Triangular Containers in Reduced Gravity Environments
Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.
2002-01-01
Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Gravity/Fluid Correspondence and Its Application on Bulk Gravity with U(1) Gauge Field
International Nuclear Information System (INIS)
Hu, Ya-Peng; Zhang, Jian-Hui
2014-01-01
As the long wavelength limit of the AdS/CFT correspondence, the gravity/fluid correspondence has been shown to be a useful tool for extracting properties of the fluid on the boundary dual to the gravity in the bulk. In this paper, after briefly reviewing the algorithm of gravity/fluid correspondence, we discuss the results of its application on bulk gravity with a U(1) gauge field. In the presence of a U(1) gauge field, the dual fluid possesses more interesting properties such as its charge current. Furthermore, an external field A_μ"e"x"t could affect the charge current, and the U(1) Chern-Simons term also induces extra structures to the dual current giving anomalous transport coefficients.
Low gravity fluid-thermal experiments
International Nuclear Information System (INIS)
Krotiuk, W.J.; Cuta, J.M.
1987-06-01
Pacific Northwest Laboratory (PNL) is the lead laboratory for the thermal-hydraulic research in the US Department of Energy Multimegawatt Space Nuclear Power Program. PNL must provide the tools necessary to analyze proposed space reactor concepts, which include single- and two-phase alkali metal and gas-cooled designs. PNL has divided its activities for this task into three basic areas: computer code development, thermal-hydraulic modeling, and experimentation. The subject of this paper is the low-gravity experimental program currently underway at PNL in support of the MMW Program
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly*,**
Directory of Open Access Journals (Sweden)
Megías Eugenio
2014-03-01
Full Text Available We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.
Fluid/gravity correspondence and the CFM black brane solutions
Energy Technology Data Exchange (ETDEWEB)
Casadio, R. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, Bologna (Italy); Cavalcanti, R.T. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Universidade Federal do ABC-UFABC, Centro de Ciencias Naturais e Humanas, Santo Andre (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)
2016-10-15
We consider the lower bound for the shear viscosity-to-entropy density ratio, obtained from the fluid/gravity correspondence, in order to constrain the post-Newtonian parameter of brane-world metrics. In particular, we analyse the Casadio-Fabbri-Mazzacurati (CFM) effective solutions for the gravity side of the correspondence and argue that including higher-order terms in the hydrodynamic expansion can lead to a full agreement with the experimental bounds, for the Eddington-Robertson-Schiff post-Newtonian parameter in the CFM metrics. This lends further support to the physical relevance of the viscosity-to-entropy ratio lower bound and fluid/gravity correspondence. Hence we show that CFM black branes are, effectively, Schwarzschild black branes. (orig.)
Approaches to Validation of Models for Low Gravity Fluid Behavior
Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad
2005-01-01
This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.
Space Station fluid management logistics
Dominick, Sam M.
1990-01-01
Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.
Cryogenic Fluid Management Facility
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
Influence of gravity on flutter of cantilevered pipes conveying fluid
Rivero, Javier; Perez-Saborid, Miguel
2012-11-01
We have considered the dynamics of the nonlinear interaction between a flexible pipe and the conveyed fluid in the presence of gravity. The stability of the system (fllutter and buckling) depends on parameters such as the dimensionless fluid flow rate, the gravity to bending stiffness ratio and the fluid to pipe mass ratio and it has been studied in detail both numerically and experimentally. It has also been found that the stabilizing or destabilizing effects of fluid flow depends crucially on the direction of gravity respect to the undeformed midline of the pipe. We have also computed the post-critical behavior of the system by solving the full nonlinear equations of the problem and analyzed the transfer of energy within the system in the nonlinear regime. We have formulated the problem in terms of the angles of the midline of the pipe instead of its transverse displacements, so that we can deal with large deflections without recurring to the quasi-linear approximations concerning the pipe curvature usually made in the literature. Supported by the Ministerio de Educación, Cultura y Deportes of Spain under grant DPI 2010-20450 C03-02.
Gravitational perfect fluid collapse in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-08-15
The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)
Analog model for quantum gravity effects: phonons in random fluids.
Krein, G; Menezes, G; Svaiter, N F
2010-09-24
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.
Universality of isothermal fluid spheres in Lovelock gravity
Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.
2016-02-01
We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.
Gravity current into an ambient fluid with an open surface
Ungarish, Marius
2017-11-01
Consider the steady-state gravity current of height h and density ρ1 that propagates into an ambient motionless fluid of height H and density ρ2 with an upper surface open to the atmosphere (open channel) at high Reynolds number. The current propagates with speed U and causes a depth decrease χ of the top surface. This is a significant extension of Benjamin's (1968) seminal solution for the fixed-top channel χ = 0 . Here the determination of χ is a part of the problem. The dimensionless parameters of the problem are a = h / H and r =ρ2 /ρ1 . We show that a control-volume analysis determines χ = χ / H and Fr = U / (g ' h)1/2 as functions of a , r , where g ' = (r-1 - 1) g is the reduced gravity. The system satisfies balance of volume and momentum (explicitly), and vorticity (implicitly). We present solutions. The predicted flows are in general dissipative, and thus physically valid only for a Frb (a) , but the reduction is not dramatic, typically a few percent. In the Boussinesq r 1 case, χ << 1 while Fr and dissipation are close to Benjamin's values.
Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS
Urban, David L.; Singh, Bhim S.; Kohl, Fred J.
2007-01-01
Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.
Indian Academy of Sciences (India)
We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***
Megías, Eugenio; Pena-Benitez, Francisco
2014-03-01
We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.
Holographic dark energy from fluid/gravity duality constraint by cosmological observations
Pourhassan, Behnam; Bonilla, Alexander; Faizal, Mir; Abreu, Everton M. C.
2018-06-01
In this paper, we obtain a holographic model of dark energy using the fluid/gravity duality. This model will be dual to a higher dimensional Schwarzschild black hole, and we would use fluid/gravity duality to relate to the parameters of this black hole to such a cosmological model. We will also analyze the thermodynamics of such a solution, and discuss the stability model. Finally, we use cosmological data to constraint the parametric space of this dark energy model. Thus, we will use observational data to perform cosmography for this holographic model based on fluid/gravity duality.
Patterns of gravity induced aggregate migration during casting of fluid concretes
DEFF Research Database (Denmark)
Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri
2012-01-01
In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in...
Energy Technology Data Exchange (ETDEWEB)
Bhadauria, Beer S. [Babasaheb Bhimrao Ambedkar Univ., Lucknow (India). Dept. of Applied Mathematics and Statistics; Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Srivastava, Atul K. [Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Sacheti, Nirmal C.; Chandran, Pallath [Sultan Qaboos Univ., Muscat (Oman). Dept. of Mathematics
2012-01-15
The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill's equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed. (orig.)
The behavior of surface tension on steady-state rotating fluids in the low gravity environments
Hung, R. J.; Leslie, Fred W.
1987-01-01
The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.
General proof of the entropy principle for self-gravitating fluid in f(R) gravity
Energy Technology Data Exchange (ETDEWEB)
Fang, Xiongjun [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China); Guo, Minyong [Department of Physics, Beijing Normal University,Beijing 100875 (China); Jing, Jiliang [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures andQuantum Control of Ministry of Education, Hunan Normal University,Changsha, Hunan 410081 (China)
2016-08-29
The discussions on the connection between gravity and thermodynamics attract much attention recently. We consider a static self-gravitating perfect fluid system in f(R) gravity, which is an important theory could explain the accelerated expansion of the universe. We first show that the Tolman-Oppenheimer-Volkoff equation of f(R) theories can be obtained by thermodynamical method in spherical symmetric spacetime. Then we prove that the maximum entropy principle is also valid for f(R) gravity in general static spacetimes beyond spherical symmetry. The result shows that if the constraint equation is satisfied and the temperature of fluid obeys Tolmans law, the extrema of total entropy implies other components of gravitational equations. Conversely, if f(R) gravitational equation hold, the total entropy of the fluid should be extremum. Our work suggests a general and solid connection between f(R) gravity and thermodynamics.
Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...
African Journals Online (AJOL)
We present an analytical study of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The governing equations are derived and similarity solutions are determined. The results show the existence of traveling waves. It is assumed that the viscosity is temperature ...
Asymptotic expansion of unsteady gravity flow of a power-law fluid ...
African Journals Online (AJOL)
We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...
Fluid management in space construction
Snyder, Howard
1989-01-01
The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.
The Propagation of the Gravity Current of Viscoplastic Fluid
Liu, Ye
2014-11-01
We are studying the spreading of the viscoplastic fluid of Bingham type over a horizontal plane, using both mathematical derivation and numerical experiments. We are interested in its final shape and whether theory and numerics correspond well. There are two theories for comparison: lubrication theory from asymptotics, and slipline theory from plasticity. The numerical method we are using is based on the volume-of-fluid method, with both regularization and Augmented Lagrangian for the constitutive law of Bingham type fluid. UBC IRSN.
Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity
Wilkinson, R. Allen
2000-01-01
This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.
Chaotic Darcy-Brinkman convection in a fluid saturated porous layer subjected to gravity modulation
Directory of Open Access Journals (Sweden)
Moli Zhao
2018-06-01
Full Text Available On the basis of Darcy-Brinkman model, the chaotic convection in a couple stress fluid saturated porous media under gravity modulation is investigated using the nonlinear stability analyses. The transition from steady convection to chaos is analysed with the effect of Darcy-Brinkman couple stress parameter and the gravity modulation. The results show that the chaotic behavior is connected with the critical value of Rayleigh number which is dependent upon the oscillation frequency and the Darcy-Brinkman couple stress parameter. If the oscillation frequency Ω is not zero, the Rayleigh number value R of the chaotic behavior increases with the increase of the Darcy-Brinkman couple stress parameter. The Darcy-Brinkman couple stress parameter and the gravity modulation decrease the rate of heat transfer. Keywords: Darcy-Brinkman model, Gravity modulation, Nonlinear stability, Chaotic convection
Fluid mechanics of directional solidification at reduced gravity
Chen, C. F.
1992-01-01
The primary objective of the proposed research is to provide additional groundbased support for the flight experiment 'Casting and Solidification Technology' (CAST). This experiment is to be performed in the International Microgravity Laboratory-1 (IML-1) scheduled to be flown on a space shuttle mission scheduled for 1992. In particular, we will provide data on the convective motion and freckle formation during directional solidification of NH4Cl from its aqueous solution at simulated parameter ranges equivalent to reducing the gravity from the sea-level value down to 0.1 g or lower. The secondary objectives of the proposed research are to examine the stability phenomena associated with the onset of freckles and the mechanisms for their subsequent growth and decline (to eventual demise of some) by state-of-the-art imaging techniques and to formulate mathematical models for the prediction of the observed phenomena.
International Nuclear Information System (INIS)
Chakraborty, Sumanta
2015-01-01
The hydrodynamic behavior of perfect fluid orbiting around black holes in spherically symmetric spacetime for various alternative gravity theories has been investigated. For this purpose we have assumed a uniform distribution for the angular momentum density of the rotating perfect fluid. The contours of equipotential surfaces are illustrated in order to obtain the nature of inflow and outflow of matter. It has been noticed that the marginally stable circular orbits originating from decreasing angular momentum density lead to closed equipotential surfaces along with cusps, allowing the existence of accretion disks. On the other hand, the growing part of the angular momentum density exhibits central rings for which stable configurations are possible. However, inflow of matter is prohibited. Among the solutions discussed in this work, the charged F(R) gravity and Einstein–Maxwell–Gauss–Bonnet solutions exhibit inflow and outflow of matter with central rings present. These varied accretion disk structures of perfect fluid attribute astrophysical importance to these spacetimes. The effect of higher curvature terms predominantly arises from the region near the black hole horizon. Hence the structural difference of the accretion disk in modified gravity theories in comparison to general relativity may act as an experimental probe for these alternative gravity theories. (paper)
Spradley, L. W.
1975-01-01
The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.
Cryogenic fluid management program flight concept definition
Kroeger, Erich
1987-01-01
The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.
Interpretation of f(R,T) gravity in terms of a conserved effective fluid
Shabani, Hamid; Ziaie, Amir Hadi
2018-03-01
In the present work, we introduce a novel approach to study f(R,T) gravity theory from a different perspective. Here, T denotes the trace of energy-momentum tensor (EMT) of matter fluids. The usual method (as discussed in the literature) is to choose an h(T) function and then solve for the resulted Friedman equations. Nevertheless, our aim here is, without loss of generality, to reformulate a particular class of f(R,T) gravity models in which the Einstein-Hilbert action is promoted by an arbitrary function of the trace of EMT. The strategy is the redefinition of the equation of motion in terms of the components of an effective fluid. We show that in this case the EMT is automatically conserved. As we shall see, adopting such a point of view (at least) in f(R,T) gravity is accompanied by two significant points. On one hand, h(T) function is chosen based upon a physical concept and on the other, we clearly understand the overall or effective behavior of matter in terms of a conserved effective fluid. To illustrate the idea, we study some models in which different physical properties for the effective fluid is attributed to each model. Particularly, we discuss models with constant effective density, constant effective pressure and constant effective equation of state (EoS) parameter. Moreover, two models with a relation between the effective density and the effective pressure will be considered. An elegant result is that in f(R,T) gravity, there is a possibility that a perfect fluid could effectively behave as a modified Chaplygin gas with four free parameters.
Directory of Open Access Journals (Sweden)
A. M. Abd-Alla
2014-01-01
Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.
Behaviour of charged collapsing fluids after hydrostatic equilibrium in R^n gravity
Kausar, Hafiza Rizwana
2017-06-01
The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R^n gravity. Using Müller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star.
Static and radiating solutions of Lovelock gravity in the presence of a perfect fluid
International Nuclear Information System (INIS)
Dehghani, M.H.; Farhangkhah, N.
2009-01-01
We present a general solution of third order Lovelock gravity in the presence of a specific type II perfect fluid. This solution for linear equation of state, p=w(ρ-4B) contains all the known solutions of third order Lovelock gravity in the literature and some new static and radiating solutions for different values of w and B. Specially, we consider the properties of static and radiating solutions for w=0 and w=(n-2) -1 with B=0 and B≠0. These solutions are asymptotically flat for B=0, while they are asymptotically (anti-)de Sitter for B≠0. The new static solutions for these choices of B and w present black holes with one or two horizons, extreme black holes or naked singularities provided the parameters of the solutions are chosen suitable. The static solution with w=0 and vanishing geometrical mass (m=0) may present a black hole with two inner and outer horizons. This is a peculiar feature of the third order Lovelock gravity, which does not occur in lower order Lovelock gravity. We also, investigate the properties of radiating solutions for these values of B and w, and compare the singularity strengths of them with the known radiating solutions of third order Lovelock gravity.
Managing Chemotherapy Side Effects: Swelling (Fluid Retention)
N ational C ancer I nstitute Managing Chemotherapy Side Effects Swelling (Fluid retention) “My hands and feet were swollen and puffy. My nurse helped me understand why I had to stop eating salty ...
Fluid/gravity correspondence: second order transport coefficients in compactified D4-branes
International Nuclear Information System (INIS)
Wu, Chao; Chen, Yidian; Huang, Mei
2017-01-01
We develop the boundary derivative expansion (BDE) formalism of fluid/gravity correspondence to nonconformal version through the compactified, near-extremal black D4-brane. We offer an explicit calculation of 9 second order transport coefficients, i.e., the τ π , τ π ∗ , τ Π , λ 1,2,3 and ξ 1,2,3 for the strongly coupled, uncharged and nonconformal relativistic fluid which is the holographic dual of compactified, near extremal black D4-brane. We also show that the nonconformal fluid considered in this work is free of causal problem and admits the Haack-Yarom relation 4λ 1 −λ 2 =2ητ π .
International Nuclear Information System (INIS)
Chirde, V.R.; Shekh, S.H.
2016-01-01
The modified theories of gravity have engrossed much attention in the last decade, especially f(R) gravity. In this contextual exploration, we investigate interaction between barotropic fluid and dark energy with zero-mass scalar field for the spatially homogeneous and isotropic flat FRW universe. In this universe, the field equations correspond to the particular choice of f(R) = R+bR m . The exact solutions of the field equations are obtained by applying volumetric power law and exponential law of expansion. In power and exponential law of expansion, the universe shows both matter dominated and DE era for b ≤ 0 and b ≥ 0 and remain present in dark era respectively, but power law model is fully occupying with real matter for b > 0 and for b < 0 exponential model expands with negative pressure and remain present in matter dominated phase respectively. The physical behavior of the universe has been discussed by using some physical quantities
Patterns of gravity induced aggregate migration during casting of fluid concretes
Energy Technology Data Exchange (ETDEWEB)
Spangenberg, J. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Roussel, N., E-mail: Nicolas.roussel@lcpc.fr [Universite Paris Est, Laboratoire Central des Ponts et Chaussees (LCPC) (France); Hattel, J.H. [Department of Mechanical Engineering, Technical University of Denmark (DTU) (Denmark); Sarmiento, E.V.; Zirgulis, G. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Geiker, M.R. [Department of Structural Engineering, Norwegian University of Science and Technology (NTNU) (Norway); Department of Civil Engineering, Technical University of Denmark (DTU) (Denmark)
2012-12-15
In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.
Patterns of gravity induced aggregate migration during casting of fluid concretes
International Nuclear Information System (INIS)
Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R.
2012-01-01
In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Perfect fluid of p-branes, 2D dilaton gravity and the big-bang
International Nuclear Information System (INIS)
Borlaf, J.
2001-01-01
This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented
Perfect fluid of p-branes, 2D dilaton gravity and the big-bang
Energy Technology Data Exchange (ETDEWEB)
Borlaf, J. E-mail: jborlaf@redestb.es
2001-01-15
This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented.
Endoscopic management of peripancreatic fluid collections.
Goyal, Jatinder; Ramesh, Jayapal
2015-07-01
Peripancreatic fluid collections are a well-known complication of pancreatitis and can vary from fluid-filled collections to entirely necrotic collections. Although most of the fluid-filled pseudocysts tend to resolve spontaneously with conservative management, intervention is necessary in symptomatic patients. Open surgery has been the traditional treatment modality of choice though endoscopic, laparoscopic and transcutaneous techniques offer alternative drainage approaches. During the last decade, improvement in endoscopic ultrasound technology has enabled real-time access and drainage of fluid collections that were previously not amenable to blind transmural drainage. This has initiated a trend towards use of this modality for treatment of pseudocysts. In this review, we have summarised the existing evidence for endoscopic drainage of peripancreatic fluid collections from published studies.
Behaviour of charged collapsing fluids after hydrostatic equilibrium in R{sup n} gravity
Energy Technology Data Exchange (ETDEWEB)
Kausar, Hafiza Rizwana [University of Central Punjab, Faculty of Management Studies, Centre for Applicable Mathematics and Statistics, UCP Business School, Lahore (Pakistan)
2017-06-15
The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R{sup n} gravity. Using Mueller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star. (orig.)
Binary Mixture of Perfect Fluid and Dark Energy in Modified Theory of Gravity
Shaikh, A. Y.
2016-07-01
A self consistent system of Plane Symmetric gravitational field and a binary mixture of perfect fluid and dark energy in a modified theory of gravity are considered. The gravitational field plays crucial role in the formation of soliton-like solutions, i.e., solutions with limited total energy, spin, and charge. The perfect fluid is taken to be the one obeying the usual equation of state, i.e., p = γρ with γ∈ [0, 1] whereas, the dark energy is considered to be either the quintessence like equation of state or Chaplygin gas. The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied.
On a numerical strategy to compute gravity currents of non-Newtonian fluids
International Nuclear Information System (INIS)
Vola, D.; Babik, F.; Latche, J.-C.
2004-01-01
This paper is devoted to the presentation of a numerical scheme for the simulation of gravity currents of non-Newtonian fluids. The two dimensional computational grid is fixed and the free-surface is described as a polygonal interface independent from the grid and advanced in time by a Lagrangian technique. Navier-Stokes equations are semi-discretized in time by the Characteristic-Galerkin method, which finally leads to solve a generalized Stokes problem posed on a physical domain limited by the free surface to only a part of the computational grid. To this purpose, we implement a Galerkin technique with a particular approximation space, defined as the restriction to the fluid domain of functions of a finite element space. The decomposition-coordination method allows to deal without any regularization with a variety of non-linear and possibly non-differentiable constitutive laws. Beside more analytical tests, we revisit with this numerical method some simulations of gravity currents of the literature, up to now investigated within the simplified thin-flow approximation framework
Gravity current down a steeply inclined slope in a rotating fluid
Directory of Open Access Journals (Sweden)
G. I. Shapiro
Full Text Available The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t < 1/ƒ, intermediate (t ≈ 1/ƒ, and main (t » 1/ƒ stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.
Gravity current down a steeply inclined slope in a rotating fluid
Directory of Open Access Journals (Sweden)
G. I. Shapiro
1997-03-01
Full Text Available The sinking of dense water down a steep continental slope is studied using laboratory experiments, theoretical analysis and numerical simulation. The experiments were made in a rotating tank containing a solid cone mounted on the tank floor and originally filled with water of constant density. A bottom gravity current was produced by injecting more dense coloured water at the top of the cone. The dense water plume propagated from the source down the inclined cone wall and formed a bottom front separating the dense and light fluids. The location of the bottom front was measured as a function of time for various experimental parameters. In the majority of runs a stable axisymmetric flow was observed. In certain experiments, the bottom layer became unstable and was broken into a system of frontal waves which propagated down the slope. The fluid dynamics theory was developed for a strongly non-linear gravity current forming a near-bottom density front. The theory takes into account both bottom and interfacial friction as well as deviation of pressure from the hydrostatic formula in the case of noticeable vertical velocities. Analytical and numerical solutions were found for the initial (t 1/ƒ, intermediate (t ≈ 1/ƒ, and main (t » 1/ƒ stages, where ƒ is the Coriolis parameter. The model results show that during the initial stage non-linear inertial oscillations are developed. During the main stage, the gravity current is concentrated in the bottom layer which has a thickness of the order of the Ekman scale. The numerical solutions are close to the same analytical one. Stability analysis shows that the instability threshold depends mainly on the Froude number and does not depend on the Ekman number. The results of laboratory experiments confirm the similarity properties of the bottom front propagation and agree well with the theoretical predictions.
Evolutionary space station fluids management strategies
1989-01-01
Results are summarized for an 11-month study to define fluid storage and handling strategies and requirements for various specific mission case studies and their associated design impacts on the Space Station. There are a variety of fluid users which require a variety of fluids and use rates. Also, the cryogenic propellants required for NASA's STV, Planetary, and Code Z missions are enormous. The storage methods must accommodate fluids ranging from a high pressure gas or supercritical state fluid to a sub-cooled liquid (and superfluid helium). These requirements begin in the year 1994, reach a maximum of nearly 1800 metric tons in the year 2004, and trail off to the year 2018, as currently planned. It is conceivable that the cryogenic propellant needs for the STV and/or Lunar mission models will be met by LTCSF LH2/LO2 tanksets attached to the SS truss structure. Concepts and corresponding transfer and delivery operations have been presented for STV propellant provisioning from the SS. A growth orbit maneuvering vehicle (OMV) and associated servicing capability will be required to move tanksets from delivery launch vehicles to the SS or co-orbiting platforms. Also, appropriate changes to the software used for OMV operation are necessary to allow for the combined operation of the growth OMV. To support fluid management activities at the Space Station for the experimental payloads and propellant provisioning, there must be truss structure space allocated for fluid carriers and propellant tanksets, and substantial beam strengthening may be required. The Station must have two Mobile Remote Manipulator Systems (MRMS) and the growth OMV propellant handling operations for the STV at the SS. Propellant needs for the Planetary Initiatives and Code Z mission models will most likely be provided by co-orbiting propellant platform(s). Space Station impacts for Code Z mission fluid management activities will be minimal.
Energy Technology Data Exchange (ETDEWEB)
Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2012-11-01
In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level.
International Nuclear Information System (INIS)
Avelino, P.P.
2012-01-01
In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory κ, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level
Farsoiya, Palas Kumar; Dasgupta, Ratul
2017-11-01
When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.
Near-surface gravity actuated pipe (GAP{sup TM}) system for Brazilian deepwater fluid transfer
Energy Technology Data Exchange (ETDEWEB)
Fromage, Lionel; Brown, Paul A. [SBM Offshore (Monaco)
2009-12-19
The recent discovery of new deep water and ultra-deep water oil and gas fields offshore Brazil, including pre-salt reservoirs, has become a focal point for field development Operators and Contractors. The aggressive nature of fluids (sour, high density) in combination with deeper waters implies potential flow assurance issues. These issues challenge riser and pipeline technology to find cost effective solutions for hydrocarbon fluid transfer in field development scenarios involving phased tied-back. The near-surface GAP{sup TM}, system (Gravity Actuated Pipe{sup TM}), which has been in operation for more than two years on the Kikeh field offshore Malaysia in 1325 m of water between a Dry Tree Unit (SPAR) and a turret-moored FPSO, is considered to meet these challenges since such a product is quasi independent of water depth and takes advantage of being near surface to optimize flow assurance. Furthermore the GAP{sup TM} has undergone technical upgrades when compared to the Kikeh project in order to make it suitable for the more hostile met ocean conditions offshore Brazil. This paper presents the design features, the construction and assembly plans in Brazil and the offshore installation of a GAP fluid transfer system for operation in Brazilian deep waters. (author)
MarsSedEx III: linking Computational Fluid Dynamics (CFD) and reduced gravity experiments
Kuhn, N. J.; Kuhn, B.; Gartmann, A.
2015-12-01
Nikolaus J. Kuhn (1), Brigitte Kuhn (1), and Andres Gartmann (2) (1) University of Basel, Physical Geography, Environmental Sciences, Basel, Switzerland (nikolaus.kuhn@unibas.ch), (2) Meteorology, Climatology, Remote Sensing, Environmental Sciences, University of Basel, Switzerland Experiments conducted during the MarsSedEx I and II reduced gravity experiments showed that using empirical models for sediment transport on Mars developed for Earth violates fluid dynamics. The error is caused by the interaction between runing water and sediment particles, which affect each other in a positive feedback loop. As a consequence, the actual flow conditions around a particle cannot be represented by drag coefficients derived on Earth. This study exmines the implications of such gravity effects on sediment movement on Mars, with special emphasis on the limits of sandstones and conglomerates formed on Earth as analogues for sedimentation on Mars. Furthermore, options for correctiong the errors using a combination of CFD and recent experiments conducted during the MarsSedEx III campaign are presented.
Vaughan, O. H., Jr.; Hung, R. J.
1975-01-01
Skylab 4 crew members performed a series of demonstrations showing the oscillations, rotations, as well as collision coalescence of water droplets which simulate various physical models of fluids under low gravity environment. The results from Skylab demonstrations provide information and illustrate the potential of an orbiting space-oriented research laboratory for the study of more sophisticated fluid mechanic experiments. Experiments and results are discussed.
Thermal Performance of a Cryogenic Fluid Management Cubesat Mission
Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.
2013-01-01
Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.
Radiation fluid stars in the non-minimally coupled Y(R)F{sup 2} gravity
Energy Technology Data Exchange (ETDEWEB)
Sert, Oezcan [Pamukkale University, Department of Mathematics, Faculty of Arts and Sciences, Denizli (Turkey)
2017-02-15
We propose a non-minimally coupled gravity model in Y(R)F{sup 2} form to describe the radiation fluid stars which have the radiative equation of state between the energy density ρ and the pressure p given by ρ = 3p. Here F{sup 2} is the Maxwell invariant and Y(R) is a function of the Ricci scalar R. We give the gravitational and electromagnetic field equations in differential form notation taking the infinitesimal variations of the model. We look for electrically charged star solutions to the field equations under the constraint eliminating complexity of the higher order terms in the field equations. We determine the non-minimally coupled function Y(R) and the corresponding model which admits new exact solutions in the interior of the star and the Reissner-Nordstrom solution at the exterior region. Using the vanishing pressure condition at the boundary together with the continuity conditions of the metric functions and the electric charge, we find the mass-radius ratio, charge-radius ratio, and the gravitational surface redshift depending on the parameter of the model for the radiation fluid star. We derive general restrictions for the ratios and redshift of the charged compact stars. We obtain a slightly smaller upper mass-radius ratio limit than the Buchdahl bound 4/9 and a smaller upper redshift limit than the bound of the standard general relativistic stars. (orig.)
Bomani, Bilal M. M.; Kassemi, Mohammad; Neumann, Eric S.
2016-01-01
It remains unclear how biological cells sense and respond to gravitational forces. Leading scientists state that a large gap exists in the understanding of physiological and molecular adaptation that occurs as biology enters the spaceflight realm. We are seeking a method to fully understand how cells sense microgravity/gravity and what triggers their response.
Precision Fluid Management in Continuous Renal Replacement Therapy.
Murugan, Raghavan; Hoste, Eric; Mehta, Ravindra L; Samoni, Sara; Ding, Xiaoqiang; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio
2016-01-01
Fluid management during continuous renal replacement therapy (CRRT) in critically ill patients is a dynamic process that encompasses 3 inter-related goals: maintenance of the patency of the CRRT circuit, maintenance of plasma electrolyte and acid-base homeostasis and regulation of patient fluid balance. In this article, we report the consensus recommendations of the 2016 Acute Disease Quality Initiative XVII conference on 'Precision Fluid Management in CRRT'. We discuss the principles of fluid management, describe various prescription methods to achieve circuit integrity and introduce the concept of integrated fluid balance for tailoring fluid balance to the needs of the individual patient. We suggest that these recommendations could serve to develop the best clinical practice and standards of care for fluid management in patients undergoing CRRT. Finally, we identify and highlight areas of uncertainty in fluid management and set an agenda for future research. © 2016 S. Karger AG, Basel.
Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.
2016-12-01
In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.
Directory of Open Access Journals (Sweden)
Bhadauria B.S.
2016-12-01
Full Text Available In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.
Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).
Inviscid linear stability analysis of two fluid columns of different densities subject to gravity
Prathama, Aditya; Pantano, Carlos
2017-11-01
We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.
Endosonography guided management of pancreatic fluid collections
DEFF Research Database (Denmark)
Vilmann, Andreas S; Menachery, John; Tang, Shou-Jiang
2015-01-01
complications of pancreatitis can include acute peri-pancreatic fluid collection, acute necrotic collection, pseudocyst formation, and walled-off necrosis. Interventional endoscopic ultrasound (EUS) has been increasing utilized in managing these local complications. After performing a PubMed search, the authors...... manually applied pre-defined inclusion criteria or a filter to identify publications relevant to EUS and pancreatic collections (PFCs). The authors then reviewed the utility, efficacy, and risks associated with using therapeutic EUS and involved EUS devices in treating PFCs. Due to the development...... to diagnose PFCs and perform image-guided interventions. After draining a PFC, the amount of tissue necrosis is the most important predictor of a successful outcome. Hence, it seems logical to classify these collections based on their percentage of necrotic component or debris present when viewed by imaging...
Lyubimova, Tatyana; Zubova, Nadezhda
The instability of incompressible viscous binary fluid with the Soret effect in square cavity heated from above is studied for different gravity levels. The no slip and zero mass flux conditions are imposed on all the boundaries. The horizontal boundaries are perfectly conductive, they are maintained at constant different temperatures and vertical boundaries are adiabatic. The calculations are performed for water - isopropanol mixture 90:10. Initial conditions correspond to the motionless state with uniform distribution of components and uniform temperature gradient directed upward. For binary fluid under consideration the separation parameter is negative therefore the Soret effect leads to the accumulation of heavy component in the upper part of cavity, moreover, the rate of accumulation is independent of the gravity level. The linear stability of the unsteady motionless state is studied numerically by solving linearized equations for small perturbations. To determine the time t* for the onset of instability, the criterion suggested in [1] is used. The dependence of t* on the gravity level is obtained. The work was done under financial support of Government of Perm Region, Russia (Contract C-26/212). 1. Shliomis M.I., Souhar M. Europhysics Letters. 2000. Vol. 49 (1), pp. 55-61.
The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids
Hu, Bin; Kieweg, Sarah L.
2012-01-01
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391
Fluid overload in the ICU: evaluation and management.
Claure-Del Granado, Rolando; Mehta, Ravindra L
2016-08-02
Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid balance becomes a central component of the management of critically ill patients. In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration, and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status; however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal therapies. In critically ill patients, fluid overload is related to increased mortality and also lead to several complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of continuous
Energy Technology Data Exchange (ETDEWEB)
Lyubimova, Tatyana; Kovalevskaya, Kseniya, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)
2016-12-15
The effect of gravity modulation on the onset of convection in a horizontal layer of viscoelastic Oldroyd fluid heated from below is considered. The analytical solution of the problem has been obtained for the case of stress-free boundaries and rectangular modulation. It has been shown that depending on the parameter values, the modulation can produce either stabilizing or destabilizing effects. The deformation retardation always exerts a stabilizing effect, which is most pronounced in the shortwave range. The numerical results obtained by the solution of full nonlinear problems agree well with the results of linear stability analysis. (paper)
Fluid management plan for the Project Shoal Area Offsites Subproject
International Nuclear Information System (INIS)
1996-08-01
The US Department of Energy, Nevada Operations Office (DOE/NV) has initiated the Offsites Subproject to characterize the hazards posed to human health and the environment as a result of underground nuclear testing activities at facilities other than the Nevada Test Site (NTS). A primary Subproject objective is to gather adequate data to characterize the various Subproject sites through the collection of surface and subsurface soil samples and by drilling several wells for the collection of groundwater data. The Project Shoal Area (PSA) is one of the Subproject's Nevada sites and is subject to the requirements set forth in the Federal Facility Compliance Agreement and Consent Order (FFACO) (DOE, 1996a). In accordance with the FFACO, a Corrective Action Investigation Plan (CAIP) has been developed for work at the PSA (designated as Corrective Action Unit Number 416). This Fluid Management Plan (FMP) provides guidance for the management of fluids generated from wells constructed at the PSA. Long-term monitoring and future activities at the site, if required, will be set forth in additional documents as required by the FFACO. The ultimate method for disposition of fluids generated by site operations depends upon sample analysis and process knowledge in relation to fluid management criteria. Section 2 describes well site operations; Section 3 discusses fluid management criteria; Section 4 includes the fluid monitoring program; Section 5 presents the fluid management strategy; Section 6 provides for fluid management during routine well monitoring; and Section 7 contains reporting criteria
Bioimpedance-Guided Fluid Management in Hemodialysis Patients
Arias-Guillén, Marta; Wabel, Peter; Fontseré, Néstor; Carrera, Montserrat; Campistol, José Maria; Maduell, Francisco
2013-01-01
Summary Background and objectives Achieving and maintaining optimal fluid status remains a major challenge in hemodialysis therapy. The aim of this interventional study was to assess the feasibility and clinical consequences of active fluid management guided by bioimpedance spectroscopy in chronic hemodialysis patients. Design, setting, participants, & measurements Fluid status was optimized prospectively in 55 chronic hemodialysis patients over 3 months (November 2011 to February 2012). Predialysis fluid overload was measured weekly using the Fresenius Body Composition Monitor. Time-averaged fluid overload was calculated as the average between pre- and postdialysis fluid overload. The study aimed to bring the time-averaged fluid overload of all patients into a target range of 0.5±0.75 L within the first month and maintain optimal fluid status until study end. Postweight was adjusted weekly according to a predefined protocol. Results Time-averaged fluid overload in the complete study cohort was 0.9±1.6 L at baseline and 0.6±1.1 L at study end. Time-averaged fluid overload decreased by −1.20±1.32 L (P<0.01) in the fluid-overloaded group (n=17), remained unchanged in the normovolemic group (n=26, P=0.59), and increased by 0.59±0.76 L (P=0.02) in the dehydrated group (n=12). Every 1 L change in fluid overload was accompanied by a 9.9 mmHg/L change in predialysis systolic BP (r=0.55, P<0.001). At study end, 76% of all patients were either on time-averaged fluid overload target or at least closer to target than at study start. The number of intradialytic symptoms did not change significantly in any of the subgroups. Conclusions Active fluid management guided by bioimpedance spectroscopy was associated with an improvement in overall fluid status and BP. PMID:23949235
Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity
Energy Technology Data Exchange (ETDEWEB)
Davison, Richard A. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Grozdanov, Sašo [Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Janiszewski, Stefan [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Kaminski, Matthias [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States)
2016-11-28
We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z=1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.
Centre of Gravity Plethysmography--A Means of Detecting Mass Transfer of Fluid within the Body.
Buck, Michael
1988-01-01
Describes the monitoring of the redistribution of blood by using a technique which detects changes in the center of gravity of the body. Provides information about the principles and application, construction of apparatus, operating routines, and use of the computer as a recorder. Includes suggested investigations, demonstrations, and diagrams.…
Managing Fluid and Electrolyte Disorders in Kidney Disease.
Langston, Cathy
2017-03-01
Because of the role of the kidneys in maintaining homeostasis in the body, kidney disease leads to derangements of fluid, electrolyte, and acid-base balance. The most effective therapy of a uremic crisis is careful management of fluid balance, which involves thoughtful assessment of hydration, a fluid treatment plan personalized for the specific patient, and repeated and frequent reassessment of fluid and electrolyte balance. Disorders of sodium, chloride, potassium, calcium, and phosphorus are commonly encountered in kidney disease and some may be life-threatening. Treatment of metabolic acidosis and nutritional support is frequently needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU.
Ingelse, Sarah A; Wösten-van Asperen, Roelie M; Lemson, Joris; Daams, Joost G; Bem, Reinout A; van Woensel, Job B
2016-01-01
The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS). Patients with ARDS have widespread damage of the alveolar-capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes.
Pediatric acute respiratory distress syndrome: fluid management in the PICU
Directory of Open Access Journals (Sweden)
Sarah A Ingelse
2016-03-01
Full Text Available The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS. Patients with ARDS have widespread damage of the alveolar capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes.
Fluid management in acute kidney injury
DEFF Research Database (Denmark)
Perner, Anders; Prowle, John; Joannidis, Michael
2017-01-01
Acute kidney injury (AKI) and fluids are closely linked through oliguria, which is a marker of the former and a trigger for administration of the latter. Recent progress in this field has challenged the physiological and clinical rational of using oliguria as a trigger for the administration...... of crystalloids and colloids on kidney function and the effect of various resuscitation and de-resuscitation strategies on the course and outcome of AKI....
Endoscopic Management of Pancreatic Fluid Collections in Children.
Nabi, Zaheer; Talukdar, Rupjyoti; Reddy, D Nageshwar
2017-07-15
The incidence of acute pancreatitis in children has increased over the last few decades. The development of pancreatic fluid collection is not uncommon after severe acute pancreatitis, although its natural course in children and adolescents is poorly understood. Asymptomatic fluid collections can be safely observed without any intervention. However, the presence of clinically significant symptoms warrants the drainage of these fluid collections. Endoscopic management of pancreatic fluid collection is safe and effective in adults. The use of endoscopic ultrasound (EUS)-guided procedure has improved the efficacy and safety of drainage of pancreatic fluid collections, which have not been well studied in pediatric populations, barring a scant volume of small case series. Excellent results of EUS-guided drainage in adult patients also need to be verified in children and adolescents. Endoprostheses used to drain pancreatic fluid collections include plastic and metal stents. Metal stents have wider lumens and become clogged less often than plastic stents. Fully covered metal stents specifically designed for pancreatic fluid collection are available, and initial studies have shown encouraging results in adult patients. The future of endoscopic management of pancreatic fluid collection in children appears promising. Prospective studies with larger sample sizes are required to establish their definitive role in the pediatric age group.
Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity
Chirde, V. R.; Shekh, S. H.
2016-06-01
In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.
Second generation diffusion model of interacting gravity waves on the surface of deep fluid
Directory of Open Access Journals (Sweden)
A. Pushkarev
2004-01-01
Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.
Fluid management in infants and children during intracranial surgery
Directory of Open Access Journals (Sweden)
Hemangi S Karnik
2017-01-01
Full Text Available Fluid management in neurosurgical paediatric patients can be a real challenge due to their different pathophysiology, sensitivity to fluid loss, inability to accurately judge the degree of abnormality and adequacy of replacement in face of limited monitoring. For infants and children undergoing neurosurgical procedures, isotonic fluids should be used for maintenance and replacement to avoid increase in intracranial pressure and maintain cerebral perfusion. Routine use of added dextrose is not needed, but blood glucose monitoring should be done in high risk population. Preoperative deficits and intraoperative blood loss should be closely monitored and treated. Hyponataemia and other electrolyte derangements are common and should be monitored.
Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya
2018-01-01
This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.
Oral rehydration therapy for preoperative fluid and electrolyte management.
Taniguchi, Hideki; Sasaki, Toshio; Fujita, Hisae
2011-01-01
Preoperative fluid and electrolyte management is usually performed by intravenous therapy. We investigated the safety and effectiveness of oral rehydration therapy (ORT) for preoperative fluid and electrolyte management of surgical patients. The study consisted of two studies, designed as a prospective observational study. In a pilot study, 20 surgical patients consumed 1000 mL of an oral rehydration solution (ORS) until 2 h before induction of general anesthesia. Parameters such as serum electrolyte concentrations, fractional excretion of sodium (FENa) as an index of renal blood flow, volume of esophageal-pharyngeal fluid and gastric fluid (EPGF), and patient satisfaction with ORT were assessed. In a follow-up study to assess the safety of ORT, 1078 surgical patients, who consumed ORS until 2 h before induction of general anesthesia, were assessed. In the pilot study, water, electrolytes, and carbohydrate were effectively and safely supplied by ORT. The FENa value was increased at 2 h following ORT. The volume of EPGF collected following the induction of anesthesia was 5.3±5.6 mL. In the follow-up study, a small amount of vomiting occurred in one patient, and no aspiration occurred in the patients. These results suggest that ORT is a safe and effective therapy for the preoperative fluid and electrolyte management of selected surgical patients.
Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane
2003-01-01
This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.
2-D Eulerian hydrodynamics with fluid interfaces, self-gravity and rotation
International Nuclear Information System (INIS)
Norman, M.L.; Winkler, K.H.A.
1982-01-01
The purpose of this paper is to describe in detail the numerical approach we have developed over the past five years for solving 2-dimensional gas-dynamical problems in astrophysics involving inviscid compressible flow, self-gravitation, rotation, and fluid instabilities of the Rayleigh-Taylor and Kelvin-Helmholtz types. The computer code to be described has been applied most recently to modeling jets in radio galaxies (Norman et al. 1981, 1982) and is an outgrowth of a code developed for studying rotating protostellar collapse (Norman, Wilson and Barton 1980; Norman 1980). This basic methodology draws heavily on the techniques and experience of James R. Wilson and James M. LeBlanc of the Lawrence Livermore National Laboratory, and thus the code is designed to be a general purpose 2-D Eulerian hydrocode, and is characterized by a high degree of simplicity, robustness, modularity and speed. Particular emphases of this article are: (1) the recent improvements to the code's accuracy through the use of vanLeer's (1977) monotonic advection algorithm, (2) a discussion of the importance of what we term consistent advection, and (3) a description of a numerical techique for modeling dynamic fluid interfaces in multidimensional Eulerian calculations developed by LeBlanc. 23 refs., 14 figs
Havens, Vance; Ragaller, Dana
1988-01-01
Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.
Cryogenic Fluid Management Technology for Moon and Mars Missions
Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.
2010-01-01
In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.
Conceptual Design of an In-Space Cryogenic Fluid Management Facility
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.
Conservative fluid management prevents age-associated ventilator induced mortality.
Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L
2016-08-01
Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in
Thermal management of microelectronics with electrostatic fluid accelerators
International Nuclear Information System (INIS)
Wang, Hsiu-Che; Jewell-Larsen, Nels E.; Mamishev, Alexander V.
2013-01-01
Optimal thermal management is critical in modern consumer electronics. Typically, a thermal management scheme for an electronic system involves several physical principles. In many cases, it is highly desirable to enhance heat transfer at the solid-air interface while maintaining small size of the thermal management solution. The enhancement of heat transfer at the solid-air interface can be achieved by several physical principles. One principle that is getting increased attention of thermal management design engineers is electrostatic fluid acceleration. This paper discusses recent breakthroughs in state-of-the-art of electrostatic fluid accelerators (EFAs). The paper compares and contrasts EFAs’ design and performance metrics to those of other airside cooling technologies used in small form factor applications. Since the energy efficiency, flow rate, and acoustic emissions are highly influenced by the scale of the airside cooling devices, the paper also presents the analysis of fundamental effect of scaling laws on heat transfer performance. The presented review and analysis helps drawing conclusions regarding achievable comparative performance and practicality of using different design approaches and physical principles for different applications. -- Highlights: ► Discuss breakthrough in state-of-the-art of electrostatic fluid accelerators (EFA). ► Compare EFAs' performance metrics to those of other airside cooling technologies. ► Show analysis of fundamental effect of scaling laws on heat transfer performance
Endoscopic Management of Peri-Pancreatic Fluid Collections.
Yip, Hon Chi; Teoh, Anthony Yuen Bun
2017-09-15
In the past decade, there has been a progressive paradigm shift in the management of peri-pancreatic fluid collections after acute pancreatitis. Refinements in the definitions of fluid collections from the updated Atlanta classification have enabled better communication amongst physicians in an effort to formulate optimal treatments. Endoscopic ultrasound (EUS)-guided drainage of pancreatic pseudocysts has emerged as the procedure of choice over surgical cystogastrostomy. The approach provides similar success rates with low complications and better quality of life compared with surgery. However, an endoscopic "step up" approach in the management of pancreatic walled-off necrosis has also been advocated. Both endoscopic and percutaneous drainage routes may be used depending on the anatomical location of the collections. New-generation large diameter EUS-specific stent systems have also recently been described. The device allows precise and effective drainage of the collections and permits endoscopic necrosectomy through the stents.
Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions
Hart, J.; Toomre, J.
1980-01-01
Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres.
Fluid management in the optimization of space construction
Snyder, Howard
1990-01-01
Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.
Controversies in pediatric anesthesia: sevoflurane and fluid management.
Gueli, Sarah L; Lerman, Jerrold
2013-06-01
To explore the interrelationships among the pharmacokinetics of sevoflurane, epileptiform electroencephalographic (EEG) activity and awareness in children. To also describe the revised perioperative fluid management strategy espoused by Holliday and Segar and noninvasive measures that may predict who will respond positively to fluid loading. The depth of anesthesia during the early washin period with sevoflurane 8% is one-third less than during halothane. Eight percent sevoflurane rarely causes clinical seizures; more commonly, it causes epileptiform EEG activity that only weakly portends seizure activity. When preceded by nitrous oxide, midazolam or normocapnia, the risk of inducing epileptiform activity during spontaneous respiration is exceedingly small. Decreasing the inspired concentration of sevoflurane upon loss of the eyelash reflex to prevent epileptiform activity has not been shown to reduce the risk of clinical seizures, but more importantly, it may increase the risk of awareness if the child is stimulated. Isotonic intravenous solutions should be infused in volumes of 20-40 ml/kg over 2-4 h in children undergoing elective surgery. Postoperatively, these infusions may be continued at rates of 2/1/0.5 ml/kg/h; serum sodium concentration should be measured periodically. Noninvasive measures currently do not reliably identify those children who will respond positively to fluid boluses. Sevoflurane is a well tolerated induction agent that rarely causes seizures in children, but may cause awareness if the inspired concentration is prematurely reduced. Perioperative isotonic fluids should be infused at 20-40 ml/kg over 2-4 h during elective surgery. Noninvasive metrics do not predict a child's responsiveness to fluid loading.
International Nuclear Information System (INIS)
Moh, Jeong Hah; Cho, Y. I.
2014-01-01
This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady
Preoperative fluid and electrolyte management with oral rehydration therapy.
Taniguchi, Hideki; Sasaki, Toshio; Fujita, Hisae; Takamori, Mina; Kawasaki, Rieko; Momiyama, Yukinori; Takano, Osami; Shibata, Toshinari; Goto, Takahisa
2009-01-01
We hypothesized that oral rehydration therapy using an oral rehydration solution may be effective for preoperative fluid and electrolyte management in surgical patients before the induction of general anesthesia, and we investigated the safety and effectiveness of oral rehydration therapy as compared with intravenous therapy. Fifty female patients who underwent breast surgery were randomly allocated to two groups. Before entry to the operation room and the induction of general anesthesia, 25 patients drank 1000 ml of an oral rehydration solution ("oral group") and 25 patients were infused with 1000 ml of an intravenous electrolyte solution ("intravenous group"). Parameters such as electrolyte concentrations in serum and urine, urine volume, vital signs, vomiting and aspiration, volumes of esophageal-pharyngeal fluid and gastric fluid (EPGF), and patient satisfaction with the therapy (as surveyed by a questionnaire) were assessed. After treatment, the serum sodium concentration and the hematocrit value, which both declined within the normal limits, were significantly higher in the oral group than in the intravenous group (sodium, 140.8 +/- 2.9 mEq x l(-1) in the oral group and 138.7 +/- 1.9 mEq x l(-1) in the intravenous group; P = 0.005; hematocrit, 39.03 +/- 4.16% in the oral group and 36.15 +/- 3.41% in the intravenous group; P = 0.01). No significant difference was observed in serum glucose values. Urine volume was significantly larger in the oral group (864.9 +/- 211.5 ml) than in the intravenous group (561.5 +/- 216.0 ml; P rehydration therapy, as judged by factors such as "feeling of hunger", "occurrence of dry mouth", and "less restriction in physical activity". The volume of EPGF collected following the induction of anesthesia was significantly smaller in the oral group than in the intravenous group (6.03 +/- 9.14 ml in the oral group and 21.76 +/- 30.56 ml in the intravenous group; P rehydration therapy with an oral rehydration solution before surgery is
Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey
2013-01-01
Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the NASA Game Changing Development Program (GCD) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1). The tank geometry
Schallhorn, Paul; Roth, Jacob; Marsell, Brandon; Kirk, Daniel; Gutierrez, Hector; Saenz-Otero, Alvar; Dorney, Daniel; Moder, Jeffrey
2012-01-01
Accurate prediction of coupled fluid slosh and launch vehicle or spacecraft dynamics (e.g., nutation/precessional movement about various axes, attitude changes, ect.) requires Computational Fluid Dynamics (CFD) models calibrated with low-gravity, long duration slosh data. Recently completed investigations of reduced gravity slosh behavior have demonstrated the limitations of utilizing parabolic flights on specialized aircraft with respect to the specific objectives of the experiments. Although valuable data was collected, the benefits of longer duration low-gravity environments were clearly established. The proposed research provides the first data set from long duration tests in zero gravity that can be directly used to benchmark CFD models, including the interaction between the sloshing fluid and the tank/vehicle dynamics. To explore the coupling of liquid slosh with the motion of an unconstrained tank in microgravity, NASA's Kennedy Space Center, Launch Services Program has teamed up with the Florida Institute of Technology (FIT), Massachusetts Institute of Technology (MIT) and the Office of the Chief Technologist (OCT) to perform a series of slosh dynamics experiments on the International Space Station using the SPHERES platform. The Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) testbed provides a unique, free-floating instrumented platform on ISS that can be utilized in a manner that would solve many of the limitations of the current knowledge related to propellant slosh dynamics on launch vehicle and spacecraft fuel tanks. The six degree of freedom (6-DOF) motion of the SPHERES free-flyer is controlled by an array of cold-flow C02 thrusters, supplied from a built-in liquid C02 tank. These SPHERES can independently navigate and re-orient themselves within the ISS. The intent of this project is to design an externally mounted tank to be driven inside the ISS by a set of two SPHERES devices (Figure 1 ). The tank geometry simulates
Aydelott, J. C.; Rudland, R. S.
1985-01-01
The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.
Pediatric Acute Respiratory Distress Sydnrome : Fluid Management in the PICU
Ingelse, SA; Wösten-van Asperen, RM; Lemson, J; Daams, JG; Bem, R.A.; van Woensel, JB
2016-01-01
The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric
Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU
Ingelse, Sarah A.; Wösten-van Asperen, Roelie M.; Lemson, Joris; Daams, Joost G.; Bem, Reinout A.; van Woensel, Job B.
2016-01-01
The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric
Rahman, M. M.; Hankey, W. L.; Faghri, A.
1991-01-01
The hydrodynamic and thermal behavior of a thin liquid film flowing over a solid horizontal surface is analyzed for both plane and radially spreading flows. The situations where the gravitational force is completely absent and where it is significant are analyzed separately and their practical relevance to a micro-gravity environment is discussed. In the presence of gravity, in addition to Reynolds number, the Froude number of the film is found to be an important parameter that determines the supercritical and subcritical flow regimes and any associated hydraulic jump. A closed-form solution is possible under some flow situations, whereas others require numerical integration of ordinary differential equations. The approximate analytical results are found to compare well with the available two-dimensional numerical solutions.
Computational thermal, chemical, fluid, and solid mechanics for geosystems management.
Energy Technology Data Exchange (ETDEWEB)
Davison, Scott; Alger, Nicholas; Turner, Daniel Zack; Subia, Samuel Ramirez; Carnes, Brian; Martinez, Mario J.; Notz, Patrick K.; Klise, Katherine A.; Stone, Charles Michael; Field, Richard V., Jr.; Newell, Pania; Jove-Colon, Carlos F.; Red-Horse, John Robert; Bishop, Joseph E.; Dewers, Thomas A.; Hopkins, Polly L.; Mesh, Mikhail; Bean, James E.; Moffat, Harry K.; Yoon, Hongkyu
2011-09-01
This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.
Microgravity Fluids for Biology, Workshop
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.
Saraghi, Mana
2015-01-01
Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.
Directory of Open Access Journals (Sweden)
Lauren Ehrlichman
2017-03-01
Full Text Available Background: While various radiographic parameters and application of manual/gravity stress have been proposed to elucidate instability for Weber B fibula fractures, the prognostic capability of these modalities remains unclear. Determination of anatomic positioning of the mortise is paramount. We propose a novel view, the Gravity Reduction View (GRV, which helps elucidate non-anatomic positioning and reducibility of the mortise.Methods: The patient is positioned lateral decubitus with the injured leg elevated on a holder with the fibula directed superiorly. The x-ray cassette is placed posterior to the heel, with the beam angled at 15˚ of internal rotation to obtain a mortise view. Our proposed treatment algorithm is based upon the measurement of the medial clear space (MCS on the GRV versus the static mortise view (and in comparison to the superior clear space (SCS and is based on reducibility of the MCS. A retrospective review of patients evaluated utilizing the GRV was performed.Results: 26 patients with Weber B fibula fractures were managed according to this treatment algorithm. Mean age was 50.57 years old (range: range:18-81, SD=19. 17 patients underwent operative treatment and 9 patients were initially treated nonoperatively. 2 patients demonstrated late displacement and were treated surgically. Using this algorithm, at a mean follow-up of 26 weeks, all patients had a final MCS that was less than the SCS (final mean MCS 2.86 mm vs. mean SCS of 3.32 indicating effectiveness of the treatment algorithm.Conclusion: The GRV is a novel radiographic view in which deltoid competency, reducibility and initial positioning of the mortise are assessed by comparing a static mortise view with the appearance of the mortise on the GRV. We have developed a treatment algorithm based on the GRV and have found it to be useful in guiding treatment and successful at achieving anatomic mortise alignment.
Tube thoracostomy in the management of pleural fluid collections.
Nwofor, A M E; Ekwunife, C N
2006-06-01
To determine the demographic pattern, indications and complications associated with tube thoracostomy in Nnamdi Azikiwe University Teaching Hospital (NAUTH) Nnewi. A 5-year review of case records of patients who underwent tube thoracostomy at NAUTH Nnewi between January 1999 and December 2003. Demographic data, clinical features, duration of drainage, complications and outcomes were analyzed. A total of 65 cases were studied, male: female ratio was 2.4:1. Eighteen patients (27.7%) were below 10 years of age. Infective cases accounted for 63.1% (41) of the cases that had tube thoracostomy. Forty-one patients (63.1%) had tube drainage for 10 days or less. Complication rate was 41.5% (27), mostly mild, with dislodgement of the tube accounting for about half. Failure rate of 13.7% (9) was recorded for the procedure. A mortality of 6.2% (4) was recorded but there was no procedure related death. Seven patients (10.8%) required further surgery. Tube thoracostomy is a simple and efficacious procedure for the treatment of pleural space collections. The safety of the procedure can be improved upon by adequate training in the insertion procedure, while proper selection of cases will reduce failure rate and unnecessary morbidity. Early resort to thoracoscopic or open surgery when tube thoracostomy is considered inappropriate or has failed will improve the success rate in the overall management of pleural fluid collections.
Theorethical principles of fluid managment according to physicochemical Stewart approach.
Smuszkiewicz, Piotr; Szrama, Jakub
2013-01-01
Interpreting acid base disturbances according to the physicochemical Stewart approach allows the cause of such abnormalities to be discovered. This method is based on three independent variables: SID (strong ion difference), mainly sodium and chloride; weak acids concentration - Atot, mainly albumins and phosphate; and carbon dioxide tension - pCO₂. These three independent variables are responsible for the change of water dissociation and for the change in H+ concentration and, consequently, the change in serum pH value. The SID value of the fluids administered to a patient is responsible for the change of serum SID value and therefore causes a change in the patient's acid base status. During the infusion of a given fluid, the SID value of the serum becomes closer to the SID value of that fluid; on the other hand, the infusion causes a decrease in Atot concentration. In order to avoid acid base disturbances connected with fluid administration, the SID value of fluids being administered should be greater than 0 and lower then the serum SID. It has been suggested that fluids should be given of which the SID value is as close as possible to the actual serum HCO₃ concentration. Knowing the SID value of the fluid administered, and the serum HCO₃ concentration, one can expect a change of serum pH after a fluid infusion. Administering a fluid with a SID greater than the HCO₃ concentration causes a pH increase towards alkalosis. Likewise, administering a a fluid with a SID lower than the HCO₃ concentration causes a pH decrease towards acidosis. It seems that knowledge of the electrolyte concentration and the SID value of an administered fluid is an important factor regarding acid base disturbances.
An Overview of Recent Cryogenic Fluid Management Developments
Hedayat, A.; Johnson, W. L.; Stephens, J. R.
2017-01-01
Long-term storage, supply, and transfer of cryogenic fluids are critical capabilities needed to advance the human exploration of space. Technologies and advanced development programs have been pursued to address issues likely to confront the designers and developers of future cryogenic fluid management (CFM) subsystems and propulsion systems. NASA and aerospace industries have continued to conduct research and development for the propulsion applications of cryogenic fluids. From the well known in-space applications, to new applications involving superconducting motors within multiple different aircraft, and a renewed interest in production of oxygen on Mars, NASA continues to probe cryogenic applications within propulsion. This article presents brief reviews of several of the current CFM efforts to support future space missions. NASA GRC is currently focusing on understanding some of the finer points in the application of multilayer insulation. GRC recently finished the activation of a new calorimeter that operates at 20 K with a warm boundary that can operate either around 90 K or at 300 K. Current testing is focused on investigating multiple different seam concepts, initially between temperatures of 300 K and 20 K, and between 20 K and 90 K. One of the larger recent NASA investments has been on the Structural Heat Intercept, Insulation, and Vibration Experiment Rig (SHIIVER). SHIIVER is a 4 m diameter tank that is approximately 1/2 scale of the planned upper stage of the new Space Launch System (SLS) rocket. SHIIVER is focused on demonstrating the thermal benefits of multilayer insulation on the tank domes and boil-off vapor cooling on structural cylinders that hold the tank in-line on the rocket. It will also quantify any damage that may incur during the acoustic environment of over 160 decibels that SLS will experience on its trip to Earth orbit. In support of the possible production of oxygen out of the Mars' atmosphere, a team comprised of four NASA centers
Malbrain, Manu L N G; Van Regenmortel, Niels; Saugel, Bernd; De Tavernier, Brecht; Van Gaal, Pieter-Jan; Joannes-Boyau, Olivier; Teboul, Jean-Louis; Rice, Todd W; Mythen, Monty; Monnet, Xavier
2018-05-22
In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the "four D's" of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are "When to start intravenous fluids?", "When to stop intravenous fluids?", "When to start de-resuscitation or active fluid removal?" and finally "When to stop de-resuscitation?" In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.
Hung, R. J.; Shyu, K. L.
1991-01-01
The requirement to settle or to position liquid fluid over the outlet end of spacecraft propellant tank prior to main engine restart poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undesirable fluid motion for the space fluid management under microgravity environment. The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment.
Conceptual design of an in-space cryogenic fluid management facility, executive summary
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.
International Nuclear Information System (INIS)
Hu, Q; Li, Y; Pan, H L; Liu, J T; Zhuang, B T
2015-01-01
Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment
Passive Devices for Advanced Fluid Management aboard Spacecraft, Phase I
National Aeronautics and Space Administration — Acute challenges are faced by the designers of fluid systems for spacecraft because of the persistently unfamiliar and unforgiving low-g environment. For example,...
Directory of Open Access Journals (Sweden)
Michael Leitch
2018-01-01
Full Text Available Complex engineering systems often require extensive coordination between different expert areas in order to avoid costly design iterations and rework. Cyber-physics system (CPS engineering methods could provide valuable insights to help model these interactions and optimize the design of such systems. In this work, steam assisted gravity drainage (SAGD, a complex oil extraction process that requires deep understanding of several physical-chemical phenomena, is examined whereby the complexities and interdependencies of the system are explored. Based on an established unified feature modeling scheme, a software modeling framework is proposed to manage the design process of the production tools used for SAGD oil extraction. Applying CPS methods to unify complex phenomenon and engineering models, the proposed CPS model combines effective simulation with embedded knowledge of completion tooling design in order to optimize reservoir performance. The system design is expressed using graphical diagrams of the unified modelling language (UML convention. To demonstrate the capability of this system, a distributed research group is described, and their activities coordinated using the described CPS model.
Samanta, Gauranga Charan; Myrzakulov, Ratbay; Shah, Parth
2017-04-01
The authors considered the bulk viscous fluid in f(R, T) gravity within the framework of Kaluza-Klein space time. The bulk viscous coefficient (ξ) expressed as ξ = {ξ_0} + {ξ_1}{{\\dot a} \\over a} + {ξ_2}{{\\ddot a} \\over {\\dot a}}, where ξ0, ξ1, and ξ2 are positive constants. We take p=(γ-1)ρ, where 0≤γ≤2 as an equation of state for perfect fluid. The exact solutions to the corresponding field equations are given by assuming a particular model of the form of f(R, T)=R+2f(T), where f(T)=λT, λ is constant. We studied the cosmological model in two stages, in first stage: we studied the model with no viscosity, and in second stage: we studied the model involve with viscosity. The cosmological model involve with viscosity is studied by five possible scenarios for bulk viscous fluid coefficient (ξ). The total bulk viscous coefficient seems to be negative, when the bulk viscous coefficient is proportional to {ξ _2}{{\\ddot a} \\over {\\dot a}}, hence, the second law of thermodynamics is not valid; however, it is valid with the generalised second law of thermodynamics. The total bulk viscous coefficient seems to be positive, when the bulk viscous coefficient is proportional to ξ = {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}} and ξ = {ξ _0} + {ξ _1}{{\\dot a} \\over a} + {ξ _2}{{\\ddot a} \\over {\\dot a}}, so the second law of thermodynamics and the generalised second law of thermodynamics is satisfied throughout the evolution. We calculate statefinder parameters of the model and observed that it is different from the ∧CDM model. Finally, some physical and geometrical properties of the models are discussed.
Fluid in the management of the acute respiratory distress syndrome
Directory of Open Access Journals (Sweden)
Karki S
2013-06-01
Full Text Available Introduction Non-cardiogenic pulmonary edema is the hallmark of the acute respiratory distress syndrome (ARDS. The amount of fluid and which fluid should be used in these patients is controversial. Methods 43 patients with ARDS treated in the intensive care unit (ICU of the Second Hospital, Jilin University between November 1, 2011-November 1, 2012 were prospectively analyzed and was observational. Volume and the type of fluid administered were compared to 90 day mortality and the 24 and 72 hour sequential organ failure assessment (SOFA score, lactate level, oxygenation index (PaO2/FiO2, duration of ICU stay, total ventilator days, and need for continuous renal replacement therapy (CRRT. Results Mortality was increased when hydroxylethyl starch (HES was used in the first day or plasma substitutes were used during the first 3 days (P3000 ml during the first 24 hours or >8000 ml during the first 72 hours were associated with higher SOFA scores at 24 and 72 hours (P<0.05, both comparisons. Colloid, especially higher volume colloid use was also associated with increased SOFA scores at either 24 or 72 hours. Conclusions Limiting the use of colloids and the total amount of fluid administered to patients with ARDS is associated with improved mortality and SOFA scores.
Dressler, R. F.; Robertson, S. J.; Spradley, L. W.
1982-01-01
The General Interpolant Method computer code was used to analyze two-dimensional unsteady thermal convection in circular cylinders under variable low-g conditions associated with space flight. When an acceleration vector was applied parallel to the thermal gradient, in the case of a fluid at rest, no convection resulted for the stable direction, and an instability led to Rayleigh convection for the opposite direction. However, when the acceleration had a component orthogonal to the gradient, convection resulted at any Rayleigh number. The effect on convection of both types of acceleration, applied concurrently or sequentially, was investigated, including the case when the resultant vector varied in direction with time. An analysis of experimental results shows that for space flight conditions, the Rayleigh accelerations induce significant, but not dominating, changes in the established convection even when the Rayleigh number is less than critical.
Malik, Praveen K; Dewan, Taru; Patidar, Arun Kr; Sain, Ekta
2017-01-01
To evaluate the effect of three different combinations of tip designs and infusion systems in torsional phacoemulsification (INFINITI and CENTURION) in patients with cataract. According to the manufacturer, two unique improvements in the Centurion are: active fluid dynamic management system and use of an intrepid balanced tip. The study specifically aimed to evaluate the beneficial effects, if any, of change in tip design and infusion system individually and in combination on both per-operative parameters as well as endothelial health over 6 months. One hundred and twenty six consenting patients of grade 4.0-6.9 senile cataract were randomized into three groups for phacoemulsification: Group A ( n = 42): Gravity fed infusion system and 45 0 Kelman miniflared ABS phaco tip; Group B ( n = 42): intraocular pressure (IOP) based infusion system and 45 0 Kelman miniflared ABS phaco tip; Group C ( n = 42): IOP based infusion system and 45 0 Intrepid balanced phaco tip. The cumulative dissipated energy (CDE), estimated fluid usage (EFU) and total aspiration time (TAT) were compared peroperatively. The endothelial parameters were followed up postoperatively for six months. The three arms were matched for age ( p = 0.525), gender ( p = 0.96) and grade of cataract ( p = 0.177). Group C was associated with significant reductions in CDE ( p = 0.001), EFU ( p < 0.0005) as well as TAT ( p = 0.001) in comparison to the other groups. All three groups had comparable baseline endothelial cell density ( p = 0.876) and central corneal thickness ( p = 0.561). On post-operative evaluation, although all groups were comparable till 3 months, by 6 months, the percentage losses in endothelial cell density were significantly lower in group C as compared to the other groups. Use of an IOP based phacoemulsification system in association with use of the Intrepid balanced tip reduces the CDE, EFU and TAT in comparison to a gravity fed system with a mini flared
Fluid management technology: Liquid slosh dynamics and control
Dodge, Franklin T.; Green, Steven T.; Kana, Daniel D.
1991-11-01
Flight experiments were defined for the Cryogenic On-Orbit Liquid Depot Storage, Acquisition and Transfer Satellite (COLD-SAT) test bed satellite and the Shuttle middeck to help establish the influence of the gravitational environment on liquid slosh dynamics and control. Several analytical and experimental studies were also conducted to support the experiments and to help understand the anticipated results. Both FLOW-3D and NASA-VOF3D computer codes were utilized to simulate low Bond number, small amplitude sloshing, for which the motions are dominated by surface forces; it was found that neither code provided a satisfactory simulation. Thus, a new analysis of low Bond number sloshing was formulated, using an integral minimization technique that will allow the assumptions made about surface physics phenomena to be modified easily when better knowledge becomes available from flight experiments. Several examples were computed by the innovative use of a finite-element structural code. An existing spherical-pendulum analogy of nonlinear, rotary sloshing was also modified for easier use and extended to low-gravity conditions. Laboratory experiments were conducted to determine the requirements for liquid-vapor interface sensors as a method of resolving liquid surface motions in flight experiments. The feasibility of measuring the small slosh forces anticipated in flight experiments was also investigated.
Liberal Versus Restrictive Fluid Management in Knee Arthroplasty: A Randomized, Double-Blind Study
DEFF Research Database (Denmark)
Holte, Kathrine; Kristensen, Billy Bjarne; Valentiner, Lotte
2007-01-01
BACKGROUND: There are few data describing the relationship between amount of perioperative fluid and organ function. In this study we investigated the effects of two levels of intravascular fluid administration ("liberal" versus "restrictive") in knee arthroplasty on physiological recovery...... with a standardized volume of colloid. All other aspects of perioperative management (including anesthesia, preoperative fluid status, and postoperative management) were standardized. Primary outcome variables included pulmonary function (spirometry), exercise capacity ("timed up and go" test), coagulation...... as the primary outcome variable. METHODS: In a double-blind study, 48 ASA I-III patients undergoing fast-track elective knee arthroplasty were randomized to restrictive or liberal perioperative intravascular fluid administration. Patients received a fixed rate infusion of Ringer's lactate solution...
Molecular analysis of pancreatic cyst fluid changes clinical management.
Arner, David M; Corning, Brooke E; Ahmed, Ali M; Ho, Henry C; Weinbaum, Bradley J; Siddiqui, Uzma; Aslanian, Harry; Adams, Reid B; Bauer, Todd W; Wang, Andrew Y; Shami, Vanessa M; Sauer, Bryan G
2018-01-01
DNA molecular analysis has been suggested as a tool to evaluate pancreatic cysts. This study assesses whether the addition of DNA molecular analysis alters clinical management. This is a retrospective review of 46 consecutive patients who underwent EUS-FNA of pancreatic cysts with DNA molecular analysis at two major academic institutions. Cases were presented to two pancreaticobiliary surgeons first without and then with DNA molecular analysis data. The primary outcome was the frequency with which clinical management was altered with the addition of DNA molecular analysis. Forty-six patients with a mean age of 62.0 (±13.4) years and mean cyst size of 3.2 (±2.3) cm were included in the study. Cyst carcinoembryonic antigen (CEA) was available in 30 patients and ranged from 0.4 to 15,927 ng/mL. DNA molecular analysis was described as benign in 23 (50%), statistically indolent in 13 (28%), statistically higher risk in 9 (20%), and indeterminate in 1 (2%). Surgeon #1 changed the management in 13/46 cases (28%) and surgeon #2 changed the management in 12/46 cases (26%) with the addition of DNA molecular analysis. When organized by CEA concentration, those with an intermediate CEA (45-800 ng/mL) or without a CEA concentration had a management changed more frequently (40%) compared to all others (P molecular analysis alters the clinical management of pancreatic cystic lesions most often when CEA levels are intermediate (45-800 ng/mL) or when no CEA concentration is available. Use of DNA molecular analysis can be considered in this cohort. Further study of molecular markers in pancreatic cystic lesions is recommended.
Fluid management in roll-to-roll nanoimprint lithography
Jain, A.; Bonnecaze, R. T.
2013-06-01
The key process parameters of UV roll-to-roll nanoimprint lithography are identified from an analysis of the fluid, curing, and peeling dynamics. The process includes merging of droplets of imprint material, curing of the imprint material from a viscous liquid to elastic solid resist, and pattern replication and detachment of the resist from template. The time and distances on the web or rigid substrate over which these processes occur are determined as function of the physical properties of the uncured liquid, the cured solid, and the roller configuration. The upper convected Maxwell equation is used to model the viscoelastic liquid and to calculate the force on the substrate and the torque on the roller. The available exposure time is found to be the rate limiting parameter and it is O(√Rho /uo), where R is the radius of the roller, ho is minimum gap between the roller and web, and uo is the velocity of the web. The residual layer thickness of the resist should be larger than the gap between the roller and the substrate to ensure complete feature filling and optimal pattern replication. For lower residual layer thickness, the droplets may not merge to form a continuous film for pattern transfer.
Atypical Amniotic Fluid Embolism Managed with a Novel Therapeutic Regimen
Directory of Open Access Journals (Sweden)
Shadi Rezai
2017-01-01
Full Text Available Amniotic fluid embolism (AFE is the second leading cause of maternal mortality in the USA with an incidence of 1 : 15,200 births. The case fatality rate and perinatal mortality associated with AFE are 13–30% and 9–44%, respectively. This rare but devastating complication can be difficult to diagnose as many of the early signs and symptoms are nonspecific. Compounding this diagnostic challenge is a lack of effective treatment regimens which to date are mostly supportive. We present the case of a 26-year-old woman who suffered from suspected AFE and was successfully treated with the novel regimen of Atropine, Ondansetron, and Ketorolac (A-OK. The authors acknowledge that this case does not meet the new criteria proposed, by Clark in 2016, but feel that it is important to share this case report, due to dramatic patient response to the provided supportive therapy presented in this case report. We hope this case report will prompt further research into this novel approach to treating AFE with Atropine, Ondansetron, and Ketorolac.
Kawanishi, Hideki; Akiba, Takashi; Masakane, Ikuto; Tomo, Tadashi; Mineshima, Michio; Kawasaki, Tadayuki; Hirakata, Hideki; Akizawa, Tadao
2009-04-01
The Committee of Scientific Academy of the Japanese Society for Dialysis Therapy (JSDT) proposes a new standard on microbiological management of fluids for hemodialysis and related therapies. This standard is within the scope of the International Organization for Standardization (ISO), which is currently under revision. This standard is to be applied to the central dialysis fluid delivery systems (CDDS), which are widely used in Japan. In this standard, microbiological qualities for dialysis water and dialysis fluids are clearly defined by endotoxin level and bacterial count. The qualities of dialysis fluids were classified into three levels: standard, ultrapure, and online prepared substitution fluid. In addition, the therapeutic application of each dialysis fluid is clarified. Since high-performance dialyzers are frequently used in Japan, the standard recommends that ultrapure dialysis fluid be used for all dialysis modalities at all dialysis facilities. It also recommends that the dialysis equipment safety management committee at each facility should validate the microbiological qualities of online prepared substitution fluid.
Directory of Open Access Journals (Sweden)
Max Lafontan
2015-01-01
Full Text Available Summary: Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity, water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols.
Lafontan, Max; Visscher, Tommy L.S.; Farpour-Lambert, Nathalie; Yumuk, Volkan
2015-01-01
Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity), water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols. PMID:25765164
Heat transfers and related effects in supercritical fluids
Zappoli, Bernard; Garrabos, Yves
2015-01-01
This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...
Energy Technology Data Exchange (ETDEWEB)
Rugh, J. P.
2013-07-01
Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.
Fluid behavior in microgravity environment
Hung, R. J.; Lee, C. C.; Tsao, Y. D.
1990-01-01
The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.
Exact Solutions in Three-Dimensional Gravity
García-Díaz, Alberto A.
2017-09-01
Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
DeSimone, Michael L; Asombang, Akwi W; Berzin, Tyler M
2017-09-16
For patients recovering from acute pancreatitis, the development of a pancreatic fluid collection (PFC) predicts a more complex course of recovery, and introduces difficult management decisions with regard to when, whether, and how the collection should be drained. Most PFCs resolve spontaneously and drainage is indicated only in pseudocysts and walled-off pancreatic necrosis when the collections are causing symptoms and/or local complications such as biliary obstruction. Historical approaches to PFC drainage have included surgical (open or laparoscopic cystgastrostomy or pancreatic debridement), and the placement of percutaneous drains. Endoscopic drainage techniques have emerged in the last several years as the preferred approach for most patients, when local expertise is available. Lumen-apposing metal stents (LAMS) have recently been developed as a tool to facilitate potentially safer and easier endoscopic drainage of pancreatic fluid collections, and less commonly, for other indications, such as gallbladder drainage. Physicians considering LAMS placement must be aware of the complications most commonly associated with LAMS including bleeding, migration, buried stent, stent occlusion, and perforation. Because of the patient complexity associated with severe pancreatitis, management of pancreatic fluid collections can be a complex and multidisciplinary endeavor. Successful and safe use of LAMS for patients with pancreatic fluid collections requires that the endoscopist have a full understanding of the potential complications of LAMS techniques, including how to recognize and manage expected complications.
Pathophysiology and clinical implications of peroperative fluid management in elective surgery
DEFF Research Database (Denmark)
Holte, Kathrine
2010-01-01
The purpose of this thesis was to describe pathophysiological aspects of perioperative fluid administration and create a rational background for future, clinical outcome studies. In laparoscopic cholecystectomy, we have found "liberal" crystalloid administration ( approximately 3 liters) to improve....... Based on the current evidence, administration of liters intravenous fluid without specific indication in major surgical procedures should be avoided, while administration of liters in patients with anastomoses may not be recommended, an issue needing clarification in large-scale clinical studies...... perioperative physiology and clinical outcome, which has implication for fluid management in other laparoscopic procedures such as laparoscopic fundoplication, laparoscopic repair of ventral hernia, hysterectomy etc., where 2-3 liters crystalloid should be administered based on the present evidence. That equal...
Free surface flows under compensated gravity conditions
Dreyer, Miachel E
2007-01-01
This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...
International Nuclear Information System (INIS)
Chupin, A.; Hu, L. W.; Buongiorno, J.
2008-01-01
Water-based nano-fluid, colloidal dispersions of nano-particles in water; have been shown experimentally to increase the critical heat flux and surface wettability at very low concentrations. The use of nano-fluids to enhance accidents management would allow either to increase the safe margins in case of severe accidents or to upgrade the power of an existing power plant with constant margins. Building on the initial work, computational fluid dynamics simulations of the nano-fluid injection system have been performed to evaluate the feasibility of a nano-fluid injection system for in-vessel retention application. A preliminary assessment was also conducted on the emergency core cooling system of the European Pressurized Reactor (EPR) to implement a nano-fluid injection system for improving the management of loss of coolant accidents. Several design options were compared/or their respective merits and disadvantages based on criteria including time to injection, safety impact, and materials compatibility. (authors)
Gravity Effects in Microgap Flow Boiling
Robinson, Franklin; Bar-Cohen, Avram
2017-01-01
Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.
International Nuclear Information System (INIS)
Goetz, G.
1988-01-01
It is shown that the plane-wave solutions for the equations governing the motion of a self-gravitating isothermal fluid in Newtonian hydrodynamics are generated by a sine-Gordon equation which is solvable by an 'inverse scattering' transformation. A transformation procedure is outlined by means of which one can construct solutions of the gravity system out of a pair of solutions of the sine-Gordon equation, which are interrelated via an auto-Baecklund transformation. In general the solutions to the gravity system are obtained in a parametric representation in terms of characteristic coordinates. All solutions of the gravity system generated by the one-and two-soliton solutions of the sine-Gordon equation can be constructed explicitly. These might provide models for the evolution of flat structures as they are predicted to arise in the process of galaxy formation. (author)
A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management
Barber, John P.; Johnston, Kyle B.; Daigle, Matthew
2013-01-01
Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.
Talving, Peep; Pålstedt, Joakim; Riddez, Louis
2005-01-01
Few previous studies have been conducted on the prehospital management of hypotensive trauma patients in Stockholm County. The aim of this study was to describe the prehospital management of hypotensive trauma patients admitted to the largest trauma center in Sweden, and to assess whether prehospital trauma life support (PHTLS) guidelines have been implemented regarding prehospital time intervals and fluid therapy. In addition, the effects of the age, type of injury, injury severity, prehospital time interval, blood pressure, and fluid therapy on outcome were investigated. This is a retrospective, descriptive study on consecutive, hypotensive trauma patients (systolic blood pressure Karolinska University Hospital in Stockholm, Sweden, during 2001-2003. The reported values are medians with interquartile ranges. Basic demographics, prehospital time intervals and interventions, injury severity scores (ISS), type and volumes of prehospital fluid resuscitation, and 30-day mortality were abstracted. The effects of the patient's age, gender, prehospital time interval, type of injury, injury severity, on-scene and emergency department blood pressure, and resuscitation fluid volumes on mortality were analyzed using the exact logistic regression model. In 102 (71 male) adult patients (age > or = 15 years) recruited, the median age was 35.5 years (range: 27-55 years) and 77 patients (75%) had suffered blunt injury. The predominant trauma mechanisms were falls between levels (24%) and motor vehicle crashes (22%) with an ISS of 28.5 (range: 16-50). The on-scene time interval was 19 minutes (range: 12-24 minutes). Fluid therapy was initiated at the scene of injury in the majority of patients (73%) regardless of the type of injury (77 blunt [75%] / 25 penetrating [25%]) or injury severity (ISS: 0-20; 21-40; 41-75). Age (odds ratio (OR) = 1.04), male gender (OR = 3.2), ISS 21-40 (OR = 13.6), and ISS >40 (OR = 43.6) were the significant factors affecting outcome in the exact
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Urine and oral fluid drug testing in support of pain management.
Kwong, Tai C; Magnani, Barbarajean; Moore, Christine
2017-09-01
In recent years, the abuse of opioid drugs has resulted in greater prevalence of addiction, overdose, and deaths attributable to opioid abuse. The epidemic of opioid abuse has prompted professional and government agencies to issue practice guidelines for prescribing opioids to manage chronic pain. An important tool available to providers is the drug test for use in the initial assessment of patients for possible opioid therapy, subsequent monitoring of compliance, and documentation of suspected aberrant drug behaviors. This review discusses the issues that most affect the clinical utility of drug testing in chronic pain management with opioid therapy. It focuses on the two most commonly used specimen matrices in drug testing: urine and oral fluid. The advantages and disadvantages of urine and oral fluid in the entire testing process, from specimen collection and analytical methodologies to result interpretation are reviewed. The analytical sensitivity and specificity limitations of immunoassays used for testing are examined in detail to draw attention to how these shortcomings can affect result interpretation and influence clinical decision-making in pain management. The need for specific identification and quantitative measurement of the drugs and metabolites present to investigate suspected aberrant drug behavior or unexpected positive results is analyzed. Also presented are recent developments in optimization of test menus and testing strategies, such as the modification of the standard screen and reflexed-confirmation testing model by eliminating some of the initial immunoassay-based tests and proceeding directly to definitive testing by mass spectrometry assays.
Massive gravity from bimetric gravity
International Nuclear Information System (INIS)
Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt
2013-01-01
We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)
Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System
1990-01-01
NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Directory of Open Access Journals (Sweden)
Barceló Carlos
2005-12-01
Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Alvarez, Enrique
2004-01-01
Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...
Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions
Chao, David F.; Hasan, Mohammad M.
2000-01-01
Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced
Directory of Open Access Journals (Sweden)
Carlos Barceló
2011-05-01
Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.
Dasgupta, Indranil; Farrington, Ken; Davies, Simon J; Davenport, Andrew; Mitra, Sandip
2016-01-01
Fluid management in haemodialysis (HD) affects patient experience, morbidity and mortality. Standards for best practice are lacking. A national survey of the United Kingdom was undertaken to define prevalent practice. An online questionnaire was distributed to all UK renal centres. Forty-five of 74 centres (173 dialysis units), serving 62% (n = 14,697) of UK HD population responded. Seventy-eight per cent had no agreed policy for managing fluid balance in patients on HD; 44% did not assess fluid status routinely. Clinical assessment was the norm; 27% used bio-impedance-based device. To achieve a target-weight, 53% reduced weight as far as tolerated. Twenty-two per cent measured residual renal function (RRF). Ninety-one per cent had no policy for fluid overload. Sixty-four per cent restricted salt and water. Ninety-three per cent used diuretics in patients with RRF. Thirty-eight per cent felt management was adequate; 77% felt there was a need for better evidence. Ninety-one per cent would participate in a study addressing this. There is an urgent need for establishing an evidence base on the optimal approaches to fluid management. © 2016 S. Karger AG, Basel.
International Nuclear Information System (INIS)
Giribet, G E
2005-01-01
Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)
The Management of Cerebrospinal Fluid Leak After Anterior Cervical Decompression Surgery.
Zhai, Jiliang; Panchal, Ripul R; Tian, Ye; Wang, Shujie; Zhao, Lijuan
2018-03-01
Cerebrospinal fluid (CSF) leak is a rare but potentially troublesome and occasionally catastrophic complication after anterior cervical decompression surgery. There is limited literature describing this complication, and the management of CSF leak varies. The aim of this study was to retrospectively review the treatment of cases with CSF leak and develop a management algorithm. A series of 14 patients with CSF leak from January 2011 to May 2016 were included in this study. Their characteristics, management of CSF leak, and outcomes were documented. There were 5 male and 9 female patients. Mean age at surgery was 57.1±9.9 years (range, 37-76 years). All instances of CSF leak, except 1 noted postoperatively, were indirectly repaired intraoperatively. A closed straight wound drain was placed for all patients. A lumbar subarachnoid drain was placed immediately after surgery in 4 patients and postoperatively in 7 patients. In 1 patient, lumbar drain placement was unsuccessful. In 2 additional patients, the surgeon decided not to place a lumbar drain. One patient developed meningitis and recovered after antibiotic therapy with meropenem and vancomycin. Another patient had a deep wound infection and required a revision surgery. Wound drains and lumbar drains should be immediately considered when CSF leak is identified. Antibiotics also should be considered to prevent intradural infection. [Orthopedics. 2018; 41(2):e283-e288.]. Copyright 2018, SLACK Incorporated.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
F.C. Gruau; J.T. Tromp (John)
1999-01-01
textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on
CSIR Research Space (South Africa)
Wonnacott, R
2015-08-01
Full Text Available of Geomatics, Vol. 4, No. 3, August 2015 213 The management of scarce water resources using GNSS, InSAR and in-situ micro gravity measurements as monitoring tools Richard Wonnacott1, Chris Hartnady1, Jeanine Engelbrecht2 1Umvoto Africa (Pty) Ltd... shown to provide a useful tool for the measurement and monitoring of ground subsidence resulting from numerous natural and anthropogenic causes including the abstraction of groundwater and gas. Zerbini et al (2007) processed and combined data from a...
Roecker, S.; Ebinger, C.; Tiberi, C.; Mulibo, G.; Ferdinand-Wambura, R.; Mtelela, K.; Kianji, G.; Muzuka, A.; Gautier, S.; Albaric, J.; Peyrat, S.
2017-08-01
The Eastern Rift System (ERS) of northern Tanzania and southern Kenya, where a cratonic lithosphere is in the early stages of rifting, offers an ideal venue for investigating the roles of magma and other fluids in such an environment. To illuminate these roles, we jointly invert arrival times of locally recorded P and S body waves, phase delays of ambient noise generated Rayleigh waves and Bouguer anomalies from gravity observations to generate a 3-D image of P and S wave speeds in the upper 25 km of the crust. While joint inversion of gravity and arrival times requires a relationship between density and wave speeds, the improvement in resolution obtained by the combination of these disparate data sets serves to further constrain models, and reduce uncertainties. The most significant features in the 3-D model are (1) P and S wave speeds that are 10-15 per cent lower beneath the rift zone than in the surrounding regions, (2) a relatively high wave speed tabular feature located along the western edge of the Natron and Manyara rifts, and (3) low (∼1.71) values of Vp/Vs throughout the upper crust, with the lowest ratios along the boundaries of the rift zones. The low P and S wave speeds at mid-crustal levels beneath the rift valley are an expected consequence of active volcanism, and the tabular, high-wave speed feature is interpreted to be an uplifted footwall at the western edge of the rift. Given the high levels of CO2 outgassing observed at the surface along border fault zones, and the sensitivity of Vp/Vs to pore-fluid compressibility, we infer that the low Vp/Vs values in and around the rift zone are caused by the volcanic plumbing in the upper crust being suffused by a gaseous CO2 froth on top of a deeper, crystalline mush. The repository for molten rock is likely located in the lower crust and upper mantle, where the Vp/Vs ratios are significantly higher.
An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
Effects of Intraoperative Fluid Management on Postoperative Outcomes : A Hospital Registry Study
Shin, Christina H; Long, Dustin R; McLean, Duncan; Grabitz, Stephanie D; Ladha, Karim; Timm, Fanny P; Thevathasan, Tharusan; Pieretti, Alberto; Ferrone, Cristina; Hoeft, Andreas; Scheeren, Thomas W L; Thompson, Boyd Taylor; Kurth, Tobias; Eikermann, Matthias
2017-01-01
OBJECTIVE: Evaluate the dose-response relationship between intraoperative fluid administration and postoperative outcomes in a large cohort of surgical patients. BACKGROUND: Healthy humans may live in a state of fluid responsiveness without the need for fluid supplementation. Goal-directed protocols
Kocaoglu, Celebi; Selma Solak, Ece; Kilicarslan, Cengizhan; Arslan, Sukru
2014-02-01
To investigate serum creatinine and electrolyte status of children with diarrhea-related hyponatremic or hypernatremic dehydration. Medical history of 83 patients admitted to the Pediatric Intensive Care Unit of the Konya Education and Research Hospital, Konya, Turkey with diarrhea, dehydration and electrolyte imbalance was retrospectively evaluated according to the degree of dehydration, serum creatinine, electrolytes, blood gas, approaches to the treatment such as content of given fluid, HCO3- and acute periotenal dialysis. Of 65 patients with hyponatremia, 44 (67.7%) were given fluids at appropriate concentration according to their age, and 21 (32.3%) were given fluids at higher concentration. Of 18 hypernatremic patients, 11 (61.1%) were given fluids at appropriate concentration for age, and seven (38.9%) were given fluids at higher concentration. Mean duration of amelioration of serum sodium levels for those admitted with hyponatremia and given fluids at appropriate concentration for age and at higher concentration were 33.9 ± 28.3 h and 53.7 ± 31.6 h, respectively. Mean duration of amelioration of serum sodium levels for hypernatremics and given fluids at appropriate concentration for age and at higher concentration were 34.7 ± 22.1 h and 46.3 ± 32 h, respectively. Four (4.8%) hyponatremic patients and three (3.6%) with hypernatremia were treated with acute peritoneal dialysis. Mortality rate was 6% (five of all patients). The children with severe diarrhea should be closely followed-up as to clinical examination, serum electrolytes, creatinine and blood gases, and because no single intravenous fluid management is optimal for all children, intravenous fluid therapy should be individualized for each patient.
Rossini, Zefferino; Milani, Davide; Costa, Francesco; Castellani, Carlotta; Lasio, Giovanni; Fornari, Maurizio
2017-10-01
Chiari malformation type I is a hindbrain abnormality characterized by descent of the cerebellar tonsils beneath the foramen magnum, frequently associated with symptoms or brainstem compression, impaired cerebrospinal fluid circulation, and syringomyelia. Foramen magnum decompression represents the most common way of treatment. Rarely, subdural fluid collection and hydrocephalus represent postoperative adverse events. The treatment of this complication is still debated, and physicians are sometimes uncertain when to perform diversion surgery and when to perform more conservative management. We report an unusual occurrence of subdural fluid collection and hydrocephalus that developed in a 23-year-old patient after foramen magnum decompression for Chiari malformation type I. Following a management protocol, based on a step-by-step approach, from conservative therapy to diversion surgery, the patient was managed with urgent external ventricular drainage, and then with conservative management and wound revision. Because of the rarity of this adverse event, previous case reports differ about the form of treatment. In future cases, finding clinical and radiologic features to identify risk factors that are useful in predicting if the patient will benefit from conservative management or will need to undergo diversion surgery is only possible if a uniform form of treatment is used. Therefore, we believe that a management algorithm based on a step-by-step approach will reduce the use of invasive therapies and help to create a standard of care. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Isham, C.
1989-01-01
Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)
International Nuclear Information System (INIS)
Markov, M.A.; West, P.C.
1984-01-01
This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981
Energy Technology Data Exchange (ETDEWEB)
Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)
2017-04-05
This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).
Norsk, P.; Shelhamer, M.
2016-01-01
This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
Is nonrelativistic gravity possible?
International Nuclear Information System (INIS)
Kocharyan, A. A.
2009-01-01
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
International Nuclear Information System (INIS)
Faucher, Vincent
2014-01-01
Simulating fast transient phenomena involving fluids and structures in interaction for safety purposes requires both accurate and robust algorithms, and parallel computing to reduce the calculation time for industrial models. Managing kinematic constraints linking fluid and structural entities is thus a key issue and this contribution promotes a dual approach over the classical penalty approach, introducing arbitrary coefficients in the solution. This choice however severely increases the complexity of the problem, mainly due to non-permanent kinematic constraints. An innovative parallel strategy is therefore described, whose performances are demonstrated on significant examples exhibiting the full complexity of the target industrial simulations. (authors)
Hu, Wei; Lin, Chang-Wen; Liu, Bing-Wei; Hu, Wei-Hang; Zhu, Ying
2014-01-16
Extravascular lung water (EVLW) is a sensitive prognostic indicator of pulmonary edema. Thus, EVLW may be an advantageous method of fluid management. This study aims to evaluate the outcomes of using EVLW and pulmonary artery wedge pressure (PAWP) as strategies for fluid management in patients with acute respiratory distress syndrome (ARDS). Twenty-nine patients were randomly divided into the EVLW and PAWP groups. The survival rate, ICU (Intensive Care Unit) length of stay, duration of mechanical ventilation, acute lung injury scores, and oxygenation index of the EVLW and PAWP groups were compared. No significant difference in the survival rates at 28 and 60 days (d) after treatment was found between the two groups (p = 0.542). The duration of mechanical ventilation and ICU length of stay were significantly lower (p management improved clinical results in patients with ARDS better than PAWP.
Directory of Open Access Journals (Sweden)
Pankaj K. Singh
2009-01-01
Full Text Available Objective. The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs is widely accepted. Computational fluid dynamics (CFD is being used increasingly for hemodynamic predictions. However, alogn with the continuing development and validation of these tools, it is imperative to collect the opinion of the clinicians. Methods. A workshop on CFD was conducted during the European Society of Minimally Invasive Neurological Therapy (ESMINT Teaching Course, Lisbon, Portugal. 36 delegates, mostly clinicians, performed supervised CFD analysis for an IA, using the @neuFuse software developed within the European project @neurIST. Feedback on the workshop was collected and analyzed. The performance was assessed on a scale of 1 to 4 and, compared with experts' performance. Results. Current dilemmas in the management of unruptured IAs remained the most important motivating factor to attend the workshop and majority of participants showed interest in participating in a multicentric trial. The participants achieved an average score of 2.52 (range 0–4 which was 63% (range 0–100% of an expert user. Conclusions. Although participants showed a manifest interest in CFD, there was a clear lack of awareness concerning the role of hemodynamics in the etiopathogenesis of IAs and the use of CFD in this context. More efforts therefore are required to enhance understanding of the clinicians in the subject.
Two-phase computer codes for zero-gravity applications
International Nuclear Information System (INIS)
Krotiuk, W.J.
1986-10-01
This paper discusses the problems existing in the development of computer codes which can analyze the thermal-hydraulic behavior of two-phase fluids especially in low gravity nuclear reactors. The important phenomenon affecting fluid flow and heat transfer in reduced gravity is discussed. The applicability of using existing computer codes for space applications is assessed. Recommendations regarding the use of existing earth based fluid flow and heat transfer correlations are made and deficiencies in these correlations are identified
Fang, Chengqing; Mao, Jianhua; Dai, Yuwen; Xia, Yonghui; Fu, Haidong; Chen, Yifang; Wang, Yaping; Liu, Aimin
2010-06-01
To compare the fluid management of hypernatraemic dehydration in acute gastroenteritis in those who developed cerebral oedema (cases) versus those who did not (controls). A retrospective study of 97 cases of hypernatraemic dehydration at a tertiary children's hospital in China over five years, in which rehydration regimes of 49 children who developed cerebral oedema were compared with 48 children who made an uneventful recovery. Risk factors for cerebral oedema (vs. no cerebral oedema) were an initial fluid bolus (29/49 vs. 15/48, P=0.006), the mean rate of bolus infusion (14.7+/-2.2 vs. 10.8+/-1.4 mL/kg/hr, Pdehydration were too rapid a rate of rehydration, an initial fluid bolus to rapidly expand plasma volume and the severity of the hypernatraemia. Thus, we conclude that a uniformly slow rate of rehydration is the best way of preventing cerebral oedema.
International Nuclear Information System (INIS)
Schupp, P.
2007-01-01
Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)
Restricting volumes of resuscitation fluid in adults with septic shock after initial management
DEFF Research Database (Denmark)
Hjortrup, Peter B; Haase, Nicolai; Bundgaard, Helle
2016-01-01
reactions differed statistically significantly between the groups. Major protocol violations occurred in 27/75 patients in the fluid restriction group. Ischaemic events occurred in 3/75 in the fluid restriction group vs. 9/76 in the standard care group (odds ratio 0.32; 0.08-1.27; p = 0.11), worsening...
Recording fluid currents by holography
Heflinger, L. O.; Wuerker, R. F.
1980-01-01
Convection in fluids can be studied with aid of holographic apparatus that reveals three-dimensional motion of liquid. Apparatus eliminates images of fixed particles such as dust on windows and lenses, which might mask behavior of moving fluid particles. Holographic apparatus was developed for experiments on fluid convection cells under zero gravity. Principle is adaptable to study of fluid processes-for example, electrochemical plating and combustion in automotive engines.
CERN. Geneva
2017-01-01
Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.
International Nuclear Information System (INIS)
Hooft, G.
2012-01-01
The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)
Effectiveness of a fluid chart in outpatient management of suspected dengue fever: A pilot study.
Nasir, Nazrila Hairin; Mohamad, Mohazmi; Lum, Lucy Chai See; Ng, Chirk Jenn
2017-01-01
Dengue infection is the fastest spreading mosquito-borne viral disease in the world. One of the complications of dengue is dehydration which, if not carefully monitored and treated, may lead to shock, particularly in those with dengue haemorrhagic fever. WHO has recommended oral fluid intake of five glasses or more for adults who are suspected to have dengue fever. However, there have been no published studies looking at self-care intervention measures to improve oral fluid intake among patients suspected of dengue fever. To assess the feasibility and effectiveness of using a fluid chart to improve oral fluid intake in patients with suspected dengue fever in a primary care setting. This feasibility study used a randomized controlled study design. The data was collected over two months at a primary care clinic in a teaching hospital. The inclusion criteria were: age > 12 years, patients who were suspected to have dengue fever based on the assessment by the primary healthcare clinician, fever for > three days, and thrombocytopenia (platelets dengue home care card. The intervention group received the fluid chart and a cup (200ml). Baseline clinical and laboratory data, 24-hour fluid recall (control group), and fluid chart were collected. The main outcomes were: hospitalization rates, intravenous fluid requirement and total oral fluid intake. Among the 138 participants who were included in the final analysis, there were fewer hospital admissions in the intervention group (n = 7, 10.0%) than the control group (n = 12, 17.6%) (p = 0.192). Similarly, fewer patients (n = 9, 12.9%) in the intervention group required intravenous fluid compared to the control group (n = 15, 22.1%), (p = 0.154). There was an increase in the amount of daily oral fluid intake in the intervention group (about 3,000 ml) compared to the control group (about 2,500 ml, p = 0.521). However, these differences did not reach statistical significance. This is a feasible and acceptable study to perform in
Tribology Experiment in Zero Gravity
Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.
2015-01-01
A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
An introduction to atmospheric gravity waves
Nappo, Carmen J
2012-01-01
Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interac...
Newtonian gravity in loop quantum gravity
Smolin, Lee
2010-01-01
We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.
Basso, Flavio; Berdin, Giovanna; Virzì, Grazia Maria; Mason, Giacomo; Piccinni, Pasquale; Day, Sonya; Cruz, Dinna N; Wjewodzka, Marzena; Giuliani, Anna; Brendolan, Alessandra; Ronco, Claudio
2013-01-01
Fluid balance disorders are a relevant risk factor for morbidity and mortality in critically ill patients. Volume assessment in the intensive care unit (ICU) is thus of great importance, but there are currently few methods to obtain an accurate and timely assessment of hydration status. Our aim was to evaluate the hydration status of ICU patients via bioelectric impedance vector analysis (BIVA) and to investigate the relationship between hydration and mortality. We evaluated 280 BIVA measurements of 64 patients performed daily in the 5 days following their ICU admission. The observation period ranged from a minimum of 72 h up to a maximum of 120 h. We observed the evolution of the hydration status during the ICU stay in this population, and analyzed the relationship between mean and maximum hydration reached and mortality--both in the ICU and at 60 days--using logistic regression. A state of overhydration was observed in the majority of patients (70%) on admission, which persisted during the ICU stay. Patients who required continuous renal replacement therapy (CRRT) were more likely to be overhydrated starting from the 2nd day of observation. Logistic regression showed a strong and significant correlation between mean/maximum hydration reached and mortality, both independently and correcting for severity of prognosis. Fluid overload measured by BIVA is a frequent condition in critically ill patients--whether or not they undergo CRRT--and a significant predictor of mortality. Hence, hydration status should be considered as an additional prognosticator in the clinical management of the critically ill patient. (i) On the day of ICU admittance, patients showed a marked tendency to overhydration (>70% of total). This tendency was more pronounced in patients on CRRT. (ii) Hyperhydration persisted during the ICU stay. Patients who underwent CRRT showed significantly higher hyperhydration from the 2nd day of hospitalization. (iii) Nonsurvivors showed worse hyperhydration
Kirks, Russell C; Sola, Richard; Iannitti, David A; Martinie, John B; Vrochides, Dionisios
2016-01-01
Pancreatic and peripancreatic fluid collections may develop after severe acute pancreatitis. Organized fluid collections such as pancreatic pseudocyst and walled-off pancreatic necrosis (WOPN) that mature over time may require intervention to treat obstructive or constitutional symptoms related to the size and location of the collection as well as possible infection. Endoscopic, open surgical and minimally invasive techniques are described to treat post-inflammatory pancreatic fluid collections. Surgical intervention may be required to treat collections containing necrotic pancreatic parenchyma or in locations not immediately apposed to the stomach or duodenum. Comprising a blend of the surgical approach and the clinical benefits of minimally invasive surgery, the robot-assisted technique of pancreatic cystgastrostomy with pancreatic debridement is described.
LENUS (Irish Health Repository)
Umana, E
2018-06-01
Oral rehydration therapy (ORT) remains the ideal first line therapy for acute gastroenteritis (AGE). Our aim was to assess the impact of introducing an Oral Fluid Challenge (OFC) protocol on outcomes such as intravenous fluid use and documentation in our institution. A single centre study with data collected retrospectively pre-implementation (April 2015) of the OFC protocol and post implementation (April 2016). Consecutive sampling of the first 55 patients presenting with GE like symptoms and underwent OFC were recruited. One hundred and ten patients were included in this study with 55 patients per cycle. The rates of IVF use decreased from 22% (12) in cycle one to 18% (10) in cycle two. There was an improvement in documentation by 26% (14) for level of dehydration and 52% (31) for OFC volume from cycle one to two. Overall, the addition of the OFC protocol to the management of patients with uncomplicated AGE would help streamline and improve care.
Pathophysiology and clinical implications of peroperative fluid management in elective surgery
DEFF Research Database (Denmark)
Holte, Kathrine
2010-01-01
amounts of fluid caused adverse physiologic effects in healthy volunteers indicates that addition of the surgical trauma per se increases fluid requirements. Volume kinetic analysis applied 4 hours postoperatively was not able to detect the presence of either overhydration or hypovolemia regardless...... mobilization. In major (colonic) surgery with a standardized multimodal rehabilitation regimen, over-all functional recovery was not affected with a "liberal" ( approximately 5 liters) vs. "restrictive" 1.5 liter crystalloid-based regimen, however based on three anastomotic leakages in the "restrictive" group...
Byrne, Michael
1999-01-01
Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...
Bouguer gravity anomalies for terrain modeling | Orupabo | Journal ...
African Journals Online (AJOL)
Gravity anomalies have been applied in geodesy to determine the geoid, and the associated composition and crustal properties of the earth. Applications of solution of the gravity inversion problems include the study of crustal dynamics as a result of the extraction of fluids in the form of oil, gas and water from ...
Emergent universe with wormholes in massive gravity
Paul, B. C.; Majumdar, A. S.
2018-03-01
An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.
The Effect of Variable Gravity on the Cooling Performance of a 16-Nozzle Spray Array
National Research Council Canada - National Science Library
Elston, Levi J; Yerkes, Kirk L; Thomas, Scott K; McQuillen, John
2008-01-01
The objective of this thesis was to investigate the cooling performance of a 16-nozzle spray array, using FC-72 as the working fluid, in variable gravity conditions with additional emphasis on fluid...
Internal fluid flow management analysis for Clinch River Breeder Reactor Plant sodium pumps
International Nuclear Information System (INIS)
Cho, S.M.; Zury, H.L.; Cook, M.E.; Fair, C.E.
1978-12-01
The Clinch River Breeder Reactor Plant (CRBRP) sodium pumps are currently being designed and the prototype unit is being fabricated. In the design of these large-scale pumps for elevated temperature Liquid Metal Fast Breeder Reactor (LMFBR) service, one major design consideration is the response of the critical parts to severe thermal transients. A detailed internal fluid flow distribution analysis has been performed using a computer code HAFMAT, which solves a network of fluid flow paths. The results of the analytical approach are then compared to the test data obtained on a half-scale pump model which was tested in water. The details are presented of pump internal hydraulic analysis, and test and evaluation of the half-scale model test results
Laura Soavi; Manuela Rosina; Roberto Stefini; Alessia Fratianni; Barbara Cadeo; Silvia Magri; Nicola Latronico; Marco Fontanella; Liana Signorini
2016-01-01
Background: In order to better define the pathogenic role of cerebrospinal fluid (CSF) drainage catheters in postoperative patients, we comparatively analyze the clinical course of device and non-device-related meningitis. Methods: This is an observational, partially prospective, study on consecutive adult patients who developed meningitis after undergoing neurosurgical procedures at the Neurosurgery and Neurointensive care Departments, Spedali Civili, Brescia, Italy, between January 1999...
Present Practice of Using Nautical Depth to Manage Navigation Channels in the Presence of Fluid Mud
2017-05-01
densities ranging from 1,100 to 1,350 grams per liter (g/L). It consists of silt and clay -sized material with clay minerals and organic material in...dynamic viscosity parameters on fluid mud from Zeebrugge, Belgium, it is suggested that the nautical bottom be defined by the transition from • “the...are consequently different from those in pure water.” While density and viscosity are related, that relationship can be complicated by other factors
Chiral gravity, log gravity, and extremal CFT
International Nuclear Information System (INIS)
Maloney, Alexander; Song Wei; Strominger, Andrew
2010-01-01
We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
Management of Inflammatory Fluid Collections and Walled-Off Pancreatic Necrosis.
Shah, Apeksha; Denicola, Richard; Edirisuriya, Cynthia; Siddiqui, Ali A
2017-12-01
Pancreatic fluid collections are a frequent complication of acute pancreatitis. The revised Atlanta criterion classifies chronic fluid collections into pseudocysts and walled-off pancreatic necrosis (WON). Symptomatic PFCs require drainage options that include surgical, percutaneous, or endoscopic approaches. With the advent of newer and more advanced endoscopic tools and expertise, minimally invasive endoscopic drainage has now become the preferred approach. An endoscopic ultrasonography (EUS)-guided approach for pancreatic fluid collection drainage is now the preferred endoscopic approach. Both plastic stents and metal stents are efficacious and safe; however, metal stents may offer an advantage, especially in infected pseudocysts and in WON. Direct endoscopic necrosectomy is often required in WON. Lumen apposing metal stents allow for direct endoscopic necrosectomy and debridement through the stent lumen and are now preferred in these patients. Endoscopic retrograde cholangiopancreatography with pancreatic duct exploration should be performed concurrent to PFC drainage in patients with suspected PD disruption. PD disruption is associated with an increased severity of pancreatitis, an increased risk of recurrent attacks of pancreatitis and long-term complications, and a decreased rate of PFC resolution after drainage. Ideally, pancreatic ductal disruption should be bridged with endoscopic stenting.
Vretzakis, George; Kleitsaki, Athina; Aretha, Diamanto; Karanikolas, Menelaos
2011-02-01
Blood transfusions are associated with adverse physiologic effects and increased cost, and therefore reduction of blood product use during surgery is a desirable goal for all patients. Cardiac surgery is a major consumer of donor blood products, especially when cardiopulmonary bypass (CPB) is used, because hematocrit drops precipitously during CPB due to blood loss and blood cell dilution. Advanced age, low preoperative red blood cell volume (preoperative anemia or small body size), preoperative antiplatelet or antithrombotic drugs, complex or re-operative procedures or emergency operations, and patient comorbidities were identified as important transfusion risk indicators in a report recently published by the Society of Cardiovascular Anesthesiologists. This report also identified several pre- and intraoperative interventions that may help reduce blood transfusions, including off-pump procedures, preoperative autologous blood donation, normovolemic hemodilution, and routine cell saver use.A multimodal approach to blood conservation, with high-risk patients receiving all available interventions, may help preserve vital organ perfusion and reduce blood product utilization. In addition, because positive intravenous fluid balance is a significant factor affecting hemodilution during cardiac surgery, especially when CPB is used, strategies aimed at limiting intraoperative fluid balance positiveness may also lead to reduced blood product utilization.This review discusses currently available techniques that can be used intraoperatively in an attempt to avoid or minimize fluid balance positiveness, to preserve the patient's own red blood cells, and to decrease blood product utilization during cardiac surgery.
International Nuclear Information System (INIS)
Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY
1991-11-01
We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity
... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
Cadiz, California Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...
National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...
National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...
International Nuclear Information System (INIS)
Pinheiro, R.
1979-01-01
The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted
Northern Oklahoma Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Two-phase alkali-metal experiments in reduced gravity
International Nuclear Information System (INIS)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity
International Nuclear Information System (INIS)
Vega, H.J. de
1990-01-01
One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
Bergshoeff, E.; Pope, C.N.; Stelle, K.S.
1990-01-01
We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.
Induced quantum conformal gravity
International Nuclear Information System (INIS)
Novozhilov, Y.V.; Vassilevich, D.V.
1988-11-01
Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs
Amelino-Camelia, Giovanni
2003-01-01
Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
Energy Technology Data Exchange (ETDEWEB)
Bennion, Kevin; Moreno, Gilberto
2015-09-29
Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.
International Nuclear Information System (INIS)
Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory
2002-01-01
We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework
Solid holography and massive gravity
International Nuclear Information System (INIS)
Alberte, Lasma; Baggioli, Matteo; Khmelnitsky, Andrei; Pujolàs, Oriol
2016-01-01
Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.
Solid holography and massive gravity
Energy Technology Data Exchange (ETDEWEB)
Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Khmelnitsky, Andrei [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain)
2016-02-17
Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.
Directory of Open Access Journals (Sweden)
Kempka Thomas
2015-04-01
Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung Won; Shinagare, Atul B.; Krajewski, Katherine M.; Tirumani, Sree Harsha; Jagannathan, Jyothi P.; Ramaiya, Nikihil H. [Dept. of Imaging, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Harvard Medical School, Boston (United States); Pyo, Jun Hee [The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston (United States)
2015-04-15
We aimed to describe radiologic signs and time-course of imatinib-associated fluid retention (FR) in patients with gastrointestinal stromal tumor (GIST), and its implications for management. In this Institutional Review Board-approved, retrospective study of 403 patients with GIST treated with imatinib, 15 patients with imaging findings of FR were identified by screening radiology reports, followed by manual confirmation. Subcutaneous edema, ascites, pleural effusion, and pericardial effusion were graded on a four-point scale on CT scans; total score was the sum of these four scores. The most common radiologic sign of FR was subcutaneous edema (15/15, 100%), followed by ascites (12/15, 80%), pleural effusion (11/15, 73%), and pericardial effusion (6/15, 40%) at the time of maximum FR. Two distinct types of FR were observed: 1) acute/progressive FR, characterized by acute aggravation of FR and rapid improvement after management, 2) intermittent/steady FR, characterized by occasional or persistent mild FR. Acute/progressive FR always occurred early after drug initiation/dose escalation (median 1.9 month, range 0.3-4.0 months), while intermittent/steady FR occurred at any time. Compared to intermittent/steady FR, acute/progressive FR was severe (median score, 5 vs. 2.5, p = 0.002), and often required drug-cessation/dose-reduction. Two distinct types (acute/progressive and intermittent/steady FR) of imatinib-associated FR are observed and each type requires different management.
Directory of Open Access Journals (Sweden)
S.Y. Lam
2012-12-01
Full Text Available Temperature variations inside a car underhood are largely controlled by the heat originating from the engine block and the exhaust manifold. Excessive temperatures in the underhood can lead to the faster deterioration of engine components and may affect the thermal comfort level inside the passenger cabin. This paper presents computational fluid dynamics investigations to assess the performance of a heat shield in lowering the peak temperature of the engine components and firewall in the underhood region of a typical passenger car. The simulation used the finite volume method with the standard k-ε turbulence model and an isothermal model for the heat transfer calculations. The results show that the heat shield managed to reduce the peak temperature of the engine components and firewall by insulating the intense heat from the engine block and exhaust and regulating the airflow inside the underhood region.
International Nuclear Information System (INIS)
Sekine, Kazuhiko; Kitano, Mitsuhide; Shimizu, Masayuki; Matsumoto, Shokei; Yoshii, Hiroshi; Yamazaki, Motoyasu; Aikawa, Naoki
2007-01-01
Nonoperative management (NOM) of hepatic injuries caused by blunt trauma in hemodynamically stable patients is widely accepted, but the feasibility of NOM for severe hepatic injuries has not been fully evaluated. Among all patients with blunt severe hepatic injury (type IIIb) admitted to Saiseikai Kanagawa-ken Hospital and Keio University Hospital from 1988 to 2004, those who had been hemodynamically stable after fluid resuscitation at the emergency department were initially managed nonoperatively. We reviewed demographic, physiological, and laboratory data; computed tomography (CT) findings; 80-day cumulative laparotomy rate; and complications. The anatomical severity of the hepatic injuries was evaluated based on the CT findings, such as hepatic vein injuries and area lacerated according to the Couinaud liver segment. In patients who underwent surgery after admission, the surgical indications and operative findings were reviewed. Overall, 34 consecutive patients were enrolled in this study. Five patients underwent surgery, and all of their surgical indications were attributable to liver-related complications after injury. The indication for surgery was hemodynamic instability in 3 patients with hepatic vein injures in the early phase (<15 hours after estrogen receptor (ER) arrival) and intra-abdominal septic complications in 2 patients in the late phase (hospital days 14 and 64). The cumulative 80-day laparotomy rate in the early phase was significantly higher (p<0.0001) in the patients suspected of having hepatic vein injury, and in the late phase it was higher (p=0.002) in those with injuries in 4 or more segments of hepatic injuries. For the successful NOM of blunt hepatic injury type IIIb in patients who are hemodynamically stable after fluid resuscitation, a strong suspicion of concurrent hepatic vein injury is critical in the early phase, and laceration in 4 or more segments should be noted in the late phase. (author)
Seasonal gravity change at Yellowstone caldera
Poland, M. P.; de Zeeuw-van Dalfsen, E.
2017-12-01
The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a
Balancing Venturi and Laissez-Faire Management Styles: Insights from Fluid Mechanical Analogs
Directory of Open Access Journals (Sweden)
Ruud Weijermars
2007-12-01
Full Text Available Mobilizing distributed Organizational Intelligence involves managerial efforts whereby the generation of new tacit knowledge requires dissemination of newly codified externalized knowledge. The managerial role in the early stage of knowledge creation is to support and stimulate the process of knowledge generation and to aid the diffusion of knowledge across organizational boundaries. In contrast, the subsequent 'harvesting' and goal-oriented application of knowledge requires convergence of human actors (H as carriers of distributed intelligence (DI. Optimization of the organizational performance and improved workflow efficiency is best effectuated by applying insights from fluid mechanical analogs. Several such analogs are introduced here and these provide insight that helps to funnel tacit and explicit knowledge into tangible asset value. Three sets of managerial lessons are inferred from the analogs: (1 Social bonding between professionals needs to be stimulated because professionals with strong social bonds (S can sustain effective workflows under relatively high pressures, while weak social bonds lead to turbulence and disruption; (2 Effective vision sharing is essential for goal-oriented and accelerated knowledge development in DI systems, and; (3 Managerial pressure may not overheat the critical limit that can be handled by resilient and strongly bonded DI networks, as this would result in disruptive turbulence even in experienced neural networks.
Einstein gravity emerging from quantum weyl gravity
International Nuclear Information System (INIS)
Zee, A.
1983-01-01
We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action
The Gravity of Giraffe Physiology
Hargens, Alan R.; Holton, Emily M. (Technical Monitor)
1997-01-01
By virtue of its tallness and terrestrial environment, the giraffe is a uniquely sensitive African animal to investigate tissue adaptations to gravitational stress. One decade ago, we studied transcapillary fluid balance and local tissue adaptations to high cardiovascular and musculoskeletal loads in adult and fetal giraffes. Previous studies by Goetz, Pattersson, Van Citters, Warren and their colleagues revealed that arterial pressure near the giraffe heart is about twice that in humans, to provide more normal blood pressure and perfusion to the brain. Another important question is how giraffes avoid pooling of blood and tissue fluid (edema) in dependent tissue of the extremities. As monitored by radiotelemetry, the blood and tissue fluid pressures that govern transcapillary exchange vary greatly with exercise. These pressures, combined with a tight skin layer, move fluid upward against gravity. Other mechanisms that prevent edema include precapillary vasoconstriction and low permeability of capillaries to plasma proteins. Other anatomical adaptations in dependent tissues of giraffes represent developmental adjustments to high and variable gravitational forces. These include vascular wall hypertrophy, thickened capillary basement membrane and other connective tissue adaptations. Our results in giraffe suggest avenues of future gravitational research in other animals including humans.
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.
2017-01-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.
Tonelli, Marcello; Lloyd, Anita; Pannu, Neesh; Klarenbach, Scott; Ravani, Pietro; Jindal, Kailash; MacRae, Jennifer; Unsworth, Larry; Manns, Braden; Hemmelgarn, Brenda
2018-02-01
Rural-dwelling hemodialysis patients have less frequent contact with nephrologists than urban-dwelling patients, and are known to have higher mortality. We hypothesized that rural-dwelling hemodialysis patients would have more evidence of poorly controlled extracellular fluid volume (ECVF) than otherwise similar urban-dwellers. We studied prevalent hemodialysis patients within a single renal program in Alberta, Canada and assessed ECFV using bioimpedance spectroscopy (BIS). Our primary outcome was impedance vector length (ohm/m) as assessed by BIS using the Xitron Hydra 4200 device, where shorter vector length indicated poorer ECFV control. Because poor ECFV control can lead to hypertension, we also assessed pre- and post-dialysis blood pressure. We measured outcomes at baseline. We studied 228 hemodialysis patients, of whom 115 (50.4 %) and 113 (49.6 %) were urban- and rural-dwelling, respectively. There were no differences in volume control in urban versus rural participants; odds ratio (OR) for vector length in the lowest sex-specific quartile of vector length was 0.93 (95 % CI 0.54, 1.59) after adjusting for age, sex, diabetic status, years since dialysis initiation and phase angle. The odds of very poor blood pressure control (pre-dialysis blood pressure ≥180/100) did not differ between urban and rural participants [fully adjusted OR 0.96 (0.36, 2.60)]. Differences in ECFV control do not appear to explain higher mortality among remote- and rural- dwelling hemodialysis patients, compared to urban-dwellers.
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
Energy Technology Data Exchange (ETDEWEB)
Winniford, Michael D
2013-02-08
Nearly 4 million patient procedures performed annually in US cardiac catheterization laboratories utilize contrast media to achieve vessel opacification. The amount of contrast media used is variable and depends on the complexity of the procedure, the method of contrast delivery as well as the skill-level of the operator. Since the total amount of contrast used for each procedure can have both patient safety and economic implications, it is essential for cardiologists to have the ability to control contrast delivery such that optimal angiographic image quality is achieved using the least amount of contrast. Although the complication rate associated with cardiac catheterization remains low, the most common serious complication, contrast-induced nephropathy (CIN), is associated with poor prognosis and a high mortality rate. Numerous interventional strategies for preventing and reducing the severity of CIN have demonstrated varying degrees of clinical benefit, but none has been shown to reliably prevent this serious complication. To date, the most effective approach for reducing the risk of CIN is to properly hydrate the patient and to minimize the amount of contrast media administered. Automated injection systems are intended for use in virtually all cardiac catheterization procedures and have numerous features which can provide potential advantages over traditional methods. With automated injection technology the operator is able to control and precisely monitor contrast delivery. Additionally, the MEDRAD Avanta Fluid Management Injection System utilizes a sterile contrast reservoir which eliminates the need to discard unused contrast in individual opened containers following each procedure. Considering that an average of 50% of opened contrast media is wasted using manual injection methods, this savings can provide a substantial economic benefit. Automated systems also facilitate the use of smaller (5 French) catheter sizes. Precise flow control and the use of
International Nuclear Information System (INIS)
Brown, J.D.
1988-01-01
This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant
Gravity interpretation via EULDPH
International Nuclear Information System (INIS)
Ebrahimzadeh Ardestani, V.
2003-01-01
Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented
Bioelectrical impedance spectroscopy as a fluid management system in heart failure
International Nuclear Information System (INIS)
Weyer, Sören; Wartzek, Tobias; Leicht, Lennart; Leonhardt, Steffen; Zink, Matthias Daniel; Mischke, Karl; Vollmer, Thomas
2014-01-01
Episodes of hospitalization for heart failure patients are frequent and are often accompanied by fluid accumulations. The change of the body impedance, measured by bioimpendace spectroscopy, is an indicator of the water content. The hypothesis was that it is possible to detect edema from the impedance data. First, a finite integration technique was applied to test the feasibility and allowed a theoretical analysis of current flows through the body. Based on the results of the simulations, a clinical study was designed and conducted. The segmental impedances of 25 patients suffering from heart failure were monitored over their recompensation process. The mean age of the patients was 73.8 and their mean body mass index was 28.6. From these raw data the model parameters from the Cole model were deduced by an automatic fitting algorithm. These model data were used to classify the edema status of the patient. The baseline values of the regression lines of the extra- and intracellular resistance from the transthoracic measurement and the baseline value of the regression line of the extracellular resistance from the foot-to-foot measurement were identified as important parameters for the detection of peripheral edema. The rate of change of the imaginary impedance at the characteristic frequency and the mean intracellular resistance from the foot-to-foot measurement were identified as important parameters for the detection of pulmonary edema. To classify the data, two decision trees were considered: One should detect pulmonary edema (n pulmonary = 13, n none = 12) and the other peripheral edema (n peripheral = 12, n none = 13). Peripheral edema could be detected with a sensitivity of 100% and a specificity of 90%. The detection of pulmonary edema showed a sensitivity of 92.31% and a specificity of 100%. The leave-one-out cross-validation-error for the peripheral edema detection was 12% and 8% for the detection of pulmonary edema. This enables the application of BIS as an
International Nuclear Information System (INIS)
Mielke, Eckehard W.
2006-01-01
Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
International Nuclear Information System (INIS)
Burkhard, N.R.
1979-01-01
The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables
Classical Weyl transverse gravity
Energy Technology Data Exchange (ETDEWEB)
Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)
2017-05-15
We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)
Circulation-based Modeling of Gravity Currents
Meiburg, E. H.; Borden, Z.
2013-05-01
phenomena, J. Fluid Mech. 31, 209-248. Shin, J.O., Dalziel, S.B. and Linden, P.F. 2004 Gravity currents produced by lock exchange, J. Fluid Mech. 521, 1-34.
International Nuclear Information System (INIS)
Gregory, Ruth
2007-01-01
The study of braneworlds has been an area of intense activity over the past decade, with thousands of papers being written, and many important technical advances being made. This book focuses on a particular aspect of braneworlds, namely perturbative gravity in one specific model: the Randall-Sundrum model. The book starts with an overview of the Randall-Sundrum model, discussing anti-de Sitter (AdS) space and the Israel equations in some detail. It then moves on to discuss cosmological branes, focusing on branes with constant curvature. The book then turns to brane gravity, i.e. what do we, as brane observers, perceive the gravitational interaction to be on the brane as derived from the actual five-dimensional gravitational physics? After a derivation of the general brane equations from the Israel equations, the remainder of the book deals with perturbative gravity. This part of the book is extremely detailed, with calculations given explicitly. Overall, the book is quite pedagogical in style, with the aim being to explain in detail the topics it chooses to cover. While it is not unusual to have books written on current and extremely popular research areas, it is unusual to have calculations written so explicitly. This is both a strength and a weakness of this book. It is a strength because the calculations are presented in a detail that students learning the topic will definitely appreciate; however, the narrow focus of the book also means that it lacks perspective and fails to present the broader context. In choosing to focus on one particular aspect of Randall-Sundrum branes, the book has not managed to communicate why a large number of theorists have worked so intensively on this model. In its early stages, the explicit detail of the Randall-Sundrum model would be extremely useful for a student starting out in this research area. In addition, the calculational detail later in the computation of the graviton propagator on the brane would also be welcome not
Thermosyphon Flooding Limits in Reduced Gravity Environments
Gibson, Marc A.; Jaworske, Donald A.; Sanzi, James L.; Ljubanovic, Damir
2012-01-01
Fission Power Systems have long been recognized as potential multi-kilowatt power solutions for lunar, Martian, and extended planetary surface missions. Current heat rejection technology associated with fission surface power systems has focused on titanium water thermosyphons embedded in carbon composite radiator panels. The thermosyphons, or wickless heat pipes, are used as a redundant and efficient way to spread the waste heat from the power conversion unit(s) over the radiator surface area where it can be rejected to space. It is well known that thermosyphon performance is reliant on gravitational forces to keep the evaporator wetted with the working fluid. One of the performance limits that can be encountered, if not understood, is the phenomenon of condenser flooding, otherwise known as evaporator dry out. This occurs when the gravity forces acting on the condensed fluid cannot overcome the shear forces created by the vapor escaping the evaporator throat. When this occurs, the heat transfer process is stalled and may not re-stabilize to effective levels without corrective control actions. The flooding limit in earth's gravity environment is well understood as experimentation is readily accessible, but when the environment and gravity change relative to other planetary bodies, experimentation becomes difficult. An innovative experiment was designed and flown on a parabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtain empirical data for analysis. The test data is compared to current correlation models for validation and accuracy.
Zhao, S; Ai, L; Zhang, H
2000-01-01
To discuss the significance of amnioinfusion and amniotic fluid exchange under continuous internal fetal heart rate (FHR) monitoring for management of fetal distress during labor. 136 cases with frequent variable deceleration (VD) and meconium stained amniotic fluid during labor were divided into two groups: the study group (68 cases) and the control group (68 cases). The former were treated by amnioinfusion and amniotic fluid exchange, while oxygen inhalation, change of body position, and intravenous infusion for the control group. In the study group, VD disappeared or relieved in 62 cases obviously, and the efficacy rate reached 91.2% (62/68). 48 cases with II degree meconium stained amniotic fluid were treated by amniotic fluid exchange, amniotic fluid became clear or turned to I degree stained in 39 cases. In the control group, VD relieved in 20 cases, the efficacy rate was 19.4%, significantly lower than that of the study group (P 0.05). Amnioinfusion and AF exchange during labor are one of the effective treatment methods for fetal distress and prevention for MAS.
Numerical study of gravity currents in a channel
International Nuclear Information System (INIS)
Wang, D.
1985-01-01
A three-dimensional, primitive-equation model was used to study gravity currents produced by instantaneous releases of a buoyant fluid in a rectangular channel. Without rotation, the gravity current passes through two distinct phases: an initial adjustment phase in which the front speed is constant, and an eventual self-similar phase in which the front speed decreases with time. With rotation, the gravity current is confined to the right-hand wall, forming a coastal jet. The initial front-speed is constant; however, the front speed decreases rapidly due to strong mixing at the horizontal edge of the gravity current. Also, with rotation, part of the buoyant fluid is trapped near the source region, forming an anticyclonic vortex
Donatelli, Gianfranco; Fuks, David; Cereatti, Fabrizio; Pourcher, Guillaume; Perniceni, Thierry; Dumont, Jean-Loup; Tuszynski, Thierry; Vergeau, Bertrand Marie; Meduri, Bruno; Gayet, Brice
2018-05-01
Post-operative collections are a recognized source of morbidity after abdominal surgery. Percutaneous drainage is currently considered the standard treatment but not all collections are accessible using this method. Since the adoption of EUS, endoscopic transmural drainage has become an attractive option in the management of such complications. The present study aimed to assess the efficacy, safety and modalities of endoscopic transmural drainage in the treatment of post-operative collections. Data of all patients referred to our dedicated multidisciplinary facility from 2014 to 2017 for endoscopic drainage of symptomatic post-operative collections after failure of percutaneous drainage or when it was deemed impossible, were retrospectively analyzed. Thirty-two patients (17 males and 15 females) with a median age of 53 years old (range 31-74) were included. Collections resulted from pancreatic (n = 10), colorectal (n = 6), bariatric (n = 5), and other type of surgery (n = 11). Collection size was less than 5 cm in diameter in 10 (31%), between 5 and 10 cm in 17 (53%) ,and more than 10 cm in 5 (16%) patients. The median time from surgery to endoscopic drainage was 38 days (range 6-360). Eight (25%) patients underwent endoscopic guided drainage whereas 24 (75%) patients underwent EUS-guided drainage. Technical success was 100% and clinical success was achieved in 30 (93.4%) after a mean follow-up of 13.5 months (1.2-24.8). Overall complication was 12.5% including four patients who bled following trans-gastric drainage treated with conservative therapy. The present series suggests that endoscopic transmural drainage represents an interesting alternative in the treatment of post-operative collection when percutaneous drainage is not possible or fails.
Directory of Open Access Journals (Sweden)
Iver Brevik
2012-11-01
Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided.
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....
DEFF Research Database (Denmark)
Pahus, Jytte; Ludvigsen, Mette Spliid; Lindberg, Magnus
) evaluates patients’ SE with regard to fluid intake. FIAI was developed in Sweden and can be used as a screening instrument or as evaluation tool. Objectives The aim of this study was to translate and validate the FIAI for use in Denmark. Methods Following the steps of forward and backward translation...... centre (including four satellite units) completed the Danish FIAI. Analysis of construct validity and internal consistency is ongoing. Conclusions Primarily findings indicate that the Danish FIAI can be used in clinical practice as a screening instrument for SE and evaluation tool among adult...
Consistency of orthodox gravity
Energy Technology Data Exchange (ETDEWEB)
Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)
1997-01-01
A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.
Generalized pure Lovelock gravity
Concha, Patrick; Rodríguez, Evelyn
2017-11-01
We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Generalized pure Lovelock gravity
Directory of Open Access Journals (Sweden)
Patrick Concha
2017-11-01
Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.
Sills, E Scott; Walsh, David J; Jones, Christopher A; Wood, Samuel H
2015-09-01
Essure (Bayer) received approval from the U.S. Food and Drugs Administration as a permanent non-hormonal contraceptive implant in November 2002. While the use of Essure in the management of hydrosalpinx prior to in vitro fertilization (IVF) remains off-label, it has been used specifically for this purpose since at least 2007. Although most published reports on Essure placement before IVF have been reassuring, clinical experience remains limited, and no randomized studies have demonstrated the safety or efficacy of Essure in this context. In fact, no published guidelines deal with patient selection or counseling regarding the Essure procedure specifically in the context of IVF. Although Essure is an irreversible birth control option, some patients request the surgical removal of the implants for various reasons. While these patients could eventually undergo hysterectomy, at present no standardized technique exists for simple Essure removal with conservation of the uterus. This article emphasizes new aspects of the Essure procedure, as we describe the first known association between the placement of Essure implants and the subsequent development of fluid within the uterine cavity, which resolved after the surgical removal of both devices.
Maglev Facility for Simulating Variable Gravity
Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.
2010-01-01
An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
Energy Technology Data Exchange (ETDEWEB)
Houndjo, M.J.S. [Faculte des Sciences et Techniques de Natitingou, Natitingou (Benin); Institut de Mathematiques et de Sciences Physiques, Porto-Novo (Benin)
2017-09-15
In this paper we study a modified version of unimodular general relativity in the context of f(G), G denoting the Gauss-Bonnet invariant. We focus on Bianchi-type I and Friendmann-Robertson-Walker universes and search for unimodular f(G) models according to the de Sitter and power-law solutions. Assuming unimodular f(G) gravity as a perfect fluid and making use of the slow-roll parameters, the inflationary model has been reconstructed in concordance with the Planck observational data. Moreover, we investigate the realization of the bounce and loop quantum cosmological ekpyrotic paradigms. Assuming suitable and appropriate scale factors, unimodular f(G) models able to reproduce superbounce and ekpyrotic scenarios have been reconstructed. (orig.)
Miller, Wayne L; Mullan, Brian P
2014-06-01
This study sought to quantitate total blood volume (TBV) in patients hospitalized for decompensated chronic heart failure (DCHF) and to determine the extent of volume overload, and the magnitude and distribution of blood volume and body water changes following diuretic therapy. The accurate assessment and management of volume overload in patients with DCHF remains problematic. TBV was measured by a radiolabeled-albumin dilution technique with intravascular volume, pre-to-post-diuretic therapy, evaluated at hospital admission and at discharge. Change in body weight in relation to quantitated TBV was used to determine interstitial volume contribution to total fluid loss. Twenty-six patients were prospectively evaluated. Two patients had normal TBV at admission. Twenty-four patients were hypervolemic with TBV (7.4 ± 1.6 liters) increased by +39 ± 22% (range, +9.5% to +107%) above the expected normal volume. With diuresis, TBV decreased marginally (+30 ± 16%). Body weight declined by 6.9 ± 5.2 kg, and fluid intake/fluid output was a net negative 8.4 ± 5.2 liters. Interstitial compartment fluid loss was calculated at 6.2 ± 4.0 liters, accounting for 85 ± 15% of the total fluid reduction. TBV analysis demonstrated a wide range in the extent of intravascular overload. Dismissal measurements revealed marginally reduced intravascular volume post-diuretic therapy despite large reductions in body weight. Mobilization of interstitial fluid to the intravascular compartment with diuresis accounted for this disparity. Intravascular volume, however, remained increased at dismissal. The extent, composition, and distribution of volume overload are highly variable in DCHF, and this variability needs to be taken into account in the approach to individualized therapy. TBV quantitation, particularly serial measurements, can facilitate informed volume management with respect to a goal of treating to euvolemia. Copyright © 2014 American College of Cardiology Foundation. Published
Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.
Shevtsova, Valentina
behaviour in order to support the development of predictive models for the management of fluids and fluid mixtures on the ground as well as in space; (ii) to measure fluid properties that are either very difficult or not possible at all to measure on the ground and establish benchmarks; (iii) to exploit the absence of gravity forces to study new behaviours and implement new experimental configurations; Surely, all of you have seen movies about astronauts’ work and life on the ISS. Here you will learn another approach to the ISS activity, through the opinion of experienced scientist.
Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.
2018-03-01
A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.
Astrophysical flows near [Formula: see text] gravity black holes.
Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher
In this paper, we study the accretion process for fluids flowing near a black hole in the context of f ( T ) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f ( T ) and f ( R ) gravity.
Astrophysical flows near f(T) gravity black holes
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Ayyesha K.; Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan); Azreg-Ainou, Mustapha [Baskent University, Baglica Campus, Engineering Faculty, Ankara (Turkey); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); INFN Sezione di Napoli, Naples (Italy)
2016-05-15
In this paper, we study the accretion process for fluids flowing near a black hole in the context of f(T) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f(T) and f(R) gravity. (orig.)
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
CERN. Geneva
2007-01-01
Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.
Directory of Open Access Journals (Sweden)
J. Ambjørn
1995-07-01
Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.
Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced Gravity
Marchetta, J. G.; Hochstein, J. I.
2002-01-01
Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced strong evidence that a magnetic positioning system may be a feasible alternative technology for use in the management of cryogenic propellants onboard spacecraft. The results of these preliminary studies have indicated that further investigation of the physical processes and potential reliability of such a system is required. The utility of magnetic fields as an alternative method in cryogenic propellant management is dependent on its reliability and flexibility. Simulations and experiments have previously yielded evidence in support of the magnetic positive positioning (MPP) process to predictably reorient LOX for a variety of initial conditions. Presently, though, insufficient evidence has been established to support the use of magnetic fields with respect to the long-term storage of cryogenic propellants. Current modes of propellant storage have met with a moderate level of success and are well suited for short duration missions using monopropellants. However, the storage of cryogenic propellants warrants additional consideration for long-term missions. For example, propellant loss during storage is due to vaporization by incident solar radiation and the vaporized ullage must be vented to prevent excessive pressurization of the tank. Ideally, positioning the fluid in the center of the tank away from the tank wall will reduce vaporization by minimizing heat transfer through the tank wall to the liquid. A second issue involves the capability of sustaining a stable fluid configuration at tank center under varying g-levels or perturbations propellant storage. Results presented herein include comparisons illustrating the influence of gravity, fluid volume, and the magnetic field on a paramagnetic fluid, LOX. The magnetic Bond number is utilized as predictive correlating parameter for investigating these processes. A dimensionless relationship between the Bom and Bo was sought with the goal of
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (71 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received in...
Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.
2012-01-01
We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (55,907 records) were gathered by various governmental organizations (and academia) using a variety of methods. This data base was received...
International Nuclear Information System (INIS)
Hertog, Thomas; Hollands, Stefan
2005-01-01
We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed
Carroll versus Galilei gravity
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)
2017-03-30
We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.
International Nuclear Information System (INIS)
Williams, Ruth M
2006-01-01
A review is given of a number of approaches to discrete quantum gravity, with a restriction to those likely to be relevant in four dimensions. This paper is dedicated to Rafael Sorkin on the occasion of his sixtieth birthday
Garland, G D; Wilson, J T
2013-01-01
The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp
Streaming gravity mode instability
International Nuclear Information System (INIS)
Wang Shui.
1989-05-01
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
International Nuclear Information System (INIS)
Accioly, A.J.
1987-01-01
A possible classical route conducting towards a general relativity theory with higher-derivatives starting, in a sense, from first principles, is analysed. A completely causal vacuum solution with the symmetries of the Goedel universe is obtained in the framework of this higher-derivative gravity. This very peculiar and rare result is the first known vcuum solution of the fourth-order gravity theory that is not a solution of the corresponding Einstein's equations.(Author) [pt
Nelson, George
2004-01-01
Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…
Automated borehole gravity meter system
International Nuclear Information System (INIS)
Lautzenhiser, Th.V.; Wirtz, J.D.
1984-01-01
An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity
Gravity Before Einstein and Schwinger Before Gravity
Trimble, Virginia L.
2012-05-01
Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.
International Nuclear Information System (INIS)
Capozziello, Salvatore; De Laurentis, Mariafelicia
2011-01-01
Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.
Normal gravity field in relativistic geodesy
Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao
2018-02-01
Modern geodesy is subject to a dramatic change from the Newtonian paradigm to Einstein's theory of general relativity. This is motivated by the ongoing advance in development of quantum sensors for applications in geodesy including quantum gravimeters and gradientometers, atomic clocks and fiber optics for making ultra-precise measurements of the geoid and multipolar structure of the Earth's gravitational field. At the same time, very long baseline interferometry, satellite laser ranging, and global navigation satellite systems have achieved an unprecedented level of accuracy in measuring 3-d coordinates of the reference points of the International Terrestrial Reference Frame and the world height system. The main geodetic reference standard to which gravimetric measurements of the of Earth's gravitational field are referred is a normal gravity field represented in the Newtonian gravity by the field of a uniformly rotating, homogeneous Maclaurin ellipsoid of which mass and quadrupole momentum are equal to the total mass and (tide-free) quadrupole moment of Earth's gravitational field. The present paper extends the concept of the normal gravity field from the Newtonian theory to the realm of general relativity. We focus our attention on the calculation of the post-Newtonian approximation of the normal field that is sufficient for current and near-future practical applications. We show that in general relativity the level surface of homogeneous and uniformly rotating fluid is no longer described by the Maclaurin ellipsoid in the most general case but represents an axisymmetric spheroid of the fourth order with respect to the geodetic Cartesian coordinates. At the same time, admitting a post-Newtonian inhomogeneity of the mass density in the form of concentric elliptical shells allows one to preserve the level surface of the fluid as an exact ellipsoid of rotation. We parametrize the mass density distribution and the level surface with two parameters which are
Effect of particle inertia and gravity on the turbulence in a suspension
Ooms, G.; Poesio, P.
2005-01-01
A theoretical model is presented for the effect of particle inertia and gravity on the turbulence in a homogeneous suspension. It is an extension of the one-fluid model developed by L’vov, Ooms, and Pomyalov [Phys. Rev. E 67, 046314 (2003)] , in which the effect of gravity was not considered. In the
Power-law cosmic expansion in f(R) gravity models
International Nuclear Information System (INIS)
Goheer, Naureen; Larena, Julien; Dunsby, Peter K. S.
2009-01-01
We show that within the class of f(R) gravity theories, Friedmann-Lemaitre-Robertson-Walker power-law perfect fluid solutions only exist for R n gravity. This significantly restricts the set of exact cosmological solutions which have similar properties to what is found in standard general relativity.
2000-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
International Nuclear Information System (INIS)
Graney, K.; Chu, J.; Lin, P.C.
2002-01-01
Full text: A 78-year old male in end stage renal failure (ESRF) with a background of NIDDM retinopathy, nephropathy, and undergoing continuous ambulatory peritoneal dialysis (CAPD) presented with anorexia, clinically unwell, decreased mobility and right scrotal swelling. There was no difficulty during CAPD exchange except there was a positive fluid balance Peritoneal dialysates remained clear A CAPD peritoneal study was requested. 100Mbq 99mTc Sulphur Colloid was injected into a standard dialysate bag containing dialysate. Anterior dynamic images were acquired over the abdomen pelvis while the dialysate was infused Static images with anatomical markers were performed 20 mins post infusion, before and after patient ambulation and then after drainage. The study demonstrated communication between the peritoneal cavity and the right scrotal sac. Patient underwent right inguinal herniaplasty with a marlex mesh. A repeat CAPD flow study was performed as follow up and no abnormal connection between the peritoneal cavity and the right scrotal sac was demonstrated post operatively. This case study shows that CAPD flow studies can be undertaken as a simple, minimally invasive method to evaluate abnormal peritoneal fluid flow dynamics in patients undergoing CAPD, and have an impact on dialysis management. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc
Simulation of sediment settling in reduced gravity
Kuhn, Nikolaus; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Gartmann, Andres
2015-04-01
Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, Stokes' Law or similar empirical models, the common way of estimating the terminal velocity of a particle settling in a gas or liquid, carry the notion of a drag as a property of a particle, rather than a force generated by the flow around the particle. For terrestrial applications, this simplifying assumption is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on other planetary bodies. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks, e.g. on Mars and the search for traces of life. Simulating sediment settling velocities on other planets based on a numeric simulation using Navier-Stokes equations and Computational Fluid Dynamics requires a prohibitive amount of time and lacks measurements to test the quality of the results. The aim of the experiments presented in this study was therefore to quantify the error incurred by using settling velocity models calibrated on Earth at reduced gravities, such as those on the Moon and Mars. In principle, the effect of lower gravity on settling velocity can be achieved by reducing the difference in density between particle and liquid. However, the use of such analogues creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under reduced gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling velocity measurements within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation, the results
Exact solutions in three-dimensional gravity
Garcia-Diaz, Alberto A
2017-01-01
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...
Numerical simulations of convectively excited gravity waves
International Nuclear Information System (INIS)
Glatzmaier, G.A.
1983-01-01
Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region
whistler oscillitons and capillary-gravity generalized solitons
African Journals Online (AJOL)
Nonlinear stationary waveforms in two completely different systems, namely, electromagnetic-fluid waves in a magnetic plasma and capillary-gravity water waves, are compared and contrasted. These systems display common features and are amenable to a Hamiltonian description. More importantly, however, is the fact ...
Directory of Open Access Journals (Sweden)
Cahill R. T.
2015-10-01
Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.
Ortín, Tomás
2015-01-01
Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.
International Nuclear Information System (INIS)
Rumpf, H.
1987-01-01
We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)
Linder, Eric V.
2018-03-01
A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.
Gerhardt, Claus
2018-01-01
A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological ...
Airborne Gravity: NGS' Gravity Data for EN08 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...
Airborne Gravity: NGS' Gravity Data for TS01 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for AN08 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...
Airborne Gravity: NGS' Gravity Data for EN01 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for AN03 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...
Airborne Gravity: NGS' Gravity Data for EN06 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...
Airborne Gravity: NGS' Gravity Data for ES01 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang
2018-05-14
In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.
Miniaturised Gravity Sensors for Remote Gravity Surveys.
Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.
2016-12-01
Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.
Pizzo, Nick
2017-11-01
A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.
International Nuclear Information System (INIS)
Romney, B.; Barrau, A.; Vidotto, F.; Le Meur, H.; Noui, K.
2011-01-01
The loop quantum gravity is the only theory that proposes a quantum description of space-time and therefore of gravitation. This theory predicts that space is not infinitely divisible but that is has a granular structure at the Planck scale (10 -35 m). Another feature of loop quantum gravity is that it gets rid of the Big-Bang singularity: our expanding universe may come from the bouncing of a previous contracting universe, in this theory the Big-Bang is replaced with a big bounce. The loop quantum theory predicts also the huge number of quantum states that accounts for the entropy of large black holes. (A.C.)
Terrestrial gravity data analysis for interim gravity model improvement
1987-01-01
This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.
Fouda, Usama M; Sayed, Ahmed M; Abdelmoty, Hatem I; Elsetohy, Khaled A
2015-01-01
The aim of this study was to compare the efficacy of ultrasound guided aspiration of hydrosalpinx fluid at the time of oocyte retrieval with salpingectomy in the management of patients with ultrasound visible hydrosalpinx undergoing IVF-ET. One hundred and sixty patients with ultrasound visible hydrosalpinx were randomized into salpingectomy group and aspiration group using computer generated randomization list and sequentially numbered sealed envelopes containing allocation information written on a card. The clinical pregnancy rate per started cycle and the implantation rate were non- significantly higher in the salpingectomy group compared with the aspiration group [40% vs. 27.5% (p value = 0.132) and 18.95% vs. 12.82% (p value =0.124), respectively]. In the aspiration group, 34.21% of patients had rapid re-accumulation of the hydrosalpinx fluid (i.e. within first two weeks after embryo transfer). Whereas, the clinical pregnancy rate per transfer cycle and the implantation rate were significantly higher in salpingectomy group compared with the subgroup of patients with rapid re-accumulation of hydrosalpinx fluid [42.67% vs. 19.23% (p value = 0.036) and 18.95% vs. 7.58% (p value = 0.032), respectively], no significant differences were detected between the salpingectomy group and the subgroup of patients with no re-accumulation of hydrosalpinx fluid (42.67% vs. 34% (p value = 0.356) and 18.95% vs. 15.5% (p value = 0.457), respectively). The small sample size could be the cause of failure of detecting significant increase in implantation and pregnancy rates in salpingectomy group compared with aspiration group. Further larger randomized controlled trials are needed to determine whether salpingectomy is more effective than aspiration of hydrosalpinx fluid or not. Moreover, the data presented in this study suggested that rapid re-accumulation of hydrosalpinx fluid is an obstacle against successful implantation and the cause of lower success rate
Shoukat, Ahmad Adnan; Shaban, Muhammad; Israr, Asif; Shah, Owaisur Rahman; Khan, Muhammad Zubair; Anwar, Muhammad
2018-03-01
We investigate the heat transfer effect of different types of Nano-fluids on the pin fin heat sinks used in computer's microprocessor. Nano-particles of Aluminum oxide have been used with volumetric concentrations of 0.002% and Silver oxide with volumetric concentrations of 0.001% in the base fluid of deionized water. We have also used Aluminum oxide with ethylene glycol at volumetric concentrations of 0.002%. We report the cooling rates of Nano-fluids for pin-fin heat to cool the microprocessor and compare these with the cooling rate of pure water. We use a microprocessor heat generator in this investigation. The base temperature is obtained using surface heater of power 130 W. The main purpose of this work is to minimize the base temperature, and increase the heat transfer rate of the water block and radiator. The temperature of the heat sink is maintained at 110 °C which is nearly equal to the observed computer microprocessor temperature. We also provide the base temperature at different Reynolds's number using the above mention Nano-fluids with different volumetric concentrations.
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Gravity Data for South America
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...
Interior Alaska Gravity Station Data
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Station Data for Spain
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
Gravity Station Data for Portugal
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...
On gravitational energy in conformal teleparallel gravity
da Silva, J. G.; Ulhoa, S. C.
2017-07-01
The paper deals with the definition of gravitational energy in conformal teleparallel gravity. The total energy is defined by means of the field equations which allow a local conservation law. Then such an expression is analyzed for a homogeneous and isotropic Universe. This model is implemented by the Friedmann-Robertson-Walker (FRW) line element. The energy of the Universe in the absence of matter is identified with the dark energy, however it can be expanded for curved models defining such an energy as the difference between the total energy and the energy of the perfect fluid which is the matter field in the FRW model.
International Nuclear Information System (INIS)
Faria, F. F.
2014-01-01
We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.
DEFF Research Database (Denmark)
Skielboe, Andreas
Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
Discrete Lorentzian quantum gravity
Loll, R.
2000-01-01
Just as for non-abelian gauge theories at strong coupling, discrete lattice methods are a natural tool in the study of non-perturbative quantum gravity. They have to reflect the fact that the geometric degrees of freedom are dynamical, and that therefore also the lattice theory must be formulated
International Nuclear Information System (INIS)
Pullin, J.
2015-01-01
Loop quantum gravity is one of the approaches that are being studied to apply the rules of quantum mechanics to the gravitational field described by the theory of General Relativity . We present an introductory summary of the main ideas and recent results. (Author)
International Nuclear Information System (INIS)
Meszaros, A.
1984-05-01
In case the graviton has a very small non-zero mass, the existence of six additional massive gravitons with very big masses leads to a finite quantum gravity. There is an acausal behaviour on the scales that is determined by the masses of additional gravitons. (author)
Venus - Ishtar gravity anomaly
Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.
1984-01-01
The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.
International Nuclear Information System (INIS)
Aros, Rodrigo; Contreras, Mauricio
2006-01-01
In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively
International Nuclear Information System (INIS)
Williams, J.W.
1992-01-01
After a brief introduction to Regge calculus, some examples of its application is quantum gravity are described in this paper. In particular, the earliest such application, by Ponzano and Regge, is discussed in some detail and it is shown how this leads naturally to current work on invariants of three-manifolds
Directory of Open Access Journals (Sweden)
Rovelli Carlo
1998-01-01
Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Quantum Gravity Effects in Cosmology
Directory of Open Access Journals (Sweden)
Gu Je-An
2018-01-01
Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.
Even-dimensional topological gravity from Chern-Simons gravity
International Nuclear Information System (INIS)
Merino, N.; Perez, A.; Salgado, P.
2009-01-01
It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).
Pressure Profiles in a Loop Heat Pipe under Gravity Influence
Ku, Jentung
2015-01-01
During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2014-01-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Nygren, Jonas; Thorell, Anders; Ljungqvist, Olle
2007-12-01
As a result of advances in anaesthesia and surgery, an increasing number of surgical procedures are currently possible in the ambulatory setting. Nausea/vomiting and sedation/drowsiness are often associated with delayed discharge and readmission. These symptoms are also related to pharmacological treatment as well as dehydration and fasting. The evidence that preoperative fasting and dehydration not only reduces preoperative well being, but may also affect postoperative recovery is currently being reviewed. In association with minor surgical procedures, rehydration with approximately 1 l fluid, and in cases with a moderate degree of surgery, such as laparoscopic surgery, 1-3 l fluid, given perioperatively will improve postoperative well being and recovery. Administration of a carbohydrate-rich beverage not only provides fluid but also counteracts the negative effects of preoperative fasting, which in turn reduces preoperative hunger and improves well being. Postoperatively, this treatment reduces insulin resistance, which may be relevant in surgery with significant postoperative stress response. Two studies on laparoscopic cholecystectomy demonstrate different results regarding effects on postoperative outcome and nausea/vomiting and further evaluation is required. When preoperative dehydration is corrected, postoperative well being and clinical outcome improves. Avoiding preoperative fasting by administration of carbohydrate-rich beverages improves preoperative well being while effects on postoperative recovery in patients undergoing ambulatory surgery need to be further evaluated.
Metastable gravity on classical defects
International Nuclear Information System (INIS)
Ringeval, Christophe; Rombouts, Jan-Willem
2005-01-01
We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity
International Nuclear Information System (INIS)
Anon.
1991-01-01
Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general
Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens
Merte, Herman, Jr.
1988-01-01
Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.
Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg
2015-09-01
In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.
On the Hydrogranular Dynamics of Magmatic Gravity Currents
McIntire, M. Z.; Bergantz, G. W.; Schleicher, J.; Burgisser, A.
2016-12-01
Magmatic processes are generally governed by multi-phase interactions of silicate liquid, crystals, and bubbles. However, the modes of dissipation and the manner that stress is transmitted are poorly understood. We use a model of a simple but widely applicable gravity current as a means to exemplify the hydrogranular dynamics in crystal-rich magmas. Viscous and lubrication forces are of special interest because they have a dual role in dispersal and mixing in a crystal-rich gravity current. For example, lubrication forces provide an initial apparent yield strength by inducing a negative pore pressure as crystals move apart. However, once the gravity current is underway, lubrication forces reduce the dissipation due to collision and frictional contact.The gravity current is initiated by a combination of toppling and sliding along a well-defined granular fault. This produces three distinct regimes: a quasi-static base, an overlying particle hump that translates in a quasi-plastic fashion by grain-passing and rolling until the angle of repose is reached, and a viscous particle current. The current initially forms a leading vortex at the head, but the loss of crystals by sedimentation-assisted granular capture by an upward growing particle front drains energy from the flow. The vortex is soon abandoned, but persists in the reservoir as a fossil feature of orphaned crystals in a smear of previous intercumulate fluid. The kinetic energy of the most active crystals decays in a dual fashion, initially linearly, then parabolically with a near symmetrical increase and loss of kinetic energy.There is very little entrainment and mixing between intercumulate and reservoir fluids from magmatic gravity currents. Only a thin seam of reservoir melt is captured by the base of the flow as it descends across the floor. Hence magmatic gravity currents, while producing modest amounts of crystal sorting, are not effective agents of mixing as lubrication and viscous forces inhibit
Quantum gravity from noncommutative spacetime
International Nuclear Information System (INIS)
Lee, Jungjai; Yang, Hyunseok
2014-01-01
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
Quantum gravity from noncommutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)
2014-12-15
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.
DEFF Research Database (Denmark)
Forsberg, René; Sideris, M.G.; Shum, C.K.
2005-01-01
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...
Thermodynamical stability for a perfect fluid
Energy Technology Data Exchange (ETDEWEB)
Fang, Xiongjun; Jing, Jiliang [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); He, Xiaokai [Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Hunan First Normal University, School of Mathematics and Computational Science, Changsha (China)
2017-12-15
According to the maximum entropy principle, it has been proved that the gravitational field equations could be derived by the extrema of the total entropy for a perfect fluid, which implies that thermodynamic relations contain information as regards gravity. In this manuscript, we obtain a criterion for the thermodynamical stability of an adiabatic, self-gravitating perfect fluid system by the second variation of the total entropy. We show, for Einstein's gravity with spherical symmetry spacetime, that the criterion is consistent with that for the dynamical stability derived by Chandrasekhar and Wald. We also find that the criterion could be applied to cases without spherical symmetry, or under general perturbations. The result further establishes the connection between thermodynamics and gravity. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M
1979-08-30
A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.
Yield stress fluids slowly yield to analysis
Bonn, D.; Denn, M.M.
2009-01-01
We are surrounded in everyday life by yield stress fluids: materials that behave as solids under small stresses but flow like liquids beyond a critical stress. For example, paint must flow under the brush, but remain fixed in a vertical film despite the force of gravity. Food products (such as
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
International Nuclear Information System (INIS)
Brown, R.E.; Camp, J.B.; Darling, T.W.
1990-01-01
An experiment is being developed to measure the acceleration of the antiproton in the gravitational field of the earth. Antiprotons of a few MeV from the LEAR facility at CERN will be slowed, captured, cooled to a temperature of about 10 K, and subsequently launched a few at a time into a drift tube where the effect of gravity on their motion will be determined by a time-of-flight method. Development of the experiment is proceeding at Los Alamos using normal matter. The fabrication of a drift tube that will produce a region of space in which gravity is the dominant force on moving ions is of major difficulty. This involves a study of methods of minimizing the electric fields produced by spatially varying work functions on conducting surfaces. Progress in a number of areas is described, with stress on the drift-tube development
Gomberoff, Andres
2006-01-01
The 2002 Pan-American Advanced Studies Institute School on Quantum Gravity was held at the Centro de Estudios Cientificos (CECS),Valdivia, Chile, January 4-14, 2002. The school featured lectures by ten speakers, and was attended by nearly 70 students from over 14 countries. A primary goal was to foster interaction and communication between participants from different cultures, both in the layman’s sense of the term and in terms of approaches to quantum gravity. We hope that the links formed by students and the school will persist throughout their professional lives, continuing to promote interaction and the essential exchange of ideas that drives research forward. This volume contains improved and updated versions of the lectures given at the School. It has been prepared both as a reminder for the participants, and so that these pedagogical introductions can be made available to others who were unable to attend. We expect them to serve students of all ages well.
Energy Technology Data Exchange (ETDEWEB)
Lamon, Raphael
2010-06-29
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem
Energy Technology Data Exchange (ETDEWEB)
Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)
2017-03-13
The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.
International Nuclear Information System (INIS)
Lamon, Raphael
2010-01-01
Quantum gravity is an attempt to unify general relativity with quantum mechanics which are the two highly successful fundamental theories of theoretical physics. The main difficulty in this unification arises from the fact that, while general relativity describes gravity as a macroscopic geometrical theory, quantum mechanics explains microscopic phenomena. As a further complication, not only do both theories describe different scales but also their philosophical ramifications and the mathematics used to describe them differ in a dramatic way. Consequently, one possible starting point of an attempt at a unification is quantum mechanics, i.e. particle physics, and try to incorporate gravitation. This pathway has been chosen by particle physicists which led to string theory. On the other hand, loop quantum gravity (LQG) chooses the other possibility, i.e. it takes the geometrical aspects of gravity seriously and quantizes geometry. The first part of this thesis deals with a generalization of loop quantum cosmology (LQC) to toroidal topologies. LQC is a quantization of homogenous solutions of Einstein's field equations using tools from LQG. First the general concepts of closed topologies is introduced with special emphasis on Thurston's theorem and its consequences. It is shown that new degrees of freedom called Teichmueller parameters come into play and their dynamics can be described by a Hamiltonian. Several numerical solutions for a toroidal universe are presented and discussed. Following the guidelines of LQG this dynamics are rewritten using the Ashtekar variables and numerical solutions are shown. However, in order to find a suitable Hilbert space a canonical transformation must be performed. On the other hand this transformation makes the quantization of geometrical quantities less tractable such that two different ways are presented. It is shown that in both cases the spectrum of such geometrical operators depends on the initial value problem. Furthermore, we
International Nuclear Information System (INIS)
Hartle, J.B.
1985-01-01
Simplicial approximation and the ideas associated with the Regge calculus provide a concrete way of implementing a sum over histories formulation of quantum gravity. A simplicial geometry is made up of flat simplices joined together in a prescribed way together with an assignment of lengths to their edges. A sum over simplicial geometries is a sum over the different ways the simplices can be joined together with an integral over their edge lengths. The construction of the simplicial Euclidean action for this approach to quantum general relativity is illustrated. The recovery of the diffeomorphism group in the continuum limit is discussed. Some possible classes of simplicial complexes with which to define a sum over topologies are described. In two dimensional quantum gravity it is argued that a reasonable class is the class of pseudomanifolds
International Nuclear Information System (INIS)
Konopleva, N.P.
1996-01-01
The problems of application of nonperturbative quantization methods in the theories of the gauge fields and gravity are discussed. Unification of interactions is considered in the framework of the geometrical gauge fields theory. Vacuum conception in the unified theory of interactions and instantons role in the vacuum structure are analyzed. The role of vacuum solutions of Einstein equations in definition of the gauge field vacuum is demonstrated
Gravity, Time, and Lagrangians
Huggins, Elisha
2010-01-01
Feynman mentioned to us that he understood a topic in physics if he could explain it to a college freshman, a high school student, or a dinner guest. Here we will discuss two topics that took us a while to get to that level. One is the relationship between gravity and time. The other is the minus sign that appears in the Lagrangian. (Why would one…
Spontaneously generated gravity
International Nuclear Information System (INIS)
Zee, A.
1981-01-01
We show, following a recent suggestion of Adler, that gravity may arise as a consequence of dynamical symmetry breaking in a scale- and gauge-invariant world. Our calculation is not tied to any specific scheme of dynamical symmetry breaking. A representation for Newton's coupling constant in terms of flat-space quantities is derived. The sign of Newton's coupling constant appears to depend on infrared details of the symmetry-breaking mechanism
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Directory of Open Access Journals (Sweden)
Rovelli Carlo
2008-07-01
Full Text Available The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler’s “spacetime foam” intuition. (iii Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv A derivation of the Bekenstein–Hawking black-hole entropy. (v Low-energy calculations, yielding n-point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Semiclassical unimodular gravity
International Nuclear Information System (INIS)
Fiol, Bartomeu; Garriga, Jaume
2010-01-01
Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately
Dynamics of Superfluid Helium in Low-Gravity
Frank, David J.
1997-01-01
This report summarizes the work performed under a contract entitled 'Dynamics of Superfluid Helium in Low Gravity'. This project performed verification tests, over a wide range of accelerations of two Computational Fluid Dynamics (CFD) codes of which one incorporates the two-fluid model of superfluid helium (SFHe). Helium was first liquefied in 1908 and not until the 1930s were the properties of helium below 2.2 K observed sufficiently to realize that it did not obey the ordinary physical laws of physics as applied to ordinary liquids. The term superfluidity became associated with these unique observations. The low temperature of SFHe and it's temperature unifonrmity have made it a significant cryogenic coolant for use in space applications in astronomical observations with infrared sensors and in low temperature physics. Superfluid helium has been used in instruments such as the Shuttle Infrared Astronomy Telescope (IRT), the Infrared Astronomy Satellite (IRAS), the Cosmic Background Observatory (COBE), and the Infrared Satellite Observatory (ISO). It is also used in the Space Infrared Telescope (SIRTF), Relativity Mission Satellite formally called Gravity Probe-B (GP-B), and the Test of the Equivalence Principle (STEP) presently under development. For GP-B and STEP, the use of SFHE is used to cool Superconducting Quantum Interference Detectors (SQUIDS) among other parts of the instruments. The Superfluid Helium On-Orbit Transfer (SHOOT) experiment flown in the Shuttle studied the behavior of SFHE. This experiment attempted to get low-gravity slosh data, however, the main emphasis was to study the low-gravity transfer of SFHE from tank to tank. These instruments carried tanks of SFHE of a few hundred liters to 2500 liters. The capability of modeling the behavior of SFHE is important to spacecraft control engineers who must design systems that can overcome disturbances created by the movement of the fluid. In addition instruments such as GP-B and STEP are very
Granular Superconductors and Gravity
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.
1981-01-01
Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.
High-resolution simulations of downslope gravity currents in the acceleration phase
Dai, Albert
2015-07-01
Gravity currents generated from an instantaneous buoyancy source propagating down a slope in the range of 0∘ ≤ θ fundamental difference in flow patterns, which helps explain the distinct characteristics of gravity currents on high and low slope angles using scaling arguments, is revealed. Energy budgets further show that, as the slope angle increases, the ambient fluid is more easily engaged in the gravitational convection and the potential energy loss is more efficiently converted into the kinetic energy associated with ambient fluid. The propagation of gravity currents on a slope is found to be qualitatively modified as the depth ratio, i.e., the lock height to channel height ratio, approaches unity. As the depth ratio increases, the conversion of potential energy loss into the kinetic energy associated with heavy fluid is inhibited and the conversion into the kinetic energy associated with ambient fluid is enhanced by the confinement of the top wall.
A hydroponic design for microgravity and gravity installations
Fielder, Judith; Leggett, Nickolaus
1990-01-01
A hydroponic system is presented that is designed for use in microgravity or gravity experiments. The system uses a sponge-like growing medium installed in tubular modules. The modules contain the plant roots and manage the flow of the nutrient solution. The physical design and materials considerations are discussed, as are modifications of the basic design for use in microgravity or gravity experiments. The major external environmental requirements are also presented.
Directory of Open Access Journals (Sweden)
Zeredo L Zeredo
2014-03-01
Full Text Available The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA, a key area that controls cerebral blood flow (CBF, in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth and 0 g (complete weightlessness in space. Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter.
Low Reynolds number suspension gravity currents.
Saha, Sandeep; Salin, Dominique; Talon, Laurent
2013-08-01
The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.
Interfacial instabilities in vibrated fluids
Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier
2016-07-01
Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced
Polar gravity fields from GOCE and airborne gravity
DEFF Research Database (Denmark)
Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan
2011-01-01
Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...
Gravity signatures of terrane accretion
Franco, Heather; Abbott, Dallas
1999-01-01
In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.
Two-phase reduced gravity experiments for a space reactor design
International Nuclear Information System (INIS)
Antoniak, Z.I.
1986-08-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed, to coordinate all ongoing and planned reduced gravity flow experiments
Galloway, D. L.
2012-12-01
Land-level lowering or land subsidence is a consequence of many local- and regional-scale physical, chemical or biologic processes affecting soils and geologic materials. The principal processes can be natural or anthropogenic, and include consolidation or compaction, karst or pseudokarst, hydrocompaction of collapsible soils, mining, oxidation of organic soils, erosive piping, tectonism, and volcanism. In terms of affected area, there are two principal regional-scale anthropogenic processes—compaction of compressible subsurface materials owing to the extraction of subsurface fluids (principally groundwater, oil and gas) and oxidation and compaction accompanying drainage of organic soils—which cause significant hazards related to flooding and infrastructure damage that are amenable to resource management measures. The importance of even small magnitude (analysis techniques, such as Global Positioning System (GPS), Light Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar (InSAR), which have advanced our capabilities to detect, measure and monitor land-surface motion at multiple scales. Improved means for simulating aquifer-system and hydrocarbon-reservoir deformation, and the oxidation and compaction of organic soils are leading to refined predictive capabilities. The role of interdisciplinary earth science in improving the characterization of land subsidence attributed to subsurface fluid withdrawals and the oxidation and compaction of organic soils is examined. How these improved capabilities are translating into improved sustainable management of regional land and water resources in a few select areas worldwide are presented. The importance of incorporating these improved capabilities in coherent resource management strategies to control the depletion of resources and attendant hazards also are discussed.
International Nuclear Information System (INIS)
Kan, K.K.
1983-01-01
The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)
Cardiovascular and fluid volume control in humans in space
DEFF Research Database (Denmark)
Norsk, Peter
2005-01-01
on this complex interaction, because it is the only way to completely abolish the effects of gravity over longer periods. Results from space have been unexpected, because astronauts exhibit a fluid and sodium retaining state with activation of the sympathetic nervous system, which subjects during simulations...... by head-down bed rest do not. Therefore, the concept as to how weightlessness affects the cardiovascular system and modulates regulation of body fluids should be revised and new simulation models developed. Knowledge as to how gravity and weightlessness modulate integrated fluid volume control...
Minkel, Donald Howe
Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.
Ko, N-Y; Yeh, S-H; Tsay, S-L; Ma, H-J; Chen, C-H; Pan, S-M; Feng, M-C; Chiang, M-C; Lee, Y-W; Chang, L-H; Jang, J-F
2011-04-01
Nurses are at significant risk from occupationally acquired bloodborne virus infections following a needlestick and sharps injury. This study aimed to apply the theory of planned behaviour (TPB) to predict nurses' intention to comply with occupational post-exposure management. A cross-sectional survey was applied to select registered nurses who worked in human immunodeficiency virus (HIV)-designated hospitals. An anonymous, self-administered questionnaire based on the TPB was distributed to 1630 nurses and 1134 (69.5%) questionnaires were returned. From these, a total of 802 nurses (71%) reported blood and body fluid exposure incidents during 2003-2005 and this group was used for analysis. Only 44.6% of the 121 exposed nurses who were prescribed post-exposure prophylaxis (PEP) by infectious disease doctors returned to the clinic for interim monitoring, and only 56.6% of exposed nurses confirmed their final serology status. Structural equation modelling was used to test the TPB indicating perceived behavioural control (the perception of the difficulty or ease of PEP management, β=0.58), subjective norm (the perception of social pressure to adhere to PEP, β=0.15), and attitudes (β=0.12) were significant direct effects on nurses' intention to comply with post-exposure management. The hypothesised model test indicated that the model fitted with the expected relationships and directions of theoretical constructs [χ(2) (14, N=802)=23.14, P=0.057, GFI=0.987, RMSEA=0.039]. The TPB model constructs accounted for 54% of the variance in nurses' intention to comply with post-exposure management. The TPB is an appropriate model for predicting nurses' intention to comply with post-exposure management. Healthcare facilities should have policies to decrease the inconvenience of follow-up to encourage nurses to comply with post-exposure management. Copyright © 2010 the Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Liu Li
2012-09-01
Full Text Available Abstract Background Bioimpedance analysis (BIA has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients’ survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. Methods This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM—Fresenius Medical Care D GmbH will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Discussions Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain
International Nuclear Information System (INIS)
Wang, Ji-Xiang; Li, Yun-Ze; Zhang, Hong-Sheng; Wang, Sheng-Nan; Liang, Yi-Hao; Guo, Wei; Liu, Yang; Tian, Shao-Ping
2016-01-01
Highlights: • A highly self-adaptive cold plate integrated with paraffin-based actuator is proposed. • Higher operating economy is attained due to an energy-efficient strategy. • A greater compatibility of the current space control system is obtained. • Model was entrenched theoretically to design the system efficiently. • A strong self-adaptability of the cold plate is observed experimentally. - Abstract: Aiming to improve the conventional single-phase mechanically pumped fluid loop applied in spacecraft thermal control system, a novel actively-pumped loop using distributed thermal control strategy was proposed. The flow control system for each branch consists primarily of a thermal control valve integrated with a paraffin-based actuator residing in the front part of each corresponding cold plate, where both coolant’s flow rate and the cold plate’s heat removal capability are well controlled sensitively according to the heat loaded upon the cold plate due to a conversion between thermal and mechanical energies. The operating economy enhances remarkably owing to no energy consumption in flow control process. Additionally, realizing the integration of the sensor, controller and actuator systems, it simplifies structure of the traditional mechanically pumped fluid loop as well. Revolving this novel scheme, mathematical model regarding design process of the highly specialized cold plate was entrenched theoretically. A validating system as a prototype was established on the basis of the design method and the scheduled objective of the controlled temperature (43 °C). Then temperature control performances of the highly self-adaptive cold plate under various operating conditions were tested experimentally. During almost all experiments, the controlled temperature remains within a range of ±2 °C around the set-point. Conclusions can be drawn that this self-driven control system is stable with sufficient fast transient responses and sufficient small steady
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Noncommutative geometry inspired black holes in Rastall gravity
Energy Technology Data Exchange (ETDEWEB)
Ma, Meng-Sen [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China); Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China)
2017-09-15
Under two different metric ansatzes, the noncommutative geometry inspired black holes (NCBH) in the framework of Rastall gravity are derived and analyzed. We consider the fluid-type matter with the Gaussian-distribution smeared mass density. Taking a Schwarzschild-like metric ansatz, it is shown that the noncommutative geometry inspired Schwarzschild black hole (NCSBH) in Rastall gravity, unlike its counterpart in general relativity (GR), is not a regular black hole. It has at most one event horizon. After showing a finite maximal temperature, the black hole will leave behind a point-like massive remnant at zero temperature. Considering a more general metric ansatz and a special equation of state of the matter, we also find a regular NCBH in Rastall gravity, which has a similar geometric structure and temperature to that of NCSBH in GR. (orig.)
Cosmology with moving bimetric fluids
Energy Technology Data Exchange (ETDEWEB)
García-García, Carlos; Maroto, Antonio L.; Martín-Moruno, Prado, E-mail: cargar08@ucm.es, E-mail: maroto@ucm.es, E-mail: pradomm@ucm.es [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)
2016-12-01
We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild one is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by the effective bimetric fluid.
Directory of Open Access Journals (Sweden)
Shan Gao
2011-04-01
Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.
Active Response Gravity Offload System
Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina
2011-01-01
The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.
Teleparallel equivalent of Lovelock gravity
González, P. A.; Vásquez, Yerko
2015-12-01
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.
Directory of Open Access Journals (Sweden)
Giovanna Berrino
2013-11-01
Full Text Available Since 1982, high precision gravity measurements have been routinely carried out on Mt. Vesuvius. The gravity network consists of selected sites most of them coinciding with, or very close to, leveling benchmarks to remove the effect of the elevation changes from gravity variations. The reference station is located in Napoli, outside the volcanic area. Since 1986, absolute gravity measurements have been periodically made on a station on Mt. Vesuvius, close to a permanent gravity station established in 1987, and at the reference in Napoli. The results of the gravity measurements since 1982 are presented and discussed. Moderate gravity changes on short-time were generally observed. On long-term significant gravity changes occurred and the overall fields displayed well defined patterns. Several periods of evolution may be recognized. Gravity changes revealed by the relative surveys have been confirmed by repeated absolute measurements, which also confirmed the long-term stability of the reference site. The gravity changes over the recognized periods appear correlated with the seismic crises and with changes of the tidal parameters obtained by continuous measurements. The absence of significant ground deformation implies masses redistribution, essentially density changes without significant volume changes, such as fluids migration at the depth of the seismic foci, i.e. at a few kilometers. The fluid migration may occur through pre-existing geological structures, as also suggested by hydrological studies, and/or through new fractures generated by seismic activity. This interpretation is supported by the analyses of the spatial gravity changes overlapping the most significant and recent seismic crises.
International Nuclear Information System (INIS)
Aldama, Mariana Espinosa
2015-01-01
The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion. (paper)
Airborne Gravity: NGS' Gravity Data for AN05 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN06 (2011)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS08 (2015)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AS02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for ES02 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...
Airborne Gravity: NGS' Gravity Data for AN04 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS05 (2014)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...
Airborne Gravity: NGS' Gravity Data for AS01 (2008)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for CS04 (2009)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Airborne Gravity: NGS' Gravity Data for AN02 (2010)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...
Lovelock gravities from Born–Infeld gravity theory
Directory of Open Access Journals (Sweden)
P.K. Concha
2017-02-01
Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Lovelock gravities from Born-Infeld gravity theory
Concha, P. K.; Merino, N.; Rodríguez, E. K.
2017-02-01
We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.
Self-rewetting fluids with suspended carbon nanostructures.
Savino, R; Di Paola, R; Gattia, D Mirabile; Marazzi, R; Antisari, M Vittori
2011-10-01
Thermal management is very important in modern electronic systems. Recent researches have been dedicated to the study of the heat transfer performances of binary or multi-component heat transfer fluids with peculiar surface tension properties and in particular to "self-rewetting fluids," i.e., liquids with a surface tension increasing with temperature and concentration. Thermophysical properties like surface tension, wettability and thermal conductivity, at different temperatures, have been measured not only for binary mixtures, but also for a number of ternary aqueous solutions with relatively low freezing point and for nanoparticles suspensions (so called nanofluids). Some of them interestingly exhibit the same anomalous positive surface tension gradient with temperature as binary self-rewetting solutions. Since in the course of liquid/vapour phase change, self-rewetting fluids behaviour induces a rather strong liquid inflow (caused by both temperature and concentration gradients) from the cold region (where liquid condensates) to the hot evaporator region, several interesting applications may be envisaged, e.g., the development of advanced wickless heat pipes for utilization in reduced gravity environments. The present work is dedicated to the study of the thermophysical properties of nanofluids based on water/alcohol solutions with suspended carbon nanostructures, in particular single-wall carbon nanohorns (SWNH), synthesised by an homemade apparatus with an AC arc discharge in open air. The potential interest of the proposed studies stems from the large number of possible industrial applications, including space technologies and terrestrial applications, such as cooling of electronic components.
Static spherically symmetric wormholes in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Zubair, M.; Ahmad, Yasir [Institute Of Information Technology, Department of Mathematics, COMSATS, Lahore (Pakistan); Waheed, Saira [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia)
2016-08-15
In this work, we explore wormhole solutions in f(R, T) theory of gravity, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. To investigate this, we consider a static spherically symmetric geometry with matter contents as anisotropic, isotropic, and barotropic fluids in three separate cases. By taking into account the Starobinsky f(R) model, we analyze the behavior of energy conditions for these different kinds of fluids. It is shown that the wormhole solutions can be constructed without exotic matter in few regions of space-time. We also give the graphical illustration of the results obtained and discuss the equilibrium picture for the anisotropic case only. It is concluded that the wormhole solutions with anisotropic matter are realistic and stable in this theory of gravity. (orig.)
Acoustic-gravity waves in atmospheric and oceanic waveguides.
Godin, Oleg A
2012-08-01
A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
Gravity Variations Related to Earthquakes in the BTTZ Region in China
Zheng, J.; Liu, K.; Lu, H.; Liu, D.; Chen, Y.; Kuo, J. T.
2006-05-01
Temporal variations of gravity before and after earthquakes have been observed since 1960s, but a definitive conclusion has not been reached concerning the relationship between the gravity variation and earthquake occurrence. Since 1980, the first US/China joint scientific research project has been monitoring micro-gravity variations related to earthquakes in the Beijing-Tianjin-Tangshan-Zhangjiekou (BTTZ) region in China through the establishment of a network of spatially and temporally continuous and discrete gravity stations. With the data of both temporally continuous and discrete data of gravity variations accumulated and analyzed, a general picture of gravity variation associated with the seismogenesis and occurrence of earthquakes in the BTTZ region has been emerged clearly. Some of the major findings are 1. Gravity variations before and after earthquakes exist spatially and temporally; 2. Gravity variation data of temporally continuous measurements are essential to monitor the variations of gravity related to earthquakes unless temporally discrete gravity data are made in very close time intervals. 3. Concept of epicentroid and hypocentroid with respect to the maximum values of gravity variation is valid and has been experimentally verified; 4. The gravity variations related to the occurrence of earthquakes in the BTTZ region for the magnitudes of 4-5 earthquakes support the proposed "combined dilatation model", i.e., a dual-dilatancy of diffusion dilatancy (D/D) and the fault zone dilatancy (FZD) models; 5. Although the temporally discrete gravity variation data were collected in a larger time interval of about six months in the BTTZ region, these gravity variation data, in some cases, indicate that these variations are related to the occurrence of earthquakes; 7. Subsurface fluids do play a very important role in the gravity variations that have not been recognized and emphasized previously; 7. With the temporally continuous gravity variation data, the
Contravariant gravity on Poisson manifolds and Einstein gravity
International Nuclear Information System (INIS)
Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi
2017-01-01
A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)
Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio
2016-01-01
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...
International Nuclear Information System (INIS)
Jones, K.R.W.
1995-01-01
We develop a nonlinear quantum theory of Newtonian gravity consistent with an objective interpretation of the wavefunction. Inspired by the ideas of Schroedinger, and Bell, we seek a dimensional reduction procedure to map complex wavefunctions in configuration space onto a family of observable fields in space-time. Consideration of quasi-classical conservation laws selects the reduced one-body quantities as the basis for an explicit quasi-classical coarse-graining. These we interpret as describing the objective reality of the laboratory. Thereafter, we examine what may stand in the role of the usual Copenhagen observer to localise this quantity against macroscopic dispersion. Only a tiny change is needed, via a generically attractive self-potential. A nonlinear treatment of gravitational self-energy is thus advanced. This term sets a scale for all wavepackets. The Newtonian cosmology is thus closed, without need of an external observer. Finally, the concept of quantisation is re-interpreted as a nonlinear eigenvalue problem. To illustrate, we exhibit an elementary family of gravitationally self-bound solitary waves. Contrasting this theory with its canonically quantised analogue, we find that the given interpretation is empirically distinguishable, in principle. This result encourages deeper study of nonlinear field theories as a testable alternative to canonically quantised gravity. (author). 46 refs., 5 figs
International Nuclear Information System (INIS)
Goldman, T.; Hughes, R.J.; Nieto, M.M.
1988-01-01
No one has ever dropped a single particle of antimatter. Yet physicists assume that it would fall to the ground just like ordinary matter. Their arguments are based on two well established ideas: the equivalence principle of gravitation and the quantum-mechanical symmetry between matter and antimatter. Today this line of reasoning is being undermined by the possibility that the first of these ideas, the principle of equivalence, may not be true. Indeed all modern attempts to include gravity with the other forces of nature in a consistent, unified quantum theory predict the existence of new gravitational-strength forces, that among other things, will violate the principle. Such effects have been seen already in recent experiments. Hence, an experiment to measure the gravitational acceleration of antimatter could be of great importance to the understanding of quantum gravity. An international team has been formed to measure the graviational acceleration of antiprotons. Such an experiment would provide an unambiquous test, if new gravitational interactions do exist. 10 figs
A novel variable-gravity simulation method: potential for astronaut training.
Sussingham, J C; Cocks, F H
1995-11-01
Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.
Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions
Hrenya, Christine M.
2011-01-01
Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…
Center for low-gravity fluid mechanics and transport phenomena
Kassoy, D. R.; Sani, R. L.
1991-01-01
Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.
Sills, E Scott; Walsh, David J; Jones, Christopher A; Wood, Samuel H
2015-01-01
Essure (Bayer) received approval from the U.S. Food and Drugs Administration as a permanent non-hormonal contraceptive implant in November 2002. While the use of Essure in the management of hydrosalpinx prior to in vitro fertilization (IVF) remains off-label, it has been used specifically for this purpose since at least 2007. Although most published reports on Essure placement before IVF have been reassuring, clinical experience remains limited, and no randomized studies have demonstrated the...
Is there a quantum theory of gravity
International Nuclear Information System (INIS)
Strominger, A.
1984-01-01
The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)
Quantum Gravity in Two Dimensions
DEFF Research Database (Denmark)
Ipsen, Asger Cronberg
The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...
Topological strings from Liouville gravity
International Nuclear Information System (INIS)
Ishibashi, N.; Li, M.
1991-01-01
We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)
Newton-Cartan gravity revisited
Andringa, Roel
2016-01-01
In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds
Fixed points of quantum gravity
Litim, D F
2003-01-01
Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.
Neutron Stars : Magnetism vs Gravity
Indian Academy of Sciences (India)
however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!
Measuring wood specific gravity, correctly
G. Bruce Williamson; Michael C. Wiemann
2010-01-01
The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a foresterâs variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...
Cho, Ji Young; Chan, Chee Keong; Lee, Sang-Ho; Choi, Won-Chul; Maeng, Dae Hyeon; Lee, Ho-Yeon
2012-06-01
Retrospective review To determine the efficacy of management of cerebrospinal fluid (CSF) leakage after the anterior thoracic approach. CSF leakage after incidental durotomy commonly occurs after anterior thoracic ossification of posterior longitudinal ligament (OPLL) surgery. Pseudomeningocele will invariably form under such circumstances. Among them, uncontrolled CSF leakage with a fistulous condition is problematic. As a solution, we have managed these durotomies with chest drains alone without any CSF drainage by the concept of a "volume-controlled pseudomeningocele." Between 2001 and 2009, CSF leakage occurred in 26 patients (37.7%) of the total 69 patients who underwent anterior decompression for thoracic OPLL. In the initial 11 cases, subarachnoid drainage was utilized as an augmentive measure in combination with chest tube drainage in the postoperative period (group A). In the subsequent 15 cases, the durotomy was managed in a similar manner but in the absence of any subarachnoid drainage (group B). Various parameters such as the duration of postoperative hospital stay, clinical outcome score, drainage output, resolution of CSF leakage, complications, and additional surgery performed were analyzed and compared between the 2 groups. A resolution of the CSF leakage grading system was also proposed for the residual pseudomeningocele that formed in each group. There were statistically no significant differences in the outcome parameters between the 2 groups and also in patients with grade I or grade II residual pseudomeningocele of the new grading system. Two complications occurred in group A. No reexploration for persistent CSF leakage was required in both groups. CSF leakage managed with controlled chest tube drainage can produce a comparable result with those with additional subarachnoid drainage when watertight dural repair is impossible. The concept of controlled pseudomeningocele may be a useful and practical technique for the treatment of CSF leakage
Magnetic Fields Versus Gravity
Hensley, Kerry
2018-04-01
Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal
Rotating gravity currents. Part 1. Energy loss theory
Martin, J. R.; Lane-Serff, G. F.
2005-01-01
A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.
Saltation under Martian gravity and its influence on the global dust distribution
Musiolik, Grzegorz; Kruss, Maximilian; Demirci, Tunahan; Schrinski, Björn; Teiser, Jens; Daerden, Frank; Smith, Michael D.; Neary, Lori; Wurm, Gerhard
2018-05-01
Dust and sand motion are a common sight on Mars. Understanding the interaction of atmosphere and Martian soil is fundamental to describe the planet's weather, climate and surface morphology. We set up a wind tunnel to study the lift of a mixture between very fine sand and dust in a Mars simulant soil. The experiments were carried out under Martian gravity in a parabolic flight. The reduced gravity was provided by a centrifuge under external microgravity. The onset of saltation was measured for a fluid threshold shear velocity of 0.82 ± 0.04 m/s. This is considerably lower than found under Earth gravity. In addition to a reduction in weight, this low threshold can be attributed to gravity dependent cohesive forces within the sand bed, which drop by 2/3 under Martian gravity. The new threshold for saltation leads to a simulation of the annual dust cycle with a Mars GCM that is in agreement with observations.
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
International Nuclear Information System (INIS)
Chan, H.A.; Paik, H.J.
1987-01-01
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2017-02-22
We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.
International Nuclear Information System (INIS)
Francaviglia, M.
1990-01-01
Although general relativity is a well-established discipline the theory deserves efforts aimed at producing alternative or more general frameworks for investigating the classical properties of gravity. These are either devoted to producing alternative viewpoints or interpretations of standard general relativity, or at constructing, discussing and proposing experimental tests for alternative descriptions of the dynamics of the gravitational field and its interaction (or unification) with external matter fields. Classical alternative theories of gravitation can roughly classified as follows; theories based on a still 4-dimensional picture, under the assumption that the dynamics of the gravitational field is more complicated than Einstein's and theories based on higher-dimensional pictures. This leads to supergravity and strings which are not included here. Theories based on higher-dimensional pictures on the assumption that space-time is replaced by a higher-dimensional manifold. Papers on these classifications are reviewed. (author)
Is quantum gravity unpredictable
International Nuclear Information System (INIS)
Gross, D.J.
1984-01-01
An investigation of Hawking's proposal that the inclusion of topologically non-trivial manifolds in the functional integral of quantum gravity leads to the loss of quantum coherence is carried out. We discuss some of the problems associated with Hawking's Dollar-matrix theory, including the breakdown of the connection between symmetry principles and conservation laws. It is proposed to use Kaluza-Klein theories to study this issue, since these theories contain well-defined euclidean instantons. These can be used to perform explicit semiclassical calculations of the effects of space-time foam. A general method is presented for constructing Kaluza-Klein instantons based on solutions of ordinary Yang-Mills theory. It is argued that none of these will lead to a breakdown of quantum mechanics. The physical effects of space-time foam are discussed in some detail using explicit instantons of a four-dimensional Kaluza-Klein theory. (orig.)
International Nuclear Information System (INIS)
Henneaux, Marc; Teitelboim, Claudio
2005-01-01
We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case
Stochastic quantization and gravity
International Nuclear Information System (INIS)
Rumpf, H.
1984-01-01
We give a preliminary account of the application of stochastic quantization to the gravitational field. We start in Section I from Nelson's formulation of quantum mechanics as Newtonian stochastic mechanics and only then introduce the Parisi-Wu stochastic quantization scheme on which all the later discussion will be based. In Section II we present a generalization of the scheme that is applicable to fields in physical (i.e. Lorentzian) space-time and treat the free linearized gravitational field in this manner. The most remarkable result of this is the noncausal propagation of conformal gravitons. Moreover the concept of stochastic gauge-fixing is introduced and a complete discussion of all the covariant gauges is given. A special symmetry relating two classes of covariant gauges is exhibited. Finally Section III contains some preliminary remarks on full nonlinear gravity. In particular we argue that in contrast to gauge fields the stochastic gravitational field cannot be transformed to a Gaussian process. (Author)
International Nuclear Information System (INIS)
Maity, Debaprasad
2015-01-01
In this work we propose a mechanism of natural preheating of our universe induced by the inflation field dependent effective mass term for the gravitational wave. For any single field inflationary model, the inflation must go through the oscillatory phase after the end of inflation. As has recently been shown, if the gravitational fluctuation has inflation dependent mass term, there will be a resonant amplification of the amplitude of the gravitational wave during the oscillatory phase of inflation though parametric resonance. Because of this large enhancement of the amplitude of the gravitational wave, we show that universe can be naturally pre-heated through a minimally coupled matter field with gravity. Therefore, during the pre-heating phase, there is no need to introduce any arbitrary coupling between the matter field and the inflation. (author)
Teleparallel Gravity An Introduction
Aldrovandi, Ruben
2013-01-01
Teleparallel Gravity (TG) is an alternative theory for gravitation, which is equivalent to General Relativity (GR). However, it is conceptually different. For example in GR geometry replaces the concept of force, and the trajectories are determined by geodesics. TG attributes gravitation to torsion, which accounts for gravitation by acting as a force. TG has already solved some old problems of gravitation (like the energy-momentum density of the gravitational field). The interest in TG has grown in the last few years. The book here proposed will be the first one dedicated exclusively to TG, and will include the foundations of the theory, as well as applications to specific problems to illustrate how the theory works.
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Mannheim, Philip D
2005-01-01
This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.
International Nuclear Information System (INIS)
Pope, C.N.
1980-02-01
The material contained in this thesis is concerned with the functional integral approach to the quantum theory of gravity. It seems to be necessary to work with metrics of positive definite signature (Euclidean metrics) and then analytically continue the result back to the Lorentzian regime. The dominant contributions to the functional integral come from metrics which are stationary points of the action, i.e. classical solutions of the Euclideanized Einstein equations. These are known as Gravitational Instantons. Boundary conditions have to be placed upon the metrics included in the functional integral, and these are determined by the physical problem being considered. Three types of boundary condition have arisen in this context, corresponding to (i) zero temperature physics, and the calculation of particle scattering amplitudes, (ii) finite temperature effects, such as black hole radiance, and (iii) the study of the structure of the gravitational vacuum on Planck length scales. Instantons in the first category are asymptotically flat in all four directions, those in the second are asymptotically flat in three directions and periodic in the fourth, and those which arise in studying the gravitational vacuum are compact without boundaries. Much of the thesis is concerned with considering these various kinds of instanton, and particularly with the effects of their non-trivial topology. One way in which this can be investigated is by means of the various topological index theorems, and these are applied to a variety of situations. Self-dual metrics seem to have particular significance in quantum gravity, and they are discussed in detail. Finally, some recent work on the calculation of the propagation of particles in the gravitational vacuum is described. (author)
Burrage, Clare; Sakstein, Jeremy
2018-03-01
Theories of modified gravity, where light scalars with non-trivial self-interactions and non-minimal couplings to matter—chameleon and symmetron theories—dynamically suppress deviations from general relativity in the solar system. On other scales, the environmental nature of the screening means that such scalars may be relevant. The highly-nonlinear nature of screening mechanisms means that they evade classical fifth-force searches, and there has been an intense effort towards designing new and novel tests to probe them, both in the laboratory and using astrophysical objects, and by reinterpreting existing datasets. The results of these searches are often presented using different parametrizations, which can make it difficult to compare constraints coming from different probes. The purpose of this review is to summarize the present state-of-the-art searches for screened scalars coupled to matter, and to translate the current bounds into a single parametrization to survey the state of the models. Presently, commonly studied chameleon models are well-constrained but less commonly studied models have large regions of parameter space that are still viable. Symmetron models are constrained well by astrophysical and laboratory tests, but there is a desert separating the two scales where the model is unconstrained. The coupling of chameleons to photons is tightly constrained but the symmetron coupling has yet to be explored. We also summarize the current bounds on f( R) models that exhibit the chameleon mechanism (Hu and Sawicki models). The simplest of these are well constrained by astrophysical probes, but there are currently few reported bounds for theories with higher powers of R. The review ends by discussing the future prospects for constraining screened modified gravity models further using upcoming and planned experiments.
Gravity-matter entanglement in Regge quantum gravity
International Nuclear Information System (INIS)
Paunković, Nikola; Vojinović, Marko
2016-01-01
We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)
Artificial gravity - The evolution of variable gravity research
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
Gravity Probe B Gyroscope Rotor
2003-01-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)
2003-01-01
The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
International Nuclear Information System (INIS)
Buchman, S; Lipa, J A; Keiser, G M; Muhlfelder, B; Turneaure, J P
2015-01-01
The Gravity Probe B (GP-B) gyroscope, a unique cryogenically operated mechanical sensor, was used on-orbit to independently test two predictions of general relativity (GR). Here, we describe the development and performance of the GP-B gyroscope, its geometry and fabrication, spin-up and vacuum approach, magnetic considerations, and static charge management. The history of electrically suspended gyroscopes puts the current work in context. Fabrication and ground testing of the GP-B gyroscope are detailed, followed by a review of on-orbit initialization, calibration, operation, and performance. We find that the performance was degraded relative to the mission goals, but was still sufficient to provide excellent new tests of GR. The degradation is partially due to the existence of gyroscope torques due to an unanticipated interaction between patch potentials on the rotor and the housing. We discuss these patch potentials and describe the effect of related torques on gyro drift. It was essential to include models for the effects due to the patch potentials in the complete data analysis model to yield determinations of the two GR effects. (paper)
Recent advancements in conformal gravity
International Nuclear Information System (INIS)
O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian
2017-01-01
In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.;
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid
Stochastic Gravity: Theory and Applications
Directory of Open Access Journals (Sweden)
Hu Bei Lok
2008-05-01
Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out
Airborne Gravity: NGS' Gravity Data for ES03 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...
Airborne Gravity: NGS' Gravity Data for EN10 (2013)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...
Airborne Gravity: NGS' Gravity Data for EN09 (2016)
National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set is...
Singularity resolution in quantum gravity
International Nuclear Information System (INIS)
Husain, Viqar; Winkler, Oliver
2004-01-01
We examine the singularity resolution issue in quantum gravity by studying a new quantization of standard Friedmann-Robertson-Walker geometrodynamics. The quantization procedure is inspired by the loop quantum gravity program, and is based on an alternative to the Schroedinger representation normally used in metric variable quantum cosmology. We show that in this representation for quantum geometrodynamics there exists a densely defined inverse scale factor operator, and that the Hamiltonian constraint acts as a difference operator on the basis states. We find that the cosmological singularity is avoided in the quantum dynamics. We discuss these results with a view to identifying the criteria that constitute 'singularity resolution' in quantum gravity
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
International Nuclear Information System (INIS)
Goradia, S.G.
2006-01-01
Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919
Mars - Hellas Planitia gravity analysis
Sjogren, W. L.; Wimberley, R. N.
1981-01-01
Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.
Hypersurface-homogeneous Universe filled with perfect fluid in f ( R ...
Indian Academy of Sciences (India)
homogeneous Universe filled with perfect fluid in the framework of f ( R , T ) theory of gravity (Harko et al, \\emph{Phys. Rev.} D 84, 024020 (2011)) is derived. The physical behaviour of the cosmological model is studied.
International Nuclear Information System (INIS)
Granger, R.A.
1985-01-01
This text offers the most comprehensive approach available to fluid mechanics. The author takes great care to insure a physical understanding of concepts grounded in applied mathematics. The presentation of theory is followed by engineering applications, helping students develop problem-solving skills from the perspective of a professional engineer. Extensive use of detailed examples reinforces the understanding of theoretical concepts
Ostrogradski Hamiltonian approach for geodetic brane gravity
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2010-01-01
We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.
Cutoff for extensions of massive gravity and bi-gravity
International Nuclear Information System (INIS)
Matas, Andrew
2016-01-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)
International Nuclear Information System (INIS)
Ne'eman, Y.
1998-01-01
The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of
Simulation of bubble motion under gravity by lattice Boltzmann method
International Nuclear Information System (INIS)
Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo
2001-01-01
We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)
Renormalization and asymptotic freedom in quantum gravity
International Nuclear Information System (INIS)
Tomboulis, E.T.
1984-01-01
The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)
Quantum gravity and quantum cosmology
Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos
2013-01-01
Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe. While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models. ...
Topological gravity with minimal matter
International Nuclear Information System (INIS)
Li Keke
1991-01-01
Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)
Alternative Hamiltonian representation for gravity
Energy Technology Data Exchange (ETDEWEB)
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
Alternative Hamiltonian representation for gravity
International Nuclear Information System (INIS)
Rosas-RodrIguez, R
2007-01-01
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity
Random manifolds and quantum gravity
International Nuclear Information System (INIS)
Krzywicki, A.
2000-01-01
The non-perturbative, lattice field theory approach towards the quantization of Euclidean gravity is reviewed. Included is a tentative summary of the most significant results and a presentation of the current state of art
Gravity Data For Colombia 1997
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (9,050 records), were observed and processed by the Instituto Geografico Agustin Codazzi(IGAC), in Colombia from 1958 to 1996. This data...
Interior Alaska Bouguer Gravity Anomaly
National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...
Unifying Einstein and Palatini gravities
International Nuclear Information System (INIS)
Amendola, Luca; Enqvist, Kari; Koivisto, Tomi
2011-01-01
We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.
Defying gravity using Jenga™ blocks
Tan, Yin-Soo; Yap, Kueh-Chin
2007-11-01
This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.
Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.
1985-01-01
The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.
Distinguishing modified gravity models
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine
2015-01-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations
International Nuclear Information System (INIS)
Deser, S.
1987-01-01
We obtain the Einstein action plus quadratic curvature corrections generated by closed bosonic, heterotic and supersymmetric strings by matching the four-graviton amplitude (to first order in the slope parameter and fourth power of momenta) with an effective local gravitational action. The resulting corrections are first shown to be of the Gauss-Bonnet form. It is then noted that, by the very nature of the slope expansion, the field-redefinition theorem applies. Consequently, only the curvature-squared term is determined, while squares of its contractions are explicitly seen not to contribute. This latter property has a generalization to all orders which implies that the effective gravitational action is unavoidably ghost-free. The properties of solutions to these corrected theories are then examined. First neglecting dilatons, we find the explicit 'Schwarzschild' metrics. Both asymptotically flat and de Sitter solutions are present. The latter are however shown to be unstable. The former have horizons and singularities which are respectively smaller and less violent than in Einstein gravity; the correct sign of the slope parameter also ensures absence of naked singularities. When dilatons are included, the cosmological vacua are gratifyingly excluded. (orig.)
Dubovsky, S L
2004-01-01
We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...
Distinguishing modified gravity models
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif/Yvette Cedex (France); Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)
2015-10-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.
Nonperturbative quantum gravity
International Nuclear Information System (INIS)
Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R.
2012-01-01
Asymptotic safety describes a scenario in which general relativity can be quantized as a conventional field theory, despite being nonrenormalizable when expanding it around a fixed background geometry. It is formulated in the framework of the Wilsonian renormalization group and relies crucially on the existence of an ultraviolet fixed point, for which evidence has been found using renormalization group equations in the continuum. “Causal Dynamical Triangulations” (CDT) is a concrete research program to obtain a nonperturbative quantum field theory of gravity via a lattice regularization, and represented as a sum over spacetime histories. In the Wilsonian spirit one can use this formulation to try to locate fixed points of the lattice theory and thereby provide independent, nonperturbative evidence for the existence of a UV fixed point. We describe the formalism of CDT, its phase diagram, possible fixed points and the “quantum geometries” which emerge in the different phases. We also argue that the formalism may be able to describe a more general class of Hořava–Lifshitz gravitational models.
Directory of Open Access Journals (Sweden)
Bernard S. Kay
2015-12-01
Full Text Available We give a review, in the style of an essay, of the author’s 1998 matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. It also involves a radically different from usual description of black hole equilibrium states in which the total state of a black hole in a box together with its atmosphere is a pure state—entangled in just such a way that the reduced state of the black hole and of its atmosphere are each separately approximately thermal. We also briefly recall some recent work of the author which involves a reworking of the string-theory understanding of black hole entropy consistent with this alternative description of black hole equilibrium states and point out that this is free from some unsatisfactory features of the usual string theory understanding. We also recall the author’s recent arguments based on this alternative description which suggest that the Anti de Sitter space (AdS/conformal field theory (CFT correspondence is a bijection between the boundary CFT and just the matter degrees of freedom of the bulk theory.
PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity
Capozziello, S.; Troisi, A.
2005-01-01
Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.
Radion and holographic brane gravity
International Nuclear Information System (INIS)
Kanno, Sugumi; Soda, Jiro
2002-01-01
The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity
Curved backgrounds in emergent gravity
Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu
2018-06-01
Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.
Minimal Length, Measurability and Gravity
Directory of Open Access Journals (Sweden)
Alexander Shalyt-Margolin
2016-03-01
Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.
Scattering of internal gravity waves
Leaman Nye, Abigail
2011-01-01
Internal gravity waves play a fundamental role in the dynamics of stably stratified regions of the atmosphere and ocean. In addition to the radiation of momentum and energy remote from generation sites, internal waves drive vertical transport of heat and mass through the ocean by wave breaking and the mixing subsequently produced. Identifying regions where internal gravity waves contribute to ocean mixing and quantifying this mixing are therefore important for accurate climate ...
Absolute gravity measurements in California
Zumberge, M. A.; Sasagawa, G.; Kappus, M.
1986-08-01
An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.
Dark Matter in Quantum Gravity
Calmet, Xavier; Latosh, Boris
2018-01-01
We show that quantum gravity, whatever its ultra-violet completion might be, could account for dark matter. Indeed, besides the massless gravitational field recently observed in the form of gravitational waves, the spectrum of quantum gravity contains two massive fields respectively of spin 2 and spin 0. If these fields are long-lived, they could easily account for dark matter. In that case, dark matter would be very light and only gravitationally coupled to the standard model particles.
International Nuclear Information System (INIS)
Au, G.
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein's classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity
Gravity as Quantum Entanglement Force
Lee, Jae-Weon; Kim, Hyeong-Chan; Lee, Jungjai
2010-01-01
We conjecture that the total quantum entanglement of matter and vacuum in the universe tends to increase with time, like entropy, and that an effective force is associated with this tendency. We also suggest that gravity and dark energy are types of quantum entanglement forces, similar to Verlinde's entropic force, and give holographic dark energy with an equation of state comparable to current observational data. This connection between quantum entanglement and gravity could give some new in...
Gravity as a thermodynamic phenomenon
Moustos, Dimitris
2017-01-01
The analogy between the laws of black hole mechanics and the laws of thermodynamics led Bekenstein and Hawking to argue that black holes should be considered as real thermodynamic systems that are characterised by entropy and temperature. Black hole thermodynamics indicates a deeper connection between thermodynamics and gravity. We review and examine in detail the arguments that suggest an interpretation of gravity itself as a thermodynamic theory.
Energy Technology Data Exchange (ETDEWEB)
Au, G
1995-03-01
One of the greatest challenges facing theoretical physics lies in reconciling Einstein`s classical theory of gravity - general relativity -with quantum field theory. Although both theories have been experimentally supported in their respective regimes, they are as compatible as a square peg and a round hole. This article summarises the current status of the superstring approach to the problem, the status of the Ashtekar program, and problem of time in quantum gravity.
Waqas, Muhammad; Hadi, Yousaf Bashir; Sheikh, Sadaf; Shamim, Shahzad M
2016-01-01
Acute cerebellitis (AC) is a rare inflammatory childhood disorder. Although there is no consensus on standard treatment for cerebellitis, its outcome is usually favourable. We report two cases of AC in the paediatric age group, successfully managed with long tunnel external ventricular drain (EVD). The first patient was an 8-year-old boy with a history of fever and headache. Sequential MRI showed diffuse cerebellar swelling with tonsillar herniation and resulting hydrocephalus. The second patient was a 6-month-old boy who presented with high-grade fever associated with chills. CT scan of the head showed triventricular hydrocephalus with obliteration of cerebrospinal fluid spaces and cisterns. Both patients underwent immediate emergency right-sided long tunnel EVD insertion. The EVD was removed on the 9th day in the first patient and the 10th day in the second patient; the patients showed no neurological deficits at a follow-up of 2 years and 1 year, respectively. PMID:27166004
Giulieri, Stefano G; Chapuis-Taillard, Caroline; Manuel, Oriol; Hugli, Olivier; Pinget, Christophe; Wasserfallen, Jean-Blaise; Sahli, Roland; Jaton, Katia; Marchetti, Oscar; Meylan, Pascal
2015-01-01
Enterovirus (EV) is the most frequent cause of aseptic meningitis (AM). Lack of microbiological documentation results in unnecessary antimicrobial therapy and hospitalization. To assess the impact of rapid EV detection in cerebrospinal fluid (CSF) by a fully-automated PCR (GeneXpert EV assay, GXEA) on the management of AM. Observational study in adult patients with AM. Three groups were analyzed according to EV documentation in CSF: group A = no PCR or negative PCR (n=17), group B = positive real-time PCR (n = 20), and group C = positive GXEA (n = 22). Clinical, laboratory and health-care costs data were compared. Clinical characteristics were similar in the 3 groups. Median turn-around time of EV PCR decreased from 60 h (IQR (interquartile range) 44-87) in group B to 5h (IQR 4-11) in group C (p<0.0001). Median duration of antibiotics was 1 (IQR 0-6), 1 (0-1.9), and 0.5 days (single dose) in groups A, B, and C, respectively (p < 0.001). Median length of hospitalization was 4 days (2.5-7.5), 2 (1-3.7), and 0.5 (0.3-0.7), respectively (p < 0.001). Median hospitalization costs were $5458 (2676-6274) in group A, $2796 (2062-5726) in group B, and $921 (765-1230) in group C (p < 0.0001). Rapid EV detection in CSF by a fully-automated PCR improves management of AM by significantly reducing antibiotic use, hospitalization length and costs. Copyright © 2014 Elsevier B.V. All rights reserved.
Fluid dynamics of dilatant fluid
DEFF Research Database (Denmark)
Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko
2012-01-01
of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...
Gravity a very short introduction
Clifton, Timothy
2017-01-01
Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...
Collapse and bounce of null fluids
Creelman, Bradley; Booth, Ivan
2016-01-01
Exact solutions describing the spherical collapse of null fluids can contain regions which violate the energy conditions. Physically the violations occur when the infalling matter continues to move inwards even when non-gravitational repulsive forces become stronger than gravity. In 1991 Ori proposed a resolution for these violations: spacetime surgery should be used to replace the energy condition violating region with an outgoing solution. The matter bounces. We revisit and implement this p...
Magnetic method for stimulating transport in fluids
Martin, James E.; Solis, Kyle J.
2016-10-18
A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.
Effective fluid description of the dark universe
Directory of Open Access Journals (Sweden)
M. Cadoni
2018-01-01
Full Text Available We propose an effective anisotropic fluid description for a generic infrared-modified theory of gravity. In our framework, the additional component of the acceleration, commonly attributed to dark matter, is explained as a radial pressure generated by the reaction of the dark energy fluid to the presence of baryonic matter. Using quite general assumptions, and a microscopic description of the fluid in terms of a Bose–Einstein condensate of gravitons, we find the static, spherically symmetric solution for the metric in terms of the Misner–Sharp mass function and the fluid pressure. At galactic scales, we correctly reproduce the leading MOND-like log(r and subleading (1/rlog(r terms in the weak-field expansion of the potential. Our description also predicts a tiny (of order 10−6 for a typical spiral galaxy Machian modification of the Newtonian potential at galactic scales, which is controlled by the cosmological acceleration.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
Mutual interactions of phonons, rotons, and gravity
Nicolis, Alberto; Penco, Riccardo
2018-04-01
We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.
Bouncing cosmological solutions from f(R,T) gravity
Shabani, Hamid; Ziaie, Amir Hadi
2018-05-01
In this work we study classical bouncing solutions in the context of f(R,T)=R+h(T) gravity in a flat FLRW background using a perfect fluid as the only matter content. Our investigation is based on introducing an effective fluid through defining effective energy density and pressure; we call this reformulation as the " effective picture". These definitions have been already introduced to study the energy conditions in f(R,T) gravity. We examine various models to which different effective equations of state, corresponding to different h(T) functions, can be attributed. It is also discussed that one can link between an assumed f(R,T) model in the effective picture and the theories with generalized equation of state ( EoS). We obtain cosmological scenarios exhibiting a nonsingular bounce before and after which the Universe lives within a de-Sitter phase. We then proceed to find general solutions for matter bounce and investigate their properties. We show that the properties of bouncing solution in the effective picture of f(R,T) gravity are as follows: for a specific form of the f(R,T) function, these solutions are without any future singularities. Moreover, stability analysis of the nonsingular solutions through matter density perturbations revealed that except two of the models, the parameters of scalar-type perturbations for the other ones have a slight transient fluctuation around the bounce point and damp to zero or a finite value at late times. Hence these bouncing solutions are stable against scalar-type perturbations. It is possible that all energy conditions be respected by the real perfect fluid, however, the null and the strong energy conditions can be violated by the effective fluid near the bounce event. These solutions always correspond to a maximum in the real matter energy density and a vanishing minimum in the effective density. The effective pressure varies between negative values and may show either a minimum or a maximum.
New insights on the matter-gravity coupling paradigm.
Delsate, Térence; Steinhoff, Jan
2012-07-13
The coupling between matter and gravity in general relativity is given by a proportionality relation between the stress tensor and the geometry. This is an oriented assumption driven by the fact that both the stress tensor and the Einstein tensor are divergenceless. However, general relativity is in essence a nonlinear theory, so there is no obvious reason why the coupling to matter should be linear. On another hand, modified theories of gravity usually affect the vacuum dynamics, yet keep the coupling to matter linear. In this Letter, we address the implications of consistent nonlinear gravity-matter coupling. The Eddington-inspired Born-Infeld theory recently introduced by Bañados and Ferreira provides an enlightening realization of such coupling modifications. We find that this theory coupled to a perfect fluid reduces to general relativity coupled to a nonlinearly modified perfect fluid, leading to an ambiguity between modified coupling and modified equation of state. We discuss observational consequences of this degeneracy and argue that such a completion of general relativity is viable from both an experimental and theoretical point of view through energy conditions, consistency, and singularity-avoidance perspectives. We use these results to discuss the impact of changing the coupling paradigm.
Ocular Blood Flow Measured Noninvasively in Zero Gravity
Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.
2003-01-01
In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.
Phase diagram of the mean field model of simplicial gravity
International Nuclear Information System (INIS)
Bialas, P.; Burda, Z.; Johnston, D.
1999-01-01
We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q) = q -β , which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases: elongated (fluid) and crumpled. For β ε (2, ∞) the transition between these two phases is first-order, while for β ε (1, 2) it is continuous. The transition becomes softer when β approaches unity and eventually disappears at β = 1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new condensed phase appears in the phase diagram. It bears some similarity to the crinkled phase of simplicial gravity discussed recently in models of gravity interacting with matter fields
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
International Nuclear Information System (INIS)
Caldarelli, Marco M.; Dias, Oscar J.C.; Emparan, Roberto; Klemm, Dietmar
2009-01-01
The old suggestive observation that black holes often resemble lumps of fluid has recently been taken beyond the level of an analogy to a precise duality. We investigate aspects of this duality, and in particular clarify the relation between area minimization of the fluid vs. area maximization of the black hole horizon, and the connection between surface tension and curvature of the fluid, and surface gravity of the black hole. We also argue that the Rayleigh-Plateau instability in a fluid tube is the holographic dual of the Gregory-Laflamme instability of a black string. Associated with this fluid instability there is a rich variety of phases of fluid solutions that we study in detail, including in particular the effects of rotation. We compare them against the known results for asymptotically flat black holes finding remarkable agreement. Furthermore, we use our fluid results to discuss the unknown features of the gravitational system. Finally, we make some observations that suggest that asymptotically flat black holes may admit a fluid description in the limit of large number of dimensions.
Directory of Open Access Journals (Sweden)
Moran Chris G
2011-09-01
Full Text Available Abstract Background Approximately 70,000 patients/year undergo surgery for repair of a fractured hip in the United Kingdom. This is associated with 30-day mortality of 9% and survivors have a considerable length of acute hospital stay postoperatively (median 26 days. Use of oesophageal Doppler monitoring to guide intra-operative fluid administration in hip fracture repair has previously been associated with a reduction in hospital stay of 4-5 days. Most hip fracture surgery is now performed under spinal anaesthesia. Oesophageal Doppler monitoring may be unreliable in the presence of spinal anaesthesia and most patients would not tolerate the probes. An alternative method of guiding fluid administration (minimally-invasive arterial pulse contour analysis has been shown to reduce length of stay in high-risk surgical patients but has never been studied in hip fracture surgery. Methods Single-centre randomised controlled parallel group trial. Randomisation by website using computer generated concealed tables. Setting: University hospital in UK. Participants: 128 patients with acute primary hip fracture listed for operative repair under spinal anaesthesia and aged > 65 years. Intervention: Stroke volume guided intra-operative fluid management. Continuous measurement of SV recorded by a calibrated cardiac output monitor (LiDCOplus. Maintenance fluid and 250 ml colloid boluses given to achieve sustained 10% increases in stroke volume. Control group: fluid administration at the responsible (blinded anaesthetist's discretion. The intervention terminates at the end of the surgical procedure and post-operative fluid management is at the responsible anaesthetist's discretion. Primary outcome: length of acute hospital stay is determined by a blinded team of clinicians. Secondary outcomes include number of complications and total cost of care. Funding NIHR/RfPB: PB-PG-0407-13073. Trial registration number Trial registration: Current Controlled Trials ISRCTN
Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment
International Nuclear Information System (INIS)
Chan, H.A.; Moody, M.V.; Paik, H.J.
1987-01-01
A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test
Energy Technology Data Exchange (ETDEWEB)
1983-07-01
This report describes pumping test and fluid sampling activities performed at the Mansfield No. 1 well in Oldham County about 10 miles north of Vega, Texas. The well site was selected by TBEG and is located along the northern margin of the Palo Duro Basin in an area of active dissolution with the Permian salt sections. The objectives of the pumping test and fluid sampling program were to collect data to determine the hydrologic characteristics (formation pressure and permeability) of deep water bearing formations, and to obtain formation fluid samples for analyses (gas and fluid chemistry) in order to evaluate fluid migration and age relationships in the Permian Basin. 4 refs., 8 figs., 2 tabs.
International Nuclear Information System (INIS)
1983-07-01
This report describes pumping test and fluid sampling activities performed at the Mansfield No. 1 well in Oldham County about 10 miles north of Vega, Texas. The well site was selected by TBEG and is located along the northern margin of the Palo Duro Basin in an area of active dissolution with the Permian salt sections. The objectives of the pumping test and fluid sampling program were to collect data to determine the hydrologic characteristics (formation pressure and permeability) of deep water bearing formations, and to obtain formation fluid samples for analyses (gas and fluid chemistry) in order to evaluate fluid migration and age relationships in the Permian Basin. 4 refs., 8 figs., 2 tabs
International Nuclear Information System (INIS)
Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.
2003-01-01
This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows
Light fermions in quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Gies, Holger
2011-01-01
We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)
Quantum gravity as Escher's dragon
International Nuclear Information System (INIS)
Smilga, A.V.
2003-01-01
The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives
The Juno Gravity Science Instrument
Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo
2017-11-01
The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.
Self Completeness of Einstein Gravity
Dvali, Gia
2010-01-01
We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...
Scale-invariant gravity: geometrodynamics
International Nuclear Information System (INIS)
Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O
2003-01-01
We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different
Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames
International Nuclear Information System (INIS)
Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.
2014-01-01
We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10 6 s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.