WorldWideScience

Sample records for gravity anomaly wavelet

  1. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  2. Venus - Ishtar gravity anomaly

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Mottinger, N. A.

    1984-01-01

    The gravity anomaly associated with Ishtar Terra on Venus is characterized, comparing line-of-sight acceleration profiles derived by differentiating Pioneer Venus Orbiter Doppler residual profiles with an Airy-compensated topographic model. The results are presented in graphs and maps, confirming the preliminary findings of Phillips et al. (1979). The isostatic compensation depth is found to be 150 + or - 30 km.

  3. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  4. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. All grid cells within the rectangular data area (from 61 to 66 degrees North latitude and...

  5. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  6. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  7. SEG US Bouguer Gravity Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SEG gravity data are the product of the ad hoc Gravity Anomaly Map (GAM) Committee, sponsored by the Society of Exploration Geophysicists (SEG) and the U.S....

  8. GRAVITY ANOMALIES OF THE MOON

    Directory of Open Access Journals (Sweden)

    S. G. Pugacheva

    2015-01-01

    Full Text Available The source of gravity anomalies of the Moon are large mascons with a high mass concentration at a depth of volcanic plains and lunar Maria. New data on the gravitational field of the Moon were obtained from two Grail spacecrafts. The article presents the data of physical and mechanical properties of the surface soil layer of the lunar Maria and gives an assessment of the chemical composition of the soil. There have been calculated heterogeneity parameters of the surface macro-relief of the lunar Maria: albedo, soil density, average grain diameter of the particles forming the surface layer and the volume fraction occupied by particles. It can be assumed that mascons include rich KREEP rocks with a high content of thorium and iron oxide. Formation of mascons is connected with intensive development of basaltic volcanism on the Moon in the early periods of its existence.

  9. Lunar Bouguer gravity anomalies - Imbrian age craters

    Science.gov (United States)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  10. Anomaly freedom in perturbative loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Hossain, Golam Mortuza; Kagan, Mikhail; Shankaranarayanan, S.

    2008-01-01

    A fully consistent linear perturbation theory for cosmology is derived in the presence of quantum corrections as they are suggested by properties of inverse volume operators in loop quantum gravity. The underlying constraints present a consistent deformation of the classical system, which shows that the discreteness in loop quantum gravity can be implemented in effective equations without spoiling space-time covariance. Nevertheless, nontrivial quantum corrections do arise in the constraint algebra. Since correction terms must appear in tightly controlled forms to avoid anomalies, detailed insights for the correct implementation of constraint operators can be gained. The procedures of this article thus provide a clear link between fundamental quantum gravity and phenomenology.

  11. Flavorful hybrid anomaly-gravity mediation

    International Nuclear Information System (INIS)

    Gross, Christian; Hiller, Gudrun

    2011-01-01

    We consider supersymmetric models where anomaly and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of anomaly mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of anomaly mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing energy at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.

  12. Anomalies in chiral W--gravity

    International Nuclear Information System (INIS)

    Carvalho, Marcelo; Vilar, Luiz Claudio Queiroz; Sorella, S.P.

    1994-01-01

    W-algebras are an extension of the Virasoro algebra. They describe the commutation relations between the components of the stress-energy tensor (T ++ ,T -- ) and the currents (W ++++... , W ----... ) of higher spin. Among the various W-algebras considered in the recent literature, the so-called W 3 -algebra plays a rather special role, due to the fact that it has a simple field theory realization. The corresponding field model, known as W 3 -gravity, yields a generalization of the usual bosonic string action. In this work, anomalies in chiral W--gravity are studied

  13. African Plate Seismicity and Gravity Field Anomalies

    Science.gov (United States)

    Ryzhii, B. P.; Nachapkin, N. I.; Milanovsky, Svet

    The analysis of connection plate of earthquakes of the African continent with Bouguer gravity anomalies is carried out. As input dataSs were used the catalog of earthquakes and numeral map of Bouguer gravity field. The catalog contains geographical coor- dinates of epicenters and magnitudes of 8027 earthquakes recorded on continent and adjacent oceanic areas for the period from 1904 to 1988 years. The values of a gravity field preset in knots of a grid with a step 1 grade. For the analysis of plate seismicity from the catalog the parameters of 6408 earthquakes were chosen, which one have taken place in the field of restricted shore line. The earthquakes fixed in a band of a concatenation of continent with the Arabian plate were excluded from the analysis. On the basis of a numeral gravity map for everyone epicenter the value of Bouguer anomaly was calculated. The allocation of epicenters of earthquakes with magnitude M is obtained depending on value of a gravity Bouguer field. The outcomes of a sta- tistical analysis testify that practically all earthquakes are associated with the areas with negative values of Bouguer gravity field. Thus in areas with values of a field -160 mgal to -100 mgal there was 80 % of all earthquakes. It is necessary to note, that the mean value of the field for the African continent is -70 mgal. Obtained result gives us the possibility to make a conclusion about connection of plate earthquakes of Africa predominantly with structural complexes of earth crust with lower density. These out- comes are in the consent with a hypothesis of one of the authors (Ryzhii B.P.) about connection of plate earthquakes hypocenters on the territory of Russia with negative values of a gravity field and heightened silica content in the Earth crust. This work was supported with RFFI grant N 00-05-65067

  14. Trace anomaly and counterterms in designer gravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberalesand Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso,Casilla 4059, Valparaíso (Chile); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany); Choque, David [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany); Universidad Técnica Federico Santa María,Av. España 1680, Valparaíso (Chile); Martínez, Cristián [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-03-17

    We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS{sub 4}, so that the total action is finite on-shell and satisfy a well defined variational principle. We focus on scalar fields with the conformal mass m{sup 2}=−2l{sup −2} and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual field theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar field. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of four-dimensional gauged N=8 supergravity and its ω-deformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual field theory.

  15. Trace anomaly and counterterms in designer gravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David; Martínez, Cristián

    2016-01-01

    We construct concrete counterterms of the Balasubramanian-Kraus type for Einstein-scalar theories with designer gravity boundary conditions in AdS_4, so that the total action is finite on-shell and satisfy a well defined variational principle. We focus on scalar fields with the conformal mass m"2=−2l"−"2 and show that the holographic mass matches the Hamiltonian mass for any boundary conditions. We compute the trace anomaly of the dual field theory in the generic case, as well as when there exist logarithmic branches of non-linear origin. As expected, the anomaly vanishes for the boundary conditions that are AdS invariant. When the anomaly does not vanish, the dual stress tensor describes a thermal gas with an equation of state related to the boundary conditions of the scalar field. In the case of a vanishing anomaly, we recover the dual theory of a massless thermal gas. As an application of the formalism, we consider a general family of exact hairy black hole solutions that, for some particular values of the parameters in the moduli potential, contains solutions of four-dimensional gauged N=8 supergravity and its ω-deformation. Using the AdS/CFT duality dictionary, they correspond to triple trace deformations of the dual field theory.

  16. Anomaly cancellation for super-W-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, P. (Dept. of Theoretical Physics, Univ. of Oxford (United Kingdom)); Spence, B. (Dept. of Physics, Univ. of Southampton (United Kingdom))

    1991-08-08

    We generalise the description of minimal superconformal models coupled to supergravity, due to Distler, Hlousek and Kawaii, to super-W-gravity. When the chiral algebra is the generalisation of the W-algebra associated to any contragredient Lie superalgebra the total central charge vanishes as a result of Lie superalgebra identities. When the algebra has only fermionic simple roots there is N=1 superconformal invariance and for this case we describe the Lax operators and construct gravitationally dressed primary superfields of weight zero. We also prove the anomaly cancellation associated with the generalised non-abelian Toda theories. (orig.).

  17. Anomaly cancellation for super- W -gravity

    Science.gov (United States)

    Mansfield, P.; Spence, B.

    1991-08-01

    We generalise the description of minimal superconformal models coupled to supergravity, due to Distler, Hlousek and Kawaii, to super- W -gravity. When the chiral algebra is the generalisation of the W-algebra associated to any contragredient Lie superalgebra the total central charge vanishes as a result of Lie superalgebra identities. When the algebra has only fermionic simple roots there is N = 1 superconformal invariance and for this case we describe the Lax operators and construct gravitationally dressed primary superfields of weight zero. We also prove the anomaly cancellation associated with the generalised non-abelian Toda theories. Address from 1 October 1991: Physics Department, Imperial College, London SW7 2BZ, UK.

  18. Anomaly cancellation for super-W-gravity

    International Nuclear Information System (INIS)

    Mansfield, P.; Spence, B.

    1991-01-01

    We generalise the description of minimal superconformal models coupled to supergravity, due to Distler, Hlousek and Kawaii, to super-W-gravity. When the chiral algebra is the generalisation of the W-algebra associated to any contragredient Lie superalgebra the total central charge vanishes as a result of Lie superalgebra identities. When the algebra has only fermionic simple roots there is N=1 superconformal invariance and for this case we describe the Lax operators and construct gravitationally dressed primary superfields of weight zero. We also prove the anomaly cancellation associated with the generalised non-abelian Toda theories. (orig.)

  19. Axial gravity, massless fermions and trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica

    2017-08-15

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  20. Axial gravity, massless fermions and trace anomalies

    International Nuclear Information System (INIS)

    Bonora, L.; Cvitan, M.; Giaccari, S.; Stemberga, T.; Prester, P.D.; Pereira, A.D.; UFF-Univ. Federal Fluminense, Niteroi

    2017-01-01

    This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)

  1. Detection of short-term anomaly using parasitic discrete wavelet transform

    International Nuclear Information System (INIS)

    Nagamatsu, Takashi; Gofuku, Akio

    2013-01-01

    A parasitic discrete wavelet transform (P-DWT) that has a large flexibility in design of the mother wavelet (MW) and a high processing speed was applied for simulation and measured anomalies. First, we applied the P-DWT to detection of the short-term anomalies. Second, we applied the P-DWT to detection of the collision of pump using the pump diagnostic experiment equipment that was designed taking into consideration the structure of the pump used for the water-steam system of the fast breeder reactor 'Monju'. The vibration signals were measured by the vibration sensor attached to the pump when injecting four types of small objects (sphere, small sphere, cube, and rectangular parallelepiped). Anomaly detection was performed by calculating the fast wavelet instantaneous correlation using the parasitic filter that was constructed on the basis of the measured signals. The results suggested that the anomalies could be detected for all types of the supposed anomalies. (author)

  2. statistical tests for frequency distribution of mean gravity anomalies

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... STATISTICAL TESTS FOR FREQUENCY DISTRIBUTION OF MEAN. GRAVITY ANOMALIES. By ... approach. Kaula [1,2] discussed the method of applying statistical techniques in the ..... mathematical foundation of physical ...

  3. Maine Offshore Free-air Anomaly Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (5,363 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity parameters...

  4. Statistical Tests for Frequency Distribution of Mean Gravity Anomalies

    African Journals Online (AJOL)

    The hypothesis that a very large number of lOx 10mean gravity anomalies are normally distributed has been rejected at 5% Significance level based on the X2 and the unit normal deviate tests. However, the 50 equal area mean anomalies derived from the lOx 10data, have been found to be normally distributed at the same ...

  5. Gravity Anomalies Over The Gongola Arm, Upper Benue Trough ...

    African Journals Online (AJOL)

    A regional gravity survey of the Gongola Arm of the Benue trough was carried out with the aim of determining structures of interest. The results of the gravity interpretation showed that the area of study is characterized by negative Bouguer anomalies that trend in the NE-SW direction and range in value from -75 to -15 mGal ...

  6. Bouguer gravity anomalies for terrain modeling | Orupabo | Journal ...

    African Journals Online (AJOL)

    Gravity anomalies have been applied in geodesy to determine the geoid, and the associated composition and crustal properties of the earth. Applications of solution of the gravity inversion problems include the study of crustal dynamics as a result of the extraction of fluids in the form of oil, gas and water from ...

  7. Gravity and isostatic anomaly maps of Greece produced

    Science.gov (United States)

    Lagios, E.; Chailas, S.; Hipkin, R. G.

    A gravity anomaly map of Greece was first compiled in the early 1970s [Makris and Stavrou, 1984] from all available gravity data collected by different Hellenic institutions. However, to compose this map the data had to be smoothed to the point that many of the smaller-wavelength gravity anomalies were lost. New work begun in 1987 has resulted in the publication of an updated map [Lagios et al., 1994] and an isostatic anomaly map derived from it.The gravity data cover the area between east longitudes 19° and 27° and north latitudes 32° and 42°, organized in files of 100-km squares and grouped in 10-km squares using UTM zone 34 coordinates. Most of the data on land come from the gravity observations of Makris and Stavrou [1984] with additional data from the Institute of Geology and Mining Exploration, the Public Oil Corporation of Greece, and Athens University. These data were checked using techniques similar to those used in compiling the gravity anomaly map of the United States, but the horizontal gradient was used as a check rather than the gravity difference. Marine data were digitized from the maps of Morelli et al. [1975a, 1975b]. All gravity anomaly values are referred to the IGSN-71 system, reduced with the standard Bouger density of 2.67 Mg/m3. We estimate the errors of the anomalies in the continental part of Greece to be ±0.9 mGal; this is expected to be smaller over fairly flat regions. For stations whose height has been determined by leveling, the error is only ±0.3 mGal. For the marine areas, the errors are about ±5 mGal [Morelli, 1990].

  8. Application of isostatic gravity anomaly in the Yellow Sea area

    Science.gov (United States)

    Hao, Z.; Qin, J.; Huang, W.; Wu, X.

    2017-12-01

    In order to study the deep crustal structure of the Yellow Sea area, we used the Airy-Heiskanen model to calculate the isostatic gravity anomaly of this area. Based on the Bouguer gravity anomaly and water depth data of this area, we chose the calculating parameters as standard crustal thickness 30 km, crust-mantle density difference 0.6g/cm3and grid spacing 0.1°×0.1°. This study reveals that there are six faults and four isostatic negative anomalies in the study area. The isostatic anomalies in much of Yellow Sea areas give priority to those with positive anomalies. The isostatic anomalies in North Yellow Sea are higher than South Yellow Sea with Jiashan-Xiangshui fault as the boundary. In the north of the study area, isostatic anomalies are characterized by large areas of positive anomaly. The change is relatively slow, and the trends give priority to the trend NE or NEE. In the middle of the north Yellow Sea basin, there is a local negative anomaly, arranged as a string of beads in NE to discontinuous distribution. Negative anomaly range is small, basically corresponds to the region's former Cenozoic sedimentary basin position. To the south of Jiashan-Xiangshui fault and west of Yellow Sea eastern margin fault, including most of the south Yellow Sea and Jiangsu province, the isostatic anomalies are lower. And the positive and negative anomalies are alternative distribution, and negative anomaly trap in extensive development. The trends give priority to NE, NEE, both to the NW. On the basis of the characteristics of isostatic gravity anomalies, it is concluded that the Yellow Sea belongs to continental crustal isostatic area whose isostatic anomalies is smooth and slow. ReferencesHeiskanen, W. A., F. A. V. Meinesz, and S. A. Korff (1958), The Earth and Its Gravity Field, McGraw-Hill, New York. Meng, X. J., X. H. Zhang, and J. Y. Yang (2014), Geophysical survey in eastern China seas and the characteristics of gravity and magnetic fields, Marine Geoglogy

  9. The gravity anomaly of Mount Amiata; different approaches for understanding anomaly source distribution

    Science.gov (United States)

    Girolami, C.; Barchi, M. R.; Heyde, I.; Pauselli, C.; Vetere, F.; Cannata, A.

    2017-11-01

    In this work, the gravity anomaly signal beneath Mount Amiata and its surroundings have been analysed to reconstruct the subsurface setting. In particular, the work focuses on the investigation of the geological bodies responsible for the Bouguer gravity minimum observed in this area.

  10. Refining geoid and vertical gradient of gravity anomaly

    Directory of Open Access Journals (Sweden)

    Zhang Chijun

    2011-11-01

    Full Text Available We have derived and tested several relations between geoid (N and quasi-geoid (ζ with model validation. The elevation correction consists of the first-term (Bouguer anomaly and second-term (vertical gradient of gravity anomaly. The vertical gradient was obtained from direct measurement and terrain calculation. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.

  11. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly*,**

    Directory of Open Access Journals (Sweden)

    Megías Eugenio

    2014-03-01

    Full Text Available We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.

  12. Counterterms and dual holographic anomalies in CS gravity

    Energy Technology Data Exchange (ETDEWEB)

    Banados, Maximo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile (Chile); Theisen, Stefan [Max-Planck-Institut fuer Gravitationphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2005-10-15

    The holographic Weyl anomaly associated to Chern-Simons gravity in 2n+1 dimensions is proportional to the Euler term in 2n dimensions, with no contributions from the Weyl tensor. We compute the holographic energy-momentum tensor associated to Chern-Simons gravity directly from the action, in an arbitrary odd-dimensional spacetime. We show, in particular, that the counterterms rendering the action finite contain only terms of the Lovelock type.

  13. Lithologic boundaries from gravity and magnetic anomalies over ...

    Indian Academy of Sciences (India)

    Pramod Kumar Yadav

    2018-03-02

    Mar 2, 2018 ... nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and ... the lateral boundaries and nature of the source. It seems that the source is of ..... Goldfarb R J and Richards J P,. The Economic Geology Publishing Company, pp.

  14. Lithologic boundaries from gravity and magnetic anomalies over ...

    Indian Academy of Sciences (India)

    67

    The data was acquired at ~25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic. Manuscript. Click here to view linked References.

  15. Spreading rate dependence of gravity anomalies along oceanic transform faults.

    Science.gov (United States)

    Gregg, Patricia M; Lin, Jian; Behn, Mark D; Montési, Laurent G J

    2007-07-12

    Mid-ocean ridge morphology and crustal accretion are known to depend on the spreading rate of the ridge. Slow-spreading mid-ocean-ridge segments exhibit significant crustal thinning towards transform and non-transform offsets, which is thought to arise from a three-dimensional process of buoyant mantle upwelling and melt migration focused beneath the centres of ridge segments. In contrast, fast-spreading mid-ocean ridges are characterized by smaller, segment-scale variations in crustal thickness, which reflect more uniform mantle upwelling beneath the ridge axis. Here we present a systematic study of the residual mantle Bouguer gravity anomaly of 19 oceanic transform faults that reveals a strong correlation between gravity signature and spreading rate. Previous studies have shown that slow-slipping transform faults are marked by more positive gravity anomalies than their adjacent ridge segments, but our analysis reveals that intermediate and fast-slipping transform faults exhibit more negative gravity anomalies than their adjacent ridge segments. This finding indicates that there is a mass deficit at intermediate- and fast-slipping transform faults, which could reflect increased rock porosity, serpentinization of mantle peridotite, and/or crustal thickening. The most negative anomalies correspond to topographic highs flanking the transform faults, rather than to transform troughs (where deformation is probably focused and porosity and alteration are expected to be greatest), indicating that crustal thickening could be an important contributor to the negative gravity anomalies observed. This finding in turn suggests that three-dimensional magma accretion may occur near intermediate- and fast-slipping transform faults.

  16. Gravity anomalies without geomagnetic disturbances interfere with pigeon homing--a GPS tracking study.

    Science.gov (United States)

    Blaser, Nicole; Guskov, Sergei I; Entin, Vladimir A; Wolfer, David P; Kanevskyi, Valeryi A; Lipp, Hans-Peter

    2014-11-15

    The gravity vector theory postulates that birds determine their position to set a home course by comparing the memorized gravity vector at the home loft with the local gravity vector at the release site, and that they should adjust their flight course to the gravity anomalies encountered. As gravity anomalies are often intermingled with geomagnetic anomalies, we released experienced pigeons from the center of a strong circular gravity anomaly (25 km diameter) not associated with magnetic anomalies and from a geophysical control site, equidistant from the home loft (91 km). After crossing the border zone of the anomaly--expected to be most critical for pigeon navigation--they dispersed significantly more than control birds, except for those having met a gravity anomaly en route. These data increase the credibility of the gravity vector hypothesis. © 2014. Published by The Company of Biologists Ltd.

  17. Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.

    Directory of Open Access Journals (Sweden)

    Nicole Blaser

    Full Text Available The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.

  18. The quest for the perfect gravity anomaly: Part 2 - Mass effects and anomaly inversion

    Science.gov (United States)

    Keller, Gordon R.; Hildenbrand, T.G.; Hinze, W. J.; Li, X.; Ravat, D.; Webring, M.

    2006-01-01

    Gravity anomalies have become an important tool for geologic studies since the widespread use of high-precision gravimeters after the Second World War. More recently the development of instrumentation for airborne gravity observations, procedures for acquiring data from satellite platforms, the readily available Global Positioning System for precise vertical and horizontal control, improved global data bases, and enhancement of computational hardware and software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases that are made available to the geoscience community by broadening their observational holdings and increasing the accuracy and precision of the included data. Currently the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States of America are being revised using new formats and standards. The objective of this paper is to describe the use of the revised standards for gravity data processing and modeling and there impact on geological interpretations. ?? 2005 Society of Exploration Geophysicists.

  19. Complete Bouguer gravity anomaly map of the state of Colorado

    Science.gov (United States)

    Abrams, Gerda A.

    1993-01-01

    The Bouguer gravity anomaly map is part of a folio of maps of Colorado cosponsored by the National Mineral Resources Assessment Program (NAMRAP) and the National Geologic Mapping Program (COGEOMAP) and was produced to assist in studies of the mineral resource potential and tectonic setting of the State. Previous compilations of about 12,000 gravity stations by Behrendt and Bajwa (1974a,b) are updated by this map. The data was reduced at a 2.67 g/cm3 and the grid contoured at 3 mGal intervals. This map will aid in the mineral resource assessment by indicating buried intrusive complexes, volcanic fields, major faults and shear zones, and sedimentary basins; helping to identify concealed geologic units; and identifying localities that might be hydrothermically altered or mineralized.

  20. Interpreting gravity anomalies in south Cameroon, central Africa

    Directory of Open Access Journals (Sweden)

    Tadjou Jean Marie

    2012-10-01

    characterised by elongated SW-NE negative gravity anomaly corresponding to a collapsed structure associated with a granitic intrusion beneath the region, limited by fault systems; this was clearly evident on an isostatic residual gravity map. High gravity anomaly within the northern part of the area was interpreted as a result of dense bodies put in place at the root of the crust. Positive anomalies in the northern part of the area were separated from southern negative anomalies by a prominent E-W lineament; this was interpreted on the gravity maps as a suture zone between the south Congo craton and the Pan-African formations. Gravity anomalies’ total horizontal derivatives generally reflect faults or compositional changes which can describe structural trends. The local maxima of the Bouguer gravity data’s horizontal gradient grid and its upward continuation at various altitudes were used to highlight the deepest lineament faults and their dip and direction. These features led to producing a structural map of the study area.

  1. Imaging multipole gravity anomaly sources by 3D probability tomography

    International Nuclear Information System (INIS)

    Alaia, Raffaele; Patella, Domenico; Mauriello, Paolo

    2009-01-01

    We present a generalized theory of the probability tomography applied to the gravity method, assuming that any Bouguer anomaly data set can be caused by a discrete number of monopoles, dipoles, quadrupoles and octopoles. These elementary sources are used to characterize, in an as detailed as possible way and without any a priori assumption, the shape and position of the most probable minimum structure of the gravity sources compatible with the observed data set, by picking out the location of their centres and peculiar points of their boundaries related to faces, edges and vertices. A few synthetic examples using simple geometries are discussed in order to demonstrate the notably enhanced resolution power of the new approach, compared with a previous formulation that used only monopoles and dipoles. A field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging the geometry of the minimum gravity structure down to 8 km of depth bsl

  2. Acoustic–gravity waves during solar eclipses: Detection and characterization using wavelet transforms

    Czech Academy of Sciences Publication Activity Database

    Šauli, Petra; Roux, S. G.; Abry, P.; Boška, Josef

    2007-01-01

    Roč. 69, 17-18 (2007), s. 2465-2484 ISSN 1364-6826 R&D Projects: GA ČR GA205/06/1619; GA AV ČR IAA300420504 Grant - others:CNRS(FR) 18098 Institutional research plan: CEZ:AV0Z30420517 Keywords : Acoustic–gravity wave * Vertical ionospheric sounding * F-layer * Wavelet transform * Wave-packet characterization Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.566, year: 2007

  3. Energy detection based on undecimated discrete wavelet transform and its application in magnetic anomaly detection.

    Directory of Open Access Journals (Sweden)

    Xinhua Nie

    Full Text Available Magnetic anomaly detection (MAD is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise with a power spectral density of 1/fa (0wavelet decomposition can play the role of a Karhunen-Loève-type expansion to the 1/f-type signal by its decorrelation abilities, an effective energy detection method based on undecimated discrete wavelet transform (UDWT is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT, the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method.

  4. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    Science.gov (United States)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  5. Inference of Altimeter Accuracy on Along-track Gravity Anomaly Recovery

    Directory of Open Access Journals (Sweden)

    LI Yang

    2015-04-01

    Full Text Available A correlation model between along-track gravity anomaly accuracy, spatial resolution and altimeter accuracy is proposed. This new model is based on along-track gravity anomaly recovery and resolution estimation. Firstly, an error propagation formula of along-track gravity anomaly is derived from the principle of satellite altimetry. Then the mathematics between the SNR (signal to noise ratio and cross spectral coherence is deduced. The analytical correlation between altimeter accuracy and spatial resolution is finally obtained from the results above. Numerical simulation results show that along-track gravity anomaly accuracy is proportional to altimeter accuracy, while spatial resolution has a power relation with altimeter accuracy. e.g., with altimeter accuracy improving m times, gravity anomaly accuracy improves m times while spatial resolution improves m0.4644 times. This model is verified by real-world data.

  6. Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model

    Science.gov (United States)

    Ahlgren, K.; Li, X.

    2017-12-01

    Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model

  7. The 2017 solar eclipse and Majorana & Allais gravity anomalies

    Science.gov (United States)

    Munera, Hector A.

    2017-01-01

    Two little known anomalies hint to phenomena beyond current theory. Majorana effect: around 1920 in a series of well-designed experiments with a chemical laboratory balance, Quirino Majorana found in Italy that mercury (Hg) and lead (Pb) might shield terrestrial gravity. Majorana experiments were never repeated by the international scientific community. Instead his results were dismissed on theoretical claims: a) unobserved heating of earth by absorption of gravity, and b) unobserved cyclic lunar perturbation of solar gravity at earth’s surface. However, Majorana critics missed the crucial fact that shielding is not mere absorption, but also scattering, and that atomic number Z of matter in the moon is much lower than Z=80 (Hg) and Z=82 (Pb). From the June 30/1954 solar eclipse onwards, high-quality mechanical gravimeters were used to search for Majorana shielding by the moon. Results are positive, provided that shielding is interpreted as scattering rather than absorption of gravity by moon (H. A. Munera, Physics Essays 24, 428-434, 2011). Allais effect: during the same 1954 eclipse (partial in Paris) Maurice Allais had in operation a sensitive paraconical pendulum for a very different purpose. Surprisingly, the pendulum was perturbed by the eclipse, condition repeated once again in a 1959 solar eclipse, also partial in Paris. During the past sixty years, paraconical, torsion and Foucault pendula, and other mechanical devices, have been used to (dis)confirm Allais effect, but the results are not conclusive thus far. A book edited by this author (Should the laws of gravitation be revised? Apeiron 2011) describes some of those observations. Various unexpected effects, some of them torsional, appear both near the optical shadow, and far away. The Sun-Moon-Earth alignment in a solar eclipse allows detection on the terrestrial surface of the dark matter flow scattered on moon’s surface (flow not hitting earth in other geometries). Rotation of moon may induce

  8. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***

    Science.gov (United States)

    Megías, Eugenio; Pena-Benitez, Francisco

    2014-03-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.

  9. An overview on preseismic anomalies in LF radio signals revealed in Italy by wavelet analysis

    Directory of Open Access Journals (Sweden)

    A. Ermini

    2008-06-01

    Full Text Available Since 1996, the electric field strength of the two broadcasting stations MCO (f=216 kHz, southeast France and CZE (f=270 kHz, Czech Republic has been sampled every ten minutes by a receiver (AS located in central Italy. Here, we review the results obtained by a detailed analysis applied to the data recorded from February 1996 up to December 2004. At first, the daytime and nighttime data were extracted and then, in the daytime data, the data collected in winter were separated from those collected in summer. On the second step the wavelet transform was applied. The results of this analysis are radio anomalies detected as earthquake precursors both for MCO and CZE data. In particular, regarding the MCO data, the main result was the appearance of a very clear anomaly during May-August 1998, at daytime and at nighttime. Such an anomaly can be considered as a precursor of a seismic sequence started on August 15, 1998 with 17 earthquakes (M=2.2-4.6 on the Reatini mountains, a seismogenic zone located 30 km far from the AS receiver along the path MCO-AS. As concerns with the CZE data, the first result was obtained from the summer daytime data and it was the appearance of a very clear anomaly during August-September 1997, that can be considered a precursor of the two earthquakes with magnitude M=5.6 and M=5.9 that occurred on September 26 in the Umbria-Marche region (Central Italy. The second result was the appearance of an anomaly during February-March 1998, at daytime and at nighttime, that can be related to the preparatory phase of the strong (M=5.1-6.0 Slovenia seismic sequence that occurred in a zone lying in the middle of the CZE-AS path.

  10. Thermal anomalies detection before strong earthquakes (M > 6.0 using interquartile, wavelet and Kalman filter methods

    Directory of Open Access Journals (Sweden)

    M. Akhoondzadeh

    2011-04-01

    Full Text Available Thermal anomaly is known as a significant precursor of strong earthquakes, therefore Land Surface Temperature (LST time series have been analyzed in this study to locate relevant anomalous variations prior to the Bam (26 December 2003, Zarand (22 February 2005 and Borujerd (31 March 2006 earthquakes. The duration of the three datasets which are comprised of MODIS LST images is 44, 28 and 46 days for the Bam, Zarand and Borujerd earthquakes, respectively. In order to exclude variations of LST from temperature seasonal effects, Air Temperature (AT data derived from the meteorological stations close to the earthquakes epicenters have been taken into account. The detection of thermal anomalies has been assessed using interquartile, wavelet transform and Kalman filter methods, each presenting its own independent property in anomaly detection. The interquartile method has been used to construct the higher and lower bounds in LST data to detect disturbed states outside the bounds which might be associated with impending earthquakes. The wavelet transform method has been used to locate local maxima within each time series of LST data for identifying earthquake anomalies by a predefined threshold. Also, the prediction property of the Kalman filter has been used in the detection process of prominent LST anomalies. The results concerning the methodology indicate that the interquartile method is capable of detecting the highest intensity anomaly values, the wavelet transform is sensitive to sudden changes, and the Kalman filter method significantly detects the highest unpredictable variations of LST. The three methods detected anomalous occurrences during 1 to 20 days prior to the earthquakes showing close agreement in results found between the different applied methods on LST data in the detection of pre-seismic anomalies. The proposed method for anomaly detection was also applied on regions irrelevant to earthquakes for which no anomaly was detected

  11. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    International Nuclear Information System (INIS)

    Thierry-Mieg, J.

    1985-01-01

    This paper discusses the reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity

  12. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    International Nuclear Information System (INIS)

    Thierry-Mieg, J.

    1985-01-01

    The reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity

  13. New gravity anomaly map of Taiwan and its surrounding regions with some tectonic interpretations

    Science.gov (United States)

    Doo, Wen-Bin; Lo, Chung-Liang; Hsu, Shu-Kun; Tsai, Ching-Hui; Huang, Yin-Sheng; Wang, Hsueh-Fen; Chiu, Shye-Donq; Ma, Yu-Fang; Liang, Chin-Wei

    2018-04-01

    In this study, we compiled recently collected (from 2005 to 2015) and previously reported (published and open access) gravity data, including land, shipborne and satellite-derived data, for Taiwan and its surrounding regions. Based on the cross-over error analysis, all data were adjusted; and, new Free-air gravity anomalies were obtained, shedding light on the tectonics of the region. To obtain the Bouguer gravity anomalies, the densities of land terrain and marine sediments were assumed to be 2.53 and 1.80 g/cm3, respectively. The updated gravity dataset was gridded with a spacing of one arc-minute. Several previously unnoticed gravity features are revealed by the new maps and can be used in a broad range of applications: (1) An isolated gravity high is located between the Shoushan and the Kaoping Canyon off southwest Taiwan. (2) Along the Luzon Arc, both Free-air and Bouguer gravity anomaly maps reveal a significant gravity discontinuity feature at the latitude of 21°20‧N. (3) In the southwestern Okinawa Trough, the NE-SW trending cross-back-arc volcanic trail (CBVT) marks the low-high gravity anomaly (both Free-air and Bouguer) boundary.

  14. Venus gravity anomalies and their correlations with topography

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  15. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    OpenAIRE

    M. K. Kaban; Sami El Khrepy; Nassir Al-Arifi

    2015-01-01

    Isostaic anomalies represent one of the most useful “geological” reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper man...

  16. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.

    Science.gov (United States)

    Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D

    2016-01-28

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  17. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    Science.gov (United States)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  18. Gravity anomalies, crustal structure and rift tectonics at the Konkan ...

    Indian Academy of Sciences (India)

    trolled by the mode of extension and thinning of continental ... facilitates to evaluate the mechanism of rifting, thermal as ..... estimated as the median depth between the back- stripped .... and gravity modeling with an application to the Gulf of.

  19. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    Science.gov (United States)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  20. Structural modeling of the Vichada impact structure from interpreted ground gravity and magnetic anomalies

    International Nuclear Information System (INIS)

    Hernandez, Orlando; Khurama, Sait; Alexander, Gretta C

    2011-01-01

    A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4 degrades 30 minutes N, 69 degrades 15 minutes W) in the Vichada Department, Colombia, South America. Ground follow up gravity and magnetic anomalies were modeled confirming the regional free air gravity anomalies. These potential field anomalies infer a hidden complex impact basin structure filled with tertiary sedimentary rocks and recent quaternary deposits. Negative Bouguer anomalies of 8 mgals to 15 mgals amplitude are associated with a concentric sedimentary basin with a varying thickness from 100 m to 500 m in the outer rings to 700 m to 1000 m at the center of the impact crater basin. Strong positive magnetic anomalies of 100 nt to 300 nt amplitude infer the presence of a local Precambrian crystalline basement that was affected by intensive faulting producing tectonic blocks dipping to the center of the structure, showing a typical domino structure of impact craters such as that of Sudbury, Ontario, Canada. Basic to intermediate mineralized veins and dikes with contrasting density and magnetic susceptibility properties could be emplaced along these faulting zones, as inferred from local gravity and magnetic highs. The geologic mapping of the area is limited by the flat topography and absence of outcrops/ geomorphologic units. Nevertheless, local normal faults along the inner ring together with radially sparse irregular blocks over flat terrains can be associated with terraced rims or collapse of the inner crater structure and eject blanket, respectively. A detailed airborne electromagnetic survey is recommended to confirm the gravity and magnetic anomalies together with a seismic program to evaluate the economic implications for energy and mineral exploration of the Vichada impact structure.

  1. Conformal anomaly and off-shell extensions of gravity

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2017-08-01

    The gauge dependence of the conformal anomaly for spin-3/2 and spin-2 fields in nonconformal supergravities has been a long standing puzzle. In this paper we argue that the "correct" gauge choice is the one that follows from requiring all terms that would imply a violation of the Wess-Zumino consistency condition to be absent in the counterterm, because otherwise the usual link between the anomaly and the one-loop divergence becomes invalid. Remarkably, the "good" choice of gauge is the one that confirms our previous result [K. A. Meissner and H. Nicolai, Phys. Lett. B 772, 169 (2017)., 10.1016/j.physletb.2017.06.031] that a complete cancellation of conformal anomalies in D =4 can only be achieved for N -extended (Poincaré) supergravities with N ≥5 .

  2. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies

    Science.gov (United States)

    McCubbine, Jack; Tontini, Fabio Caratori; Stagpoole, Vaughan; Smith, Euan; O'Brien, Grant

    2018-01-01

    A Python program (Gsolve) with a graphical user interface has been developed to assist with routine data processing of relative gravity measurements. Gsolve calculates the gravity at each measurement site of a relative gravity survey, which is referenced to at least one known gravity value. The tidal effects of the sun and moon, gravimeter drift and tares in the data are all accounted for during the processing of the survey measurements. The calculation is based on a least squares formulation where the difference between the absolute gravity at each surveyed location and parameters relating to the dynamics of the gravimeter are minimized with respect to the relative gravity observations, and some supplied gravity reference site values. The program additionally allows the user to compute free air gravity anomalies, with respect to the GRS80 and GRS67 reference ellipsoids, from the determined gravity values and calculate terrain corrections at each of the surveyed sites using a prism formula and a user supplied digital elevation model. This paper reviews the mathematical framework used to reduce relative gravimeter survey observations to gravity values. It then goes on to detail how the processing steps can be implemented using the software.

  3. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    OpenAIRE

    M. K. Kaban; Sami El Khrepy; Nassir Al-Arifi

    2016-01-01

    The isostatic modeling represents one of the most useful ‘‘geological’’ reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating m...

  4. Lithologic boundaries from gravity and magnetic anomalies over ...

    Indian Academy of Sciences (India)

    Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringeof the DVs over an ...

  5. The relationship between mean anomaly block sizes and spherical harmonic representations. [of earth gravity

    Science.gov (United States)

    Rapp, R. H.

    1977-01-01

    The frequently used rule specifying the relationship between a mean gravity anomaly in a block whose side length is theta degrees and a spherical harmonic representation of these data to degree l-bar is examined in light of the smoothing parameter used by Pellinen (1966). It is found that if the smoothing parameter is not considered, mean anomalies computed from potential coefficients can be in error by about 30% of the rms anomaly value. It is suggested that the above mentioned rule should be considered only a crude approximation.

  6. Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics

    Science.gov (United States)

    Yadav, Pramod Kumar; Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Shailendra; Singh, Roshan K.; Bage, Ashish K.

    2018-03-01

    Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of ˜ 0.70 km2 along 13 parallel lines at 50 m spacing. The data was acquired at ˜ 25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25-40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of ˜ 15, ˜ 25 and ˜ 40 m, respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.

  7. A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation

    Science.gov (United States)

    Gettings, M.E.

    1983-01-01

    Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated

  8. Gravity anomalies of the Northern Hawaiian Islands: Implications on the shield evolutions of Kauai and Niihau

    Science.gov (United States)

    Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.

    2010-08-01

    New land and marine gravity data reveal two positive residual gravity anomalies in the Northern Hawaiian Islands: one over Kaua'i, the other between the islands of Kaua'i and Ni'ihau. These gravitational highs are similar in size and magnitude to those of other Hawaiian volcanoes, indicating local zones of high-density crust, attributed to olivine cumulates in solidified magma reservoirs. The residual gravity high over Kaua'i is located in the Līhu'e Basin, offset 8-12 km east of Kaua'i's geologically mapped caldera. This offset suggests that the mapped caldera is a collapsed feature later filled in with lava and not the long-term center of Kaua'i shield volcanism. A second residual gravity high, in the submarine channel between Kaua'i and Ni'ihau, marks the volcanic center of the Ni'ihau shield volcano. This second residual gravity anomaly implies that Ni'ihau's eastern boundary extended ˜20 km east of its present location. Through inversion, the residual gravity anomalies were modeled as being produced by two solidified magma reservoirs with average densities of 3100 kg/m3 and volumes between 2470 and 2540 km3. Considering the locations and sizes of the residual gravity anomalies/magma reservoirs, the extent of the two islands' paleoshorelines and potassium-argon dating of shield-stage lavas, we conclude that the two islands were not connected subaerially during their respective shield stages and that Ni'ihau's topographic summit was removed by an eastern flank collapse between 4.3 and 5.6 Ma. Continued constructional volcanism on western Kaua'i likely covered much of the submerged remains of eastern Ni'ihau.

  9. Development of the negative gravity anomaly of the 85 E Ridge ...

    Indian Academy of Sciences (India)

    2Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India. 3National ... different crust-sediment structural configurations of the ridge that were existing at three geological ages, ... characteristic negative gravity anomaly and com- ... to determine the crustal structure and isostatic.

  10. World Gravity Map: a set of global complete spherical Bouguer and isostatic anomaly maps and grids

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Kuhn, M.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2012-04-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface free air, Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. The Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, 2011). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy-Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial

  11. Isostatic models and isostatic gravity anomalies of the Arabian plate and surroundings

    Science.gov (United States)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2015-04-01

    Isostaic anomalies represent one of the most useful "geological" reduction of the gravity field. With the isostatic correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. This correction is based on the fact that a major part of the near-surface load is compensated by variations of the lithosphere boundaries (chiefly the Moho and LAB) and by density variations within the crust and upper mantle. It is usually supposed that it is less important to a first order, what is the actual compensation model when reducing the effect of compensating masses, since their total weight is exactly opposite to the near-surface load. We compare several compensating models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which can not be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also the predicted "isostatic" Moho is very different from the existing observations. The second group of the isostatic models includes the Moho, which is based on existing seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). In this way we minimize regional anomalies over the Arabian plate. The residual local anomalies well correspond to tectonic structure of the plate. Still very significant anomalies are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  12. GRAVITY ANOMALIES OF THE CRUST AND UPPER MANTLE FOR CENTRAL AND SOUTH ASIA

    Directory of Open Access Journals (Sweden)

    V. N. Senachin

    2016-01-01

    Full Text Available Studying the density of both the crust and mantle is one of the topical problems in modern geophysics. Gravity modeling in combination with seismic tomography is an important tool for detecting density inhomogeneities in the crust and mantle, which can cause stresses and thus significantly impact the regional tectonics [Pogorelov, Baranov, 2010], especially in zones wherein continental margins actively interact with subducting oceanic plates and the entire depth of the tectonosphere is subject to stresses. Associated processes lead to considerable horizontal and vertical stresses that often cause catastrophic events on a global scale. The challenge of studying the global tectonic processes in the Earth’s tectonosphere can be addressed by gravity modeling in combination with seismic surveying.Data from previous studies. I.L. Nersesov et al. [1975] pioneered in calculating the spatial pattern of mantle density inhomogeneities in Central Asia. Although the accuracy of their estimations was not high due to the limited database, their study yielded significant results considering the structure of the crust. Numerous subsequent geophysical projects have researched the crust to a level sufficient to develop regional models, that can give quite adequate information on the depths of external and internal boundaries of the crust and suggest the distribution patterns of seismic velocities and density values. With reference to such data, mantle density inhomogeneities can be studied with higher accuracy.This paper reports on the estimations of gravity anomalies in the crust and upper mantle in Central and South Asia. The study region represents the full range of crust thicknesses and ages, as well a variety of crust formation types [Christensen, Mooney, 1995]. We used the 3D gravity modeling software package 3SGravity developed by Senachin [2015a, 2015b] that considers the spherical shape of the Earth's surface, and estimated gravitional anomalies using

  13. New Bouguer Gravity Maps of Venezuela: Representation and Analysis of Free-Air and Bouguer Anomalies with Emphasis on Spectral Analyses and Elastic Thickness

    OpenAIRE

    Sanchez-Rojas, Javier

    2012-01-01

    A new gravity data compilation for Venezuela was processed and homogenized. Gravity was measured in reference to the International Gravity Standardization Net 1971, and the complete Bouguer anomaly was calculated by using the Geodetic Reference System 1980 and 2.67 Mg/m3. A regional gravity map was computed by removing wavelengths higher than 200 km from the Bouguer anomaly. After the anomaly separation, regional and residual Bouguer gravity fields were then critically discussed in term of th...

  14. Gravity and magnetic anomalies of the Cyprus arc and tectonic implications

    Science.gov (United States)

    Ergün, M.; Okay, S.; Sari, C.; Oral, E. Z.

    2003-04-01

    In present day, eastern Mediterranean is controlled by the collision of the African and Eurasian plates and displacements of Arabian, Anatolian and Aegean micro-plates. The boundary between African and Eurasian plates is delineated by the Hellenic arc and Pliny-Strabo trench in the west and the Cyprus arc and a diffuse fault system of the Eastern Anatolian Fault zone in the east. The available gravity and magnetic data from the easternmost Mediterranean allow to subdivide this basin into three provinces: the northeastern Mediterranean north of the Cyprus Arc; the Levant Basin south of the Cyprus Arc and east of the line that roughly continues the Suez rift trend toward the Gulf of Antalya, between Cyprus and Anaximander Mountains; and the Mediterranean Ridge, Herodotus Basin west of this line. High anomalies observed in Cyprus and the sea region at the south is prominent in the gravity data. The Bouguer gravity anomaly reaches its maximum values over Cyprus, where it is most probably caused by high dense Troodos ophiolites. The uplifted oceanic crust causes high Bouguer anomaly also seen in the vicinity of Eratosthenes Seamount. Another result obtained from gravity data is that the crust under Herodotos and Rhodes basins is somehow oceanic and Anaximander, Eratosthenes and Cyprus are continental fragments. There are no linear magnetic anomalies in the Mediterranean. But there are magnetic anomalies over the Eratosthenes seamount and as well as from Cyprus to the Antalya basin due to the ophiolitic bodies. In Cyprus, the last compressional deformations were defined near the Miocene/Pliocene boundary. The extensional deformation associated with the Antalya basin appears to be separated by a zone of the Florence rise and Anaximander Mountains affected by differential tectonic movements. Eratosthenes Seamount is a positive crustal feature in the process of collision with Cyprus along an active margin; there is clearly a potential tectonic relationship to the onland

  15. Gravity Anomalies and Isostasy Deduced From New Dense Gravimetry Around the Tsangpo Gorge, Tibet

    Science.gov (United States)

    Fu, Guangyu; She, Yawen

    2017-10-01

    We built the first dense gravity network including 107 stations around the Tsangpo Gorge, Tibet, one of the hardest places in the world to reach, and conducted a gravity and hybrid GPS observation campaign in 2016. We computed the Bouguer gravity anomalies (BGAs) and free-air gravity anomalies (FGAs) and increased the resolution of the FGAs by merging the in situ data with EIGEN-6C4 gravity model data. The BGAs around the Tsangpo Gorge are in general negative and gradually decrease from south (-360 mGal) to north (-480 mGal). They indicate a uniformly dipping Moho around the Tsangpo Gorge that sinks from south to north at an angle of 12°. We introduced a method to compute the vertical tectonic stress of the lithosphere, a quantitative expression of isostasy, using BGA and terrain data, and applied it to the area around the Tsangpo Gorge. We found that the lithosphere of the upstream of the Tsangpo Gorge is roughly in an isostatic state, but the lithosphere of the downstream exhibits vertical tectonic stress of 50 MPa, which indicates the loss of a large amount of surface material. This result does not support the deduction of the valley bottom before uplift of the Tsangpo Gorge by Wang et al. (2014).

  16. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica

    Science.gov (United States)

    Scheinert, M.; Ferraccioli, F.; Schwabe, J.; Bell, R.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D. D.; Damiani, T. M.; Young, D.; Cochran, J. R.; Richter, T. D.

    2018-01-01

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km2, which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica. PMID:29326484

  17. Gravity anomalies, compensation mechanisms, and the geodynamics of western Ishtar Terra, Venus

    Science.gov (United States)

    Grimm, Robert E.; Phillips, Roger J.

    1991-01-01

    Pioneer Venus line-of-sight orbital accelerations were utilized to calculate the geoid and vertical gravity anomalies for western Ishtar Terra on various planes of altitude z sub 0. The apparent depth of isostatic compensation at z sub 0 = 1400 km is 180 + or - 20 km based on the usual method of minimum variance in the isostatic anomaly. An attempt is made here to explain this observation, as well as the regional elevation, peripheral mountain belts, and inferred age of western Ishtar Terra, in terms of one or three broad geodynamic models.

  18. Anomalies and Hawking fluxes from the black holes of topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Porfyriadis, Achilleas P. [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: apporfyr@mit.edu

    2009-05-11

    The anomaly cancellation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U(1) gauge field of the reduced (1+1)-dimensional theory. It is found that the terms in this U(1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancellation method, are in complete agreement with the ones obtained from integrating the Planck distribution.

  19. Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.

    Science.gov (United States)

    Jilinski, Pavel; Fontes, Sergio Luiz

    2010-05-01

    0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1

  20. Automatic program for the interpretation of two-dimensional gravity and magnetic anomalies

    International Nuclear Information System (INIS)

    Wagini, A.

    1985-01-01

    This automatic inversion program for the interpretation of two-dimensional gravity and magnetic anomalies has been developed mainly in support of the US Geological Survey's effort to characterize potential radioactive-waste storage sites at the Nevada Test Site, Nevada. Determining subsurface shapes and extensions of geologic bodies necessitates extensive modeling of magnetic and gravity data. Geologic models for the source of magnetic or gravity anomalies are often developed by trial and error: an approximation is made to establish an initial model, the anomaly due to the model is calculated and compared with the observed anomaly, and the model is iteratively modified to improve the agreement between calculated and observed anomalies. The method presented is not a least-squares method like other methods developed during the last few years, but minimizes the sum of the squares of the residuals by varying only one variable (coordinate) at a time. Varying one variable at a time allows one to use all available information in the model calculation, which can essentially reduce the computation time. The objective of this program is to find the shape of geologic bodies when the physical parameters are known. Except for the outermost corners, only the z-coordinate of each corner-point is varied. The variation of only one variable at a time has the advantage that a large number of bodies and corner-points (in this program up to 50 bodies, each with up to 50 corner-points) can be used for the model calculation without solving a large matrix. This can be important, especially for smaller computers. The program is written in ANSI Standard FORTRAN 77 and is interactive; thus it requires little knowledge of the computer system and its editing facilities. 5 refs

  1. Characteristics of isostatic gravity anomaly in Sichuan-Yunnan region, China

    Directory of Open Access Journals (Sweden)

    Bingcheng Liu

    2017-07-01

    Full Text Available Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA. Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model of isostatic gravity mechanisms (local versus regional in this region to calculated the isostatic gravity anomaly (IGA. Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone, which is due to the Indian-Eurasian continental collision.

  2. Wavelet characterisation of ionospheric acoustic and gravity waves occuring during the solar eclipse of August 11, 1999

    Czech Academy of Sciences Publication Activity Database

    Šauli, Petra; Abry, P.; Boška, Josef; Duchayne, L.

    2006-01-01

    Roč. 68, 3-5 (2006), s. 586-598 ISSN 1364-6826 R&D Projects: GA ČR GP205/02/P077; GA ČR(CZ) GA205/01/1071; GA AV ČR(CZ) IAA3042102 Grant - others:CNRS(FR) 18098 Institutional research plan: CEZ:AV0Z30420517 Keywords : Solar eclipse * Acoustic-gravity waves * Vertical ionospheric sounding * Wavelet decomposition * Wave packet characterisation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.448, year: 2006

  3. New Horizons in Gravity: The Trace Anomaly, Dark Energy and Condensate Stars

    CERN Document Server

    Mottola, Emil

    2010-01-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degrees of freedom in the extended effective field theory of gravity generated by the trace anomaly of massless quantum fields in curved space. The origin of these conformal scalar degrees of freedom as massless poles in two-particle intermediate states of anomalous amplitudes in flat space is exposed. At event horizons the conformal anomaly scalar degrees of freedom can have macroscopically large effects on the geometry, potentially removing the classical event horizon of black hole and cosmological spacetimes, replacing them with a quantum boundary layer where the effective value of the gravitational vacuum energy density can change. In the effective theory, the cosmological term becomes a dynamical condensate, whose value depends upon boundary conditions near the horizon. In the conformal phase where the anomaly induced fluctutations dominate, and the conden...

  4. Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data

    Science.gov (United States)

    Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.

    1980-01-01

    The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.

  5. Structural model Soapaga failure from spectral correlation and magnetic gravity anomalies in the eastern cordillera, Colombia

    International Nuclear Information System (INIS)

    Rodriguez Diana Marcela; Hernandez Orlando; Kammer Andreas

    2009-01-01

    The aim of this research is to apply spectral correlation, local favorability indexes and Poisson's theorem as numerical methods for data processing and interpretation of potential field data associated with structural features; these techniques are applied to theoretical and real gravity and magnetic data of the Soapaga fault, located in the Boyaca Department, in the eastern Andean Mountains. Theoretical data of the Soapaga fault was obtained by forward modeling of geological and structural sections. Real data of the Soapaga fault included compiled gravity data and acquired magnetic data along four profiles oriented perpendicular to the fault. As a result, the geometry of the fault and its structural characteristics were obtained by interactive forward and inverse modeling. This methodology allows highlighting anomaly trends associated with density and magnetic susceptibility contrast that occur along the Soapaga fault zone. Additionally, this work provides a quantitative approach to establish the relationship between gravity and magnetic anomalies, supported by a rigorous mathematical methodology rather than isolated data interpretation to better understand the gravity and magnetic signatures of outcropping and hidden structural features.

  6. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    Science.gov (United States)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  7. Gravity anomalies over a segment of Pratap ridge and adjoining shelf margin basin, western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Rao, D.G.; Ramprasad, T.; KameshRaju, K.A.; Rao, M.G.

    Bathymetric and gravity data totalling 2000 line km on the continental margin off Goa and Mulki, west of India have been studied. The free-air gravity anomalies vary between -60 to 25 mgals with prominent NNW-SSE trends in the outer shelf region...

  8. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    Science.gov (United States)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  9. Multilayer densities using a wavelet-based gravity method and their tectonic implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-06-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding of tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the centre and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted six-layer densities from 0 to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 to 110 km depth can also be observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  10. Multilayer Densities Using a Wavelet-based Gravity Method and Their Tectonic Implications beneath the Tibetan Plateau

    Science.gov (United States)

    Xu, Chuang; Luo, Zhicai; Sun, Rong; Zhou, Hao; Wu, Yihao

    2018-03-01

    Determining density structure of the Tibetan Plateau is helpful in better understanding tectonic structure and development. Seismic method, as traditional approach obtaining a large number of achievements of density structure in the Tibetan Plateau except in the center and west, is primarily inhibited by the poor seismic station coverage. As the implementation of satellite gravity missions, gravity method is more competitive because of global homogeneous gravity coverage. In this paper, a novel wavelet-based gravity method with high computation efficiency and excellent local identification capability is developed to determine multilayer densities beneath the Tibetan Plateau. The inverted 6-layer densities from 0 km to 150 km depth can reveal rich tectonic structure and development of study area: (1) The densities present a clockwise pattern, nearly east-west high-low alternating pattern in the west and nearly south-north high-low alternating pattern in the east, which is almost perpendicular to surface movement direction relative to the stable Eurasia from the Global Positioning System velocity field; (2) Apparent fold structure approximately from 10 km to 110 km depth can be inferred from the multilayer densities, the deformational direction of which is nearly south-north in the west and east-west in the east; (3) Possible channel flows approximately from 30 km to 110 km depth can be also observed clearly during the multilayer densities. Moreover, the inverted multilayer densities are in agreement with previous studies, which verify the correctness and effectiveness of our method.

  11. Inversion of Gravity Anomalies Using Primal-Dual Interior Point Methods

    Directory of Open Access Journals (Sweden)

    Aaron A. Velasco

    2016-06-01

    Full Text Available Structural inversion of gravity datasets based on the use of density anomalies to derive robust images of the subsurface (delineating lithologies and their boundaries constitutes a fundamental non-invasive tool for geological exploration. The use of experimental techniques in geophysics to estimate and interpret di erences in the substructure based on its density properties have proven e cient; however, the inherent non-uniqueness associated with most geophysical datasets make this the ideal scenario for the use of recently developed robust constrained optimization techniques. We present a constrained optimization approach for a least squares inversion problem aimed to characterize 2-Dimensional Earth density structure models based on Bouguer gravity anomalies. The proposed formulation is solved with a Primal-Dual Interior-Point method including equality and inequality physical and structural constraints. We validate our results using synthetic density crustal structure models with varying complexity and illustrate the behavior of the algorithm using di erent initial density structure models and increasing noise levels in the observations. Based on these implementations, we conclude that the algorithm using Primal-Dual Interior-Point methods is robust, and its results always honor the geophysical constraints. Some of the advantages of using this approach for structural inversion of gravity data are the incorporation of a priori information related to the model parameters (coming from actual physical properties of the subsurface and the reduction of the solution space contingent on these boundary conditions.

  12. Free-air and Bouguer gravity anomalies and the Martian crustal dichotomy

    Science.gov (United States)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field, derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface, with the Martian crustal dichotomy are compared. The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. In this field the dichotomy boundary in eastern Mars lies mostly at -1 to -2 km elevation. Bouguer gravity anomalies are shown on a map of Noachian, Hesperian, and Amazonian age terrains, simplified from current geologic maps. The map is centered at 300 deg W to show the continuity of the dichotomy boundary. Contour interval is 100 mgals. Gravity and topography were compared along approximately 40 profiles oriented parallel to the dichotomy boundary topographic gradient, to determine how the geophysical character of the boundary changes along its length and what this implies for its origin and development.

  13. Gravity anomalies, seismic structure and geothermal history of the Central Alps

    International Nuclear Information System (INIS)

    Kissling, E.; Mueller, S.; Werner, D.

    1983-01-01

    A new interpretation of the gravity anomalies in the Swiss Alps from the geothermal point of view is presented. The regional gravity distribution is partly caused by the topography of the crust-mantle boundary. Taking 0.5 g/cm 3 as the average density contrast between crust and mantle the Bouguer map of Switzerland contains a residual field which indicates a density anomaly in the mantle. This finding, results from seismic surface-wave investigations, and P-wave travel time observations can be interpreted as a consequence of the genesis of the Alps. A kinematic model of the Alps has been constructed simulating the mass displacements during the last 40 m.y. In this two-dimensional model the subsidence of cold mantle material is taken into consideration forming a ''lithospheric root''. Based on this kinematic model the temperature distribution in the moving medium can be calculated, taking into account the radiogenic heat sources. From the calculated temperatures field at present time the thermally induced density deviation can be determined. This density effect can explain the residual gravity field with a maximum value of about + 50 mgal

  14. Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China

    Science.gov (United States)

    Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju

    2017-04-01

    The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly

  15. BRS current and related anomalies in two-dimensional gravity and string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Inagaki, Takeshi; Suzuki, Hiroshi.

    1989-06-01

    The BRS currents in two-dimensional gravity and supergravity theories, which are related to string theory, contain anomalous terms. The origin of these anomalies can be neatly understood in a carefully defined path integral. We present the detailed calculations of these BRS and related anomalies in the holomorphic or antiholomorphic sector separately in the conformal gauge. One-loop renormalization of the Liouville action becomes transparent in our formulation. We identify a BRS-invariant BRS current (and thus nil-potent charge) and a conformally invariant ghost number current by incorporating the dynamical Weyl freedom explicitly. The formal path integral construction of various composite operators is also checked by using the operator product technique. Implications of these BRS analyses on possible non-critical string theories at d<26 or d<10 are briefly discussed. (author)

  16. Quantitative Interpretation of Gravity Anomaly Data in Geothermal Field Seulawah Agam, Aceh Besar

    Directory of Open Access Journals (Sweden)

    Aprillino Wangsa

    2018-01-01

    Keywords: Gravity Method, Density, Grav2DC, Geothermal System, Seulawah Agam REFERENSI Bennett, J.D., dkk. 1981. Peta Geologi Lembar Banda Aceh, Sumatera. Bandung: Pusat Penelitian dan Pengembangan Geologi. Hidayat, N dan Basid, A. 2011. Analisis Anomali Gravitasi Sebagai Acuan Dalam Penentuan Struktur Geologi Bawah Permukaan dan Potensi Geothermal, Jurnal Neutrino, 4.1,p-36. Muzakir. 2014. Investigasi Struktur 2D Lapangan Panasbumi Seulawah Agam Berdasarkan Data Pengukuran Magnetotellurik. Skripsi. Universitas Syiah Kuala, Banda Aceh. Saptadji, N. M. 2001. Teknik Panas Bumi. Departemen Teknik Perminyakan Fakultas Ilmu Kebumian dan Teknologi Mineral. Institut Teknologi Bandung: Bandung. Yu, G., He, Z. X., Hu, Z.Z., borbergsdottir, I. M., Strack, K. –M., dan Tulinius, H.2009. Geothermal Exploration Using MT and Gravity Techniques at Szentlorinc Area in Hungary - SEG 2009 International Expoloration and Annuad Meeting. Houston. P-4333

  17. Simplifications in lagrangian BV quantization exemplified by the anomalies of chiral W3 gravity

    International Nuclear Information System (INIS)

    Vandoren, S.; Proeyen, A. van

    1994-01-01

    The Batalin-Vilkovisky (BV) formalism is a useful framework to study gauge theories. We summarize a simple procedure to find a gauge-fixed action in this language and a way to obtain one-loop anomalies. Calculations involving the antifields can be greatly simplified by using a theorem on the antibracket cohomology. The latter is based on properties of a ''Koszul-Tate differential'', namely its acyclicity and nilpotency. We present a new proof for this acyclicity, respecting locality and covariance of the theory. This theorem then implies that consistent higher ghost terms in various expressions exist, and it avoids tedious calculations. This is illustrated in chiral W 3 gravity. We compute the one-loop anomaly without terms of negative ghost number. Then the mentioned theorem and the consistency condition imply that the full anomaly is determined up to local counterterms. Finally we show how to implement background charges into the BV language in order to cancel the anomaly with the appropriate counterterms. Again we use the theorem to simplify the calculations, which agree with previous results. (orig.)

  18. Gravity anomalies and crustal structure of the western continental margin off Goa and Mulki, India

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Rao, D.G.; Ramprasad, T.; KameshRaju, K.A.; Rao, M.G.

    !,..,_<:, :-... ,, : ,' '; ,~ ", ,, Fig. 4. Stacked free-air gravity anomalies plotted perpendicular to the survey, tracks. ,4 ° 'C )R 7~E 252 V SLiBRAHMANYAM ET AE 72 = N 14 = , 1 "~ \\ ~ ; ; ',, , , ; ~- . .. "loQom ! ' " , ~ ,~.~,,, y Ill : ,~,~ - , ,,~,,,. -o... O| I I ....- I I I I I I I I I -~ ," .... ~ _ ,-Sea Bottom J { I • .L / ~--| I n J~ t ~ n-750m ,' f ~ ,I I ~ I \\ ILl /s 2.0 B ~k~/~ m 3.0- -/~ 4.0- 5.0, Fig. 7. Seismic sections showing the subsurface highs, bathymetric highs...

  19. Lithospheric stretching and the long wavelength free-air gravity anomaly of the Eastern Continental margin of India and the 85 degree E Ridge, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Rajesh, S.; Majumdar, T.J.; Krishna, K.S.

    Or as envisaged, was it originated from the Crozet hotspot We address these issues by using satellite altimeter-derived gravity anomaly and its analytical upward continuation anomalies with forward modeling of ship-borne data. Results on analytical continuation...

  20. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    International Nuclear Information System (INIS)

    Chang, Lay Nam; Soo Chopin

    2003-01-01

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions

  1. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Lay Nam [Department of Physics, Virginia Tech., Blacksburg, VA 24061-0435 (United States); Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2003-04-07

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions.

  2. Gravity anomalies and flexure of the lithosphere at the Middle Amazon Basin, Brazil

    Science.gov (United States)

    Nunn, Jeffrey A.; Aires, Jose R.

    1988-01-01

    The Middle Amazon Basin is a large Paleozoic sedimentary basin on the Amazonian craton in South America. It contains up to 7 km of mainly shallow water sediments. A chain of Bouguer gravity highs of approximately +40 to +90 mGals transects the basin roughly coincident with the axis of maximum thickness of sediment. The gravity highs are flanked on either side by gravity lows of approximately -40 mGals. The observed gravity anomalies can be explained by a steeply sided zone of high density in the lower crust varying in width from 100 to 200 km wide. Within this region, the continental crust has been intruded/replaced by more dense material to more than half its original thickness of 45-50 km. The much wider sedimentary basin results from regional compensation of the subsurface load and the subsequent load of accumulated sediments by flexure of the lithosphere. The observed geometry of the basin is consistent with an elastic lithosphere model with a mechanical thickness of 15-20 km. Although this value is lower than expected for a stable cratonic region of Early Proterozoic age, it is within the accepted range of effective elastic thicknesses for the earth. Rapid subsidence during the late Paleozoic may be evidence of a second tectonic event or lithospheric relaxation which could lower the effective mechanical thickness of the lithosphere. The high-density zone in the lower crust, as delineated by gravity and flexural modeling, has a complex sinuous geometry which is narrow and south of the axis of maximum sediment thickness on the east and west margins and wide and offset to the north in the center of the basin. The linear trough geometry of the basin itself is a result of smoothing by regional compensation of the load in the lower crust.

  3. Anomalies

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1985-08-01

    Anomalies have a diverse impact on many aspects of physical phenomena. The role of anomalies in determining physical structure from the amplitude for π 0 decay to the foundations of superstring theory will be reviewed. 36 refs

  4. Satellite traces, range spread-F occurrence, and gravity wave propagation at the southern anomaly crest

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, M.A. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Pezzopane, M.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Ezquer, R.G. [Universidad Tecnologica Nacional, Tucuman (Argentina). CIASUR, Facultad Regional Tucuman; Universidad Nacional de Tucuman (Argentina). Lab. de Ionosfera; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina)

    2010-07-01

    Range spread-F (RSF) and occurrence of ''satellite'' traces prior to RSF onset were studied at the southern peak of the ionospheric equatorial anomaly (EA). Ionograms recorded in September 2007 at the new ionospheric station of Tucuman, Argentina (26.9 S, 294.6 E, dip latitude 15.5 S), by the Advanced Ionospheric Sounder (AIS) developed at the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were considered. Satellite traces (STs) are confirmed to be a necessary precursor to the appearance of an RSF trace on the ionograms. Moreover, an analysis of isoheight contours of electron density seems to suggest a relationship between RSF occurrence and gravity wave (GW) propagation. (orig.)

  5. Implications of the Utopia Gravity Anomaly for the Resurfacing of the Northern Plains of Mars

    Science.gov (United States)

    Banerdt, W. B.

    2004-01-01

    Whereas the surface units of the northern plain of Mars generally exhibit ages ranging from late Hesperian to Amazonian, interpretation of precise topographic measurements indicate that the age of the underlying "basement" is early Noachian, or almost as old as the southern highlands. This suggests that widespread but relatively superficial resurfacing has occurred throughout the northern plains since the end of early heavy bombardment. In this abstract I examine some of the possible implications of the subsurface structure inferred for the Utopia basin from gravity data on the nature of this resurfacing. The large, shallow, circular depression in Utopia Planitia has been identified as a huge impact basin, based on both geological evidence and detailed analysis of MOLA topography. Its diameter (approx. 3000 km) is equivalent to that of the Hellas basin, as is its inferred age (early Noachian). However, whereas Hellas is extremely deep with rough terrain and large slopes, the Utopia basin is a smooth, shallow, almost imperceptible bowl. Conversely, Utopia displays one of the largest (non-Tharsis-related) positive geoid anomalies on Mars, in contrast to a much more subdued negative anomaly over Hellas.

  6. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    Science.gov (United States)

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-09-01

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes.

  7. Development of the negative gravity anomaly of the 85 degrees E Ridge, northeastern Indian Ocean – A process oriented modelling approach

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Radhakrishna, M.; Krishna, K.S.; Majumdar, T.J.

    Te value. Entire process is repeated for different Te values ranging from 0 to 25 km, until a good fit is obtained between the observed and calculated gravity anomalies considering RMS error as well as amplitude and wavelength of the anomalies... as the goodness of fit. The model parameters used in the computations are given in table 1. 5. Crustal structure and elastic plate thickness (Te) beneath the ridge Following the approach described above, we have computed individual gravity anomalies contributed...

  8. Gravity anomalies and associated tectonic features over the Indian Peninsular Shield and adjoining ocean basins

    Science.gov (United States)

    Mishra, D. C.; Arora, K.; Tiwari, V. M.

    2004-02-01

    A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW-SE, NE-SW and N-S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35-40 km under the continent, which reduces to 22/20-24 km under the Bay of Bengal with thick sediments of 8-10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m 3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150-200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5-6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m 3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent-ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge

  9. The location and nature of the Telemzan High Ghadames basin boundary in southern Tunisia based on gravity and magnetic anomalies

    Science.gov (United States)

    Gabtni, H.; Jallouli, C.; Mickus, K. L.; Zouari, H.; Turki, M. M.

    2006-03-01

    Gravity and magnetic data were analyzed to add constraints on the location and nature of the Telemzan-Ghadames boundary (TGB) and structure of the Ghadames basin in southern Tunisia. TGB is the boundary between the thick sedimentary cover of the intracratonic Ghadames basin to the south and the thin sedimentary cover of the Saharan platform to the north. The upward continuation of the Bouguer gravity anomalies showed that the TGB is a regional geophysical feature that may have controlled the amount of sediment being deposited both north and south of the boundary and the tectonic environment in the region since Paleozoic time. To emphasize the shorter wavelength gravity and magnetic anomalies, a series of gray scale images of the directional horizontal gradients were constructed that determined a series of previously unknown east-west-trending gravity and magnetic anomalies south of 31.6°N that correspond to lineaments seen on a Landsat 7 image and the location of the TGB. Also, an edge-enhancement analysis illustrated the same linear gravity anomalies and showed the subbasins and uplifts within the Ghadames basin had source depths of between 0.5 and 3.4 km. A north-south trending gravity model showed that the TGB is a relatively gradual feature (possibly basement stepped down by relatively low-displacement faulting) controlling the subsidence of the main Ghadames basin and confirms the edge-enhancement analysis that subbasin S3 and uplift U1 are the main structural features within the Ghadames basin. The knowledge of basement architecture of the Ghadames basin is important for future petroleum exploration within this intracratonic basin.

  10. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    Science.gov (United States)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  11. Isostatic and Decompensative Gravity Anomalies of the Arabian Plate and Surrounding Regions: a Key for the Crustal Structure

    Science.gov (United States)

    Kaban, M. K.; El Khrepy, S.; Al-Arifi, N. S.

    2016-12-01

    The isostatic anomalies are often considered as one of the most useful correction of the gravity field for investigation of the upper crust structure in many practical applications. By applying this correction, a substantial part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomaly, can be removed. With this approach, it is not even necessary to know the deep density structure of the crust and upper mantle in details; it is sufficient to prescribe some type of compensation (regional vs. local) and a compensation depth. However, even when all the parameters are chosen correctly, this reduction of the gravity field does not show the full gravity effect of unknown anomalies in the crust. The last ones should be also compensated to some extent; therefore their impact is substantially reduced by the isostatic compensation. Long ago (Cordell et al., 1991), it was suggested a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. However, the decompensative correction is very sensitive to the parameters of the compensation scheme. In the present study we analyse the ways to choose these parameters and extend this approach by assuming a possibility for the regional compensation via elastic deformations of the lithosphere. Based on this technique, we estimate the isostatic and decompensative anomalies for the Arabian plate and surrounding regions. The parameters of the isostatic model are chosen based on previous studies. It was demonstrated that the decompensative correction is very significant at the mid-range wavelengths and may exceed 100 mGal, therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. The total amplitude of the decompensative anomalies reaches ±250 mGal, evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve

  12. Geoid and gravity anomaly data of conjugate regions of Bay of Bengal and Enderby Basin: New constraints on breakup and early spreading history between India and Antarctica

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Michael, L.; Bhattacharyya, R.; Majumdar, T.J.

    the anomalies. Since the magnetic anomalies in the western Enderby Basin have lower amplitude, Gaina et al. (2007) could not identify the anomalies with confidence and found difficulty to correlate the spreading history with that of the central and eastern... Geoid and gravity anomaly data of conjugate regions of Bay of Bengal and Enderby Basin – new constraints on breakup and early spreading history between India and Antarctica K.S. Krishna*, Laju Michael National Institute of Oceanography, Council...

  13. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    Science.gov (United States)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  14. New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data

    Science.gov (United States)

    Panet, I.; Chambodut, A.; Diament, M.; Holschneider, M.; Jamet, O.

    2006-09-01

    In this paper, we discuss the origin of superswell volcanism on the basis of representation and analysis of recent gravity and magnetic satellite data with wavelets in spherical geometry. We computed a refined gravity field in the south central Pacific based on the GRACE satellite GGM02S global gravity field and the KMS02 altimetric grid, and a magnetic anomaly field based on CHAMP data. The magnetic anomalies are marked by the magnetic lineation of the seafloor spreading and by a strong anomaly in the Tuamotu region, which we interpret as evidence for crustal thickening. We interpret our gravity field through a continuous wavelet analysis that allows to get a first idea of the internal density distribution. We also compute the continuous wavelet analysis of the bathymetric contribution to discriminate between deep and superficial sources. According to the gravity signature of the different chains as revealed by our analysis, various processes are at the origin of the volcanism in French Polynesia. As evidence, we show a large-scale anomaly over the Society Islands that we interpret as the gravity signature of a deeply anchored mantle plume. The gravity signature of the Cook-Austral chain indicates a complex origin which may involve deep processes. Finally, we discuss the particular location of the Marquesas chain as suggesting that the origin of the volcanism may interfere with secondary convection rolls or may be controlled by lithospheric weakness due to the regional stress field, or else related to the presence of the nearby Tuamotu plateau.

  15. Paleomagnetic determinations on Lanzarote from magnetic and gravity anomalies: Implications for the early history of the Canary Islands

    Science.gov (United States)

    Blanco-Montenegro, I.; Montesinos, F. G.; GarcíA, A.; Vieira, R.; VillalaíN, J. J.

    2005-12-01

    The Bouguer and aeromagnetic anomaly maps of Lanzarote show a gravity high and a dipolar magnetic anomaly over the central part of the island, indicating one isolated source. Assuming that the structure responsible for both anomalies is the same, a methodology has been designed to estimate the total magnetization vector of the source, which is interpreted as a large intrusive body (mafic core) positioned as a result of magma rising to the surface during the early stages of growth of Lanzarote. Considering its geometry to be known from a previous three-dimensional (3-D) gravity model, the approach proposed in this paper is based on the delineation of magnetic contacts through analysis of the horizontal gradient of the reduced-to-the-pole anomaly map, comparison between the gravity and the pseudogravity anomalies, and 3-D forward magnetic modeling. The total magnetization vector obtained by this method is defined by a module of 4.5 A m-1 and a direction D = -20° and I = 30°. Comparing the paleomagnetic pole, obtained from this direction, with the apparent polar wander path of Africa for the last 160 Myr, it is concluded that the main component of the total magnetization vector is probably a primary natural remanent magnetization (NRM) which could have been acquired between 60 and 100 Ma. This result suggests that the emplacement of magmas at shallow depths linked to the beginning of volcanism in Lanzarote took place during the Upper Cretaceous, thus providing the first evidence of a timeline for the early formative stages of this volcanic island.

  16. Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep-sea basins

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.

    Content-Type text/plain; charset=UTF-8 202 Interpretation of free-air gravity anomaly data for determining the crustal structure across the continental margins and aseismic ridges: Some examples from Indian continental margins and deep... will undertake either regional, reconnaissance or detail gravity surveys. We generally deal with free air gravity anomalies in oceans. The free air gravity anomalies mostly mimic the seabed configuration and at times, the deviation observed in the free air...

  17. New Bouguer Gravity Maps of Venezuela: Representation and Analysis of Free-Air and Bouguer Anomalies with Emphasis on Spectral Analyses and Elastic Thickness

    Directory of Open Access Journals (Sweden)

    Javier Sanchez-Rojas

    2012-01-01

    Full Text Available A new gravity data compilation for Venezuela was processed and homogenized. Gravity was measured in reference to the International Gravity Standardization Net 1971, and the complete Bouguer anomaly was calculated by using the Geodetic Reference System 1980 and 2.67 Mg/m3. A regional gravity map was computed by removing wavelengths higher than 200 km from the Bouguer anomaly. After the anomaly separation, regional and residual Bouguer gravity fields were then critically discussed in term of the regional tectonic features. Results were compared with the previous geological and tectonic information obtained from former studies. Gravity and topography data in the spectral domain were used to examine the elastic thickness and depths of the structures of the causative measured anomaly. According to the power spectrum analysis results of the gravity data, the averaged Moho depths for the massif, plains, and mountainous areas in Venezuela are 42, 35, and 40 km, respectively. The averaged admittance function computed from the topography and Free-Air anomaly profiles across Mérida Andes showed a good fit for a regional compensation model with an effective elastic thickness of 15 km.

  18. Expansion of the South China Sea basin: Constraints from magnetic anomaly stripes, sea floor topography, satellite gravity and submarine geothermics

    Directory of Open Access Journals (Sweden)

    Xuezhong Yu

    2017-01-01

    Full Text Available The widely distributed E–W-trending magnetic anomaly stripes in the central basin and the N–E-trending magnetic anomaly stripes in the southwest sub-basin provide the most important evidence for Neogene expansion of the South China Sea. The expansion mechanism remains, however, controversial because of the lack of direct drilling data, non-systematic marine magnetic survey data, and irregular magnetic anomaly stripes with two obvious directions. For example, researchers have inferred different ages and episodes of expansion for the central basin and southwest sub-basin. Major controversy centers on the order of basinal expansion and the mechanism of expansion for the entire South China Sea basin. This study attempts to constrain these problems from a comprehensive analysis of the seafloor topography, magnetic anomaly stripes, regional aeromagnetic data, satellite gravity, and submarine geothermics. The mapped seafloor terrain shows that the central basin is a north-south rectangle that is relatively shallow with many seamounts, whereas the southwest sub-basin is wide in northeast, gradually narrows to the southwest, and is relatively deeper with fewer seamounts. Many magnetic anomaly stripes are present in the central basin with variable dimensions and directions that are dominantly EW-trending, followed by the NE-, NW- and NS-trending. Conversely such stripes are few in the southwest sub-basin and mainly NE-trending. Regional magnetic data suggest that the NW-trending Ailaoshan-Red River fault extends into the South China Sea, links with the central fault zone in the South China Sea, which extends further southward to Reed Tablemount. Satellite gravity data show that both the central basin and southwest sub-basin are composed of oceanic crust. The Changlong seamount is particularly visible in the southwest sub-basin and extends eastward to the Zhenbei seamount. Also a low gravity anomaly zone coincides with the central fault zone in the sub

  19. Model parameter estimations from residual gravity anomalies due to simple-shaped sources using Differential Evolution Algorithm

    Science.gov (United States)

    Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil

    2016-06-01

    An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of

  20. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    Plouff, Donald

    1992-01-01

    These gravity maps are part of a folio of maps of the Tonopah 1 degree by 2 degrees quadrangle, Nevada, prepared under the Conterminous United States Mineral Assessment Program. Each product of the folio is designated by a different letter symbol, starting with A, in the MF-1877 folio. The quadrangle encompasses an area of about 19,500 km2  in the west central part of Nevada.

  1. The Wallula fault and tectonic framework of south-central Washington, as interpreted from magnetic and gravity anomalies

    Science.gov (United States)

    Blakely, Richard J.; Sherrod, Brian; Weaver, Craig S.; Wells, Ray; Rohay, Alan C.

    2014-01-01

    The Yakima fold and thrust belt (YFTB) in central Washington has accommodated regional, mostly north-directed, deformation of the Cascadia backarc since prior to emplacement of Miocene flood basalt of the Columbia River Basalt Group (CRBG). The YFTB consists of two structural domains. Northern folds of the YFTB strike eastward and terminate at the western margin of a 20-mGal negative gravity anomaly, the Pasco gravity low, straddling the North American continental margin. Southern folds of the YFTB strike southeastward, form part of the Olympic–Wallowa lineament (OWL), and pass south of the Pasco gravity low as the Wallula fault zone. An upper crustal model based on gravity and magnetic anomalies suggests that the Pasco gravity low is caused in part by an 8-km-deep Tertiary basin, the Pasco sub-basin, abutting the continental margin and concealed beneath CRBG. The Pasco sub-basin is crossed by north-northwest-striking magnetic anomalies caused by dikes of the 8.5 Ma Ice Harbor Member of the CRBG. At their northern end, dikes connect with the eastern terminus of the Saddle Mountains thrust of the YFTB. At their southern end, dikes are disrupted by the Wallula fault zone. The episode of NE–SW extension that promoted Ice Harbor dike injection apparently involved strike-slip displacement on the Saddle Mountains and Wallula faults. The amount of lateral shear on the OWL impacts the level of seismic hazard in the Cascadia region. Ice Harbor dikes, as mapped with aeromagnetic data, are dextrally offset by the Wallula fault zone a total of 6.9 km. Assuming that dike offsets are tectonic in origin, the Wallula fault zone has experienced an average dextral shear of 0.8 mm/y since dike emplacement 8.5 Ma, consistent with right-lateral stream offsets observed at other locations along the OWL. Southeastward, the Wallula fault transfers strain to the north-striking Hite fault, the possible location of the M 5.7 Milton-Freewater earthquake in 1936.

  2. Clarifying the interplate main tectonic elements of Western Anatolia, Turkey by using GNSS velocities and Bouguer gravity anomalies

    Science.gov (United States)

    Çırmık, Ayça; Pamukçu, Oya

    2017-10-01

    In this study, the GNSS and gravity data were processed and compared together for examining the continental structures of the Western Anatolia region which has very complicated tectonism. The GNSS data of three national projects were processed and GNSS velocities were found as approximately 25 mm per year towards southwest with respect to the Eurasia fixed frame. In order to investigate the interplate motions of the region, the Anatolian and Aegean block solutions were calculated and the differences in directions and amplitudes of velocities were observed particularly in the Anatolian block solution. Due to the Anatolian block solutions, the study area was grouped into three regions and compared with the tectonic structures as the first time for Western Anatolia by this study. Additionally, W-E and N-S relative GNSS solutions were obtained for observing the possible tectonic borders of the study area. Besides, 2nd order horizontal derivative and low-pass filter methods were applied to Bouguer gravity anomalies and the results of the gravity applications and the changes on crustal-mantle interface were compared with the GNSS horizontal velocities.

  3. Far-zone contributions of airborne gravity anomalies' upward/downward continuation

    Directory of Open Access Journals (Sweden)

    Boyang Zhou

    2016-11-01

    Full Text Available Airborne gravimetry has become a vital technique in local gravity field approximation, and upward/downward continuation of gravity data is a key process of airborne gravimetry. In these procedures, the integral domain is divided into two parts, namely the near-zone and the far-zone. The far-zone contributions are approximated by the truncation coefficients and a global geo-potential model, and their values are controlled by several issues. This paper investigates the effects of flight height, the size of near-zone cap, and Remove-Compute-Restore (RCR technique upon far-zone contributions. Results show that at mountainous area the far-zone contributions can be ignored when EIGEN-6C of 360 degree is removed from the gravity data, together with a near-zone cap of 1° and a flight height less than 10 km, while at flat area EIGEN-6C of 180 degree is feasible.

  4. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  5. Satellite gravity anomalies and crustal features of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, D.G.; Krishna, K.S.; Neprochnov, Y.P.; Grinko, B.N.

    -air anomalies due to volcanic constructs that trend in arcuate shape from north to south parallel to 82.5 degrees E are noted as southern continuity of the 85 degrees E Ridge, which terminates at the Afanasy Nikitin seamount. Change in rheology of the crustal...

  6. STUDY OF GAS POTENCY BASED ON GRAVITY ANOMALY MODELING AND SEISMIC PROFILE ANALYSIS AT BANGGAI-SULA BASIN

    Directory of Open Access Journals (Sweden)

    Ediar Usman

    2017-07-01

    Full Text Available Banggai-Sula Basin is one of the basins with character of the micro-continent derived from northern part of Australia. Some traces the migration in the central part of Papua are slate, schist, and gneiss, current movement is facilitated by the Sorong Fault, which runs from the northern part of Papua to eastern part of Sulawesi. Results of gravity anomaly model (2D and 3D, seepage distribution, seismic and fields existing of oil and gas production in the western part of the Banggai-Sula Basin obtained a new prospect area in the northern part of Peleng Island, western part of Banggai Island, southern part of Banggai-Taliabu Islands, western and eastern part of Sulabesi Island. The new prospect area is reflected in the centre with form of the low morphology on gravity model and prospect trap on seismic data in the western part of Tolo Bay. Results of chemical analysis on the source rock of Buya Formation on Tmax vs Hydrogen Index (Tmax vs HI Diagram shows the type III kerogen quality and the Oxygen Index vs Hydrogen Index (OI vs HI Diagram shows the gas prone Type II, so that giving the impression that this area has the potential to containing the gas. The quality of the gas is included in the category of immature to mature type.

  7. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms.

    Science.gov (United States)

    Cady, J.W.

    1980-01-01

    An equation is derived for the vertical gravity field due to a homogeneous body with polygonal cross‐section and finite strike‐length. The equation can be separated into the two‐dimensional (2-D) terms of Talwani et al. (1959) and exact terms for the contributions of the ends of the prism. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973), who coined the term “two‐and‐a‐half dimensional” (2 1/2-D) to describe the geometry. Magnetic intensities are expressed as a vector sum, from which the common dot product formulation can be obtained by binomial expansion.

  8. Study of high-resolution satellite geoid and gravity anomaly data over the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Majumdar, T. J.; Krishna, K.S.; Chatterjee, S.; Bhattacharya, R.; Michael, L.

    research vessels. Solid line shows location of the profile along which interpreted seismic results and var i- ous products of satellite gravity data are shown in Fi gure 4. RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 90, NO. 2 , 25 JANUARY 2006... depth le v els. Location o f the profile is shown with solid line in Figure 3. of the Bay of Bengal can be reasonably co n sidered in mapping the structural features of the region. Thereby the results can be used to study the tectonics...

  9. Preliminary isostatic residual gravity anomaly map of Paso Robles 30 x 60 minute quadrangle, California

    Science.gov (United States)

    McPhee, D.K.; Langenheim, V.E.; Watt, J.T.

    2011-01-01

    This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.

  10. Reconcile muon g-2 anomaly with LHC data in SUGRA with generalized gravity mediation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [Department of Physics and Engineering, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Wang, Wenyu [Institute of Theoretical Physics, College of Applied Science, Beijing University of Technology,Beijing 100124 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China)

    2015-06-12

    From generalized gravity mediation we build a SUGRA scenario in which the gluino is much heavier than the electroweak gauginos at the GUT scale. We find that such a non-universal gaugino scenario with very heavy gluino at the GUT scale can be naturally obtained with proper high dimensional operators in the framework of SU(5) GUT. Then, due to the effects of heavy gluino, at the weak scale all colored sparticles are heavy while the uncolored sparticles are light, which can explain the Brookhaven muon g−2 measurement while satisfying the collider constraints (both the 125 GeV Higgs mass and the direct search limits of sparticles) and dark matter requirements. We also find that, in order to explain the muon g−2 measurement, the neutralino dark matter is lighter than 200 GeV in our scenario, which can be mostly covered by the future Xenon1T experiment.

  11. Discovering Wavelets

    CERN Document Server

    Aboufadel, Edward

    1999-01-01

    An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets

  12. Gravity and Magnetic Anomaly Interpretations and 2.5D Cross-Section Models over the Border Ranges Fault System and Aleutian Subduction Zone, Alaska

    Science.gov (United States)

    Mankhemthong, N.; Doser, D. I.; Baker, M. R.; Kaip, G.; Jones, S.; Eslick, B. E.; Budhathoki, P.

    2011-12-01

    Quaternary glacial covers and lack of dense geophysical data on the Kenai Peninsula cause a location and geometry of the Border Ranges fault system (BRFS) within a recent forearc-accretionary boundary of Aleutian subduction zone in southern Alaska are unclear. Using new ~1,300 gravity collections within the Anchorage and Kenai Peninsula regions complied with prior 1997 gravity and aeromagnetic data help us better imaging these fault and the subduction structures. Cook Inlet forearc basin is corresponded by deep gravity anomaly lows; basin boundaries are characterized by a strong gravity gradient, where are considered to be traces of Border Ranges fault system on the east and Castle Mountain and Bruin Bay fault system on the west and northwest of the forearc basin respectively. Gravity anomaly highs over accreted rocks generally increase southeastward to the Aleutian trench, but show a gravity depression over the Kenai Mountains region. The lineament between gravity high and low in the same terrenes over the Kenai Peninsula is may be another evidence to determine the Southern Edge of the Yakutat Microplate (SEY) as inferred by Eberhart-Phillips et al. (2006). Our 2.5-D models illustrate the main fault of the BRFS dips steeply toward the west with a downslip displacement. Gravity and Magnetic anomaly highs, on the east of the BRFS, probably present a slice of the ultramafic complex emplaced by faults along the boundary of the forearc basin and accretionary wedge terranes. Another magnetic high beneath the basin in the southern forearc basin support a serpentiznied body inferred by Saltus et al. (2001), with a decreasing size toward the north. Regional density-gravity models show the Pacific subducting slab beneath the foreacre-arc teranes with a gentle and flatted dip where the subducting plate is located in north of SEY and dips more steeply where it is located on the south of SEY. The gravity depression over the accreted terrene can be explained by a density low

  13. Singular value decomposition (SVD for extraction of gravity anomaly associated with gold mineralization in Tongshi gold field, Western Shandong Uplifted Block, Eastern China

    Directory of Open Access Journals (Sweden)

    B. B. Zhao

    2011-02-01

    Full Text Available A singular value decomposition (SVD program on MATLAB platform was effectively used to handle gravity signals for the Tongshi gold field. Firstly, the gravity signals were decomposed into different eigenimages with the help of singular value decomposition method (SVD. Secondly, the thresholds between the eigenvalues reflecting different layers of ore-controlling factors were established by multi-fractal method. Finally images reflecting different layers of ore-controlling factors were rebuilt. This yielded two layers of two-dimensional singular value images that depict regional and local ore-controlling factors, respectively.

    1. The regional ore-controlling factor is a saddle valley with the gravity anomaly values varying from −55 to 51 μm s−2 on the NW trending swell with the gravity anomaly values varying from −55 to 567 μm s−2 on the SW side of the Mesozoic volcanic sedimentary basin with the gravity anomaly values varying from −56 to −974 μm s−2. The saddle valley might be tectonically an extensional area where the Tongshi complex pluton and all gold deposits are located and thus this area is favorable for gold deposits.


    2. The local ore-controlling factor is the Tongshi complex pluton with a negative circular gravity anomaly varying from −339 to −11 μm s−2 and the ring contact metasomatic mineralization zone around the Tongshi complex with the positive gravity anomaly varying from 37 to 345 μm s−2. The skarn and porphyry types of gold deposits are located within the complex pluton and the Carlin and cryptobreccia types of gold deposits are located within the contact metasomatic mineralization zone. Thus both of them are potential areas for gold deposits.


    3. The Tongshi gold field exhibits a typical complexity with multi-layers of ore-controlling factors.

  14. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  15. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    Science.gov (United States)

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  16. Magnetic investigation and 2½ D gravity profile modelling across the Beattie magnetic anomaly in the southeastern Karoo Basin, South Africa

    Science.gov (United States)

    Baiyegunhi, Christopher; Gwavava, Oswald

    2017-03-01

    The southeastern Karoo Basin is considered to be one of the most prospective areas for shale gas exploration in South Africa. An interesting magnetic anomaly, the Beattie magnetic anomaly (BMA), and geologic intrusions are seen on the magnetic map. To date, the source of the BMA and interconnectivity of the igneous intrusions are not well understood. In this study, we investigate the interconnectivity of the igneous intrusions and possible location of the source of the BMA using gravity and magnetic methods. The gravity model results showed that igneous intrusions are interconnected at depth, which probably pose threat by increasing the risk of fracking the Karoo for shale gas exploration. The magnetic results revealed that the BMA becomes stronger with depth. The average depths to the top of the shallow and deep magnetic sources were estimated to be approximately 0.6 and 15 km, respectively.

  17. Seismic b-values and its correlation with seismic moment and Bouguer gravity anomaly over Indo-Burma ranges of northeast India: Tectonic implications

    Science.gov (United States)

    Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab

    2018-03-01

    b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.

  18. OCT structure, COB location and magmatic type of the S Angolan & SE Brazilian margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    Science.gov (United States)

    Cowie, Leanne; Kusznir, Nick; Horn, Brian

    2014-05-01

    Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with

  19. gravity

    Indian Academy of Sciences (India)

    We study the cosmological dynamics for R p exp( λ R ) gravity theory in the metric formalism, using dynamical systems approach. Considering higher-dimensional FRW geometries in case of an imperfect fluid which has two different scale factors in the normal and extra dimensions, we find the exact solutions, and study its ...

  20. Gravity Anomalies in the Northern Hawaiian Islands: Evidence for an Alternative Magma Chamber on Kauai and a Conjoined Niihau-Kauai Island

    Science.gov (United States)

    Flinders, A. F.; Ito, G.; Garcia, M.; Kim, S.; Appelgate, B.

    2008-12-01

    The shield stage evolution of the islands of Kauai and Niihau are poorly understood. Previous land-based gravity surveys provide only a coarse constraint on the observed gravitational field. Questions as to whether the island of Kauai was formed by a single or multiple shields and the developmental relationship between these neighboring islands are still debated. Our new land-based gravity survey of Kauai and ship-board gravity surveys around both islands identified large complete Bouguer gravitational anomalies under Kauai's Lihue Basin and offshore in the Kaulakahi Channel, a 30-km-long bathymetric ridge connecting the two islands. These gravitational highs are consistent in size and magnitude with those of other Hawaiian islands and imply local zones of high density crust, most likely attributed to magmatic intrusions; e.g. former magma chambers, or rift zones. The Lihue Basin anomaly observed is offset 20 km east from the geologically mapped caldera region. This offset implies either the unlikely case that the shield stage plumbing system connecting the magma chamber and caldera could have been inclined by up to 75 degrees from the vertical, or that the currently mapped caldera is a late feature, unrelated to shield volcanism. The location of the gravitational anomaly, in the Kaulakahi Channel, 20 km east of Niihau is consistent with geologic mapping, which indicates that Niihau is a remnant of an ancient shield volcano centered east of the island. The proximity of the Niihau gravitational anomaly 10 km from the western edge of Kauai supports the hypothesis that the two volcanoes were part of the same island.

  1. Wavelet analysis

    CERN Document Server

    Cheng, Lizhi; Luo, Yong; Chen, Bo

    2014-01-01

    This book could be divided into two parts i.e. fundamental wavelet transform theory and method and some important applications of wavelet transform. In the first part, as preliminary knowledge, the Fourier analysis, inner product space, the characteristics of Haar functions, and concepts of multi-resolution analysis, are introduced followed by a description on how to construct wavelet functions both multi-band and multi wavelets, and finally introduces the design of integer wavelets via lifting schemes and its application to integer transform algorithm. In the second part, many applications are discussed in the field of image and signal processing by introducing other wavelet variants such as complex wavelets, ridgelets, and curvelets. Important application examples include image compression, image denoising/restoration, image enhancement, digital watermarking, numerical solution of partial differential equations, and solving ill-conditioned Toeplitz system. The book is intended for senior undergraduate stude...

  2. Moho depth variations over the Maldive Ridge and adjoining Arabian and Central Indian Basins, Western Indian Ocean, from three dimensional inversion of gravity anomalies

    Science.gov (United States)

    Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.

    2018-05-01

    Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between

  3. OCT structure, COB location and magmatic type of the SE Brazilian & S Angolan margins from integrated quantitative analysis of deep seismic reflection and gravity anomaly data

    Science.gov (United States)

    Cowie, L.; Kusznir, N. J.; Horn, B.

    2013-12-01

    Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are

  4. A case study of forward calculations of the gravity anomaly by spectral method for a three-dimensional parameterised fault model

    Science.gov (United States)

    Xu, Weimin; Chen, Shi

    2018-02-01

    Spectral methods provide many advantages for calculating gravity anomalies. In this paper, we derive a kernel function for a three-dimensional (3D) fault model in the wave number domain, and present the full Fortran source code developed for the forward computation of the gravity anomalies and related derivatives obtained from the model. The numerical error and computing speed obtained using the proposed spectral method are compared with those obtained using a 3D rectangular prism model solved in the space domain. The error obtained using the spectral method is shown to be dependent on the sequence length employed in the fast Fourier transform. The spectral method is applied to some examples of 3D fault models, and is demonstrated to be a straightforward and alternative computational approach to enhance computational speed and simplify the procedures for solving many gravitational potential forward problems involving complicated geological models. The proposed method can generate a great number of feasible geophysical interpretations based on a 3D model with only a few variables, and can thereby improve the efficiency of inversion.

  5. Wavelet basics

    CERN Document Server

    Chan, Y T

    1995-01-01

    Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...

  6. High-resolution residual geoid and gravity anomaly data of the northern Indian Ocean - An input to geological understanding

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, K.M.; Rajesh, S.; Majumdar, T.J.; Rao, G.S.; Radhakrishna, M.; Krishna, K.S.; Rajawat, A.S.

    ') geoid anomaly map of the northern Indian Ocean generated from the altimeter data obtained from Geodetic Missions of GEOSAT and ERS-1 along with ERS-2, TOPEX/POSIDEON and JASON satellites is presented. The geoid map of the Indian Ocean is dominated by a...

  7. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  8. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  9. Calculation of gravity and magnetic anomalies along profiles with end corrections and inverse solutions for density and magnetization

    Science.gov (United States)

    Cady, John W.

    1977-01-01

    An equation derived for the vertical gravity field due to a body with polygonal cross section and finite strike length.  The equations consists of the 2-dimensional equation of Talwani, Worzel, and Landisman (1959), with the addition of end corrections.  Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973).  They coined the term "2 1/2-dimensional" to describe the geometry.

  10. Wavelet analysis for nonstationary signals

    International Nuclear Information System (INIS)

    Penha, Rosani Maria Libardi da

    1999-01-01

    Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect

  11. Lithospheric thickness jumps at the S-Atlantic continental margins from satellite gravity data and modelled isostatic anomalies

    Science.gov (United States)

    Shahraki, Meysam; Schmeling, Harro; Haas, Peter

    2018-01-01

    Isostatic equilibrium is a good approximation for passive continental margins. In these regions, geoid anomalies are proportional to the local dipole moment of density-depth distributions, which can be used to constrain the amount of oceanic to continental lithospheric thickening (lithospheric jumps). We consider a five- or three-layer 1D model for the oceanic and continental lithosphere, respectively, composed of water, a sediment layer (both for the oceanic case), the crust, the mantle lithosphere and the asthenosphere. The mantle lithosphere is defined by a mantle density, which is a function of temperature and composition, due to melt depletion. In addition, a depth-dependent sediment density associated with compaction and ocean floor variation is adopted. We analyzed satellite derived geoid data and, after filtering, extracted typical averaged profiles across the Western and Eastern passive margins of the South Atlantic. They show geoid jumps of 8.1 m and 7.0 m for the Argentinian and African sides, respectively. Together with topography data and an averaged crustal density at the conjugate margins these jumps are interpreted as isostatic geoid anomalies and yield best-fitting crustal and lithospheric thicknesses. In a grid search approach five parameters are systematically varied, namely the thicknesses of the sediment layer, the oceanic and continental crusts and the oceanic and the continental mantle lithosphere. The set of successful models reveals a clear asymmetry between the South Africa and Argentine lithospheres by 15 km. Preferred models predict a sediment layer at the Argentine margin of 3-6 km and at the South Africa margin of 1-2.5 km. Moreover, we derived a linear relationship between, oceanic lithosphere, sediment thickness and lithospheric jumps at the South Atlantic margins. It suggests that the continental lithospheres on the western and eastern South Atlantic are thicker by 45-70 and 60-80 km than the oceanic lithospheres, respectively.

  12. Analysis of gravity anomalies in the Ulleung Basin (East Sea/Sea of Japan) and its implications for the crustal structure of rift-dominated back-arc basin

    Science.gov (United States)

    Kim, Yoon-Mi; Lee, Sang-Mook

    2018-01-01

    The Ulleung Basin (UB), one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental-rifting end-member of back-arc basin system, but is much less understood compared to the nearby Yamato Basin (YB) and Japan Basin (JB). This study examines the gravity anomalies of the UB since the variation in crustal thickness can provide important insights on the mode of extension during basin opening. Our analysis shows that the Moho depth (from the sea surface) varies from 16 km at the basin center to 22 km at the edges. However, within the central part of the basin, the crustal thickness (not including sediment) is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. Our finding of anomalous but uniformly thick crust is consistent with the recent seismic results from the YB (14 km on average). A mantle residual gravity anomaly high (∼20 mGal) exists in the northeastern part of the UB. This feature is interpreted as the location of maximum extension (slightly thinner crust by ∼1 km). Together with another moderate gravity high to the southwest, the two anomalies form a NNE-SSW line, which corresponds to the direction of the major tectonic structures of the Korean Peninsula. We argue that the a massive magmatic emplacement took place extensively in the lower crust of the UB during the opening, significantly increasing its overall thickness to almost twice as that of the JB where a mid-ocean-ridge style seafloor spreading occurred. Two important post-opening processes took place after the formation of uniformly thick crust: post-rift volcanic intrusions in the north, especially in its northeast sections but had little effect on the residual gravity anomaly itself, and the deflection of crust in response to differential sediment loading towards the south, producing the median high in the basement in response to the flexural bending. We also conducted a simple test to

  13. Certain problems concerning wavelets and wavelets packets

    International Nuclear Information System (INIS)

    Siddiqi, A.H.

    1995-09-01

    Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs

  14. Certain problems concerning wavelets and wavelets packets

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, A H

    1995-09-01

    Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs.

  15. Lunar floor-fractured craters as magmatic intrusions: Geometry, modes of emplacement, associated tectonic and volcanic features, and implications for gravity anomalies

    Science.gov (United States)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2015-03-01

    , the intrusion concentrates bending primarily at the periphery, resulting in a flat, tabular intrusion. We predict that this process will result in concentric fractures over the region of greatest bending. This location is close to the crater wall in large, flat-floored craters, as observed in the crater Humboldt, and interior to the crater over the domed floor in smaller craters, as observed in the crater Vitello. A variety of volcanic features are predicted to be associated with the solidification and degassing of the intrusion; these include: (1) surface lava flows associated with concentric fractures (e.g., in the crater Humboldt); (2) vents with no associated pyroclastic material, from the deflation of under-pressurized magmatic foam (e.g., the crater Damoiseau); and (3) vents with associated pyroclastic deposits from vulcanian eruptions of highly pressurized magmatic foam (e.g., the crater Alphonsus). The intrusion of basaltic magma beneath the crater is predicted to contribute a positive component to the Bouguer gravity anomaly; we assess the predicted Bouguer anomalies associated with FFCs and outline a process for their future interpretation. We conclude that our proposed mechanism serves as a viable formation process for FFCs and accurately predicts numerous morphologic, morphometric, and geophysical features associated with FFCs. These predictions can be further tested using GRAIL (Gravity Recovery and Interior Laboratory) data.

  16. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  17. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  18. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  19. Delineation of Urban Active Faults Using Multi-scale Gravity Analysis in Shenzhen, South China

    Science.gov (United States)

    Xu, C.; Liu, X.

    2015-12-01

    In fact, many cities in the world are established on the active faults. As the rapid urban development, thousands of large facilities, such as ultrahigh buildings, supersized bridges, railway, and so on, are built near or on the faults, which may change the balance of faults and induce urban earthquake. Therefore, it is significant to delineate effectively the faults for urban planning construction and social sustainable development. Due to dense buildings in urban area, the ordinary approaches to identify active faults, like geological survey, artificial seismic exploration and electromagnetic exploration, are not convenient to be carried out. Gravity, reflecting the mass distribution of the Earth's interior, provides a more efficient and convenient method to delineate urban faults. The present study is an attempt to propose a novel gravity method, multi-scale gravity analysis, for identifying urban active faults and determining their stability. Firstly, the gravity anomalies are decomposed by wavelet multi-scale analysis. Secondly, based on the decomposed gravity anomalies, the crust is layered and the multilayer horizontal tectonic stress is inverted. Lastly, the decomposed anomalies and the inverted horizontal tectonic stress are used to infer the distribution and stability of main active faults. For validating our method, a case study on active faults in Shenzhen City is processed. The results show that the distribution of decomposed gravity anomalies and multilayer horizontal tectonic stress are controlled significantly by the strike of the main faults and can be used to infer depths of the faults. The main faults in Shenzhen may range from 4km to 20km in the depth. Each layer of the crust is nearly equipressure since the horizontal tectonic stress has small amplitude. It indicates that the main faults in Shenzhen are relatively stable and have no serious impact on planning and construction of the city.

  20. Adaptive Wavelet Transforms

    Energy Technology Data Exchange (ETDEWEB)

    Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  1. Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data

    Science.gov (United States)

    2012-09-01

    We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity data provide...relocation analysis. We use both free-air and Bouguer gravity anomalies derived from the global gravity model of the GRACE satellite mission. The gravity...topographic relief this effect needs to be removed; thus, we converted free-air anomalies into Bouguer anomalies assuming a standard density for crustal rocks

  2. Gravity anomalies over the central Indian ridge between 3 degree S and 11 degree S, Indian Ocean: Segmentation and crustal structure

    Digital Repository Service at National Institute of Oceanography (India)

    Samudrala, K.; KameshRaju, K.A; RamaRao, P.

    High-resolution shipboard geophysical investigations along the Indian Ocean ridge system are sparse especially over the Carlsberg and Central Indian ridges. In the present study, the shipboard gravity and multibeam bathymetry data acquired over a...

  3. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    Science.gov (United States)

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  4. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  5. Holographic entanglement entropy and gravitational anomalies

    NARCIS (Netherlands)

    Castro, A.; Detournay, S.; Iqbal, N.; Perlmutter, E.

    2014-01-01

    We study entanglement entropy in two-dimensional conformal field theories with a gravitational anomaly. In theories with gravity duals, this anomaly is holographically represented by a gravitational Chern-Simons term in the bulk action. We show that the anomaly broadens the Ryu-Takayanagi minimal

  6. Crustal structure beneath Beijing and its surrounding regions derived from gravity data

    Science.gov (United States)

    Jiang, Wenliang; Zhang, Jingfa; Lu, Xiaocui; Lu, Jing

    2011-06-01

    In this paper we use gravity data to study fine crustal structure and seismogenic environment beneath Beijing and its surrounding regions. Multi-scale wavelet analysis method is applied to separating gravity fields. Logarithmic power spectrum method is also used to calculate depth of gravity field source. The results show that the crustal structure is very complicated beneath Beijing and its surrounding areas. The crustal density exhibits laterally inhomogeneous. There are three large scale tectonic zones in North China, i.e., WNW-striking Zhangjiakou-Bohai tectonic zone (ZBTZ), NE-striking Taihang piedmont tectonic zone (TPTZ) and Cangxian tectonic zone (CTZ). ZBTZ and TPTZ intersect with each other beneath Beijing area and both of them cut through the lithosphere. The upper and middle crusts consist of many small-scale faults, uplifts and depressions. In the lower crust, these small-scale tectonic units disappear gradually, and they are replaced by large-scale tectonic units. In surrounding regions of Beijing, ZBTZ intersects with several other NE-striking tectonic units, such as Cangxian uplift, Jizhong depression and Shanxi Graben System (SGS). In west of Taihangshan uplift, gravity anomalies in upper and middle crusts are correlated with geological and topographic features on the surface. Compared with the crust, the structure is comparatively simple in uppermost mantle. Earthquakes mainly occurred in upper and middle crusts, especially in transitional regions between high gravity anomaly and low gravity anomaly. Occurrence of large earthquakes may be related to the upwelling of upper mantle and asthenosphere heat flow materials, such as Sanhe earthquake ( M S8.0) and Tangshan earthquake ( M S7.8).

  7. Wavelets in neuroscience

    CERN Document Server

    Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia

    2015-01-01

    This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...

  8. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  9. Wavelets, vibrations and scalings

    CERN Document Server

    Meyer, Yves

    1997-01-01

    Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...

  10. Wavelets in scientific computing

    DEFF Research Database (Denmark)

    Nielsen, Ole Møller

    1998-01-01

    the FWT can be used as a front-end for efficient image compression schemes. Part II deals with vector-parallel implementations of several variants of the Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm for the FWT and derive a model for its performance. Part III...... supported wavelets in the context of multiresolution analysis. These wavelets are particularly attractive because they lead to a stable and very efficient algorithm, namely the fast wavelet transform (FWT). We give estimates for the approximation characteristics of wavelets and demonstrate how and why...... is an investigation of the potential for using the special properties of wavelets for solving partial differential equations numerically. Several approaches are identified and two of them are described in detail. The algorithms developed are applied to the nonlinear Schrödinger equation and Burgers' equation...

  11. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  12. Wavelets and their uses

    International Nuclear Information System (INIS)

    Dremin, Igor M; Ivanov, Oleg V; Nechitailo, Vladimir A

    2001-01-01

    This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract. (reviews of topical problems)

  13. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  14. Hawaiian Islands Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for the Principal Hawaiian Islands is NOT the input data set used in development of the GEOID96 model. This gravity grid models the...

  15. PR/VI Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for the Puerto Rico and the Virgin Islands is NOT the input data set used in development of the GEOID96 model. This gravity grid models...

  16. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  17. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  18. Fractional Calculus and Shannon Wavelet

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2012-01-01

    Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.

  19. Wavelet analysis in neurodynamics

    International Nuclear Information System (INIS)

    Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A

    2012-01-01

    Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)

  20. Wavelets in physics

    CERN Document Server

    Fang, Li-Zhi

    1998-01-01

    Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.

  1. Wavelets y sus aplicaciones

    OpenAIRE

    Castro, Liliana Raquel; Castro, Silvia Mabel

    1995-01-01

    Se presenta una introducción a la teorfa de wavelets. Ademas, se da una revisión histórica de cómo fueron introducidas las wavelets para la representación de funciones. Se efectúa una comparación entre la transformada wavelet y la transformada de Fourier. Por último, se presentan también algunas de los múltiples aplicaciones de esta nueva herramienta de análisis armónico.

  2. Gravitational anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Leutwyler, H; Mallik, S

    1986-12-01

    The effective action for fermions moving in external gravitational and gauge fields is analyzed in terms of the corresponding external field propagator. The central object in our approach is the covariant energy-momentum tensor which is extracted from the regular part of the propagator at short distances. It is shown that the Lorentz anomaly, the conformal anomaly and the gauge anomaly can be expressed in terms of the local polynomials which determine the singular part of the propagator. (There are no coordinate anomalies). Except for the conformal anomaly, for which we give explicit representations only in dless than or equal to4, we consider an arbitrary number of dimensions.

  3. Basement-involved faults and deep structures in the West Philippine Basin: constrains from gravity field

    Science.gov (United States)

    Wang, Gang; Jiang, Suhua; Li, Sanzhong; Zhang, Huixuan; Lei, Jianping; Gao, Song; Zhao, Feiyu

    2017-06-01

    To reveal the basement-involved faults and deep structures of the West Philippine Basin (WPB), the gravitational responses caused by these faults are observed and analyzed based on the latest spherical gravity model: WGM2012 Model. By mapping the free-air and Bouguer gravity anomalies, several main faults and some other linear structures are located and observed in the WPB. Then, by conducting a 2D discrete multi-scale wavelet decomposition, the Bouguer anomalies are decomposed into the first- to eighth-order detail and approximation fields (the first- to eighth-order Details and Approximations). The first- to third-order Details reflect detailed and localized geological information of the crust at different depths, and of which the higher-order reflects gravity field of the deeper depth. The first- to fourth-order Approximations represent the regional gravity fields at different depths of the crust, respectively. The fourth-order Approximation represents the regional gravity fluctuation caused by the density inhomogeneity of Moho interface. Therefore, taking the fourth-order Approximation as input, and adopting Parker-Oldenburg interactive inversion, We calculated the depth of Moho interface in the WPB. Results show that the Moho interface depth in the WPB ranges approximately from 8 to 12 km, indicating that there is typical oceanic crust in the basin. In the Urdaneta Plateau and the Benham Rise, the Moho interface depths are about 14 and 16 km, respectively, which provides a piece of evidence to support that the Banham Rise could be a transitional crust caused by a large igneous province. The second-order vertical derivative and the horizontal derivatives in direction 0° and 90° are computed based on the data of the third-order Detail, and most of the basement-involved faults and structures in the WPB, such as the Central Basin Fault Zone, the Gagua Ridge, the Luzon-Okinawa Fault Zone, and the Mindanao Fault Zone are interpreted by the gravity derivatives.

  4. Mexico Terrain Corrected Free Air Anomalies (97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for Mexico, North-Central America and the Western Caribbean Sea is NOT the input data set used in the development of the MEXICO97 model....

  5. A new method for extracting near-surface mass-density anomalies from land-based gravity data, based on a special case of Poisson's PDE at the Earth's surface: A case study of salt diapirs in the south of Iran

    Science.gov (United States)

    AllahTavakoli, Y.; Safari, A.; Ardalan, A.; Bahroudi, A.

    2015-12-01

    The current research provides a method for tracking near-surface mass-density anomalies via using only land-based gravity data, which is based on a special version of Poisson's Partial Differential Equation (PDE) of the gravitational field at Earth's surface. The research demonstrates how the Poisson's PDE can provide us with a capability to extract the near-surface mass-density anomalies from land-based gravity data. Herein, this version of the Poisson's PDE is mathematically introduced to the Earth's surface and then it is used to develop the new method for approximating the mass-density via derivatives of the Earth's gravitational field (i.e. via the gradient tensor). Herein, the author believes that the PDE can give us new knowledge about the behavior of the Earth's gravitational field at the Earth's surface which can be so useful for developing new methods of Earth's mass-density determination. In a case study, the proposed method is applied to a set of gravity stations located in the south of Iran. The results were numerically validated via certain knowledge about the geological structures in the area of the case study. Also, the method was compared with two standard methods of mass-density determination. All the numerical experiments show that the proposed approach is well-suited for tracking near-surface mass-density anomalies via using only the gravity data. Finally, the approach is also applied to some petroleum exploration studies of salt diapirs in the south of Iran.

  6. Wavelets a primer

    CERN Document Server

    Blatter, Christian

    1998-01-01

    The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.

  7. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  8. Holonomy anomalies

    International Nuclear Information System (INIS)

    Bagger, J.; Nemeschansky, D.; Yankielowicz, S.

    1985-05-01

    A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs

  9. On the origins of Earth rotation anomalies: New insights on the basis of both “paleogeodetic” data and Gravity Recovery and Climate Experiment (GRACE) data

    Science.gov (United States)

    Peltier, W. R.; Luthcke, Scott B.

    2009-11-01

    The theory previously developed to predict the impact on Earth's rotational state of the late Pleistocene glaciation cycle is extended. In particular, we examine the extent to which a departure of the infinite time asymptote of the viscoelastic tidal Love number of degree 2, "k2T," from the observed "fluid" Love number, "kf," impacts the theory. A number of tests of the influence of the difference in these Love numbers on theoretical predictions of the model of the glacial isostatic adjustment (GIA) process are explored. Relative sea level history predictions are shown not to be sensitive to the difference even though they are highly sensitive to the influence of the changing rotational state itself. We also explore in detail the accuracy with which the Gravity Recovery and Climate Experiment (GRACE) satellite system is able to observe the global GIA process including the time-dependent amplitude of the degree 2 and order 1 spherical harmonic components of the gravitational field, the only components that are significantly influenced by rotational effects. It is explicitly shown that the GRACE observation of these properties of the time-varying gravitational field is sufficiently accurate to rule out the values predicted by the ICE-5G (VM2) model of Peltier (2004). However, we also note that this model is constrained only by data from an epoch during which modern greenhouse gas induced melting of both the great polar ice-sheets and small ice sheets and glaciers was not occurring. Such modern loss of grounded continental ice strongly influences the evolving rotational state of the planet and thus the values of the degree 2 and order 1 Stokes coefficients as they are currently being measured by the GRACE satellite system. A series of sensitivity tests are employed to demonstrate this fact. We suggest that the accuracy of scenarios for modern land ice melting may be tested by ensuring that such scenarios conform to the GRACE observations of these crucial time

  10. Alaska Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' gravity anomaly grid for Alaska is NOT the input data set used in development of the GEOID96 model. This gravity grid models the 1.1 million terrestrial...

  11. Lecture notes on wavelet transforms

    CERN Document Server

    Debnath, Lokenath

    2017-01-01

    This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor.  These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...

  12. On Newton-Cartan trace anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Auzzi, Roberto [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); INFN Sezione di Perugia,Via A. Pascoli, 06123 Perugia (Italy); Baiguera, Stefano [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); Nardelli, Giuseppe [Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore,Via Musei 41, 25121 Brescia (Italy); TIFPA - INFN, c/o Dipartimento di Fisica, Università di Trento,38123 Povo (Italy)

    2016-02-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  13. On Newton-Cartan trace anomalies

    International Nuclear Information System (INIS)

    Auzzi, Roberto; Baiguera, Stefano; Nardelli, Giuseppe

    2016-01-01

    We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2+1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z=2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3+1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.

  14. Target recognition by wavelet transform

    International Nuclear Information System (INIS)

    Li Zhengdong; He Wuliang; Zheng Xiaodong; Cheng Jiayuan; Peng Wen; Pei Chunlan; Song Chen

    2002-01-01

    Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided

  15. Wavelets and quantum algebras

    International Nuclear Information System (INIS)

    Ludu, A.; Greiner, M.

    1995-09-01

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  16. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  17. Anomalies in instanton calculus

    International Nuclear Information System (INIS)

    Anselmi, D.

    1995-01-01

    I develop a formalism for solving topological field theories explicitly, in the case when the explicit expression of the instantons is known. I solve topological Yang-Mills theory with the k=1 instanton of Belavin et al. and topological gravity with the Eguchi-Hanson instanton. It turns out that naively empty theories are indeed nontrivial. Many unexpected interesting hidden quantities (punctures, contact terms, nonperturbative anomalies with or without gravity) are revealed. Topological Yang-Mills theory with G=SU(2) is not just Donaldson theory, but contains a certain link theory. Indeed, local and non-local observables have the property of marking cycles. Moreover, from topological gravity one learns that an object can be considered BRST exact only if it is so all over the moduli space M , boundary included. Being BRST exact in any interior point of M is not sufficient to make an amplitude vanish. Presumably, recursion relations and hierarchies can be found to solve topological field theories in four dimensions, in particular topological Yang-Mills theory with G=SU(2) on R 4 and topological gravity with the full set of asymptotically locally Euclidean manifolds. ((orig.))

  18. Wavelets in functional data analysis

    CERN Document Server

    Morettin, Pedro A; Vidakovic, Brani

    2017-01-01

    Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.

  19. WAVELET ANALYSIS OF ABNORMAL ECGS

    Directory of Open Access Journals (Sweden)

    Vasudha Nannaparaju

    2014-02-01

    Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.

  20. Boosted bosons and wavelets

    CERN Document Server

    Søgaard, Andreas

    For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...

  1. Quantum gravity and the large scale anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, Alexander Y.; Tronconi, Alessandro; Venturi, Giovanni, E-mail: Alexander.Kamenshchik@bo.infn.it, E-mail: Alessandro.Tronconi@bo.infn.it, E-mail: Giovanni.Venturi@bo.infn.it [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46,40126 Bologna (Italy)

    2015-04-01

    The spectrum of primordial perturbations obtained by calculating the quantum gravitational corrections to the dynamics of scalar perturbations is compared with Planck 2013 and BICEP2/Keck Array public data. The quantum gravitational effects are calculated in the context of a Wheeler-De Witt approach and have quite distinctive features. We constrain the free parameters of the theory by comparison with observations.

  2. New standards for reducing gravity data: The North American gravity database

    Science.gov (United States)

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  3. Wavelets in medical imaging

    International Nuclear Information System (INIS)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-01-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  4. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  5. Former Soviet Union (FSU) Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded gravity anomaly data for the Former Soviet Union (FSU) and Eastern Europe has been received by the National Geophysical Data Center(NGDC). The data file...

  6. DOWN'S ANOMALY.

    Science.gov (United States)

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  7. Global Gravity Grids, Geoid Height and Gravity Anomaly Profiles

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The entire collection of GEOSAT ERM (Nov.'86 - Dec. '89) data over land and ice regions is held at the National Geophysical Data Center (NGDC). These data will yield...

  8. From Discrete Gravity Survey Data to a High-resolution Gravity Field Representation in the Nordic-Baltic Region

    DEFF Research Database (Denmark)

    Märdla, Silja; Ågren, Jonas; Strykowski, Gabriel

    2017-01-01

    The deduction of a regularly spaced gravity anomaly grid from scattered survey data is studied, addressing mainly two aspects: reduction of gravity to anomalies and subsequent interpolation by various methods. The problem is illustrated in a heterogeneous study area and contrasting test areas inc...

  9. Noise reduction by wavelet thresholding

    National Research Council Canada - National Science Library

    Jansen, Maarten

    2001-01-01

    .... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...

  10. Satellite magnetic anomalies of the Antarctic crust

    Directory of Open Access Journals (Sweden)

    D. E. Alsdorf

    2000-06-01

    Full Text Available Spatially and temporally static crustal magnetic anomalies are contaminated by static core field effects above spherical harmonic degree 12 and dynamic, large-amplitude external fields. To extract crustal magnetic anomalies from the measurements of NASA's Magsat mission, we separate crustal signals from both core and external field effects. In particular, we define Magsat anomalies relative to the degree 11 field and use spectral correlation theory to reduce them for external field effects. We obtain a model of Antarctic crustal thickness by comparing the region's terrain gravity effects to free-air gravity anomalies derived from the Earth Gravity Model 1996 (EGM96. To separate core and crustal magnetic effects, we obtain the pseudo-magnetic effect of the crustal thickness variations from their gravity effect via Poisson's theorem for correlative potentials. We compare the pseudo-magnetic effect of the crustal thickness variations to field differences between degrees 11 and 13 by spectral correlation analysis. We thus identify and remove possible residual core field effects in the Magsat anomalies relative to the degree 11 core field. The resultant anomalies reflect possible Antarctic contrasts due both to crustal thickness and intracrustal variations of magnetization. In addition, they provide important constraints on the geologic interpretation of aeromagnetic survey data, such as are available for the Weddell Province. These crustal anomalies also may be used to correct for long wavelength errors in regional compilations of near-surface magnetic survey data. However, the validity of these applications is limited by the poor quality of the Antarctic Magsat data that were obtained during austral Summer and Fall when south polar external field activity was maximum. Hence an important test and supplement for the Antarctic crustal Magsat anomaly map will be provided by the data from the recently launched Ørsted mission, which will yield coverage

  11. A generalized wavelet extrema representation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  12. Wavelet frames and their duals

    DEFF Research Database (Denmark)

    Lemvig, Jakob

    2008-01-01

    frames with good time localization and other attractive properties. Furthermore, the dual wavelet frames are constructed in such a way that we are guaranteed that both frames will have the same desirable features. The construction procedure works for any real, expansive dilation. A quasi-affine system....... The signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...

  13. Wavelet Enhanced Appearance Modelling

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Forchhammer, Søren; Cootes, Timothy F.

    2004-01-01

    Generative segmentation methods such as the Active Appearance Models (AAM) establish dense correspondences by modelling variation of shape and pixel intensities. Alas, for 3D and high-resolution 2D images typical in medical imaging, this approach is rendered infeasible due to excessive storage......-7 wavelets on face images have shown that segmentation accuracy degrades gracefully with increasing compression ratio. Further, a proposed weighting scheme emphasizing edges was shown to be significantly more accurate at compression ratio 1:1, than a conventional AAM. At higher compression ratios the scheme...

  14. Gravity study of the Middle Aterno Valley

    Science.gov (United States)

    di Nezza, Maria; di Filippo, Michele; Cesi, Claudio; Ferri, Fernando

    2010-05-01

    A gravity study was carried out to identify the geological and structural features of the Middle Aterno Valley, and intramontane depression in the central Appennines, which was targeted to assess the seismic hazard of the city of L'Aquila and surrounding areas, after the Abruzzo 2009 earthquake. Gravity anomalies have been used for the construction of a 3D model of the area, and gravity data for the construction of Bouguer and residual anomaly maps. These data, together with geological surface data allowed for the understanding of the Plio-quaternary tectonic setting of the basins. The study area has been differentiated into different domains with respect to structural and morphological features of different styles of faults. Geology and gravity data show that the local amplification phenomena are due to the fact that the historical center of L'Aquila was built on a coarse breccias (debris-flow deposits with decameter scale limestone blocks) overlying sandy and clayey lacustrine sediments. As these sediments have a low density, gravity prospecting very easily identifies them. Residual anomalies, showing a relative gravity low corresponding to the historical center of L'Aquila, and surrounding areas, indicated that these sediments are up to 250 m-thick. Gravity prospecting also revealed the uprooting of the reliefs which outcrop in the area of Coppito. These reliefs, practically outcrop in the middle of the basin. Here, the gravity anomalies are negative and not positive as would be expected from outcropping geological bedrock.

  15. Holographic entanglement entropy in Lovelock gravities

    NARCIS (Netherlands)

    de Boer, J.; Kulaxizi, M.; Parnachev, A.

    2011-01-01

    We study entanglement entropies of simply connected surfaces in field theories dual to Lovelock gravities. We consider Gauss-Bonnet and cubic Lovelock gravities in detail. In the conformal case the logarithmic terms in the entanglement entropy are governed by the conformal anomalies of the CFT; we

  16. Multifractal Cross Wavelet Analysis

    Science.gov (United States)

    Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene

    Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.

  17. An Introduction to Wavelet Theory and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.

    1998-10-01

    This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.

  18. Simple recipe for holographic Weyl anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bugini, F. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Diaz, D.E. [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,Autopista Concepción-Talcahuano 7100, Talcahuano (Chile)

    2017-04-20

    We propose a recipe — arguably the simplest — to compute the holographic type-B Weyl anomaly for general higher-derivative gravity in asymptotically AdS spacetimes. In 5 and 7 dimensions we identify a suitable basis of curvature invariants that allows to read off easily, without any further computation, the Weyl anomaly coefficients of the dual CFT. We tabulate the contributions from quadratic, cubic and quartic purely algebraic curvature invariants and also from terms involving derivatives of the curvature. We provide few examples, where the anomaly coefficients have been obtained by other means, to illustrate the effectiveness of our prescription.

  19. Wavelet spectra of JACEE events

    International Nuclear Information System (INIS)

    Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.

    1995-01-01

    Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)

  20. Regional magnetic anomaly constraints on continental rifting

    Science.gov (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  1. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  2. Iris Recognition Using Wavelet

    Directory of Open Access Journals (Sweden)

    Khaliq Masood

    2013-08-01

    Full Text Available Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational time and to increase the efficiency of the system. Wavelet transform is used for feature vector generation. Rotation of iris is compensated without shifts in the iris code. System is tested on Multimedia University Iris Database and results show that proposed system has encouraging performance.

  3. Gamma Splines and Wavelets

    Directory of Open Access Journals (Sweden)

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  4. Dyonic anomalies

    International Nuclear Information System (INIS)

    Henningson, Mans; Johansson, Erik P.G.

    2005-01-01

    We consider the problem of coupling a dyonic p-brane in d=2p+4 space-time dimensions to a prescribed (p+2)-form field strength. This is particularly subtle when p is odd. For the case p=1, we explicitly construct a coupling functional, which is a sum of two terms: one which is linear in the prescribed field strength, and one which describes the coupling of the brane to its self-field and takes the form of a Wess-Zumino term depending only on the embedding of the brane world-volume into space-time. We then show that this functional is well-defined only modulo a certain anomaly, related to the Euler class of the normal bundle of the brane world-volume

  5. Accelerometer North Finding System Based on the Wavelet Packet De-noising Algorithm and Filtering Circuit

    Directory of Open Access Journals (Sweden)

    LU Yongle

    2014-07-01

    Full Text Available This paper demonstrates a method and system for north finding with a low-cost piezoelectricity accelerometer based on the Coriolis acceleration principle. The proposed setup is based on the choice of an accelerometer with residual noise of 35 ng•Hz-1/2. The plane of the north finding system is aligned parallel to the local level, which helps to eliminate the effect of plane error. The Coriolis acceleration caused by the earth’s rotation and the acceleration’s instantaneous velocity is much weaker than the g-sensitivity acceleration. To get a high accuracy and a shorter time for north finding system, in this paper, the Filtering Circuit and the wavelet packet de-nosing algorithm are used as the following. First, the hardware is designed as the alternating currents across by filtering circuit, so the DC will be isolated and the weak AC signal will be amplified. The DC is interfering signal generated by the earth's gravity. Then, we have used a wavelet packet to filter the signal which has been done through the filtering circuit. Finally, compare the north finding results measured by wavelet packet filtering with those measured by a low-pass filter. Wavelet filter de-noise data shows that wavelet packet filtering and wavelet filter measurement have high accuracy. Wavelet Packet filtering has stronger ability to remove burst noise and higher engineering environment adaptability than that of Wavelet filtering. Experimental results prove the effectiveness and project implementation of the accelerometer north finding method based on wavelet packet de-noising algorithm.

  6. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  7. Wavelet theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  8. Wavelets and multiscale signal processing

    CERN Document Server

    Cohen, Albert

    1995-01-01

    Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...

  9. From Fourier analysis to wavelets

    CERN Document Server

    Gomes, Jonas

    2015-01-01

    This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints.  Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform.  The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets.  Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis.  Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.

  10. A new fractional wavelet transform

    Science.gov (United States)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  11. U.S. Terrain Corrected Free Air Anomalies (96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' gravity anomaly grid for the conterminous United States is NOT the input data set used in development of the GEOID96 model. This gravity grid models the 1.7...

  12. A wavelet phase filter for emission tomography

    International Nuclear Information System (INIS)

    Olsen, E.T.; Lin, B.

    1995-01-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods

  13. Signal Analysis by New Mother Wavelets

    International Nuclear Information System (INIS)

    Niu Jinbo; Qi Kaiguo; Fan Hongyi

    2009-01-01

    Based on the general formula for finding qualified mother wavelets [Opt. Lett. 31 (2006) 407] we make wavelet transforms computed with the newly found mother wavelets (characteristic of the power 2n) for some optical Gaussian pulses, which exhibit the ability to measure frequency of the pulse more precisely and clearly. We also work with complex mother wavelets composed of new real mother wavelets, which offer the ability of obtaining phase information of the pulse as well as amplitude information. The analogy between the behavior of Hermite-Gauss beams and that of new wavelet transforms is noticed. (general)

  14. Processing Marine Gravity Data Around Korea

    Science.gov (United States)

    Lee, Y.; Choi, K.; Kim, Y.; Ahn, Y.; Chang, M.

    2008-12-01

    In Korea currently 4 research ships are under operating in Korea, after the first research vessel equipped shipborne gravity meter was introduced in 1990s. These are Onnuri(launch 1991) of KORDI(Korea Ocean Research & Development Institute), Haeyang2000(launch 1996), Badaro1(launch 2002) of NORI(National Oceanographic Research Institute) and Tamhae2(launch 1997) of KIGAM(Korea Institute of Geoscience and Mineral Resources). Those of research vessel, Haeyang2000 have observed marine gravity data over 150,000 points each year from year 1996 to year 2003. Haeyang2000, about 2,500 tons, is unable to operate onshore so NORI has constructed another 600 tons research ship Badaro1 that has observed marine gravity data onshore since year 2002. Haeyang2000 finished observing marine gravity data offshore within Korean territorial waters until year 2003. Currently Badaro1 is observing marine gravity data onshore. These shipborne gravity data will be very useful and important on geodesy and geophysics research also those data can make a contribution to developing these studies. In this study NORI's shipbrne gravity data from 1996 to 2007 has been processed for fundamental data to compute Korean precise geoid. Marine gravity processing steps as followed. 1. Check the time sequence, latitude and longitude position, etc. of shipborne gravity data 2. Arrangement of the tide level below the pier and meter drift correction of each cruise. 3. Elimination of turning points. 4. The time lag correction. 5. Computation of RV's velocities, Heading angles and the Eötvös correction. 6. Kalman filtering of GPS navigation data using cross-over points. 7. Cross-over correction using least square adjustment. About 2,058,000 points have been processed with NORI's marine gravity data from 1996 to 2007 in this study. The distribution of free-air anomalies was -41.0 mgal to 136.0 mgal(mean 8.90mgal) within Korean territorial waters. The free-air anomalies processed with the marine gravity data are

  15. Wavelets: Applications to Image Compression-II

    Indian Academy of Sciences (India)

    Wavelets: Applications to Image Compression-II. Sachin P ... successful application of wavelets in image com- ... b) Soft threshold: In this case, all the coefficients x ..... [8] http://www.jpeg.org} Official site of the Joint Photographic Experts Group.

  16. Wavelet Transforms using VTK-m

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaomeng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.

  17. From Calculus to Wavelets: ANew Mathematical Technique

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...

  18. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  19. Texture analysis using Gabor wavelets

    Science.gov (United States)

    Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.

    1996-04-01

    Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.

  20. Analysis of transient signals by Wavelet transform

    International Nuclear Information System (INIS)

    Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de

    2000-01-01

    The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)

  1. Detection of seismic phases by wavelet transform. Dependence of its performance on wavelet functions; Wavelet henkan ni yoru jishinha no iso kenshutsu. Wavelet ni yoru sai

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)

    1997-10-22

    A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.

  2. WAVELET TRANSFORM AND LIP MODEL

    Directory of Open Access Journals (Sweden)

    Guy Courbebaisse

    2011-05-01

    Full Text Available The Fourier transform is well suited to the study of stationary functions. Yet, it is superseded by the Wavelet transform for the powerful characterizations of function features such as singularities. On the other hand, the LIP (Logarithmic Image Processing model is a mathematical framework developed by Jourlin and Pinoli, dedicated to the representation and processing of gray tones images called hereafter logarithmic images. This mathematically well defined model, comprising a Fourier Transform "of its own", provides an effective tool for the representation of images obtained by transmitted light, such as microscope images. This paper presents a Wavelet transform within the LIP framework, with preservation of the classical Wavelet Transform properties. We show that the fast computation algorithm due to Mallat can be easily used. An application is given for the detection of crests.

  3. Gravity measurement, processing and evaluation: Test cases de Peel and South Limburg

    Science.gov (United States)

    Nohlmans, Ron

    1990-05-01

    A general overview of the process of the measurement and the adjustment of a gravity network and the computation of some output parameters of gravimetry, gravity values, gravity anomalies and mean block anomalies, is given. An overview of developments in gravimetry, globally and in the Netherlands, until now is given. The basic theory of relative gravity measurements is studied and a description of the most commonly used instrument, the LaCoste and Romberg gravimeter is given. The surveys done in the scope of this study are descibed. A more detailed impression of the adjustment procedure and the results of the adjustment are given. A closer look is taken at the more geophysical side of gravimetry: gravity reduction, the computation of anomalies and the correlation with elevation. The interpolation of gravity and the covariance of gravity anomalies are addressed.

  4. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  5. Fast reversible wavelet image compressor

    Science.gov (United States)

    Kim, HyungJun; Li, Ching-Chung

    1996-10-01

    We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.

  6. Fundamental papers in wavelet theory

    CERN Document Server

    Walnut, David F

    2006-01-01

    This book traces the prehistory and initial development of wavelet theory, a discipline that has had a profound impact on mathematics, physics, and engineering. Interchanges between these fields during the last fifteen years have led to a number of advances in applications such as image compression, turbulence, machine vision, radar, and earthquake prediction. This book contains the seminal papers that presented the ideas from which wavelet theory evolved, as well as those major papers that developed the theory into its current form. These papers originated in a variety of journals from differ

  7. A CMOS Morlet Wavelet Generator

    Directory of Open Access Journals (Sweden)

    A. I. Bautista-Castillo

    2017-04-01

    Full Text Available The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.

  8. On the trace anomaly of a Weyl fermion

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo; Martelli, Riccardo [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2016-11-29

    We calculate the trace anomaly of a Weyl fermion coupled to gravity by using Fujikawa’s method supplemented by a consistent regulator. The latter is constructed out of Pauli-Villars regulating fields. The motivation for presenting such a calculation stems from recent studies that suggest that the trace anomaly of chiral fermions in four dimensions might contain an imaginary part proportional to the Pontryagin density. We find that the trace anomaly of a Weyl fermion is given by half the trace anomaly of a Dirac fermion, so that no imaginary part proportional to the Pontryagin density is seen to arise.

  9. Chiral anomalies and differential geometry

    International Nuclear Information System (INIS)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

  10. Wavelet series approximation using wavelet function with compactly ...

    African Journals Online (AJOL)

    The Wavelets generated by Scaling Function with Compactly Support are useful in various applications especially for reconstruction of functions. Generally, the computational process will be faster if Scaling Function support descends, so computational errors are summarized from one level to another level. In this article, the ...

  11. Wavelets a tutorial in theory and applications

    CERN Document Server

    1992-01-01

    Wavelets: A Tutorial in Theory and Applications is the second volume in the new series WAVELET ANALYSIS AND ITS APPLICATIONS. As a companion to the first volume in this series, this volume covers several of the most important areas in wavelets, ranging from the development of the basic theory such as construction and analysis of wavelet bases to an introduction of some of the key applications, including Mallat's local wavelet maxima technique in second generation image coding. A fairly extensive bibliography is also included in this volume.Key Features* Covers several of the

  12. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  13. GEOSAT 44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  14. GEOSAT44: High-Accuracy, High-Resolution Gravity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This satellite altimeter data base contains precise geoid and gravity anomaly profiles which were constructed from the average of 44 repeat cycles of Geosat. The...

  15. Wavelet entropy characterization of elevated intracranial pressure.

    Science.gov (United States)

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  16. Wavelet library for constrained devices

    Science.gov (United States)

    Ehlers, Johan Hendrik; Jassim, Sabah A.

    2007-04-01

    The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.

  17. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-02-01

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Visibility of wavelet quantization noise

    Science.gov (United States)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  19. Anomaly mediation in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theoretique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-08-15

    We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T{sup 6} volume and the untwisted T{sup 2} volume respectively. (orig.)

  20. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  1. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  2. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  3. Kohn anomalies in superconductors

    International Nuclear Information System (INIS)

    Flatte, M.E.

    1994-01-01

    The detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the photon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La 1.85 Sr 0.15 CuO 4

  4. Gravity inferred subsurface structure of Gadwal Schist belt, Andhra

    Indian Academy of Sciences (India)

    Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW-SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either ...

  5. Gravity studies of the Hanford Reservation, Richland, Washington

    International Nuclear Information System (INIS)

    Richard, B.H.; Lillie, J.T.; Deju, R.A.

    1977-07-01

    Gravity studies over Hanford added to the understanding of the geology of the Pasco Basin. The Bouguer anomaly indicated the basin is the site of the greatest thickness of Columbia River Basalt. The residual gravity anomaly delineated the major anticlinal and synclinal structures under Hanford. Three-dimensional gravity models characterized these buried folds by indicating their shape and relief. Finally, two-dimensional gravity models further delineated the shape of these buried folds and suggested locations where ancestral rivers may have breached the Umtanum anticlinal folds within the basin. Analysis of the three-dimensional model studies indicates that one-fifth of the original data would have delineated the buried structures. Two- or three-body gravity models produced better results than a poly-body model. Gravity was found to be an effective and rapid reconnaissance method of studying buried bedrock structures

  6. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  7. Tracheobronchial Branching Anomalies

    International Nuclear Information System (INIS)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick; Park, A Young

    2010-01-01

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  8. Tracheobronchial Branching Anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Min Ji; Kim, Young Tong; Jou, Sung Shick [Soonchunhyang University, Cheonan Hospital, Cheonan (Korea, Republic of); Park, A Young [Soonchunhyang University College of Medicine, Asan (Korea, Republic of)

    2010-04-15

    There are various congenital anomalies with respect to the number, length, diameter, and location of tracheobronchial branching patterns. The tracheobronchial anomalies are classified into two groups. The first one, anomalies of division, includes tracheal bronchus, cardiac bronchus, tracheal diverticulum, pulmonary isomerism, and minor variations. The second one, dysmorphic lung, includes lung agenesis-hypoplasia complex and lobar agenesis-aplasia complex

  9. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  10. Penentuan Anomali Gayaberat Regional dan Residual Menggunakan Filter Gaussian Daerah Mamuju Sulawesi Barat

    Directory of Open Access Journals (Sweden)

    Adhika Junara Karunianto

    2017-11-01

    Full Text Available Gravity method is a geophysical method that has been frequently used in prospecting mineral resources. The parameter of searched object is based on variations of gravity acceleration measurements on the surface due to variations in sub-surface geological changes. Research area is located in Mamuju Area of West Sulawesi Province where tectonically a complex geological region, which is at a meeting of three large plates, the Pacific plate, the Indo-Australian plate and the Eurasian plate and the smaller Philippine plate. In addition, Mamuju is an area with a high radioactivity dose rate that has potency to radioactive minerals resources. The purpose of the research is to obtain gravity anomalies by using qualitative separation and interpretation of regional and residual gravity anomalies. Complete Bouguer Anomaly (CBA value of the research area obtained from the measurements was 46.0 – 115.7 mGal. Based on the CBA map, the separation process of regional gravity anomalies and residual using Gaussian filtering technique conducted. This filtering technique works based on spectral analysis of gravity amplitude changes in spatial where the result is a cutoff wave number of 1.1736 x 10-3/meter and a wavelength of 5373.45 m. The regional and residual gravity anomalies range from 51.8 to 102 mGal and -10.4 to 14.8 mGal respectively. The depth of influence of each anomaly is calculated based on their spectral wavelengths, resulting 970.97 m and 100.21 m for regional and residual anomalies respectively. There are five zones based on the residual anomaly map, which are zones A, B, C, D and E. The heaviest positive gravity anomaly is found in zone A and B, which is predicted to be influenced by Adang lava with relative north – south distribution.

  11. Visualization of a Turbulent Jet Using Wavelets

    Institute of Scientific and Technical Information of China (English)

    Hui LI

    2001-01-01

    An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N<10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.

  12. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  13. Cross wavelet analysis: significance testing and pitfalls

    Directory of Open Access Journals (Sweden)

    D. Maraun

    2004-01-01

    Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.

  14. Multidimensional signaling via wavelet packets

    Science.gov (United States)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  15. Wavelet analysis of epileptic spikes

    Science.gov (United States)

    Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-05-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  16. Wavelet analysis of epileptic spikes

    CERN Document Server

    Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-01-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  17. Elevation Difference and Bouguer Anomaly Analysis Tool (EDBAAT) User's Guide

    Science.gov (United States)

    Smittle, Aaron M.; Shoberg, Thomas G.

    2017-06-16

    This report describes a software tool that imports gravity anomaly point data from the Gravity Database of the United States (GDUS) of the National Geospatial-Intelligence Agency and University of Texas at El Paso along with elevation data from The National Map (TNM) of the U.S. Geological Survey that lie within a user-specified geographic area of interest. Further, the tool integrates these two sets of data spatially and analyzes the consistency of the elevation of each gravity station from the GDUS with TNM elevation data; it also evaluates the consistency of gravity anomaly data within the GDUS data repository. The tool bins the GDUS data based on user-defined criteria of elevation misfit between the GDUS and TNM elevation data. It also provides users with a list of points from the GDUS data, which have Bouguer anomaly values that are considered outliers (two standard deviations or greater) with respect to other nearby GDUS anomaly data. “Nearby” can be defined by the user at time of execution. These outputs should allow users to quickly and efficiently choose which points from the GDUS would be most useful in reconnaissance studies or in augmenting and extending the range of individual gravity studies.

  18. Wavelet Analysis for Molecular Dynamics

    Science.gov (United States)

    2015-06-01

    Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the

  19. Wavelet analysis in two-dimensional tomography

    Science.gov (United States)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  20. Wavelet Radiosity on Arbitrary Planar Surfaces

    OpenAIRE

    Holzschuch , Nicolas; Cuny , François; Alonso , Laurent

    2000-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...

  1. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  2. Quantisation deforms w∞ to W∞ gravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Howe, P.S.; State Univ. of New York, Stony Brook, NY; Pope, C.N.; Sezgin, E.; Shen, X.; Stelle, K.S.

    1991-01-01

    Quantising a classical theory of w ∞ gravity requires the introduction of an infinite number of counterterms in order to remove matter-dependent anomalies. We show that these counterterms correspond precisely to a renormalisation of the classical w ∞ currents to quantum w ∞ currents. (orig.)

  3. Idaho Batholith Study Area Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Bouguer gravity anomaly grid for the Idaho batholith study area. Number of columns is 331 and number of rows is 285. The order of the data is from the...

  4. Quantisation deforms w∞ to W∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Howe, P.S.; Pope, C.N.; Sezgin, E.; Shen, X.; Stelle, K.S.

    1991-01-01

    Quantising a classical theory of w∞ gravity requires the introduction of an infinite number of counterterms in order to remove matter-dependent anomalies. We show that these counterterms correspond precisely to a renormalisation of the classical w∞ currents to quantum W∞ currents.

  5. Wavelet analysis and its applications an introduction

    CERN Document Server

    Yajnik, Archit

    2013-01-01

    "Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.

  6. Wavelets for Sparse Representation of Music

    DEFF Research Database (Denmark)

    Endelt, Line Ørtoft; Harbo, Anders La-Cour

    2004-01-01

    We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...

  7. Wavelet-based prediction of oil prices

    International Nuclear Information System (INIS)

    Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik

    2005-01-01

    This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced

  8. Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising

    International Nuclear Information System (INIS)

    Fan, W J; Lu, Y

    2006-01-01

    Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting

  9. Complex Wavelet transform for MRI

    International Nuclear Information System (INIS)

    Junor, P.; Janney, P.

    2004-01-01

    Full text: There is a perpetual compromise encountered in magnetic resonance (MRl) image reconstruction, between the traditional elements of image quality (noise, spatial resolution and contrast). Additional factors exacerbating this trade-off include various artifacts, computational (and hence time-dependent) overhead, and financial expense. This paper outlines a new approach to the problem of minimizing MRI image acquisition and reconstruction time without compromising resolution and noise reduction. The standard approaches for reconstructing magnetic resonance (MRI) images from raw data (which rely on relatively conventional signal processing) have matured but there are a number of challenges which limit their use. A major one is the 'intrinsic' signal-to-noise ratio (SNR) of the reconstructed image that depends on the strength of the main field. A typical clinical MRI almost invariably uses a super-cooled magnet in order to achieve a high field strength. The ongoing running cost of these super-cooled magnets prompts consideration of alternative magnet systems for use in MRIs for developing countries and in some remote regional installations. The decrease in image quality from using lower field strength magnets can be addressed by improvements in signal processing strategies. Conversely, improved signal processing will obviously benefit the current conventional field strength MRI machines. Moreover, the 'waiting time' experienced in many MR sequences (due to the relaxation time delays) can be exploited by more rigorous processing of the MR signals. Acquisition often needs to be repeated so that coherent averaging may partially redress the shortfall in SNR, at the expense of further delay. Wavelet transforms have been used in MRI as an alternative for encoding and denoising for over a decade. These have not supplanted the traditional Fourier transform methods that have long been the mainstay of MRI reconstruction, but have some inflexibility. The dual

  10. 1-deg x 1-deg Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 1x1 degree Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base was...

  11. 30-min x 30-min Terrestrial Mean Free-Air Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 30-min x 30-min Terrestrial Mean Free-Air Gravity Anomaly and Geoid Undulations Data Base was compiled and developed by the Ohio State University. This data base...

  12. Boiling anomaly detection by various signal characterization methods

    International Nuclear Information System (INIS)

    Sakuma, M.; Kozma, R.; Kitamura, M.; Schoonewelle, H.; Hoogenboom, J.E.

    1996-01-01

    In order to detect anomalies in the early stage for complex dynamical systems like nuclear power plants, it is important to characterize various statistical features of the data acquired in normal operating condition. In this paper, concept of hierarchical anomaly monitoring method is outlined, which is based on the diversification principle. In addition to usual time and frequency domain analysis (FFT, APDF, MAR-SPRT), other analysis (wavelet, fractal, etc.) are performed. As soon as any inconsistency arises in the results of the analysis on the upper level, a thorough analysis is initiated. A comparison among these methods is performed and the efficiency of the diversification approach has been demonstrated through simulated boiling anomalies in nuclear reactors. (authors)

  13. 22 July 2009 total solar eclipse induced gravity waves in ionosphere as inferred from GPS observations over EIA

    Science.gov (United States)

    Kumar, K. Vijay; Maurya, Ajeet K.; Kumar, Sanjay; Singh, Rajesh

    2016-11-01

    In the present contribution we investigate the variation in the Global Positioning System (GPS) derived ionospheric Total Electron Content (TEC) over Equatorial Ionization Anomaly (EIA) region on the rare occasional astronomical phenomenon of total solar eclipse of 22 July 2009. The aim is to study and identify the wave like structure enumerated due to solar eclipse induced gravity waves in the F-region ionosphere altitude. The work is aimed to understand features of horizontal and vertical variation of atmospheric gravity waves (AGWs) properties over the Equatorial Ionization Anomaly (EIA) region in Indian low latitude region. The ionospheric observations is from the site of Allahabad (lat 25.4° N; lon. 81.9° E; dip 38.6° N) located at the fringe of eclipse totality path. The estimated vertical electron density profile from FORMOSAT-3/COSMIC GPS-RO satellite, considering all the satellite line of sight around the time of eclipse totality shows maximum depletion of 43%. The fast fourier transform and wavelet transform of GPS DTEC data from Allahabad station (Allahabad: lat 25.4 N; lon. 81.9 E) shows the presence of periodic waves of ∼20 to 45 min and ∼70 to 90 min period at F-region altitude. The shorter period correspond to the sunrise time morning terminator and longer period can be associated with solar eclipse generated AGWs. The most important result obtained is that our results along with previous result for wave like signatures in D-region ionosphere from Allahabad station show that AGWs generated by sunrise time terminator have similarity in the D and F region of the ionosphere but solar eclipse induced AGWs show higher period in the F-region compared to D-region ionosphere.

  14. Simulating Gravity

    Science.gov (United States)

    Pipinos, Savas

    2010-01-01

    This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…

  15. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  16. Branchial anomalies in children.

    Science.gov (United States)

    Bajaj, Y; Ifeacho, S; Tweedie, D; Jephson, C G; Albert, D M; Cochrane, L A; Wyatt, M E; Jonas, N; Hartley, B E J

    2011-08-01

    Branchial cleft anomalies are the second most common head and neck congenital lesions seen in children. Amongst the branchial cleft malformations, second cleft lesions account for 95% of the branchial anomalies. This article analyzes all the cases of branchial cleft anomalies operated on at Great Ormond Street Hospital over the past 10 years. All children who underwent surgery for branchial cleft sinus or fistula from January 2000 to December 2010 were included in this study. In this series, we had 80 patients (38 female and 42 male). The age at the time of operation varied from 1 year to 14 years. Amongst this group, 15 patients had first branchial cleft anomaly, 62 had second branchial cleft anomaly and 3 had fourth branchial pouch anomaly. All the first cleft cases were operated on by a superficial parotidectomy approach with facial nerve identification. Complete excision was achieved in all these first cleft cases. In this series of first cleft anomalies, we had one complication (temporary marginal mandibular nerve weakness. In the 62 children with second branchial cleft anomalies, 50 were unilateral and 12 were bilateral. In the vast majority, the tract extended through the carotid bifurcation and extended up to pharyngeal constrictor muscles. Majority of these cases were operated on through an elliptical incision around the external opening. Complete excision was achieved in all second cleft cases except one who required a repeat excision. In this subgroup, we had two complications one patient developed a seroma and one had incomplete excision. The three patients with fourth pouch anomaly were treated with endoscopic assisted monopolar diathermy to the sinus opening with good outcome. Branchial anomalies are relatively common in children. There are three distinct types, first cleft, second cleft and fourth pouch anomaly. Correct diagnosis is essential to avoid inadequate surgery and multiple procedures. The surgical approach needs to be tailored to the type

  17. Ghost number anomaly in the Polyakov's light-cone gauge

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi.

    1990-06-01

    The conformal (Weyl) anomaly of the ghost-anti-ghost system in the two-dimentional quantum gravity is calculated. A background covariant formalism allows us to treat the Polyakov's light-cone gauge in a systematic way. The anomaly gives a contribution to the central charge, -28, which agrees with the result of Kniznik, Polyakov and Zamolodchikov. The ghost number anomaly is also calculated, and the metric corrections to the naive ghost number current are given. It is suggested that a general scalar density in the light-cone gauge carries a screening ghost number. (author)

  18. Axial anomalies of Lifshitz fermions

    CERN Document Server

    Bakas, Ioannis

    2011-01-01

    We compute the axial anomaly of a Lifshitz fermion theory with anisotropic scaling z=3 which is minimally coupled to geometry in 3+1 space-time dimensions. We find that the result is identical to the relativistic case using path integral methods. An independent verification is provided by showing with spectral methods that the eta-invariant of the Dirac and Lifshitz fermion operators in three dimensions are equal. Thus, by the integrated form of the anomaly, the index of the Dirac operator still accounts for the possible breakdown of chiral symmetry in non-relativistic theories of gravity. We apply this framework to the recently constructed gravitational instanton backgrounds of Horava-Lifshitz theory and find that the index is non-zero provided that the space-time foliation admits leaves with harmonic spinors. Using Hitchin's construction of harmonic spinors on Berger spheres, we obtain explicit results for the index of the fermion operator on all such gravitational instanton backgrounds with SU(2)xU(1) isom...

  19. A Wavelet Analysis Approach for Categorizing Air Traffic Behavior

    Science.gov (United States)

    Drew, Michael; Sheth, Kapil

    2015-01-01

    In this paper two frequency domain techniques are applied to air traffic analysis. The Continuous Wavelet Transform (CWT), like the Fourier Transform, is shown to identify changes in historical traffic patterns caused by Traffic Management Initiatives (TMIs) and weather with the added benefit of detecting when in time those changes take place. Next, with the expectation that it could detect anomalies in the network and indicate the extent to which they affect traffic flows, the Spectral Graph Wavelet Transform (SGWT) is applied to a center based graph model of air traffic. When applied to simulations based on historical flight plans, it identified the traffic flows between centers that have the greatest impact on either neighboring flows, or flows between centers many centers away. Like the CWT, however, it can be difficult to interpret SGWT results and relate them to simulations where major TMIs are implemented, and more research may be warranted in this area. These frequency analysis techniques can detect off-nominal air traffic behavior, but due to the nature of air traffic time series data, so far they prove difficult to apply in a way that provides significant insight or specific identification of traffic patterns.

  20. Application of wavelets in speech processing

    CERN Document Server

    Farouk, Mohamed Hesham

    2014-01-01

    This book provides a survey on wide-spread of employing wavelets analysis  in different applications of speech processing. The author examines development and research in different application of speech processing. The book also summarizes the state of the art research on wavelet in speech processing.

  1. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  2. Anomaly-free models for flavour anomalies

    Science.gov (United States)

    Ellis, John; Fairbairn, Malcolm; Tunney, Patrick

    2018-03-01

    We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1)^' gauge boson Z^' . We assume universal and rational U(1)^' charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1)^' charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion. There are non-trivial anomaly-free models with more than one such `dark' fermion, or with a single DM fermion if right-handed up-type quarks have non-zero U(1)^' charges. In some of the latter models the U(1)^' couplings of the first- and second-generation quarks all vanish, weakening the LHC Z^' constraint, and in some other models the DM particle has purely axial couplings, weakening the direct DM scattering constraint. We also consider models in which anomalies are cancelled via extra vector-like leptons, showing how the prospective LHC Z^' constraint may be weakened because the Z^' → μ ^+ μ ^- branching ratio is suppressed relative to other decay modes.

  3. First branchial groove anomaly.

    Science.gov (United States)

    Kumar, M; Hickey, S; Joseph, G

    2000-06-01

    First branchial groove anomalies are very rare. We report a case of a first branchial groove anomaly presented as an infected cyst in an 11-month-old child. Management of such lesions is complicated because of their close association with the facial nerve. Surgical management must include identification and protection of the facial nerve. Embryology and facial nerve disposition in relation to the anomaly are reviewed.

  4. Construction of wavelets with composite dilations

    International Nuclear Information System (INIS)

    Wu Guochang; Li Zhiqiang; Cheng Zhengxing

    2009-01-01

    In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.

  5. Parsimonious Wavelet Kernel Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Wang Qin

    2015-11-01

    Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.

  6. Some applications of wavelets to physics

    International Nuclear Information System (INIS)

    Thompson, C.R.

    1992-01-01

    A thorough description of a fast wavelet transform algorithm (FWT) and its inverse (IFWT) are given. The effects of noise in the wavelet transform are studied, in particular the effects on signal reconstruction. A model for additive white noise on the coefficients is presented along with two methods that can help to suppress the effects of noise corruption of the signal. Problems of improper sampling are studied, including the propagation of uncertainty through the FWT and IFWT. Interpolation techniques and data compression are also studied. The FWT and IFWT are generalized for analysis of two dimensional images. Methods for edge detection are discussed as well as contrast improvement and data compression. Finally, wavelets are applied to electromagnetic wave propagation problems. Formulas relating the wavelet and Fourier transforms are given, and expansions of time-dependent electromagnetic fields using both fixed and moving wavelet bases are studied

  7. Complex Wavelet Based Modulation Analysis

    DEFF Research Database (Denmark)

    Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt

    2008-01-01

    Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...

  8. Wavelets and the Lifting Scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  9. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2012-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  10. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  11. Quantum gravity

    International Nuclear Information System (INIS)

    Isham, C.

    1989-01-01

    Gravitational effects are seen as arising from a curvature in spacetime. This must be reconciled with gravity's apparently passive role in quantum theory to achieve a satisfactory quantum theory of gravity. The development of grand unified theories has spurred the search, with forces being of equal strength at a unification energy of 10 15 - 10 18 GeV, with the ''Plank length'', Lp ≅ 10 -35 m. Fundamental principles of general relativity and quantum mechanics are outlined. Gravitons are shown to have spin-0, as mediators of gravitation force in the classical sense or spin-2 which are related to the quantisation of general relativity. Applying the ideas of supersymmetry to gravitation implies partners for the graviton, especially the massless spin 3/2 fermion called a gravitino. The concept of supersymmetric strings is introduced and discussed. (U.K.)

  12. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  13. Seafloor spreading magnetic anomalies south off Sri Lanka

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, M.; Ramana, M.V.; Ramprasad, T.

    Cretaceous is estimated to have evolved with variable half-spreading rates ranging from 5.5 to 1.53 cm/yr. The trends of the fracture zones inferred from the offsets in the magnetic anomalies have been constrained using the satellite gravity mosaic...

  14. Magnetic anomalies of offshore Krishna–Godavari basin, eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Swamy, K.V.; Murthy, I.V.R.; Krishna, K.S.; Murthy, K.S.R.; Subrahmanyam, A.S.; Rao, M.M.M.

    with the volcanic material. Inversion of the magnetic and gravity anomalies was also carried out to establish the similarity of anomalies of the two geological features (structural high on the margin and the 85 degrees E Ridge) and their interpretations. In both...

  15. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  16. 3D Inversion of Magnetic Data through Wavelet based Regularization Method

    Directory of Open Access Journals (Sweden)

    Maysam Abedi

    2015-06-01

    Full Text Available This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp boundaries of model parameters. A pre-selected basis namely wavelet can recover the region of smooth behaviour of susceptibility distribution while Haar or finite-difference (FD domains yield a solution with rough boundaries. Therefore, a regularizer function which can benefit from the advantages of both wavelets and Haar/FD operators in representation of the 3D magnetic susceptibility distributionwas chosen as a candidate for modeling magnetic anomalies. The optimum wavelet and parameter β which controls the weight of the two sparsifying operators were also considered. The algorithm assumed that there was no remanent magnetization and observed that magnetometry data represent only induced magnetization effect. The proposed approach is applied to a noise-corrupted synthetic data in order to demonstrate its suitability for 3D inversion of magnetic data. On obtaining satisfactory results, a case study pertaining to the ground based measurement of magnetic anomaly over a porphyry-Cu deposit located in Kerman providence of Iran. Now Chun deposit was presented to be 3D inverted. The low susceptibility in the constructed model coincides with the known location of copper ore mineralization.

  17. Intrusion Detection in NEAR System by Anti-denoising Traffic Data Series using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    VANCEA, F.

    2014-11-01

    Full Text Available The paper presents two methods for detecting anomalies in data series derived from network traffic. Intrusion detection systems based on network traffic analysis are able to respond to incidents never seen before by detecting anomalies in data series extracted from the traffic. Some anomalies manifest themselves as pulses of various sizes and shapes, superimposed on series corresponding to normal traffic. In order to detect those impulses we propose two methods based on discrete wavelet transformation. Their effectiveness expressed in relative thresholds on pulse amplitude for no false negatives and no false positives is then evaluated against pulse duration and Hurst characteristic of original series. Different base functions are also evaluated for efficiency in the context of the proposed methods.

  18. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  19. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  20. Conformal invariance from nonconformal gravity

    International Nuclear Information System (INIS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2009-01-01

    We discuss the conditions under which classically conformally invariant models in four dimensions can arise out of nonconformal (Einstein) gravity. As an 'existence proof' that this is indeed possible we show how to derive N=4 super Yang-Mills theory with any compact gauge group G from nonconformal gauged N=4 supergravity as a special flat space limit. We stress the role that the anticipated UV finiteness of the (so far unknown) underlying theory of quantum gravity would have to play in such a scheme, as well as the fact that the masses of elementary particles would have to arise via quantum gravitational effects which mimic the conformal anomalies of standard (flat space) UV divergent quantum field theory.

  1. Dental Anomalies: An Update

    Directory of Open Access Journals (Sweden)

    Fatemeh Jahanimoghadam

    2016-01-01

    Full Text Available Dental anomalies are usual congenital malformation that can happen either as isolated findings or as a part of a syndrome. Developmental anomalies influencing the morphology exists in both deciduous and permanent dentition and shows different forms such as gemination, fusion, concrescence, dilaceration, dens evaginatus (DE, enamel pearls, taurodontism or peg-shaped laterals. All These anomalies have clinical significance concerning aesthetics, malocclusion and more necessary preparing of the development of dental decays and oral diseases. Through a search in PubMed, Google, Scopus and Medline, a total of eighty original research papers during 1928-2016 were found with the keywords such as dental anomaly, syndrome, tooth and hypodontia. One hundred review titles were identified, eighty reviews were retrieved that were finally included as being relevant and of sufficient quality. In this review, dental anomalies including gemination, fusion, concrescence, dilaceration, dens invaginatus, DE, taurodontism, enamel pearls, fluorosis, peg-shaped laterals, dentinal dysplasia, regional odontodysplasia and hypodontia are discussed. Diagnosing dental abnormality needs a thorough evaluation of the patient, involving a medical, dental, familial and clinical history. Clinical examination and radiographic evaluation and in some of the cases, specific laboratory tests are also needed. Developmental dental anomalies require careful examination and treatment planning. Where one anomaly is present, clinicians should suspect that other anomalies may also be present. Moreover, careful clinical and radiographical examination is required. Furthermore, more complex cases need multidisciplinary planning and treatment.

  2. Two and Three Parameter Waveform Retracking of Cryosat-2 LRM Waveforms for Gravity Field Determination

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Dall, Jørgen

    2013-01-01

    The project deals with sea surface height and gravity field determination in open ocean using Cryosat-2 LRM data. A three parameter model is being used to find the retracking offset for sea surface height determination. The estimates from the three parameter model are further improved upon by using...... a two parameter model. The sea surface heights thus obtained are used to develop sea surface height anomalies which are further processed to give gravity fields. Retracker performance evaluation is done using sea surface height anomaly and gravity field anomaly....

  3. Wavelet analysis of the nuclear phase space

    International Nuclear Information System (INIS)

    Jouault, B.; Sebille, F.; De La Mota, V.

    1997-01-01

    The description of complex systems requires to select and to compact the relevant information. The wavelet theory constitutes an appropriate framework for defining adapted representation bases obtained from a controlled hierarchy of approximations. The optimization of the wavelet analysis depend mainly on the chosen analysis method and wavelet family. Here the analysis of the harmonic oscillator wave function was carried out by considering a Spline bi-orthogonal wavelet base which satisfy the symmetry requirements and can be approximated by simple analytical functions. The goal of this study was to determine a selection criterion allowing to minimize the number of elements considered for an optimal description of the analysed functions. An essential point consists in utilization of the wavelet complementarity and of the scale functions in order to reproduce the oscillating and peripheral parts of the wave functions. The wavelet base representation allows defining a sequence of approximations of the density matrix. Thus, this wavelet representation of the density matrix offers an optimal base for describing both the static nuclear configurations and their time evolution. This information compacting procedure is performed in a controlled manner and preserves the structure of the system wave functions and consequently some of its quantum properties

  4. Validation of ERS-1 and high-resolution satellite gravity with in-situ shipborne gravity over the Indian offshore regions: Accuracies and implications to subsurface modeling

    Digital Repository Service at National Institute of Oceanography (India)

    Chatterjee, S.; Bhattacharyya, R.; Michael, L.; Krishna, K.S.; Majumdar, T.J.

    Geoid and gravity anomalies derived from satellite altimetry are gradually gaining importance in marine geoscientific investigations. Keeping this in mind, we have validated ERS-1 (168 day repeat) altimeter data and very high-resolution free...

  5. Applications of a fast, continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Dress, W.B.

    1997-02-01

    A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.

  6. Noncommutative gravity

    International Nuclear Information System (INIS)

    Schupp, P.

    2007-01-01

    Heuristic arguments suggest that the classical picture of smooth commutative spacetime should be replaced by some kind of quantum / noncommutative geometry at length scales and energies where quantum as well as gravitational effects are important. Motivated by this idea much research has been devoted to the study of quantum field theory on noncommutative spacetimes. More recently the focus has started to shift back to gravity in this context. We give an introductory overview to the formulation of general relativity in a noncommutative spacetime background and discuss the possibility of exact solutions. (author)

  7. Adapted wavelet analysis from theory to software

    CERN Document Server

    Wickerhauser, Mladen Victor

    1994-01-01

    This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients

  8. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes

    Directory of Open Access Journals (Sweden)

    G. Cervone

    2004-01-01

    Full Text Available Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.

  9. Wavelet maxima curves of surface latent heat flux associated with two recent Greek earthquakes

    Science.gov (United States)

    Cervone, G.; Kafatos, M.; Napoletani, D.; Singh, R. P.

    2004-05-01

    Multi sensor data available through remote sensing satellites provide information about changes in the state of the oceans, land and atmosphere. Recent studies have shown anomalous changes in oceans, land, atmospheric and ionospheric parameters prior to earthquakes events. This paper introduces an innovative data mining technique to identify precursory signals associated with earthquakes. The proposed methodology is a multi strategy approach which employs one dimensional wavelet transformations to identify singularities in the data, and an analysis of the continuity of the wavelet maxima in time and space to identify the singularities associated with earthquakes. The proposed methodology has been employed using Surface Latent Heat Flux (SLHF) data to study the earthquakes which occurred on 14 August 2003 and on 1 March 2004 in Greece. A single prominent SLHF anomaly has been found about two weeks prior to each of the earthquakes.

  10. Gravity changes in mid-west Greenland from GOCE gravity model and gradient data using ground and airborne gravity

    DEFF Research Database (Denmark)

    Tscherning, Carl Christian; Herceg, Matija; Fredenslund Levinsen, Joanna

    GOCE TRF (terrestrial reference frame) vertical anomalous gradients (Tzz) from two periods have been used to determine gravity anomalies changes in mid-west Greenland, where a large mass-loss has been detected using GRACE (Fig. 1). As additional data were used the GOCE DIR-3 model and ground...... gravity at the coast on solid rock, where no mass loss is expected. The methods of Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) methods have been used, however only LSC included the ground data....

  11. Significance tests for the wavelet cross spectrum and wavelet linear coherence

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2008-12-01

    Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As

  12. Introduction to anomalies

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.

    1986-01-01

    These lectures are dedicated to the study of the recent progress and implications of anomalies in quantum field theory. In this introduction the author recapitulates some of the highlights in the history of the subject. The outline of these lectures is as follows: Section II contains a quick review of spinors in Euclidean and Minkowski space, some other group theory results relevant for the computation of anomalies in various dimensions, and an exposition of the index theorem. Section III starts the analysis of fermion determinants and chiral effective actions by deriving the non-Abelian anomaly from index theory. Using the results of Section II, the anomaly cancellation recently discovered by Green and Schwarz will be presented in Section IV as well as the connection of these results of Section III with the descent equations and the Wess-Zumino-Witten Lagrangians. Section V contains the generalization of anomalies to σ-models and some of its application in string theory. Section VI will deal with the anomalies from the Hamiltonian point of view. An exact formula for the imaginary part of the effective action for chiral fermions in the presence of arbitrary external gauge and gravitational fields will be derived in Section VII, and used in Section VIII for the study of global anomalies. 85 references

  13. Topological anomalies for Seifert 3-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Imbimbo, Camillo [Dipartimento di Fisica, Università di Genova,Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova,Via Dodecaneso 33, 16146, Genova (Italy); Rosa, Dario [School of Physics and Astronomy andCenter for Theoretical Physics Seoul National University,Seoul 151-747 (Korea, Republic of); Dipartimento di Fisica, Università di Milano-Bicocca,I-20126 Milano (Italy); INFN - Sezione di Milano-Bicocca,I-20126 Milano (Italy)

    2015-07-14

    We study globally supersymmetric 3d gauge theories on curved manifolds by describing the coupling of 3d topological gauge theories, with both Yang-Mills and Chern-Simons terms in the action, to background topological gravity. In our approach, the Seifert condition for manifolds supporting global supersymmetry is elegantly deduced from the BRST transformations of topological gravity. A cohomological characterization of the geometrical moduli which affect the partition function is obtained. In the Seifert context the Chern-Simons topological (framing) anomaly is BRST trivial. We compute explicitly the corresponding local Wess-Zumino functional. As an application, we obtain the dependence on the Seifert moduli of the partition function of 3d supersymmetric gauge theory on the squashed sphere by solving the anomalous topological Ward identities, in a regularization independent way and without the need of evaluating any functional determinant.

  14. Worldwide complete spherical Bouguer and isostatic anomaly maps

    Science.gov (United States)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis

  15. Anomalies on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Arkani-Hamed, Nima; Cohen, Andrew G.; Georgi, Howard

    2001-03-16

    We discuss the form of the chiral anomaly on an S1/Z2 orbifold with chiral boundary conditions. We find that the 4-divergence of the higher-dimensional current evaluated at a given point in the extra dimension is proportional to the probability of finding the chiral zero mode there. Nevertheless the anomaly, appropriately defined as the five dimensional divergence of the current, lives entirely on the orbifold fixed planes and is independent of the shape of the zero mode. Therefore long distance four dimensional anomaly cancellation ensures the consistency of the higher dimensional orbifold theory.

  16. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  17. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  18. Response of Gravity, Magnetic, and Geoelectrical Resistivity Methods on Ngeni Southern Blitar Mineralization Zone

    Science.gov (United States)

    Sunaryo

    2018-03-01

    The research with entitle response of gravity, magnetic, and geoelectrical resistivity methods on Ngeni Southern Blitar mineralization zone has been done. This study aims to find the response of several geophysical methods of gravity, magnetic, and geoelectrical resistivity in an integrated manner. Gravity data acquisition was acquired 224 data which covers the whole region of Blitar district by using Gravity Meter La Coste & Romberg Model “G”, and magnetic data acquisition were acquired 195 data which covers the southern Blitar district only by using Proton Precession Magnetometer G-856. Meanwhile geoelectrical resistivity data only done in Ngeni village which is the location of phyropilite mining with the composition content of Fe, Si, Ca, S, Cu, and Mn by using ABEM Terrameter SAS 300C. Gravity data processing was performed to obtain the Bouguer anomaly value, which included unit conversion, tidal correction, drift correction, correction of tie point, base station correction, free air correction, and Bouguer correction. Magnetic data processing has been done by some corrections i.e daily, drift, and IGRF(International Geomagnetic Refference Field) to obtain the total magnetic anomaly. From gravity data processing has been obtained the simple Bouguer anomaly value in range from -10mGal until 115mGal. From this data processing has been obtained the total magnetic anomaly value in range from -650nT until 800nT. Meanwhile from geoelectrical resistivity 3.03Ωm until 11249.91 Ωm. There is a correlation between gravity anomaly, magnetic anomaly, and geoelectrical resistivity anomaly that are associated with deep anomaly, middle anomaly, and shallow anomaly.

  19. Digital transceiver implementation for wavelet packet modulation

    Science.gov (United States)

    Lindsey, Alan R.; Dill, Jeffrey C.

    1998-03-01

    Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.

  20. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  1. Building nonredundant adaptive wavelets by update lifting

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk); B. Pesquet-Popescu; G. Piella (Gema)

    2002-01-01

    textabstractAdaptive wavelet decompositions appear useful in various applications in image and video processing, such as image analysis, compression, feature extraction, denoising and deconvolution, or optic flow estimation. For such tasks it may be important that the multiresolution representations

  2. Scalets, wavelets and (complex) turning point quantization

    Science.gov (United States)

    Handy, C. R.; Brooks, H. A.

    2001-05-01

    Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.

  3. Using wavelet features for analyzing gamma lines

    International Nuclear Information System (INIS)

    Medhat, M.E.; Abdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Uzhinskii, V.V.

    2004-01-01

    Data processing methods for analyzing gamma ray spectra with symmetric bell-shaped peaks form are considered. In many cases the peak form is symmetrical bell shaped in particular a Gaussian case is the most often used due to many physical reasons. The problem is how to evaluate parameters of such peaks, i.e. their positions, amplitudes and also their half-widths, that is for a single peak and overlapped peaks. Through wavelet features by using Marr wavelet (Mexican Hat) as a correlation method, it could be to estimate the optimal wavelet parameters and to locate peaks in the spectrum. The performance of the proposed method and others shows a better quality of wavelet transform method

  4. Effective implementation of wavelet Galerkin method

    Science.gov (United States)

    Finěk, Václav; Šimunková, Martina

    2012-11-01

    It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.

  5. Framelets and wavelets algorithms, analysis, and applications

    CERN Document Server

    Han, Bin

    2017-01-01

    Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected spe...

  6. Image Registration Using Redundant Wavelet Transforms

    National Research Council Canada - National Science Library

    Brown, Richard

    2001-01-01

    .... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...

  7. An Analysis of Mechanical Constraints when Using Superconducting Gravimeters for Far-Field Pre-Seismic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Shyh-Chin Lan

    2011-01-01

    Full Text Available Pre-seismic gravity anomalies from records obtained at a 1 Hz sampling rate from superconducting gravimeters (SG around East Asia are analyzed. A comparison of gravity anomalies to the source parameters of associated earthquakes shows that the detection of pre-seismic gravity anomalies is constrained by several mechanical conditions of the seismic fault plane. The constraints of the far-field pre-seismic gravity amplitude perturbation were examined and the critical spatial relationship between the SG station and the epicenter precursory signal for detection was determined. The results show that: (1 the pre-seismic amplitude perturbation of gravity is inversely proportional to distance; (2 the transfer path from the epicenter to the SG station that crosses a tectonic boundary has a relatively low pre-seismic gravity anomaly amplitude; (3 the pre-seismic gravity perturbation amplitude is also affected by the attitude between the location of an SG station and the strike of the ruptured fault plane. The removal of typhoon effects and the selection of SG stations within a certain intersection angle to the strike of the fault plane are essential for obtaining reliable pre-seismic gravity anomaly results.

  8. Thin film description by wavelet coefficients statistics

    Czech Academy of Sciences Publication Activity Database

    Boldyš, Jiří; Hrach, R.

    2005-01-01

    Roč. 55, č. 1 (2005), s. 55-64 ISSN 0011-4626 Grant - others:GA UK(CZ) 173/2003 Institutional research plan: CEZ:AV0Z10750506 Keywords : thin films * wavelet transform * descriptors * histogram model Subject RIV: BD - Theory of Information Impact factor: 0.360, year: 2005 http://library.utia.cas.cz/separaty/2009/ZOI/boldys-thin film description by wavelet coefficients statistics .pdf

  9. Wavelet and Blend maps for texture synthesis

    OpenAIRE

    Du Jin-Lian; Wang Song; Meng Xianhai

    2011-01-01

    blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...

  10. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    International Nuclear Information System (INIS)

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-01-01

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  11. Skyrmions and anomalies

    International Nuclear Information System (INIS)

    Rho, M.

    1987-02-01

    The author summarizes the works presented at the meeting on skyrmions and anomalies. He divides the principal issues of this workshop into five categories: QCD effective lagrangians, chiral bags and the Cheshire cat principle, strangeness problem, phenomenology, mathematical structure

  12. Anomaly Detection in Sequences

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a set of novel algorithms which we call sequenceMiner, that detect and characterize anomalies in large sets of high-dimensional symbol sequences that...

  13. Kohn anomaly in graphene

    International Nuclear Information System (INIS)

    Milosevic, I.; Kepcija, N.; Dobardzic, E.; Damnjanovic, M.; Mohr, M.; Maultzsch, J.; Thomsen, C.

    2011-01-01

    Symmetry based analysis of the Kohn anomaly is performed. Kohn phonon frequencies and displacements are calculated by force constant method. It is shown that Kohn phonon vibrations cause electronic band gap opening.

  14. Algebraic structure of chiral anomalies

    International Nuclear Information System (INIS)

    Stora, R.

    1985-09-01

    I will describe first the algebraic aspects of chiral anomalies, exercising however due care about the topological delicacies. I will illustrate the structure and methods in the context of gauge anomalies and will eventually make contact with results obtained from index theory. I will go into two sorts of generalizations: on the one hand, generalizing the algebraic set up yields e.g. gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories; on the other hand most constructions applied to the cohomologies which characterize anomalies easily extend to higher cohomologies. Section II is devoted to a description of the general set up as it applies to gauge anomalies. Section III deals with a number of algebraic set ups which characterize more general types of anomalies: gravitational and mixed gauge anomalies, supersymmetric gauge anomalies, anomalies in supergravity theories. It also includes brief remarks on σ models and a reminder on the full BRST algebra of quantized gauge theories

  15. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  16. Fivebrane gravitational anomalies

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie

    2000-01-01

    Freed, Harvey, Minasian and Moore (FHMM) have proposed a mechanism to cancel the gravitational anomaly of the M-theory fivebrane coming from diffeomorphisms acting on the normal bundle. This procedure is based on a modification of the conventional M-theory Chern-Simons term. We apply the FHMM mechanism in the ten-dimensional type IIA theory. We then analyze the relation to the anomaly cancellation mechanism for the type IIA fivebrane proposed by Witten

  17. The Holographic Weyl anomaly

    CERN Document Server

    Henningson, M; Henningson, Mans; Skenderis, Kostas

    1998-01-01

    We calculate the Weyl anomaly for conformal field theories that can be described via the adS/CFT correspondence. This entails regularizing the gravitational part of the corresponding supergravity action in a manner consistent with general covariance. Up to a constant, the anomaly only depends on the dimension d of the manifold on which the conformal field theory is defined. We present concrete expressions for the anomaly in the physically relevant cases d = 2, 4 and 6. In d = 2 we find for the central charge c = 3 l/ 2 G_N in agreement with considerations based on the asymptotic symmetry algebra of adS_3. In d = 4 the anomaly agrees precisely with that of the corresponding N = 4 superconformal SU(N) gauge theory. The result in d = 6 provides new information for the (0, 2) theory, since its Weyl anomaly has not been computed previously. The anomaly in this case grows as N^3, where N is the number of coincident M5 branes, and it vanishes for a Ricci-flat background.

  18. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  19. Principal facts of gravity stations with gravity and magnetic profiles from the southwest Nevada Test Site, Nye County, Nevada, as of January 1982

    International Nuclear Information System (INIS)

    Jansma, P.E.; Snyder, D.B.; Ponce, D.A.

    1983-01-01

    Three gravity profiles and principal facts of 2604 gravity stations in the southwest quadrant of the Nevada Test Site are documented in this data report. The residual gravity profiles show the gravity measurements and the smoothed curves derived from these points that were used in geophysical interpretations. The principal facts include station label, latitude, longitude, elevation, observed gravity value, and terrain correction for each station as well as the derived complete Bouguer and isostatic anomalies, reduced at 2.67 g/cm 3 . Accuracy codes, where available, further document the data

  20. Bouguer gravity regional and residual separation application to geology and environment

    CERN Document Server

    Mallick, K; Sharma, KK

    2012-01-01

    Resolving regional and residual components arising out of deeper and shallower sources in observed Bouguer gravity anomalies is an old problem. The technique covered here is an attempt to sort out the difficulties that performs better than existing methods.

  1. Gravity Variation in Siberia: GRACE Observation and Possible Causes

    Directory of Open Access Journals (Sweden)

    Benjamin Fong Chao

    2011-01-01

    Full Text Available We report the finding, from the GRACE observation, of an increasing trend in the gravity anomaly in Siberia at the rate of up to 0.5 ugal yr-1 during 2003/1 - 2009/12, in the backdrop of a negative anomaly of magnitude on the order of ~-10 mgal. In consideration of the non-uniqueness of the gravitational inverse problem, we examine in some detail the various possible geophysical causes to explain the increasing gravity signal. We find two geophysical mechanisms being the most plausible, namely the melting of permafrost and the GIA post-glacial rebound. We conclude that these two mechanisms cannot be ruled out as causes for the regional gravity increase in Siberia, based on gravity data and in want of ancillary geophysical data in the region. More definitive identification of the contributions of the various causes awaits further studies.

  2. Application of Improved Wavelet Thresholding Function in Image Denoising Processing

    Directory of Open Access Journals (Sweden)

    Hong Qi Zhang

    2014-07-01

    Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.

  3. MX Siting Investigation, Gravity Survey - Delamar Valley, Nevada.

    Science.gov (United States)

    1981-07-20

    reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri...DRAWINGS Drawing Number 1 Complete Bouguer Anomaly Contours 2 Depth to Rock -Interpreted from In Pocket at Gravity Data End of Report iv E-TR-33-DM...ErtPX E-TR-3 3-DM 6 2.0 GRAVITY DATA REDUCTION DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer

  4. Gravity mediation in 6d brane-world supergravity

    International Nuclear Information System (INIS)

    Lee, H.M.

    2005-09-01

    We consider the gravity-mediated SUSY breaking within the effective theory of six-dimensional brane-world supergravity. We construct the supersymmetric bulk-brane action by Noether method and find the nontrivial moduli coupling of the brane F- and D-terms. We find that the low energy Kaehler potential is not of sequestered form, so gravity mediation may occur at tree level. In moduli stabilization with anomaly effects included, the scalar soft mass squared can be positive at tree level and it can be comparable to the anomaly mediation. (orig.)

  5. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    International Nuclear Information System (INIS)

    Barrows, L.J.; Fett, J.D.

    1983-04-01

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area

  6. Toward Joint Inversion of Gravity and Dyanamics

    Science.gov (United States)

    Jacoby, W. R.

    To better understand geodynamic processes as seafloor spreading, plumes, subduction, and isostatic adjustment, gravity is inverted with "a prioriinformation from topography/bathymetry, seismic structure and dynamic models. Examples are subduction of the Juan de Fuca plate below Vancouver Island, the passive Black Sea­Turkey margin and Iceland ridge-plume interaction. Gravity and other data are averaged 50 km wide strips. Mass balances are estimated (showing also that the free air anomaly is misleading for narrow structures). The mass balances represent plate forces and plate bending, affecting the gravity signals and the isostatic state of continental margins and ridge-plume effects, which are highly correlated in space and cannot be separated without a priori information from modelling. The examples from widely different tectonic situations demonstrate that the art of regional-scale gravity inversion requires extensive background knowledge and inclusion of dynamic processes. It is difficult to conceive any formal, globally applicable procedure taking care of this; it is even a question, what is data, what a priori information? They are not distinguishable if all are included as foreward routines. The "accuracy" of models cannot be perfectly determined, if the "real" mass distribution is not known ­ if known, gravity inversion would be unnecessary. In reality only guesses are possible on the basis of observations and physical laws governing geodynamics. A priori information and gravity data limit the resolution of gravity inversion. Different model types are indistinguishable because adjustments within their parameter uncertainties permit a good fit. But gravity excludes wrong models (Karl Popper: science evolves by falsification of wrong models), and precise gravity guides and defines aims, targets and strategies for new observations.

  7. Anomalies, Unitarity and Quantum Irreversibility

    CERN Document Server

    Anselmi, D

    1999-01-01

    The trace anomaly in external gravity is the sum of three terms at criticality: the square of the Weyl tensor, the Euler density and Box R, with coefficients, properly normalized, called c, a and a', the latter being ambiguously defined by an additive constant. Unitarity and positivity properties of the induced actions allow us to show that the total RG flows of a and a' are equal and therefore the a'-ambiguity can be consistently removed through the identification a'=a. The picture that emerges clarifies several long-standing issues. The interplay between unitarity and renormalization implies that the flux of the renormalization group is irreversible. A monotonically decreasing a-function interpolating between the appropriate values is naturally provided by a'. The total a-flow is expressed non-perturbatively as the invariant (i.e. scheme-independent) area of the graph of the beta function between the fixed points. We test this prediction to the fourth loop order in perturbation theory, in QCD with Nf ~< ...

  8. Improving the Coastal Marine Gravity from CryoSat-2 Altimetry

    Science.gov (United States)

    Abulaitijiang, A.; Andersen, O. B.; Knudsen, P.

    2017-12-01

    The 7 years of CryoSat-2 satellite altimetry data can be potentially used to extract the high frequency components of the Earth gravity field beyond the Global Geopotential Models (GGMs) which corresponds to a resolution of 9.2 Km at the degree 2160. The Synthetic Aperture Radar (SAR) mode of the CryoSat-2 produced high precision along track observations and pushed the limits (qualified observations) to even closer to the coast by several kilometers. The conventional FFT method in deriving the marine gravity anomalies requires the input height anomalies to be gridded, and gridding in the irregular coastal zones (land-ocean transition zone) could introduce high frequency noise to the inversion. Therefore, Least Square Collocation (LSC) is preferred for the inversion. As part of a phd project, in this work, we will make use of the covariance function of the height anomalies in the coastal zones to derive the marine gravity anomalies. Using the conventional remove-compute-restore (only considering the GGMs) technique, the theoretical assumption of homogeneity and isotropy in the LSC algorithm is not always satisfied in the coastal regions and mountainous regions. Hence, the Topographic Correction (TC) using high resolution topographic grids is a critical step in the reduction of the gravity functionals (e.g., height anomaly and gravity anomaly), to comply with the theoretical assumption of LSC. In this work, the TC computation (both w.r.t. the height anomalies and gravity) will be conducted to test the performance of the signal reduction in several regions (patches) around Mediterranean, Chile, islands of Indonesia and Australian coast where the true gravity data is available. The derived marine gravity will be cross-validated against the ship-borne gravity observations. Earlier studies show that due to the presence of additional altimetry observations, 4 mGal accuracy can be achieved in the Greenland fjords, and equally good accuracy is expected from this work.

  9. Gravity anomalies and crustal structure of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.; Krishna, K.S.; Murthy, I.V.R.; Sarma, K.V.L.N.S.; Desa, M.; Ramana, M.V.; KameshRaju, K.A.

    in the Moho. Each depression of the Moho is associated with a basement high. The depression beneath the 85 degrees E Ridge is about 6 km deep from the regional Moho boundary, which is at variance to the earlier results. It is suggested that the depressions may...

  10. Gravity Anomalies and Estimated Topography Derived from Satellite Altimetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In many areas of the global ocean, the depth of the seafloor is not well known because survey lines by ships are hundreds of kilometers apart. Satellites carrying...

  11. Induced gravity II: grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Einhorn, Martin B. [Kavli Institute for Theoretical Physics, Kohn Hall,University of California,Santa Barbara, CA 93106-4030 (United States); Jones, D.R. Timothy [Kavli Institute for Theoretical Physics, Kohn Hall,University of California,Santa Barbara, CA 93106-4030 (United States); Dept. of Mathematical Sciences, University of Liverpool,Peach Street, Liverpool L69 3BX (United Kingdom)

    2016-05-31

    As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass){sup 2} from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.

  12. Analysis of Alabama Airborne Gravity at Three Altitudes: Expected Accuracy and Spatial Resolution from a Future Tibetan Airborne Gravity Survey

    Directory of Open Access Journals (Sweden)

    Chi-Hsun Huang

    2013-01-01

    Full Text Available In situ airborne gravity data at altitudes of 11, 6.3, and 1.7 km over a smooth area of Alabama are used to assess gravity accuracy and errors in upward and downward continuations. Analysis of the Alabama free-air anomaly gravity data at crossover points at the three altitudes suggests 1 - 2 mgal accuracy for the dataset. Gravity data at each altitude are then expanded into local 3D Fourier series, to prepare for continuation. This Fourier representation results in continuation errors at few-mgal level in Alabama, even in the extreme case of downward continuation from 11 km to sea level. The result in Alabama inspires an airborne gravity survey over the rough, inaccessible terrain of Tibet. Similar investigations as in Alabama are made in Tibet using EGM08-derived airborne gravity data at flight altitudes of 10, 5, and 0 km. Bouguer anomalies at the 10-km altitude preserve the major tectonic features of Tibet. Downward continuation errors increase with terrain roughness, but the survey can enhance local tectonic features. This study highlights the value of a future Tibetan airborne gravity survey and points out the expected gravity accuracy and spatial resolution from this survey.

  13. Detecting microcalcifications in digital mammogram using wavelets

    International Nuclear Information System (INIS)

    Yang Jucheng; Park Dongsun

    2004-01-01

    Breast cancer is still one of main mortality causes in women, but the early detection can increase the chance of cure. Microcalcifications are small size structures, which can indicate the presence of cancer since they are often associated to the most different types of breast tumors. However, they very small size and the X-ray systems limitations lead to constraints to the adequate visualization of such structures, which means that the microcalcifications can be missed many times in mammogram visual examination. In addition, the human eyes are not able to distinguish minimal tonality differences, which can be another constraint when mammogram image presents poor contrast between microcalcifications and the tissues around them. Computer-aided diagnosis (CAD) schemes are being developed in order to increase the probabilities of early detection. To enhance and detect the microcalcifications in the mammograms we use the wavelets transform. From a signal processing point of view, microcalcifications are high frequency components in mammograms. Due to the multi-resolution decomposition capacity of the wavelet transform, we can decompose the image into different resolution levels which sensitive to different frequency bands. By choosing an appropriate wavelet and a right resolution level, we can effectively enhance and detect the microcalcifications in digital mammogram. In this work, we describe a new four-step method for the detection of microcalcifications: segmentation, wavelets transform processing, labeling and post-processing. The segmentation step is to split the breast area into 256x256 segments. For each segmented sub-image, wavelet transform is operated on it. For comparing study wavelet transform method, 4 typical family wavelets and 4 decomposing levels is discussed. We choose four family wavelets for detecting microcalcifications, that is, Daubechies, Biothgonai, Coieflets and Symlets wavelets, for simply, bd4, bior3.7, coif3, sym2 are chosen as the

  14. RARE BRANCHIAL ARCH ANOMALIES

    Directory of Open Access Journals (Sweden)

    Jayanta Kumar

    2016-03-01

    Full Text Available AIM Amongst the branchial arch anomalies third arch anomaly occurs rarely and more so the fourth arch anomalies. We present our experience with cases of rare branchial arch anomalies. PATIENTS AND METHODS From June 2006 to January 2016, cases having their external opening in the lower third of sternocleidomastoid muscle with the tract going through thyroid gland and directing to pyriform sinus (PFS or cysts with internal opening in the PFS were studied. RESULTS No fourth arch anomaly was encountered. One cyst with internal opening which later on formed a fistula, three fistulae from beginning and two sinuses were encountered. The main stay of diagnosis was the fistula in the PFS and the tract lying posterior to the internal carotid artery. Simple excision technique with a small incision around the external opening was done. There was no recurrence. CONCLUSION Third arch fistula is not very rare as it was thought. Internal fistula is found in most of the cases. Though radiological investigations are helpful, fistulae can be diagnosed clinically and during operation. Extensive operation of the neck, mediastinum and pharynx is not required.

  15. Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults

    Science.gov (United States)

    Abdelrahman, E. M.; Essa, K. S.

    2015-02-01

    We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.

  16. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  17. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...

  18. A New Formula for the Inverse Wavelet Transform

    OpenAIRE

    Sun, Wenchang

    2010-01-01

    Finding a computationally efficient algorithm for the inverse continuous wavelet transform is a fundamental topic in applications. In this paper, we show the convergence of the inverse wavelet transform.

  19. Wavelet transforms as solutions of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, G.

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.

  20. Wavelet Transforms: Application to Data Analysis - I -10 ...

    Indian Academy of Sciences (India)

    from 0 to 00, whereas translation index k takes values from -00 .... scaling function in any wavelet basis set. ..... sets derived from diverse sources like stock market, cos- ... [4] G B Folland, From Calculus to Wavelets: A New Mathematical Tech-.

  1. Wavelet processing techniques for digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  2. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  3. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  4. Construction of a class of Daubechies type wavelet bases

    International Nuclear Information System (INIS)

    Li Dengfeng; Wu Guochang

    2009-01-01

    Extensive work has been done in the theory and the construction of compactly supported orthonormal wavelet bases of L 2 (R). Some of the most distinguished work was done by Daubechies, who constructed a whole family of such wavelet bases. In this paper, we construct a class of orthonormal wavelet bases by using the principle of Daubechies, and investigate the length of support and the regularity of these wavelet bases.

  5. Low Risk Anomalies?

    DEFF Research Database (Denmark)

    Schneider, Paul; Wagner, Christian; Zechner, Josef

    . Empirically, we find that option-implied ex-ante skewness is strongly related to ex-post residual coskewness and alphas. Beta- and volatility-based low risk anomalies are largely driven by a single principal component, which is in turn largely explained by skewness. Controlling for skewness renders the alphas......This paper shows that stocks' CAPM alphas are negatively related to CAPM betas if investors demand compensation for negative skewness. Thus, high (low) beta stocks appear to underperform (outperform). This apparent anomaly merely reflects compensation for residual coskewness ignored by the CAPM...... of betting-against-beta and -volatility insignificant....

  6. Positively deflected anomaly mediation

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2002-01-01

    We generalize the so-called 'deflected anomaly mediation' scenario to the case where threshold corrections of heavy messengers to the sparticle squared masses are positive. A concrete model realizing this scenario is also presented. The tachyonic slepton problem can be fixed with only a pair of messengers. The resultant sparticle mass spectrum is quite different from that in the conventional deflected anomaly mediation scenario, but is similar to the one in the gauge mediation scenario. The lightest sparticle is mostly B-ino

  7. Congenital laryngeal anomalies,

    Directory of Open Access Journals (Sweden)

    Michael J. Rutter

    2014-12-01

    Full Text Available Introduction: It is essential for clinicians to understand issues relevant to the airway management of infants and to be cognizant of the fact that infants with congenital laryngeal anomalies are at particular risk for an unstable airway. Objectives: To familiarize clinicians with issues relevant to the airway management of infants and to present a succinct description of the diagnosis and management of an array of congenital laryngeal anomalies. Methods: Revision article, in which the main aspects concerning airway management of infants will be analyzed. Conclusions: It is critical for clinicians to understand issues relevant to the airway management of infants.

  8. A Bottom Gravity Survey of the Continental Shelf Between Point Lobos and Point Sur, California.

    Science.gov (United States)

    From an occupation of 68 ocean bottom and 38 land gravity stations between Pt. Lobos and Pt. Sur, California, a complete Bouguer anomaly map was...produced and analyzed. The steps in data reduction leading to the complete Bouguer anomaly field are presented, unique features of which are associated

  9. Wavelet transform and Huffman coding based electrocardiogram compression algorithm: Application to telecardiology

    International Nuclear Information System (INIS)

    Chouakri, S A; Djaafri, O; Taleb-Ahmed, A

    2013-01-01

    We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly

  10. A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Mahdavi

    2015-01-01

    Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.

  11. On extensions of wavelet systems to dual pairs of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2015-01-01

    It is an open problem whether any pair of Bessel sequences with wavelet structure can be extended to a pair of dual frames by adding a pair of singly generated wavelet systems. We consider the particular case where the given wavelet systems are generated by the multiscale setup with trigonometric...

  12. Fast generation of computer-generated holograms using wavelet shrinkage.

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  13. Silkeborg gravity high revisited: Horizontal extension of the source and its uniqueness

    DEFF Research Database (Denmark)

    Strykowski, Gabriel

    2000-01-01

    Silkeborg Gravity High is a dominant positive gravity anomaly in Denmark. It is associated with an igneous intrusion within the crust. A deep refraction seismic profile locates the top of the intrusion in depths between 11 km and 25 Inn. The present contribution should be read together with two o...

  14. The gravity field and crustal structure of the northwestern Arabian Platform in Jordan

    Science.gov (United States)

    Batayneh, A. T.; Al-Zoubi, A. S.

    2001-01-01

    The Bouguer gravity field over the northwestern Arabian Platform in Jordan is dominated by large variations, ranging from -132 to +4 mGal. A study of the Bouguer anomaly map shows that the gravity field maintains a general north-northeasterly trend in the Wadi Araba-Dead Sea-Jordan Riff, Northern Highlands and Northeast Jordanian Limestone Area, while the remainder of the area shows north-northwesterly-trending gravity anomalies. Results of 2-D gravity modeling of the Bouguer gravity field indicate that the crustal thickness in Jordan is ˜ 38 km, which is similar to crustal thicknesses obtained from refraction data in northern Jordan and Saudi Arabia, and from gravity data in Syria.

  15. Image encryption using the fractional wavelet transform

    International Nuclear Information System (INIS)

    Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L

    2011-01-01

    In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.

  16. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  17. Motion compensation via redundant-wavelet multihypothesis.

    Science.gov (United States)

    Fowler, James E; Cui, Suxia; Wang, Yonghui

    2006-10-01

    Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.

  18. ECG denoising with adaptive bionic wavelet transform.

    Science.gov (United States)

    Sayadi, Omid; Shamsollahi, Mohammad Bagher

    2006-01-01

    In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.

  19. Improvement of electrocardiogram by empirical wavelet transform

    Science.gov (United States)

    Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya

    2017-09-01

    Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.

  20. Assessing Asset Pricing Anomalies

    NARCIS (Netherlands)

    W.A. de Groot (Wilma)

    2017-01-01

    markdownabstractOne of the most important challenges in the field of asset pricing is to understand anomalies: empirical patterns in asset returns that cannot be explained by standard asset pricing models. Currently, there is no consensus in the academic literature on the underlying causes of

  1. Anomaly Busters II

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The anomaly busters had struck on the first day of the Kyoto meeting with Yoji Totsuka of Tokyo speaking on baryon number nonjjonservation and 'related topics'. The unstable proton is a vital test of grand unified pictures pulling together the electroweak and quark/gluon forces in a single field theory

  2. Anomaly Busters II

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-11-15

    The anomaly busters had struck on the first day of the Kyoto meeting with Yoji Totsuka of Tokyo speaking on baryon number nonjjonservation and 'related topics'. The unstable proton is a vital test of grand unified pictures pulling together the electroweak and quark/gluon forces in a single field theory.

  3. The reactor antineutrino anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Haser, Julia; Buck, Christian; Lindner, Manfred [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2016-07-01

    Major discoveries were made in the past few years in the field of neutrino flavour oscillation. Nuclear reactors produce a clean and intense flux of electron antineutrinos and are thus an essential neutrino source for the determination of oscillation parameters. Most currently the reactor antineutrino experiments Double Chooz, Daya Bay and RENO have accomplished to measure θ{sub 13}, the smallest of the three-flavour mixing angles. In the course of these experiments two anomalies emerged: (1) the reanalysis of the reactor predictions revealed a deficit in experimentally observed antineutrino flux, known as the ''reactor antineutrino anomaly''. (2) The high precision of the latest generation of neutrino experiments resolved a spectral shape distortion relative to the expected energy spectra. Both puzzles are yet to be solved and triggered new experimental as well as theoretical studies, with the search for light sterile neutrinos as most popular explanation for the flux anomaly. This talk outlines the two reactor antineutrino anomalies. Discussing possible explanations for their occurrence, recent and upcoming efforts to solve the reactor puzzles are highlighted.

  4. Echocardiography in Ebstein's anomaly

    NARCIS (Netherlands)

    W.J. Gussenhoven (Wilhelmina Johanna)

    1984-01-01

    textabstractIn this thesis the value of echocardiography is evaluated for the diagnosis of Ebstein's anomaly of the tricuspid valve. This congenital heart defect, first described in 1866 by Wilhelm Ebstein, is characterized by an apical displacement of the septal and inferior tricuspid valve

  5. Bolivian Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to the...

  6. Generalized zero point anomaly

    International Nuclear Information System (INIS)

    Nogueira, Jose Alexandre; Maia Junior, Adolfo

    1994-01-01

    It is defined Zero point Anomaly (ZPA) as the difference between the Effective Potential (EP) and the Zero point Energy (ZPE). It is shown, for a massive and interacting scalar field that, in very general conditions, the renormalized ZPA vanishes and then the renormalized EP and ZPE coincide. (author). 3 refs

  7. Minnesota Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1.5 kilometer Bouguer anomaly grid for the state of Minnesota. Number of columns is 404 and number of rows is 463. The order of the data is from the lower left to...

  8. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  9. Orthonormal Wavelet Bases for Quantum Molecular Dynamics

    International Nuclear Information System (INIS)

    Tymczak, C.; Wang, X.

    1997-01-01

    We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society

  10. Wavelet methods in mathematical analysis and engineering

    CERN Document Server

    Damlamian, Alain

    2010-01-01

    This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.

  11. Multiresolution signal decomposition transforms, subbands, and wavelets

    CERN Document Server

    Akansu, Ali N; Haddad, Paul R

    2001-01-01

    The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course

  12. Importance of the Decompensative Correction of the Gravity Field for Study of the Upper Crust: Application to the Arabian Plate and Surroundings

    OpenAIRE

    M. K. Kaban; Sami El Khrepy; Nassir Al-Arifi

    2017-01-01

    The isostatic correction represents one of the most useful “geological” reduction methods of the gravity field. With this correction it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. However, even this reduction does not show the full gravity effect of unknown anomalies in the upper crust since their impact is substantially reduced by the isostatic compensation. We analyze a so-called decompensative corre...

  13. Gravity data from the San Pedro River Basin, Cochise County, Arizona

    Science.gov (United States)

    Kennedy, Jeffrey R.; Winester, Daniel

    2011-01-01

    The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.

  14. Effect of External Disturbing Gravity Field on Spacecraft Guidance and Surveying Line Layout for Marine Gravity Survey

    Directory of Open Access Journals (Sweden)

    HUANG Motao

    2016-11-01

    Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.

  15. A study of biorthogonal multiple vector-valued wavelets

    International Nuclear Information System (INIS)

    Han Jincang; Cheng Zhengxing; Chen Qingjiang

    2009-01-01

    The notion of vector-valued multiresolution analysis is introduced and the concept of biorthogonal multiple vector-valued wavelets which are wavelets for vector fields, is introduced. It is proved that, like in the scalar and multiwavelet case, the existence of a pair of biorthogonal multiple vector-valued scaling functions guarantees the existence of a pair of biorthogonal multiple vector-valued wavelet functions. An algorithm for constructing a class of compactly supported biorthogonal multiple vector-valued wavelets is presented. Their properties are investigated by means of operator theory and algebra theory and time-frequency analysis method. Several biorthogonality formulas regarding these wavelet packets are obtained.

  16. Solution of wave-like equation based on Haar wavelet

    Directory of Open Access Journals (Sweden)

    Naresh Berwal

    2012-11-01

    Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.

  17. The Darfur Swell, Africa: Gravity constraints on its isostatic compensation

    Science.gov (United States)

    Crough, S. Thomas

    The free-air gravity anomaly observed over the Darfur Swell is explainable by local isostatic balance with a root approximately 50 km deep on average. This root depth is similar to that inferred beneath other African domes and beneath oceanic midplate swells, suggesting that the Darfur Swell is a hotspot uplift created by lithospheric reheating.

  18. Merging of airborne gravity and gravity derived from satellite altimetry: Test cases along the coast of greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.

    2002-01-01

    for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based......The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing...... onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important...

  19. Comparison between wavelet and wavelet packet transform features for classification of faults in distribution system

    Science.gov (United States)

    Arvind, Pratul

    2012-11-01

    The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.

  20. Estimation of Bouguer Density Precision: Development of Method for Analysis of La Soufriere Volcano Gravity Data

    OpenAIRE

    Gunawan, Hendra; Micheldiament, Micheldiament; Mikhailov, Valentin

    2008-01-01

    http://dx.doi.org/10.17014/ijog.vol3no3.20084The precision of topographic density (Bouguer density) estimation by the Nettleton approach is based on a minimum correlation of Bouguer gravity anomaly and topography. The other method, the Parasnis approach, is based on a minimum correlation of Bouguer gravity anomaly and Bouguer correction. The precision of Bouguer density estimates was investigated by both methods on simple 2D syntetic models and under an assumption free-air anomaly consisting ...

  1. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  2. Ferret Workflow Anomaly Detection System

    National Research Council Canada - National Science Library

    Smith, Timothy J; Bryant, Stephany

    2005-01-01

    The Ferret workflow anomaly detection system project 2003-2004 has provided validation and anomaly detection in accredited workflows in secure knowledge management systems through the use of continuous, automated audits...

  3. Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.

    1985-01-01

    Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45 0 , an error of 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs

  4. Optimization of wavelet decomposition for image compression and feature preservation.

    Science.gov (United States)

    Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T

    2003-09-01

    A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.

  5. Quantum dynamics and electronic spectroscopy within the framework of wavelets

    International Nuclear Information System (INIS)

    Toutounji, Mohamad

    2013-01-01

    This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)

  6. Newtonian gravity on quantum spacetime

    Directory of Open Access Journals (Sweden)

    Majid Shahn

    2014-04-01

    Full Text Available The bicrossproduct model λ-Minkowski (or ‘κ-Minkowski’ quantum space-time has an anomaly for the action of the Poincaré quantum group which was resolved by an extra cotangent direction θ’ not visible classically. We show that gauging a coefficient of θ′ introduces gravity into the model. We solve and analyse the model nonrelativisticaly in a 1/r potential, finding an induced constant term in the effective potential energy and a weakening and separation of the effective gravitational and inertial masses as the test particle Klein-Gordon mass increases. The present work is intended as a proof of concept but the approach could be relevant to an understanding of dark energy and possibly to macroscopic quantum systems.

  7. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  8. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  9. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  10. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  11. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  12. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  13. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  14. Application of wavelet transform to seismic data; Wavelet henkan no jishin tansa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, K; Murayama, R; Matsuoka, T [Japan National Oil Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is the use of the wavelet transform in the field of seismic exploration. Among applications so far made, there are signal filtering, break point detection, data compression, and the solution of finite differential equations in the wavelet domain. In the field of data compression in particular, some examples of practical application have been introduced already. In seismic exploration, it is expected that the wavelet transform will separate signals and noises in data in a way different from the Fourier transform. The continuous wavelet transform displays time change in frequency easy to read, but is not suitable for the analysis and processing large quantities of data. On the other hand, the discrete wavelet transform, being an orthogonal transform, can handle large quantities of data. As compared with the conventional Fourier transform that handles only the frequency domain, the wavelet transform handles the time domain as well as the frequency domain, and therefore is more convenient in handling unsteady signals. 9 ref., 8 figs.

  15. Isostatic anomaly characteristics and dynamic environment of New Britain Ocean trenches and neighboring Area in Papua New Guinea

    Science.gov (United States)

    Yang, G.; Shen, C.; Wang, J.

    2017-12-01

    we calculated the Bouguer gravity anomaly and the Airy-Heiskanen isostatic anomaly in the New Britain ocean trenches and its surrounding areas of Papua New Guinea using the topography model and the gravity anomaly model from Scripps Institute of Oceanography, and analyzed the characteristics of isostatic anomaly and the earthquake dynamic environment of this region. The results show that there are obviously differences in the isostatic state between each block in the region, and the crustal tectonic movement is very intense in the regions with high positive or negative isostatic gravity anomalies; A number of sub-plates in this area is driven by the external tectonic action such as plate subduction and thrust of the Pacific plate, the Indian - Australian plate and the Eurasian plate. From the distribution of isostatic gravity anomaly, the tectonic action of anti-isostatic movement in this region is the main source of power; from the isostatic gravity and the spatial distribution of the earthquake, with the further contraction of the Indian-Australian plate, the southwestern part of the Solomon Haiya plate will become part of the Owen Stanley fold belt, the northern part will enter the lower part of the Bismarck plate, eastern part will enter the front of the Pacific plate, the huge earthquake will migrate to the north and east of the Solomon Haiya plate.

  16. Information retrieval system utilizing wavelet transform

    Science.gov (United States)

    Brewster, Mary E.; Miller, Nancy E.

    2000-01-01

    A method for automatically partitioning an unstructured electronically formatted natural language document into its sub-topic structure. Specifically, the document is converted to an electronic signal and a wavelet transform is then performed on the signal. The resultant signal may then be used to graphically display and interact with the sub-topic structure of the document.

  17. monthly energy consumption forecasting using wavelet analysis

    African Journals Online (AJOL)

    User

    ABSTRACT. Monthly energy forecasts help heavy consumers of electric power to prepare adequate budget to pay their electricity bills and also draw the attention of management and stakeholders to electric- ity consumption levels so that energy efficiency measures are put in place to reduce cost. In this paper, a wavelet ...

  18. Characterization and Simulation of Gunfire with Wavelets

    Directory of Open Access Journals (Sweden)

    David O. Smallwood

    1999-01-01

    Full Text Available Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of these records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.

  19. Multiscale wavelet representations for mammographic feature analysis

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  20. Wavelet based multicarrier code division multiple access ...

    African Journals Online (AJOL)

    This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...

  1. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  2. Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera

    Science.gov (United States)

    Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.

    2011-01-01

    Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.

  3. Branchial Cleft Anomalies

    Science.gov (United States)

    McPhail, Neil; Mustard, Robert A.

    1966-01-01

    The embryology, anatomy and pathology of branchial cleft anomalies are discussed and 87 cases reviewed. The most frequent anomaly was branchial cleft cyst, of which there were 77 cases. Treatment in all cases consisted of complete excision. There were five cases of external branchial sinus and five cases of complete branchial fistula. Sinograms were helpful in demonstrating these lesions. Excision presented little difficulty. No proved case of branchiogenic carcinoma has been found in the Toronto General Hospital. Five cases are described in which the original diagnosis was branchiogenic carcinoma—in four of these a primary tumour has already been found. The authors believe that the diagnosis of branchiogenic carcinoma should never be accepted until repeated examinations over a period of at least five years have failed to reveal a primary tumour. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5 PMID:5901161

  4. Structural model of the Northern Latium volcanic area constrained by MT, gravity and aeromagnetic data

    Directory of Open Access Journals (Sweden)

    P. Gasparini

    1997-06-01

    Full Text Available The results of about 120 magnetotelluric soundings carried out in the Vulsini, Vico and Sabatini volcanic areas were modeled along with Bouguer and aeromagnetic anomalies to reconstruct a model of the structure of the shallow (less than 5 km of depth crust. The interpretations were constrained by the information gathered from the deep boreholes drilled for geothermal exploration. MT and aeromagnetic anomalies allow the depth to the top of the sedimentary basement and the thickness of the volcanic layer to be inferred. Gravity anomalies are strongly affected by the variations of morphology of the top of the sedimentary basement, consisting of a Tertiary flysch, and of the interface with the underlying Mesozoic carbonates. Gravity data have also been used to extrapolate the thickness of the neogenic unit indicated by some boreholes. There is no evidence for other important density and susceptibility heterogeneities and deeper sources of magnetic and/or gravity anomalies in all the surveyed area.

  5. Automated gravity gradient tensor inversion for underwater object detection

    International Nuclear Information System (INIS)

    Wu, Lin; Tian, Jinwen

    2010-01-01

    Underwater abnormal object detection is a current need for the navigation security of autonomous underwater vehicles (AUVs). In this paper, an automated gravity gradient tensor inversion algorithm is proposed for the purpose of passive underwater object detection. Full-tensor gravity gradient anomalies induced by an object in the partial area can be measured with the technique of gravity gradiometry on an AUV. Then the automated algorithm utilizes the anomalies, using the inverse method to estimate the mass and barycentre location of the arbitrary-shaped object. A few tests on simple synthetic models will be illustrated, in order to evaluate the feasibility and accuracy of the new algorithm. Moreover, the method is applied to a complicated model of an abnormal object with gradiometer and AUV noise, and interference from a neighbouring illusive smaller object. In all cases tested, the estimated mass and barycentre location parameters are found to be in good agreement with the actual values

  6. Gravity Data Interpretation in the Northern Edge of the Congo Craton, South-Cameroon

    Directory of Open Access Journals (Sweden)

    James Derek Fairhead

    2010-01-01

    Full Text Available Gravity data in the southern Cameroon are interpreted to better understand the organization of underlying structuresthroughout the northern edge of the Congo craton. The Bouguer anomaly maps of the region are characterized by an elongated trending trending negative gravity anomaly which correspond to a collapsed structure associated with a granitic intrusion beneath the cente center of the region r of the region of the region and limited by fault systems. �e applied 3�D gravity modelling and inversion in order to obtain the 3D density structure of the area. Our result demonstrated that observed gravity anomalies in the region are associated to tectonic structures in the subsurface. The resulting model agrees with the hypothesis of the existence of a major continental collision zone between the Congo Craton and the Pan�African belt. The presence of deep granulites structures in the northern part of the region expresses a continental collision.

  7. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.

    Science.gov (United States)

    Andrews-Hanna, Jeffrey C; Asmar, Sami W; Head, James W; Kiefer, Walter S; Konopliv, Alexander S; Lemoine, Frank G; Matsuyama, Isamu; Mazarico, Erwan; McGovern, Patrick J; Melosh, H Jay; Neumann, Gregory A; Nimmo, Francis; Phillips, Roger J; Smith, David E; Solomon, Sean C; Taylor, G Jeffrey; Wieczorek, Mark A; Williams, James G; Zuber, Maria T

    2013-02-08

    The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.

  8. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  9. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  10. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  11. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  12. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  13. Penile Anomalies in Adolescence

    Directory of Open Access Journals (Sweden)

    Dan Wood

    2011-01-01

    Full Text Available This article considers the impact and outcomes of both treatment and underlying condition of penile anomalies in adolescent males. Major congenital anomalies (such as exstrophy/epispadias are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring in this group, and surgical assessment for potential surgical candidates. The emergence of new surgical techniques continues to improve outcomes and potentially raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile anomalies, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism.

  14. Penile anomalies in adolescence.

    Science.gov (United States)

    Wood, Dan; Woodhouse, Christopher

    2011-03-07

    This article considers the impact and outcomes of both treatment and underlying condition of penile anomalies in adolescent males. Major congenital anomalies (such as exstrophy/epispadias) are discussed, including the psychological outcomes, common problems (such as corporal asymmetry, chordee, and scarring) in this group, and surgical assessment for potential surgical candidates. The emergence of new surgical techniques continues to improve outcomes and potentially raises patient expectations. The importance of balanced discussion in conditions such as micropenis, including multidisciplinary support for patients, is important in order to achieve appropriate treatment decisions. Topical treatments may be of value, but in extreme cases, phalloplasty is a valuable option for patients to consider. In buried penis, the importance of careful assessment and, for the majority, a delay in surgery until puberty has completed is emphasised. In hypospadias patients, the variety of surgical procedures has complicated assessment of outcomes. It appears that true surgical success may be difficult to measure as many men who have had earlier operations are not reassessed in either puberty or adult life. There is also a brief discussion of acquired penile anomalies, including causation and treatment of lymphoedema, penile fracture/trauma, and priapism.

  15. Application of Shannon Wavelet Entropy and Shannon Wavelet Packet Entropy in Analysis of Power System Transient Signals

    Directory of Open Access Journals (Sweden)

    Jikai Chen

    2016-12-01

    Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.

  16. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    Science.gov (United States)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  17. Application of Intelligent Dynamic Bayesian Network with Wavelet Analysis for Probabilistic Prediction of Storm Track Intensity Index

    Directory of Open Access Journals (Sweden)

    Ming Li

    2018-06-01

    Full Text Available The effective prediction of storm track (ST is greatly beneficial for analyzing the development and anomalies of mid-latitude weather systems. For the non-stationarity, nonlinearity, and uncertainty of ST intensity index (STII, a new probabilistic prediction model was proposed based on dynamic Bayesian network (DBN and wavelet analysis (WA. We introduced probability theory and graph theory for the first time to quantitatively describe the nonlinear relationship and uncertain interaction of the ST system. Then a casual prediction network (i.e., DBN was constructed through wavelet decomposition, structural learning, parameter learning, and probabilistic inference, which was used for expression of relation among predictors and probabilistic prediction of STII. The intensity prediction of the North Pacific ST with data from 1961–2010 showed that the new model was able to give more comprehensive prediction information and higher prediction accuracy and had strong generalization ability and good stability.

  18. Anomaly General Circulation Models.

    Science.gov (United States)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the

  19. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  20. The New Gravity System: Changes in International Gravity Base Values and Anomaly Values

    Science.gov (United States)

    1980-10-01

    Pend Ft. Clayton Pend. Ŕ" 978.2391 .224 00 -15.10 WA 4004 Albrook AFB "S" 978.2427 .227 72 -14.98 COSTA RICA WA 4049 Golfito 978.2389 .223 98* -14.92... Joaquin 978.2975 .282 52* +14.98 WA 6170 San Ana 978.3388 .323 85* +14.95 WA 6021 Santa Cruz "K" 978.3639 .349 07 +14.83 WA 6141 Santa Cruz "J" 978.3643

  1. Gravity data processing and research in potential evaluation of uranium resource in China

    International Nuclear Information System (INIS)

    Liu Hu; Zhao Dan; Ke Dan; Li Bihong; Han Shaoyang

    2012-01-01

    Through data processing, anomaly extraction, geologic structure deduction from gravity in 39 uranium metallogenic zones and 29 prediction areas, the predicting factors such as tectonic units, faults, scope and depth of rocks, scope of basins and strata structure were provided for the evaluation of uranium resources potential. Gravity field features of uranium metallogenic environment were summarized for hydrothermal type uranium deposits (granite, volcanic and carbonate-siliceous-argillaceous type) as regional gravity transition from high to the low field or the region near the low field, and the key metallogenic factors as granite rocks and volcanic basins in the low gravity field. It was found that Large-scale sandstone type uranium mineralization basins are located in the high regional gravity field, provenance areas are in the low field, and the edge and inner uplift areas usually located in the high field of the residual gravity. Faults related to different type uranium mineralization occur as the gradient zones, boundaries, a string of bead anomalies and striped gravity anomalies in the gravity field. (authors)

  2. Gravity wave influence on NLC: experimental results from ALOMAR, 69° N

    Directory of Open Access Journals (Sweden)

    H. Wilms

    2013-12-01

    Full Text Available The influence of gravity waves on noctilucent clouds (NLC at ALOMAR (69° N is analysed by relating gravity wave activity to NLC occurrence from common-volume measurements. Gravity wave kinetic energies are derived from MF-radar wind data and filtered into different period ranges by wavelet transformation. From the dataset covering the years 1999–2011, a direct correlation between gravity wave kinetic energy and NLC occurrence is not found, i.e., NLC appear independently of the simultaneously measured gravity wave kinetic energy. In addition, gravity wave activity is divided into weak and strong activity as compared to a 13 yr mean. The NLC occurrence rates during strong and weak activity are calculated separately for a given wave period and compared to each other. Again, for the full dataset no dependence of NLC occurrence on relative gravity wave activity is found. However, concentrating on 12 h of NLC detections during 2008, we do find an NLC-amplification with strong long-period gravity wave occurrence. Our analysis hence confirms previous findings that in general NLC at ALOMAR are not predominantly driven by gravity waves while exceptions to this rule are at least possible.

  3. First branchial cleft anomaly.

    Science.gov (United States)

    Al-Fallouji, M. A.; Butler, M. F.

    1983-01-01

    A 15-year-old girl presented with a cystic swelling since birth behind the ramus of the right mandible and diagnosed clinically as a dermoid cyst. Surgical exploration, however, showed that it was closely related to the external auditory canal, with an extension running medially behind the parotid gland and ending in the bony middle ear. The facial nerve was closely related to the deep part of the cyst. Such an anatomical position indicates that this was a first branchial cleft anomaly. Surgical excision of the cyst was performed. PMID:6622327

  4. Weyl and ghost number anomalies in the Polyakov's light-cone gauge

    International Nuclear Information System (INIS)

    Suzuki, H.

    1991-01-01

    In this paper the conformal (Weyl) anomaly of the ghost-anti-ghost system in the 2-dimensional quantum gravity is calculated. A background covariant formalism allows us to treat the Polyakov's light-cone gauge in a systematic way. The anomaly gives a contribution to the central charge, -28, which agrees with the result of Kniznik, Polyakov, and Zamolodchikov. The ghost number anomaly is also calculated, and the metric corrections to the naive ghost number current are given. It is suggested that a general scalar density in the light-cone gauge carries a screening ghost number

  5. Macroscopic effects of the quantum trace anomaly

    International Nuclear Information System (INIS)

    Mottola, Emil; Vaulin, Ruslan

    2006-01-01

    The low energy effective action of gravity in any even dimension generally acquires nonlocal terms associated with the trace anomaly, generated by the quantum fluctuations of massless fields. The local auxiliary field description of this effective action in four dimensions requires two additional scalar fields, not contained in classical general relativity, which remain relevant at macroscopic distance scales. The auxiliary scalar fields depend upon boundary conditions for their complete specification, and therefore carry global information about the geometry and macroscopic quantum state of the gravitational field. The scalar potentials also provide coordinate invariant order parameters describing the conformal behavior and divergences of the stress tensor on event horizons. We compute the stress tensor due to the anomaly in terms of its auxiliary scalar potentials in a number of concrete examples, including the Rindler wedge, the Schwarzschild geometry, and de Sitter spacetime. In all of these cases, a small number of classical order parameters completely determine the divergent behaviors allowed on the horizon, and yield qualitatively correct global approximations to the renormalized expectation value of the quantum stress tensor

  6. From cardinal spline wavelet bases to highly coherent dictionaries

    International Nuclear Information System (INIS)

    Andrle, Miroslav; Rebollo-Neira, Laura

    2008-01-01

    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)

  7. The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra

    Science.gov (United States)

    Gill, S.; Maxted, P. F. L.; Smalley, B.

    2018-05-01

    Context. Atmospheric properties of F-, G- and K-type stars can be measured by spectral model fitting or with the analysis of equivalent width (EW) measurements. These methods require data with good signal-to-noise ratios (S/Ns) and reliable continuum normalisation. This is particularly challenging for the spectra we have obtained with the CORALIE échelle spectrograph for FGK stars with transiting M-dwarf companions. The spectra tend to have low S/Ns, which makes it difficult to analyse them using existing methods. Aims: Our aim is to create a reliable automated spectral analysis routine to determine Teff, [Fe/H], V sini from the CORALIE spectra of FGK stars. Methods: We use wavelet decomposition to distinguish between noise, continuum trends, and stellar spectral features in the CORALIE spectra. A subset of wavelet coefficients from the target spectrum are compared to those from a grid of models in a Bayesian framework to determine the posterior probability distributions of the atmospheric parameters. Results: By testing our method using synthetic spectra we found that our method converges on the best fitting atmospheric parameters. We test the wavelet method on 20 FGK exoplanet host stars for which higher-quality data have been independently analysed using EW measurements. We find that we can determine Teff to a precision of 85 K, [Fe/H] to a precision of 0.06 dex and V sini to a precision of 1.35 km s-1 for stars with V sini ≥ 5 km s-1. We find an offset in metallicity ≈- 0.18 dex relative to the EW fitting method. We can determine log g to a precision of 0.13 dex but find systematic trends with Teff. Measurements of log g are only reliable enough to confirm dwarf-like surface gravity (log g ≈ 4.5). Conclusions: The wavelet method can be used to determine Teff, [Fe/H], and V sini for FGK stars from CORALIE échelle spectra. Measurements of log g are unreliable but can confirm dwarf-like surface gravity. We find that our method is self consistent, and

  8. Joint multifractal analysis based on wavelet leaders

    Science.gov (United States)

    Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing

    2017-12-01

    Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.

  9. Wavelet neural network load frequency controller

    International Nuclear Information System (INIS)

    Hemeida, Ashraf Mohamed

    2005-01-01

    This paper presents the feasibility of applying a wavelet neural network (WNN) approach for the load frequency controller (LFC) to damp the frequency oscillations of two area power systems due to load disturbances. The present intelligent control system trained the wavelet neural network (WNN) controller on line with adaptive learning rates, which are derived in the sense of a discrete type Lyapunov stability theorem. The present WNN controller is designed individually for each area. The proposed technique is applied successfully for a wide range of operating conditions. The time simulation results indicate its superiority and effectiveness over the conventional approach. The effects of consideration of the governor dead zone on the system performance are studied using the proposed controller and the conventional one

  10. Wavelet analysis of the impedance cardiogram waveforms

    Science.gov (United States)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  11. Wavelet analysis of the impedance cardiogram waveforms

    International Nuclear Information System (INIS)

    Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K

    2012-01-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  12. Gestures recognition based on wavelet and LLE

    International Nuclear Information System (INIS)

    Ai, Qingsong; Liu, Quan; Lu, Ying; Yuan, Tingting

    2013-01-01

    Wavelet analysis is a time–frequency, non-stationary method while the largest Lyapunov exponent (LLE) is used to judge the non-linear characteristic of systems. Because surface electromyography signal (SEMGS) is a complex signal that is characterized by non-stationary and non-linear properties. This paper combines wavelet coefficient and LLE together as the new feature of SEMGS. The proposed method not only reflects the non-stationary and non-linear characteristics of SEMGS, but also is suitable for its classification. Then, the BP (back propagation) neural network is employed to implement the identification of six gestures (fist clench, fist extension, wrist extension, wrist flexion, radial deviation, ulnar deviation). The experimental results indicate that based on the proposed method, the identification of these six gestures can reach an average rate of 97.71 %.

  13. Wavelets and their applications past and future

    Science.gov (United States)

    Coifman, Ronald R.

    2009-04-01

    As this is a conference on mathematical tools for defense, I would like to dedicate this talk to the memory of Louis Auslander, who through his insights and visionary leadership, brought powerful new mathematics into DARPA, he has provided the main impetus to the development and insertion of wavelet based processing in defense. My goal here is to describe the evolution of a stream of ideas in Harmonic Analysis, ideas which in the past have been mostly applied for the analysis and extraction of information from physical data, and which now are increasingly applied to organize and extract information and knowledge from any set of digital documents, from text to music to questionnaires. This form of signal processing on digital data, is part of the future of wavelet analysis.

  14. Einstein, Entropy and Anomalies

    Science.gov (United States)

    Sirtes, Daniel; Oberheim, Eric

    2006-11-01

    This paper strengthens and defends the pluralistic implications of Einstein's successful, quantitative predictions of Brownian motion for a philosophical dispute about the nature of scientific advance that began between two prominent philosophers of science in the second half of the twentieth century (Thomas Kuhn and Paul Feyerabend). Kuhn promoted a monistic phase-model of scientific advance, according to which a paradigm driven `normal science' gives rise to its own anomalies, which then lead to a crisis and eventually a scientific revolution. Feyerabend stressed the importance of pluralism for scientific progress. He rejected Kuhn's model arguing that it fails to recognize the role that alternative theories can play in identifying exactly which phenomena are anomalous in the first place. On Feyerabend's account, Einstein's predictions allow for a crucial experiment between two incommensurable theories, and are an example of an anomaly that could refute the reigning paradigm only after the development of a competitor. Using Kuhn's specification of a disciplinary matrix to illustrate the incommensurability between the two paradigms, we examine the different research strategies available in this peculiar case. On the basis of our reconstruction, we conclude by rebutting some critics of Feyerabend's argument.

  15. Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment

    DEFF Research Database (Denmark)

    Hwang, C.W.; Hsiao, Y.S.; Shih, H.C.

    2007-01-01

    [ 1] An airborne gravity survey was conducted over Taiwan using a LaCoste and Romberg (LCR) System II air-sea gravimeter with gravity and global positioning system (GPS) data sampled at 1 Hz. The aircraft trajectories were determined using a GPS network kinematic adjustment relative to eight GPS ...... using airborne and surface gravity data and the other using surface data only, and the former yields a better agreement with the GPS-derived geoidal heights. Bouguer anomalies derived from airborne gravity by a rigorous numerical integration reveal important tectonic features....

  16. Transformer Protection Using the Wavelet Transform

    OpenAIRE

    ÖZGÖNENEL, Okan; ÖNBİLGİN, Güven; KOCAMAN, Çağrı

    2014-01-01

    This paper introduces a novel approach for power transformer protection algorithm. Power system signals such as current and voltage have traditionally been analysed by the Fast Fourier Transform. This paper aims to prove that the Wavelet Transform is a reliable and computationally efficient tool for distinguishing between the inrush currents and fault currents. The simulated results presented clearly show that the proposed technique for power transformer protection facilitates the a...

  17. Wavelet representation of the nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jouault, B.; Sebille, F.; Mota, V. de la

    1997-12-31

    The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.

  18. Wavelet Decomposition of the Financial Market

    Czech Academy of Sciences Publication Activity Database

    Vošvrda, Miloslav; Vácha, Lukáš

    2007-01-01

    Roč. 16, č. 1 (2007), s. 38-54 ISSN 1210-0455 R&D Projects: GA ČR GA402/04/1026; GA ČR(CZ) GA402/06/1417 Grant - others:GA UK(CZ) 454/2004/A-EK FSV Institutional research plan: CEZ:AV0Z10750506 Keywords : agents' trading strategies * heterogeneous agents model with stochastic memory * worst out algorithm * wavelet Subject RIV: AH - Economics

  19. Wavelet representation of the nuclear dynamics

    International Nuclear Information System (INIS)

    Jouault, B.; Sebille, F.; Mota, V. de la.

    1997-01-01

    The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)

  20. Multiscale peak detection in wavelet space.

    Science.gov (United States)

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  1. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  2. An introduction to random vibrations, spectral & wavelet analysis

    CERN Document Server

    Newland, D E

    2005-01-01

    One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation

  3. Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms

    Science.gov (United States)

    2004-08-06

    wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus

  4. Constraining mass anomalies in the interior of spherical bodies using Trans-dimensional Bayesian Hierarchical inference.

    Science.gov (United States)

    Izquierdo, K.; Lekic, V.; Montesi, L.

    2017-12-01

    Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (information about the overall density distribution of celestial bodies even when there is no other geophysical data available.

  5. Three-dimensional gravity investigation of the Hanford reservation

    International Nuclear Information System (INIS)

    Richard, B.H.; Deju, R.A.

    1977-07-01

    Models of the basalt surface buried under the Hanford reservation are constructed from gravity data. The method uses a modified third order polynomial surface to remove the regional effects and a gravity-geologic method to remove the water table effects. When these influences are subtracted from previous data, the anomaly remaining directly reflects the irregularity of the underlying basalt surface. The Umtanum Anticline and the Cold Creek Syncline are delineated beneath the overlying surficial deposits. Along the crest of the Umtanum Anticline, a number of gravity lows are evident. These may identify locations of breaching by an ancestral river. In addition, the data are examined to determine optimum gravity data spacing for modeling. Optimum results were obtained using a station separation of one per four square miles. Less will delineate only the major underlying structures. It is also very important to have all data points distributed in a regularly spaced grid

  6. Gravity model improvement using GEOS-3 (GEM 9 and 10)

    Science.gov (United States)

    Lerch, F. J.; Klosko, S. M.; Laubscher, R. E.; Wagner, C. A.

    1977-01-01

    The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms.

  7. Forward modeling of gravity data using geostatistically generated subsurface density variations

    Science.gov (United States)

    Phelps, Geoffrey

    2016-01-01

    Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.

  8. Symplectic Structure of Intrinsic Time Gravity

    Directory of Open Access Journals (Sweden)

    Eyo Eyo Ita

    2016-08-01

    Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.

  9. Denoising solar radiation data using coiflet wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia); Hasan, Mohammad Khatim, E-mail: khatim@ftsm.ukm.my [Jabatan Komputeran Industri, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Sulaiman, Jumat, E-mail: jumat@ums.edu.my [Program Matematik dengan Ekonomi, Universiti Malaysia Sabah, Beg Berkunci 2073, 88999 Kota Kinabalu, Sabah (Malaysia); Ismail, Mohd Tahir [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Minden, Penang (Malaysia)

    2014-10-24

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.

  10. Pedestrian detection based on redundant wavelet transform

    Science.gov (United States)

    Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun

    2016-10-01

    Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.

  11. Fringe pattern information retrieval using wavelets

    Science.gov (United States)

    Sciammarella, Cesar A.; Patimo, Caterina; Manicone, Pasquale D.; Lamberti, Luciano

    2005-08-01

    Two-dimensional phase modulation is currently the basic model used in the interpretation of fringe patterns that contain displacement information, moire, holographic interferometry, speckle techniques. Another way to look to these two-dimensional signals is to consider them as frequency modulated signals. This alternative interpretation has practical implications similar to those that exist in radio engineering for handling frequency modulated signals. Utilizing this model it is possible to obtain frequency information by using the energy approach introduced by Ville in 1944. A natural complementary tool of this process is the wavelet methodology. The use of wavelet makes it possible to obtain the local values of the frequency in a one or two dimensional domain without the need of previous phase retrieval and differentiation. Furthermore from the properties of wavelets it is also possible to obtain at the same time the phase of the signal with the advantage of a better noise removal capabilities and the possibility of developing simpler algorithms for phase unwrapping due to the availability of the derivative of the phase.

  12. JPEG and wavelet compression of ophthalmic images

    Science.gov (United States)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  13. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  14. Rate-distortion analysis of directional wavelets.

    Science.gov (United States)

    Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza

    2012-02-01

    The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE

  15. Forced Ignition Study Based On Wavelet Method

    Science.gov (United States)

    Martelli, E.; Valorani, M.; Paolucci, S.; Zikoski, Z.

    2011-05-01

    The control of ignition in a rocket engine is a critical problem for combustion chamber design. Therefore it is essential to fully understand the mechanism of ignition during its earliest stages. In this paper the characteristics of flame kernel formation and initial propagation in a hydrogen-argon-oxygen mixing layer are studied using 2D direct numerical simulations with detailed chemistry and transport properties. The flame kernel is initiated by adding an energy deposition source term in the energy equation. The effect of unsteady strain rate is studied by imposing a 2D turbulence velocity field, which is initialized by means of a synthetic field. An adaptive wavelet method, based on interpolating wavelets is used in this study to solve the compressible reactive Navier- Stokes equations. This method provides an alternative means to refine the computational grid points according to local demands of the physical solution. The present simulations show that in the very early instants the kernel perturbed by the turbulent field is characterized by an increased burning area and a slightly increased rad- ical formation. In addition, the calculations show that the wavelet technique yields a significant reduction in the number of degrees of freedom necessary to achieve a pre- scribed solution accuracy.

  16. Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting

    Institute of Scientific and Technical Information of China (English)

    WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng

    2003-01-01

    To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.

  17. Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering

    Science.gov (United States)

    Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech

    2015-03-01

    We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.

  18. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  19. Coresident sensor fusion and compression using the wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, D.A.

    1996-03-11

    Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.

  20. EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform

    National Research Council Canada - National Science Library

    Bhatti, Muhammad

    2001-01-01

    EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...