WorldWideScience

Sample records for gravel aquifer cape

  1. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    Science.gov (United States)

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  2. Sorption of activation products on London clay and Dungeness aquifer gravel

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Littleboy, A.K.; Pilkington, N.J.

    1992-01-01

    The sortpion of a series of activation-product radionuclides onto London clay and Dungeness aquifer gravel from the nuclear reactor sites at Bradwell and Dungeness, has been examined. Batch sorption and through-diffusion experiments with clay determined chlorine as the chloride ion to be effectively non-sorbing; calcium to be weakly sorbing, whereas cobalt, nickel, niobium and samarium were moderately to strongly sorbing and silver was strongly sorbing. Distribution ratios (R D values) for Nb, Sm and Ag were found to have a strong dependence on the liquid-solid separation technique employed. The presence of high concentrations of calcium hydroxide led to lower values of R D for radioactive Ca but higher R D values for Sm and Ag. The sorption of Ni showed no apparent dependence on groundwater composition at low levels of dissolved organic carbon (DOC). The values of R D for Co decreased as the DOC content was increased by addition of humic materials. Batch sorption studies with aquifer gravel demonstrated that Ca is weakly sorbing whereas Nb, Ag and Eu are moderately to strongly sorbing. R D values for Ca and for Ag under neutral pH conditions show little sensitivity to the liquid/solid separation technique used. However, R D values for Nb and Eu under neutral pH conditions and for Ag in alkaline solution (pH = 11 - 12) show a marked effect. The aquifer gravel was found to be highly inhomogeneous unlike the clay and sorption was greatest on samples with a high proportion of sand, reflecting the clay mineral content. (orig.)

  3. Sorption of activation products on London clay and Dungeness aquifer gravel

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Littleboy, A.K.; Pilkington, N.J. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    The sortpion of a series of activation-product radionuclides onto London clay and Dungeness aquifer gravel from the nuclear reactor sites at Bradwell and Dungeness, has been examined. Batch sorption and through-diffusion experiments with clay determined chlorine as the chloride ion to be effectively non-sorbing; calcium to be weakly sorbing, whereas cobalt, nickel, niobium and samarium were moderately to strongly sorbing and silver was strongly sorbing. Distribution ratios (R[sub D] values) for Nb, Sm and Ag were found to have a strong dependence on the liquid-solid separation technique employed. The presence of high concentrations of calcium hydroxide led to lower values of R[sub D] for radioactive Ca but higher R[sub D] values for Sm and Ag. The sorption of Ni showed no apparent dependence on groundwater composition at low levels of dissolved organic carbon (DOC). The values of R[sub D] for Co decreased as the DOC content was increased by addition of humic materials. Batch sorption studies with aquifer gravel demonstrated that Ca is weakly sorbing whereas Nb, Ag and Eu are moderately to strongly sorbing. R[sub D] values for Ca and for Ag under neutral pH conditions show little sensitivity to the liquid/solid separation technique used. However, R[sub D] values for Nb and Eu under neutral pH conditions and for Ag in alkaline solution (pH = 11 - 12) show a marked effect. The aquifer gravel was found to be highly inhomogeneous unlike the clay and sorption was greatest on samples with a high proportion of sand, reflecting the clay mineral content. (orig.).

  4. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.

    Science.gov (United States)

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates (katt) that were determined by applying the model to the breakthrough data, filter factors (f) were calculated and compared with f values estimated from the slopes of log (cmax/co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log (cmax/co) m(-1), are consistently in the order of 10(-2) for clean coarse gravel aquifers, 10(-3) for contaminated coarse gravel aquifers, and generally 10(-1) for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10(4) pfu/l for enteroviruses and 10(6) cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking

  5. Inverse Porosity-Hydraulic Conductivity Relationship in Sand-and-Gravel Aquifers Determined From Analysis of Geophysical Well Logs: Implications for Transport Processes

    Science.gov (United States)

    Morin, R. H.

    2004-05-01

    It is intuitive to think of hydraulic conductivity K as varying directly and monotonically with porosity P in porous media. However, laboratory studies and field observations have documented a possible inverse relationship between these two parameters in unconsolidated deposits under certain grain-size distributions and packing arrangements. This was confirmed at two sites in sand-and-gravel aquifers on Cape Cod, Massachusetts, where sets of geophysical well logs were used to examine the interdependence of several aquifer properties. Along with K and P, the resistivity R and the natural-gamma activity G of the surrounding sediments were measured as a function of depth. Qualitative examination of field results from the first site was useful in locating a contaminant plume and inferred an inverse relation between K and P; this was substantiated by a rigorous multivariate analysis of log data collected from the second site where K and P were determined to respond in a bipolar manner among the four independent variables. Along with this result come some implications regarding our conceptual understanding of contaminant transport processes in the shallow subsurface. According to Darcy's law, the interstitial fluid velocity V is proportional to the ratio K/P and, consequently, a general inverse K-P relationship implies that values of V can extend over a much wider range than conventionally assumed. This situation introduces a pronounced flow stratification within these granular deposits that can result in large values of longitudinal dispersivity; faster velocities occur in already fast zones and slower velocities in already slow zones. An inverse K-P relationship presents a new perspective on the physical processes associated with groundwater flow and transport. Although the results of this study apply strictly to the Cape Cod aquifers, they may merit a re-evaluation of modeling approaches undertaken at other locations having similar geologic environments.

  6. Water and chemical budgets of gravel pit lakes : Case studies of fluvial gravel pit lakes along the Meuse River (The Netherlands) and coastal gravel pit lakes along the Adriatic Sea (Ravenna, Italy)

    NARCIS (Netherlands)

    Mollema, P.N.

    2016-01-01

    Gravel pit lakes form when gravel is excavated from below the water table of a phreatic or shallow confined aquifer. Typically many of these lakes are concentrated along naturally occurring sedimentary gravel deposits in areas where gravel is needed for construction. Most gravel pit lakes are

  7. Application of surface-geophysical methods to investigations of sand and gravel aquifers in the glaciated Northeastern United States

    Science.gov (United States)

    Haeni, F.P.

    1995-01-01

    Combined use of seismic-refraction, direct-current resistivity, very-low-frequency terrain-resistivity, and inductive terrain-conductivity methods were demonstrated at sites in Connecticut, New York, and Maine. Although no single method can define both the hydrogeologic boundaries and general grain-size characteristics of sand and gravel aquifers, a combination of these methods can. Comparisons of measured electrical properties of aquifers with logs of test holes and wells indicate that, for a given conductivity of ground water, the bulk electrical resistivity of aquifers in the glaciated Northeast increases with grain size.

  8. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer

    Science.gov (United States)

    Morin, Roger H.; LeBlanc, Denis R.; Troutman, Brent M.

    2010-01-01

    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ϕ, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ϕ, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity α that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of α, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ϕ on K.

  9. Protists from a sewage‐contaminated aquifer on cape cod, Massachusetts

    Science.gov (United States)

    Novarino, Gianfranco; Warren, Alan; Kinner, Nancy E.; Harvey, Ronald W.

    1994-01-01

    Several species of flagellates (genera Bodo, Cercomonas, Cryptaulax, Cyathomonas, Goniomonas, Spumella) have been identified in cultures from a plume of organic contamination (treated sewage effluent) within an aquifer on Cape Cod, Massachusetts. Amoebae and numerous unidentifiable 2‐ to 3‐μm flagellates have also been observed. As a rule, flagellates were associated with solid surfaces, or were capable of temporary surface attachment, corroborating earlier observations from in situ and column transport experiments suggesting that protists in the Massachusetts aquifer have a high propensity for association with sediment grain surfaces. Based on the fact that cultures from the uncontaminated part of the aquifer yielded only a few species of protists, it is hypothesized that the greater abundance and variety of food sources in the contaminant plume is capable of supporting a greater number of protistan species.

  10. Migration rates of volatile organic compounds in an unconsolidated sand and gravel aquifer system

    International Nuclear Information System (INIS)

    Naidu, J.R.; Paquette, D.E.; Porcelli, D.R.

    1993-01-01

    The movement of volatile organic compounds (VOCs) in an aquifer is dictated by its solubility, attenuation characteristics, recharge volume, and ground-water movement (velocity and direction). At Brookhaven National Laboratory, past handling and disposal practices at the Hazardous Waste Management Facility and current landfill have resulted in the release of VOCs and the radioisotope tritium to the underlying upper glacial aquifer which characterized by unconsolidated sands and gravel. The rate of VOC migration from these source areas was examined using the following parameters: (1) distribution of VOCs and tritium; (2) tritium/helium ratios, which provide an estimate of the age of the water, and hence the rate of ground-water movement; (3) ground-water flow velocities within the upper glacial aquifer utilizing conductivity, porosity, and gradient data. Preliminary results indicate that whereas the comparison of the calculated ground-water flow gradient to tritium/helium age determinations are fairly consistent, application to VOC movement is inconclusive, and will require additional monitoring which would also focus on the vertical component as well

  11. Delineation of groundwater recharge areas, western Cape Cod, Massachusetts

    Science.gov (United States)

    Masterson, John P.; Walter, Donald A.

    2000-01-01

    The unconfined sand-and-gravel aquifer in western Cape Cod, Massachusetts, which is the sole source of water supply for the communities in the area, is recharged primarily from precipitation. The rate of recharge from precipitation is estimated to be about 26 inches per year (in/yr), or about 60 percent of the precipitation rate. This recharge rate yields a flow through the aquifer of about 180 million gallons per day (Mgal/d). Groundwater flows radially outward from the top of the water-table mound in the north-central part of the flow system toward the coast, as indicated by the water-table contours on the large map on this sheet. Recharge that reaches the water table near the top of the mound travels deeper through the aquifer than recharge that reaches the water table closer to the coast. All recharge to the aquifer ultimately discharges to pumping wells, streams, or coastal areas; however, some of this recharge may flow first through kettle ponds before eventually reaching these discharge points.

  12. Sand and gravel mining: effects on ground water resources in Hancock county, Maine, USA

    Science.gov (United States)

    Peckenham, John M.; Thornton, Teresa; Whalen, Bill

    2009-01-01

    Based on this preliminary study, existing sand and gravel mining regulations (in Maine, USA) can be inferred to provide some protection to water resources. Sand and gravel deposits are important natural resources that have dual uses: mining for construction material and pumping for drinking water. How the mining of sand and gravel affects aquifers and change aquifer vulnerability to contamination is not well documented. Mining regulations vary greatly by state and local jurisdiction. This study test metrics to measure the effectiveness of mining regulations. The sand and gravel aquifer system studied is covered with former and active gravel pits to nearly 25% of its areal extent. Data from homeowner interviews and field measurements found scant evidence of changes in water quantity. Water quality analyses collected from springs, streams, ponds and wells indicate that the aquifer was vulnerable to contamination by chloride and nitrate. However, water quality changes can not be related directly to mining activities.

  13. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.

    Science.gov (United States)

    Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray

    2016-04-15

    Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. Copyright © 2016 Elsevier B.V. All rights

  14. Isotope Investigations of Groundwater Movement in a Coarse Gravel Unsaturated Zone

    Energy Technology Data Exchange (ETDEWEB)

    Mali, N. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Kozar-Logar, J. [Jozef Stefan Institute, Ljubljana (Slovenia); Leis, A. [Institute of Water Resources Management, Hydrogeology and Geophysics, Joanneum Research Forschungsgesellschaft mbH, Graz (Austria)

    2013-07-15

    The unsaturated zone above an aquifer serves as a water reservoir which discharges water and possible pollution to the saturated zone. This paper presents the application of oxygen-18 and tritium isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniska Dobrava coarse gravel aquifer. The Selniska Dobrava gravel aquifer is an important water resource for Maribor and its surroundings, therefore the determination of transport processes in the unsaturated zone is important regarding its protection. Groundwater flow characteristics were estimated using isotopes and based on experimental work in a lysimeter. Tritium investigation results were compared with the results of long term oxygen-18 isotope investigation. In this paper the analytical approach, results and interpretation of {delta}{sup 18}O and tritium measurements in the unsaturated zone are presented. (author)

  15. PGDP Trichloroethene Biodegradation Investigation Summary Report: Regional Gravel Aquifer & Northwest Plume

    Energy Technology Data Exchange (ETDEWEB)

    Hampson, Steve [Univ. of Kentucky, Lexington, KY (United States). Kentucky Research Consortium for Energy and Environment

    2008-09-01

    The evaluation of biological degradation processes addressed by this report are part of a broad trichloroethene (TCE) Fate and Transport Investigation that includes four (4) topics of phased investigation (Table ES1) relative to degradation and/or attenuation of TCE in the Regional Gravel Aquifer (RGA) underlying the United States Department of Energy Paducah Gaseous Diffusion Plant (PGDP). In order of implementation the project phases are: (1) derivation of a TCE first-order rate constant by normalization of TCE values against technetium-99 (99Tc) and chloride. 2) identification of the presence of microbes capable of aerobic co-metabolic TCE biodegradation using enzyme activity probes (this report); 3) Compound-specific isotope analysis (CSIA) to support prevalence of biotic and/or abiotic degradation processes; and 4) evaluation of potential abiotic RGA-TCE attenuation mechanisms including sorption. This report summarizes the Phase II activities related to the identification and evaluation of biological degradation processes that may be actively influencing TCE fate and transport in the RGA contaminant plumes at the United States Department of Energy (DOE) PGDP and its environs (Figure ES1). The goals of these activities were to identify active biological degradation mechanisms in the RGA through multiple lines of evidence and to provide DOE with recommendations for future TCE biological degradation investigations.

  16. The Marlborough Deep Wairau Aquifer sustainability review 2008 : isotopic indicators

    International Nuclear Information System (INIS)

    Morgenstern, U.; van der Raaij, R.W.; Trompetter, V.; McBeth, K.

    2008-01-01

    The Deep Wairau Aquifer (DWA) consists of several relatively thin water bearing layers at depths generally greater than 150 m separated by thick confining layers and was therefore thought to be relatively isolated from surface hydrological processes, with little pumping induced effects on spring flows and shallow aquifers. However, because the DWA partially underlies fully allocated shallower Southern Valleys Aquifers it is critical to understand the dynamics (recharge, flow) of the DWA. Recent aquifer testing revealed that the DWA is hydraulically linked to the Southern Valley Benmorven Aquifer and that most wells penetrating the DWA are hydraulically linked. The aquifers of the Wairau Plain are formed by a series of glacial and alluvial outwash deposits laid down by the Wairau River. Bore logs indicate that the aquifer contains thin water-bearing layers within the mixed strata. These layers come under artesian pressure towards the east. The Wairau Gravels are overlain by a sequence of glacial outwash and fluvial gravels interspersed with marine deposits. Immediately above the Wairau Gravels lies the Speargrass Formation consisting of poorly sorted glacial outwash gravels, sand and clay deposits. This formation has greater permeability than the Wairau Gravels. Above the Speargrass Formation lie highly permeable postglacial fluvial gravels, sand and silt deposits from the Wairau and tributary rivers known as the Rapaura Formation. Towards the coast, the alluvial gravels are overlain by marine and estuarine deposits of sand, silt and clay known as the Dillons Point Formation. Chemistry and isotope samples were analysed over time from various DWA wells to obtain information on changes in source and age of water with continued abstraction. All DWA water samples are tritium-free indicating that there is no young water influx yet intercepted by any of the sampled wells. Radiocarbon repeat measurements indicate that the water source is changing towards older water with

  17. Focus on CSIR research in water resources: Managed aquifer recharge on the west coast north of Cape Town, South Africa

    CSIR Research Space (South Africa)

    Colvin, C

    2007-08-01

    Full Text Available The Atlantis Water Resource Management Scheme (AWRMS) located some 40 km north of Cape Town shows how insightful planning and management can expand the groundwater supply potential of a primary aquifer for bulk urban water supply. The AWRMS...

  18. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Science.gov (United States)

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Surfactant-enhanced aquifer remediation at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Jackson, R.E.; Londergan, J.T.; Pickens, J.

    1995-01-01

    Many DOE facilities are situated in areas of sand and gravel which have become polluted with dense, non-aqueous phase liquids or DNAPLs, such as chlorinated solvents, from the various industrial operations at these facilities. The presence of such DNAPLs in sand and gravel aquifers is now recognized as the principal factor in the failure of standard ground-water remediation methods, i.e., open-quotes pump-and-treatclose quotes operations, to decontaminate such systems. The principal objective of this study is to demonstrate that multi-component DNAPLs can be readily solubilized in sand and gravel aquifers by dilute surfactant solutions

  20. Geohydrology of the valley-fill aquifer in the Endicott-Johnson City area, Broome County, New York

    Science.gov (United States)

    Holecek, Thomas J.; Randall, A.D.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the tenth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on five maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southwestern Broome County. The maps include surficial geology, geologic sections, aquifer thickness, water-infiltration potential of soil zone, potentiometric-surface altitude, and land use. The valley-fill deposits consist of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions are found in unconfined sand and gravel, whereas artesian conditions prevail within sand and gravel confined by silty deposits. Recharge occurs over the entire surface of the aquifer, due to permeable land-surface conditions, but is greatest along the margin of the valley, where runoff from the hillsides is concentrated, and near streams. The use of land overlying the aquifer is predominantly commercial and residential with lesser amounts of agricultural and industrial uses. (USGS)

  1. Geohydrology of the valley-fill aquifer in the South Fallsburgh-Woodbourne area, Sullivan County, New York

    Science.gov (United States)

    Anderson, H.R.; Dineen, R.J.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the ninth in a series of map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Sullivan County. The maps include surficial geology, geologic sections, aquifer thickness, water-infiltration potential of soil zone, potentiometric surface elevations, well yields, and land use. The valley-fill deposits consist of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel whereas artesian conditions prevail within sand and gravel confined by silty deposits. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural, and residential with lesser industrial uses. (USGS)

  2. Geohydrology of the valley-fill aquifer in the Corning area, Steuben County, New York

    Science.gov (United States)

    Miller, Todd S.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the seventh in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Steuben County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, potentiometric-surface elevations, and land use. The valley-fill deposits consist of alluvial silt, sand, and gravel, glacial-outwash (sand and gravel), till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till and silt deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the valley margin. Artesian conditions are found locally in sand and gravel confined under silt and clay in the middle of the valley. Recharge occurs nearly everywhere on the valley floor, but principally along the margin of the valley, where highly permeable land surface conditions exist, and runoff from the hillsides is concentrated. The use of land overlying the aquifer is a mixture of residential, commercial, agricultural, and industrial uses. (USGS)

  3. Geohydrology of the valley-fill aquifer in the Jamestown area, Chautauqua County, New York

    Science.gov (United States)

    Anderson, H.R.; Stelz, W.G.; Belli, J.L.; Allen, R.V.

    1982-01-01

    This report is the sixth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Chautauqua County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, potentiometric-surface elevations and land use. The valley-fill deposits consist of alluvial silt and sand, glacial-outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities whereas the till, silt and clay deposits have relatively low permeabilities. Water-table conditions prevail in u nconfined sand and gravel beds along the valley margin. Artesian conditions prevail in confined sand and gravel buried under silt and clay in the middle of the valley. Recharge occurs mainly along the margin of the valley, where the land surface is highly permeable and runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly agricultural and residential with lesser amounts of commercial and industrial uses. (USGS)

  4. Potential yields of wells in unconsolidated aquifers in upstate New York-- Adirondack sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yield from unconsolidated aquifers in the Adirondack region at a 1:250,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  5. Geohydrology of the valley-fill aquifer in the Ramapo and Mahwah rivers area, Rockland County, New York

    Science.gov (United States)

    Moore, Richard Bridge; Cadwell, D.H.; Stelz, W.G.; Belli, J.L.

    1982-01-01

    This report is the eighth in a series of 11 map sets depicting geohydrologic conditions in selected aquifers in upstate New York. Geohydrologic data are compiled on six maps at 1:24,000 scale. Together, the maps provide a comprehensive overview of a major valley-fill aquifer in southeastern Rockland County. The maps include surficial geology, geologic sections, water-infiltration potential of soil zone, aquifer thickness, water-table elevations, well yields, and land use. The valley-fill deposits consists of alluvial silt and sand, glacial outwash (sand and gravel), ice-contact sand and gravel, till, and lacustrine silt and clay. The sand and gravel beds have relatively high permeabilities, whereas the till, silt, and clay deposits have relatively low permeabilities. Water-table conditions prevail in unconfined sand and gravel along the Ramapo River valley and much of the Mahwah River valley. Artesian conditions prevail in confined sand and gravel buried under silt and clay and till in parts of the Mahway valley. The aquifer is recharged throughout, where the land surface is most permeable and is greatest along the margin of the valley, where runoff from the hillsides is concentrated. The use of land overlying the aquifer is predominantly commercial, agricultural and residential, with lesser industrial uses. (USGS)

  6. Potential yields of wells in unconsolidated aquifers in upstate New York-- Niagara sheet

    Science.gov (United States)

    Miller, Todd S.

    1988-01-01

    This map depicts the locations and potential well yields of unconsolidated aquifers in western New York at a scale of 1:250 ,000. It also delineates segments of aquifers that are used for public water supplies and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply Aquifers. ' The map also lists published reports that give detailed information on each area. Most aquifers were deposited in low areas, such as valleys and plains, during deglaciation of the region. Thick, permeable, well-sorted sand and gravel units yield large quantities of water - more than 100 gal/min - to properly constructed wells. Thin sand units and sand and gravel units and thicker gravel units that have a large content of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug wells that tap till or lacustrine deposits yield less than 5 gal/min. Well yields from bedrock are not indicated. (USGS)

  7. Potential yields of wells in unconsolidated aquifers in upstate New York--Hudson-Mohawk sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.; Casey, George D.

    1988-01-01

    This map shows the location and potential well yields of unconsolidated aquifers in the Hudson-Mohawk region at a scale of 1:250,000. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary Water Supply ' aquifers, and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciations of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, greater than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  8. Potential yields of wells in unconsolidated aquifers in upstate New York--lower Hudson sheet

    Science.gov (United States)

    Bugliosi, Edward F.; Trudell, Ruth A.

    1988-01-01

    This map shows the location and potential well yields from unconsolidated aquifers in the lower-Hudson region at a 1:250 ,000 scale. It also delineates segments of aquifers that are heavily used by community water systems and designated by the New York State Department of Environmental Conservation as ' Primary water supply ' aquifers and cites published reports that give detailed information on each area. Most aquifers were deposited in low-lying areas such as valleys or plains during deglaciation of the region. Thick, permeable, well-sorted sand and gravel deposits generally yield large quantities of water, more than 100 gal/min. Thin sand, sand and gravel deposits, or thicker gravel units that have a large content of silt and fine sand, yield moderate amounts of water, 10 to 100 gal/min. Wells dug in till and those drilled in bedrock commonly yield less than 10 gal/min. (USGS)

  9. Geohydrology and water quality of the stratified-drift aquifers in Upper Buttermilk Creek and Danby Creek Valleys, Town of Danby, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2015-11-20

    In 2006, the U.S. Geological Survey, in cooperation with the Town of Danby and the Tompkins County Planning Department, began a study of the stratified-drift aquifers in the upper Buttermilk Creek and Danby Creek valleys in the Town of Danby, Tompkins County, New York. In the northern part of the north-draining upper Buttermilk Creek valley, there is only one sand and gravel aquifer, a confined basal unit that overlies bedrock. In the southern part of upper Buttermilk Creek valley, there are as many as four sand and gravel aquifers, two are unconfined and two are confined. In the south-draining Danby Creek valley, there is an unconfined aquifer consisting of outwash and kame sand and gravel (deposited by glacial meltwaters during the late Pleistocene Epoch) and alluvial silt, sand, and gravel (deposited by streams during the Holocene Epoch). In addition, throughout the study area, there are several small local unconfined aquifers where large tributaries deposited alluvial fans in the valley.

  10. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Schaider, Laurel A., E-mail: schaider@silentspring.org; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO{sub 3}-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame

  11. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    International Nuclear Information System (INIS)

    Schaider, Laurel A.; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-01-01

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO_3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame (artificial

  12. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several

  13. Hydrogeology and water quality of sand and gravel aquifers in McHenry County, Illinois, 2009-14, and comparison to conditions in 1979

    Science.gov (United States)

    Gahala, Amy M.

    2017-10-26

    Baseline conditions for the sand and gravel aquifers (groundwater) in McHenry County, Illinois, were assessed using data from a countywide network of 44 monitoring wells collecting continuous water-level data from 2009–14. In 2010, water-quality data were collected from 41 of the monitoring wells, along with five additional monitoring wells available from the U.S. Geological Survey National Water Quality Assessment Program. Periodic water-quality data were collected from 2010–14 from selected monitoring wells. The continuous water-level data were used to identify the natural and anthropogenic factors that influenced the water levels at each well. The water-level responses to natural influences such as precipitation, seasonal and annual variations, barometric pressure, and geology, and to anthropogenic influences such as pumping were used to determine (1) likely hydrogeologic setting (degree of aquifer confinement and interconnections) that, in part, are related to lithostratigraphy; and (2) areas of recharge and discharge related to vertical flow directions. Water-level trends generally were determined from the 6 years of data collection (2009–14) to infer effects of weather variability (drought) on recharge.Precipitation adds an estimated 2.4 inches per year of recharge to the aquifer. Some of this recharge is subsequently discharged to streams and some is discharged to supply wells. A few areas in the eastern half of the county had higher average recharge rates, indicating a need for adequate protection of these recharge areas. Downward vertical flow gradients in upland areas indicate that recharge to the confined aquifer units occurs near upland areas. Upward vertical flow gradients in lowland areas indicate discharge at locations of surface water and groundwater interaction (wetlands, ponds, and streams).Monitoring wells were sampled for major and minor ions, metals, and nutrients and a subset of wells was sampled for trace elements, dissolved gases

  14. Case studies of groundwater- surface water interactions and scale relationships in small alluvial aquifers

    NARCIS (Netherlands)

    Love, Dave; de Hamer, Wouter; Owen, Richard J.S.; Booij, Martijn J.; Uhlenbrook, Stefan; Hoekstra, Arjen Ysbert; van der Zaag, Pieter

    2007-01-01

    An alluvial aquifer can be described as a groundwater system, generally unconfined, that is hosted in laterally discontinuous layers of gravel, sand, silt and clay, deposited by a river in a river channel, banks or flood plain. In semi-arid regions, streams that are associated with alluvial aquifers

  15. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions. Phase 1: Laboratory and pilot field-scale testing. Phase 2: Solubilization test and partitioning interwell tracer tests. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km 2 in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation

  16. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  17. Generalized hydrogeologic framework and groundwater budget for a groundwater availability study for the glacial aquifer system of the United States

    Science.gov (United States)

    Reeves, Howard W.; Bayless, E. Randall; Dudley, Robert W.; Feinstein, Daniel T.; Fienen, Michael N.; Hoard, Christopher J.; Hodgkins, Glenn A.; Qi, Sharon L.; Roth, Jason L.; Trost, Jared J.

    2017-12-14

    The glacial aquifer system groundwater availability study seeks to quantify (1) the status of groundwater resources in the glacial aquifer system, (2) how these resources have changed over time, and (3) likely system response to future changes in anthropogenic and environmental conditions. The glacial aquifer system extends from Maine to Alaska, although the focus of this report is the part of the system in the conterminous United States east of the Rocky Mountains. The glacial sand and gravel principal aquifer is the largest source of public and self-supplied industrial supply for any principal aquifer and also is an important source for irrigation supply. Despite its importance for water supply, water levels in the glacial aquifer system are generally stable varying with climate and only locally from pumping. The hydrogeologic framework developed for this study includes the information from waterwell records and classification of material types from surficial geologic maps into likely aquifers dominated by sand and gravel deposits. Generalized groundwater budgets across the study area highlight the variation in recharge and discharge primarily driven by climate.

  18. Saltwater Intrusion Appraisal of Shallow Aquifer in Burutu Area of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    is not caused by saltwater intrusion rather by iron which cannot be separately distinguished from groundwater by ... The sand and gravels forms the aquifer in the. Formation and are .... K.S; Soulios, G; Pliakas, F; Tsokas, G ( 2016). Seawater ...

  19. Characterization of aquifer heterogeneity in a complex fluvial hydrogeologic system to evaluate migration in ground water

    International Nuclear Information System (INIS)

    Baker, F.G.; Pavlik, H.F.

    1990-01-01

    The hydrogeology and extent of ground water contamination were characterized at a site in northern California. Wood preserving compounds, primarily pentachlorophenol (PCP) and creosote, have been detected in the soil and ground water. A plume of dissolved PCP up to 1.5 miles long has been identified south of the plant. The aquifer consists of a complex multizonal system of permeable gravels and sands composed of units from four geologic formations deposited by the ancestral Feather River. Fluvial channel gravels form the principal aquifer zones and contain overbank clay and silt deposits which locally form clay lenses or more continuous aquitards. The geometric mean horizontal hydraulic conductivities for channel gravels range between 120 to 530 feet/day. Mean vertical aquitard hydraulic conductivity is 0.07 feet/day. Ground water flow is generally southward with a velocity ranging from 470 to 1000 feet/year. The spatial distribution of dissolved PCP in the aquifer documents the interactions between major permeable zones. Hydrostratigraphic evidence pointing to the separation of aquifer zones is supported by the major ion chemistry of ground water. The sodium and calcium-magnesium bicarbonate-rich water present in the upper aquifer zones is significantly different in chemical composition from the predominantly sodium chloride-rich water present in the deeper permeable zone. This indicates that hydrodynamic separation exists between the upper and lower zones of the aquifer, limiting the vertical movement of the PCP plume. A numerical ground water model, based on this conceptual hydrogeologic model, was developed to evaluate groundwater transport pathways and for use in the design of a ground water extraction and treatment system. (9 refs., 7 figs., tab.)

  20. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  1. Four decades of water recycling in Atlantis (Western Cape, South Africa): Past, present and future

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2016-10-01

    Full Text Available The primary aquifer at Atlantis (Western Cape, South Africa) is ideally suited for water supply and the indirect recycling of urban stormwater runoff and treated domestic wastewater for potable purposes. The relatively thin, sloping aquifer requires...

  2. Summary of Available Hydrogeologic Data for the Northeast Portion of the Alluvial Aquifer at Louisville, Kentucky

    National Research Council Canada - National Science Library

    Unthank, Michael D; Nelson, Jr., Hugh L

    2006-01-01

    The hydrogeologic characteristics of the unconsolidated glacial outwash sand and gravel deposits that compose the northeast portion of the alluvial aquifer at Louisville, Kentucky, indicate a prolific...

  3. Reconditioning contaminated gravel

    International Nuclear Information System (INIS)

    Walsh, H.; Bowers, J.S.; Cadwell, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) has developed a portable screening system that will recondition radioactively contaminated gravel in the field. The separation technique employed by this system removes dirt, contaminated debris, and other fine particles from gravel. At LLNL, gravel is used in conjunction with the experimental testing of explosives to reduce shock wave propagation. The gravel surrounds the experimental device and buffers the energy generated from the explosion. During an explosion, some of the gravel is broken down into small particles and mixed with contaminants. Contaminants in the used gravel originate from metal sheathing and other parts comprising, the experimental device. These contaminants may consist of radionuclides and metals that are considered hazardous by the State of California when disposed. This paper describes the process that conveys contaminated material into the screener system, sprays the material with recycled water or other mild cleaning chemicals, and separates particles based on size. Particles greater than a specified size are discharged out of the screener separator and recycled back into use, thereby reducing the amount of mixed waste generated and minimizing the need for new gravel. The fines or silt are flushed out of the separator with the water and are removed from the water and consolidated into a drum with the use of a hydrocyclone separator and drum decant system. Because the water in the spray system is recycled, minimal makeup water is needed. The system monitors pH and total dissolved solids

  4. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    Science.gov (United States)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A.; Verrucchi, C.

    1993-11-01

    Geochemical and hydrogeological research has been carried out on 109 wells in the alluvial plain of Florence, in order to evaluate conductivity and main chemistry of ground waters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO2, NO3), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. The groundwaters analyzed belong to this aquifer or to the smaller ones, hosted in the gravel lenses. Most waters show conductivity values around 1000 1200 μS, and almost all of them have an alkaline-earth-bicarbonate chemical character; these features are consistent with the mainly calcareous lithology of the aquifers. In the western areas a higher salt content of the groundwaters is evident, probably related to the presence of industrial activities which use water desalinators. Heavy metal and NO2, NO3 analyses point out that no important pollution phenomena affect the groundwaters; all the mean values of the chemical considered species are below the maximum admissible concentration (MAC) fixed by the European Community for drinkable waters. Nevertheless, some anomalies of NO2, NO3, Fe, Mn, and Zn are present in the plain. Apart from Mn, which seems to be released by certain calcareous gravels, the other anomalies have a local influence, since they disappear even in the nearest wells. The most plausible causes can be recognized in losses of the sewage system (NO2=3 4 mg/t); use of nitrate compounds in agriculture (NO3=60 70 mg/l); oxidation of well pipes (Fe ≈ 20 mg/l; Zn ≈ 6 mg/l). As regards Cr, Cu, and Pb, all the observations are below the MAC; therefore, the median values of bacteria oxidation

  5. Simulation of variable-density flow and transport of reactive and nonreactive solutes during a tracer test at Cape Cod, Massachusetts

    Science.gov (United States)

    Zhang, Hubao; Schwartz, Frank W.; Wood, Warren W.; Garabedian, S.P.; LeBlanc, D.R.

    1998-01-01

    A multispecies numerical code was developed to simulate flow and mass transport with kinetic adsorption in variable-density flow systems. The two-dimensional code simulated the transport of bromide (Br−), a nonreactive tracer, and lithium (Li+), a reactive tracer, in a large-scale tracer test performed in a sand-and-gravel aquifer at Cape Cod, Massachusetts. A two-fraction kinetic adsorption model was implemented to simulate the interaction of Li+ with the aquifer solids. Initial estimates for some of the transport parameters were obtained from a nonlinear least squares curve-fitting procedure, where the breakthrough curves from column experiments were matched with one-dimensional theoretical models. The numerical code successfully simulated the basic characteristics of the two plumes in the tracer test. At early times the centers of mass of Br− and Li+ sank because the two plumes were closely coupled to the density-driven velocity field. At later times the rate of downward movement in the Br− plume due to gravity slowed significantly because of dilution by dispersion. The downward movement of the Li+ plume was negligible because the two plumes moved in locally different velocity regimes, where Li+ transport was retarded relative to Br−. The maximum extent of downward transport of the Li+ plume was less than that of the Br− plume. This study also found that at early times the downward movement of a plume created by a three-dimensional source could be much more extensive than the case with a two-dimensional source having the same cross-sectional area. The observed shape of the Br− plume at Cape Cod was simulated by adding two layers with different hydraulic conductivities at shallow depth across the region. The large dispersion and asymmetrical shape of the Li+ plume were simulated by including kinetic adsorption-desorption reactions.

  6. Evidence for aeolian origins of heuweltjies from buried gravel layers

    Directory of Open Access Journals (Sweden)

    Michael D. Cramer

    2016-02-01

    Full Text Available Although heuweltjies (19–32 m diameter dominate the surface of much of the southwestern Cape of South Africa, their origins, distribution and age remain controversial. Current hypotheses are that the heuweltjies are (1 constructed by the excavation and mounding habits of burrowing animals; (2 the result of erosion by water of areas between patches protected from fluvial action by denser vegetation or (3 the product of localised aeolian sediment accumulation beneath denser vegetation associated with termitaria. At a site where quartz-containing gravels occur on the soil surface in areas between heuweltjies, these gravels were found to extend as a relatively intact layer of uniform concentration from the inter-mound area into the mound at the same plane as the surrounding soil surface. This buried layer suggests that heuweltjies were either built-up by deposition on a previous soil surface layer or eroded from sediment accumulated above the buried gravel layer. Mounds contain a relatively large proportion of silt consistent with sediment deposition. Mound sediment elemental composition was strongly correlated with that of local shale, indicating a local source of sediment. Pedogenesis was considerably more advanced off- than on-mound. There was no evidence of extensive regional aeolian sediment mantling over the vast area in which the heuweltjies occur. These findings and observations support the aeolian deposition hypothesis of heuweltjie origins combined with a degree of erosion, rather than a termite bioturbation hypothesis or a predominantly erosion-based hypothesis.

  7. Hydro-geological properties of the Savian aquifer in the county Obrenovac

    Directory of Open Access Journals (Sweden)

    Stojadinović Dušan D.

    2005-01-01

    Full Text Available The paper presents a description of hydrogeological researches of alluvial layers of the Sava River in the area of the source "Vić Bare" near Obrenovac. This source supplies groundwater to that town. The depth of these layers amounts to 25 m. With regard to collecting capacity, the most significant are gravel-sand sediments of high filtration properties. Their average depth amounts to about 13 m with the underlying layer made of Pleistocene clays. Compact aquifer is formed within these sediments and it refills partly from the Sava River at places where river cuts its channel into the gravel-sand layer. The analysis of the groundwater regime in the riparian area points out that groundwater levels follow stages of the Sava River. Such an influence lessens with the distance. Established hydraulic connection between the river and the aquifer enables its permanent replenishment. On the other hand, due to certain pollutions this river flow might bring along, it represents a potential danger. Those pollutions could enter water-bearing layer of the aquifer as well as the exploitation well of the source. Such presumptions have been confirmed in the experiment of pollution transport carried out in the water-bearing layer. Unabsorbable chloride was used as a tracer whose movement velocity through exploitation well proved that there were real possibilities of intrusion of aggressive pollutants into the water-bearing layer and into the aquifer as well. Therefore, the protection of the source must be in the function of the protection of surface waters.

  8. Long-term groundwater contamination after source removal—The role of sorbed carbon and nitrogen on the rate of reoxygenation of a treated-wastewater plume on Cape Cod, MA, USA

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.

    2013-01-01

    The consequences of groundwater contamination can remain long after a contaminant source has been removed. Documentation of natural aquifer recoveries and empirical tools to predict recovery time frames and associated geochemical changes are generally lacking. This study characterized the long-term natural attenuation of a groundwater contaminant plume in a sand and gravel aquifer on Cape Cod, Massachusetts, after the removal of the treated-wastewater source. Although concentrations of dissolved organic carbon (DOC) and other soluble constituents have decreased substantially in the 15 years since the source was removed, the core of the plume remains anoxic and has sharp redox gradients and elevated concentrations of nitrate and ammonium. Aquifer sediment was collected from near the former disposal site at several points in time and space along a 0.5-km-long transect extending downgradient from the disposal site and analyses of the sediment was correlated with changes in plume composition. Total sediment carbon content was generally low (rates in laboratory incubations, which ranged from 11.6 to 44.7 nmol (g dry wt)− 1 day− 1. Total water extractable organic carbon was groundwater velocity. This suggests that the total sorbed carbon pool is large relative to the rate of oxygen entrainment and will be impacting groundwater geochemistry for many decades. This has implications for long-term oxidation of reduced constituents, such as ammonium, that are being transported downgradient away from the infiltration beds toward surface and coastal discharge zones.

  9. Evaluating two infiltration gallery designs for managed aquifer recharge using secondary treated wastewater.

    Science.gov (United States)

    Bekele, Elise; Toze, Simon; Patterson, Bradley; Fegg, Wolfgang; Shackleton, Mark; Higginson, Simon

    2013-03-15

    As managed aquifer recharge (MAR) becomes increasingly considered for augmenting water-sensitive urban areas, fundamental knowledge of the achievable scale, longevity and maintenance requirements of different options will become paramount. This paper reports on a 39 month pilot scale MAR scheme that infiltrated secondary treated wastewater through unsaturated sand into a limestone and sand aquifer. Two types of infiltration gallery were constructed to compare their hydraulic performance, one using crushed, graded gravel, the other using an engineered leach drain system (Atlantis Leach System(®)). Both galleries received 25 kL of nutrient-rich, secondary treated wastewater per day. The Atlantis gallery successfully infiltrated 17 ML of treated wastewater over three years. The slotted distribution pipe in the gravel gallery became clogged with plant roots after operating for one year. The infiltration capacity of the gravel gallery could not be restored despite high pressure cleaning, thus it was replaced with an Atlantis system. Reduction in the infiltration capacity of the Atlantis system was only observed when inflow was increased by about 3 fold for two months. The performance of the Atlantis system suggests it is superior to the gravel gallery, requiring less maintenance within at least the time frame of this study. The results from a bromide tracer test revealed a minimum transport time of 3.7 days for the recharged water to reach the water table below 9 m of sand and limestone. This set a limit on the time available for attenuation by natural treatment within the unsaturated zone before it recharged groundwater. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  10. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California

    Science.gov (United States)

    Knight, R. J.; Smith, R.; Asch, T. H.; Abraham, J.; Cannia, J.; Fogg, G. E.; Viezzoli, A.

    2016-12-01

    The Central Valley of California is an important agricultural region struggling to meet the need for irrigation water. Recent periods of drought have significantly reduced the delivery of surface water, resulting in extensive pumping of groundwater. This has exacerbated an already serious problem in the Central Valley, where a number of areas have experienced declining water levels for several decades leading to ongoing concerns about depletion of aquifers and impacts on ecosystems, as well as subsidence of the ground surface. The overdraft has been so significant, that there are now approximately140 million acre-feet (MAF) of unused groundwater storage in the Central Valley, storage that could be used to complement the 42 MAF of surface storage. The alluvial sedimentary geology of the Central Valley is typically composed of more than 50 to 70 percent fine-grained deposits dominated by silt and clay beds. These fine grained deposits can block potential recharge, and are associated with the large amount of observed subsidence. Fortunately, the geologic processes that formed the region created networks of sand and gravel which provide both a supply of water and pathways for recharge from the surface to the aquifers. The challenge is to find these sand and gravel deposits and thus identify optimal locations for surface spreading techniques so that recharge could be dramatically increased, and re-pressurization of the confined aquifer networks could be accomplished. We have acquired 100 line kilometers of airborne electromagnetic data over an area in the San Joaquin Valley, imaging the subsurface hydrostratigraphy to a depth of 500 m with spatial resolution on the order of meters to tens of meters. Following inversion of the data to obtain resistivity models along the flight lines, we used lithology logs in the area to transform the models to images displaying the distribution of sand and gravel, clay, and mixed fine and coarse materials. The quality of the data and

  11. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  12. Decontamination process development for gravels contaminated with uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Nam; Park, Uk Ryang; Kim, Seung Su; Kim, Won Suk; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    It is impossible to scrub gravels in a washing tank, because gravels sinks to the bottom of the washing tank. In addition, when electrokinetic decontamination technology is applied to gravels larger than 10 cm, the removal efficiency of uranium from the gravels is reduced, because electro-osmotic flux at the surface of the gravel in electrokinetic cell reduces owing to a reduction of the particle surface area attributable to large-sized gravel. The volume ratio of gravel larger than10 cm in total volume of the soil in KAERI was about 20%. Therefore, it is necessary to study the decontamination process of gravels contaminated with radionuclides. The optimum number of washings for contaminated gravels is considered to be two. In addition, the removal efficiency of contaminated gravel was not related to its weight. For an electrokinetic-electrodialytic decontamination period of 5 days, 10 days, 15 days, and 20 days, {sup 238}U in gravel was removed by about 42%, 64%, 74%, and 80%, respectively. The more the decontamination time elapsed, the greater the reduction of the removal efficiency ratio of {sup 238}U. The decontamination process for gravels was generated on the basis of the results of washing and electrokinetic electrodialtic experiments.

  13. Controls on the abruptness of gravel-sand transitions

    Science.gov (United States)

    Venditti, J. G.; Church, M. A.; Lamb, M. P.; Domarad, N.; Rennie, C. D.

    2014-12-01

    As gravel-bedded rivers fine downstream, they characteristically exhibit an abrupt transition from gravel- to sand-bed. This is the only abrupt transition in grain-size that occurs in the fluvial system and has attracted considerable attention. A number of competing theories have been proposed to account for the abruptness of the transition, including base-level control, attrition of ~10mm gravel to produce sand, and sediment sorting processes. The prevailing theory for the emergence of abrupt transitions is size selective sorting of bimodal sediment wherein gravel deposits due to downstream declining shear stress, fining the bedload until a sand-bed emerges. We explored this hypothesis by examining grain-size, shear stress, gravel mobility and sand suspension thresholds through the gravel-sand transition (GST) of the Fraser River, British Columbia. The Fraser GST is an arrested gravel wedge with patches of gravel downstream of the wedge forming a diffuse extension. There is an abrupt change in bed slope through the transition that leads to an abrupt change in shear stress. The GST, bed-slope change and backwater caused by the ocean are all coincident spatially, which enhances the sharpness of the GST. Interestingly, the bimodal reach of the river occurs downstream of the GST and exhibits no downstream gradients in shear stress, suspended sediment flux, gravel mobility or sand suspension thresholds. This calls into question the prevailing theory for the emergence of an abrupt GST by size selective sorting. We provide evidence, both empirical and theoretical, that suggests the emergence of an abrupt GST is caused by rapid deposition of sand when fine gravel deposits. We argue that the emergence of gravel-sand transitions is a consequence of gravel-bedded rivers adopting a steeper slope than sand-bedded rivers. The abruptness arises because the bed slope required to convey the gravel load fixes the distal location of a terminal gravel wedge, and once the river has

  14. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies [Hydrogéologie, qualité de l’eau et évaluation microbienne d’un aquifère côtier alluvial dans l’Ouest de l’Arabie Saoudite: utilisation potentielle des aquifères côtiers des oueds pour l’alimentation en eau après désalinisation] [Hidrogeologia, qualidade da água e avaliação microbiológica de um aquífero costeiro no oeste da Arábia Saudita: uso potencial de aquíferos de wadi costeiros para dessalinização de águas destinadas a abastecimento] [Hidrogeología, calidad de agua y evaluación microbiana de un acuífero costero aluvial en Arabia Saudita occidental: uso potencial de acuíferos costeros uadis para la desalinización de los abastecimientos de agua

    KAUST Repository

    Missimer, Thomas M.; Hoppe-Jones, Christiane; Jadoon, Khan; Li, Dong; Almashharawi, Samir

    2014-01-01

    into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two

  15. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  16. Pebble breakage in gravel

    International Nuclear Information System (INIS)

    Tuitz, C.

    2012-01-01

    The spatial clustering of broken pebbles in gravel layers of a Miocene sedimentary succession was investigated. Field observations suggested that the occurrence of broken pebbles could be related with gravel hosted shear deformation bands, which were the result of extensional regional deformation. Several different methods were used in this work to elucidate these observations. These methods include basic field work, measurements of physical pebble and gravel properties and, the application of different numerical modelling schemes. In particular, the finite element method in 2D and the discrete element method in 2D and 3D were used in order to quantify mechanisms of pebble deformation. The main objective of this work was to identify potential mechanisms that control particle breakage in fluvial gravel, which could explain the clustered spatial distribution of broken pebbles. The results of 2D finite element stress analysis indicated that the breakage load of differently located and oriented diametrical loading axes on a pebble varies and, that the weakest loading configuration coincides with the smallest principal axis of the pebble. The 3D discrete element method was applied to study the contact load distribution on pebbles in gravel deposits and the influence of different degrees of particle imbrication and orientation. The results showed that an increase of the number of imbricated particles leads to a significant load transfer from the rim to the centre of the oblate sides of the ellipsoidal particles. The findings of these pebble-scale investigations provided the basis for outcropscale modelling, where simulated gravel layers were subjected to layer-parallel extension. These outcrop-scale models revealed the existence of a particle breakage enhancing mechanism that becomes active during early stages of shear band formation. The interaction of such shear bands with the less deformed host material results in particle stress concentrations and subsequently

  17. Hydrogeological modelling of the Atlantis aquifer for management ...

    African Journals Online (AJOL)

    The Atlantis Water Supply Scheme (AWSS, Western Cape, South Africa) has been in operation for about 40 years as a means to supply and augment drinking water to the town of Atlantis via managed aquifer recharge (MAR). In this study, the numerical model MODFLOW for groundwater flow and contaminant transport was ...

  18. Gravel roads management : volume 1, gravel roads management.

    Science.gov (United States)

    2010-10-01

    This report establishes procedures for managing dirt and gravel roads, with a primary focus on smaller agencies, such as Wyoming counties, that must manage their roads with very limited resources. The report strives, first, to guide and assist smalle...

  19. Characteristics of Southern California coastal aquifer systems

    Science.gov (United States)

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    , litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  20. Groundwater resources of Mosteiros basin, island of Fogo, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  1. Effect of gravel on hydraulic conductivity of compacted soil liners

    International Nuclear Information System (INIS)

    Shelley, T.L.; Daniel, D.E.

    1993-01-01

    How much gravel should be allowed in low-hydraulic-conductivity, compacted soil liners? To address this question, two clayey soils are uniformly mixed with varying percentages of gravel that, by itself, has a hydraulic conductivity of 170 cm/s. Soil/gravel mixtures are compacted and then permeated. Hydraulic conductivity of the compacted gravel/soil mixtures is less than 1 x 10 -7 cm/s for gravel contents as high as 50-60%. For gravel contents ≤ 60%, gravel content is not important: all test specimens have a low hydraulic conductivity. For gravel contents > 50-60%, the clayey soils does not fill voids between gravel particles, and high hydraulic conductivity results. The water content of the nongravel fraction is found to be a useful indicator of proper moisture conditions during compaction. From these experiments in which molding water content and compactive energy are carefully controlled, and gravel is uniformly mixed with the soil, it is concluded that the maximum allowable gravel content is approximately 50%

  2. Can coarse surface layers in gravel-bedded rivers be mobilized by finer gravel bedload?

    Science.gov (United States)

    Venditti, J. G.; Dietrich, W. E.; Nelson, P. A.; Wydzga, M. A.; Fadde, J.; Sklar, L.

    2005-12-01

    In response to reductions in sediment supply, gravel-bed rivers undergo a coarsening of the sediments that comprise the river's bed and, over some longer time scale, a river's grade may also be reduced as sediments are depleted from upstream reaches. Coarse, degraded river reaches are commonly observed downstream of dams across the Western United States. Following dam closure, these riverbeds become immobile under the altered flow and sediment supply regimes, leading to a reduction in the available salmon spawning and rearing habitat. Gravel augmentation to these streams is now common practice. This augmentation is typically seen as resurfacing the static coarse bed. As an alternative, we propose that the addition of appropriately finer gravels to these channels may be capable of mobilizing an otherwise immobile coarse surface layer, creating the potential to release fine material trapped beneath the surface. A series of laboratory experiments are being undertaken to test this hypothesis in a 30 m long and 0.86 m wide gravel-bedded flume channel using a constant discharge and a unimodal bed sediment with a median grain size of 8 mm and no sand present. The channel width-to-depth ratio of ~4 suppresses the development of lateral topography and allows us to focus on grain-to-grain interactions. Experiments proceed by maintaining a constant sediment feed until an equilibrium grade and transport rate are established, starving the flume of sediment for at least 24 hours, and then adding narrowly graded gravel over a period of one to two hours at a rate that is ~4x the bedload rate observed prior to terminating the sediment supply. The bed prior to sediment addition has an armor median grain size that is typically twice that of the subsurface and feed size distribution. The volume and median grain size of the resulting pulses are varied. Pulses move downstream rapidly with well-defined fronts in the form of bedload sheets and cause peaks in the sediment flux

  3. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois

    Science.gov (United States)

    Kay, Robert T.; Kraske, Kurt A.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Campton Township Board of Trustees, measured water levels in the aquifers used for residential supply in Campton Township, Kane County, Illinois. Aquifers used for residential supply are the shallow and deep aquifers in the glacial drift, composed of unconsolidated sand and gravels; the Alexandrian-Maquoketa aquifer, composed of dolomite and shale of the Alexandrian Series and the Maquoketa Group; the Galena-Platteville aquifer, composed of dolomite of the Platteville and Galena Groups; and the Ancell aquifer, composed of sandstones of the Glenwood Formation and the St. Peter Sanstone. Water-level altitudes in the shallow drift aquifers generally follow surface topography. Analysis of water-level data does not clearly indicate overutilization of these aquifers. Water-level altitudes in the deep drift aquifers decrease from west to east. Comparison of historical depth to water measurements with current (1995) measurements indicates large decreases in water levels in some areas. The deep drift aquifers may be overutilized at these locations. Water-level altitudes in the Alexandrian-Maquoketa aquifer generally decrease from west to east. The potentiometric surface of the aquifer follows the bedrock-surface topography in some locations. Localized low water-level altitudes and large decreases in water levels indicate the Alexandrian-Maquoketa aquifer is overutilized in several areas. Water-level altitudes in the wells finished in the Galena- Platteville aquifer vary by more than 300 feet. Large decreases in water levels in wells finished in the Galena-Platteville aquifer indicate the Galena-Platteville and Alexandrian-Maquoketa aquifers are overutilized in the northern part of the township. Water-level altitudes in the wells finished in the Ancell aquifer are also highly variable. There is no indication that the Ancell aquifer is overutilized.

  4. Gravel Roads: Maintenance and Design Manual

    Science.gov (United States)

    This manual was developed with a major emphasis on the maintenance of gravel roads, including some basic design elements. The purpose of the manual is to provide clear and helpful information for doing a better job of maintaining gravel roads.

  5. Abrasion-set limits on Himalayan gravel flux.

    Science.gov (United States)

    Dingle, Elizabeth H; Attal, Mikaël; Sinclair, Hugh D

    2017-04-26

    Rivers sourced in the Himalayan mountain range carry some of the largest sediment loads on the planet, yet coarse gravel in these rivers vanishes within approximately 10-40 kilometres on entering the Ganga Plain (the part of the North Indian River Plain containing the Ganges River). Understanding the fate of gravel is important for forecasting the response of rivers to large influxes of sediment triggered by earthquakes or storms. Rapid increase in gravel flux and subsequent channel bed aggradation (that is, sediment deposition by a river) following the 1999 Chi-Chi and 2008 Wenchuan earthquakes reduced channel capacity and increased flood inundation. Here we present an analysis of fan geometry, sediment grain size and lithology in the Ganga Basin. We find that the gravel fluxes from rivers draining the central Himalayan mountains, with upstream catchment areas ranging from about 350 to 50,000 square kilometres, are comparable. Our results show that abrasion of gravel during fluvial transport can explain this observation; most of the gravel sourced more than 100 kilometres upstream is converted into sand by the time it reaches the Ganga Plain. These findings indicate that earthquake-induced sediment pulses sourced from the Greater Himalayas, such as that following the 2015 Gorkha earthquake, are unlikely to drive increased gravel aggradation at the mountain front. Instead, we suggest that the sediment influx should result in an elevated sand flux, leading to distinct patterns of aggradation and flood risk in the densely populated, low-relief Ganga Plain.

  6. Hydrogeology and water quality of glacial-drift aquifers in the Bemidji-Bagley area, Beltrami, Clearwater, Cass, and Hubbard counties, Minnesota

    Science.gov (United States)

    Stark, J.R.; Busch, J.P.; Deters, M.H.

    1991-01-01

    Unconfined and the upper confined aquifers in glacial drift are the primary sources of water in a 1,600 square-mile area including parts of Beltrami, Cass, Clearwater, and Hubbard Counties, Minnesota. The unconfineddrift aquifer consists of coarse sand and gravel in the center of the study area. The total area underlain by the unconfined-drift aquifer is approximately 550 square miles. The unconfined aquifer ranges in thickness from 0 to 130 feet, and is greater than 20 feet thick over an area of 280 square miles. On the basis of scant data, the transmissivity of the unconfined aquifer ranges from less than 70 feet squared per day in the south and west to greater than 8,900 feet squared per day in an area west of Bemidji. Well yields from 10 to 300 gallons per minute are possible in some areas. The unconfined and upper confined-drift aquifers are separated by a fine-grained confining unit of till or lake deposits.

  7. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa...

  8. Stabilization of gravel deposits using microorganisms

    NARCIS (Netherlands)

    Van der Star, W.R.L.; Van Wijngaarden, W.K.; Van Paassen, L.A.; Van Baalen, L.R.; Zwieten, G.

    2011-01-01

    One of the techniques used for the construction of underground infrastructure is horizontal directional drilling (HDD). This trenchless method is complicated when crossing gravel deposits as a borehole in coarse gravel tends to collapse, causing the drill pipe to get stuck or the failure of

  9. Experimental Study of Irregular Waves on a Gravel Beach

    Science.gov (United States)

    Hu, Nai-Ren; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng

    2017-04-01

    In the east coast of Taiwan, the sort grain size more belongs to cobble or gravel, which is physically distinct compared to the sandy beach in the west coast of Taiwan. Although gravel beaches can dissipate more of wave energy, gravel beaches were eroded and coastal road were damaged especially during typhoons. The purpose of this study is to investigate the geomorphological response of gravel beach due to irregular waves. This experiment was carry out in a 21m long, 50 cm wide, 70 cm high wave tank at Tainan Hydraulics Laboratory, National Cheng-Kung University, Taiwan. To simulate of the geometry in the east coast of Taiwan, a physical model with 1/36 scale-down was used, in which the seawall was 10cm built upon a 1:10 slope and gravel grains with D50 being 3.87 mm was nourished in front of the seawall. In terms of typhoon-scale wave condition, irregular waves with scale-down conditions were generated for 600 s for each scenarios and, three different water levels with respect to the gravel beach are designed. Application of laser combined with image processing to produce 3D topographic map, the erosion zone and accretion zone would be found. The resulting morphological change of gravel beach will be measured using an integrated laser and image processing tool to have 3D topographic maps. It is expected to have more understanding about under what conditions the gravel coasts suffer the least damage. In particular, the relation between erosion rates of gravel beach, the angle of gravel slope and the length of the plane on the gravel slope will be achieved

  10. Removal of uranium from gravel using soil washing method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ilgook; Kim, Kye-Nam; Kim, Seung-Soo; Choi, Jong-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The development of nuclear technology has led to increasing radioactive waste containing uranium being released and disposed in the nuclear sites. Fine grained soils with a size of less than 4 mm are normally decontaminated using soil washing and electro-kinetic technologies. However, there have been few studies on the decontamination of gravels with a size of more than 4 mm. Therefore, it is necessary to study the decontamination of gravel contaminated with radionuclides. The main objective of the present study on soil washing was to define the optimal condition for acid treatment of uranium-polluted gravel. In this study, soil washing method was applied to remove uranium from gravel. The gravel was crushed and classified as particle sizes. The gravel particles were treated with sulfuric acid in a shaking incubator at 60 .deg. C and 150 rpm for 3 h. The optimal particle size of gravel for soil washing in removal of uranium was between 0.45 and 2.0 mm.

  11. Washing technology development for gravel contaminated with uranium

    Energy Technology Data Exchange (ETDEWEB)

    Park, Uk Ryang; Kim, Gye Nam; Kim, Seung Soo; Kim, Wan Suk; Moon, Jai Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The soil washing method has a short decontamination time and is economical. In addition, methods including phytoremediation, solidification/stabilization and bioremediation exist. Phytoremediation and bioremediation are economical, but have low remedial efficiency. In addition, bioremediation causes washing wastewater because it requires a washing process for the separation of microorganisms from the soils. In addition, solidification/stabilization is a commonly used methods, but eventually increases the volume of wastes. As mentioned above, many researches involved in the decontamination of radioactively contaminated soils have been actively processed. On the other hand, researches for decontaminating radioactively contaminated gravels are not being currently processed. In this study, we performed basic experiments using decontamination methods to decontaminate radioactively contaminated gravel. First, we measured the concentration of uranium in gravel included in uranium-contaminated soils and performed a washing experiment to monitor the tendency of uranium removal. In addition, when managing gravel with a low uranium-decontamination rate, we tried to satisfy the radioactivity concentration criteria for self-disposal in the wastes (0.4Bq/g or less) by performing a washing experiment after only a physical crushing process. We performed washing experiments to satisfy the radioactivity concentration criteria for self-disposal (0.4 Bq/g or less) in gravel included in radioactively contaminated soil. We performed washing experiments for gravel whose initial average concentration of uranium was 1.3Bq/g. In addition, the average concentration of uranium was 0.8Bq/g. Too increase the decontamination rate, we crushed the gravel with a jaw crusher and performed the washing experiments. The results were similar to the results without crushing. In addition, it was determined that the smaller the size of the gravel particles, the more efficient the uranium decontamination

  12. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  13. Hydrogeological and quantitative groundwater assessment of the Basaltic Aquifer, Northern Harrat Rahat, Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Shaibani, A.; Abokhodair, Abdulwahab A.; Lloyd, J.W.; Al-Ahmari, A.

    2007-01-01

    The Northern Harrat Rahat consists of 300m basalt lavas covering some 2000 km2 to the south-east of Al-Madinah in western Saudi Arabia. Like many basalt sequences, the Rahat basalts form an important aquifer and groundwater resource. The aquifer has a saturated thickness of up to 60m and made up of the weathered upper part of underlying basement, pre-basalt sands and gravels and the fractured basalts. Since 1992, groundwater has been abstracted from the aquifer as part of the Al-Madinah water supply. To assess the potential of the aquifer an assessment has been made based on pumping tests of 70 wells. The hydraulic parameters have been shown to be highly variable typical of the fractured domain. The aquifer contains good-quality water in storage, but receives limited recharge. Groundwater temperature anomalies indicate remnant volcanic activity locally. A numerical groundwater model has been constructed, which has been calibrated using limited groundwater head measurements, but with good abstraction records. Prediction of groundwater heads and the examination of several abstraction scenarios indicate that the aquifer can continue to support part of the Al-Madinah demand for the next several years, if certain well distributions are adopted. The predictions also show that the aquifer can only support the total demand of the city for a few days as a contingency resource. (author)

  14. Towards an increase of flash flood geomorphic effects due to gravel mining and ground subsidence in Nogalte stream (Murcia, SE Spain

    Directory of Open Access Journals (Sweden)

    J. A. Ortega-Becerril

    2016-10-01

    Full Text Available Transition from endorheic alluvial fan environments to well-channelized fluvial systems in natural conditions may occur in response to base-level fluctuations. However, human-induced changes in semi-arid regions can also be responsible for similar unforeseen modifications. Our results confirm that in-channel gravel mining and aquifer overexploitation over the last 50 years in the case study area have changed the natural stability of the Nogalte stream and, as a result, its geomorphic parameters including channel depth and longitudinal profile have begun to adapt to the new situation. Using interferometric synthetic aperture radar (InSAR data we obtain maximum values for ground subsidence in the Upper Guadalentín Basin of  ∼ 10 cm yr−1 for the period 2003–2010. In this context of a lowered base level, the river is changing its natural flood model to a more powerful one. A comparison of the 1973 flood event, the most dramatic flood event ever recorded in the area, with the 2012 event, where there was a similar discharge but a sediment load deficit, reveals greater changes and a new flooding pattern and extension. In-channel gravel mining may be responsible for significant local changes in channel incision and profile. This, together with the collateral effects of aquifer overexploitation, can favour increased river velocity and stream power, which intensify the consequences of the flooding. The results obtained here clearly demonstrate an existing transition from the former alluvial pattern to a confined fluvial trend, which may become more pronounced in the future due to the time lag between the drop in aquifer level and ground subsidence, and introduce a new scenario to be taken into consideration in future natural hazard planning in this area.

  15. Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Bencini, A.; Ercolanelli, R.; Sbaragli, A. [Univ. of Florence (Italy)] [and others

    1993-11-01

    Geochemical and hydrogeological research has been carried out in Florence, to evaluate conductivity and main chemistry of groundwaters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO{sub 2}, NO{sub 3}), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. Most waters show conductivity values around 1000-1200 {mu}S, and almost all of them have an alkaline-earth-bicarbonate chemical character. In western areas higher salt content of the groundwaters is evident. Heavy metal and NO{sub 2}, NO{sub 3} analyses point out that no important pollution phenomena affect the groundwaters; all mean values are below the maximum admissible concentration (MAC) for drinkable waters. Some anomalies of NO{sub 2}, NO{sub 3}, Fe, Mn, and Zn are present. The most plausible causes can be recognized in losses of the sewage system; use of nitrate compounds in agriculture; oxidation of well pipes. All the observations of Cr, Cu, and Pb are below the MAC; the median values of <3, 3.9, and 1.1 {mu}g/l, respectively, could be considered reference concentrations for groundwaters in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered could significantly increase the self-purification capacity of the aquifer, such asdilution of groundwaters, bacteria oxidation of nitrogenous species, and sorption capacity of clay minerals and organic matter. 31 refs., 6 figs., 5 tabs.

  16. Viscoelastic gravel-pack carrier fluid

    International Nuclear Information System (INIS)

    Nehmer, W.L.

    1988-01-01

    The ability of a fluid to flow adequately into the formation during gravel-pack treatments is critical to achieving a good pack. Recent studies have indicated ''fish-eyes'' and/or ''microgels'' present in many polymer gelled carrier fluids will plug pore throats, leading to impaired leakoff and causing formation damage. Intensive manipulation of the polymer gelled fluid using shear and filter devices will help remove the particles, but it adds to the cost of the treatment in terms of equipment and manpower. Excessive shear will degrade the polymer leading to poor gravel suspension, while too little shear will cause filtration problems. A gelled carried fluid using a viscoelastic surfactant system has been found to leak off very efficiently to the formation, and cause no formation damage, without the use of shear/filter devices. Viscoelastic surfactant-base gelled fluids develop viscosity because of the association of surfactant moloecules into large rod-shaped aggregates. There is no hydration of polymer involved, so fish-eyes and microgels will not be formed in the viscoelastic fluid. A surfactant-base system having a yield point allows the gravel carrying properties to be much better than fluids gelled with conventional polymer systems (hydroxyethylcellulose [HEC]). For example, a gravel carried fluid gelled with 80 lb HEC/1,000 gal has a viscosity of about 400 cp at 170 sec/sup -1/; a viscoelastic surfactant-base system having only one-half the viscosity still flows into cores about four times more efficiently than the HEC-base fluid. The rheology, leakoff, formation damage and mixing properties of a viscoelastic, surfactant-base, gravel-pack carrier fluid are discussed

  17. Gravel Mobility in a High Sand Content Riverbed

    Science.gov (United States)

    Haschenburger, J. K.

    2017-12-01

    In sand-gravel channels, sand may modify gravel transport by changing conditions of entrainment and promoting longer displacements or gravel may inhibit sand transport if concentrated into distinct deposits, which restrict sand supply with consequences for migrating bedform size or form. This study reports on gravel mobility in the lower San Antonio River, Texas, where gravel content in the bed material ranges from about 1% to more than 20%. Sediment transport observations were collected at three U.S. Geological Survey gauging stations by deploying a Helley-Smith sampler with a 0.2 mm mesh bag from which transport rates and mobile grain sizes were determined. The flow rates sampled translate into an annual exceedance expectation from 0.2% to 98%. Gravel transport rates are generally two orders of magnitude smaller than the rates of sand transport. However, the finest gravels are transported at rates on the same order of magnitude as the coarsest sands. At all sites, the 2 and 2.8 mm fractions are transported at the lowest flow rate sampled, suggesting mobility for at least 38% to as much as 98% of the year. Fractions as large as 8 mm are mobilized at flow rates that are expected between 25% and 53% of the year. The largest fractions captured in the sampling (16 to 32 mm) require flows closer to bankfull conditions that occur no more than 0.8% of the year. Results document that some gravel sizes can be frequently transported in low gradient riverbeds with high sand content.

  18. Gravel roads management : volume 2, gravel roads management : implementation guide.

    Science.gov (United States)

    2011-10-01

    This report establishes procedures for managing dirt and gravel roads, with a primary focus on smaller agencies, such as Wyoming counties, that must manage their roads with very limited resources. The report strives, first, to guide and assist smalle...

  19. Gravel roads management : volume 3, gravel roads management : programming guide.

    Science.gov (United States)

    2010-10-01

    This report establishes procedures for managing dirt and gravel roads, with a primary focus on smaller agencies, such as Wyoming counties, that must manage their roads with very limited resources. The report strives, first, to guide and assist smalle...

  20. Unconsolidated Aquifers in Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2000-01-01

    Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site

  1. Detections of MTBE in surficial and bedrock aquifers in New England

    International Nuclear Information System (INIS)

    Grady, S.J.

    1995-01-01

    The gasoline additive methyl tert-butyl ether (MTBE) was detected in 24% of water samples collected from surficial and bedrock aquifers in areas of New England. MTBE was the most frequently detected volatile organic compound among the 60 volatile chemicals analyzed and was present in 33 of 133 wells sampled from July 1993 through September 1995. The median MTBE concentration measured in ground-water samples was 0.45 microgram per liter and concentrations ranged from 0.2 to 5.8 microgram per liter. The network of wells sampled for MTBE consisted of 103 monitoring wells screened in surficial sand-and-gravel aquifers and 30 domestic-supply wells in fractured crystalline bedrock aquifers. Seventy-seven percent of all MTBE detections were from 26 shallow monitoring wells screened in surficial aquifers. MTBE was detected in42% of monitoring wells in urban areas. In agricultural areas, MTBE was detected i 8% (2 of 24) of wells and was not detected in undeveloped areas. Sixty-two percent of the MTBE detections in surficial aquifers were from wells within 0.25 mile of gasoline stations or underground gasoline storage tanks; all but one of these wells were in Connecticut and Massachusetts, where reformulated gasoline is used. MTBE was detected in 23% of deep domestic-supply wells that tapped fractured bedrock aquifers. MTBE was detected in bedrock wells only in Connecticut and Massachusetts; land use near the wells was suburban to rural, and none of the sampled bedrock wells were within 0.25 mile of a gasoline station

  2. Experiment on Physical Desalinisation of Uranium-contaminated Gravel Surface

    International Nuclear Information System (INIS)

    Park, Uk-Ryang; Kim, Gye-Nam; Kim, Seung-Soo; Han, Gyu-Seong; Moon, Jai-Kwon

    2014-01-01

    As a result, the method to wash uranium-contaminated gravels could not get satisfactory desalinization rate. During the long oxidization process it was judged that uranium penetrated inside the gravels, so we tried to increase the desalinization rate by fragmentizing them into pieces and then washing them. The desalinization rate after fragmentizing the gravels into pieces and washing them brought a satisfactory result.. However, we could obtain desired concentration for gravels with high uranium concentration by fragmentizing them and breaking them further into even smaller pieces. Likewise, desalinization using soil washing process is complicated and has to go through multiple washing steps, resulting in too much of waste fluid generated accordingly. The increase of waste fluid generated leads to the increase in by-products of the final disposal process later on, bringing a not good economic result. Furthermore, taking into account that the desalinization rate is 65% during soil washing process, it is expected that gravel washing will show a similar desalinization result; it is considered uneasy to have a perfect desalinization only by soil washing. The grinding method is actually used in the primary desalinization process in order to desalinize radioactivity-contaminated concrete. This method does desalinization by grinding the radioactivity-contaminated area of the concrete surface with desalinization equipment, which enables a near-to-perfect desalinization for relatively thinly contaminated surface. Likewise, this research verified the degree of desalinization by applying the grinding method and comparing it to the fragmentizing-washing method, and attempted to find a method to desalinize uranium-contaminated gravels more effectively. In order to desalinize uranium-contaminated gravels more effectively and compare to the existing washing-desalinization method, we conducted a desalinization experiment with grinding method that grinds gravel surface. As a

  3. 76 FR 38302 - Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA

    Science.gov (United States)

    2011-06-30

    ... the Town of Cape Charles will sponsor a fireworks display on the shoreline of the navigable waters of...-AA00 Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA AGENCY: Coast Guard... navigable waters of Cape Charles City Harbor in Cape Charles, VA in support of the Fourth of July Fireworks...

  4. Performance of high-rate gravel-packed oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Unneland, Trond

    2001-05-01

    Improved methods for the prediction, evaluation, and monitoring of performance in high-rate cased-hole gravel-packed oil wells are presented in this thesis. The ability to predict well performance prior to the gravel-pack operations, evaluate the results after the operation, and monitor well performance over time has been improved. This lifetime approach to performance analysis of gravel-packed oil wells contributes to increase oil production and field profitability. First, analytical models available for prediction of performance in gravel-packed oil wells are reviewed, with particular emphasis on high-velocity flow effects. From the analysis of field data from three North Sea oil fields, improved and calibrated cased-hole gravel-pack performance prediction models are presented. The recommended model is based on serial flow through formation sand and gravel in the perforation tunnels. In addition, new correlations for high-velocity flow in high-rate gravel-packed oil wells are introduced. Combined, this improves the performance prediction for gravel-packed oil wells, and specific areas can be targeted for optimized well design. Next, limitations in the current methods and alternative methods for evaluation and comparison of well performance are presented. The most widely used parameter, the skin factor, remains a convenient and important parameter. However, using the skin concept in direct comparisons between wells with different reservoir properties may result in misleading or even invalid conclusions. A discussion of the parameters affecting the skin value, with a clarification of limitations, is included. A methodology for evaluation and comparison of gravel-packed well performance is presented, and this includes the use of results from production logs and the use of effective perforation tunnel permeability as a parameter. This contributes to optimized operational procedures from well to well and from field to field. Finally, the data sources available for

  5. Variability of hyporheic exchange in an experimental gravel bed

    NARCIS (Netherlands)

    Perk, M. van der; Petticrew, E.L.; Owens, P.N.

    2011-01-01

    A series of tracer experiments in a large outdoor flume were conducted to examine the variability of hyporheic exchange in gravel bed sediments. An 18 m long section of a 2 m wide flume was filled with a 30 cm thick gravel layer with a porosity of 0.39. The gravel of the 17 cm top layer was

  6. Recolonization of gravel habitats on Georges Bank (northwest Atlantic)

    Science.gov (United States)

    Collie, Jeremy S.; Hermsen, Jerome M.; Valentine, Page C.

    2009-09-01

    Gravel habitats on continental shelves around the world support productive fisheries but are also vulnerable to disturbance from bottom fishing. We conducted a 2-year in situ experiment to measure the rate of colonization of a gravel habitat on northern Georges Bank in an area closed to fishing (Closed Area II) since December 1994. Three large (0.25 m 2) sediment trays containing defaunated pebble gravel were deployed at a study site (47 m water depth) in July 1997 and recovered in June 1999. The undersides of the tray lids positioned 56 cm above the trays served as settlement panels over the same time period. We observed rapid colonization of the gravel substrate (56 species) and the settlement panels (35 species), indicating that colonization of gravel in this region is not limited by the supply of colonists. The species composition of the taxa found in the trays was broadly similar to that we collected over a 10-year period (1994-2004) in dredge samples from gravel sediments at the same site. The increase in abundance of animals in the gravel colonization trays was rapid and reached a level in 2 years that took 4.5 years to achieve in the surrounding gravel sediments once fishing had stopped, based on data from dredge sampling at this site. The increase in biomass of animals found in the sediment trays paralleled the trend of biomass increase observed in dredge samples over the same period (1997-1999) but was lower in value. These data suggest that after rapid initial increase in abundance of organisms, succession proceeded by increasing individual body size. A comparison of settlement panel and tray faunas revealed that the mean biomass of structure-forming epifauna (sponges, bryozoans, anemones, hydroids, colonial tube worms) on the panels was 8 times that found on the trays. Structure-forming taxa constituted 29% of the mean biomass of the panel fauna but only 5.5% of the tray fauna. By contrast, the mean biomass of scavengers (crabs, echinoderms, nudibranchs

  7. Recolonization of gravel habitats on Georges Bank (northwest Atlantic)

    Science.gov (United States)

    Collie, Jeremy S.; Hermsen, Jerome M.; Valentine, Page C.

    2009-01-01

    Gravel habitats on continental shelves around the world support productive fisheries but are also vulnerable to disturbance from bottom fishing. We conducted a 2-year in situ experiment to measure the rate of colonization of a gravel habitat on northern Georges Bank in an area closed to fishing (Closed Area II) since December 1994. Three large (0.25 m2) sediment trays containing defaunated pebble gravel were deployed at a study site (47 m water depth) in July 1997 and recovered in June 1999. The undersides of the tray lids positioned 56 cm above the trays served as settlement panels over the same time period. We observed rapid colonization of the gravel substrate (56 species) and the settlement panels (35 species), indicating that colonization of gravel in this region is not limited by the supply of colonists. The species composition of the taxa found in the trays was broadly similar to that we collected over a 10-year period (1994-2004) in dredge samples from gravel sediments at the same site. The increase in abundance of animals in the gravel colonization trays was rapid and reached a level in 2 years that took 4.5 years to achieve in the surrounding gravel sediments once fishing had stopped, based on data from dredge sampling at this site. The increase in biomass of animals found in the sediment trays paralleled the trend of biomass increase observed in dredge samples over the same period (1997-1999) but was lower in value. These data suggest that after rapid initial increase in abundance of organisms, succession proceeded by increasing individual body size. A comparison of settlement panel and tray faunas revealed that the mean biomass of structure-forming epifauna (sponges, bryozoans, anemones, hydroids, colonial tube worms) on the panels was 8 times that found on the trays. Structure-forming taxa constituted 29% of the mean biomass of the panel fauna but only 5.5% of the tray fauna. By contrast, the mean biomass of scavengers (crabs, echinoderms, nudibranchs

  8. Gravel packing dual zones in one trip reduces offshore completion time

    International Nuclear Information System (INIS)

    Brannon, D.H.; Harrison, D.T.; van Sickle, E.W.

    1991-01-01

    A single trip, dual-zone gravel pack system was used to successfully gravel pack two wells on Green Canyon platform 52 A in the Gulf of Mexico. An average 56 hours was saved on each well, representing reductions of about 25% in completion time and 26% in completion cost per well. Time-sensitive costs had the largest impact on Green Canyon 52 A final well completion cost; therefore, new technology or more efficient operations were required to minimize completion time. One way to enhance project economics was to gravel pack two separate zones in one trip. In this paper, four objectives are addressed during development of a single trip tool to gravel pack the stacked zones of the Marquette project. These were time and cost reduction, removal of loss circulation material (LCM) prior to gravel packing, zone isolation during gravel packing and use of conventional gravel placement techniques. The design requirement that all LCM (salt and/or viscous polymer pills), perforation debris and formation sand be removed from the wellbore prior to gravel packing was accomplished by incorporating a washdown feature that allows circulation at the bottom of the gravel pack assembly prior to landing in the sump packer

  9. The Development of Treatment Process Technology for Radioactive Gravel

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Dong Bin; Kim, Gye Nam; Park, Hye Min; Kim, Ki Hong; Kim, Wan Suk; Lee, Kun Woo; Lee, Ki Won; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The soil washing method holds great promise for the decontamination of contaminated soil as it is very efficient at removal and is time-effective for a great deal of contaminated soils. In addition, this method compensates for a weak point in that is generates a great deal of uranium-contaminated leachate with a short reaction time. Therefore, the soil washing method technology is a good method to remove the initial radioactive substance. The soil dimension compositions consist of clay with small particle sizes, and gravel of larger particle sizes than clay. Also, large gravel creates several problems. Gravel weakens the intensity of the equipment. In addition, intercept soil is discharged in the equipment. And interfere with the pedal recurrence occurs. Therefore, it is necessary to classify the soil. The gravel particle size ranges from 0.5cm to 7.5cm and the granulated gravel particle size ranges from 7.5cm to 20cm. We suppose that the radioactive concentrations are stronger in soil particles larger than the soil particle size (below a 0.5cm diameter). The purpose of this study is to develop a soil washing system for uranium gravel and to define the most suitable operational conditions for the individual elemental equipment in a soil washing system for decontaminating the radioactive gravel from contaminated soil

  10. Groundwater resources of Ribeira Fajã basin, island of São Nicolau, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Plummer, Niel; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  11. 76 FR 27970 - Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA.

    Science.gov (United States)

    2011-05-13

    ... Charles will sponsor a fireworks display on the shoreline of the navigable waters of Cape Charles City...[deg]01'30'' W (NAD 1983). This safety zone will be established in the vicinity of Cape Charles, VA...-AA00 Safety Zone; Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA. AGENCY: Coast Guard...

  12. Estimated hydrologic budgets of kettle-hole ponds in coastal aquifers of southeastern Massachusetts

    Science.gov (United States)

    Walter, Donald A.; Masterson, John P.

    2011-01-01

    Kettle-hole ponds in southeastern Massachusetts are in good hydraulic connection to an extensive coastal aquifer system that includes the Plymouth-Carver aquifer system on the mainland and aquifers underlying Cape Cod. The ponds receive water from, and contribute water to, the underlying glacial aquifer; ponds also receive water from precipitation and lose water to evaporation from the pond surface. Some ponds are connected to surface-water drainage systems and receive water from or contribute water to streams or adjacent wetlands. The Massachusetts Department of Environmental Protection currently (2011) is developing Total Maximum Daily Loads of phosphorus for the freshwater ponds in the region to maintain the health of pond ecosystems; the amounts and sources of water fluxes into and out of the ponds are important factors in determining the amount of phosphorus that can be assimilated into a pond. To assist in this effort, the U.S. Geological Survey used groundwater-flow models of the coastal aquifer system to estimate hydrologic budgets-including inflows and outflows from the aquifer system and adjacent streams and wetlands, and recharge from precipitation-for 425 ponds in southeastern Massachusetts.

  13. Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand

    Science.gov (United States)

    Koiwa, Naoto; Takahashi, Mio; Sugisawa, Shuhei; Ito, Akifumi; Matsumoto, Hide-aki; Tanavud, Charlchai; Goto, Kazuhisa

    2018-04-01

    The 2004 Indian Ocean tsunami had notable impacts on coastal landforms. Temporal change in topography by coastal erosion and subsequent formation of a new barrier spit on the nearshore of Pakrang Cape, southeastern Thailand, had been monitored for 10 years since 2005 based on field measurement using satellite images, high-resolution differential GPS, and/or handy GPS. Monitored topography data show that a barrier island was formed offshore from the cape several months after the tsunami event through progradation of multiple elongated gravelly beach ridges and washover fan composed of coral gravels. Subsequently, the barrier spit expanded to the open sea. The progradation and expansion were supported by supply of a large amount of coral debris produced by the tsunami waves. These observations provide useful data to elucidate processes of change in coastal landforms after a tsunami event. The 2004 Indian Ocean tsunami played an important role in barrier spit evolution over a period of at least a decade.

  14. Sand and Gravel Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes sand and gravel operations in the United States. These data were obtained from information reported voluntarily to the USGS by the aggregate...

  15. A study on the decontamination of the gravels contaminated by uranium

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ukryang; Kim, Gyenam; Kim, Seungsoo; Moon, Jaikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The amount of gravels contaminated by uranium is usually about 10% of the contaminated soil. Since such contaminated gravels show different kinds and volumes, it would cost a considerable amount of money if they are to be disposed of without going through any special process. Also, there has not been any particular way or technology for processing the gravels contaminated by uranium. Therefore, various fundamental experiments and researches have been carried out for the decontamination of the gravels contaminated by uranium. Through such experiments and researches, it has been possible to obtain some significant results. The acid cleaning process, which is based on the application of the soil cleaning method, can be regarded as one of the major ways used for decontamination. When the gravels contaminated by uranium are cleaned as they are, most of them tend to show an extremely-low level of decontamination. Therefore, it could be said that the inside of each gravel is also contaminated by uranium. As a result, the gravels contaminated by uranium need to be crushed before being cleaned, which would result in a higher level of efficiency for decontamination compared to the previous way. Therefore, it is more effective to crush the subject gravels before cleaning them in terms of decontamination. However, such test results can only be applied to the gravels contaminated by an average level of uranium concentration. Regarding the gravels showing a higher level of uranium concentration than the average, it is still necessary to carry out more researches. Therefore, this study focused on the level of efficiency for decontamination after the contaminated gravels were crushed before being cleaned, in order to find a way to effectively dispose of the gravels contaminated by high-concentration uranium and secure a high level of efficiency for decontamination. In order to decontaminate the gravels which were contained in the soil contaminated by uranium and showed a higher

  16. The gravel sand transition in a disturbed catchment

    Science.gov (United States)

    Knighton, A. David

    1999-03-01

    More than 40 million cubic metres of mining waste were supplied to the Ringarooma River between 1875 and 1984, leading to successive phases of aggradation and degradation. The natural bed material is gravel but, given the volume of introduced load and the fact that much of the input was less than 5 mm in diameter, the size composition of the bed changed from gravel to sand during the phase of downstream progressive aggradation. A very sharp gravel-sand transition developed in which median grain size decreased from over 30 mm to under 3 mm in less than 500 m. With upstream supplies of mining debris becoming depleted first, degradation followed the same downstream progressive pattern as aggradation, causing the transition to migrate downstream. By 1984, the river could be regarded as a series of zones, each characterized by a particular bed condition: a natural cobble-gravel bed, unaffected by mining inputs (0-32 km); pre-disturbance bed re-exposed by degradation over 35-40 years (32-53 km); sandy substrate with a gravel armour produced by differential transport during degradation (53-65 km); sand dominated but with developing surface patches of coarser material (65-75 km); sandy bed reflecting the size composition of the original mining input (75-118 km). Although the gravel-sand transition itself is sharp, the transitional zone is lengthy (53-75 km). As degradation continues, the gravel-sand transition is expected to progress downstream but it has remained in a stable position for 12 years. Indeed, two major floods during the period released large quantities of sand from the sub-armour layer and newly-formed banks of mine tailings, causing fining both above and below the transition. Surface grain size is an adjustable component in the transitional zone as the river strives to recover from a major anthropogenic disturbance.

  17. Sand and Gravel Deposits

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset is a statewide polygon coverage of sand, gravel, and stone resources. This database includes the best data available from the VT Agency of Natural...

  18. General characteristics of the aquifer system Joanicó (Montevideo, Uruguay)

    International Nuclear Information System (INIS)

    Gagliardi Urtasun, S.; Montaño, X.; Montaño Gutiérrez, M.; Lacués Parodi, X.

    2010-01-01

    The work area, comprising the towns of Joanicó, Sauce and N Progress , Canelones province, is a center of intensive agricultural development (viticulture, hortofruticultura, etc), where demand and exploitation of groundwater is common primarily for irrigation supply .The subsoil consists of sedimentary rocks and sediments belonging to the Freedom and Dolores ( Pleistocene), Fray Bentos (Upper Oligocene) (aquitards), Mercedes formations - Asencio (Upper Cretaceous) and Migues (Lower Cretaceous). Permeable levels in the Mercedes and Migues formations make up a significant potential aquifer system , which we call Joanicó Aquifer System. This aquifer is multilayer type and consists of fine to coarse sand and gravel and sand mixture , with the occasional presence of thin matrix. Semi confined and behaves as confined in most area; in the outcrop of the Merc edes training is free. The average transmissivity is approximately the 50m2/día; The average permeability of 5 to 10 m/day. The storage coefficient (confined area) is of the order 10-4 .In the most developed area of the aquifer is where Joanicó are obtained by constructing boreholes higher flows Canelones department: more than 25% of the wells drilled to extract higher flow 15 m3/h y extracted more than 40% flows over 10 m3/h. The production of many agricultural enterprises depends directly on the area irrigated with groundwater, so the deeper knowledge of the exploited resource is paramount

  19. Reservoir architecture patterns of sandy gravel braided distributary channel

    Directory of Open Access Journals (Sweden)

    Senlin Yin

    2016-06-01

    Full Text Available The purpose of this study was to discuss shape, scale and superimposed types of sandy gravel bodies in sandy-gravel braided distributary channel. Lithofacies analysis, hierarchy bounding surface analysis and subsurface dense well pattern combining with outcrops method were used to examine reservoir architecture patterns of sandy gravel braided distributary channel based on cores, well logging, and outcrops data, and the reservoir architecture patterns of sandy gravel braided distributary channels in different grades have been established. The study shows: (1 The main reservoir architecture elements for sandy gravel braided channel delta are distributary channel and overbank sand, while reservoir flow barrier elements are interchannel and lacustrine mudstone. (2 The compound sand bodies in the sandy gravel braided delta distributary channel take on three shapes: sheet-like distributary channel sand body, interweave strip distributary channel sand body, single strip distributary channel sand body. (3 Identification marks of single distributary channel include: elevation of sand body top, lateral overlaying, “thick-thin-thick” feature of sand bodies, interchannel mudstone and overbank sand between distributary channels and the differences in well log curve shape of sand bodies. (4 Nine lithofacies types were distinguished in distributary channel unit interior, different channel units have different lithofacies association sequence.

  20. Groundwater resources of Ribeira Paúl basin, island of Santo Antão, Cape Verde, West Africa

    Science.gov (United States)

    Heilweil, Victor M.; Gingerich, Stephen B.; Verstraeten, Ingrid M.

    2010-01-01

    Groundwater resources in Cape Verde provide water for agriculture, industry, and human consumption. These resources are limited and susceptible to contamination. Additional groundwater resources are needed for continued agricultural development, particularly during times of drought, but increased use and (or) climatic change may have adverse effects on the quantity and quality of freshwater available. In volcanic island aquifers such as those of Cape Verde, a lens of fresh groundwater typically ?floats? upon a layer of brackish water at the freshwater/saltwater boundary, and increased pumping may cause salt water intrusion or other contamination. A recent U.S. Geological Survey study assessed baseline groundwater conditions in watersheds on three islands of Cape Verde to provide the scientific basis for sustainably developing water resources and minimizing future groundwater depletion and contamination.

  1. Discrete Element Modeling of the Mobilization of Coarse Gravel Beds by Finer Gravel Particles

    Science.gov (United States)

    Hill, K. M.; Tan, D.

    2012-12-01

    Recent research has shown that the addition of fine gravel particles to a coarse bed will mobilize the coarser bed, and that the effect is sufficiently strong that a pulse of fine gravel particles can mobilize an impacted coarser bed. Recent flume experiments have demonstrated that the degree of bed mobilization by finer particles is primarily dependent on the particle size ratio of the coarse and fine particles, rather than absolute size of either particle, provided both particles are sufficiently large. However, the mechanism behind the mobilization is not understood. It has previously been proposed that the mechanism is driven by a combination of geometric effects and hydraulic effects. For example, it has been argued that smaller particles fill in gaps along the bed, resulting in a smoother bed over which the larger particles are less likely to be disentrained and a reduced near-bed flow velocity and subsequent increased drag on protruding particles. Altered near-bed turbulence has also been cited as playing an important role. We perform simulations using the discrete element method with one-way fluid-solid coupling to conduct simulations of mobilization of a gravel bed by fine gravel particles. By independently and artificially controlling average and fluctuating velocity profiles, we systematically investigate the relative role that may be played by particle-particle interactions, average near-bed velocity profiles, and near-bed turbulence statistics. The simulations indicate that the relative importance of these mechanisms changes with the degree of mobilization of the bed. For higher bed mobility similar to bed sheets, particle-particle interactions, plays a significant role in an apparent rheology in the bed sheets, not unlike that observed in a dense granular flow of particles of different sizes. For conditions closer to a critical shear stress for bedload transport, the near-bed velocity profiles and turbulence statistics become increasingly important.

  2. 77 FR 29929 - Safety Zone; Town of Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA

    Science.gov (United States)

    2012-05-21

    ... section of this notice. Basis and Purpose On July 4, 2012 the Town of Cape Charles will sponsor a...-AA00 Safety Zone; Town of Cape Charles Fireworks, Cape Charles Harbor, Cape Charles, VA AGENCY: Coast... temporary safety zone on the waters of Cape Charles City Harbor in Cape Charles, VA in support of the Fourth...

  3. Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea

    Science.gov (United States)

    Yang, J.; Lee, K.; Bae, G.

    2004-12-01

    In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

  4. Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM data

    Directory of Open Access Journals (Sweden)

    Usama Massoud

    2014-12-01

    In this study, VES and TEM data were identically measured at 24 stations along 3 profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid-like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geoelectrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water-bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

  5. Regeneration of a confined aquifer after redevelopment and decommission of artesian wells, example from Grafendorf aquifer (Styria, Austria)

    Science.gov (United States)

    Mehmedovski, Nudzejma; Winkler, Gerfried

    2016-04-01

    Water is essential for life and it is therefore necessary to protect drinking water sustainably. Compared to shallow groundwater, deeper groundwater is especially important due to its characteristic tendency to remain extensively unaffected by environmental impacts. Thus, the uncontrolled waste of this valuable resource has to be avoided. A lot of artesian wells have been established in Grafendorf bei Hartberg (Styria, Austria). Almost all wells were not state-of-the art. As a result the different aquifer horizons began to intermix. Additionally some of the artesian wells had a permanent free overflow and the water was not even used. Consequently, since 1950, where the mean discharge of 37 wells was 0,334 l/s per well, the discharge has decreased to 0,090 l/s until 2013, which means a decline of about 75 %. As a reaction to these declines a decommissioning campaign was conducted where 69 artesian wells have been closed by injecting a cement-bentonite suspension (ratio 3:1). The Grafendorf aquifer is situated in the Styrian Basin and consists of 5 separated artesian horizons in Neogene sediments. These artesian horizons range from 42 m (1st horizon) to 176 m (5th horizon) and mostly consist of sand, partly of fine/medium/coarse gravel and partially with minor clay content. In order to analyse the reaction of the Grafendorf aquifer to these redevelopments, 5 monitoring wells could be used for the analysis. Some monitoring wells include different aquifer horizons and hydraulically short cut them. Thus, in this work the analysis focus on the general trend of the whole aquifer system neglecting the individual interactions between the different aquifers. In a first investigation step the hydraulic properties of the aquifer system has been determined using pumping tests which were analysed with different analytical solutions with the software AQTESOLV. Overall the pumping test solutions hardly differ in the transmissivity and hydraulic conductivity. On the contrary the

  6. Gravel sediment routing from widespread, low-intensity landscape disturbance, Current River basin, Missouri

    Science.gov (United States)

    Jacobson, Robert B.; Gran, K.B.

    1999-01-01

    During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches.

  7. Groundwater-quality data for a treated-wastewater plume near the Massachusetts Military Reservation, Ashumet Valley, Cape Cod, Massachusetts, 2006-08

    Science.gov (United States)

    Savoie, Jennifer G.; LeBlanc, Denis R.; Fairchild, Gillian M.; Smith, Richard L.; Kent, Douglas B.; Barber, Larry B.; Repert, Deborah A.; Hart, Charles P.; Keefe, Steffanie H.; Parsons, Luke A.

    2012-01-01

    A plume of contaminated groundwater extends from former disposal beds at the Massachusetts Military Reservation's wastewater-treatment plant toward Ashumet Pond, coastal ponds, and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected from monitoring wells, multilevel samplers, and profile borings to characterize the nature and extent of the contaminated groundwater and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected in 2007 from 394 wells (at 121 well-cluster locations) and 780 multilevel-sampler ports (at 42 locations) and in 2006-08 at 306 depth intervals in profile borings (at 20 locations) in and near the treated-wastewater plume. Analyses of these water samples for field parameters (specific conductance, pH, dissolved oxygen and phosphate concentrations, and alkalinity); absorbance of ultraviolet/visible light; and concentrations of nitrous oxide, dissolved organic carbon, methylene blue active substances, selected anions and nutrients, including nitrate and ammonium, and selected inorganic solutes, including cations, anions, and minor elements, are presented in tabular format. The natural restoration of the sand and gravel aquifer after removal of the treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume, have been documented in several published reports that are listed in the references.

  8. Turbidity removal: Gravel and charcoal as roughing filtration media

    Directory of Open Access Journals (Sweden)

    Josiah A. Adeyemo

    2010-10-01

    Full Text Available Roughing filtration is an important pre-treatment process for wastewater, because it efficiently separates fine solid particles over prolonged periods, without the addition of chemicals. For this study, a pilot plant was designed at Delmas Coal Mine in the Mpumalanga province of South Africa. The design and sizing of the pilot plant was guided by Wegelin’s design criteria. Gravel was used as a control medium because it is one of the most commonly used roughing filter media and because it was used in developing the criteria. We compared the performance of gravel as a filter medium to that of another locally available material, charcoal, for the removal of turbidity in wastewater. The pilot plant was monitored continuously for 90 days from commissioning until the end of the project. The overall performance of the roughing filter in turbidity removal, using gravel or charcoal, was considered efficient for the pre-treatment of waste water. Charcoal performed slightly better than gravel as a filter medium for the removal of turbidity, possibly because charcoal has a slightly higher specific surface area and porosity than gravel, which could enhance sedimentation and other filtration processes, such as adsorption, respectively.

  9. The air flow and heat transfer in gravel embankment in permafrost areas

    Institute of Scientific and Technical Information of China (English)

    JIANG Fan; LIU Shi; WANG Haigang; CHEN Huanzhuo

    2004-01-01

    A comparative numerical investigation of transient temperature profile and pore-air velocities in horizontal rock block embankments are conducted using the "gravels model", in which the embankment is composed of stones and air, and the "porous media model" respectively. As the velocities from the "gravels model" directly reflect the true flow of air and winter-time convection, in this paper it can be concluded that computational results from the "gravels model"are superior to the "porous media model". In addition, the "gravels model" has the advantages of reflecting the effect of the dimensions and collocation of gravels upon the temperature fields.Therefore, the computation of the gravels embankment is mainly based on the gravels model.Simulation results show that in summer, a clockwise circulation of the pore-air extends throughout most of the embankment. However its motion is very weak that results in relatively straight horizontal isotherm lines. And heat transfer is mainly maintained through conduction. But in winter, the pore-air velocities are higher and multiple vortexes are formed in the embankment.Natural convection then becomes the dominant influence on the isotherm shapes within the embankment. The isotherms are complex and alternative upward and downward flowing plumes exist. The winter-time convection can further reduce the temperature of the foundation soil beneath the gravel embankment. In addition, the effects of the gravel dimensions within the embankment have been analyzed and compared in the gravels model. It shows that in winter, large stones, e.g. 200 mm, lead to stronger vortexes than those of small stones, say 60 mm. Consequently, the zone of low-temperature beneath the large-stone embankment extends deeper into the ground.

  10. Macroinvertebrate Community responses to gravel addition in a Southeastern regulated river

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; A. Charles. Dolloff

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread...

  11. Treatment of Gravel Contaminated with Naturally Occurring Radioactive Element

    International Nuclear Information System (INIS)

    Sohsah, M. A.; Kamal, S. M.; Mamoon, A.

    2004-01-01

    Environmental protection primarily means controlling the releases of radioactive and non-radioactive wastes to the environment and involves treatment, storage, cleanup and disposal of these wastes. The present study concerns the cleanup of gravel that has been contaminated with 2 26 R a. Aqueous solutions of different compositions including water and various concentrations of calcium chloride and barium chloride were used to leach the contaminated gravel. The leaching experiments were carried out in glass column. In some leaching experiments, samples of sandy soil were placed below the gravel to test the sorption of the leached 2 26 R a by the soil. The relative efficiencies of the leachant and the extent of sorption of the leached radionuclide were determined both by the liquid scintillation counting and by the thermoluminescent chips. The TLD chips record the dose before and after decontamination of the gravel and before and after contamination of the soil samples when used. The results obtained indicated that acidified barium chloride was relatively the most effective leachant of 2 26 R a contamination. It reduced the dose from the contaminated gravel to almost half. The soil sample used adsorbs the leached radionuclides efficiently, increasing the soil naturally low dose to about six folds

  12. Distribution of polychlorinated biphenyls in the Housatonic River and adjacent aquifer, Massachusetts

    Science.gov (United States)

    Gay, Frederick B.; Frimpter, Michael H.

    1985-01-01

    Polychlorinated biphenyls (PCB's) are sorbed to the fine-grained stream-bottom sediments along the Housatonic River from Pittsfield, Massachusetts, southward to the Massachusetts-Connecticut boundary. The highest PCB concentrations, up to 140,000 micrograms per kilogram, were found in samples of bottom material from a reach of the river between Pittsfield and Woods Pond Dam in Lee, Massachusetts. Sediments in Woods Pond have been estimated to contain about 11,000 pounds of PCB's. Approximately 490 pounds per year of PCB's have also been estimated to move past the Housatonic River gaging station at Great Barrington. The distribution of hydraulic heads, water temperatures, and concentrations of dissolved oxygen, ammonia, nitrate, iron, and manganese in ground water shows that industrial water-supply wells in a sand and gravel aquifer adjacent to a stretch of the river called Woods Pond have been inducing ground-water recharge through the PCB-contaminated bottom sediments of the pond since late 1956. These data indicate that, at one location along the shore of the pond, the upper 40 feet of the aquifer contains water derived from induced infiltration. However, this induced recharge has not moved PCB's from the bottom sediments into a vertical section of the aquifer located 5 feet downgradient from the edge of Woods Pond. Samples taken at selected intervals in this section showed that no PCB's sorbed to the aquifer material or dissolved in the ground water within the detection limits of the chemical analyses.

  13. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    Science.gov (United States)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be

  14. Leaching of RA-226 contaminated gravel using different aqueous treatments

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A; Abulfaraj, W H; Sohsah, M A [King Abdulaziz University, Jeddah, Saudi Arbabia (Saudi Arabia)

    1997-12-31

    Investigation of the efficiencies of different aqueous leaching treatments was carried out on gravel artificially contaminated with Ra-226. The extent of leaching efficiency was determined in terms of Ra-226 and its daughter Rn-222. Liquid scintillation counting using high efficiency mineral oil based liquid scintillator was the technique adopted for measuring Ra-226 and Rn-222 leached off the contaminated gravel. Water, dilute solutions of barium chloride and HCl were used as leachants. Different masses of gravel were leached with 200 mL of leachant for various contact time periods. The leached Rn-222 activity measured was plotted vs the decay factor e; from which Rn-222 and Ra-226 originally present in the sample were determined. Several leaching parameters were tested; namely type of leachant, leachant volume/gravel mass ratio, leachant contact time, effect of varying Ba Cl{sub 2} concentration, and successive leaching. Optimization of the leaching parameters for desorption of Ra-226 off the contaminated gravel under laboratory conditions may help determine the ideal conditions for remediating soil contaminated with radium or chemically similar radionuclides. 7 figs.

  15. Gravel road stabilisation of Ehnsjoevaegen, Hallstavik[Using fly ash]; Skogsbilvaegsrenovering av Ehnsjoevaegen, Hallstavik

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef; Svedberg, Bo [Ecoloop, Stockholm (Sweden)

    2006-03-15

    Fly ash in geotechnical applications has stabilising, isolating, low permeability and hardening effect. Fly ash can be used in road constructions with low bearing capacity, as well as on top cover material on landfills. The aim of the project was to build a road section with fly ash stabilised gravel, based on laboratory studies, and follow up technical and environmental aspect during the first year after stabilisation. The overall aim of this project was to evaluate fly ash from Holmen Paper, Hallstavik, from technical and environmental point of view in a gravel road construction. A gravel road, Ehnsjoevaegen, was stabilised with fly ash during autumn 2004. This road was a low priority road. The fly ash stabilised road section was 1300 m long. Gravel from the road Ehnsjoevaegen was stabilised and investigated in a laboratory study. Leachability of metals and geotechnical aspects were investigated. The laboratory study showed that fly ash stabilised gravel has high shear strength, however its thawing resistance is not fully acceptable. Additives of cement or merit are needed in order to increase its thawing resistance. The actual road section is not going to be used during thawing period and no additives were used. The test road is divided into different sections including a reference section. The road stabilisation work was conducted with gravel transported to Ehnsjoevaegen from off site and not with gravel from the site. Fly ash was tipped off on a levelled road, followed by tipping of gravel. Mixing fly ash and gravel was done on site by a road scraper. After the mixing the road was gravelled with 0,1 m graded gravel. In this project the fly ash had low water content. In order to get optimal compaction water was added from a tanker supplying water before compacted with a compactor. Results from the pilot test shows that fly ash stabilised gravel can be tipped, mixed and compacted effectively. Tipping can be optimised if fly ash and gravel is mixed in a mixer

  16. 33 CFR 80.525 - Cape Lookout, NC to Cape Fear, NC.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cape Lookout, NC to Cape Fear, NC... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Fifth District § 80.525 Cape Lookout, NC to Cape Fear... southeast side of the Inlet. (g) Except as provided elsewhere in this section from Cape Lookout to Cape Fear...

  17. Hydrogeology and water quality of the stratified-drift aquifer in the Pony Hollow Creek Valley, Tompkins County, New York

    Science.gov (United States)

    Bugliosi, Edward F.; Miller, Todd S.; Reynolds, Richard J.

    2014-01-01

    The lithology, areal extent, and the water-table configuration in stratified-drift aquifers in the northern part of the Pony Hollow Creek valley in the Town of Newfield, New York, were mapped as part of an ongoing aquifer mapping program in Tompkins County. Surficial geologic and soil maps, well and test-boring records, light detection and ranging (lidar) data, water-level measurements, and passive-seismic surveys were used to map the aquifer geometry, construct geologic sections, and determine the depth to bedrock at selected locations throughout the valley. Additionally, water-quality samples were collected from selected streams and wells to characterize the quality of surface and groundwater in the study area. Sedimentary bedrock underlies the study area and is overlain by unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent post glacial alluvium. The major type of unconsolidated, water-yielding material in the study area is stratified drift, which consists of glaciofluvial sand and gravel, and is present in sufficient amounts in most places to form an extensive unconfined aquifer throughout the study area, which is the source of water for most residents, farms, and businesses in the valleys. A map of the water table in the unconfined aquifer was constructed by using (1) measurements made between the mid-1960s through 2010, (2) control on the altitudes of perennial streams at 10-foot contour intervals from lidar data collected by Tompkins County, and (3) water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. Water-table contours indicate that the direction of groundwater flow within the stratified-drift aquifer is predominantly from the valley walls toward the streams and ponds in the central part of the valley where groundwater then flows southwestward (down valley) toward the confluence with the Cayuta Creek valley. Locally, the direction of groundwater flow is radially

  18. Simulated effects of groundwater withdrawals from the Kirkwood-Cohansey aquifer system and Piney Point aquifer, Maurice and Cohansey River Basins, Cumberland County and vicinity, New Jersey

    Science.gov (United States)

    Gordon, Alison D.; Buxton, Debra E.

    2018-05-10

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, conducted a study to simulate the effects of withdrawals from the Kirkwood-Cohansey aquifer system on streamflow and groundwater flow and from the Piney Point aquifer on water levels in the Cohansey and Maurice River Basins in Cumberland County and surrounding areas. The aquifer system consists of gravel, sand, silt, and clay sediments of the Cohansey Sand and Kirkwood Formation that dip and thicken to the southeast. The aquifer system is generally an unconfined aquifer, but semi-confined and confined conditions exist within the Cumberland County study area. The Kirkwood-Cohansey aquifer system is present throughout Cumberland County and is the principal source of groundwater for public, domestic, agricultural-irrigation, industrial, and commercial water uses. In 2008, reported groundwater withdrawals from the Kirkwood-Cohansey aquifer system in the study area totaled about 21,700 million gallons—about 36 percent for public supply; about 49 percent for agricultural irrigation; and about 15 percent for industrial, commercial, mining by sand and gravel companies, and non-agricultural irrigation uses. A transient numerical groundwater-flow model of the Kirkwood-Cohansey aquifer system was developed and calibrated by incorporating monthly recharge, base-flow estimates, water-level data, surface-water diversions and discharges, and groundwater withdrawals from 1998 to 2008.The groundwater-flow model was used to simulate five withdrawal scenarios to observe the effects of additional groundwater withdrawals on the Kirkwood-Cohansey aquifer system and streams. These scenarios include (1) average 1998 to 2008 monthly groundwater withdrawals (baseline scenario); (2) monthly full-allocation groundwater withdrawals, but agricultural-irrigation withdrawals were decreased for October through March; (3) monthly full-allocation groundwater withdrawals; (4) estimated monthly

  19. Gravel Image Segmentation in Noisy Background Based on Partial Entropy Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Because of wide variation in gray levels and particle dimensions and the presence of many small gravel objects in the background, as well as corrupting the image by noise, it is difficult o segment gravel objects. In this paper, we develop a partial entropy method and succeed to realize gravel objects segmentation. We give entropy principles and fur calculation methods. Moreover, we use minimum entropy error automaticly to select a threshold to segment image. We introduce the filter method using mathematical morphology. The segment experiments are performed by using different window dimensions for a group of gravel image and demonstrates that this method has high segmentation rate and low noise sensitivity.

  20. Stable isotope and noble gas constraints on the source and residence time of spring water from the Table Mountain Group Aquifer, Paarl, South Africa and implications for large scale abstraction

    Science.gov (United States)

    Miller, J. A.; Dunford, A. J.; Swana, K. A.; Palcsu, L.; Butler, M.; Clarke, C. E.

    2017-08-01

    Large scale groundwater abstraction is increasingly being used to support large urban centres especially in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and in combination with Na/Cl ratios implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium and radiocarbon activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ∼40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is

  1. Aerial Transient Electromagnetic Surveys of Alluvial Aquifers in Rural Watersheds of Arizona

    Science.gov (United States)

    Pool, D. R.; Callegary, J. B.; Groom, R. W.

    2006-12-01

    Development in rural areas of Arizona has led the State of Arizona (Arizona Department of Water Resources), in cooperation with the Arizona Water Science Center of the U.S. Geological Survey, to sponsor investigations of the hydrogeologic framework of several alluvial-basin aquifers. An efficient method for mapping the aquifer extent and lithology was needed due to sparse subsurface information. Aerial Transient Electro-Magnetic (ATEM) methods were selected because they can be used to quickly survey large areas and with a great depth of investigation. Both helicopter and fixed-wing ATEM methods are available. A fixed-wing method (GEOTEM) was selected because of the potential for a depth of investigation of 300 m or more and because previous surveys indicated the method is useful in alluvial basins in southeastern Arizona. About 2,900 km of data along flight lines were surveyed across five alluvial basins, including the Middle San Pedro and Willcox Basins in southeastern Arizona, and Detrital, Hualapai, and Sacramento Basins in northwestern Arizona. Data initially were analyzed by the contractor (FUGRO Airborne Surveys) to produce conductivity-depth-transforms, which approximate the general subsurface electrical-property distribution along profiles. Physically based two-dimensional physical models of the profile data were then developed by PetRos- Eikon by using EMIGMA software. Hydrologically important lithologies can have different electrical properties. Several types of crystalline and sedimentary rocks generally are poor aquifers that have low porosity and high electrical resistivity. Good alluvial aquifers of sand and gravel generally have an intermediate electrical resistivity. Poor aquifer materials, such as silt and clay, and areas of poor quality water have low electrical resistivity values. Several types of control data were available to constrain the models including drill logs, electrical logs, water levels , and water quality information from wells; and

  2. Ecological Effects of Re-introduction of Salmonid Spawning Gravel in Lowland Danish Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Esben Astrup; Kronvang, Brian

    2009-01-01

    recently been conducted in many streams and rivers. However, systematic monitoring of these spawning gravel restoration projects is limited. The overall aim of this paper was to evaluate gravel reintroduction as a long-term salmonid rehabilitation method in 32 lowland streams. Displacement of gravel......, including both restored reaches and upstream control reaches. Downstream displacement of gravel was most common at sites where gravel was reintroduced without further improvement, although these sites exhibited the highest density of YOY brown trout (Salmo trutta), evidencing that the remaining gravel...... is still functional. The intensive study of three streams showed that spawning was enhanced by the introduction of spawning gravel at the restored sites compared to control sites and that habitat quality generally were improved. Our results also suggest complex interactions exist between spawning activity...

  3. Experimental study on the artificial recharge of semiconfined aquifers involved in deep excavation engineering

    Science.gov (United States)

    Zheng, G.; Cao, J. R.; Cheng, X. S.; Ha, D.; Wang, F. J.

    2018-02-01

    Artificial recharge measures have been adopted to control the drawdown of confined aquifers and the ground subsidence caused by dewatering during deep excavation in Tianjin, Shanghai and other regions in China. However, research on recharge theory is still limited. Additionally, confined aquifers consisting of silt and silty sand in Tianjin have lower hydraulic conductivities than those consisting of sand or gravel, and the feasibility and effectiveness of recharge methods in these semiconfined aquifers urgently require investigation. A series of single-well and multiwell pumping and recharge tests was conducted at a metro station excavation site in Tianjin. The test results showed that it was feasible to recharge silt and silty sand semiconfined aquifers, and, to a certain extent, the hydrogeological parameters obtained from the pumping tests could be used to predict the water level rise during single-well recharge. However, the predicted results underestimated the water level rise near the recharge well (within 7 m) by approximately 10-25%, likely because the permeability coefficient around the well was reduced during the recharge process. Pressured recharge significantly improved the efficiency of the recharge process. Maintaining the recharge and pumping rates at a nearly equal level effectively controlled the surrounding surface and building settlement. However, the surrounding surface subsidence tended to rapidly develop when recharge stopped. Therefore, the recharge process should continue and gradually stop after the pumping stops. The twin-well combined recharge technique can be used to control the head loss of an aquifer when one of the recharge wells requires pumping to solve the associated clogging problems.

  4. Subsurface fate and transport of cyanide species at a manufactured-gas plant site

    International Nuclear Information System (INIS)

    Ghosh, R.S.; Dzombak, D.A.; Luthy, R.G.; Nakles, D.V.

    1999-01-01

    Cyanide is present at manufactured-gas plant (MGP) sites in oxide-box residuals, which were often managed on-site as fill during active operations. Cyanide can leach from these materials, causing groundwater contamination. Speciation, fate, and transport of cyanide in a sand-gravel aquifer underlying an MGP site in the upper Midwest region of the US were studied through characterization, monitoring, and modeling of a plume of cyanide-contaminated groundwater emanating from the site. Results indicate that cyanide in the groundwater is primarily in the form of iron-cyanide complexes (>98%), that these complexes are stable under the conditions of the aquifer, and that they are transported as nonreactive solutes in the sand-gravel aquifer material. Weak-acid-dissociable cyanide, which represents a minute fraction of total cyanide in the site groundwater, may undergo chemical-biological degradation in the sand-gravel aquifer. It seems that dilution may be the only natural attenuation mechanism for iron-cyanide complexes in sand-gravel aquifers at MGP sites

  5. Chemical and microbiological monitoring of a sole-source aquifer intended for artificial recharge, Nassau County, New York

    Science.gov (United States)

    Katz, Brian G.; Mallard, Gail E.

    1980-01-01

    In late 1980, approximately 4 million gallons per day of highly treated wastewater will be used to recharge the groundwater reservoir in central Nassau County through a system of 10 recharge basins and 5 shallow injection wells. To evaluate the impact of large-scale recharge with reclaimed water on groundwater quality, the U.S. Geological Survey has collected hydrologic and water-quality data from a 1-square-mile area around the recharge site to provide a basis for future comparison. Extensive chemical and microbiological analyses are being made on samples from 48 wells screened in the upper glacial (water-table) aquifer and the upper part of the underlying Magothy (public-supply) aquifer. Preliminary results indicate that water from the upper glacial aquifer contains significant concentrations of nitrate and low-molecular-weight chlorinated hydrocarbons and detectable concentrations of organochlorine insecticides and polychlorinated biphenyls. At present, no fecal contamination is evident in either aquifer in the area studied. In the few samples containing fecal indicator bacteria, the numbers were low. Nonpoint sources provide significant loads of organic and inorganic compounds; major sources include cesspool and septic-tank effluent, cesspool and septic-tank cleaners and other over-the-counter domestic organic solvents, fertilizers, insecticides for termite and other pest control, and stormwater runoff to recharge basins. The water-table aquifer is composed mainly of stratified, well-sorted sand and gravel and, as a result, is highly permeable. In the 1-square-mile area studied, some contaminants seem to have traveled 200 feet downward to the bottom of the water-table aquifer and into the upper part of the public-supply aquifer. (USGS)

  6. Fly ash stabilisation of gravel roads; Flygaska som foerstaerkningslager i grusvaeg

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef

    2006-01-15

    Majority of the existing gravel roads have low bearing capacity during spring and autumn, due to thaw and/or rain. Low bearing capacity leads often to bad road conditions. This situation results in higher costs for the lumber industry and the public. Management of gravel roads all the year around would traditionally require excavation of frost susceptible soils and replacement with natural materials. Fly ash (from bio fuels) has good technical properties as bearing layer in road constructions. Fly ash stabilised gravel roads have better function and longer life span with less maintenance than traditional gravel roads. The aim of this project is to show how fly ash stabilisation of gravel roads can increase bearing capacity and what its environmental impact is. The overall aim is to make it easier for entrepreneurs and consulting companies to use fly ash during gravel road renovation and/or constructing new gravel roads. This report targets fly ash producers and road constructors as well as environmental agencies. Two different pilot tests were investigated in this study, Norberg with fly ash from Stora Enso Fors AB, and Boerje (Uppsala) with fly ash from Vattenfall Uppsala AB. Both road sections with related reference section were investigated during a two year period. Only fly ash was used in the bearing layer at Norberg and fly ash gravel was used at Boerje. Bearing capacity was investigated twice, for both locations, November 2003 one month after the road renovation and during thawing, April 2004. Water samples from lysimeters, ground water and surface water were only collected and analysed from Norberg. Experience from the fly ash stabilised road sections show that curing and traffic load can with time compensate for less compaction. The same is noticed at Boerje, although deflection measurements show that there are small differences. Stabilisation of gravel roads increases the roads bearing capacity. Two years after stabilisation 90 timber loads were

  7. Gravel addition as a habitat restoration technique for tailwaters

    Science.gov (United States)

    Ryan McManamay; D. Orth; Charles Dolloff; Mark Cantrell

    2010-01-01

    We assessed the efficacy of passive gravel addition at forming catostomid spawning habitat under various flow regimes in the Cheoah River, a high-gradient tailwater river in North Carolina. The purpose was to provide a case study that included recommendations for future applications. A total of 76.3 m3 (162 tons) of washed gravel (10-50 mm) was passively dumped down...

  8. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  9. Liquid filtration properties in gravel foundation of railroad tracks

    International Nuclear Information System (INIS)

    Strelkov, A; Teplykh, S; Bukhman, N

    2016-01-01

    Railway bed gravel foundation has a constant permanent impact on urban ecology and ground surface. It is only natural that larger objects, such as railway stations, make broader impact. Surface run-off waters polluted by harmful substances existing in railroad track body (ballast section) flow along railroad tracks and within macadam, go down into subterranean ground flow and then enter neighbouring rivers and water basins. This paper presents analytic calculations and characteristics of surface run-off liquid filtration which flows through gravel multiple layers (railroad track ballast section). The authors analyse liquids with various density and viscosity flowing in multi-layer porous medium. The paper also describes liquid stationary and non-stationary weepage into gravel foundation of railroad tracks. (paper)

  10. An Aquifer Thermal Energy Storage (ATES) System for Continuous and Sustainable Cold Supply in Oman

    Science.gov (United States)

    Winterleitner, G.; Schütz, F.; Huenges, E.

    2016-12-01

    The aim of the GeoSolCool research programme between the German Research Centre for Geoscience (GFZ) and The Research Council of Oman (TRC) is the development of an innovative and sustainable cooling system in combination with an aquifer thermal energy storage system in northern Oman. An integral part of this project is the design of a subsurface aquifer reservoir system for storage of thermal energy through hot water injection. An accurate characterisation of potential storage horizons is thus essential to ensure optimal efficiency of the cooling system. The study area, 40 km west of Muscat is characterised by a thick Cenozoic mixed carbonate-siliciclastic sedimentary succession, containing at least 3 aquifer horizons. We used a multidisciplinary approach for the initial ATES development phase, including geological fieldwork dovetailed with remote sensing analyses, thin-section analyses, geological modelling and reservoir fluid flow forecasting. First results indicate two potential storage horizons: (1) a Miocene-aged clastic-dominated alluvial fan system and (2) an Eocene carbonate sequence. The alluvial fan system is a more than 300 m thick, coarse clastic (mainly gravels and sandstones) succession of coalesced individual fans. Thin-section analyses showed that hydraulic parameters are favourable for the gravel and sandstone intervals but reservoir architecture is complex due to multiple generations of interconnecting fans with highly heterogeneous facies distributions. The Eocene carbonates were deposited in a carbonate ramp setting, strongly influenced by currents and storm events. Individual facies belts extend over kilometres and thus horizontal reservoir connectivity is expected to be good with minor facies variability. Thin-section analyses showed that especially the fossil-rich sections show good storage qualities. Fluid flow forecasting indicate that both potential horizons have good to very good storage characteristics. However, intense diagenetic

  11. Impact of recycled gravel obtained from low or medium concrete grade on concrete properties

    Directory of Open Access Journals (Sweden)

    Yasser Abdelghany Fawzy

    2018-04-01

    Full Text Available This paper investigates the effect of recycled gravel obtained from low (Gl or medium (Gm concrete grade on fresh property of concrete (slump, mechanical properties (compressive-splitting tensile strength and mass transport properties (ISAT-sorptivity of concrete containing dolomite as a natural coarse aggregate. Concrete specimens were prepared with cement, water, sand and dolomite admixed with recycled gravel. The percentage of recycled gravel/dolomite was 0:100, 25:75, 50:50 and 75:25 at w/c = 0.50, 0.55 and 0.60. The effect of silica fume and bonding admixture at w/c = 0.55 on concrete properties were also considered. The results indicated that, increasing the percentage of recycled gravel/dolomite led to decreasing the slump. All mechanical properties of concrete discussed were inversely affected by increasing percentage of recycled gravel/dolomite from low and medium concrete. Adding 10% SF or bonding admixture increased the mechanical properties of concrete. Mass transport properties of concrete (ISAT-sorptivity were enhanced by decreasing the percentage of recycled gravel/dolomite. The optimum percentage of recycled gravel/dolomite = 25%. Keywords: Recycled gravel, Concrete, Silica fume, Compressive strength, Mass transport

  12. Groundwater-level analysis of selected wells in the Hoosic River Valley near Hoosick Falls, New York, for aquifer framework and properties

    Science.gov (United States)

    Williams, John H.; Heisig, Paul M.

    2018-03-05

    The U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, analyzed groundwater levels, drilling record logs, and field water-quality data from selected wells, and the surficial geology in the Hoosic River valley south of the village of Hoosick Falls, New York, to provide information about the framework and properties of a confined aquifer. The aquifer, which consists of ice-contact sand and gravel overlain by lacustrine clay and silt, was evaluated by the New York State Department of Environmental Conservation as part of their investigation of alternate water supplies for the village whose wellfield has been affected by perfluorooctanoic acid. Wells inventoried in the study area were classified as confined, water table, or transitional between the two aquifer conditions. Groundwater levels in three confined-aquifer wells and a transitional-aquifer well responded to pumping of a test production well finished in the confined aquifer. Groundwater levels in a water-table well showed no detectable water-level change in response to test-well pumping. Analysis of drawdown and recovery data from the three confined-aquifer wells and a transitional-aquifer well through the application of the Theis type-curve method provided estimates of aquifer properties. Representation of a constant-head boundary in the analysis where an unnamed pond and fluvial-terrace deposits abut the valley wall resulted in satisfactory matches of the Theis type curves with the observed water-level responses. Aquifer transmissivity estimates ranged from 1,160 to 1,370 feet squared per day. Aquifer storativity estimates ranged from 5.2×10–5 to 1.1×10–3 and were consistent with the inferred degree of confinement and distance from the represented recharge boundary.

  13. The Capes Current: a summer countercurrent flowing past Cape Leeuwin and Cape Naturaliste, Western Australia

    Science.gov (United States)

    Pearce, Alan; Pattiaratchi, Charitha

    1999-03-01

    Although the dominant boundary current off Western Australia is the poleward-flowing Leeuwin Current, satellite imagery shows that there is a cool equatorward coastal countercurrent running close inshore in the extreme southwest during the summer months. This seasonal current has been named the Capes Current as it appears to be strongest between Cape Leeuwin (34°20'S) and Cape Naturaliste (33°30'S), and it is probably linked with the general northward shelf current which has been observed previously along most of the Western Australian coastline further north. Strong northwards wind stresses between November and March slow the Leeuwin Current (which moves offshore) and drive the Capes Current, and there may be localised upwelling as well (Gersbach et al., Continental Shelf Research, 1998). It has important implications for the salmon fishery as it may affect the migration of adult salmon around Cape Leeuwin at this time of year.

  14. Economic Valuation of Sand and Gravel in Davao del Norte, Philippines

    OpenAIRE

    Tamayo, Adrian; Tagalo, Romulo

    2016-01-01

    The study aims to quantify the economic value of the sand and gravel which is deemed as a non-renewable resource. A survey was conducted to extract the consumer surplus of the households, also construct the demand equation for the resource. With the demand equation for sand and gravel at , the consumer surplus was estimated at P8271. Using the economic valuation technique, the economic value of sand and gravel was estimated at P729,568,368. Thus, a very high value imputed on the environmenta...

  15. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  16. Thermal remediation of tar-contaminated soil and oil-contaminated gravel

    International Nuclear Information System (INIS)

    Anthony, E.J.; Wang, J.

    2005-01-01

    High temperature treatments are commonly considered for the decontamination of soil as they have the advantages of reliability, high capacity, and effective destruction of hazardous materials with reduced long-term liability. This paper examined the remediation of soil contaminated by coal tar as well as gravel contaminated by oil. Pilot plant studies were conducted using 2 representative incineration technologies: rotary kiln and fluidized bed. The coal tar contaminated soil had accumulated over a few decades at a calcination plant in western Canada. The soil was sticky and could not be handled by conventional feeding and combustion systems. Crushed lignite was mixed with the soil as an auxiliary fuel and to reduce stickiness. A pilot plant furnace was used to evaluate the potential of decontamination in a rotary calciner. An analysis of both a modelling study and the test results showed that complete decontamination could be achieved in the targeted calciner. The results suggested that energy recovery was also possible, which could in turn make the remediation process more cost-effective. Decontamination of oil-contaminated gravel was conducted with a pilot plant fluidized bed combustor to study the feasibility of using incineration technology in the remediation of gravel and debris contaminated by oil spills. Results indicated that the gravel was decontaminated with acceptable emission performance. It was concluded that the study will be valuable to the application of commercial incineration processes for the remediation of polluted soils. It was observed that the weathering of the oiled gravel lowered the rate of decontamination. A small amount of salt water resulted in lowered decontamination rates, which may be an important factor for situations involving the remediation of shoreline gravel contaminated by oil. 24 refs., 6 tabs., 7 figs

  17. Macroinvertebrate community responses to gravel augmentation in a high-gradient, Southeastern regulated river

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University; Dolloff, Dr. Charles A [United States Department of Agriculture (USDA), United States Forest Service (USFS) and Virginia Pol

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread practice, it is essential to evaluate the biotic response to restoration projects in order to improve the efficacy of future applications. The purpose of our study was to evaluate the response of the macroinvertebrate community to gravel addition in a high-gradient, regulated river in western North Carolina. We collected benthic macroinvertebrate samples from gravel-enhanced areas and unenhanced areas for 1 season before gravel addition, and for 4 seasons afterwards. Repeated measures multivariate analysis of variance indicated that the responses of macroinvertebrates to gravel addition were generally specific to individual taxa or particular functional feeding groups and did not lead to consistent patterns in overall family richness, diversity, density, or evenness. Non-metric multi-dimensional scaling showed that shifts in macroinvertebrate community composition were temporary and dependent upon site conditions and season. Correlations between macroinvertebrate response variables and substrate microhabitat variables existed with or without the inclusion of data from enhanced areas, which suggests that substrate-biotic relationships were present before gravel addition. A review of the current literature suggests that the responses of benthic macroinvertebrates to substrate restoration are inconsistent and dependent upon site conditions and the degree habitat improvement of pre-restoration site conditions.

  18. 46 CFR 7.55 - Cape Henry, VA to Cape Fear, NC.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cape Henry, VA to Cape Fear, NC. 7.55 Section 7.55 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.55 Cape Henry, VA to Cape Fear, NC. (a) A line drawn from Rudee Inlet Jetty Light “2” to...

  19. 46 CFR 7.45 - Cape Henlopen, DE to Cape Charles, VA.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Cape Henlopen, DE to Cape Charles, VA. 7.45 Section 7.45... Atlantic Coast § 7.45 Cape Henlopen, DE to Cape Charles, VA. (a) A line drawn from the easternmost extremity of Indian River Inlet North Jetty to latitude 38°36.5′ N. longitude 75°02.8′ W. (Indian River...

  20. Fisher Sand & Gravel New Mexico, Inc. General Air Quality Permit: Related Documents

    Science.gov (United States)

    Documents related to the Fisher Sand & Gravel – New Mexico, Inc., Grey Mesa Gravel Pit General Air Quality Permit for New or Modified Minor Source Stone Quarrying, Crushing, and Screening Facilities in Indian Country.

  1. Effects of Gravel Bars on Nutrient Spiraling in Bedrock-Alluvium Streams

    Science.gov (United States)

    Iobst, B. R.; Carroll, E. P.; Furbish, D. J.

    2007-05-01

    The importance of the connection between nutrient transport and local stream geomorphology is becoming increasingly important. Studies have shown that the interconnectivity of nutrient cycles in the downstream direction is in part controlled by the distribution and size of gravel bars in low order streams, as hyporheic flow occurs dominantly through alternate and mid-channel gravel bars. For this investigation multiple gravel bars in a 3rd order bedrock-alluvium stream were studied to determine general relationships between nutrient spiraling and hyporheic flow. The first goal was to understand (1) the extent to which water moves through hyporheic zones and (2) the basic chemistry of the hyporheic water. The second part of the study was to understand how nutrients, notably nitrogen, are affected in their cycling by the relatively long residence times encountered in gravel bars during hyporheic flow. Wells were installed along a 600 m reach of Panther Creek, KY in selected bars, as well as in a secondary location involving a grid installation pattern in one large bar. Results have shown that hyporheic flow through gravel bars is an important factor in influencing stream chemistry. Background water chemistry surveys have shown that certain parameters, specifically ammonium and nitrogen concentrations vary downstream, and that the dominant control over these changes is gravel bar location. Rhodamine WT was used in field tracer tests to track the travel times of water through bars as well as partitioning of water between the open channel and hyporheic flows. Further tests will be conducted utilizing a stable isotope study to determine how nitrogen is affected by hyporheic flow, and what implications this has for nutrient transport. We expect results to show that the spacing and size of gravel bars is a dominant control in key nutrient spiraling parameters, namely uptake lengths and overall nitrogen cycling rates. This has implications for how natural systems will

  2. Effective range of chlorine transport in an aquifer during disinfection of wells: From laboratory experiments to field application

    Science.gov (United States)

    Paufler, S.; Grischek, T.; Adomat, Y.; Herlitzius, J.; Hiller, K.; Metelica, Y.

    2018-04-01

    Microbiological contamination usually leads to erratic operation of drinking water wells and disinfection is required after disasters and sometimes to restore proper well performance for aquifer storage and recovery (ASR) and subsurface iron removal (SIR) wells. This study focused on estimating the fate of chlorine around an infiltration well and improving the knowledge about processes that control the physical extent of the disinfected/affected radius. Closed bottle batch tests revealed low chlorine consumption rates for filter gravel and sand (0.005 mg/g/d) and higher rates for clay (0.030 mg/g/d) as well as natural aquifer material (0.054 mg/g/d). Smaller grain sizes disinfection ability at grain sizes >1 mm, but results in more effective disinfection for very fine material disinfection zone at the example well seems to extend to maximum 3.5 m into the aquifer. Excessive chlorine dosage of >10 mg/l would not further extend the disinfected radius. A preferable way to increase the range of chlorine application is to increase the total infiltrated volume and time. Three approaches are proposed for adapting lab results to actual infiltration wells, that are in principle applicable to any other site.

  3. Future Water-Supply Scenarios, Cape May County, New Jersey, 2003-2050

    Science.gov (United States)

    Lacombe, Pierre J.; Carleton, Glen B.; Pope, Daryll A.; Rice, Donald E.

    2009-01-01

    Stewards of the water supply in New Jersey are interested in developing a plan to supply potable and non-potable water to residents and businesses of Cape May County until at least 2050. The ideal plan would meet projected demands and minimize adverse effects on currently used sources of potable, non-potable, and ecological water supplies. This report documents past and projected potable, non-potable, and ecological water-supply demands. Past and ongoing adverse effects to production and domestic wells caused by withdrawals include saltwater intrusion and water-level declines in the freshwater aquifers. Adverse effects on the ecological water supplies caused by groundwater withdrawals include premature drying of seasonal wetlands, delayed recovery of water levels in the water-table aquifer, and reduced streamflow. To predict the effects of future actions on the water supplies, three baseline and six future scenarios were created and simulated. Baseline Scenarios 1, 2, and 3 represent withdrawals using existing wells projected until 2050. Baseline Scenario 1 represents average 1998-2003 withdrawals, and Scenario 2 represents New Jersey Department of Environmental Protection (NJDEP) full allocation withdrawals. These withdrawals do not meet projected future water demands. Baseline Scenario 3 represents the estimated full build-out water demands. Results of simulations of the three baseline scenarios indicate that saltwater would intrude into the Cohansey aquifer as much as 7,100 feet (ft) to adversely affect production wells used by Lower Township and the Wildwoods, as well as some other near-shore domestic wells; water-level altitudes in the Atlantic City 800-foot sand would decline to -156 ft; base flow in streams would be depleted by 0 to 26 percent; and water levels in the water-table aquifer would decline as much as 0.7ft. [Specific water-level altitudes, land-surface altitudes, and present sea level when used in this report are referenced to the North American

  4. Ground-water availability in the central part of Lake Ontario basin, New York

    Science.gov (United States)

    Miller, Todd S.; Krebs, Martha M.

    1988-01-01

    A set of three maps showing surficial geology, distribution of glacial aquifers, and potential well yield in the 708 sq mi central part of the Lake Ontario basin are presented at a scale of 1:125,000. The basin is parallel to Lake Ontario and extends from Rochester in the west to Oswego in the east. Aquifers consisting primarily of sand and gravel formed where meltwaters from glaciers deposited kame and outwash sand and gravel and where wave action along shores of glacial lakes eroded, reworked , and deposited beaches. Thick deposits of well-sorted sand and gravel yield relatively large quantities of water - typically more than 100 gal/min. Aquifers consisting of thin beds of sand and (or) gravel or thick gravel that contain a large proportion of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug and driven wells that tap fine to medium sand deposits typically yield 1 to 10 gal/min. (USGS)

  5. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies [Hydrogéologie, qualité de l’eau et évaluation microbienne d’un aquifère côtier alluvial dans l’Ouest de l’Arabie Saoudite: utilisation potentielle des aquifères côtiers des oueds pour l’alimentation en eau après désalinisation] [Hidrogeologia, qualidade da água e avaliação microbiológica de um aquífero costeiro no oeste da Arábia Saudita: uso potencial de aquíferos de wadi costeiros para dessalinização de águas destinadas a abastecimento] [Hidrogeología, calidad de agua y evaluación microbiana de un acuífero costero aluvial en Arabia Saudita occidental: uso potencial de acuíferos costeros uadis para la desalinización de los abastecimientos de agua

    KAUST Repository

    Missimer, Thomas M.

    2014-07-20

    Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.

  6. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    Science.gov (United States)

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  7. Hydrogeology of Two Areas of the Tug Hill Glacial-Drift Aquifer, Oswego County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Hetcher-Aguila, Kari K.; Eckhardt, David A.

    2007-01-01

    Two water-production systems, one for the Village of Pulaski and the other for the Villages of Sandy Creek and Lacona in Oswego County, New York, withdraw water from the Tug Hill glacial-drift aquifer, a regional sand and gravel aquifer along the western flank of the Tug Hill Plateau, and provide the sole source of water for these villages. As a result of concerns about contamination of the aquifer, two studies were conducted during 2001 to 2004, one for each water-production system, to refine the understanding of ground-water flow surrounding these water-production systems. Also, these studies were conducted to determine the cause of the discrepancy between ground-water ages estimated from previously constructed numerical ground-water-flow models for the Pulaski and Sandy Creek/Lacona well fields and the apparent ground-water ages determined using concentrations of tritium and chlorofluorocarbons. The Village of Pulaski withdrew 650,000 gallons per day in 2000 from four shallow, large-diameter, dug wells finished in glaciolacustrine deposits consisting of sand with some gravelly lenses 3 miles east of the village. Four 2-inch diameter test wells were installed upgradient from each production well, hydraulic heads were measured, and water samples collected and analyzed for physical properties, inorganic constituents, nutrients, bacteria, tritium, dissolved gases, and chlorofluorocarbons. Recharge to the Tug Hill glacial-drift aquifer is from precipitation directly over the aquifer and from upland sources in the eastern part of the recharge area, including (1) unchannelized runoff from till and bedrock hills east of the aquifer, (2) seepage to the aquifer from streams that drain the Tug Hill Plateau, (3) ground-water inflow from the till and bedrock on the adjoining Tug Hill Plateau. Water-quality data collected from four piezometers near the production wells in November 2003 indicated that the water is a calcium-bicarbonate type with iron concentrations that

  8. How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.

    Science.gov (United States)

    Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.

    2017-12-01

    Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings

  9. Hydrogeology and water quality of the Nanticoke Creek stratified-drift aquifer, near Endicott, New York

    Science.gov (United States)

    Kreitinger, Elizabeth A.; Kappel, William M.

    2014-01-01

    The Village of Endicott, New York, is seeking an alternate source of public drinking water with the potential to supplement their current supply, which requires treatment due to legacy contamination. The southerly-draining Nanticoke Creek valley, located north of the village, was identified as a potential water source and the local stratified-drift (valley fill) aquifer was investigated to determine its hydrogeologic and water-quality characteristics. Nanticoke Creek and its aquifer extend from the hamlet of Glen Aubrey, N.Y., to the village of Endicott, a distance of about 15 miles, where it joins the Susquehanna River and its aquifer. The glacial sediments that comprise the stratified-drift aquifer vary in thickness and are generally underlain by glacial till over Devonian-aged shale and siltstone. Groundwater is more plentiful in the northern part of the aquifer where sand and gravel deposits are generally more permeable than in the southern part of the aquifer where less-permeable unconsolidated deposits are found. Generally there is enough groundwater to supply most homeowner wells and in some cases, supply small public-water systems such as schools, mobile-home parks, and small commercial/industrial facilities. The aquifer is recharged by precipitation, runoff, and tributary streams. Most tributary streams flowing across alluvial deposits lose water to the aquifer as they flow off of their bedrock-lined channels and into the more permeable alluvial deposits at the edges of the valley. The quality of both surface water and groundwater is generally good. Some water wells do have water-quality issues related to natural constituents (manganese and iron) and several homeowners noted either the smell and (or) taste of hydrogen sulfide in their drinking water. Dissolved methane concentrations from five drinking-water wells were well below the potentially explosive value of 28 milligrams per liter. Samples from surface and groundwater met nearly all State and Federal

  10. Effects of gravel mulch on emergence of galleta grass seedlings

    International Nuclear Information System (INIS)

    Winkel, V.K.; Medrano, J.C.; Stanley, C.; Walo, M.D.

    1993-03-01

    The Department of Energy Nevada Operations Office, Technology Development and Program Management Division, has identified the need to clean up several sites on the Nevada Test Site and Tonopah Test Range contaminated with surface plutonium. An important objective of the project identified as the Plutonium In Soils Integrated Demonstration is to develop technologies to stabilize and restore the disturbed sites after decontamination. Revegetation of these contaminated sites will be difficult due to their location in the arid Mojave and Great Basin Deserts. The major factors which will affect successful plant establishment and growth at these sites are limited and sporadic precipitation, limited soil water, extreme air and soil temperatures, limited topsoil, and herbivory . Research has shown that providing microsites for seed via mulching can aid in plant emergence and establishment. Since many of the soils at the sites slated for plutonium decontamination have a large percentage of gravel in the upper 10 cm of soil, the use of gravel as mulch could provide microsites for seed and stabilize soils during subsequent revegetation of the sites. In July 1992, EG ampersand G/EM Environmental Sciences Department initiated a greenhouse study to examine the possible benefits of gravel mulch. The specific objectives of this greenhouse study were to: (1) determine the effects seedling emergence and soil water, and (2) determine effects of irrigation rates on seedling emergence for gravel mulches and other conventional seedbed preparation techniques. A secondary objective was to determine the depth of gravel mulch that was optimal for seedling emergence. Results from this greenhouse study will assist in formulating specific reclamation plans for sites chosen for cleanup

  11. Design and maintenance of subsurface gravel wetlands.

    Science.gov (United States)

    2015-02-01

    This report summarizes the University of New Hampshire Stormwater Center (UNHSC) evaluation of : a review of Subsurface Gravel Wetlands design and specifications used by the New Hampshire : Department of Transportation (NHDOT or Department). : Subsur...

  12. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  13. Noise Exposure and Hearing Loss Among Sand and Gravel Miners

    OpenAIRE

    Landen, Deborah; Wilkins, Steve; Stephenson, Mark; McWilliams, Linda

    2004-01-01

    The objectives of this study were to describe workplace noise exposures, risk factors for hearing loss, and hearing levels among sand and gravel miners, and to determine whether full shift noise exposures resulted in changes in hearing thresholds from baseline values. Sand and gravel miners (n = 317) were interviewed regarding medical history, leisure-time and occupational noise exposure, other occupational exposures, and use of hearing protection. Audiometric tests were performed both before...

  14. Geohydrologic units and water-level conditions in the Terrace alluvial aquifer and Paluxy Aquifer, May 1993 and February 1994, near Air Force Plant 4, Fort Worth area, Texas

    Science.gov (United States)

    Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.

    1996-01-01

    The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the

  15. Hydrogeological Investigations of the Quaternary Aquifeer in the Northern Part of El-Sharkia Governorate, Egypt

    International Nuclear Information System (INIS)

    El-Sayed, S.A.; Ezz El Din, M.R.; Deyab, M.E.

    2011-01-01

    The hydraulic characteristics of surficial soils and materials of the Quaternary aquifer in the northern part of El-Sharkia Governorate were investigated. The surficial soil zone represents an aquitard for the aquifer and mainly composed of fine textured materials having vertical hydraulic conductivity ranged from 1.4 x10 -6 cm/sec to 2.15x10 -2 cm/sec. The semi-confined Quaternary aquifer is formed of sand and gravel with occasional clay lenses. The groundwater levels ranged from 9 m (MSL) to 5 m (MSL). The major trend of groundwater flow was from south to north and northwest directions. Another minor flow trend was observed to be from southwest to northeast direction. The aquifer is essentially recharged from Ismaillia Canal. The hydraulic gradient through the flow path was 1.9 x10 -4 , averagely. The hydraulic conductivity values differ vertically and laterally indicating the heterogeneity and anisotropy of the aquifer materials. They ranged from 40.1 to 222 m/day with an average value of about 95.8 m/day. The chemical compositions of groundwater and surface water bodies (canals and drains) were investigated. The chemistry of all water bodies was characterized by a basic nature (ph =7.2-7.9) and showed different salinities values and various hydrochemical facies. The average salinities values were 318.1 mg/l for canal water, 1013.4 mg/l for groundwater and 1260 mg/l for drain water. Canal water was fresh while groundwater and drain were fresh to brackish. The reasons causing the changes in salinity and hydrochemical facies were investigated using the relationships among water dissolved constituents and trends of ionic ratios. Subsurface flow, infiltration, evaporation, ion exchange, leaching, and dissolution were the hydrochemical processes leading to the groundwater modification. The suitability of groundwater and surface water for different uses are discussed and evaluated according to the international standards.

  16. 33 CFR 80.505 - Cape Henlopen, DE to Cape Charles, VA.

    Science.gov (United States)

    2010-07-01

    ... to Cape Charles, VA. (a) A line drawn from the seaward extremity of Indian River Inlet North Jetty to Indian River Inlet South Jetty Light. (b) A line drawn from Ocean City Inlet Light 6, 225° true across... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cape Henlopen, DE to Cape Charles...

  17. Field study of macrodispersion in a heterogeneous aquifer. I

    International Nuclear Information System (INIS)

    Boggs, J.M.; Young, S.C.; Waldrop, W.R.; Gelhar, L.W.; Adams, E.E.; Rehfeldt, K.R.

    1990-01-01

    A large-scale natural gradient tracer experiment has been conducted at a field site located at Columbus Air Force Base in northeastern Mississippi. The alluvial aquifer at the test site is composed of lenticular deposits of sand, gravel, silt and clay, and is quite heterogeneous with respect to its hydraulic properties. Ten cubic meters of a solution containing bromide and three organic tracers (pentafluorobenzoic acid, o-trifluoromethylbenzoic acid, and 2,6-difluorobenzoic acid) were injected into the aquifer at a uniform rate over a period of two days. The tracer plume was subsequently monitored in three dimensions over a 20-month period using a network of 258 multilevel sampling wells. The tracer concentration distribution of the plume at the conclusion of the experiment was highly asymmetric in the longitudinal direction. The peak tracer concentration was located only 7 m from the injection point, while the advancing side of the plume extended downgradient a distance of more than 260 m. The extreme skewness of the plume was caused by large scale spatial variations in the mean groundwater velocity along the plume travel path produced by the approximate two order-of-magnitude increase in the mean hydraulic conductivity between the near-field and far-field regions of the experimental site. The tracer mass balance during the experiment showed a declining trend between sampling events with approximately 50 percent of the injected tracer mass unaccounted for at the end of the experiment. Laboratory column experiments indicated that approximately 20 percent of the tracer mass was adsorbed to the aquifer matrix. The remaining 30 percent of the missing tracer mass was attributed to incomplete sampling coverage of the plume, particularly on the advancing side, and to a sampling bias produced by the multilevel samplers. (Author) (17 refs., 3 tabs., 11 figs.)

  18. Ecological significance of riverine gravel bars in regulated river reaches below dams

    Science.gov (United States)

    Ock, G.; Takemon, Y.; Sumi, T.; Kondolf, G. M.

    2012-12-01

    A gravel bar has been recognized as ecologically significant in that they provide simplified habitat with topographical, hydrological and thermo-chemical diversity, while enhancing material exchanges as interfaces laterally between aquatic and terrestrial habitats, and vertically between surface and subsurface waters. During past several decades, regulated rivers below dams have been loss of a number of the geomorphological features due to sediment starvation by upstream dams, accompanied by a subsequent degradation of their ecological functions. Despite a growing concern for gravel bar management recognizing its importance in recovering riverine ecosystem services, the ecological roles of gravel bars have not been assessed enough from the empirical perspectives of habitat diversity and organic matter interactions. In this study, we investigate the 'natural filtering effects' for reducing lentic plankton and contaminants associated with self-purification, and 'physicochemical habitat complexity' of gravel bars, focusing on reach-scaled gravel bars in rivers located in three different countries; First is the Uji River in central Japan, where there has been a loss of gravel bars in the downstream reaches since an upstream dam was constructed in 1965; second is the Tagliamento River in northeast Italy, which shows morphologically intact braided bar channels by natural flooding events and sediment supply; third is the Trinity River in the United States (located in northern California), the site of ongoing restoration efforts for creating new gravel bars through gravel augmentation and channel rehabilitation activities. We traced the downstream changes in particulate organic matter (POM) trophic sources (composed of allochthonous terrestrial inputs, autochthonous instream production and lentic plankton from dam outflows) in order to evaluate the roles of the geomorphological features in tailwater ecosystem food-resources shifting. We calculated suspended POM

  19. Determination of hydrogeological conditions in large unconfined aquifer: A case study in central Drava plain (NE Slovenia)

    Science.gov (United States)

    Keršmanc, Teja; Brenčič, Mihael

    2016-04-01

    In several countries, many unregulated landfills exits which releasing harmful contaminations to the underlying aquifer. The Kidričevo industrial complex is located in southeastern part of Drava plain in NW Slovenia. In the past during the production of alumina and aluminum approximately 11.2 million tons of wastes were deposit directly on the ground on two landfills covering an area of 61 hectares. Hydrogeological studies were intended to better characterized conditions bellow the landfill. Geological and hydrogeological conditions of Quaternary unconfined aquifer were analyzed with lithological characterization of well logs and cutting debris and XRF diffraction of silty sediments on 9 boreholes. Hydrogeological conditions: hydraulic permeability aquifer was determined with hydraulic tests and laboratory grain size analyses where empirical USBR and Hazen methods were applied. Dynamics of groundwater was determined by groundwater contour maps and groundwater level fluctuations. The impact of landfill was among chemical analyses of groundwater characterised by electrical conductivity measurements and XRF spectrometry of sand sediments. The heterogeneous Quaternary aquifer composed mainly of gravel and sand, is between 38 m and 47.5 m thick. Average hydraulic permeability of aquifer is within the decade 10-3 m/s. Average hydraulic permeability estimated on grain size curves is 6.29*10-3 m/s, and for the pumping tests is 4.0*10-3 m/s. General direction of groundwater flow is from west to east. During high water status the groundwater flow slightly changes flow direction to the southwest and when pumping station in Kidričevo (NW of landfill) is active groundwater flows to northeast. Landfills have significant impact on groundwater quality.

  20. McGET: A rapid image-based method to determine the morphological characteristics of gravels on the Gobi desert surface

    Science.gov (United States)

    Mu, Yue; Wang, Feng; Zheng, Bangyou; Guo, Wei; Feng, Yiming

    2018-03-01

    The relationship between morphological characteristics (e.g. gravel size, coverage, angularity and orientation) and local geomorphic features (e.g. slope gradient and aspect) of desert has been used to explore the evolution process of Gobi desert. Conventional quantification methods are time-consuming, inefficient and even prove impossible to determine the characteristics of large numbers of gravels. We propose a rapid image-based method to obtain the morphological characteristics of gravels on the Gobi desert surface, which is called the "morphological characteristics gained effectively technique" (McGET). The image of the Gobi desert surface was classified into gravel clusters and background by a machine-learning "classification and regression tree" (CART) algorithm. Then gravel clusters were segmented into individual gravel clasts by separating objects in images using a "watershed segmentation" algorithm. Thirdly, gravel coverage, diameter, aspect ratio and orientation were calculated based on the basic principles of 2D computer graphics. We validated this method with two independent datasets in which the gravel morphological characteristics were obtained from 2728 gravels measured in the field and 7422 gravels measured by manual digitization. Finally, we applied McGET to derive the spatial variation of gravel morphology on the Gobi desert along an alluvial-proluvial fan located in Hami, Xinjiang, China. The validated results show that the mean gravel diameter measured in the field agreed well with that calculated by McGET for large gravels (R2 = 0.89, P < 0.001). Compared to manual digitization, the McGET accuracies for gravel coverage, gravel diameter and aspect ratio were 97%, 83% and 96%, respectively. The orientation distributions calculated were consistent across two different methods. More importantly, McGET significantly shortens the time cost in obtaining gravel morphological characteristics in the field and laboratory. The spatial variation results

  1. Coupling fine particle and bedload transport in gravel-bedded streams

    Science.gov (United States)

    Park, Jungsu; Hunt, James R.

    2017-09-01

    Fine particles in the silt- and clay-size range are important determinants of surface water quality. Since fine particle loading rates are not unique functions of stream discharge this limits the utility of the available models for water quality assessment. Data from 38 minimally developed watersheds within the United States Geological Survey stream gauging network in California, USA reveal three lines of evidence that fine particle release is coupled with bedload transport. First, there is a transition in fine particle loading rate as a function of discharge for gravel-bedded sediments that does not appear when the sediment bed is composed of sand, cobbles, boulders, or bedrock. Second, the discharge at the transition in the loading rate is correlated with the initiation of gravel mobilization. Third, high frequency particle concentration and discharge data are dominated by clockwise hysteresis where rising limb discharges generally have higher concentrations than falling limb discharges. These three observations across multiple watersheds lead to a conceptual model that fine particles accumulate within the sediment bed at discharges less than the transition and then the gravel bed fluidizes with fine particle release at discharges above the transition discharge. While these observations were individually recognized in the literature, this analysis provides a consistent conceptual model based on the coupling of fine particle dynamics with filtration at low discharges and gravel bed fluidization at higher discharges.

  2. 33 CFR 165.530 - Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC. 165.530 Section 165.530 Navigation and Navigable Waters COAST GUARD... § 165.530 Safety Zone: Cape Fear and Northeast Cape Fear Rivers, NC. (a) Location. The following area is...

  3. The effect of coarse gravel on cohesive sediment entrapment in an annular flume

    Science.gov (United States)

    Glasbergen, K.; Stone, M.; Krishnappan, B.; Dixon, J.; Silins, U.

    2015-03-01

    While cohesive sediment generally represents a small fraction (armour layer of the gravel bed (>16 Pa), cohesive materials trapped within the gravel bed will be entrained and transported into the Glenmore Reservoir, where sediment-associated nutrients may pose treatment challenges to the drinking water supply.

  4. Measurement of earthquake-induced shear strain in sandy gravel

    International Nuclear Information System (INIS)

    Ohkawa, I.; Futaki, M.; Yamanouchi, H.

    1989-01-01

    The nuclear power reactor buildings have been constructed on the hard rock ground formed in or before the Tertiary in Japan. This is mainly because the nuclear reactor building is much heavier than the common buildings and requires a large bearing capacity of the underlying soil deposit, and additionally the excessive deformation in soil deposit might cause damage in reactor building and subsequently cause the malfunction of the internal important facilities. Another reason is that the Quaternary soil deposit is not fully known with respect to its dynamic property. The gravel, and the sandy gravel, the representative soils of the Quaternary, have been believed to be suitable soil deposits to support the foundation of a common building, although the soils have rarely been investigated so closely on their physical properties quantitatively. In this paper, the dynamic deformability, i.e., the shear stress-strain relationship of the Quaternary diluvial soil deposit is examined through the earthquake ground motion measurement using accelerometers, pore-pressure meters, the specific devices developed in this research work. The objective soil deposit in this research is the sandy gravel of the diluvial and the alluvial

  5. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  6. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    Science.gov (United States)

    Gonthier, Gerard

    2013-01-01

    The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer

  7. Efficiency of Cleanup of Ra-226 Contaminated Gravel Assayed by LSC and TL Dosimetry

    International Nuclear Information System (INIS)

    Mamoon, A.; Abulfaraj, W.H.; Kamal, S.M.; Sohsah, M.A.

    1999-01-01

    The present study concerns itself with decontamination of gravel that had been contaminated with Ra-226 from natural origins. Aqueous solutions of different compositions including water, and various concentrations of CaCl 2 and BaCl 2 were used to leach the contaminated gravel. The leaching experiments were carried out in glass columns. In some leaching experiments a sample of a common brand of sandy soil (fine sand with traces of silt )was placed below the gravel to test the binding capacity (sorption) of this soil for the leached Ra-226

  8. Resistivity profiling for mapping gravel layers that may control contaminant migration at the Amargosa Desert Research Site, Nevada

    Science.gov (United States)

    Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.

    2008-01-01

    Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.

  9. Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM data

    Science.gov (United States)

    Massoud, Usama; Kenawy, Abeer A.; Ragab, El-Said A.; Abbas, Abbas M.; El-Kosery, Heba M.

    2014-12-01

    Vertical Electrical Sounding (VES) and Transient ElectroMagnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo-Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along 3 profiles trending NE-SW with the elongation of the study area. The measuring points were arranged in a grid-like pattern with both inter-station spacing and line-line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geoelectrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water-bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

  10. Development of simulated groundwater-contributing areas to selected streams, ponds, coastal water bodies, and production wells in the Plymouth-Carver region and Cape Cod, Massachusetts

    Science.gov (United States)

    Carlson, Carl S.; Masterson, John P.; Walter, Donald A.; Barbaro, Jeffrey R.

    2017-12-21

    IntroductionThe U.S. Geological Survey (USGS), in support of the Massachusetts Estuaries Project (MEP), delineated groundwater-contributing areas to various hydrologic receptors including ponds, streams, and coastal water bodies throughout southeastern Massachusetts, including portions of the Plymouth-Carver aquifer system and all of Cape Cod. These contributing areas were delineated over a 6-year period from 2003 through 2008 by using previously published regional USGS groundwater-flow models for the Plymouth-Carver region (Masterson and others, 2009), the Sagamore (western) and Monomoy (eastern) flow lenses of Cape Cod (Walter and Whealan, 2005), and lower Cape Cod (Masterson, 2004). The original USGS groundwater-contributing areas were subsequently revised in some locations by the MEP to remove modeling artifacts or to make the contributing areas more consistent with site-specific hydrologic conditions without further USGS review. This report describes the process used to create the USGS groundwater-contributing areas and provides these model results in their original format in a single, publicly accessible publication.

  11. A Visual Basic program to classify sediments based on gravel-sand-silt-clay ratios

    Science.gov (United States)

    Poppe, L.J.; Eliason, A.H.; Hastings, M.E.

    2003-01-01

    Nomenclature describing size distributions is important to geologists because grain size is the most basic attribute of sediments. Traditionally, geologists have divided sediments into four size fractions that include gravel, sand, silt, and clay, and classified these sediments based on ratios of the various proportions of the fractions. Definitions of these fractions have long been standardized to the grade scale described by Wentworth (1922), and two main classification schemes have been adopted to describe the approximate relationship between the size fractions.Specifically, according to the Wentworth grade scale gravel-sized particles have a nominal diameter of ⩾2.0 mm; sand-sized particles have nominal diameters from <2.0 mm to ⩾62.5 μm; silt-sized particles have nominal diameters from <62.5 to ⩾4.0 μm; and clay is <4.0 μm. As for sediment classification, most sedimentologists use one of the systems described either by Shepard (1954) or Folk (1954, 1974). The original scheme devised by Shepard (1954) utilized a single ternary diagram with sand, silt, and clay in the corners to graphically show the relative proportions among these three grades within a sample. This scheme, however, does not allow for sediments with significant amounts of gravel. Therefore, Shepard's classification scheme (Fig. 1) was subsequently modified by the addition of a second ternary diagram to account for the gravel fraction (Schlee, 1973). The system devised by Folk (1954, 1974) is also based on two triangular diagrams (Fig. 2), but it has 23 major categories, and uses the term mud (defined as silt plus clay). The patterns within the triangles of both systems differ, as does the emphasis placed on gravel. For example, in the system described by Shepard, gravelly sediments have more than 10% gravel; in Folk's system, slightly gravelly sediments have as little as 0.01% gravel. Folk's classification scheme stresses gravel because its concentration is a function of

  12. Development of practical decontamination process for the removal of uranium from gravel.

    Science.gov (United States)

    Kim, Ilgook; Kim, Gye-Nam; Kim, Seung-Soo; Choi, Jong-Won

    2018-01-01

    In this study, a practical decontamination process was developed to remove uranium from gravel using a soil washing method. The effects of critical parameters including particle size, H 2 SO 4 concentration, temperature, and reaction time on uranium removal were evaluated. The optimal condition for two-stage washing of gravel was found to be particle size of 1-2 mm, 1.0 M H 2 SO 4 , temperature of 60°C, and reaction time of 3 h, which satisfied the required uranium concentration for self-disposal. Furthermore, most of the extracted uranium was removed from the waste solution by precipitation, implying that the treated solution can be reused as washing solution. These results clearly demonstrated that our proposed process can be indeed a practical technique to decontaminate uranium-polluted gravel.

  13. Estimated sand and gravel resources of the South Merrimack, Hillsborough County, New Hampshire, 7.5-minute quadrangle

    Science.gov (United States)

    Sutphin, D.M.; Drew, L.J.; Fowler, B.K.

    2006-01-01

    A computer methodology is presented that allows natural aggregate producers, local governmental, and nongovernmental planners to define specific locations that may have sand and gravel deposits meeting user-specified minimum size, thickness, and geographic and geologic criteria, in areas where the surficial geology has been mapped. As an example, the surficial geologic map of the South Merrimack quadrangle was digitized and several digital geographic information system databases were downloaded from the internet and used to estimate the sand and gravel resources in the quadrangle. More than 41 percent of the South Merrimack quadrangle has been mapped as having sand and (or) gravel deposited by glacial meltwaters. These glaciofluvial areas are estimated to contain a total of 10 million m3 of material mapped as gravel, 60 million m3 of material mapped as mixed sand and gravel, and another 50 million m3 of material mapped as sand with minor silt. The mean thickness of these areas is about 1.95 meters. Twenty tracts were selected, each having individual areas of more than about 14 acres4 (5.67 hectares) of stratified glacial-meltwater sand and gravel deposits, at least 10-feet (3.0 m) of material above the watertable, and not sterilized by the proximity of buildings, roads, streams and other bodies of water, or railroads. The 20 tracts are estimated to contain between about 4 and 10 million short tons (st) of gravel and 20 and 30 million st of sand. The five most gravel-rich tracts contain about 71 to 82 percent of the gravel resources in all 20 tracts and about 54-56 percent of the sand. Using this methodology, and the above criteria, a group of four tracts, divided by narrow areas sterilized by a small stream and secondary roads, may have the highest potential in the quadrangle for sand and gravel resources. ?? Springer Science+Business Media, LLC 2006.

  14. Preliminary delineation and description of the regional aquifers of Tennessee : the Central Basin system

    Science.gov (United States)

    Brahana, J.V.; Bradley, M.W.

    1986-01-01

    A sand and gravel aquifer about 65 feet thick underlies Wurtsmith Air Force Base in northeastern lower Michigan. The water table ranges in depth from 10 feet to 25 feet below land surface. Mathematical models indicate that ground-water flow ranges from 0.8 feet per day in the eastern part of the Base to 0.3 feet per day in the western part. Trichlorethylene leaked from a buried storage tank in the southeastern part of the Base and moved northeastward in a plume, contaminating Base water-supply wells. Concentrations exceed 1,000 micrograms per liter in the most highly contaminated part of the plume. Purge pumping removed some of the trichloroethylene and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. (USGS)

  15. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2. 1Department of Civil Engineering, Indian Institute of Technology, ... the particle size distribution curve following the relationship by Christensen .... where f = friction factor, ρ = mass density of fluid, and V = mean velocity of flow. .... for the incipient motion of gravel and coal beds have been represented by simple empirical.

  16. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    Science.gov (United States)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  17. Cape Verde

    Science.gov (United States)

    2007-01-01

    This Mars Exploration Rover Opportunity Pancam 'super resolution' mosaic of the approximately 6 m (20 foot) high cliff face of the Cape Verde promontory was taken by the rover from inside Victoria Crater, during the rover's descent into Duck Bay. Super-resolution is an imaging technique which utilizes information from multiple pictures of the same target in order to generate an image with a higher resolution than any of the individual images. Cape Verde is a geologically rich outcrop and is teaching scientists about how rocks at Victoria crater were modified since they were deposited long ago. This image complements super resolution mosaics obtained at Cape St. Mary and Cape St. Vincent and is consistent with the hypothesis that Victoria crater is located in the middle of what used to be an ancient sand dune field. Many rover team scientists are hoping to be able to eventually drive the rover closer to these layered rocks in the hopes of measuring their chemistry and mineralogy. This is a Mars Exploration Rover Opportunity Panoramic Camera image mosaic acquired on sols 1342 and 1356 (November 2 and 17, 2007), and was constructed from a mathematical combination of 64 different blue filter (480 nm) images.

  18. [Runoff and sediment yielding processes on red soil engineering accumulation containing gravels by a simulated rainfall experiment].

    Science.gov (United States)

    Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin

    2015-09-01

    Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.

  19. Distribution and stability of potential salmonid spawning gravels in steep boulder-bed streams of the eastern Sierra Nevada

    International Nuclear Information System (INIS)

    Kondolf, G.M.; Cada, G.F.; Sale, M.J.; Felando, T.

    1991-01-01

    Interest in small hydroelectric development (< 5 MW) has recently focused attention on steep streams and the resident trout populations they contain. High-gradient boulder-bed streams have been the sites of relatively few studies of salmonid spawning habitat, although they have geomorphic and hydraulic characteristics - and therefore gravel distributions - that are quite different from the more commonly described lower-gradient channels. The authors documented gravel distribution in seven high-gradient stream reaches in the eastern Sierra Nevada. Gravels occurred only in locations characterized by relatively low shear stress; they formed small pockets in sites of low divergence and larger deposits upstream of natural hydraulic controls. In 1986 (a wet year), all tracer gravels placed in gravel pockets at nine sites on four streams were completely swept away, and substantial scour, fill, and other channel changes occurred at many sites. In 1987 (a dry year), tracer gravels and the channel cross sections were generally stable. Periodic mobility of gravel may explain why brown trout Salmo trutta are more abundant than rainbow trout Oncorhychus mykiss in the study reaches, where high flows occur every May and June during snowmelt. Brown trout are fall spawners, and their fry emerge long before the high snowmelt flows, whereas rainbow trout are spring spawners whose eggs are in the gravel, and thus vulnerable to scour, during snowmelt flows

  20. Land Use and River Degradation Impact of Sand and Gravel Mining

    Science.gov (United States)

    Syah, Putra Rizal Ichsan; Hartuti, Purnaweni

    2018-02-01

    Sand and gravel mining is aimed at providing materials for infrastructure development, as well as providing economical source to the miners. However, the impacts of sand and gravel mining could also cause disturbances to ecological balance, since it is closely related to land use change and river degradation, besides causing conflicts in the miners, the government, and the private relationship. Therefore the government regulation and proper supervision are needed to preserve the ecological balance and decreasing the negative impacts of this mining, and therefore guarantee sustainable development.

  1. Construction of a groundwater-flow model for the Big Sioux Aquifer using airborne electromagnetic methods, Sioux Falls, South Dakota

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Carter, Janet M.; Smith, Bruce D.; Smith, David V.

    2016-09-28

    The city of Sioux Falls is the fastest growing community in South Dakota. In response to this continued growth and planning for future development, Sioux Falls requires a sustainable supply of municipal water. Planning and managing sustainable groundwater supplies requires a thorough understanding of local groundwater resources. The Big Sioux aquifer consists of glacial outwash sands and gravels and is hydraulically connected to the Big Sioux River, which provided about 90 percent of the city’s source-water production in 2015. Managing sustainable groundwater supplies also requires an understanding of groundwater availability. An effective mechanism to inform water management decisions is the development and utilization of a groundwater-flow model. A groundwater-flow model provides a quantitative framework for synthesizing field information and conceptualizing hydrogeologic processes. These groundwater-flow models can support decision making processes by mapping and characterizing the aquifer. Accordingly, the city of Sioux Falls partnered with the U.S. Geological Survey to construct a groundwater-flow model. Model inputs will include data from advanced geophysical techniques, specifically airborne electromagnetic methods.

  2. Image analysis to measure sorting and stratification applied to sand-gravel experiments

    OpenAIRE

    Orrú, C.

    2016-01-01

    The main objective of this project is to develop new measuring techniques for providing detailed data on sediment sorting suitable for sand-gravel laboratory experiments. Such data will be of aid in obtaining new insights on sorting mechanisms and improving prediction capabilities of morphodynamic models. Two measuring techniques have been developed. The first technique is aimed at measuring the size stratification of a sand-gravel deposit through combining image analysis and a sediment remov...

  3. Comparison of different forms of gravel as aggregate in concrete

    Directory of Open Access Journals (Sweden)

    Sikiru ORITOLA

    2014-11-01

    Full Text Available Gradation plays an important role in the workability, segregation, and pump ability of concrete. Uniformly distributed aggregates require less paste which will also decrease bleeding, creep and shrinkage while producing better workability, more durable concrete and higher packing. This attempt looks at the effect of particle size distribution pattern for five types of gravel aggregate forms, angular, elongated, smooth rounded, irregular and flaky as related to the strength of concrete produced. Different forms of naturally existing gravel aggregate were collected from a particular location and tests were carried out on them to determine their gradation. Based on the gradation the aggregates were used to prepare different samples of grade 20 concrete with water-cement ratio of 0.5. The particle size distribution resulted in coefficients of uniformity ranging from 1.24 to 1.44. The granite aggregate, which serves as a reference, had a coefficient of uniformity of 1.47. Tests were conducted on fresh and hardened concrete cube samples. The concrete sample CT5 recorded a slump of 32mm and highest compressive strength value of 21.7 N/mm2, among the concrete produced from different forms of gravel.

  4. Triaxial shear behavior of a cement-treated sand–gravel mixture

    Directory of Open Access Journals (Sweden)

    Younes Amini

    2014-10-01

    Full Text Available A number of parameters, e.g. cement content, cement type, relative density, and grain size distribution, can influence the mechanical behaviors of cemented soils. In the present study, a series of conventional triaxial compression tests were conducted on a cemented poorly graded sand–gravel mixture containing 30% gravel and 70% sand in both consolidated drained and undrained conditions. Portland cement used as the cementing agent was added to the soil at 0%, 1%, 2%, and 3% (dry weight of sand–gravel mixture. Samples were prepared at 70% relative density and tested at confining pressures of 50 kPa, 100 kPa, and 150 kPa. Comparison of the results with other studies on well graded gravely sands indicated more dilation or negative pore pressure in poorly graded samples. Undrained failure envelopes determined using zero Skempton's pore pressure coefficient (A¯=0 criterion were consistent with the drained ones. Energy absorption potential was higher in drained condition than undrained condition, suggesting that more energy was required to induce deformation in cemented soil under drained state. Energy absorption increased with increase in cement content under both drained and undrained conditions.

  5. Fabrication of gravel for concrete in brown-coal mining. The gravel works at Inden; Betonkiesherstellung im Braunkohlentagebau - Das Kieswerk Inden

    Energy Technology Data Exchange (ETDEWEB)

    Bertrams, H.J. [Rheinbraun AG, Abt. Tagebau- und Landschaftsplanung, Koeln (Germany)

    1995-01-01

    The brown-coal open-pit mine is operated by Rheinbraun AG, a Cologne-based company. The mining process offers the possibility to separate gravel and sand from the overburden for marketing, unless they are indispensable for reclaiming the open-pit mine. This combination of raw material production particularly prevents additional landscape consumption by separate gravel dredging and spares the population of an overproportionately densely populated region further inconveniences. Moreover, it helps to save resources. (orig./MSK) [Deutsch] Die Braunkohlengewinnung erfolgt durch die in Koeln ansaessige Rheinbraun AG in Tagebauen. Dabei ergibt sich die Moeglichkeit, im Abraum befindliche Kiese und Sande auszusortieren und dem Markt zuzufuehren, soweit sie nicht zwingend zur Wiedernutzbarmachung des Tagebaus verwendet werden muessen. Durch die Buendelung der Rohstoffgewinnung wird insbesondere der Landschaftsverbrauch durch gesonderte Abgrabungen ausserhalb des Tagebaus und damit verbundene Belastungen der Bevoelkerung in einer ueberdurchschnittlich dicht besiedelten Region verringert. Sie traegt ebenfalls zur Ressourcenschonung bei. (orig./MSK)

  6. A statistical evaluation of formation disturbance produced by well- casing installation methods

    Science.gov (United States)

    Morin, R.H.; LeBlanc, D.R.; Teasdale, W.E.

    1988-01-01

    Water-resources investigations concerned with contaminant transport through aquifers comprised of very loose, unconsolidated sediments have shown that small-scale variations in aquifer characteristics can significantly affect solute transport and dispersion. Commonly, measurement accuracy and resolution have been limited by a borehole environment consisting of an annulus of disturbed sediments produced by the casing-installation method. In an attempt to quantify this disturbance and recognize its impact on the characterization of unconsolidated deposits, three installation methods were examined and compared in a sand-and-gravel outwash at a test site on Cape Cod, Massachusetts. These installation methods were: 1) casing installed in a mud-rotary hole; 2) casing installed in an augered hole; and 3) flush-joint steel casing hammer-driven from land surface. Fifteen wells were logged with epithermal neutron and natural gamma tools. Concludes that augering is the most disruptive of the three casing-installation methods and that driving casing directly, though typically a more time-consuming operation, transmits the least amount of disturbance into the surrounding formation. -from Authors

  7. STRUCTURE, GROWTH AND MORPHOLOGY OF FISH POPULATIONS FROM GRAVEL-PIT VUKOVINA

    Directory of Open Access Journals (Sweden)

    Ivan Jakovlić

    2001-12-01

    Full Text Available After the structure of fish populations from gravel-pit Vukovina was determined, those populations were checked for 10 morphometric and 4 meristic parameters, as well as for length-mass relationship. For chub (Leuciscus cephalus and pumpkinseed (Lepomis gibbosus some meristic characters expressed the values beyond those mentioned in the standard key for the freshwater fish species determination. When compared to other locations, length-mass relationship and condition factor (CF were significantly lower for all checked populations. This indicates that gravel-pit Vukovina is extremely oligotrophic and has very poor fish production.

  8. Cape Kennedy Thunderstorms Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Cape Kennedy Thunderstorms Data contains an account of all thunderstorms reported in weather observations taken at Cape Kennedy Air Force Station, Florida between...

  9. Effect of percentage of low plastic fines on the unsaturated shear strength of compacted gravel soil

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2015-06-01

    Full Text Available Low plastic fines in gravel soils affect its unsaturated shear strength due to the contribution of matric suction that arises in micro and macro pores found within and between aggregates. The shear strength of five different types of prepared gravel soils is measured and is compared with a theoretical model (Fredlund et al., 1978 to predict the unsaturated shear strength. The results are consistent to a great extent except the case of dry clayey gravel soil. It is also found that on inundation of gravel soils containing plastic fines greater than 12% a considerable reduction in both the strength and the stiffness modulus is noticed. This 12% percentage is close to the accepted 15% percentage of fines given by ASTM D4318 (American society for testing material. The angle of internal friction that arises due to matric suction decreases with the increase of degree of saturation of soil. The hysteresis of some tested gravel soils is measured and found that it increases by increasing the percentage of fines.

  10. Development of a submerged gravel scrubber for containment venting applications: summary

    International Nuclear Information System (INIS)

    Hilliard, R.K.; McCormack, J.D.; Postma, A.K.

    1981-01-01

    Although hypothetical core disruptive accidents (HCDAs) are not design basis accidents for breeder reactor plants, extensive assessments of HCDA consequences have been made and design features for providing margins beyond the design base have been considered for future fast reactor plants. One feature proposed for increasing the safety margin is a containment vent and/or purge system which would mitigate the challenge to containment integrity resulting from excessive temperature and pressure or excessive hydrogen. A cleanup system would be required for removal of vented aerosols and condensible vapors to mitigate radiological consequences to the environment. A study is in progress at HEDL to select and develop a suitable air cleaning system for use in potential breeder reactor containment venting applications. A concept was conceived whereby the passiveness and high loading capacity of a water pool scrubber was combined with the high efficiency of a sand and gravel bed. It was termed a Submerged Gravel Scrubber (SGS). A schematic drawing of the concept is shown. The SGS consists of a bed of gravel (or other packing) submerged in a pool of water

  11. The Geometry of the Aquifer's System of the Terraguelt Graben by the Gravimetry and the Electric Prospecting

    International Nuclear Information System (INIS)

    Brahmia, A.; Hani, A.; Lamouroux, C.

    2009-01-01

    The goal of the present survey is the determination of the shape of Terraguelt graben aquifer system. The gravimetric survey brings a satisfactory answer in this sense that the residual anomaly map made appear a negative anomaly of - 20 m Gals and that the gradient delimits the Graben enough well. The electric survey on the basis of the geologic information and the few mechanical boring achieved in the plain permits to retail the facies of the replenishment better. Indeed some either the length of the current electrode AB line, the center of the plain makes appear of weak values of apparent resistivity, the shalky limestone substratum of age superior Maestrichien is not reached in spite of a length of AB line = 3000 m. Whereas the borders appear with resistivities more important, in the center of the plain these last become more and more weak with the increase of the AB length. The shape of the Graben is illustrated well in the electric cross sections and is confirmed by the interrelationship of the lithostratigraphique columns of the mechanical boring. The interpretation of mechanical boring data shows two principals aquifers : the first one is included in the karstified limestone of upper Maestrichien and the second one is in the replenishment constituted by sand, and gravel, pebble. This replenishment is estimated at 1200 m thickness. The piezo metric maps shows that the aquifers are feeded from the the East and South mountains borders

  12. Channel dynamics and geomorphic resilience in an ephemeral Mediterranean river affected by gravel mining

    Science.gov (United States)

    Calle, Mikel; Alho, Petteri; Benito, Gerardo

    2017-05-01

    Gravel mining has been a widespread activity in ephemeral rivers worldwide whose long-lasting hydrogeomorphological impacts preclude effective implementation of water and environmental policies. This paper presents a GIS-based method for temporal assessment of morphosedimentary changes in relation to in-channel gravel mining in a typical ephemeral Mediterranean stream, namely the Rambla de la Viuda (eastern Spain). The aims of this work were to identify morphosedimentary changes and responses to human activities and floods, quantify river degradations and analyze factors favoring fluvial recovery for further applications in other rivers. Aerial photographs and LiDAR topography data were studied to analyze geomorphic evolution over the past 70 years along a 7.5-km reach of an ephemeral gravel stream that has been mined intensively since the 1970s. To evaluate changes in the riverbed, we mapped comparable units applying morphological, hydraulic, and stability (based on vegetation density and elevation) criteria to 13 sets of aerial photographs taken from 1946 to 2012. A detailed spatiotemporal analysis of comparable units revealed a 50% reduction in the active section and a 20% increase in stable areas, compared to the conditions observed prior to gravel mining. Instream mining was first observed in 1976 aerial photograph covering already up to 50% of the 1956 riverbed area. River degradation since then was quantified by means of a LiDAR DTM and RTK-GPS measurements, which revealed a 3.5-m incision that had started simultaneously with gravel mining. Climate and land use changes were present but the effects were completely masked by changes produced by instream gravel mining. Therefore, river incision/degradation was triggered by scarcity of sediment and lack of longitudinal sedimentary connection, creating an unbalanced river system that is still adjusting to the present hydrosedimentary conditions.

  13. Response of Vegetation on Gravel Bars to Management Measures and Floods: Case Study From the Czech Republic

    Directory of Open Access Journals (Sweden)

    Eremiášová Renata

    2014-08-01

    Full Text Available This article investigates response of vegetation on gravel bars to management measures and floods. The management measures consisted of the partial removal of gravel and vegetation cover, and were applied to six gravel bars on the Ostravice River, Czech Republic. Unexpected floods occu-rred in 2010, with the amplitude of 5- to 50-year repetition. Research of vegetation on the gravel bars consisted of vegetation survey before the management works; the monitoring of vegetation development over the following year and the verification of the relationships of species diversity, successional stages and the biotope conditions with the help of multivariate analysis (detrended correspondence analysis. Vegetation on the gravel bars was at different successional stages, and had higher diversity and vegetation cover before the management measures and floods. The mul-tivariate analysis revealed a shift toward initial successional stages with high demand on moisture, temperature and light after both management measures and floods.

  14. Recharge sources and geochemical evolution of groundwater in the Quaternary aquifer at Atfih area, the northeastern Nile Valley, Egypt

    Science.gov (United States)

    El-Sayed, Salah Abdelwahab; Morsy, Samah M.; Zakaria, Khalid M.

    2018-06-01

    This study addresses the topic of recharge sources and evolution of groundwater in the Atfih area situated in the northeastern part of the Nile Valley, Egypt. Inventory of water wells and collection of groundwater and surface water samples have been achieved. Water samples are analyzed for major ions according to the American Society for Testing and Materials and for the environmental isotopes analysis (oxygen-18 and deuterium) by using a Triple Liquid Isotopic Water Analyzer (Los Gatos). The groundwater is available from the Quaternary aquifer formed mainly of graded sand and gravel interbedded with clay lenses. The hydrogeologic, hydrogeochemical and isotopic investigations indicate the hydrodynamic nature of the aquifer, where different flow paths, recharge sources and evolution mechanisms are distinguished. The directions of groundwater flow are from E, W and S directions suggesting the contribution from Nile River, the Eocene aquifer and the Nile basin, respectively. The groundwater altitudes range from 13 m (MSL) to 44 m (MSL). The hydraulic gradient varies between 0.025 and 0.0015. The groundwater is alkaline (pH > 7) and has salinity ranging from fresh to brackish water (TDS between 528 mg/l and 6070 mg/l). The observed wide range in the ionic composition and water types reflects the effect of different environmental and geological conditions through which the water has flowed. The isotopic compositions of groundwater samples vary between -14.13‰ and +23.56 for δD and between - 2.91‰ and +3.10 for δ18O. The isotopic data indicates that the Quaternary aquifer receive recharge from different sources including the Recent Nile water, surplus irrigation water, old Nile water before the construction of Aswan High Dam, surface runoff of local rains and Eocene aquifer. Evaporation, water rock interaction and mixing between different types of waters are the main processes in the groundwater evolution. Major suggestions are presented to develop the aquifer

  15. [Effects of gravel mulch technology on soil erosion resistance and plant growth of river flinty slope].

    Science.gov (United States)

    Zhu, Wei; Xie, San-Tao; Ruan, Ai-Dong; Bian, Xun-Wen

    2008-03-01

    Aiming at the technical difficulties such as the stability and water balance in the ecological rehabilitation of river flinty slope, a gravel mulch technology was proposed, with the effects of different gravel mulch treatments on the soil anti-erosion capacity, soil water retention property, and plant growth investigated by anti-erosion and pot experiments. The results showed that mulching with the gravels 1.5-2 cm in size could obviously enhance the soil anti-erosion capacity, soil water retention property and plant biomass, but no obvious differences were observed between the mulch thickness of 5 cm and 8 cm. It was indicated that mulching with the gravels 1.5-2 cm in size and 5 cm in thickness was an effective and economical technology for the ecological rehabilitation of river flinty slope.

  16. Influence of vegetation and gravel mesh on the tertiary treatment of wastewater from a cosmetics industry.

    Science.gov (United States)

    Vlyssides, Apostolos G; Mai, Sofia T H; Barampouti, Elli Maria P; Loukakis, Haralampos N

    2009-07-01

    To estimate the influence of gravel mesh (fine and coarse) and vegetation (Phragmites and Arundo) on the efficiency of a reed bed, a pilot plant was included after the wastewater treatment plant of a cosmetic industry treatment system according to a 22 factorial experimental design. The maximum biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total phosphorous (TP) reduction was observed in the reactor, where Phragmites and fine gravel were used. In the reactor with Phragmites and coarse gravel, the maximum total Kjeldahl nitrogen (TKN) and total suspended solids (TSS) reduction was observed. The maximum total solids reduction was measured in the reed bed, which was filled with Arundo and coarse gravel. Conclusively, the treatment of a cosmetic industry's wastewater by reed beds as a tertiary treatment method is quite effective.

  17. Isotope studies on mechanisms of groundwater recharge to an alluvial aquifer in Gatton, Queensland, Australia

    International Nuclear Information System (INIS)

    Dharmasiri, J.K.; Morawska, L.

    1997-01-01

    Gatton is an important agricultural area for Queensland where about 40% of its vegetables needs are produced using groundwater as the main source. An alluvial Aquifer is located about 30m beneath the layers of alluvial sediments ranging from black soils of volcanic origin on top, layers of alluvial sands, clays and beds of sand and gravel. The leakage of creek flows has been considered to be the main source of recharge to this aquifer. A number of weirs have been built across the Lockyer and Laidley creeks to allow surface water to infiltrate through the beds when the creeks flow. Water levels in bores in a section located in the middle of the alluvial plain (Crowley Vale) have been declining for the last 20 years with little or no success in recharging from the creeks. Acute water shortages have been experienced in the Gatton area during the droughts of 1980-81, 1986-87 and 1994-97. Naturally occurring stable isotopes, 2 H, 18 0 and 13 C as well as radioisotopes 3 H and 14 C have been used to delineate sources of recharge and active recharge areas. Tritium tracing of soil moisture in the unsaturated soil was also used to determine direct infiltration rates

  18. Managing A Lake/Aquifer System-Science, Policy, and the Public Interest

    Science.gov (United States)

    Shaver, R. B.

    2009-12-01

    Lake Isabel is a small (312 ha) natural lake located in central North Dakota in the glaciated Missouri Coteau. The average lake depth is about 1.8 m with a maximum depth of about 3.6 to 4.6 m. The lake overlies the Central Dakota aquifer complex which is comprised of three sand and gravel aquifer units that are either directly or indirectly (through leakage) hydraulically connected to the lake. The aquifer is a major water source for center pivot irrigation. During the 2001-2008 drought, lower lake levels reduced lake recreation, including leaving many boat docks unusable. Lake homeowners attribute lake level decline to irrigation pumping and believe that irrigation should be curtailed. There is no water right associated with Lake Isabel because there are no constructed works associated with the lake. Therefore, under North Dakota statute the lake cannot be protected as a prior (senior) appropriator. The lake does have standing under the public interest as defined by North Dakota statute. Evaluation of the public interest involves the integration of both science and policy. Is it in the best interest of the people of the state to prohibit ground water withdrawals for irrigation to protect the lake? This is a policy decision, not a scientific decision. The basis of the policy decision should include an economic analysis of the irrigated crops, fish, wildlife, recreation, and lake property. In addition, priority of use and lake level history should be considered. The issue can likely be resolved without scientific controversy arising from hydrologic system uncertainty. If the decision is to protect the lake at some level, the issue becomes “scientized” and the following questions need to be answered: 1) Does irrigation pumping effect changes in lake levels? 2) Is our level of scientific understanding sufficient to determine what volume of irrigation pumping will cause what amount of lake level change? 3) Given aquifer lag time response to changes in pumping and

  19. The Contribution of the Future SWOT Mission to Improve Simulations of River Stages and Stream-Aquifer Interactions at Regional Scale

    Science.gov (United States)

    Saleh, Firas; Filipo, Nicolas; Biancamaria, Sylvain; Habets, Florence; Rodriguez, Enersto; Mognard, Nelly

    2013-09-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. This study extends the earlier work to improve the modeling of the Seine basin with a focus on simulating the hydrodynamics behavior of the Bassée alluvial wetland, a 120 km reach of the Seine River valley located south- east of Paris. The Bassée is of major importance for the drinking-water supply of Paris and surroundings, in addition to its particular hydrodynamic behavior due to the presence of a number of gravels. In this context, the understanding of stream-aquifer interactions is required for water quantity and quality preservation. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used. It aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using a conductance model. In this context, the future SWOT mission and its high-spatial resolution imagery can provide surface water level measurements at the regional scale that will permit to better characterize the Bassée complex hydro(geo)logical system and better assess soil water content. Moreover, the Bassée is considered as a potential target for the framework of the AirSWOT airborne campaign in France, 2013.

  20. Characterising aquifer treatment for pathogens in managed aquifer recharge.

    Science.gov (United States)

    Page, D; Dillon, P; Toze, S; Sidhu, J P S

    2010-01-01

    In this study the value of subsurface treatment of urban stormwater during Aquifer Storage Transfer Recovery (ASTR) is characterised using quantitative microbial risk assessment (QMRA) methodology. The ASTR project utilizes a multi-barrier treatment train to treat urban stormwater but to date the role of the aquifer has not been quantified. In this study it was estimated that the aquifer barrier provided 1.4, 2.6, >6.0 log(10) removals for rotavirus, Cryptosporidium and Campylobacter respectively based on pathogen diffusion chamber results. The aquifer treatment barrier was found to vary in importance vis-à-vis the pre-treatment via a constructed wetland and potential post-treatment options of UV-disinfection and chlorination for the reference pathogens. The risk assessment demonstrated that the human health risk associated with potable reuse of stormwater can be mitigated (disability adjusted life years, DALYs aquifer is integrated with suitable post treatment options into a treatment train to attenuate pathogens and protect human health.

  1. A reassessment of ground water flow conditions and specific yield at Borden and Cape Cod

    Science.gov (United States)

    Grimestad, Garry

    2002-01-01

    Recent widely accepted findings respecting the origin and nature of specific yield in unconfined aquifers rely heavily on water level changes observed during two pumping tests, one conducted at Borden, Ontario, Canada, and the other at Cape Cod, Massachusetts. The drawdown patterns observed during those tests have been taken as proof that unconfined specific yield estimates obtained from long-duration pumping tests should approach the laboratory-estimated effective porosity of representative aquifer formation samples. However, both of the original test reports included direct or referential descriptions of potential supplemental sources of pumped water that would have introduced intractable complications and errors into straightforward interpretations of the drawdown observations if actually present. Searches for evidence of previously neglected sources were performed by screening the original drawdown observations from both locations for signs of diagnostic skewing that should be present only if some of the extracted water was derived from sources other than main aquifer storage. The data screening was performed using error-guided computer assisted fitting techniques, capable of accurately sensing and simulating the effects of a wide range of non-traditional and external sources. The drawdown curves from both tests proved to be inconsistent with traditional single-source pumped aquifer models but consistent with site-specific alternatives that included significant contributions of water from external sources. The corrected pumping responses shared several important features. Unsaturated drainage appears to have ceased effectively at both locations within the first day of pumping, and estimates of specific yield stabilized at levels considerably smaller than the corresponding laboratory-measured or probable effective porosity. Separate sequential analyses of progressively later field observations gave stable and nearly constant specific yield estimates for each

  2. Stabilizing cinder gravels for heavily trafficked base course ...

    African Journals Online (AJOL)

    Investigation into the improvement of natural cinder gravels with the use of stabilization techniques was made using samples collected from quarry sites near Alemgena and Lake Chamo. Mechanical and cement stabilizations were investigated in two subsequent phases. In the first phase, optimum amount of fine soils that ...

  3. A 'private adventure'? John Herschel's Cape voyage and the production of the 'Cape Results'

    Science.gov (United States)

    Ruskin, Steven William

    2002-07-01

    This dissertation considers the life of John Herschel (1792 1871) from the years 1833 to 1847. In 1833 Herschel sailed from London to Cape Town, southern Africa, to undertake (at his own expense) an astronomical exploration of the southern heavens, as well as a terrestrial exploration of the area around Cape Town. After his return to England in 1838, he was highly esteemed and became Britain's most recognized scientist. In 1847 his southern hemisphere astronomical observations were published as the Cape Results. The main argument of this dissertation is that Herschel's voyage, and the publication of the Cape Results, in addition to their contemporary scientific importance, were also significant for nineteenth-century politics and culture. This dissertation is a two-part dissertation. The first part is entitled “John Herschel's Cape Voyage: Private Science, Public Imagination, and the Ambitions of Empire”; and the second part, “The Production of the Cape Results.” In the first part it is demonstrated that the reason for Herschel's cultural renown was the popular notion that his voyage to the Cape was a project aligned with the imperial ambitions of the British government. By leaving England for one of its colonies, and pursuing there a significant scientific project, Herschel was seen in the same light as other British men of science who had also undertaken voyages of exploration and discovery. It is then demonstrated, in the second part of this work, that the production of the Cape Results, in part because of Herschel's status as Britain's scientific figurehead, was a significant political and cultural event. In addition to the narrow area of Herschel scholarship, this dissertation touches on other areas of research in the history of science as well: science and culture, science and empire, science and politics, and what has been called the “new” history of scientific books.

  4. Alluvial Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — This coverage shows the extents of the alluvial aquifers in Kansas. The alluvial aquifers consist of unconsolidated Quaternary alluvium and contiguous terrace...

  5. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    Science.gov (United States)

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.

  6. Pumping Test Determination of Unsaturated Aquifer Properties

    Science.gov (United States)

    Mishra, P. K.; Neuman, S. P.

    2008-12-01

    Tartakovsky and Neuman [2007] presented a new analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering the unsaturated zone. In their solution three-dimensional, axially symmetric unsaturated flow is described by a linearized version of Richards' equation in which both hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value, the latter defining the interface between the saturated and unsaturated zones. Both exponential functions are characterized by a common exponent k having the dimension of inverse length, or equivalently a dimensionless exponent kd=kb where b is initial saturated thickness. The authors used their solution to analyze drawdown data from a pumping test conducted by Moench et al. [2001] in a Glacial Outwash Deposit at Cape Cod, Massachusetts. Their analysis yielded estimates of horizontal and vertical saturated hydraulic conductivities, specific storage, specific yield and k . Recognizing that hydraulic conductivity and water content seldom vary identically with incremental capillary pressure head, as assumed by Tartakovsky and Neuman [2007], we note that k is at best an effective rather than a directly measurable soil parameter. We therefore ask to what extent does interpretation of a pumping test based on the Tartakovsky-Neuman solution allow estimating aquifer unsaturated parameters as described by more common constitutive water retention and relative hydraulic conductivity models such as those of Brooks and Corey [1964] or van Genuchten [1980] and Mualem [1976a]? We address this question by showing how may be used to estimate the capillary air entry pressure head k and the parameters of such constitutive models directly, without a need for inverse unsaturated numerical simulations of the kind described by Moench [2003]. To assess the validity of such direct estimates we use maximum

  7. Frost Resistance and Permeability of Cement Stabilized Gravel used as Filling Material for Pearl-Chain Bridges

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Hertz, Kristian Dahl

    2014-01-01

    several requirements on its moisture properties. In this paper the frost resistance, the liquid water permeability and the water vapour permeability of cement stabilized gravel are examined for two different cement contents. It is found that a small increase in cement content from 4% to 5% increases...... the 28-days compressive strength from 6.2 MPa to 12.3 MPa. The frost resistance of cement stabilized gravel with 5% cement content is better than for cement stabilized gravel with 4% cement content. The liquid water permeability coefficient and the water vapour permeability coefficient are significantly...

  8. Radiological characteristic of an area reclaimed by means of an ash-gravel power plant wastes

    International Nuclear Information System (INIS)

    Zak, A.; Biernacka, M.; Kusyk, M.; Mamont-Ciesla, K.; Florowska, K.

    2002-01-01

    A sand excavation after extraction of gravel and sand was filled with an ash-gravel mix. The mix was covered with shielding layers of clay and soil and grass was cultivated on it. Investigations of radiological characteristic such as: gamma radiation dose rate, radon concentration in soil air and radionuclide concentration in the ground were carried out in the both areas reclaimed one and in the vicinity of it. Radon exhalation coefficients were determined for uncovered ash-gravel mix layer, the shielding soil layer and for the ground in the vicinity. Analysis of the results revealed that the reclaimed area can be used for building development. (author)

  9. GRAIN-SIZE MEASUREMENTS OF FLUVIAL GRAVEL BARS USING OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Pedro Castro

    2018-01-01

    Full Text Available Traditional techniques for classifying the average grain size in gravel bars require manual measurements of each grain diameter. Aiming productivity, more efficient methods have been developed by applying remote sensing techniques and digital image processing. This research proposes an Object-Based Image Analysis methodology to classify gravel bars in fluvial channels. First, the study evaluates the performance of multiresolution segmentation algorithm (available at the software eCognition Developer in performing shape recognition. The linear regression model was applied to assess the correlation between the gravels’ reference delineation and the gravels recognized by the segmentation algorithm. Furthermore, the supervised classification was validated by comparing the results with field data using the t-statistic test and the kappa index. Afterwards, the grain size distribution in gravel bars along the upper Bananeiras River, Brazil was mapped. The multiresolution segmentation results did not prove to be consistent with all the samples. Nonetheless, the P01 sample showed an R2 =0.82 for the diameter estimation and R2=0.45 the recognition of the eliptical ft. The t-statistic showed no significant difference in the efficiencies of the grain size classifications by the field survey data and the Object-based supervised classification (t = 2.133 for a significance level of 0.05. However, the kappa index was 0.54. The analysis of the both segmentation and classification results did not prove to be replicable.

  10. Gravel bars can be critical for biodiversity conservation: a case study on scaly-sided Merganser in South china.

    Directory of Open Access Journals (Sweden)

    Qing Zeng

    Full Text Available Gravel bars are characteristic components of river landscapes and are increasingly recognized as key sites for many waterbirds, though detailed studies on the ecological function of gravel bars for waterbirds are rare. In this study, we surveyed the endangered Scaly-sided Merganser Mergus squamatus along a 40 km river section of Yuan River, in Central China, for three consecutive winters. We derived the landscape metrics of river gravel bars from geo-rectified fine resolution (0.6 m aerial image data. We then built habitat suitability models (Generalized Linear Models-GLMs to study the effects of landscape metrics and human disturbance on Scaly-sided Merganser presence probability. We found that 1 the Scaly-sided Merganser tended to congregate at river segments with more gravel patches; 2 the Scaly-sided Merganser preferred areas with larger and more contiguous gravel patches; and 3 the number of houses along the river bank (a proxy for anthropogenic disturbance had significantly negative impacts on the occurrence of the Scaly-sided Merganser. Our results suggest that gravel bars are vital to the Scaly-sided Merganser as shelters from disturbance, as well as sites for feeding and roosting. Therefore, maintaining the exposure of gravel bars in regulated rivers during the low water period in winter might be the key for the conservation of the endangered species. These findings have important implications for understanding behavioral evolution and distribution of the species and for delineating between habitats of different quality for conservation and management.

  11. Environmental isotopes in New Zealand hydrology ; 4. Oxygen isotope variations in subsurface waters of the Waimea Plains, Nelson

    International Nuclear Information System (INIS)

    Stewart, M.K.; Dicker, M.J.I.; Johnston, M.R.

    1981-01-01

    Oxygen isotope measurements of ground and surface waters of the Waimea Plains, Nelson, have been used to identify sources of water in aquifers beneath the plains. Major rivers flowing onto the plains are from higher-altitude catchments (maximum altitude 2000 m) and have delta O 18 approximately equal to -7.2%, whereas rainfall on the plains and adjacent low-altitude catchment streams have delta O 18 approximately equal to -6.2%. The delta O 18 measurements indicate that the 3 major aquifer units, the ''Lower Confined Aquifers'' and the ''Upper Confined Aquifers'' in the Hope Gravel (Late Pleistocene) and the ''Unconfined Aquifers'' in the Appleby Gravel (Holocene) are recharged from different sources. The ''Lower Confined Aquifers'' probably receive slow recharge in the south near Brightwater. The ''Upper Confined Aquifers'' are recharged, in the south, from the Wairoa River and locally in the north are connected with the unconfined aquifers. The ''Unconfined Aquifers'' are recharged from the Waimea River and, away from the river, from rainfall. Intermixing of water, via multiple screened wells, between the various aquifers is also indicated. (author). 5 refs., 5 figs., 1 tab

  12. Deposition of Suspended Clay to Open and Sand-Filled Framework Gravel Beds in a Laboratory Flume

    Science.gov (United States)

    Mooneyham, Christian; Strom, Kyle

    2018-01-01

    Pulses of fine sediment composed of sand, silt, and clay can be introduced to gravel bed rivers through runoff from burn-impacted hillslopes, landslides, bank failure, or the introduction of reservoir sediment as a result of sluicing or dam decommissioning. Here we present a study aimed at quantifying exchange between suspensions of clay and gravel beds. The questions that motivate the work are: how do bed roughness and pore space characteristics, shear velocity (u∗), and initial concentration (C0) affect clay deposition on or within gravel beds? Where does deposition within these beds occur, and can deposited clay be resuspended while the gravel is immobile? We examine these questions in a laboratory flume using acrylic, open-framework gravel, and armored sand-gravel beds under conditions of varying u∗ and C0. Deposition of clay occurred to all beds (even with Rouse numbers ˜ 0.01). We attribute deposition under full suspension conditions to be an outcome of localized protected zones where clay can settle and available pore space in the bed. For smooth wall cases, protection came from the viscous wall region and the development of bed forms; for the rough beds, protection came from separation zones and low-velocity pore spaces. Bed porosity was the strongest influencer of nondimensional deposition rate; deposition increased with porosity. Deposition was inversely related to u∗ for the acrylic bed runs; no influence of u∗ was found for the porous bed runs. Increases in discharge resulted in resuspension of clay from acrylic beds; no resuspension was observed in the porous bed runs.

  13. Sediment distribution and hydrologic conditions of the Potomac aquifer in Virginia and parts of Maryland and North Carolina

    Science.gov (United States)

    McFarland, Randolph E.

    2013-01-01

    Sediments of the heavily used Potomac aquifer broadly contrast across major structural features of the Atlantic Coastal Plain Physiographic Province in eastern Virginia and adjacent parts of Maryland and North Carolina. Thicknesses and relative dominance of the highly interbedded fluvial sediments vary regionally. Vertical intervals in boreholes of coarse-grained sediment commonly targeted for completion of water-supply wells are thickest and most widespread across the central and southern parts of the Virginia Coastal Plain. Designated as the Norfolk arch depositional subarea, the entire sediment thickness here functions hydraulically as a single interconnected aquifer. By contrast, coarse-grained sediment intervals are thinner and less widespread across the northern part of the Virginia Coastal Plain and into southern Maryland, designated as the Salisbury embayment depositional subarea. Fine-grained intervals that are generally avoided for completion of water-supply wells are increasingly thick and widespread northward. Fine-grained intervals collectively as thick as several hundred feet comprise two continuous confining units that hydraulically separate three vertically spaced subaquifers. The subaquifers are continuous northward but merge southward into the single undivided Potomac aquifer. Lastly, far southeastern Virginia and northeastern North Carolina are designated as the Albemarle embayment depositional subarea, where both coarse- and fine-grained intervals are of only moderate thickness. The entire sediment thickness functions hydraulically as a single interconnected aquifer. A substantial hydrologic separation from overlying aquifers is imposed by the upper Cenomanian confining unit. Potomac aquifer sediments were deposited by a fluvial depositional complex spanning the Virginia Coastal Plain approximately 100 to 145 million years ago. Westward, persistently uplifted granite and gneiss source rocks sustained a supply of coarse-grained sand and gravel

  14. Modeling the Effects of Storm Surge from Hurricane Jeanne on Saltwater Intrusion into the Surficial Aquifer, East-Central Florida (USA)

    Science.gov (United States)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Hall, C. R.

    2017-12-01

    Saltwater intrusion (SWI) that has been widely recognized as a detrimental issue causing the deterioration of coastal aquifer water quality and degradation of coastal ecosystems. While it is widely recognized that SWI is exacerbated worldwide due to global sea-level rise, we show that increased SWI from tropical cyclones under climate change is also a concern. In the Cape Canaveral Barrier Island Complex (CCBIC) located in east-central Florida, the salinity level of the surficial aquifer is of great importance to maintain a bio-diverse ecosystem and to support the survival of various vegetation species. Climate change induced SWI into the surficial aquifer can lead to reduction of freshwater storage and alteration of the distribution and productivity of vegetation communities. In this study, a three-dimensional variable-density SEAWAT model is developed and calibrated to investigate the spatial and temporal variation of salinity level in the surficial aquifer of CCBIC. We link the SEAWAT model to surge model data to examine the effects of storm surge from Hurricane Jeanne. Simulation results indicate that the surficial aquifer salinity level increases significantly right after the occurrence of storm surge because of high aquifer permeability and rapid infiltration and diffusion of the overtopping saltwater, while the surficial aquifer salinity level begins to decrease after the fresh groundwater recharge from the storm's rainfall. The tropical storm precipitation generates an effective hydraulic barrier further impeding SWI and providing seaward freshwater discharge for saltwater dilution and flushing. To counteract the catastrophic effects of storm surge, this natural remediation process may take at least 15-20 years or even several decades. These simulation results contribute to ongoing research focusing on forecasting regional vegetation community responses to climate change, and are expected to provide a useful reference for climate change adaptation planning

  15. Evaluation of an ion adsorption method to estimate intragravel flow velocity in salmonid spawning gravels

    Science.gov (United States)

    James L. Clayton; John G. King; Russell F. Thurow

    1996-01-01

    Intragravel water exchange provides oxygenated water, removes metabolic waste, and is an essential factor in salmonid embryo survival. Measurements of intragravel flow velocity have been suggested as an index of gravel quality and also as a useful predictor of fry emergence; however, proposed methods for measuring velocity in gravel are problematic. We evaluate an ion...

  16. Sea Dredged Gravel versus Crushed Granite as Coarse Aggregate for Self Compacting Concrete in Aggressive Environment

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Kristensen, Lasse Frølich

    2007-01-01

    Properties of self compacting concrete (SCC) with two types of coarse aggregate - sea dredged gravel with smooth and rounded particles and crushed granite with rough and angular particles - have been studied. Sea gravel allowed a higher aggregate proportion in the concrete leading to a higher...

  17. Evolution of completion tools gravel pack systems for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Francisco [BJ Services Company, Houston, TX (United States); Vilela, Alvaro; Montanha, Roberto; Hightower, Chad; Acosta, Marco; Farias, Rodrigo [BJ Services do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Conventional gravel pack or frac pack completions typically require the use of wash pipe to act as a conduit for fluid returns as well as to carry a shifting mechanism to open or close a return port. Using properly sized wash pipe can enhance the placement of the gravel across the entire annular space and the formation. It can also be used in conjunction with a shifting mechanism and a sliding sleeve to force the fluid returns to pass through the bottom of the screen. It can allow a wash-down capability while running the assembly into an open hole. In specialty systems, it can even act as a pumping conduit for post-gravel pack stimulation. However, the use of wash pipe, especially in long horizontal wells, means the loss of valuable rig time due to make up and break out of the wash pipe, or recovery if the wash pipe is stuck. Economic considerations, along with completion efficiencies, are especially important on deep water completions. Not using wash pipe reduces rig time, generating significant cost savings, and also eliminates the risk of a fishing operation. This paper reviews conventional wash pipe applications and describes new systems that accomplish the same goal with a minimum amount of wash pipe or no wash pipe at all. (author)

  18. Soft Asphalt and Double Otta Seal—Self-Healing Sustainable Techniques for Low-Volume Gravel Road Rehabilitation

    Directory of Open Access Journals (Sweden)

    Audrius Vaitkus

    2018-01-01

    Full Text Available Increased traffic flow on low-volume gravel roads and deficiencies of national road infrastructure, are increasingly apparent in Lithuania. Gravel roads do not comply with requirements, resulting in low driving comfort, longer travelling time, faster vehicle amortization, and dustiness. The control of dustiness is one of the most important road maintenance activities on gravel roads. Another important issue is the assurance of required driving comfort and safety. Soft asphalt and Otta Seal technologies were proposed as a sustainable solution for the improvement of low-volume roads in Lithuania. Five gravel roads were constructed with soft asphalt, and 13 gravel roads were sealed with double Otta Seal, in 2012. The main aim of this research was to check soft asphalt and double Otta Seal’s ability to self-heal, on the basis of the results of the qualitative visual assessment of pavement defects and distress. The qualitative visual assessment was carried out twice a year following the opening of the rehabilitated road sections. The results confirmed soft asphalt and double Otta Seal’s ability to self-heal. The healing effect was more than 13% and 19% on roads with soft asphalt and double Otta Seal, respectively. In addition, on some roads, all cracks observed in spring self-healed during summer.

  19. Comparison of aquifer characteristics derived from local and regional aquifer tests.

    Science.gov (United States)

    Randolph, R.B.; Krause, R.E.; Maslia, M.L.

    1985-01-01

    A comparison of the aquifer parameter values obtained through the analysis of a local and a regional aquifer test involving the same area in southeast Georgia is made in order to evaluate the validity of extrapolating local aquifer-test results for use in large-scale flow simulations. Time-drawdown and time-recovery data were analyzed by using both graphical and least-squares fitting of the data to the Theis curve. Additionally, directional transmissivity, transmissivity tensor, and angle of anisotropy were computed for both tests. -from Authors Georgia drawdown transmissivity regional aquifer tests

  20. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  1. stabilization of cinder gravel with cment for base course

    African Journals Online (AJOL)

    Girma Berhanu

    techniques was made using samples collected from quarry sites near ... design standards for heavily trafficked base course without adding ... Cinder gravel, Mechanized stabilization, Optimum cement content ... respectively. In the presentation through out the .... here to indicate the general response of cement stabilization in ...

  2. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  3. Hydrology of the Claiborne aquifer and interconnection with the Upper Floridan aquifer in southwest Georgia

    Science.gov (United States)

    Gordon, Debbie W.; Gonthier, Gerard

    2017-04-24

    The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.

  4. An evaluation of aquifer intercommunication between the unconfined and Rattlesnake Ridge aquifers on the Hanford Site

    International Nuclear Information System (INIS)

    Jensen, E.J.

    1987-10-01

    During 1986, Pacific Northwest Laboratory conducted a study of a portion of the Rattlesnake Ridge aquifer (confined aquifer) that lies beneath the B Pond - Gable Mountain Pond area of the Hanford Site. The purpose was to determine the extent of intercommunication between the unconfined aquifer and the uppermost regionally extensive confined aquifer, referred to as the Rattlesnake Ridge aquifer. Hydraulic head data and chemical data were collected from the ground water in the study area during December 1986. The hydraulic head data were used to determine the effects caused by water discharged to the ground from B Pond on both the water table of the unconfined aquifer and the potentiometric surface of the confined aquifer. The chemical data were collected to determine the extent of chemical constituents migrating from the unconfined aquifer to the confined aquifer. Analysis of chemical constituents in the Rattlesnake Ridge aquifer demonstrated that communication between the unconfined and confined aquifers had occurred. However, the levels of contaminants found in the Rattlesnake Ridge aquifer during this study were below the DOE Derived Concentration Guides

  5. 32 CFR 644.551 - Equal opportunity-sales of timber, embedded sand, gravel, stone, and surplus structures.

    Science.gov (United States)

    2010-07-01

    ... § 644.551 Equal opportunity—sales of timber, embedded sand, gravel, stone, and surplus structures... 32 National Defense 4 2010-07-01 2010-07-01 true Equal opportunity-sales of timber, embedded sand, gravel, stone, and surplus structures. 644.551 Section 644.551 National Defense Department of Defense...

  6. Diagnosis of the Ghiss Nekor aquifer in order to elaborate the aquifer contract

    Science.gov (United States)

    Baite, Wissal; Boukdir, A.; Zitouni, A.; Dahbi, S. D.; Mesmoudi, H.; Elissami, A.; Sabri, E.; Ikhmerdi, H.

    2018-05-01

    The Ghiss-Nekor aquifer, located in the north-east of the action area of the ABHL, plays a strategic role in the drinkable water supply of the city of Al Hoceima and of the neighboring urban areas. It also participates in the irrigation of PMH. However, this aquifer has problems such as over-exploitation and pollution. In the face of these problems, the only Solution is the establishment of a new mode of governance, which privileges the participation, the involvement and the responsibility of the actors concerned in a negotiated contractual framework, namely the aquifer contract. The purpose of this study is to diagnose the current state of the Ghiss Nekor aquifer, the hydrogeological characterization of the aquifer, the use of the waters of the aquifer, the Problem identification and the introduction of the aquifer contract, which aims at the participatory and sustainable management of underground water resources in the Ghiss- Nekor plain, to ensure sustainable development.

  7. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    International Nuclear Information System (INIS)

    Waugh, W.J.

    1989-05-01

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs

  8. Natural sulphate contamination in the multi aquifer system in Santiago del Estero city, Argentine; Contaminacion natural por sulfatos en el sistema multiacuifero de la ciudad de Santiago del Estero, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A. P.; Palazzo, R.

    2009-07-01

    The study observed a complex of figures and graphics that reveal the progressive pollution in the pumping wells. Also, it is made a detailed and current review of the underground physics-chemistry evolution, which results justify the importance of finding a real solution to the degradations problem of the aquifers in Santiago del Estero. for that reason, it is strictly necessary to build a total of eleven wells in the recharges zone, so five of them will be diggings 70 m in the gravel wedge (aquifer II) and six wells of 150 m of depth in the margins of the river Dulce. On the other hand, the studies carried out in the area indicate that all the wells will obtain water directly from the river to a direct recharge, so 81% of its flow will be absorb from the river and the rest, 19 % would be taken from the aquifer. This reason will avoid the progressive advance of the saline wedge and there wont harm the chemical quality of the recharge area. The batteries of the wells will supply 1.500.000 L/hour to the interconnected system on the top most potable conditions. (Author) 14 refs.

  9. Sheet-gravel evidence for a late Holocene tsunami run-up on beach dunes, Great Barrier Island, New Zealand

    Science.gov (United States)

    Nichol, Scott L.; Lian, Olav B.; Carter, Charles H.

    2003-01-01

    A semi-continuous sheet of granule to cobble-size clasts forms a distinctive deposit on sand dunes located on a coastal barrier in Whangapoua Bay, Great Barrier Island, New Zealand. The gravel sheet extends from the toe of the foredune to 14.3 m above mean sea level and 200 m landward from the beach. Clasts are rounded to sub-rounded and comprise lithologies consistent with local bedrock. Terrestrial sources for the gravel are considered highly unlikely due to the isolation of the dunes from hillslopes and streams. The only source for the clasts is the nearshore to inner shelf of Whangapoua Bay, where gravel sediments have been previously documented. The mechanism for transport of the gravel is unlikely to be storm surge due to the elevation of the deposit; maximum-recorded storm surge on this coast is 0.8 m above mean high water spring tide. Aeolian processes are also discounted due to the size of clasts and the elevation at which they occur. Tsunami is therefore considered the most probable mechanism for gravel transport. Minimum run-up height of the tsunami was 14.3 m, based on maximum elevation of gravel deposits. Optical ages on dune sands beneath and covering the gravel allow age bracketing to 0-4.7 ka. Within this time frame, numerous documented regional seismic and volcanic events could have generated the tsunami, notably submarine volcanism along the southern Kermadec arc to the east-southeast of Great Barrier Island where large magnitude events are documented for the late Holocene. Radiocarbon ages on shell from Maori middens that appear to have been reworked by tsunami run-up constrain the age of this event to post ca. 1400 AD. Regardless of the precise age of this event, the well-preserved nature of the Whangapoua gravel deposit provides for an improved understanding of the high degree of spatial variability in tsunami run-up.

  10. Seasonal movement change of sediments using RFID tracer monitoring in composite gravel beach, west coast of Korea

    Science.gov (United States)

    Han, M.; Yu, J.; Yang, D. Y.; Kim, J. W.

    2017-12-01

    The purpose of this study is to investigate seasonal movement patterns of gravel movements on the west coast of Korean peninsula. This study aims improve understanding of the process of coastal sediments movement and contribute to coastal erosion management. The study site is Taean Bangpo Beach, which is characterized by its macro tide and composite gravel beach (CGB). In this study, we carried out a radio frequency identifier (RFID) tracer movement monitoring experiment. Four hundred tracers, similar in size and shape to beach sediment, were inserted into the beach in February and December 2015. From the results, it was confirmed that generally, gravel moved southward in the winter and northward in the summer. It was also confirmed that the gravel moved long distances in the summer and winter, but much shorter distances in the spring. At the end of the results, it is confirmed that the tracer recovery rate in summer is lower than in winter. Bangpo Beach was influenced by strong wind and wave energy driven by the East Asian winter monsoon, and by normal tidal energy during the other seasons. It means that seasonal variation of gravel movement in the beach is attributed to the difference of seasonal energy conditions. In addition, it is interpreted that the sand at the intertidal zone cannot be removed in the summer when the wave energy is weak, causing the tracer to be buried. This study is expected to contribute to the study of composite gravel beach and coastal coarse sediment movement which have been lacking in research.

  11. Labour-based bitumen roads as cost-effective alternatives to conventional gravel wearing courses

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-09-01

    Full Text Available and streets. The potential for large-scale application of labour-based road works is therefore enormous. Delivery of a quality product is seen as key to the acceptance of labour-based road works. In Gundo Lashu it was realised early on that finding good... quality wearing course gravel in itself constituted a major problem in many areas of the province, thus bringing the costs for a fully rehabilitated and gravelled 5.5m wide road to about R230 000 in some instances. Aside from depleting an increasingly...

  12. EPA Region 1 Sole Source Aquifers

    Science.gov (United States)

    This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of drinking water for a given aquifer service area; that is, an aquifer which is needed to supply 50% or more of the drinking water for the area and for which there are no reasonable alternative sources should the aquifer become contaminated.The aquifers were defined by a EPA hydrogeologist. Aquifer boundaries were then drafted by EPA onto 1:24000 USGS quadrangles. For the coastal sole source aquifers the shoreline as it appeared on the quadrangle was used as a boundary. Delineated boundaries were then digitized into ARC/INFO.

  13. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    Science.gov (United States)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  14. Horizontal single-trip gravel pack and selective simulation system for deep water extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Francisco [BJ Services Company, Houston, TX (United States); Vilela, Alvaro; Montanha, Roberto; Acosta, Marco; Farias, Rodrigo [BJ Services do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Most of the reservoirs located in the deep water and ultra-deep water offshore South America are described as unconsolidated sandstone that require sand control on both producers and water injection wells. Horizontal Open Hole Gravel Pack completions are the preferred method of development. If completing heavy oil reservoirs, there is a necessity of longer horizontal open hole sections. Low fracture gradients may limit the length of gravel pack in the open hole section because of the pressure increase during the Beta wave proppant deposition phase. This system allows the gravel pack assembly to be installed and the gravel pack to be pumped during the alpha and beta wave deposition phases without the limitation of high pressures that could fracture the well. The benefits of the Horizontal Single-Trip Gravel Pack and Selective Stimulation System (HSTSSS) using the differential valve include the ability to complete longer horizontal intervals, valuable rig-time savings and, efficient mechanical diversion of the stimulation fluid. This paper outlines the application of the HSTSSS system using a differential valve to complete a horizontal well in offshore deep waters. The need for a differential valve is primarily in horizontal gravel packing operations when normal circulating rates and pressures around the open hole would exceed formation break down pressure. The valve is intended to be easily spaced out and run in the wash pipe. At a predetermined differential pressure the valve opens and the return flow path distance around the bottom of the tailpipe is shortened, thus reducing back pressure preventing filter cake damage without slowing the pump rate. In addition the said valve has to close to allow the selective stimulation to take place. Economic considerations along with completion efficiencies are especially important on deep water, subsea completions. The utilization of differential valves allows completion of extended-reach open hole wells and/or low fracture

  15. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    Science.gov (United States)

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  16. A Black Hills-Madison Aquifer origin for Dakota Aquifer groundwater in northeastern Nebraska.

    Science.gov (United States)

    Stotler, Randy; Harvey, F Edwin; Gosselin, David C

    2010-01-01

    Previous studies of the Dakota Aquifer in South Dakota attributed elevated groundwater sulfate concentrations to Madison Aquifer recharge in the Black Hills with subsequent chemical evolution prior to upward migration into the Dakota Aquifer. This study examines the plausibility of a Madison Aquifer origin for groundwater in northeastern Nebraska. Dakota Aquifer water samples were collected for major ion chemistry and isotopic analysis ((18)O, (2)H, (3)H, (14)C, (13)C, (34)S, (18)O-SO(4), (87)Sr, (37)Cl). Results show that groundwater beneath the eastern, unconfined portion of the study area is distinctly different from groundwater sampled beneath the western, confined portion. In the east, groundwater is calcium-bicarbonate type, with delta(18)O values (-9.6 per thousand to -12.4 per thousand) similar to local, modern precipitation (-7.4 per thousand to -10 per thousand), and tritium values reflecting modern recharge. In the west, groundwater is calcium-sulfate type, having depleted delta(18)O values (-16 per thousand to -18 per thousand) relative to local, modern precipitation, and (14)C ages 32,000 to more than 47,000 years before present. Sulfate, delta(18)O, delta(2)H, delta(34)S, and delta(18)O-SO(4) concentrations are similar to those found in Madison Aquifer groundwater in South Dakota. Thus, it is proposed that Madison Aquifer source water is also present within the Dakota Aquifer beneath northeastern Nebraska. A simple Darcy equation estimate of groundwater velocities and travel times using reported physical parameters from the Madison and Dakota Aquifers suggests such a migration is plausible. However, discrepancies between (14)C and Darcy age estimates indicate that (14)C ages may not accurately reflect aquifer residence time, due to mixtures of varying aged water.

  17. Estimating Groundwater Mounding in Sloping Aquifers for Managed Aquifer Recharge.

    Science.gov (United States)

    Zlotnik, Vitaly A; Kacimov, Anvar; Al-Maktoumi, Ali

    2017-11-01

    Design of managed aquifer recharge (MAR) for augmentation of groundwater resources often lacks detailed data, and simple diagnostic tools for evaluation of the water table in a broad range of parameters are needed. In many large-scale MAR projects, the effect of a regional aquifer base dip cannot be ignored due to the scale of recharge sources (e.g., wadis, streams, reservoirs). However, Hantush's (1967) solution for a horizontal aquifer base is commonly used. To address sloping aquifers, a new closed-form analytical solution for water table mound accounts for the geometry and orientation of recharge sources at the land surface with respect to the aquifer base dip. The solution, based on the Dupiuit-Forchheimer approximation, Green's function method, and coordinate transformations is convenient for computing. This solution reveals important MAR traits in variance with Hantush's solution: mounding is limited in time and space; elevation of the mound is strongly affected by the dip angle; and the peak of the mound moves over time. These findings have important practical implications for assessment of various MAR scenarios, including waterlogging potential and determining proper rates of recharge. Computations are illustrated for several characteristic MAR settings. © 2017, National Ground Water Association.

  18. Particulate removal processes and hydraulics of porous gravel media filters

    Science.gov (United States)

    Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.

    2013-12-01

    Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal

  19. Compositional Signatures in Acoustic Backscatter Over Vegetated and Unvegetated Mixed Sand-Gravel Riverbeds

    Science.gov (United States)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2017-10-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  20. Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds

    Science.gov (United States)

    Buscombe, Daniel; Grams, Paul E.; Kaplinski, Matt A.

    2017-01-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  1. Aquifer thermal-energy-storage modeling

    Science.gov (United States)

    Schaetzle, W. J.; Lecroy, J. E.

    1982-09-01

    A model aquifer was constructed to simulate the operation of a full size aquifer. Instrumentation to evaluate the water flow and thermal energy storage was installed in the system. Numerous runs injecting warm water into a preconditioned uniform aquifer were made. Energy recoveries were evaluated and agree with comparisons of other limited available data. The model aquifer is simulated in a swimming pool, 18 ft by 4 ft, which was filled with sand. Temperature probes were installed in the system. A 2 ft thick aquifer is confined by two layers of polyethylene. Both the aquifer and overburden are sand. Four well configurations are available. The system description and original tests, including energy recovery, are described.

  2. Improved Characterization of Groundwater Flow in Heterogeneous Aquifers Using Granular Polyacrylamide (PAM) Gel as Temporary Grout

    Science.gov (United States)

    Klepikova, Maria V.; Roques, Clement; Loew, Simon; Selker, John

    2018-02-01

    The range of options for investigation of hydraulic behavior of aquifers from boreholes has been limited to rigid, cumbersome packers, and inflatable sleeves. Here we show how a new temporary borehole sealing technique using soft grains of polyacrylamide (PAM) gel as a sealing material can be used to investigate natural groundwater flow dynamics and discuss other possible applications of the technology. If no compressive stress is applied, the gel packing, with a permeability similar to open gravel, suppresses free convection, allowing for local temperature measurements and chemical sampling through free-flowing gel packing. Active heating laboratory and field experiments combined with temperature measurements along fiber optic cables were conducted in water-filled boreholes and boreholes filled with soft grains of polyacrylamide gel. The gel packing is shown to minimize the effect of free convection within the well column and enable detection of thin zones of relatively high or low velocity in a highly transmissive alluvial aquifer, thus providing a significant improvement compared to temperature measurements in open boreholes. Laboratory experiments demonstrate that under modest compressive stress to the gel media the permeability transitions from highly permeable to nearly impermeable grouting. Under this configuration the gel packing could potentially allow for monitoring local response pressure from the formation with all other locations in the borehole hydraulically isolated.

  3. Vertical Subsurface Flow Mixing and Horizontal Anisotropy in Coarse Fluvial Aquifers: Structural Aspects

    Science.gov (United States)

    Huggenberger, P.; Huber, E.

    2014-12-01

    Detailed descriptions of the subsurface heterogeneities in coarse fluvial aquifer gravel often lack in concepts to distinguish between the essence and the noise of a permeability structure and the ability to extrapolate site specific hydraulic information at the tens to several hundred meters scale. At this scale the heterogeneity strongly influences the anisotropies of the flow field and the mixing processes in groundwater. However, in many hydrogeological models the complexity of natural systems is oversimplified. Understanding the link between the dynamics of the surface processes of braided-river systems and the resulting subsurface sedimentary structures is the key to characterizing the complexity of horizontal and vertical mixing processes in groundwater. From the different depositional elements of coarse braided-river systems, the largest permeability contrasts can be observed in the scour-fills. Other elements (e.g. different types of gravel sheets) show much smaller variabilities and could be considered as a kind of matrix. Field experiments on the river Tagliamento (Northeast Italy) based on morphological observation and ground-penetrating radar (GPR) surveys, as well as outcrop analyses of gravel pit exposures (Switzerland) allowed us to define the shape, sizes, spatial distribution and preservation potential of scour-fills. In vertical sections (e.g. 2D GPR data, vertical outcrop), the spatial density of remnant erosional bounding surfaces of scours is an indicator for the dynamics of the braided-river system (lateral mobility of the active floodplain, rate of sediment net deposition and spatial distribution of the confluence scours). In case of combined low aggradation rate and low lateral mobility the deposits may be dominated by a complex overprinting of scour-fills. The delineation of the erosional bounding surfaces, that are coherent over the survey area, is based on the identification of angular discontinuities of the reflectors. Fence diagrams

  4. Morphological characteristics of Cape sugarbirds ( Promerops cafer ...

    African Journals Online (AJOL)

    Cape sugarbirds (Promerops cafer) are the largest nectarivores in the Western Cape and feed almost exclusively on protea nectar and associated arthropods. Helderberg Nature Reserve, Western Cape, South Africa, has a large diversity of Protea and supports breeding sugarbirds. As part of a larger study, we captured ...

  5. A laboratory experiment on the evolution of a sand gravel reach under a lack of sediment supply

    NARCIS (Netherlands)

    Orru, C.; Chavarrias Borras, V.; Ferrara, V.; Stecca, G.; Blom, A.

    2015-01-01

    A flume experiment was conducted to examine the evolution of a sand-gravel reach under a lack of sediment supply. A bed composed of a bimodal sediment mixture was installed with a uniform slope and an gradual fining pattern. At the upstream end of the flume the initial bed consisted of 100% gravel,

  6. Potential effects of sea-level rise on the depth to saturated sediments of the Sagamore and Monomoy flow lenses on Cape Cod, Massachusetts

    Science.gov (United States)

    Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.

    2016-05-25

    In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea

  7. Multidisciplinary Studies of the Fate and Transport of Contaminants in Ground Water at the U.S. Geological Survey Cape Cod Toxic Substances Hydrology Program Research Site, Massachusetts

    Science.gov (United States)

    Leblanc, D. R.; Smith, R. L.; Kent, D. B.; Barber, L. B.; Harvey, R. W.

    2008-12-01

    The U.S. Geological Survey conducts multidisciplinary research on the physical, chemical, and microbiological processes affecting ground-water contaminants of global concern at its Cape Cod Toxic Substances Hydrology Program site in Massachusetts, USA. The work centers on a 6-kilometer-long plume of treated wastewater in a glacial sand and gravel aquifer. The plume is characterized by distinct geochemical zones caused by the biodegradation of organic materials in treated wastewater that was disposed to the aquifer by rapid infiltration during the period 1936-95. A core group of hydrogeologists, geochemists, microbiologists, and geophysicists has been involved in the research effort for more than two decades. The effort has been enhanced by stable funding, a readily accessible site, a relatively simple hydrologic setting, and logistical support from an adjacent military base. The research team uses a three-part approach to plan and conduct research at the site. First, detailed spatial and temporal monitoring of the plume since the late 1970s provides field evidence of important contaminant-transport processes and provides the basis for multidisciplinary, process-oriented studies. Second, ground-water tracer experiments are conducted in various geochemical zones in the plume to study factors that control the rate and extent of contaminant transport. Several arrays of multilevel sampling devices, including an array with more than 15,000 individual sampling points, are used to conduct these experiments. Plume-scale (kilometers) and tracer-test-scale (1- 100 meters) studies are complemented by laboratory experiments and mathematical modeling of flow and reactive transport. Third, results are applied to the treated-wastewater plume, other contaminant plumes at the military base, and other sites nationally to evaluate the applicability of the findings and to point toward further research. Examples of findings to date include that (1) macrodispersivity can be related to

  8. Geologic history of Cape Cod, Massachusetts

    Science.gov (United States)

    ,

    1976-01-01

    Cape Cod, a sandy peninsula built mostly during the Ice Age, juts into the Atlantic Ocean like a crooked arm. Because of its exposed location, Cape Cod was visited by many early explorers. Although clear-cut evidence is lacking, the Vikings may have sighted this land about 1,000 years ago. It was visited by Samuel de Champlain in 1605, and his detailed descriptions and charts have helped present-day scientists to determine the rate of growth of Nauset Beach marsh and Nauset spit. Bartholomew Gosnold, a lesser known explorer, settled for a short time on the Elizabeth Islands to the southwest and gave Cape Cod its name in 1602. The Pilgrims first landed in America on the tip of Lower Cape Cod after they were turned back from their more southerly destination by shoals between Cape Cod and Nantucket Island. On Cape Cod they found potable water and food and had their first fight with the natives. The Pilgrims, however, decided that this land was too isolated, too exposed, and too sandy to support them, and they sailed across Cape Cod Bay to establish Plymouth. These features remain today. Small villages are separated by large areas of forest, dune, beach, and marsh. This unspoiled natural beauty makes Cape Cod one of the most favored vacation areas for the people living in the thickly settled Northeastern States. Cape Cod is of particular interest to geologists because it was formed by glaciers very recently in terms of geologic time. During the Great Ice Age, (the Pleistocene Epoch which began 2 to 3 million years ago), glaciers advanced from the north into the temperate regions of the Earth. Glacial ice covered the land at least four times. Each advance was accompanied by a worldwide lowering of sea level because the source of the ice was water from the seas. When the glaciers melted, the climate and sea level were probably much like they are today. In fact, some scientists believe that the Earth is presently between glacial episodes and that ice once again will

  9. Potential shallow aquifers characterization through an integrated geophysical method: multivariate approach by means of k-means algorithms

    Directory of Open Access Journals (Sweden)

    Stefano Bernardinetti

    2017-06-01

    Full Text Available The need to obtain a detailed hydrogeological characterization of the subsurface and its interpretation for the groundwater resources management, often requires to apply several and complementary geophysical methods. The goal of the approach in this paper is to provide a unique model of the aquifer by synthesizing and optimizing the information provided by several geophysical methods. This approach greatly reduces the degree of uncertainty and subjectivity of the interpretation by exploiting the different physical and mechanic characteristics of the aquifer. The studied area, into the municipality of Laterina (Arezzo, Italy, is a shallow basin filled by lacustrine and alluvial deposits (Pleistocene and Olocene epochs, Quaternary period, with alternated silt, sand with variable content of gravel and clay where the bottom is represented by arenaceous-pelitic rocks (Mt. Cervarola Unit, Tuscan Domain, Miocene epoch. This shallow basin constitutes the unconfined superficial aquifer to be exploited in the nearly future. To improve the geological model obtained from a detailed geological survey we performed electrical resistivity and P wave refraction tomographies along the same line in order to obtain different, independent and integrable data sets. For the seismic data also the reflected events have been processed, a remarkable contribution to draw the geologic setting. Through the k-means algorithm, we perform a cluster analysis for the bivariate data set to individuate relationships between the two sets of variables. This algorithm allows to individuate clusters with the aim of minimizing the dissimilarity within each cluster and maximizing it among different clusters of the bivariate data set. The optimal number of clusters “K”, corresponding to the individuated geophysical facies, depends to the multivariate data set distribution and in this work is estimated with the Silhouettes. The result is an integrated tomography that shows a finite

  10. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies

    Science.gov (United States)

    2014-01-01

    Background Present study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels. Methods The biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR). Results Yeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels. Conclusion The results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm. PMID:24397917

  11. 33 CFR 117.823 - Cape Fear River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cape Fear River. 117.823 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.823 Cape Fear River. The draw of the Cape Fear Memorial Bridge, mile 26.8, at Wilmington need not open for the passage of vessel from 8...

  12. Aquifer test to determine hydraulic properties of the Elm aquifer near Aberdeen, South Dakota

    Science.gov (United States)

    Schaap, Bryan D.

    2000-01-01

    The Elm aquifer, which consists of sandy and gravelly glacial-outwash deposits, is present in several counties in northeastern South Dakota. An aquifer test was conducted northeast of Aberdeen during the fall of 1999 to determine the hydraulic properties of the Elm aquifer in that area. An improved understanding of the properties of the aquifer will be useful in the possible development of the aquifer as a water resource. Historical water-level data indicate that the saturated thickness of the Elm aquifer can change considerably over time. From September 1977 through November 1985, water levels at three wells completed in the Elm aquifer near the aquifer test site varied by 5.1 ft, 9.50 ft, and 11.1 ft. From June 1982 through October 1999, water levels at five wells completed in the Elm aquifer near the aquifer test site varied by 8.7 ft, 11.4 ft, 13.2 ft, 13.8 ft, and 19.7 ft. The water levels during the fall of 1999 were among the highest on record, so the aquifer test was affected by portions of the aquifer being saturated that might not be saturated during drier times. The aquifer test was conducted using five existing wells that had been installed prior to this study. Well A, the pumped well, has an operating irrigation pump and is centrally located among the wells. Wells B, C, D, and E are about 70 ft, 1,390 ft, 2,200 ft, and 3,100 ft, respectively, in different directions from Well A. Using vented pressure transducers and programmable data loggers, water-level data were collected at the five wells prior to, during, and after the pumping, which started on November 19, 1999, and continued a little over 72 hours. Based on available drilling logs, the Elm aquifer near the test area was assumed to be unconfined. The Neuman (1974) method theoretical response curves that most closely match the observed water-level changes at Wells A and B were calculated using software (AQTESOLV for Windows Version 2.13-Professional) developed by Glenn M. Duffield of Hydro

  13. Hydrogeology and water quality of the Floridan aquifer system and effect of Lower Floridan aquifer withdrawals on the Upper Floridan aquifer at Barbour Pointe Community, Chatham County, Georgia, 2013

    Science.gov (United States)

    Gonthier, Gerard; Clarke, John S.

    2016-06-02

    Two test wells were completed at the Barbour Pointe community in western Chatham County, near Savannah, Georgia, in 2013 to investigate the potential of using the Lower Floridan aquifer as a source of municipal water supply. One well was completed in the Lower Floridan aquifer at a depth of 1,080 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 440 ft below land surface. At the Barbour Pointe test site, the U.S. Geological Survey completed electromagnetic (EM) flowmeter surveys, collected and analyzed water samples from discrete depths, and completed a 72-hour aquifer test of the Floridan aquifer system withdrawing from the Lower Floridan aquifer.Based on drill cuttings, geophysical logs, and borehole EM flowmeter surveys collected at the Barbour Pointe test site, the Upper Floridan aquifer extends 369 to 567 ft below land surface, the middle semiconfining unit, separating the two aquifers, extends 567 to 714 ft below land surface, and the Lower Floridan aquifer extends 714 to 1,056 ft below land surface.A borehole EM flowmeter survey indicates that the Upper Floridan and Lower Floridan aquifers each contain four water-bearing zones. The EM flowmeter logs of the test hole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 91 percent of the total flow rate of 1,000 gallons per minute; the Lower Floridan aquifer contributed about 8 percent. Based on the transmissivity of the middle semiconfining unit and the Floridan aquifer system, the middle semiconfining unit probably contributed on the order of 1 percent of the total flow.Hydraulic properties of the Upper Floridan and Lower Floridan aquifers were estimated based on results of the EM flowmeter survey and a 72-hour aquifer test completed in Lower Floridan aquifer well 36Q398. The EM flowmeter data were analyzed using an AnalyzeHOLE-generated model to simulate upward borehole flow and determine the transmissivity of

  14. Run-of-River Impoundments Can Remain Unfilled While Transporting Gravel Bedload: Numerical Modeling Results

    Science.gov (United States)

    Pearson, A.; Pizzuto, J. E.

    2015-12-01

    Previous work at run-of-river (ROR) dams in northern Delaware has shown that bedload supplied to ROR impoundments can be transported over the dam when impoundments remain unfilled. Transport is facilitated by high levels of sand in the impoundment that lowers the critical shear stresses for particle entrainment, and an inversely sloping sediment ramp connecting the impoundment bed (where the water depth is typically equal to the dam height) with the top of the dam (Pearson and Pizzuto, in press). We demonstrate with one-dimensional bed material transport modeling that bed material can move through impoundments and that equilibrium transport (i.e., a balance between supply to and export from the impoundment, with a constant bed elevation) is possible even when the bed elevation is below the top of the dam. Based on our field work and previous HEC-RAS modeling, we assess bed material transport capacity at the base of the sediment ramp (and ignore detailed processes carrying sediment up and ramp and over the dam). The hydraulics at the base of the ramp are computed using a weir equation, providing estimates of water depth, velocity, and friction, based on the discharge and sediment grain size distribution of the impoundment. Bedload transport rates are computed using the Wilcock-Crowe equation, and changes in the impoundment's bed elevation are determined by sediment continuity. Our results indicate that impoundments pass the gravel supplied from upstream with deep pools when gravel supply rate is low, gravel grain sizes are relatively small, sand supply is high, and discharge is high. Conversely, impoundments will tend to fill their pools when gravel supply rate is high, gravel grain sizes are relatively large, sand supply is low, and discharge is low. The rate of bedload supplied to an impoundment is the primary control on how fast equilibrium transport is reached, with discharge having almost no influence on the timing of equilibrium.

  15. Morphological evolution of the Maipo River in central Chile: Influence of instream gravel mining

    Science.gov (United States)

    Arróspide, Felipe; Mao, Luca; Escauriaza, Cristián

    2018-04-01

    Instream gravel mining is one of the most important causes of channel degradation in South America, specifically in rivers located near large metropolitan areas with rapidly growing cities, where no river management strategies exist. In the western region of the continent, many of these rivers belong to Andean systems, in which significant parts of the watersheds are located in mountain areas at high altitude, with considerable seasonal rainfall variability and steep channel slopes. In these rivers, gravel mining has produced significant incision of the channels with serious physical and ecological consequences, affecting habitats, modifying the supply and transport of sediments, and amplifying the risk to infrastructure in and around the channel during floods. In spite of the degraded conditions of many channels, no quantitative studies of the geomorphic impacts of gravel mining have been carried out in the region, mostly because of the insufficient and sparse data available. In this investigation we perform an analysis of the morphodynamic evolution in a section of the Maipo River in the metropolitan region of Santiago, Chile. This river is economically the most important in the country, as it provides drinking and irrigation water to urban and rural areas, is utilized by the energy generation industry, and runs along and below critical infrastructure. We have collected and analyzed data from 1954 to 2015, during which the city population increased by more than 5 million inhabitants whose presence accelerated land use changes. The analysis shows a rapid morphological evolution of the channel where in 31 years effects such as: river sections showing incision of up to 20 m, an increase of the area affected by gravel mining from 86.62 to 368.13 ha, and a net erosion volume of 39.4 million m3 can be observed. This work yields quantitative information on the consequences of gravel mining in the Maipo River, providing the necessary data to develop an integrated

  16. The Humansdorp Cape Griffon Site

    African Journals Online (AJOL)

    ZeldaH

    Figure 1. The cliff north-west of the town of Humansdorp, Eastern Cape, South Africa, where a small group of Cape Griffons Gyps coprotheres roosted, and reportedly bred, until the end of the. 19 th century. The trees seen in the picture are all alien, invasive, black wattles Acacia mearnsii. (Photo: A Boshoff).

  17. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    International Nuclear Information System (INIS)

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    Highlights: • Humic substances (HS) adversely affect TCE electrochemical reduction. • The inverse correlation between HS content and TCE removal is linear. • HS interfere with the hydrodechlorination of TCE at the cathode. • The impact of HS on TCE removal was reduced in the presence of limestone gravel. - Abstract: In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L −1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A = 254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H 2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes.

  18. Simulation Of Aqua-Ammonia Refrigeration System Using The Cape-Open To Cape-Open COCO Simulator

    Directory of Open Access Journals (Sweden)

    Janavi Gohil

    2017-03-01

    Full Text Available In this paper we have simulated a flow sheet of aqua ammonia refrigeration system using Cape Open simulator. The main aim of writing this paper is to compare the results obtained from thermodynamic simulation of aqua ammonia refrigeration system and the results obtained from the flow sheet simulation in Cape-Open to Cape-Open COCO simulator. The corresponding COP values obtained from both the sources are calculated and compared. With the error being very minute the calculations using simulator prove to be more efficient and timesaving when compared to the results obtained by calculations done using tedious thermodynamic simulations and constant mass balance for different process conditions.

  19. Reactive Transport of Marcellus Shale Waters in Natural Aquifers: the Role of Mineralogical Compositions and Spatial Distribution Patterns

    Science.gov (United States)

    Cai, Z.; Wen, H.; Li, L.

    2017-12-01

    column study suggests in carbonate rich aquifers, carbonate facilitate natural attenuation. In clay-rich aquifers, such as sandstone aquifers, clay helps alleviate the cation during MSW release however these sorbed cations will ultimately release back to the aqueous phase. In sand and gravel aquifers, mixing process primarily controls the concentration level.

  20. Guarani aquifer hydrogeological synthesis of the Guarani aquifer system. Edicion bilingue

    International Nuclear Information System (INIS)

    2009-01-01

    This work represents the synthesis of current knowledge of the Guarani Aquifer System, based on technical products made by different companies and consultants who participated in the framework of the Project for Environmental Protection and Sustainable Development of the Guarani Aquifer.

  1. Monitoring Aquifer Depletion from Space: Case Studies from the Saharan and Arabian Aquifers

    Science.gov (United States)

    Ahmed, M.; Sultan, M.; Wahr, J. M.; Yan, E.

    2013-12-01

    Access to potable fresh water resources is a human right and a basic requirement for economic development in any society. In arid and semi-arid areas, the characterization and understanding of the geologic and hydrologic settings of, and the controlling factors affecting, these resources is gaining increasing importance due to the challenges posed by increasing population. In these areas, there is immense natural fossil fresh water resources stored in large extensive aquifers, the transboundary aquifers. Yet, natural phenomena (e.g., rainfall patterns and climate change) together with human-related factors (e.g., population growth, unsustainable over-exploitation, and pollution) are threatening the sustainability of these resources. In this study, we are developing and applying an integrated cost-effective approach to investigate the nature (i.e., natural and anthropogenic) and the controlling factors affecting the hydrologic settings of the Saharan (i.e., Nubian Sandstone Aquifer System [NSAS], Northwest Sahara Aquifer System [NWSA]) and Arabian (i.e., Arabian Peninsula Aquifer System [APAS]) aquifer systems. Analysis of the Gravity Recovery and Climate Experiment (GRACE)-derived Terrestrial Water Storage (TWS) inter-annual trends over the NSAS and the APAS revealed two areas of significant TWS depletions; the first correlated with the Dakhla Aquifer System (DAS) in the NSAS and second with the Saq Aquifer System (SAS) in the APAS. Annual depletion rates were estimated at 1.3 × 0.66 × 109 m3/yr and 6.95 × 0.68 × 109 m3/yr for DAS and SAS, respectively. Findings include (1) excessive groundwater extraction, not climatic changes, is responsible for the observed TWS depletions ;(2) the DAS could be consumed in 350 years if extraction rates continue to double every 50 years and the APAS available reserves could be consumed within 60-140 years at present extraction (7.08 × 109 m3/yr) and depletion rates; and (3) observed depletions over DAS and SAS and their

  2. Synthesis of AL-MCM-41 using gravel drilling the source of silica from wells drilling

    International Nuclear Information System (INIS)

    Fontes, M.S.B.; Costa, C.C.; Melo, D.M.A.; Viana, L.M.; Viana, S.O.; Santos, L.M.

    2016-01-01

    The aim of this study was to synthesize Al-MCM-41 using gravel drilling as alternative source of silica, aiming at sustainable production and low cost. For hydrothermal synthesis of Al-MCM-41 was used gravel and sodium silicate as source of silica and sodium, respectively. The structural driver used was cetyltrimethylammonium bromide (CTMABr) and solvent distilled water. The hydrothermal synthesis was conducted at 100 ° C in a Teflon autoclave 45 ml jacketed stainless steel for a period of 120 hours with daily correcting pH (range 9-10) using 30% acetic acid. The material obtained was filtered, washed, dried at 100 ° C for 3 hours and then calcined at 550 ° C for 2 hours. Then it was characterized by XRD, FTIR and TG. For the results of characterization has been observed that the use of the gravel drilling as a source of silica was promising alternative for producing a mesoporous material with a high degree of hexagonal ordering. (author)

  3. Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete

    Science.gov (United States)

    Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono

    2018-03-01

    Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.

  4. Recharge and Aquifer Response: Manukan Island’s Aquifer, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Sarva Mangala Praveena

    2010-01-01

    Full Text Available Manukan Island is a small island located in North-West of Sabah, Malaysia was used as a case study area for numerical modeling of an aquifer response to recharge and pumping rates. The results in this study present the variations of recharge into the aquifer under the prediction simulations. The recharge rate increases the water level as indicated by hydraulic heads. This shows that it can alter groundwater of Manukan Island which has been suffering from an overexploration in its unconfined the aquifer. The increase in recharge rate (from 600 mm/year to 750 mm/year increases the water level indicated by hydraulic heads. A reduction in pumping rate (from 0.072 m3/day to 0.058 m3/day not only increases the amount of water levels in aquifer but also reduces the supply hence a deficit in supply. The increase in hydraulic heads depends on the percentage reduction of pumping and recharges rates. The well water has 1978.3 mg/L chloride with current pumping (0.072 m3/day and recharge rates (600 mm/year. However, with an increased of recharge rate and current pumping rate it has decreased about 1.13%. In addition, reduction in pumping rate made the chloride concentration decreased about 2.8%. In general, a reduction in pumping with an increase in recharge rate leads to a decreased in chloride concentrations within the vicinity of cone of depression. Next, to further develop the numerical model, the model should focus on climate change variables such as consequences of climate change are increase in air temperature, increase in sea surface temperature, and more extreme weather conditions. These parameters are considered critical parameters for climate change impact modeling in aquifers. The behavior of the aquifer and its sustainable pumping rate can be done by applying a computer modeling component.

  5. Water quality in gravel pits in the Bratislava area

    International Nuclear Information System (INIS)

    Flakova, R.; Rohacikova, A.; Zenisova, Z.

    1999-01-01

    The gravel pits around Bratislava have an esthetic, urban and recreational function. Open water table areas are in a direct contact with the air and acquire some characteristics of the surface water. The quality of open water table is much more susceptible to pollution than that of groundwater. Wet and dry deposition, water inflow from the surrounding surface, unmanageable sewerage effluents, solid and liquid wastes, but also the water birds contribute to the pollution. The Department of Hydrogeology has monitored the water quality in six gravel pits (Cunovo, Drazdiak, Strkovec, Pasienky, Zlate Piesky, Vajnory) since 1976 with an an interruption between 1988 - 1993. Two sampling per year have been made since 1994 and after 1998 the analyses have been supplemented by Na, K, Fe, Mn, by oxygen regime parameters, by trace elements (As, Ag, Cd, Co, Cu, Cr, Hg, Ni, Pb, V, Zn) and by organic pollutants. As regards the oxygen regime, the water quality pits is very good. The anthropogenic influence is expressed mainly by the increased contents of sulfates and chlorides. Most problematic trace elements are the mercury and vanadium (Drazdiak, Zlate Piesky and Vajnory). (authors)

  6. A General Solution for Groundwater Flow in Estuarine Leaky Aquifer System with Considering Aquifer Anisotropy

    Science.gov (United States)

    Chen, Po-Chia; Chuang, Mo-Hsiung; Tan, Yih-Chi

    2014-05-01

    In recent years the urban and industrial developments near the coastal area are rapid and therefore the associated population grows dramatically. More and more water demand for human activities, agriculture irrigation, and aquaculture relies on heavy pumping in coastal area. The decline of groundwater table may result in the problems of seawater intrusion and/or land subsidence. Since the 1950s, numerous studies focused on the effect of tidal fluctuation on the groundwater flow in the coastal area. Many studies concentrated on the developments of one-dimensional (1D) and two-dimensional (2D) analytical solutions describing the tide-induced head fluctuations. For example, Jacob (1950) derived an analytical solution of 1D groundwater flow in a confined aquifer with a boundary condition subject to sinusoidal oscillation. Jiao and Tang (1999) derived a 1D analytical solution of a leaky confined aquifer by considered a constant groundwater head in the overlying unconfined aquifer. Jeng et al. (2002) studied the tidal propagation in a coupled unconfined and confined costal aquifer system. Sun (1997) presented a 2D solution for groundwater response to tidal loading in an estuary. Tang and Jiao (2001) derived a 2D analytical solution in a leaky confined aquifer system near open tidal water. This study aims at developing a general analytical solution describing the head fluctuations in a 2D estuarine aquifer system consisted of an unconfined aquifer, a confined aquifer, and an aquitard between them. Both the confined and unconfined aquifers are considered to be anisotropic. The predicted head fluctuations from this solution will compare with the simulation results from the MODFLOW program. In addition, the solutions mentioned above will be shown to be special cases of the present solution. Some hypothetical cases regarding the head fluctuation in costal aquifers will be made to investigate the dynamic effects of water table fluctuation, hydrogeological conditions, and

  7. Mercury Cycling in Salt Marsh Pond Ecosystems: Cape Cod, MA

    Science.gov (United States)

    Ganguli, P. M.; Gonneea, M. E.; Lamborg, C. H.; Kroeger, K. D.; Swarr, G.; Vadman, K. J.; Baldwin, S.; Brooks, T. W.; Green, A.

    2014-12-01

    We are measuring total mercury (HgT) and monomethylmercury (CH3Hg+ or MMHg) in pore water, surface water, and sediment cores from two salt marsh pond systems on the south shore of Cape Cod, MA to characterize the distribution of mercury species and to identify features that influence mercury speciation and transport. Sage Lot Pond is relatively undisturbed and has low nitrogen loading (12 kg ha-1 y-1). It is part of the Waquoit Bay National Estuarine Reserve and is surrounded by undeveloped wooded uplands. In contrast, Great Pond is highly impacted. Nitrogen loading to the site is elevated (600 kg ha-1 y-1) and the marsh is adjacent to a large residential area. In both systems, a 1 to 2 m organic-rich peat layer overlies the permeable sand aquifer. Groundwater in this region is typically oxic, where pore water within salt marsh peat is suboxic to anoxic. We hypothesize that redox gradients at the transition from the root zone to peat and at the peat-sand interface may provide habitat for MMHg-producing anaerobic bacteria. Preliminary results from a 2-m nearshore depth profile at Sage Lot Pond indicate HgT in groundwater within the sand aquifer occurred primarily in the > 0.2 μm fraction, with unfiltered concentrations exceeding 100 pM. Filtered (fraction of filtered HgT in peat pore water. Although MMHg in both groundwater and pore water remained around 1 pM throughout our depth profile, we observed an increase in sediment MMHg (0.3 to 1.6 μg/kg) at the peat-sand interface. MMHg comprised ~50% of the HgT concentration in pore water suggesting mercury in the salt marsh peat is biologically available.

  8. Geothermal Exploration in Hot Springs, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  9. Nutrient Removal during Stormwater Aquifer Storage and Recovery in an Anoxic Carbonate Aquifer.

    Science.gov (United States)

    Vanderzalm, Joanne L; Page, Declan W; Dillon, Peter J; Barry, Karen E; Gonzalez, Dennis

    2018-03-01

    Stormwater harvesting coupled to managed aquifer recharge (MAR) provides a means to use the often wasted stormwater resource while also providing protection of the natural and built environment. Aquifers can act as a treatment barrier within a multiple-barrier approach to harvest and use urban stormwater. However, it remains challenging to assess the treatment performance of a MAR scheme due to the heterogeneity of aquifers and MAR operations, which in turn influences water treatment processes. This study uses a probabilistic method to evaluate aquifer treatment performance based on the removal of total organic C (TOC), N, and P during MAR with urban stormwater in an anoxic carbonate aquifer. Total organic C, N, and P are represented as stochastic variables and described by probability density functions (PDFs) for the "injectant" and "recovery"; these injectant and recovery PDFs are used to derive a theoretical MAR removal efficiency PDF. Four long-term MAR sites targeting one of two tertiary carbonate aquifers (T1 and T2) were used to describe the nutrient removal efficiencies. Removal of TOC and total N (TN) was dominated by redox processes, with median removal of TOC between 50 and 60% at all sites and TN from 40 to 50% at three sites with no change at the fourth. Total P removal due to filtration and sorption accounted for median removal of 29 to 53%. Thus, the statistical method was able to characterize the capacity of the anoxic carbonate aquifer treatment barrier for nutrient removal, which highlights that aquifers can be an effective long-term natural treatment option for management of water quality, as well as storage of urban stormwater. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. The usefulness of multi-well aquifer tests in heterogeneous aquifers

    International Nuclear Information System (INIS)

    Young, S.C.; Benton, D.J.; Herweijer, J.C.; Sims, P.

    1990-01-01

    Three large-scale (100 m) and seven small-scale (3-7 m) multi-well aquifer tests were conducted in a heterogeneous aquifer to determine the transmissivity distribution across a one-hectare test site. Two of the large-scale tests had constant but different rates of discharge; the remaining large-scale test had a discharge that was pulsed at regulated intervals. The small-scale tests were conducted at two well clusters 20 m apart. The program WELTEST was written to analyze the data. By using the methods of non-linear least squares regression analysis and Broyden's method to solve for non-linear extrema, WELTEST automatically determines the best values of transmissivity and the storage coefficient. The test results show that order of magnitude differences in the calculated transmissivities at a well location can be realized by varying the discharge rate at the pumping well, the duration of the aquifer test, and/or the location of the pumping well. The calculated storage coefficients for the tests cover a five-order magnitude range. The data show a definite trend for the storage coefficient to increase with the distance between the pumping and the observation wells. This trend is shown to be related to the orientation of high hydraulic conductivity zones between the pumping and the observation wells. A comparison among single-well aquifer tests, geological investigations and multi-well aquifer tests indicate that the multi-well tests are poorly suited for characterizing a transmissivity field. (Author) (11 refs., 14 figs.)

  11. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  12. 33 CFR 117.829 - Northeast Cape Fear River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Northeast Cape Fear River. 117... BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.829 Northeast Cape... the Seaboard System Railroad Bridge across the Northeast Cape Fear River, mile 27.0, at Castle Hayne...

  13. Patterns of plant speciation in the Cape floristic region.

    Science.gov (United States)

    van der Niet, Timotheüs; Johnson, Steven D

    2009-04-01

    Plant species have accumulated in the Cape region of southern Africa to a much greater degree than in areas of equivalent size in the rest of the subcontinent. Although this could be a consequence simply of lower extinction rates in the Cape, most researchers have invoked high rates of ecological speciation, driven by unique aspects of the Cape environment, as the primary explanation for this richness. To assess these ideas, we analyzed the frequencies of ecological shifts among 188 sister species pairs obtained from molecular phylogenies of eight Cape clades. Ecological shifts were evident in 80% of sister species pairs, with general habitat, pollinator, and fire-survival strategy shifts being especially frequent. Contrary to an established idea that shifts in soil type are frequently associated with speciation of Cape taxa, these shifts were relatively rare, occurring in just 17% of species pairs. More cases of sister species divergence are accompanied solely by floral than by vegetative diversification, suggesting an important role for pollinator-driven speciation. In an analysis of two large orchid genera that have radiated in both the Cape and the rest of southern Africa, the frequency of ecological shifts (general habitat, soil type, altitude and flowering time), did not differ between sister species pairs in the Cape region and those outside it. Despite suggestions that Cape plants tend to have small range sizes and show fine-scale patterns of speciation, range size did not differ significantly between species in the Cape and those outside it. We conclude that ecological speciation is likely to have been important for radiation of the Cape flora, but there is no evidence as yet for special "Cape" patterns of ecological speciation.

  14. Geomorphic Effects of Gravel Augmentation and Bank Re-erosion on the Old Rhine River Downstream From The Kembs Dam (France, Germany)

    Science.gov (United States)

    Chardon, V.; Laurent, S.; Piegay, H.; Arnaud, F.; Houssier, J.; Serouilou, J.; Clutier, A.

    2017-12-01

    The Old Rhine is a 50 km by-passed reach downstream from the Kembs diversion dam in the Alsacian plain (France/Germany). It has been impacted by engineering works since the 19th century. This reach exhibits poor ecological functionalities due to severe geomorphological alterations (e.g., channel bed stabilization, narrowing, degradation and armoring, sediment deficit). In the frame of the Kembs power plant relicensing (2010), Électricité de France has undertaken two gravel augmentations (18 000 and 30 000 m3) and three controlled bank erosions following riprap protection removal over 300 m bank length to enhance bedload transport and habitat diversification. A first pilot gravel augmentation was also implemented in 2010 (23 000 m3). A geomorphological monitoring based on bedload tracking, grain size analyses and topo-bathymetric surveys has been performed on the three gravel augmentation reaches and one of the controlled bank erosion sites to assess the efficiency and sustainability of these actions (2010-2017). Results show that augmented gravels are entrained for a Q2 flood. Gravels moved several hundred meters for moderate floods and up to one kilometer for more intense floods (Q15), while sediment deposition mainly diffused within the channel. Morphological and grain size diversification, including sediment refinement, are still relatively limited following gravel augmentation. Furthermore, sediment armoring reestablished once the sediment wave moved more downstream, after only four to six years, due to the stability and the narrowness of the channel but also by the absence of upstream bedload supply. Habitat diversification was higher on the controlled bank erosion site thanks to the presence of two artificial groynes, even though eroded sediment volumes were lower than expected (less than 1500m3 for a Q15 flood). This monitoring demonstrates gravel augmentations are not sufficient to really diversify geomorphological conditions of the Old Rhine. Channel

  15. Gravel-Sand-Clay Mixture Model for Predictions of Permeability and Velocity of Unconsolidated Sediments

    Science.gov (United States)

    Konishi, C.

    2014-12-01

    Gravel-sand-clay mixture model is proposed particularly for unconsolidated sediments to predict permeability and velocity from volume fractions of the three components (i.e. gravel, sand, and clay). A well-known sand-clay mixture model or bimodal mixture model treats clay contents as volume fraction of the small particle and the rest of the volume is considered as that of the large particle. This simple approach has been commonly accepted and has validated by many studies before. However, a collection of laboratory measurements of permeability and grain size distribution for unconsolidated samples show an impact of presence of another large particle; i.e. only a few percent of gravel particles increases the permeability of the sample significantly. This observation cannot be explained by the bimodal mixture model and it suggests the necessity of considering the gravel-sand-clay mixture model. In the proposed model, I consider the three volume fractions of each component instead of using only the clay contents. Sand becomes either larger or smaller particles in the three component mixture model, whereas it is always the large particle in the bimodal mixture model. The total porosity of the two cases, one is the case that the sand is smaller particle and the other is the case that the sand is larger particle, can be modeled independently from sand volume fraction by the same fashion in the bimodal model. However, the two cases can co-exist in one sample; thus, the total porosity of the mixed sample is calculated by weighted average of the two cases by the volume fractions of gravel and clay. The effective porosity is distinguished from the total porosity assuming that the porosity associated with clay is zero effective porosity. In addition, effective grain size can be computed from the volume fractions and representative grain sizes for each component. Using the effective porosity and the effective grain size, the permeability is predicted by Kozeny-Carman equation

  16. Aquifer thermal energy stores in Germany

    International Nuclear Information System (INIS)

    Kabus, F.; Seibt, P.; Poppei, J.

    2000-01-01

    This paper describes the state of essential demonstration projects of heat and cold storage in aquifers in Germany. Into the energy supply system of the buildings of the German Parliament in Berlin, there are integrated both a deep brine-bearing aquifer for the seasonal storage of waste heat from power and heat cogeneration and a shallow-freshwater bearing aquifer for cold storage. In Neubrandenburg, a geothermal heating plant which uses a 1.200 m deep aquifer is being retrofitted into an aquifer heat storage system which can be charged with the waste heat from a gas and steam cogeneration plant. The first centralised solar heating plant including an aquifer thermal energy store in Germany was constructed in Rostock. Solar collectors with a total area of 1000m 2 serve for the heating of a complex of buildings with 108 flats. A shallow freshwater-bearing aquifer is used for thermal energy storage. (Authors)

  17. EPA Region 1 Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — This coverage contains boundaries of EPA-approved sole source aquifers. Sole source aquifers are defined as an aquifer designated as the sole or principal source of...

  18. Development and Modelling of a High-Resolution Aquifer Analog in the Guarani Aquifer (Brazil)

    OpenAIRE

    Höyng, Dominik

    2014-01-01

    A comprehensive and detailed knowledge about the spatial distribution of physical and chemical properties in heterogeneous porous aquifers plays a decisive role for a realistic representation of governing parameters in mathematical models. Models allow the simulation, prediction and reproduction of subsurface flow and transport characteristics. This work explains the identification, characterization and effects of small-scale aquifer heterogeneities in the Guarani Aquifer System (GAS) in S...

  19. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    Science.gov (United States)

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains. Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone. However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer. The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from

  20. Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer

    Science.gov (United States)

    Mishra, Phoolendra Kumar; Neuman, Shlomo P.

    2010-07-01

    We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.

  1. Laboratory evidence for short and long-term damage to pink salmon incubating in oiled gravel

    International Nuclear Information System (INIS)

    Heintz, R.; Rice, S.; Wiedmer, M.

    1995-01-01

    Pink salmon, incubating in gravel contaminated with crude oil, demonstrated immediate and delayed responses in the laboratory at doses consistent with the concentrations observed in oiled streams in Prince William Sound. The authors incubated pink salmon embryos in a simulated intertidal environment with gravel contaminated by oil from the Exxon Valdez. During the incubation and emergence periods the authors quantified dose-response curves for characters affected directly by the oil. After emergence, fish were coded wire tagged and released, or cultured in netpens. Delayed responses have been observed among the cultured fish, and further observations will be made when coded wire tagged fish return in September 1995. The experiments have demonstrated that eggs need not contact oiled gravel to experience increased mortality, and doses as low as 17 ppb tPAH in water can have delayed effects on growth. A comparison of sediment tPAH concentrations from streams in Prince William Sound with these laboratory data suggests that many 1989 brood pink salmon were exposed to deleterious quantities of oil

  2. Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer)

    DEFF Research Database (Denmark)

    Duque, Carlos; Calvache, Marie; Engesgaard, Peter Knudegaard

    2010-01-01

    Heat was applied as a tracer for determining river–aquifer relations in the Motril-Salobreña aquifer (S Spain). The aquifer has typically been recharged by River Guadalfeo infiltration, nevertheless from 2005 a dam was constructed changing the traditional dynamic river flow and recharge events...

  3. Review of Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer in Southern Florida

    Science.gov (United States)

    Reese, Ronald S.

    2006-01-01

    Introduction: Interest and activity in aquifer storage and recovery (ASR) in southern Florida has increased greatly during the past 10 to 15 years. ASR wells have been drilled to the carbonate Floridan aquifer system at 30 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The primary storage zone at these sites is contained within the brackish to saline Upper Floridan aquifer of the Floridan aquifer system. The strategy for use of ASR in southern Florida is to store excess freshwater available during the wet season in an aquifer and recover it during the dry season when needed for supplemental water supply. Each ASR cycle is defined by three periods: recharge, storage, and recovery. This fact sheet summarizes some of the findings of a second phase retrospective assessment of existing ASR facilities and sites.

  4. Radon diffusion studies in air, gravel, sand, soil and water

    International Nuclear Information System (INIS)

    Singh, B.; Singh, S.; Virk, H.S.

    1993-01-01

    Radon isotopes are practically inert and have properties of gases under conditions of geological interest. During their brief lives their atoms are capable of moving from sites of their generation. Radon diffusion studies were carried out in air, gravel, sand, soil and water using silicon diffused junction electronic detector, Alphameter-400. Diffusion constant and diffusion length is calculated for all these materials. (author)

  5. Foraging range and habitat use by Cape Vulture Gyps coprotheres from the Msikaba colony, Eastern Cape province, South Africa

    Directory of Open Access Journals (Sweden)

    Morgan B. Pfeiffer

    2015-05-01

    Full Text Available Despite the extent of subsistence farmland in Africa, little is known about endangered species that persist within them. The Cape Vulture (Gyps coprotheres is regionally endangered in southern Africa and at least 20% of the population breeds in the subsistence farmland area previously known as the Transkei in the Eastern Cape province of South Africa. To understand their movement ecology, adult Cape Vultures (n = 9 were captured and fitted with global positioning system/global system for mobile transmitters. Minimum convex polygons (MCPs,and 99% and 50% kernel density estimates (KDEs were calculated for the breeding and non breeding seasons of the Cape Vulture. Land use maps were constructed for each 99% KDE and vulture locations were overlaid. During the non-breeding season, ranges were slightly larger(mean [± SE] MCP = 16 887 km2 ± 366 km2 than the breeding season (MCP = 14 707 km2 ± 2155 km2. Breeding and non-breeding season MCPs overlapped by a total of 92%. Kernel density estimates showed seasonal variability. During the breeding season, Cape Vultures used subsistence farmland, natural woodland and protected areas more than expected. In the non-breeding season, vultures used natural woodland and subsistence farmland more than expected, and protected areas less than expected. In both seasons, human-altered landscapes were used less, except for subsistence farmland. Conservation implications: These results highlight the importance of subsistence farm land to the survival of the Cape Vulture. Efforts should be made to minimise potential threats to vultures in the core areas outlined, through outreach programmes and mitigation measures.The conservation buffer of 40 km around Cape Vulture breeding colonies should be increased to 50 km.

  6. Evaluation of Hydraulic Parameters Obtained by Different Measurement Methods for Heterogeneous Gravel Soil

    Directory of Open Access Journals (Sweden)

    Chen Zeng

    2012-01-01

    Full Text Available Knowledge of soil hydraulic parameters for the van Genuchten function is important to characterize soil water movement for watershed management. Accurate and rapid prediction of soil water flow in heterogeneous gravel soil has become a hot topic in recent years. However, it is difficult to precisely estimate hydraulic parameters in a heterogeneous soil with rock fragments. In this study, the HYDRUS-2D numerical model was used to evaluate hydraulic parameters for heterogeneous gravel soil that was irregularly embedded with rock fragments in a grape production base. The centrifugal method (CM, tensiometer method (TM and inverse solution method (ISM were compared for various parameters in the van Genuchten function. The soil core method (SCM, disc infiltration method (DIM and inverse solution method (ISM were also investigated for measuring saturated hydraulic conductivity. Simulation with the DIM approach revealed a problem of overestimating soil water infiltration whereas simulation with the SCM approach revealed a problem of underestimating water movement as compared to actual field observation. The ISM approach produced the best simulation result even though this approach slightly overestimated soil moisture by ignoring the impact of rock fragments. This study provides useful information on the overall evaluation of soil hydraulic parameters attained with different measurement methods for simulating soil water movement and distribution in heterogeneous gravel soil.

  7. Indoor radon in houses built on gravel and sand deposits in southern Finland

    Directory of Open Access Journals (Sweden)

    Hutri, K.-L.

    1993-06-01

    Full Text Available Studies by the Finnish Centre for Radiation and Nuclear Safety (STUK have shown that, in Finland, indoor radon concentrations are almost twice as high in houses built on sand or gravel as in houses built on other soil types. The aim of this study was to assess the radon risk on eskers, ice-marginal formations, and other gravel and sand deposits on the basis of factors that can be determined from geological maps. Altogether, 514 houses built on gravel and sand deposits were selected for the study from the indoor radon database of STUK. Several geological parameters were determined. Empirical statistical models were used to assess the significance of factors affecting indoor radon in glaciofluvial deposits and the sand-dominant littoral deposits occurring in association with them. A relationship was found between increased indoor radon concentrations and the location of a house on a steep-sided esker, in the southeastern rapakivi granite area and on the upper slope or top of an esker. The steepness of the slope also increased the radon concentration in houses on steep-sided eskers. The effect of the topographic features is due to subterranean air-flows. As estimated from the very sparse till sampling, the elevated uranium concentration increased the indoor radon concentration only in houses built on littoral deposits around eskers and ice-marginal formations.

  8. Surviving gangs, violence and racism in cape town

    DEFF Research Database (Denmark)

    Lindegaard, Marie Rosenkrantz

    Surviving Gangs, Violence and Racism in Cape Town offers an ethnographic study of young men in Cape Town and considers how they stay safe in when growing up in post-apartheid South Africa. Breaking away from previous studies looking at structural inequality and differences, this unique book focus...... they move between "black" or "coloured" township areas and the "white" suburbs of Cape Town....

  9. Geospatial compilation of historical water-level changes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13, Gulf Coast aquifer system, Houston-Galveston region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Linard, Joshua I.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced an annual series of reports that depict water-level changes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas, from 1977 to 2013. Changes are determined from water-level measurements between December and March of each year from groundwater wells screened in one of the three aquifers. Existing published maps and unpublished geographic information system (GIS) datasets were compiled into a comprehensive geodatabase of all water-level-change maps produced as part of this multiagency effort. Annual water-level-change maps were georeferenced and digitized where existing GIS data were unavailable (1979–99). Existing GIS data available for 2000–13 were included in the geodatabase. The compilation contains 121 datasets showing water-level changes for each primary aquifer of the Gulf Coast aquifer system: 56 for the Chicot aquifer (1977; 1979–2013 and 1990; 1993–2013), 56 for the Evangeline aquifer (1977; 1979–2013 and 1990; 1993–2013), and 9 for the Jasper aquifer (2000; 2005–13).

  10. Guarani aquifer

    International Nuclear Information System (INIS)

    2007-01-01

    The environmental protection and sustain ability develop project of Guarani Aquifer System is a join work from Argentina, Brazil, Paraguay and Uruguay with a purpose to increase the knowledge resource and propose technical legal and organizational framework for sustainable management between countries.The Universities funds were created as regional universities support in promotion, training and academic research activities related to environmental al social aspects of the Guarani Aquifer System.The aim of the project is the management and protection of the underground waters resources taking advantage and assesment for nowadays and future generations

  11. Computational fluid dynamics and experimental tests helping to understand the gravel pack displacement in petroleum wells; Fluidodinamica computacional (CFD) e testes experimentais ajudam a compreender o fenomeno do deslocamento do gravel pack em pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Joao Vicente Martins de; Leal, Rafael Amorim Ferreira; Martins, Andre Leibsohn; Calderon, Agostinho; Ferreira, Marcus Vinicius Duarte [Petrobras S.A., Rio de Janeiro, RJ (Brazil)], E-mails: ivmm@petrobras.com.br, rafaelleal@petrobras.com.br, aleibsohn@petrobras.com.br, agoscal@petrobras.com.br, mvdferreira@petrobras.com.br; Simoes, Bruno; Barbosa, Diego [Halliburton, Novo Cavaleiros, Macae, RJ (Brazil)], E-mails: bruno.simoes@halliburton.com.br, diego.barbosa@halliburton.com.br

    2010-07-01

    In the petroleum exploitation and production in deep water, at the fields operated by PETROBRAS, Brazil, one of the problems frequently found is the need of elimination of sand production, having in mind that the most of those fields produce from the non consolidated sandstones. The opened well Gravel Packing is the technique most used for that task. Due to the fact of Gravel Packing operations occurs at thousand of meters below the surface, it is necessary the computational simulation for forecasting how particle deposition (Gravel) in the well occurs. So, it was used the commercial pack of fluid dynamics FLUENT 12, which calculates the fluid velocity field, coupled to another commercial pack, the EDEM, based on discrete elements that treat of particle mechanics. The coupling of the two software has shown adequate the comparison of the computational results with the experimental data shows a good adjustment. Besides, it was possible to simulate problems of well early clogging, showing that the computational simulation is strong and capable of captivating such a phenomena.

  12. Comparison of nectar foraging efficiency in the Cape honeybee ...

    African Journals Online (AJOL)

    1987-03-17

    Mar 17, 1987 ... Comparison of nectar foraging efficiency in the Cape honeybee, Apis mellifera capensis Escholtz, and the African honeybee, Apis mellifera adansonii Latreille,. , in the western Cape Province. P.V. W-Worswick*. Department of Zoology, University of Cape Town, Rondebosch 7700 Republic of South Africa.

  13. Geohydrology of the Cerro Prieto geothermal aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez R, J.; de la Pena L, A.

    1981-01-01

    The most recent information on the Cerro Prieto geothermal aquifer is summarized, with special emphasis on the initial production zone where the wells completed in the Alpha aquifer are located. These wells produce steam for power plant units 1 and 2. Brief comments also are made on the Beta aquifer, which underlies the Alpha aquifer in the Cerro Prieto I area and which extends to the east to what is known as the Cerro Prieto II and Cerro Prieto III areas. The location of the area studied is shown. The Alpha and Beta aquifers differ in their mineralogy and cementing mineral composition, temperatures, and piezometric levels. The difference in piezometric levels indicates that there is no local communication between the two aquifers. This situation has been verified by a well interference test, using well E-1 as a producer in the Beta aquifer and well M-46 as the observation well in the Alpha aquifer. No interference between them was observed. Information on the geology, geohydrology, and geochemistry of Cerro Prieto is presented.

  14. Image analysis to measure sorting and stratification applied to sand-gravel experiments

    NARCIS (Netherlands)

    Orrú, C.

    2016-01-01

    The main objective of this project is to develop new measuring techniques for providing detailed data on sediment sorting suitable for sand-gravel laboratory experiments. Such data will be of aid in obtaining new insights on sorting mechanisms and improving prediction capabilities of morphodynamic

  15. Three-Dimensional Geological Model of Quaternary Sediments in Walworth County, Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Jodi Lau

    2016-07-01

    Full Text Available A three-dimensional (3D geologic model was developed for Quaternary deposits in southern Walworth County, WI using Petrel, a software package primarily designed for use in the energy industry. The purpose of this research was to better delineate and characterize the shallow glacial deposits, which include multiple shallow sand and gravel aquifers. The 3D model of Walworth County was constructed using datasets such as the U.S. Geological Survey 30 m digital elevation model (DEM of land surface, published maps of the regional surficial geology and bedrock topography, and a database of water-well records. Using 3D visualization and interpretation tools, more than 1400 lithostratigraphic picks were efficiently interpreted amongst 725 well records. The final 3D geologic model consisted of six Quaternary lithostratigraphic units and a bedrock horizon as the model base. The Quaternary units include in stratigraphic order from youngest to oldest: the New Berlin Member of the Holy Hill Formation, the Tiskilwa Member of the Zenda Formation, a Sub-Tiskilwa Sand/Gravel unit, the Walworth Formation, a Sub-Walworth Sand/Gravel unit, and a Pre-Illinoisan unit. Compared to previous studies, the results of this study indicate a more detailed distribution, thickness, and interconnectivity between shallow sand and gravel aquifers and their connectivity to shallow bedrock aquifers. This study can also help understand uncertainty within previous local groundwater-flow modeling studies and improve future studies.

  16. New methodology for aquifer influx status classification for single wells in a gas reservoir with aquifer support

    Directory of Open Access Journals (Sweden)

    Yong Li

    2016-10-01

    Full Text Available For gas reservoirs with strong bottom or edge aquifer support, the most important thing is avoiding aquifer breakthrough in a gas well. Water production in gas wells does not only result in processing problems in surface facilities, but it also explicitly reduces well productivity and reservoir recovery. There are a lot of studies on the prediction of water breakthrough time, but they are not completely practicable due to reservoir heterogeneity. This paper provides a new method together with three diagnostic curves to identify aquifer influx status for single gas wells; the aforementioned curves are based on well production and pressure data. The whole production period of a gas well can be classified into three periods based on the diagnostic curves: no aquifer influx period, early aquifer influx period, and middle-late aquifer influx period. This new method has been used for actual gas well analysis to accurately identify gas well aquifer influx status and the water breakthrough sequence of all wells in the same gas field. Additionally, the evaluation results are significantly beneficial for well production rate optimization and development of an effective gas field.

  17. Sediment transport primer: estimating bed-material transport in gravel-bed rivers

    Science.gov (United States)

    Peter Wilcock; John Pitlick; Yantao Cui

    2009-01-01

    This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate...

  18. Cape anchovy Engraulis capensis spawn mainly east of Cape Point ...

    African Journals Online (AJOL)

    spamer

    In the southern Benguela, successful recruitment of Cape anchovy Engraulis capensis is ... Based on the total area of 16–19°C water on the western Agulhas. Bank, Richardson et al. .... in the zone, φ the new value, and β is a relaxation pa-.

  19. Environmental laws for mining activities in Provincia de San Juan (Argentina), gravel mines exploitation

    International Nuclear Information System (INIS)

    Ramirez, M.; Carrascosa, H.

    2007-01-01

    This paper analyses San Juan Province - Argentina prevailing environmental legislation for mining activity and gravel mines. The study focuses the subject from a mining engineering point of view. (author)

  20. Increasing freshwater recovery upon aquifer storage : A field and modelling study of dedicated aquifer storage and recovery configurations in brackish-saline aquifers

    NARCIS (Netherlands)

    Zuurbier, Koen

    2016-01-01

    The subsurface may provide opportunities for robust, effective, sustainable, and cost-efficient freshwater management solutions. For instance, via aquifer storage and recovery (ASR; Pyne, 2005): “the storage of water in a suitable aquifer through a well during times when water is available, and the

  1. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  2. Aquifers

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This map layer contains the shallowest principal aquifers of the conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands, portrayed as polygons....

  3. Cement Type Influence on Alkali-Silica Reaction in Concrete with Crushed Gravel Aggregate

    Science.gov (United States)

    Rutkauskas, A.; Nagrockienė, D.; Skripkiūnas, G.

    2017-10-01

    Alkali-silica reaction is one of the chemical reactions which have a significant influence for durability of concrete. During alkali and silica reaction, silicon located in aggregates of the concrete, reacts with high alkali content. This way in the micropores of concrete is forming hygroscopic gel, which at wet environment, expanding and slowly but strongly destroying concrete structures. The goal of this paper- to determine the influence of cement type on alkali-silica reaction of mortars with crushed gravel. In the study crushed gravel with fraction 4/16 mm was used and four types of cements tested: CEM I 42.5 R; CEM I 42.5 SR; CEM II/A-S 42.5; CEM II/A-V 52.5. This study showed that crushed gravel is low contaminated on reactive particles containing of amorphous silica dioxide. The expansion after 14 days exceed 0.054 %, by RILEM AAR-2 research methodology (testing specimen dimension 40×40×160 mm). Continuing the investigation to 56 days for all specimens occurred alkaline corrosion features: microcracking and the surface plaque of gel. The results showed that the best resistance to alkaline corrosion after 14 days was obtained with cement CEM I 42.5 SR containing ash additive, and after 56 days with cement CEM II/A-V 52.5 containing low alkali content. The highest expansion after 14 and 56 days was obtained with cement CEM I 42.5 R without active mineral additives.

  4. Response of bed mobility to sediment supply in natural gravel bed channels: A detailed examination and evaluation of mobility parameters

    Science.gov (United States)

    T. E. Lisle; J. M. Nelson; B. L. Barkett; J. Pitlick; M. A. Madej

    1998-01-01

    Recent laboratory experiments have shown that bed mobility in gravel bed channels responds to changes in sediment supply, but detailed examinations of this adjustment in natural channels have been lacking, and practical methodologies to measure bed mobility have not been tested. We examined six gravel-bed, alternate-bar channels which have a wide range in annual...

  5. Stock-environment recruitment analysis for Namibian Cape hake ...

    African Journals Online (AJOL)

    Stock-environment recruitment analysis for Namibian Cape hake Merluccius capensis. ... The factors modulating recruitment success of Cape hake Merluccius capensis in Namibian waters are still unresolved. ... AJOL African Journals Online.

  6. Anatomy of a shoreface sand ridge revisted using foraminifera: False Cape Shoals, Virginia/North Carolina inner shelf

    Science.gov (United States)

    Robinson, Marci M.; McBride, Randolph A.

    2008-01-01

    Certain details regarding the origin and evolution of shelf sand ridges remain elusive. Knowledge of their internal stratigraphy and microfossil distribution is necessary to define the origin and to determine the processes that modify sand ridges. Fourteen vibracores from False Cape Shoal A, a well-developed shoreface-attached sand ridge on the Virginia/North Carolina inner continental shelf, were examined to document the internal stratigraphy and benthic foraminiferal assemblages, as well as to reconstruct the depositional environments recorded in down-core sediments. Seven sedimentary and foraminiferal facies correspond to the following stratigraphic units: fossiliferous silt, barren sand, clay to sandy clay, laminated and bioturbated sand, poorly sorted massive sand, fine clean sand, and poorly sorted clay to gravel. The units represent a Pleistocene estuary and shoreface, a Holocene estuary, ebb tidal delta, modern shelf, modern shoreface, and swale fill, respectively. The succession of depositional environments reflects a Pleistocene sea-level highstand and subsequent regression followed by the Holocene transgression in which barrier island/spit systems formed along the Virginia/North Carolina inner shelf not, vert, ~5.2 ka and migrated landward and an ebb tidal delta that was deposited, reworked, and covered by shelf sand.

  7. Geospatial compilation of historical water-level altitudes in the Chicot and Evangeline aquifers 1977-2013 and Jasper aquifer 2000-13 in the Gulf Coast aquifer system, Houston-Galveston Region, Texas

    Science.gov (United States)

    Johnson, Michaela R.; Ellis, Robert H.H.

    2013-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Harris-Galveston Subsidence District, City of Houston, Fort Bend Subsidence District, Lone Star Groundwater Conservation District, and Brazoria County Groundwater Conservation District has produced a series of annual reports depicting groundwater-level altitudes in the Chicot, Evangeline, and Jasper aquifers of the Gulf Coast aquifer system in the Houston-Galveston region, Texas. To produce these annual reports, contours of equal water-level altitudes are created from water levels measured between December and March of each year from groundwater wells screened completely within one of these three aquifers. Information obtained from maps published in the annual series of USGS reports and geospatial datasets of water-level altitude contours used to create the annual series of USGS reports were compiled into a comprehensive geodatabase. The geospatial compilation contains 88 datasets from previously published contour maps showing water-level altitudes for each primary aquifer of the Gulf Coast aquifer system, 37 for the Chicot (1977–2013), 37 for the Evangeline aquifer (1977–2013), and 14 for the Jasper aquifer (2000–13).

  8. 75 FR 81637 - Commercial Lease for the Cape Wind Energy Project

    Science.gov (United States)

    2010-12-28

    ... Commercial Lease for the Cape Wind Energy Project AGENCY: Bureau of Ocean Energy Management, Regulation and... Renewable Energy Development on the Outer Continental Shelf (``OCS'') for the Cape Wind Energy Project... requirements of 30 CFR 285.231. The Lease is for the Cape Wind Energy Project (``Project'') which grants Cape...

  9. The Cape doctor 1807-1910: perspectives.

    Science.gov (United States)

    Phillips, Howard

    2004-01-01

    This chapter contrasts the Cape doctor in 1807 and in 1910, and finds that, in a whole variety of ways, the differences between the two were not of degree but of kind. Underlying this sea-change was the germ revolution of the late Victorian era, which transformed the Cape doctor out of all recognition, thereby laying important foundations for the development of the twentieth-century South African doctor.

  10. Can Remote Sensing Detect Aquifer Characteristics?: A Case Study in the Guarani Aquifer System

    Science.gov (United States)

    Richey, A. S.; Thomas, B.; Famiglietti, J. S.

    2013-12-01

    Global water supply resiliency depends on groundwater, especially regions threatened by population growth and climate change. Aquifer characteristics, even as basic as confined versus unconfined, are necessary to prescribe regulations to sustainably manage groundwater supplies. A significant barrier to sustainable groundwater management exists in the difficulties associated with mapping groundwater resources and characteristics at a large spatial scale. This study addresses this challenge by investigating if remote sensing, including with NASA's Gravity Recovery and Climate Experiment (GRACE), can detect and quantify key aquifer parameters and characteristics. We explore this through a case study in the Guarani Aquifer System (GAS) of South America, validating our remote sensing-based findings against the best available regional estimates. The use of remote sensing to advance the understanding of large aquifers is beneficial to sustainable groundwater management, especially in a trans-boundary system, where consistent information exchange can occur within hydrologic boundaries instead of political boundaries.

  11. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    Science.gov (United States)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  12. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas

  13. The effect of coarse gravel on cohesive sediment entrapment in an annular flume

    Directory of Open Access Journals (Sweden)

    K. Glasbergen

    2015-03-01

    Full Text Available While cohesive sediment generally represents a small fraction (16 Pa, cohesive materials trapped within the gravel bed will be entrained and transported into the Glenmore Reservoir, where sediment-associated nutrients may pose treatment challenges to the drinking water supply.

  14. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    Science.gov (United States)

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved

  15. WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers

    Science.gov (United States)

    Barlow, P.M.; Moench, A.F.

    2004-01-01

    Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.

  16. Water and soil loss from landslide deposits as a function of gravel content in the Wenchuan earthquake area, China, revealed by artificial rainfall simulations.

    Science.gov (United States)

    Gan, Fengling; He, Binghui; Wang, Tao

    2018-01-01

    A large number of landslides were triggered by the Mw7.9 Wenchuan earthquake which occurred on 12th May 2008. Landslides impacted extensive areas along the Mingjiang River and its tributaries. In the landslide deposits, soil and gravel fragments generally co-exist and their proportions may influence the hydrological and erosion processes on the steep slopes of the deposit surface. Understanding the effects of the mixtures of soil and gravels in landslide deposits on erosion processes is relevant for ecological reconstruction and water and soil conservation in Wenchuan earthquake area. Based on field surveys, indoor artificial rainfall simulation experiments with three rainfall intensities (1.0, 1.5 and 2.0 mm·min-1) and three proportions of gravel (50%, 66.7% and 80%) were conducted to measure how the proportion of gravel affected soil erosion and sediment yield in landslide sediments and deposits. Where the proportion of gravel was 80%, no surface runoff was produced during the 90 minute experiment under all rainfall intensities. For the 66.7% proportion, no runoff was generated at the lowest rainfall intensity (1.0 mm·min-1). As a result of these interactions, the average sediment yield ranked as 50> 66.6> 80% with different proportions of gravel. In addition, there was a positive correlation between runoff generation and sediment yield, and the sediment yield lagging the runoff generation. Together, the results demonstrate an important role of gravel in moderating the mobilization of landslide sediment produced by large earthquakes, and could lay the foundation for erosion models which provide scientific guidance for the control of landslide sediment in the Wenchuan earthquake zone, China.

  17. Geochemistry of the Arbuckle-Simpson Aquifer

    Science.gov (United States)

    Christenson, Scott; Hunt, Andrew G.; Parkhurst, David L.; Osborn, Noel I.

    2009-01-01

    The Arbuckle-Simpson aquifer in south-central Oklahoma provides water for public supply, farms, mining, wildlife conservation, recreation, and the scenic beauty of springs, streams, and waterfalls. A new understanding of the aquifer flow system was developed as part of the Arbuckle-Simpson Hydrology Study, done in 2003 through 2008 as a collaborative research project between the State of Oklahoma and the Federal government. The U.S. Geological Survey collected 36 water samples from 32 wells and springs in the Arbuckle-Simpson aquifer in 2004 through 2006 for geochemical analyses of major ions, trace elements, isotopes of oxygen and hydrogen, dissolved gases, and dating tracers. The geochemical analyses were used to characterize the water quality in the aquifer, to describe the origin and movement of ground water from recharge areas to discharge at wells and springs, and to determine the age of water in the aquifer.

  18. A New Method for Tracking Individual Particles During Bed Load Transport in a Gravel-Bed River

    Science.gov (United States)

    Tremblay, M.; Marquis, G. A.; Roy, A. G.; Chaire de Recherche Du Canada En Dynamique Fluviale

    2010-12-01

    Many particle tracers (passive or active) have been developed to study gravel movement in rivers. It remains difficult, however, to document resting and moving periods and to know how particles travel from one deposition site to another. Our new tracking method uses the Hobo Pendant G acceleration Data Logger to quantitatively describe the motion of individual particles from the initiation of movement, through the displacement and to the rest, in a natural gravel river. The Hobo measures the acceleration in three dimensions at a chosen temporal frequency. The Hobo was inserted into 11 artificial rocks. The rocks were seeded in Ruisseau Béard, a small gravel-bed river in the Yamaska drainage basin (Québec) where the hydraulics, particle sizes and bed characteristics are well known. The signals recorded during eight floods (Summer and Fall 2008-2009) allowed us to develop an algorithm which classifies the periods of rest and motion. We can differentiate two types of motion: sliding and rolling. The particles can also vibrate while remaining in the same position. The examination of the movement and vibration periods with respect to the hydraulic conditions (discharge, shear stress, stream power) showed that vibration occurred mostly before the rise of hydrograph and allowed us to establish movement threshold and response times. In all cases, particle movements occurred during floods but not always in direct response to increased bed shear stress and stream power. This method offers great potential to track individual particles and to establish a spatiotemporal sequence of the intermittent transport of the particle during a flood and to test theories concerning the resting periods of particles on a gravel bed.

  19. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, M., E-mail: mmusgrov@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Opsahl, S.P. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States); Mahler, B.J. [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Herrington, C. [City of Austin Watershed Protection Department, Austin, TX 78704 (United States); Sample, T.L. [U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385 (United States); Banta, J.R. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States)

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO{sub 3}{sup −}) loading to surface and groundwater. We investigate variability and sources of NO{sub 3}{sup −} in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO{sub 3}{sup −} stable isotopes (δ{sup 15}N and δ{sup 18}O). These data were augmented by historical data collected from 1937 to 2007. NO{sub 3}{sup −} concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO{sub 3}{sup −} concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO{sub 3}{sup −} concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO{sub 3}{sup −}. These results highlight the vulnerability of karst aquifers to NO{sub 3}{sup −} contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO{sub 3}{sup −} than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates

  20. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    International Nuclear Information System (INIS)

    Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R.

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO 3 − ) loading to surface and groundwater. We investigate variability and sources of NO 3 − in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO 3 − stable isotopes (δ 15 N and δ 18 O). These data were augmented by historical data collected from 1937 to 2007. NO 3 − concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO 3 − concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO 3 − concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO 3 − . These results highlight the vulnerability of karst aquifers to NO 3 − contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO 3 − than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a

  1. Optimizing the use of natural gravel Brantas river as normal concrete mixed with quality fc = 19.3 Mpa

    Science.gov (United States)

    Limantara, A. D.; Widodo, A.; Winarto, S.; Krisnawati, L. D.; Mudjanarko, S. W.

    2018-04-01

    The use of natural gravel (rivers) as concrete mixtures is rarely encountered after days of demands for a higher strength of concrete. Moreover, today people have found High-Performance Concrete which, when viewed from the rough aggregate consisted mostly of broken stone, although the fine grain material still used natural sand. Is it possible that a mixture of concrete using natural gravel as a coarse aggregate is capable of producing concrete with compressive strength equivalent to a concrete mixture using crushed stone? To obtain information on this, a series of tests on concrete mixes with crude aggregates of Kalitelu Crusher, Gondang, Tulungagung and natural stone (river gravel) from the Brantas River, Ngujang, Tulungagung in the Materials Testing Laboratory Tugu Dam Construction Project, Kab. Trenggalek. From concrete strength test results using coarse material obtained value 19.47 Mpa, while the compressive strength of concrete with a mixture of crushed stone obtained the value of 21.12 Mpa.

  2. Cape Kennedy Weather Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  3. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest: B in Regional aquifer-system analysis

    Science.gov (United States)

    Young, H.L.; Siegel, D.I.

    1992-01-01

    The Cambrian-Ordovician aquifer system contains the most extensive and continuous aquifers in the northern Midwest of the United States. It is the source of water for many municipalities, industries, and rural water users. Since the beginning of ground-water development from the aquifer system in the late 1800's, hydraulic heads have declined hundreds of feet in the heavily pumped Chicago-Milwaukee area and somewhat less in other metropolitan areas. The U.S. Geological Survey has completed a regional assessment of this aquifer system within a 161,000-square-mile area encompassing northern Illinois, northwestern Indiana, Iowa, southeastern Minnesota, northern Missouri, and Wisconsin.

  4. GREENHOUSE-GROWN CAPE GOOSEBERRY

    African Journals Online (AJOL)

    /2006 S 4,00. Printed in Uganda. All rights reserved O2006, African Crop Science Society. SHORT COMMINICATION. EFFECT OF GIBBERRELLIC ACID ON GROWTH AND FRUIT YIELD OF. GREENHOUSE-GROWN CAPE GOOSEBERRY.

  5. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    Science.gov (United States)

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  6. Gravel bar thermal variability and its potential consequences for CO2 evasion from Alpine coldwater streams

    Science.gov (United States)

    Boodoo, Kyle; Battin, Tom; Schelker, Jakob

    2017-04-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore

  7. The possibility of using materials based on secondary gravel in civil construction

    Directory of Open Access Journals (Sweden)

    Galitskova Yulia

    2017-01-01

    Full Text Available By now, the wear and tear of housing stock is more than 50%. Each year the number of old and dilapidated housing is growing, but it is gradually replaced by modern buildings. However, wastes accumulated from dismantling of buildings and constructions, are underutilized and, usually are just stored at landfills, or used for temporary roads construction. The purpose of this research is to define construction wastes characteristics and to explore possibilities for recycling of wastes from construction materials production. The paper also analyzes housing stock condition and basic requirements to building materials used in construction; and demonstrates results building materials based on secondary gravel investigation. While working with materials based on waste requirements the authors conducted laboratory research. Thus, the paper presents the analysis of laboratory tests results that made it possible to draw conclusions about the possible use of building materials based on secondary gravel and about their conformity to specified requirements. The researchers also developed proposals and recommendations to improve the competitiveness of such materials.

  8. Hydrology of the shallow aquifer and uppermost semiconfined aquifer near El Paso, Texas

    Science.gov (United States)

    White, D.E.; Baker, E.T.; Sperka, Roger

    1997-01-01

    The availability of fresh ground water in El Paso and adjacent areas that is needed to meet increased demand for water supply concerns local, State, and Federal agencies. The Hueco bolson is the principal aquifer in the El Paso area. Starting in the early 1900s and continuing to the 1950s, most of the municipal and industrial water supply in El Paso was pumped from the Hueco bolson aquifer from wells in and near the Rio Grande Valley and the international border. The Rio Grande is the principal surface-water feature in the El Paso area, and a major source of recharge to the shallow aquifer (Rio Grande alluvium) within the study area is leakage of flow from the Rio Grande.

  9. Sediment transport and development of banner banks and sandwaves in an extreme tidal system: Upper Bay of Fundy, Canada

    Science.gov (United States)

    Li, Michael Z.; Shaw, John; Todd, Brian J.; Kostylev, Vladimir E.; Wu, Yongsheng

    2014-07-01

    Multibeam sonar mapping and geophysical and geological groundtruth surveys were coupled with tidal current and sediment transport model calculations to investigate the sediment transport and formation processes of the complex seabed features off the Cape Split headland in the upper Bay of Fundy. The Cape Split banner bank, composed of coarse to very coarse sand, is a southwest-northeast oriented, large tear-drop shaped sand body with superimposed sand waves that show wavelengths from 15 to 525 m and heights from 0.5 to 19 m. Isolated and chains of barchan dunes occur on top of a shadow bank to the southeast of the banner bank. The barchan dunes are composed of well-sorted medium sand and are oriented northwest-southeast. Their mean height and width are 1.5 and 55 m, respectively. A gravel bank, with an elongated elliptical shape and west-east orientation, lies in the Minas Passage erosional trough east of the headland to form the counterpart to the sandy Cape Split banner bank. The southern face is featureless but the northern face is covered by gravel megaripples. Tidal model predictions and sediment transport calculations show that the formation of the banner bank and the gravel bank are due to the development of the transient counter-clockwise and clockwise tidal eddies respectively to the west and east of the headland. The formation of barchan dunes is controlled by the nearly unidirectional flow regime in outer Scots Bay. Sand waves on the flanks of the Cape Split banner bank show opposite asymmetry and the barchan dunes are asymmetric to the northeast. The tidal current and sediment transport predictions corroborate bedform asymmetry to show that sand wave migration and net sediment transport is to southwest on the northern flank of the banner bank but to northeast on the southern bank. Long-term migration of the Scots Bay barchan dunes is to the northeast. Spring-condition tidal currents can cause frequent mobilization and high-stage transport over the

  10. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer

    Science.gov (United States)

    Patterson, B. M.; Shackleton, M.; Furness, A. J.; Bekele, E.; Pearce, J.; Linge, K. L.; Busetti, F.; Spadek, T.; Toze, S.

    2011-03-01

    The fate of nine trace organic compounds was evaluated during a 12 month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life NDMA and NMOR) did not degrade under either aerobic or anaerobic aquifer geochemical conditions (half life > 50 days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required.

  11. Behaviour and fate of nine recycled water trace organics during managed aquifer recharge in an aerobic aquifer.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Bekele, E; Pearce, J; Linge, K L; Busetti, F; Spadek, T; Toze, S

    2011-03-25

    The fate of nine trace organic compounds was evaluated during a 12month large-scale laboratory column experiment. The columns were packed with aquifer sediment and evaluated under natural aerobic and artificial anaerobic geochemical conditions, to assess the potential for natural attenuation of these compounds during aquifer passage associated with managed aquifer recharge (MAR). The nine trace organic compounds were bisphenol A (BPA), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), carbamazepine, oxazepam, iohexol and iodipamide. In the low organic carbon content Spearwood sediment, all trace organics were non-retarded with retardation coefficients between 1.0 and 1.2, indicating that these compounds would travel at near groundwater velocities within the aquifer. The natural aerobic geochemical conditions provided a suitable environment for the rapid degradation for BPA, E2, iohexol (half life aquifer geochemical conditions (half life >50days). Field-based validation experiments with carbamazepine and oxazepam also showed no degradation. If persistent trace organics are present in recycled waters at concentrations in excess of their intended use, natural attenuation during aquifer passage alone may not result in extracted water meeting regulatory requirements. Additional pre treatment of the recycled water would therefore be required. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  12. Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity

    International Nuclear Information System (INIS)

    Duvert, Clément; Raiber, Matthias; Owen, Daniel D.R.; Cendón, Dioni I.; Batiot-Guilhe, Christelle; Cox, Malcolm E.

    2015-01-01

    Highlights: • Major ions and isotopes used to study inter-aquifer mixing in a shallow CSG setting. • Considerable heterogeneity in the water composition of the coal-bearing aquifer. • Rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks. • Potential mixing between the coal-bearing aquifer and downstream alluvial aquifer. • Need to consider the seasonal influences on inter-aquifer mixing in CSG settings. - Abstract: In areas of potential coal seam gas (CSG) development, understanding interactions between coal-bearing strata and adjacent aquifers and streams is of highest importance, particularly where CSG formations occur at shallow depth. This study tests a combination of hydrochemical and isotopic tracers to investigate the transient nature of hydrochemical processes, inter-aquifer mixing and recharge in a catchment where the coal-bearing aquifer is in direct contact with the alluvial aquifer and surface drainage network. A strong connection was observed between the main stream and underlying alluvium, marked by a similar evolution from fresh Ca–Mg–HCO 3 waters in the headwaters towards brackish Ca–Na–Cl composition near the outlet of the catchment, driven by evaporation and transpiration. In the coal-bearing aquifer, by contrast, considerable site-to-site variations were observed, although waters generally had a Na–HCO 3 –Cl facies and high residual alkalinity values. Increased salinity was controlled by several coexisting processes, including transpiration by plants, mineral weathering and possibly degradation of coal organic matter. Longer residence times and relatively enriched carbon isotopic signatures of the downstream alluvial waters were suggestive of potential interactions with the shallow coal-bearing aquifer. The examination of temporal variations in deuterium excess enabled detection of rapid recharge of the coal-bearing aquifer through highly fractured igneous rocks, particularly at the catchment

  13. Isotopic study of the Continental Intercalaire aquifer and its relationship with other aquifers of the northern Sahara

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Sauzay, G.; Payne, B.R.; Conrad, G.; Fontes, J.Ch.

    1974-01-01

    The Northern Sahara contains several aquifers, the largest of which is that of the Continental Intercalaire formations. In its eastern part the aquifer is confined and presents a very homogeneous isotopic composition. The 14 C activity is low or zero except in the outcrop zones of the north (Saharan Atlas), the east (Dahar) and the south (Tinrhert), all of which are recharge zones. In these areas the isotopic composition does not differ appreciably from that of the old water in the confined part of the aquifer. In the western part, where the reservoir outcrops widely, the 14 C activities show the extent of the local recharge. The heavy isotope content indicates the overflow of the surface aquifer of the western Grand Erg into the Continental Intercalaire over the whole Gourara front. The mixtures thus formed pass under the Tademait and drain towards the Touat. In the resurgence zone of the Gulf of G abes in Tunisia the heavy-isotope content confirms the recharging of the aquifer of the Complex terminal by drainage of water from the Continental Intercalaire through the El-Hamma fault system. The water then runs eastwards, mixing with local contributions. The marine Miocene confined aquifer of Zarzis-Djerba in the Gulf of Gabes receives no contribution from the Continental Intercalaire. The water in the aquifer of the western Grand Erg indicates an evaporation mechanism, probably peculiar to the dune systems, which gives rise to heavy-isotope enrichment compared with the recharge of other types of formations. (author) [fr

  14. The Cape Times's portrayal of school violence

    Directory of Open Access Journals (Sweden)

    Corene de Wet

    2016-05-01

    Full Text Available This study explores the Cape Times's portrayal of school violence in the Western Cape (WC, South Africa, reporting on findings from a qualitative content analysis of 41 news articles retrieved from the SA Media database. The findings shed light on the victims and their victimisation, the perpetrators, as well as the context of the violence, identifying gangsterism, as well as school administrative and community factors as the reasons for violence in WC schools. It is argued that school violence and gangsterism are inextricably linked to the Cape Flats in particular, and that the interaction of forms of inequality and oppression such as racism, class privilege and gender oppression are structural root causes for school violence in this area of the WC. The study highlights the negative consequences of school violence on teaching and learning and on the economy. It is concluded that even if the Cape Times paints an exaggerated and atypical picture of violence in the gang-riddled parts of the WC, the detrimental effects thereof on the regions cannot be denied. The study therefore recommends a holistic approach to addressing the structural root causes of school violence where it takes place in the WC.

  15. AQUIFER IN AJAOKUTA, SOUTHWESTERN NIGERIA

    African Journals Online (AJOL)

    2005-03-08

    Mar 8, 2005 ... To establish the feasibility of water supply in a basement complex area ofAjaokuta, Southwestern Nigeria, pumping test results were used to investigate the storage properties and groundwater potential of the aquifer. The aquifer system consists of weathered and weathered/fractured zone of decomposed ...

  16. Hydrological controls on transient aquifer storage in a karst watershed

    Science.gov (United States)

    Spellman, P.; Martin, J.; Gulley, J. D.

    2017-12-01

    While surface storage of floodwaters is well-known to attenuate flood peaks, transient storage of floodwaters in aquifers is a less recognized mechanism of flood peak attenuation. The hydraulic gradient from aquifer to river controls the magnitude of transient aquifer storage and is ultimately a function of aquifer hydraulic conductivity, and effective porosity. Because bedrock and granular aquifers tend to have lower hydraulic conductivities and porosities, their ability to attenuate flood peaks is generally small. In karst aquifers, however, extensive cave systems create high hydraulic conductivities and porosities that create low antecedent hydraulic gradients between aquifers and rivers. Cave springs can reverse flow during high discharges in rivers, temporarily storing floodwaters in the aquifer thus reducing the magnitude of flood discharge downstream. To date however, very few studies have quantified the magnitude or controls of transient aquifer storage in karst watersheds. We therefore investigate controls on transient aquifer storage by using 10 years of river and groundwater data from the Suwannee River Basin, which flows over the karstic upper Floridan aquifer in north-central Florida. We use multiple linear regression to compare the effects of three hydrological controls on the magnitude of transient aquifer storage: antecedent stage, recharge and slope of hydrograph rise. We show the dominant control on transient aquifer storage is antecedent stage, whereby lower stages result in greater magnitudes of transient aquifer storage. Our results suggest that measures of groundwater levels prior to an event can be useful in determining whether transient aquifer storage will occur and may provide a useful metric for improving predictions of flood magnitudes.

  17. Hydrogeology - AQUIFER_SYSTEMS_BEDROCK_IDNR_IN: Bedrock Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_BEDROCK_IDNR_IN is a polygon shapefile that shows bedrock aquifer systems of the State of Indiana. The source scale of the map depicting the aquifers...

  18. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    Science.gov (United States)

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  19. A Laboratory Experiment on the Evolution of a Sand Gravel Reach Under a Lack of Sediment Supply

    Science.gov (United States)

    Orru, C.; Chavarrias, V.; Ferrara, V.; Blom, A.

    2014-12-01

    A flume experiment was conducted to examine the evolution of a sand-gravel reach under a lack of sediment supply. The experimental data are used to validate a numerical sand-gravel model. A bed composed of a bi-modal sediment mixture is installed with a uniform slope and an imposed gradual fining pattern. Initially, the sand fraction gradually increases in streamwise direction until the bed is fully composed of sand. The water discharge and downstream water level were constant, and the sediment feed rate was equal to zero. The experiment was dominated by bed load, partial transport, and a subcritical flow regime was imposed. The flow rate was such that only sand was mobile (partial transport), which led to a coarsening over the upstream reach and a gradual reduction of the sediment transport rate during the experiment. New equipment was used to measure the evolution of the grain size distribution of the bed surface during the experiment over the entire flume using image analysis. In the upstream reach we observed a gradual coarsening over time and the formation of an armour layer, which resulted in a more abrupt transition in grain size of the bed surface. Bed degradation increased in streamwise direction. This is due to the initial streamwise increase in the availability of sand in the bed. The different volume fraction content of sand in the bed allowed for the gravel to sink more in the downstream part of the upstream reach. The sand reach suffered from a larger degradation. Finally, we see one reach dominated by sand, small bedforms, and a small bed slope, and a gravel reach dominated by a larger bed slope.

  20. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  1. Aquifers in coastal reclaimed lands - real world assessments

    Science.gov (United States)

    Saha, A.; Bironne, A.; Vonhögen-Peeters, L.; Lee, W. K.; Babovic, V. M.; Vermeulen, P.; van Baaren, E.; Karaoulis, M.; Blanchais, F.; Nguyen, M.; Pauw, P.; Doornenbal, P.

    2017-12-01

    Climate change and population growth are significant concerns in coastal regions around the world, where more than 30% of the world's population reside. The numbers continue to rise as coastal areas are increasingly urbanized. Urbanization creates land shortages along the coasts, which has spurred coastal reclamation activities as a viable solution. In this study, we focus on these reclamation areas; reclaimed areas in Singapore, and in the Netherlands, and investigate the potential of these reclaimed bodies as artificial aquifers that could attenuate water shortage problems in addition to their original purpose. We compare how the reclamation methods determine the hydrogeological characteristics of these manmade aquifers. We highlight similarities in freshwater lens development in the artificial shallow aquifers under natural recharge under diverse conditions, i.e. tropical and temperate zones, using numerical models. The characteristics and responses of these aquifers with dynamic freshwater-saltwater interface are contrasted against naturally occurring coastal aquifers where equilibrium was disturbed by anthropogenic activities. Finally, we assess the risks associated with subsidence and saltwater intrusion, combining measurements and numerical models, in case these aquifers are planned for Aquifer Storage and Recovery (ASR) or Managed Aquifer Recharge (MAR) strategies. Relative performances of some ASR schemes are simulated and compared in the reclaimed lands.

  2. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...

  3. Injury experience in sand and gravel mining, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of sand and gravel mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, and occupation. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  4. Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring

    Science.gov (United States)

    Kristin Bunte; Steven R. Abt

    2001-01-01

    This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...

  5. Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

    Science.gov (United States)

    Reese, Ronald S.; Alvarez-Zarikian, Carlos A.

    2007-01-01

    Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement

  6. Factors affecting public-supply well vulnerability in two karst aquifers.

    Science.gov (United States)

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. © 2014 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  7. Ozark Aquifer

    Data.gov (United States)

    Kansas Data Access and Support Center — These digital maps contain information on the altitude of the base and top, the extent, and the potentiometric surface of the Ozark aquifer in Kansas. The Ozark...

  8. Bedrock aquifers of eastern San Juan County, Utah

    Science.gov (United States)

    Avery, Charles

    1986-01-01

    This study is one of a series of studies appraising the waterbearing properties of the Navajo Sandstone and associated formations in southern Utah.  The study area is about 4,600 square miles, extending from the Utah-Arizona State line northward to the San Juan-Grand County line and westward from the Utah-Colorado State line to the longitude of about 109°50'.Some of the water-yielding formations are grouped into aquifer systems. The C aquifer is comprised of the DeChelly Sandstone Member of the Cutler Formation.  The P aquifer is comprised of the Cedar Mesa Member of the Cutler Formation and the undifferentiated Cutler Formation. The N aquifer is comprised of the sedimentary section that includes the Wingate Sandstone, Kayenta Formation, Navajo Sandstone, Carmel Formation, and Entrada sandstone.  The M aquifer is comprised of the Bluff Sandstone Member and other sandstone units of the Morrison Formation.  The D aquifer is comprised of the Burro Canyon Formation and Dakota Sandstone.  Discharge from the ground-water reservoir to the San Juan River between gaging stations at Four Corners and Mexican Hat is about 66 cubic feet per second.The N aquifer is the main aquifer in the study area. Recharge by infiltration of precipitation is estimated to be 25,000 acre-feet per year.  A major ground-water divide exists under the broad area east of Monticello.  The thickness of the N aquifer, where the sedimentary section is fully preserved and saturated, generally is 750 to 1,250 feet.   Hydraulic conductivity values obtained from aquifer tests range from 0.02 to 0.34 foot per day.  The total volume of water in transient storage is about 11 million acre-feet. Well discharge somewhat exceeded 2,340 acre-feet during 1981.  Discharge to the San Juan River from the N aquifer is estimated to be 6.9 cubic feet per second. Water quality ranges from a calcium bicarbonate to sodium chloride type water

  9. Memories and identities redefinitions around the independence process in Cape Verde. The case of the Argentine-Cape Verdeans from Buenos Aires

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Martino

    2017-12-01

    Full Text Available The article analyzes, from an ethnographic and historical perspective, the relations between memory, identity and Afro-descendant political activism among the Argentine-Cape Verdeans from Buenos Aires. The article highlights the memories and stories of the independence of Cape Verde, and the role played in it by Amílcar Cabral, the main political leader of this process. These narratives, whose specific expression are reflected in the institutional space of the Cape Verdean Society of Dock Sud, are updated from different perspectives and redefine the changing identity borders that allow the delineation of specific forms of political activism in Buenos Aires.

  10. Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment

    Science.gov (United States)

    Lee, Meemong; Bowman, Kevin

    2014-01-01

    Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.

  11. Geomorphic Controls on Aquifer Geometry in Northwestern India

    Science.gov (United States)

    van Dijk, W. M.; Densmore, A. L.; Sinha, R.; Gupta, S.; Mason, P. J.; Singh, A.; Joshi, S. K.; Nayak, N.; Kumar, M.; Shekhar, S.

    2014-12-01

    The Indo-Gangetic foreland basin suffers from one of the highest rates of groundwater extraction in the world, especially in the Indian states of Punjab, Haryana and Rajasthan. To understand the effects of this extraction on ground water levels, we must first understand the geometry and sedimentary architecture of the aquifer system, which in turn depend upon its geomorphic setting. We use satellite images and digital elevation models to map the geomorphology of the Sutlej and Yamuna river systems, while aquifer geometry is assessed using ~250 wells that extend to ~300 m depth in Punjab and Haryana. The Sutlej and Yamuna rivers have deposited large sedimentary fans at their outlets. Elongate downslope ridges on the fan surfaces form distributary networks that radiate from the Sutlej and Yamuna fan apices, and we interpret these ridges as paleochannel deposits associated with discrete fan lobes. Paleochannels picked out by soil moisture variations illustrate a complex late Quaternary history of channel avulsion and incision, probably associated with variations in monsoon intensity. Aquifer bodies on the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow a heavy-tailed distribution, probably because of stacked sand bodies. The percentage of aquifer material in individual lithologs decreases downstream, although the exponent on the thickness distribution remains the same, indicating that aquifer bodies decrease in number down fan but do not thin appreciably. Critically, the interfan area between the Sutlej and Yamuna fans has thinner aquifers and a lower proportion of aquifer material, despite its proximal location. Our data show that the Sutlej and Yamuna fan systems form the major aquifer systems in this area, and that their geomorphic setting therefore provides a first-order control on aquifer distribution and geometry. The large spatial heterogeneity of the system must be considered in any future aquifer management scheme.

  12. Experimental tests and computational fluid dynamics (CFD) helps in determination the new operational limits for gravel packing; Testes experimentais e simulacoes em fluidodinamica computacional (CFD) auxiliam na determinacao de novos limites operacionais para o gravel packing

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Joao Vicente Martins de [PETROBRAS, Santos, SP (Brazil). E e P Construcao de Pocos Maritimos. Construcao e Manutencao de Pocos], e-mail: jvmm@petrobras.com.br; Calderon, Agostinho [PETROBRAS, rj (bRAZIL). E e P Construcao de Pocos Maritimos. Construcao e Manutencao de Pocos], e-mail: agoscal@petrobras.com.br; Leal, Rafael Amorim Ferreira [Centro de Pesquisas da Petrobras (CENPES), RJ (Brazil). P e D em Geoengenharia e Engenharia de Poco. Gerencia de Perfuracao e Completacao de Pocos], e-mail: rafaelleal@petrobras.com.br; Miranda, Daniel Bonavides [Halliburton Energy Services (Brazil)], e-mail: daniel.miranda@halliburton.com; Simoes, Bruno Campos; Nunes, Mauro Jose de Souza Custodio [Halliburton Brasil. Setor de Estimulacao e Controle de Areia (Brazil)], e-mails: bruno.simoes@halliburton.com, mauro.nunes@halliburton.com; Barbosa, Diego Paiva [Halliburton Brasil. Coordenador de Servicos de Campo (Brazil)], e-mail: diego.barbosa@halliburton.com; Souza, Jairo Zago de [Engineering Simulation and Scientific Software - ESSS (Brazil)], e-mail: jairo@esss.com.br

    2010-06-15

    Open hole Gravel Packing was the sand control strategy adopted by PETROBRAS while developing Campos Basin fields. One of the big problems in the oil industry is based on stems from the fact of that all the whole operations are carried out many thousands of feet in the underground, without direct visualization supervision. All the controls used in the operations are based upon direct and/or indirect measurements, but without, however, the necessary visual aid. This was the motivator for the construction of an experimental device that could simulate both the open well and the rat-hole allowing the study of how the deposition of Gravel occurs around the screens. Such experimental apparatus was built with casing pipes it which common rat-hole/open-hole inside diameters (12 1/'' and 8 1/2''). For the tests representativeness the simulator was equipped with real screens and wash pipes, reproducing the real operation dynamics. In the apparatus it was possible: to see Gravel settling through acrylic windows, to test new low-cost proppants and new concentrations, to define new minimal pump operational rates, as well as to record by filming the turbulent structures that occurs at the rat-hole/open-hole contraction zone. This paper treats of these results release and show CFD results used to enlarge test matrix. (author)

  13. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  14. Reconstruction of major maternal and paternal lineages of the Cape Muslim population

    Directory of Open Access Journals (Sweden)

    Shafieka Isaacs

    2013-01-01

    Full Text Available The earliest Cape Muslims were brought to the Cape (Cape Town -South Africa from Africa and Asia from 1652 to 1834. They were part of an involuntary migration of slaves, political prisoners and convicts, and they contributed to the ethnic diversity of the present Cape Muslim population of South Africa. The history of the Cape Muslims has been well documented and researched however no in-depth genetic studies have been undertaken. The aim of the present study was to determine the respective African, Asian and European contributions to the mtDNA (maternal and Y-chromosomal (paternal gene pool of the Cape Muslim population, by analyzing DNA samples of 100 unrelated Muslim males born in the Cape Metropolitan area. A panel of six mtDNA and eight Y-chromosome SNP markers were screened using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP. Overall admixture estimates for the maternal line indicated Asian (0.4168 and African mtDNA (0.4005 as the main contributors. The admixture estimates for the paternal line, however, showed a predominance of the Asian contribution (0.7852. The findings are in accordance with historical data on the origins of the early Cape Muslims.

  15. The "Cape Times"'s Portrayal of School Violence

    Science.gov (United States)

    de Wet, Corene

    2016-01-01

    This study explores the "Cape Times"'s portrayal of school violence in the Western Cape (WC), South Africa, reporting on findings from a qualitative content analysis of 41 news articles retrieved from the SA Media database. The findings shed light on the victims and their victimisation, the perpetrators, as well as the context of the…

  16. Strategies GeoCape Intelligent Observation Studies @ GSFC

    Science.gov (United States)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  17. Effects of farming systems on ground-water quality at the management systems evaluation area near Princeton, Minnesota, 1991-95

    Science.gov (United States)

    Landon, M.K.; Delin, G.N.; Lamb, J.A.; Anderson, J.L.; Dowdy, R.H.

    1998-01-01

    Ground-water quality in an unconfined sand and gravel aquifer was monitored during 1991-95 at the Minnesota Management Systems Evaluation Area (MSEA) near Princeton, Minnesota. The objectives of the study were to:

  18. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    Directory of Open Access Journals (Sweden)

    S. Costabel

    2018-03-01

    Full Text Available The capability of nuclear magnetic resonance (NMR relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite, and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny–Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation

  19. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm.

    Science.gov (United States)

    Kurzbaum, Eyal; Kirzhner, Felix; Sela, Shlomo; Zimmels, Yoram; Armon, Robert

    2010-09-01

    In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses

    Science.gov (United States)

    Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg

    2018-03-01

    The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of

  1. Surface particle sizes on armoured gravel streambeds: Effects of supply and hydraulics

    Science.gov (United States)

    Peter J. Whiting; John G. King

    2003-01-01

    Most gravel-bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the...

  2. Petrography, geochemistry, and geochronology of the Cenozoic Cape Crossfire, Cape King, and No Ridge igneous complexes (northern Victoria Land, Antarctica)

    International Nuclear Information System (INIS)

    Rocchi, S.; Fioretti, A.M.; Cavazzini, G.

    2002-01-01

    The Meander Intrusive Group is the plutonic-subvolcanic counterpart of the McMurdo Volcanic Group, and extends along 200 km of the Ross Sea coast of Northern Victoria Land. The three largest occurrences of the Meander Intrusive Group between the Icebreaker and Borchgrevink glaciers are the Cape Crossfire, the No Ridge, and the Cape King igneous complexes. These have an area of 40-80 square km and are composed of dominant monzogabbros and monzodiorites along with minor syenites and alkali feldspar microgranites. A significant compositional gap exists between mafic and felsic facies, which show geometrical relationships varying from subhorizontal alternating layers to complex pillowing and fragmentation of the mafic into the felsic facies. Two whole rock biotite Rb-Sr internal isochrons constrain the cooling age of Cape Crossfire Igneous Complex at 31 Ma, a few million years older than No Ridge and Cape King igneous complexes. Thus, the ages of these complexes (≤ 31 Ma) are younger than the plutons and dikes (≥ 35 Ma) cropping out in the southernmost area between the Campbell and Icebreaker glaciers. (author). 28 refs., 8 figs., 3 tabs

  3. Geology and ground-water conditions of Clark County Washington, with a description of a major alluvial aquifer along the Columbia River

    Science.gov (United States)

    Mundorff, Maurice John

    1964-01-01

    , unconsolidated rocks in the lowlands to the west At most places small to moderate quantities of water can be obtained from fractures in the older consolidated rocks. However, in the populated parts of the county, these rocks generally are overlain by considerable thicknesses of more permeable materials, and few wells have been drilled in them. Springs and dug wells yield an ample domestic supply at a number of outlying farms in the foothills. The younger (Pliocene to Recent) unconsolidated materials were deposited chiefly by streams in the basin formed by downwarping of the older rocks. However, some lake deposits and glacial drift also are included. The oldest unit of this group, the lower member of the Troutdale formation of Pliocene age, consists chiefly of clay, silt, and fine sand but includes lenses of coarser sand and, rarely, gravel. The maximum known thickness of the lower member of the Troutdale formation is about 660 feet. This unit is not a good aquifer because most of the strata are fine grained. However, at a few places drilled wells have penetrated lenses of coarser grained materials in these deposits and have obtained small to moderate amounts of water from them. The upper member of the Troutdale formation consists almost entirely of lightly to moderately cemented gravel, of which the most striking feature is the presence of a considerable percentage of quartzite pebbles. The average thickness of the upper member of the Troutdale may originally have been 300 to 400 feet. The member crops out over considerable areas in the county and, where conditions of topography and exposure are optimum, has beer very deeply weathered. It is suggested that the upper member of the Troutdale formation may prove to be of early Pleistocene age. This member is one of the best aquifers in the county; here, more drilled wells have been completed in this unit than in any other--most i

  4. A Cretaceous origin for fire adaptations in the Cape flora.

    Science.gov (United States)

    He, Tianhua; Lamont, Byron B; Manning, John

    2016-10-05

    Fire has had a profound effect on the evolution of worldwide biotas. The Cape Floristic Region is one of the world's most species-rich regions, yet it is highly prone to recurrent fires and fire-adapted species contribute strongly to the overall flora. It is hypothesized that the current fire regimes in the Cape could be as old as 6-8 million years (My), while indirect evidence indicates that the onset of fire could have reached 18 million years ago (Ma). Here, we trace the origin of fire-dependent traits in two monocot families that are significant elements in the fire-prone Cape flora. Our analysis shows that fire-stimulated flowering originated in the Cape Haemodoraceae 81 Ma, while fire-stimulated germination arose in the African Restionaceae at least 70 Ma, implying that wildfires have been a significant force in the evolution of the Cape flora at least 60 My earlier than previous estimates. Our results provide strong evidence for the presence of fire adaptations in the Cape from the Cretaceous, leading to the extraordinary persistence of a fire-adapted flora in this biodiversity hotspot, and giving support to the hypothesis that Cretaceous fire was a global phenomenon that shaped the evolution of terrestrial floras.

  5. Sand and gravel mine operations and reclamation planning using microcomputers

    Energy Technology Data Exchange (ETDEWEB)

    Ariffin, J.B.

    1990-02-01

    The purpose of this study is to focus on the application of microcomputers, also known as personal computers, in planning for sand and gravel mine operations and reclamation at a site in Story County, Iowa. This site, called the Arrasmith Pit, is operated by Martin Marietta Aggregates, Inc. The Arrasmith site, which encompasses an area of about 25 acres, is a relatively small site for aggregate mining. However, planning for the concurrent mine operation and reclamation program at this site is just as critical as with larger sites and the planning process is the same.

  6. Plant succession patterns on residual open-pit gravel mines deposits Bogota

    OpenAIRE

    Ricardo A. Mora Goyes

    1999-01-01

    Based on both: the study of composition and structure of plant communities and the analysis of the physico-chemical characteristics of mining wastes, the initial patterns of primary succession were determined. These patterns were present in three deposits of waste material abandoned during 18, 36 and 120 months respectively. Sue materials were originated in open-pit gravel mines located to the south of Bogota (Colombia). This study pretends to contribute to the knowledge of the meehanlsms of ...

  7. A review of Khoi-San and Cape Dutch medical ethnobotany.

    Science.gov (United States)

    van Wyk, B-E

    2008-10-28

    ETHNOPHARMACOLOGICAL CONTEXT: Cape herbal medicine as a distinct and unique healing system is conceptualized for the first time, together with a first compilation of the authentic materia medica of the system. The early literature on Khoikhoi (Hottentot), San (Bushman) and Cape Dutch medicinal plants and medical practices is reviewed, with a focus on the Cape Floristic Region (from Namaqualand to the Eastern Cape). To avoid recent additions and modern cultural influences in the results, the date of publication of the last volume of Marloth's Flora of South Africa (1932) was chosen as a cut-off date. The recorded Cape materia medica (up to 1932) is briefly summarized, giving the scientific names, vernacular names (in Afrikaans or Khoi-San/Nama) and main uses. It comprises about 170 items and includes mainly indigenous and endemic plant species, some exotic (garden) plants, and a few other items (fungi, seaweeds, lichens, hyraceum and natural potassium nitrate). Most of the plants (and hyraceum) are still widely used today, especially in rural areas. The combination of unique cultural practices and a diverse, highly endemic flora has led to the development of a distinct herbal healing system, here called Cape herbal medicine, but hitherto rather vaguely and inaccurately referred to as Khoi-San medicine, Cape Dutch medicine or boererate (farm remedies). The data allows for a more informed consideration of indigenous knowledge and intellectual property rights associated with particular plants (e.g. Hoodia and Pelargonium). It also offers opportunities for linking modern ethnobotanical field studies with historical data.

  8. The biomes of the eastern Cape with emphasis on their conservation

    Directory of Open Access Journals (Sweden)

    R. A. Lubke

    1986-10-01

    Full Text Available The four major phytochoria of southern Africa, the Cape. Tongoland-Pondoland. Karoo-Namib and Afromontane regions, converge in the complex transition zone of the eastern Cape. The area is rich in species and communities with a complex vegetation in which are represented all the major vegetation formations of southern Africa — Cape Fynbos. Cape Transitional Shrublands, Subtropical Thicket. Karoo, Savanna, Afromontane Forest, Grasslands and Littoral Strand Vegetation. Our results support previous findings that, although species-rich and of great diversity, the flora has fewer endemics (205 or 5,6% than the Cape (73% or Karoo-Namib (35%.  The communities with the largest proportion of endemics (30%, and threatened plants (18% are those of the Subtropical Thicket. On the basis of these data and an index of conserv ation status, the Subtropical Thicket was determined to be highest on the priority list for conservation in the eastern Cape. Subtropical Thicket is being cleared at an increasing rate and is most vulnerable due to changing farming practice.

  9. Frost susceptibility of sub-base gravel used in Pearl-Chain Bridges: an experimental investigation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Andersen, Iben Brøndum

    2016-01-01

    This study investigates frost susceptibility of sub-base gravel determined by the ASTM D5918-13 standard as a conservative estimate of the frost heave risk of fill in overfilled arch bridges, particularly in Pearl-Chain Bridges. Frost heave of granular materials has been of great research interes...

  10. Microbiological risks of recycling urban stormwater via aquifers.

    Science.gov (United States)

    Page, D; Gonzalez, D; Dillon, P

    2012-01-01

    With the release of the Australian Guidelines for Water Recycling: Managed Aquifer Recharge (MAR), aquifers are now being included as a treatment barrier when assessing risk of recycled water systems. A MAR research site recharging urban stormwater in a confined aquifer was used in conjunction with a Quantitative Microbial Risk Assessment to assess the microbial pathogen risk in the recovered water for different end uses. The assessment involved undertaking a detailed assessment of the treatment steps and exposure controls, including the aquifer, to achieve the microbial health-based targets.

  11. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    International Nuclear Information System (INIS)

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon

  12. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    International Nuclear Information System (INIS)

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order-to examine radon entry into buildings, we have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon. (orig.). (7 refs., 3 figs.)

  13. MANUAL. Fly ash in civil engineering, Gravel roads; HANDBOK. Flygaska i mark- och vaegbyggnad, Grusvaegar

    Energy Technology Data Exchange (ETDEWEB)

    Munde, Hanna; Svedberg, Bo; Macsik, Josef; Maijala, Aino; Lahtinen, Pentti; Ekdahl, Peter; Neren, Jens [Vattenfall AB, Stockholm (Sweden). Vaerme Norden

    2006-01-15

    Fly ash based on biofuels or coal has been used as construction material for a long time in roads and other civil engineering applications. Some example, where it has been used in roadbase and subbase of gravel roads, are in the counties of Uppsala, Soedermanland, Vaestmanland and in Finland. The use of fly ash has contributed to good function for example as bearing capacity, thaw and frost capacity and good durability. This has also reduced costs for maintenance. The objective of this project was to develop a manual to provide a base for contemporary use of fly ash in road constructions. In the manual experience from studies, field tests and regulations has been compiled. The manual handles fly ash as base for products to be used in base and subbase in gravel roads. Future user of the guidelines are mainly consultant engineers and contractors. However the aim of the manual is to also support road administrators, environmental authorities and industry. The project has been carried out parallel to another ongoing national project titled 'Guidelines, Use of alternative materials in civil engineering'. The objective of that project is to establish a base for handling of alternative materials in Sweden. Fly ash in gravel roads are mainly used in two typical applications, one without any additive in a single layer and one with fly ash mixed with gravel. The use of flyash provides functional properties such as increased stiffness, stability and enhanced frost and thaw capacity for the road construction in total. Furthermore the products based on fly ash will have low permeability and good frost and thaw durability. These properties are for example related to fly ash quality, design and construction and are in general expected to be better than for traditional constructions using, for example, sand or gravel. The properties can be enhanced further by using binders such as cement and Merit. Fly ash should always be used above the ground water table with

  14. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  15. Risk assessment and management of an oil contaminated aquifer

    International Nuclear Information System (INIS)

    Braxein, A.; Daniels, H.; Rouve, G.; Rubin, H.

    1991-01-01

    This paper concerns the provision of the basic information needed for the decision making process regarding the remedial measures leading to reutilization of an oil contaminated aquifer. The study refers to the case history of jet fuel contamination of an aquifer comprising part of the coastal aquifer of Israel. Due to that contamination two major water supply wells were abandoned. This study examines the use of numerical simulations in order to restore the contamination history of the aquifer. Such simulations also provide quantitative information needed for the decision making process regarding the future management of the contaminated aquifer

  16. Groundwater vulnerability mapping of Qatar aquifers

    Science.gov (United States)

    Baalousha, Husam Musa

    2016-12-01

    Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.

  17. Field pilot test of surfactant-enhanced remediation of trichloroethane DNAPL in a sand aquifer

    International Nuclear Information System (INIS)

    Jackson, R.E.; Butler, G.W.; Londergan, J.T.; Mariner, P.E.; Pickens, J.F.; Fountain, J.C.

    1994-01-01

    The sequence of lacustrine and outwash deposits beneath a vapor degreasing operation at the Paducah Gaseous Division Plant, Kentucky, is contaminated with trichloroethane due to leakage from a sewer/sump line. A plume of dissolved trichloroethane (TCE) extends throughout an area of approximately 3 km 2 in the Regional Gravel Aquifer (RGA) which is located between 20 and 30 meters below ground surface. It is suspected that some 40,000 liters of TCE might have escaped into the subsurface at Paducah, most of which is still present in the lacustrine deposits and the underlying RGA as DNAPL. A field test to confirm the presence of TCE DNAPL in the sandy, upper portion of the RGA around a monitoring well and to test the efficiency of the surfactant for TCE solubilization is described. The aqueous concentrations of TCE in this well have consistently been measured at 300--550 mg TCE/L over a period of three years. The use of Capillary and Bond numbers to estimate the improbability of mobilization of DNAPL due to the lowering of the interfacial tension is described. The multiphase, multicomponent simulator UTCHEM was used to simulate both the injection and extraction of the surfactant solution and the solubilization of the TCE by the surfactant micelles

  18. Aquifers Characterization and Productivity in Ellala Catchment ...

    African Journals Online (AJOL)

    user

    Aquifers Characterization and Productivity in Ellala Catchment, Tigray, ... using geological and hydrogeological methods in Ellala catchment (296.5km. 2. ) ... Current estimates put the available groundwater ... Aquifer characterization takes into.

  19. Transient well flow in leaky multiple-aquifer systems

    Science.gov (United States)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  20. The relationship between emergence from spawning gravel and growth in farmed rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Åberg Andersson, Madelene; Laursen, Danielle Caroline; SILVA, P.I.M.

    2013-01-01

    The relationship between the timing of emergence from spawning gravel and growth after emergence was investigated in farmed Oncorhynchus mykiss. A relationship between the time of emergence and growth became evident after 6 months of rearing, where individuals with an intermediate emergence time...

  1. Prefabricated solution to modular construction in Cape Verde

    Science.gov (United States)

    Vieira, Nuno; Amado, Miguel; Pinho, Fernando

    2017-02-01

    Nowadays, the lack of adequate housing in Cape Verde is a growing problem. The migration of the population living in the countryside to the major cities generates an increase of the diameter of the cities. With the lack of economic power, the migrating families tend to occupy the land with houses which don't present proper conditions to living. Praia is the capital of Cape Verde and so on the biggest city of the country. This fact leads Praia to being the city with major economic power and job offer in all country. Consequently, Praia has developed the biggest slum of the Cape Verde and it is urgent to approach this problem in order to create solutions that reveal capacity to start solving it. Cape Verde's unique dry subtropical climate turns indispensable a careful resolution of the housing, in order to ensure the comfort of the occupants. The modular construction is a solution with potential to approach this problem with a fast and economic response. In order to answer the situation, this article introduces a modular solution in order to reach the needing of thermal comfort to the specific case of Praia.

  2. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    OpenAIRE

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearb...

  3. Hydrogeology, hydraulic characteristics, and water-quality conditions in the surficial, Castle Hayne and Peedee aquifers of the greater New Hanover County area, North Carolina, 2012-13

    Science.gov (United States)

    McSwain, Kristen Bukowski; Gurley, Laura N.; Antolino, Dominick J.

    2014-01-01

    A major issue facing the greater New Hanover County, North Carolina, area is the increased demand for drinking water resources as a result of rapid growth. The principal sources of freshwater supply in the greater New Hanover County area are withdrawals of surface water from the Cape Fear River and groundwater from the underlying Castle Hayne and Peedee aquifers. Industrial, mining, irrigation, and aquaculture groundwater withdrawals increasingly compete with public-supply utilities for freshwater resources. Future population growth and economic expansion will require increased dependence on high-quality sources of fresh groundwater. An evaluation of the hydrogeology and water-quality conditions in the surficial, Castle Hayne, and Peedee aquifers was conducted in New Hanover, eastern Brunswick, and southern Pender Counties, North Carolina. A hydrogeologic framework was delineated by using a description of the geologic and hydrogeologic units that compose aquifers and their confining units. Current and historic water-level, water-quality, and water-isotope data were used to approximate the present boundary between freshwater and brackish water in the study area. Water-level data collected during August–September 2012 and March 2013 in the Castle Hayne aquifer show that recharge areas with the highest groundwater altitudes are located in central New Hanover County, and the lowest are located in a discharge area along the Atlantic Ocean. Between 1964 and 2012, groundwater levels in the Castle Hayne aquifer in central New Hanover County have rebounded by about 10 feet, but in the Pages Creek area groundwater levels declined in excess of 20 feet. In the Peedee aquifer, the August–September 2012 groundwater levels were affected by industrial withdrawals in north-central New Hanover County. Groundwater levels in the Peedee aquifer declined more than 20 feet between 1964 and 2012 in northeastern New Hanover County because of increased withdrawals. Vertical gradients

  4. Remediation of a contaminated thin aquifer by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Breh, W.; Suttheimer, J.; Hoetzl, H. [Univ. of Karlsruhe (Germany); Frank, K. [GEO-Service GmbH, Rheinmuenster (Germany)

    1997-12-31

    At an industrial site in Bruchsal (Germany) a huge trichloroethene contamination was found. After common remedial actions proved to be widely ineffective, new investigations led to a highly contaminated thin aquifer above the main aquifer. The investigation and the beginning of the remediation of the thin aquifer by two horizontal wells is described in this paper. Special attention was given to the dependence between precipitation and the flow direction in the thin aquifer and to hydraulic connections between the thin and the main aquifer. Also a short introduction into a new remedial technique by horizontal wells and first results of the test phase of the horizontal wells are given.

  5. Intraplate seismicity across the Cape Verde swell

    Science.gov (United States)

    Vales, Dina; Matias, Luís.; Haberland, Christian; Silveira, Graça.; Weber, Michael; Carrilho, Fernando; Dias, Nuno

    2010-05-01

    The Cape Verde Archipelago ((15-17°N, 23-26°W) is located within the African plate, about 500km west of Senegal, in the African coast. The islands are located astride the Cape Verde mid-plate topographic swell, one of the largest features of its type in the world's ocean basins. The origin of this Cape Verde swell is still in debate. Previous determinations of the elastic thickness (Te) reveal a normal Te and a modest heat flow anomaly which suggest that the swell cannot be fully explained by uplift due to thermal reheating of the lithosphere by an underlying ‘‘hot spot'' and that other, deep-seated, mantle processes must be involved. The CV-PLUME (An investigation on the geometry and deep signature of the Cape Verde mantle plume) project intends to shape the geometry and deep origin of the Cape Verde mantle plume, via a combined study of seismic, magnetic, gravimetric and geochemical observations. Through this study we intend to characterize the structure beneath the archipelago from the surface down to the deep mantle. The core of this 3-year project was a temporary deployment of 39 Very Broad Band seismometers, across all the inhabited islands, to recorder local and teleseismic earthquakes. These instruments were operational from November 2007 to September 2008. In this work we report on the preliminary results obtained from the CV-PLUME network on the characterization of the local and regional seismicity. To detect the small magnitude seismic events the continuous data stream was screened using spectrograms. This proved to be a very robust technique in the face of the high short-period noise recorded by many of the stations, particularly during day time. The 10 month observation time showed that the background seismic activity in the Archipelago and surrounding area is low, with only a very few events recorded by the complete network. However, two clusters of earthquakes were detected close to the Brava Island, one to the NW and a second one, more active

  6. Delineation of gravel-bed clusters via factorial kriging

    Science.gov (United States)

    Wu, Fu-Chun; Wang, Chi-Kuei; Huang, Guo-Hao

    2018-05-01

    Gravel-bed clusters are the most prevalent microforms that affect local flows and sediment transport. A growing consensus is that the practice of cluster delineation should be based primarily on bed topography rather than grain sizes. Here we present a novel approach for cluster delineation using patch-scale high-resolution digital elevation models (DEMs). We use a geostatistical interpolation method, i.e., factorial kriging, to decompose the short- and long-range (grain- and microform-scale) DEMs. The required parameters are determined directly from the scales of the nested variograms. The short-range DEM exhibits a flat bed topography, yet individual grains are sharply outlined, making the short-range DEM a useful aid for grain segmentation. The long-range DEM exhibits a smoother topography than the original full DEM, yet groupings of particles emerge as small-scale bedforms, making the contour percentile levels of the long-range DEM a useful tool for cluster identification. Individual clusters are delineated using the segmented grains and identified clusters via a range of contour percentile levels. Our results reveal that the density and total area of delineated clusters decrease with increasing contour percentile level, while the mean grain size of clusters and average size of anchor clast (i.e., the largest particle in a cluster) increase with the contour percentile level. These results support the interpretation that larger particles group as clusters and protrude higher above the bed than other smaller grains. A striking feature of the delineated clusters is that anchor clasts are invariably greater than the D90 of the grain sizes even though a threshold anchor size was not adopted herein. The average areal fractal dimensions (Hausdorff-Besicovich dimensions of the projected areas) of individual clusters, however, demonstrate that clusters delineated with different contour percentile levels exhibit similar planform morphologies. Comparisons with a

  7. 40 CFR 147.502 - Aquifer exemptions. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Aquifer exemptions. [Reserved] 147.502... (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Florida § 147.502 Aquifer exemptions. [Reserved] ...

  8. Knowledge and attitudes in the rural Western Cape towards ...

    African Journals Online (AJOL)

    The study found that farm residents in the Western Cape are potentially exposed to pesticides through various environmental routes including water. This emphasises the need to monitor water for pesticides in the Western Cape, but in order to do this, human and laboratory resources and capacities to conduct routine ...

  9. Risk factors for meningococcal disease in Cape Town | Moodley ...

    African Journals Online (AJOL)

    Objective. To determine the risk factors associated with meningococcal disease among children living in Cape Town. Design. A case-control study was conducted from October 1993 to January 1995. Setting. The study population consisted of all children tmder the age of 14 years who were resident in the Cape Town ...

  10. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  11. Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire

    Science.gov (United States)

    Degnan, James R.; Harte, Philip T.

    2013-01-01

    been observed in the wetland, streams, and pond downgradient of the landfills. Piezometers were installed in some of these locations to confirm groundwater discharge, measure vertical-flow gradients, and to provide a way to sample the discharging groundwater. Understanding the movement of leachate in groundwater is complicated by the presence of preferential flow paths through aquifer materials with differing hydraulic properties; these preferential flow paths can affect rates of recharge, geochemical conditions, and contaminant fluxes. In areas adjacent to the three capped landfills, infiltration of precipitation containing oxygenated water through permeable deltaic sediments in the former gravel pit area causes increases in dissolved oxygen concentrations and decreases in arsenic concentrations. Layered deltaic sediments produce anisotropic hydraulic characteristics and zones of high hydraulic conductivity. The glacial-sediment aquifer also includes glaciolacustrine sediments that have low permeability and limit infiltration at the surface Discharge of leachate-affected groundwater may be limited in areas of organic muck on the bottom of Whispering Pines Pond because the muck may act as a semiconfining layer. Geophysical survey results were used to identify several areas with continuous beds of muck and an underlying highresistivity layer on top of a layer of low resistivity that may represent leachate-affected groundwater. The high-resistivity layer is likely groundwater associated with oxygenated recharge, which would cause arsenic to adsorb onto aquifer sediments and reduce concentrations of dissolved arsenic in groundwater. Surface and borehole geophysical data collected in 2011 were used to identify potentially high-permeability or contaminated zones in the aquifer (preferential flowpaths) as well as low-permeability zones that may promote contamination through back diffusion. Some groundwater in parts of the glacial-sediment aquifer where the leachate plumes

  12. Suppressing immature house and stable flies in outdoor calf hutches with sand, gravel, and sawdust bedding.

    Science.gov (United States)

    Schmidtmann, E T

    1991-11-01

    Sand, gravel, sawdust, and pine shavings were used as bedding in outdoor calf hutches and compared with straw relative to the density of immature (maggot) house flies, Musca domestica, and stable flies, Stomoxys calcitrans. In 6-wk field trials, average densities of house and stable fly maggots in concrete mix sand ranged from only .3 to 1.6 and 0 to .1 maggots/L, respectively; pea size gravel bedding also strongly suppressed densities from less than .1 to .3 and less than .1 to .1 maggots/L, respectively. These densities represent reductions of 76 to greater than 99% relative to straw bedding, but both sand and gravel compacted and became soiled with calf feces, which resulted in unacceptable bedding sanitation and foul odors. Densities of house and stable fly maggots in pine shavings did not differ from those in straw bedding. Nevertheless, in sawdust bedding, maggot density was limited to averages of 1.4 to 8.3 house and 9.8 to 11.8 stable fly maggots/L; this represented reductions of 45 to 91% relative to straw. In a follow-up trial, house and stable fly maggot densities in sawdust averaged 11.3 and 43.9 maggots/L, respectively, reductions of 77 and 46%. These findings suggest that bedding calf hutches with sawdust during warm weather can be useful as an ecologically sound approach to controlling muscoid fly populations on dairy farms.

  13. Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns

    Science.gov (United States)

    Hess, A.; Höhener, P.; Hunkeler, D.; Zeyer, J.

    1996-08-01

    The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O 2, NO 3-) and nutrients (e.g., NH 4+, PO 43-). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O 2, NO 3- and PO 43-. Concentration profiles of O 2, NO 3-, NO 2-, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O 2 decrease from 4.6 to < 0.3 mg l -1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O 2 was below 0.1 mg l -1 and a denitrifying activity was found. In the presence and in the absence of O 2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O 2; (2) O 2 and NO 3- can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O 2.

  14. Aquifer recharging in South Carolina: radiocarbon in environmental hydrogeology

    International Nuclear Information System (INIS)

    Stone, P.A.; Knox, R.L.; Mathews, T.D.

    1985-01-01

    Radiocarbon activities of dissolved inorganic carbon (and tritium activities where infiltration rates are rapid and aquifers shallow) provide relatively unambiguous and inexpensive evidence for identification of significant recharge areas. Such evidence is for the actual occurrence of modern recharge in the aquifer and thus is less inferential than stratigraphic or potentiometric evidence. These underutilized isotopic techniques are neither arcane nor complex and have been more-or-less standardized by earlier researchers. In South Carolina, isotopic evidence has been used from both calcareous and siliceous sedimentary aquifers and fractured crystalline rock aquifers. The Tertiary limestone aquifer is shown not to be principally recharged in its subcrop area, unlike conditions assumed for many other sedimentary aquifers in southeastern United States, and instead receives considerable lateral recharge from interfingering updip Tertiary sand aquifers in the middle coastal plain. Induced recharging at Hilton Head Island is mixing ancient relict water and modern recharge water. Recharging to deeper portions of the Cretaceous Middendorf basal sand aquifer occurs at least as far coastward as the middle coastal plain, near sampling sites that stratigraphically appear to be confined. Pronounced mineralization of water in fractured rocks cannot be considered as evidence of ancient or relict ground water that is isolated from modern contaminants, some of these waters contain considerable radiocarbon and hydrogen-bomb tritium

  15. The 1992 measles epidemic in Cape Town - a changing ...

    African Journals Online (AJOL)

    Over the last 6 years there has been a decline in the incidence of measles in Cape Town. However, during August 1992 an outbreak occurred, with cases reported at many schools in children presumably immunised. The objectives of this study were to characterise the epidemic in Cape Town and to determine possible ...

  16. Perspectives of wild medicine harvesters from Cape Town, South Africa

    Directory of Open Access Journals (Sweden)

    Leif Petersen

    2017-09-01

    Full Text Available Cape Town is a fast-growing cityscape in the Cape Floristic Region in South Africa with 24 formally protected conservation areas including the World Heritage Table Mountain National Park. These sites have been protected and managed as critical sites for local biodiversity, representing potentially one-third of all Cape Floristic Region flora species and 18% of South Africa's plant diversity. Cape Town is also inhabited by a rapidly growing culturally and economically diverse citizenry with distinct and potentially conflicting perspectives on access to, and management of, local natural resources. In a qualitative study of 58 locally resident traditional healers of distinct cultural groups, we examined motivations underlying the generally illicit activity of harvesting of wild resources from Cape Town protected areas. Resource harvester motivations primarily link to local economic survival, health care and cultural links to particular resources and practices, 'access for all' outlooks, and wholesale profit-seeking perspectives. We describe these motivations, contrast them with the current formal, legal and institutional perspectives for biodiversity protection in the city, and propose managerial interventions that may improve sustainability of ongoing harvest activities. Significance: The study reveals, for the first time in the Cape Floristic Region, informal economy viewpoints on terrestrial nature and how its direct use has important economic and cultural roles – specifically in wild medicine harvesting and trade. We contrast the formal and informal approaches to nature conservation in the city and propose new considerations for conservation managers.

  17. Managed Aquifer Recharge Using Treated Wastewater: An Option to Manage a Coastal Aquifer In Oman For Better Domestic Water Supply

    Science.gov (United States)

    Al-Maktoumi, Ali; Zekri, Slim; ElRawy, Mustafa

    2016-04-01

    Arid countries, such as the Sultanate of Oman, are facing challenges of water shortages threatening economic development and social stability. Most of those countries are vulnerable to the potential adverse impacts of climate change, the most significant of which are increased average temperatures, less and more erratic precipitation, sea level rise, and desertification. The combined effect of existing adverse conditions and likely impacts of future climate change will make water management even more difficult than what it is today. Tremendous efforts have been devoted to augment the water resources. Managed Aquifer Recharge (MAR) is practiced widely to store water during periods of surpluses and withdraw during deficits from an aquifer. In Muscat, there will be a surplus of >100,000 m3/day of TWW during winter months in the coming few years. The aquifer along the northern coast of Oman (Al-Khawd Aquifer) is conducive for MAR. Data show that TWW volumes will increase from 7.6 Mm3 in 2003 to 70.9 Mm3 in 2035 in Muscat city only. This study assesses, using MODFLOW 2005 numerical code, the impact of MAR using TWW on better management of the Al-Khawd unconfined coastal aquifer for better urban water supply. Specifically, aiming to maximize withdrawals from the domestic wells with minimize adverse effect of seawater intrusion. The model operates under a number of constrains that minimize the loss to the sea and the injected TWW must not migrates upstream (due to developed mound) and reach the wellfields used for domestic supply. The hypothetical injection wells are located downstream the domestic wellfield zone. The results of different managerial scenarios show that MAR produces a hydraulic barrier that decelerates the seawater intrusion which allows higher abstraction of pristine water from the upstream part of the aquifer. MAR along with redistribution/relocation of public wells allows abstraction of 2 times the current abstraction rate (around 6 Mm3/year to 12 Mm3

  18. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  19. Radiation sensitization by CAPE on human HeLa cells of cervical cancer

    International Nuclear Information System (INIS)

    Wang Xiaoqiang; Cao Jianping; Fan Saijun; Zun Wei; Huang Xiaofei; Liu Yang; Chen Xialin; Gong Xiaomei; Peng Xiaomei; Zeng Jing

    2009-01-01

    Objective: To study the radiosensitizing effect of caffic acid phenethyl ester (CAPE) on human cervical cancer HeLa cells. Methods: MTT assay was used to measure the relation between the inhibition effect and CAPE concentrations by CAPE with different concentrations on HeLa cells for 24 hours. HeLa cells were divided into the control and experimental groups, both of which were given 0, 2, 4, 6 and 8 Gy of 60Co γ-irradiation, respectively. The cell clones were counted. Meanwhile HeLa cells were divided into the control, CAPE, irradiation and combination groups. Flow cytometric analysis was adopted to detect the changes of cell cycle distribution induced by CAPE. Results: The inhibition rate of CAPE acting on Hela cells increased with concentrations (F=126. 49 ∼ 3654.88, P 0 ) (1.45 and 1.82 Gy) and the quasi-threshold dose (D q ) (1.89 and 3.21 Gy) of HeLa cells in experimental group decreased comparing with control group, SER was 1.26. Compared with the sole irradiation group, cells in G 2 /M phase of the CAPE group and the sole irradiation group increased (P 2 /M arrest and may be related to the inhibition of the sub-lethal damage repair. (authors)

  20. Over the past decades, the Cape anchovy Engraulis capensis has ...

    African Journals Online (AJOL)

    spamer

    Data on the thermal structure, copepod biomass and production, and total number of eggs of the Cape anchovy ... To identify factors controlling the area of this water mass, a cluster ...... thesis, University of Cape Town: [vii] + 278 pp. SHANNON ...

  1. Ekman estimates of upwelling at cape columbine based on ...

    African Journals Online (AJOL)

    Ekman estimates of upwelling at cape columbine based on measurements of longshore wind from a 35-year time-series. AS Johnson, G Nelson. Abstract. Cape Columbine is a prominent headland on the south-west coast of Africa at approximately 32°50´S, where there is a substantial upwelling tongue, enhancing the ...

  2. Characterization of 200-UP-1 Aquifer Sediments and Results of Sorption-Desorption Tests Using Spiked Uncontaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Serne, R JEFFREY.; Bjornstad, Bruce N.; Schaef, Herbert T.; Brown, Christopher F.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Lindberg, Michael J.

    2005-11-16

    Core characterization showed only 4 out of 13 core liner samples were intact samples and that the others were slough material. The intact samples showed typical Ringold Unit E characteristics such as being dominated by gravel and sand. Moderately reducing conditions are inferred in some core from borehole C4299. This reducing condition was caused by the hard tool process used to drill the wells. One core showed significant presence of ferric iron oxide/clay coatings on the gravels. There were no highly contaminated sediments found in the cores from the three new boreholes in UP-1 operable unit, especially for uranium. The presence of slough and ''flour'' caused by hard tooling is a serious challenge to obtaining field relevant sediments for use in geochemical experiments to determine the adsorption-desorption tendencies of redox sensitive elements such as uranium. The adsorption of COCs on intact Ringold Formation sediments and Fe/clay coatings showed that most of the anionic contaminants [Tc(VII), Se(VI), U(VI), Cr(VI), and I(-I)] did not adsorbed very well compared to cationic [Np(V), Sr(II), and Cs(I)] radionuclides. The high hydrous iron oxide content in Fe/clay coatings caused the highest Kd values for U and Np, suggesting these hydrous oxides are the key solid adsorbent in the sediments. Enhanced adsorption behavior for Tc, and Cr and perhaps Se on the sediments was considered an ?artifact? result caused by the induced reducing conditions from the hard tool drilling. Additional U(VI) adsorption Kd studies were performed on Ringold Formation sediments to develop more robust Kd data base for U. The <2 mm size separates of three UP-1 sediments showed a linear U(VI) adsorption isotherm up 1 ppm of total U(VI) concentration in solution. The additional U(VI) Kds obtained from varying carbonate concentration indicated that U(VI) adsorption was strongly influenced by the concentration of carbonate in solution. U(VI) adsorption decreased with

  3. A novel analytical solution for estimating aquifer properties within a horizontally anisotropic aquifer bounded by a stream

    Science.gov (United States)

    Huang, Yibin; Zhan, Hongbin; Knappett, Peter S. K.

    2018-04-01

    Past studies modeling stream-aquifer interaction commonly account for vertical anisotropy in hydraulic conductivity, but rarely address horizontal anisotropy, which may exist in certain sedimentary environments. If present, horizontal anisotropy will greatly impact stream depletion and the amount of recharge a pumped aquifer captures from the river. This scenario requires a different and somewhat more sophisticated mathematical approach to model and interpret pumping test results than previous models used to describe captured recharge from rivers. In this study, a new mathematical model is developed to describe the spatiotemporal distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model is used to estimate four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. In order to approve the efficacy of the new model, a MATLAB script file is programmed to conduct a four-parameter inversion to estimate the four parameters of concern. By comparing the results of analytical and numerical inversions, the accuracy of estimated results from both inversions is acceptable, but the MATLAB program sometimes becomes problematic because of the difficulty of separating the local minima from the global minima. It appears that the new analytical model of this study is applicable and robust in estimating parameter values for a horizontally anisotropic aquifer laterally bounded by a stream. Besides that, the new model calculates stream depletion rate as a function of stream-bank pumping. Unique to horizontally anisotropic and homogeneous aquifers, the stream depletion rate at any given pumping rate depends closely on the horizontal anisotropy ratio and the direction of the principle transmissivities relative to

  4. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    Science.gov (United States)

    DeTemple, B.; Wilcock, P.

    2011-12-01

    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano

  5. Comparison of age determination techniques for known-age Cape ...

    African Journals Online (AJOL)

    Known-age teeth were used to validate age determination techniques for the Cape fur seal (Arctocephalus ... The reliability with which age can be estimated for the Cape fur seal has also been improved. ... The acid solution, with a volume at least 10 times that of ... old female [0 show (he absence of GLGs in the cemenlUnl.

  6. cutaneous manifestatio s of tuberculosis i the wester cape

    African Journals Online (AJOL)

    lEA WALKER, M.B., CH.B. (CAPE TOWN). Department of Dermatology, University of Cape Town and Croote Schuur Ho pital. Skin tuberculosis has been chosen as the subject of ... are fairly representative of the total number of skin cases seeking advice. .... results of vitamin D2 in the treatment of lupus."5-7. At -about the ...

  7. Ensuring water supply for all towns and villages in the Eastern Cape ...

    African Journals Online (AJOL)

    Eastern Cape and Western Cape Provinces of South Africa. ER Hay1, K .... The current water balance (see Fig. 1) and the .... in selected towns in the Eastern and Western Cape. Town .... work in order to reduce the risk of failure in the water supply to the town. .... Asset management, to prolong the life of the infrastructure.

  8. The morphodynamics and internal structure of intertidal fine-gravel dunes: Hills Flats, Severn Estuary, UK

    Science.gov (United States)

    Carling, P. A.; Radecki-Pawlik, A.; Williams, J. J.; Rumble, B.; Meshkova, L.; Bell, P.; Breakspear, R.

    2006-01-01

    In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m - 2 , sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m - 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s - 1 . Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary 'caps' overlie a more stable dune 'core'. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.

  9. A Novel Analytical Solution for Estimating Aquifer Properties and Predicting Stream Depletion Rates by Pumping from a Horizontally Anisotropic Aquifer

    Science.gov (United States)

    Huang, Y.; Zhan, H.; Knappett, P.

    2017-12-01

    Past studies modeling stream-aquifer interactions commonly account for vertical anisotropy, but rarely address horizontal anisotropy, which does exist in certain geological settings. Horizontal anisotropy is impacted by sediment deposition rates, orientation of sediment particles and orientations of fractures etc. We hypothesize that horizontal anisotropy controls the volume of recharge a pumped aquifer captures from the river. To test this hypothesis, a new mathematical model was developed to describe the distribution of drawdown from stream-bank pumping with a well screened across a horizontally anisotropic, confined aquifer, laterally bounded by a river. This new model was used to determine four aquifer parameters including the magnitude and directions of major and minor principal transmissivities and storativity based on the observed drawdown-time curves within a minimum of three non-collinear observation wells. By comparing the aquifer parameters values estimated from drawdown data generated known values, the discrepancies of the major and minor transmissivities, horizontal anisotropy ratio, storativity and the direction of major transmissivity were 13.1, 8.8, 4, 0 and managers to exploit groundwater resource reasonably while protecting stream ecosystem.

  10. Sustainable Capture: Concepts for Managing Stream-Aquifer Systems.

    Science.gov (United States)

    Davids, Jeffrey C; Mehl, Steffen W

    2015-01-01

    Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream-aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream-aquifer systems. We demonstrate their utility on a hypothetical stream-aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non-scientist alike, and readily identifies vulnerabilities to sustainable stream-aquifer management when its value exceeds 100%. © 2014, National Ground Water Association.

  11. Plant succession patterns on residual open-pit gravel mines deposits Bogota

    Directory of Open Access Journals (Sweden)

    Ricardo A. Mora Goyes

    1999-07-01

    Full Text Available Based on both: the study of composition and structure of plant communities and the analysis of the physico-chemical characteristics of mining wastes, the initial patterns of primary succession were determined. These patterns were present in three deposits of waste material abandoned during 18, 36 and 120 months respectively. Sue materials were originated in open-pit gravel mines located to the south of Bogota (Colombia. This study pretends to contribute to the knowledge of the meehanlsms of natural restauration of tropical ecosystems subjected to man-borne degradation.

  12. Final Environmental Assessment for the Transfer of the Mukilteo Tank Farm Property Snohomish County, Washington

    Science.gov (United States)

    2012-10-01

    terms of level of service (LOS). The LOS is a qualitative description of traffic flow based on such factors as speed, travel time, delay, and...south to Whidbey Island on the north. It provides one basic lane in each direction of travel ; however, in the vicinity of the Mukilteo Tank Farm...Wildlife, 2006). 3.7.2 Ground Water The Mukilteo Tank Farm Property overlies the Intercity Plateau Aquifer, an unconsolidated sand and gravel aquifer

  13. Aquifer thermal energy storage. International symposium: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Aquifers have been used to store large quantities of thermal energy to supply process cooling, space cooling, space heating, and ventilation air preheating, and can be used with or without heat pumps. Aquifers are used as energy sinks and sources when supply and demand for energy do not coincide. Aquifer thermal energy storage may be used on a short-term or long-term basis; as the sole source of energy or as a partial storage; at a temperature useful for direct application or needing upgrade. The sources of energy used for aquifer storage are ambient air, usually cold winter air; waste or by-product energy; and renewable energy such as solar. The present technical, financial and environmental status of ATES is promising. Numerous projects are operating and under development in several countries. These projects are listed and results from Canada and elsewhere are used to illustrate the present status of ATES. Technical obstacles have been addressed and have largely been overcome. Cold storage in aquifers can be seen as a standard design option in the near future as it presently is in some countries. The cost-effectiveness of aquifer thermal energy storage is based on the capital cost avoidance of conventional chilling equipment and energy savings. ATES is one of many developments in energy efficient building technology and its success depends on relating it to important building market and environmental trends. This paper attempts to provide guidance for the future implementation of ATES. Individual projects have been processed separately for entry onto the Department of Energy databases.

  14. Tourist Profile and Destination Brand Perception: The Case of Cape Town, South Africa

    Directory of Open Access Journals (Sweden)

    Ikechukwu O. Ezeuduji

    2016-08-01

    Full Text Available Tourists pay for destination brands. This study checked for the relationships between tourists’ profile and how they perceived the destination brand of Cape Town. A questionnaire survey of 220 tourists visiting Cape Town was done. This study found that repeat visit, age of tourist, length of stay, and tourist origin, have significant influences on how tourists visiting Cape Town perceived the destination. The top three destination attributes of Cape Town (cognitive images, which enhance visitor experience satisfaction are (1 the overall level of service quality at facilities in Cape Town, (2 the city being one of the best places the tourists have visited, and (3 the destination’s good value for money. The top three emotional valuations of destination attributes (affective images which enhance visitor experience satisfaction in Cape Town include (1 memorable visit, (2 valuable visit, and (3 friendly and hospitable population. It is therefore recommended that tourism businesses in Cape Town develop relationship marketing tools to attract and retain its tourists segments of loyal, advanced in age, long-staying and domestic tourists. Results from this research could be compared with related findings in the international arena and have related implications, especially for developing economies

  15. Bed Load Variability and Morphology of Gravel Bed Rivers Subject to Unsteady Flow: A Laboratory Investigation

    Science.gov (United States)

    Redolfi, M.; Bertoldi, W.; Tubino, M.; Welber, M.

    2018-02-01

    Measurement and estimation of bed load transport in gravel bed rivers are highly affected by its temporal fluctuations. Such variability is primarily driven by the flow regime but is also associated with a variety of inherent channel processes, such as flow turbulence, grain entrainment, and bed forms migration. These internal and external controls often act at comparable time scales, and are therefore difficult to disentangle, thus hindering the study of bed load variability under unsteady flow regime. In this paper, we report on laboratory experiments performed in a large, mobile bed flume where typical hydromorphological conditions of gravel bed rivers were reproduced. Data from a large number of replicated runs, including triangular and square-wave hydrographs, were used to build a statistically sound description of sediment transport processes. We found that the inherent variability of bed load flux strongly depends on the sampling interval, and it is significantly higher in complex, wandering or braided channels. This variability can be filtered out by computing the mean response over the experimental replicates, which allows us to highlight two distinctive phenomena: (i) an overshooting (undershooting) response of the mean bed load flux to a sudden increase (decrease) of discharge, and (ii) a clockwise hysteresis in the sediment rating curve. We then provide an interpretation of these findings through a conceptual mathematical model, showing how both phenomena are associated with a lagging morphological adaptation to unsteady flow. Overall, this work provides basic information for evaluating, monitoring, and managing gravel transport in morphologically active rivers.

  16. Global assessment of coastal aquifer state and its vulnerability respect to Sea Water Intrusion. Application to several Mediterranean Coastal Aquifers.

    Science.gov (United States)

    Baena, Leticia; Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Morell, Ignacio

    2017-04-01

    In this research we propose a method for a global assessment of coastal aquifer state and its vulnerability to Sea Water Intrusion (SWI). It is based on two indices, the MART index, which summarize the global significance of the SWI phenomenon, and the L_GALDIT for a lumped assessment of the vulnerability to SWI. Both of them can be useful as a tool to assess coastal groundwater bodies in risk of not achieving good status in accordance with the Water Framework Directive (WFD, 2000) and to identify possible management alternative to reduce existing impacts. They can be obtained even from a reduced number of data (in the MART case only depend on the geometry and available aquifer state data) with simple calculations, which have been implemented in a general GIS tool that can be easily applied to other case studies. The MART index in an aquifer is related with the total mass of chloride in the aquifer due to sea water intrusion and can be obtained by simple linear operations of volume and concentrations that can be deduced from a schematic conceptual cross-section approach (orthogonal to the shore line) defined to summarize the intrusion volume in the aquifer. At a certain historical time, this representative aquifer cross-section can be defined in a systhematic way from the aquifer geometry, the specific yield, and the hydraulic head and chloride concentration fields that can be deduced from the available information by using appropriate interpolation methods. Following the proposed procedure we will finally obtain a summary of the historical significance of the SWI in an aquifer at different spatial resolution: 3D salinity concentration maps, 2D representative conceptual cross-section of intrusion and the MART lumped significance index. The historical evolution of the MART can be employed to perform a global assessment of the resilience and trends of global significance of the SWI in an aquifer. It can be useful to compare the significance of intrusion problems in

  17. Chapter J: Issues and challenges in the application of geostatistics and spatial-data analysis to the characterization of sand-and-gravel resources

    Science.gov (United States)

    Hack, Daniel R.

    2005-01-01

    Sand-and-gravel (aggregate) resources are a critical component of the Nation's infrastructure, yet aggregate-mining technologies lag far behind those of metalliferous mining and other sectors. Deposit-evaluation and site-characterization methodologies are antiquated, and few serious studies of the potential applications of spatial-data analysis and geostatistics have been published. However, because of commodity usage and the necessary proximity of a mine to end use, aggregate-resource exploration and evaluation differ fundamentally from comparable activities for metalliferous ores. Acceptable practices, therefore, can reflect this cruder scale. The increasing use of computer technologies is colliding with the need for sand-and-gravel mines to modernize and improve their overall efficiency of exploration, mine planning, scheduling, automation, and other operations. The emergence of megaquarries in the 21st century will also be a contributing factor. Preliminary research into the practical applications of exploratory-data analysis (EDA) have been promising. For example, EDA was used to develop a linear-regression equation to forecast freeze-thaw durability from absorption values for Lower Paleozoic carbonate rocks mined for crushed aggregate from quarries in Oklahoma. Applications of EDA within a spatial context, a method of spatial-data analysis, have also been promising, as with the investigation of undeveloped sand-and-gravel resources in the sedimentary deposits of Pleistocene Lake Bonneville, Utah. Formal geostatistical investigations of sand-and-gravel deposits are quite rare, and the primary focus of those studies that have been completed is on the spatial characterization of deposit thickness and its subsequent effect on ore reserves. A thorough investigation of a gravel deposit in an active aggregate-mining area in central Essex, U.K., emphasized the problems inherent in the geostatistical characterization of particle-size-analysis data. Beyond such factors

  18. The Cape commercial linefishery consists of about 2 500 vessels ...

    African Journals Online (AJOL)

    spamer

    assessing the ecosystem effects of fishing and evaluating the benefits of ... Such information would assist in the ... Traditional Cape linefish may be broadly divided into ... gressively farther offshore (and into deeper. Griffiths: ... (Griffiths 1997c); this process controls avail- ... of shallow-water Cape hake Merluccius capensis,.

  19. Comparison of groundwater flow in Southern California coastal aquifers

    Science.gov (United States)

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers.

  20. Aquifer test at well SMW-1 near Moenkopi, Arizona

    Science.gov (United States)

    Carruth, Rob; Bills, Donald J.

    2012-01-01

    The Hopi villages of Lower Moencopi and Upper Moenkopi are on the Hopi Indian Reservation south of Tuba City in northern Arizona. These adjacent Hopi villages, located west and north of the confluence of Pasture Canyon Wash and Moenkopi Wash, are dependent on groundwater withdrawals from three wells that penetrate the N aquifer and from two springs that discharge from the N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and is composed of thick beds of sandstone between less permeable layers of siltstone and mudstone. The fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells; however, the aquifer is moderately productive at yields generally less than 25 gallons per minute in the study area. In recent years, the water level has declined in the three public-supply wells and the flow from the springs has decreased, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. In addition to the challenge imposed by declining groundwater levels, the water-supply wells and springs are located about 2 miles downgradient from the Tuba City Landfill site where studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are higher than regional concentrations in the N aquifer. In August 2008, the U.S. Geological Survey, in cooperation with the Hopi Tribe, conducted an aquifer test on well SMW-1, designed to help the Hopi Tribe determine the potential yield and water quality of the N aquifer south of Moenkopi Wash as a possible source of additional water supply. Well SMW-1 was drilled south of Moenkopi Wash to a depth of 760 feet below land surface before being backfilled and cased to about 300 feet. The well penetrates, in descending order, the Navajo Sandstone and the Kayenta Formation, both units of the N aquifer. The pre-test water level in the well was 99.15 feet below land

  1. Long-term natural attenuation of carbon and nitrogen within a groundwater plume after removal of the treated wastewater source.

    Science.gov (United States)

    Repert, Deborah A; Barber, Larry B; Hess, Kathryn M; Keefe, Steffanie H; Kent, Douglas B; LeBlanc, Denis R; Smith, Richard L

    2006-02-15

    Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.

  2. Transport of reactive and nonreactive solutes

    International Nuclear Information System (INIS)

    Garabedian, S.P.; Leblanc, D.R.

    1990-01-01

    A natural-gradient tracer test was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. A nonreactive tracer, bromide, and two reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions for 3 years as they moved 280 meters downgradient through an array of multilevel samplers. The tracer transport was quantified using spatial moments. The calculated total mass of bromide for each sampling date varied from 86 to 105 percent of the injected mass, and the center of mass moved at a nearly constant horizontal velocity of 0.42 meters per day. The bromide cloud also moved downward about 4 meters, probably because of density-induced sinking and accretion of areal recharge from precipitation. After 200 meters of transport, the bromide cloud was more than 80 meters long but only 14 meters wide and 6 meters thick. The change in longitudinal dispersivity had reached a constant value (0.96 meters). The transverse horizontal and transverse vertical dispersivities were much smaller (1.8 centimeters and 1.5 millimeters, respectively) than the longitudinal value. The lithium and molybdate clouds followed the same path as the bromide cloud, but a significant amount of their mass was adsorbed onto the aquifer sediments, and their rates of movement were retarded about 50 percent relative to the bromide movement. (Author) (5 figs., 23 refs.)

  3. April 1977 The Cape gurnard is a commercially exploited species of ...

    African Journals Online (AJOL)

    The Cape gurnard is a commercially exploited species of which the annual landings between ... fishing operations took place along the eastern Cape coast of South Africa ..... Handbook of computation for biological statistics offish populations.

  4. Narrating Muslim women’s identities in Cape Town

    OpenAIRE

    Boswell, R.

    2011-01-01

    This paper considers the complexity of Muslim women’s identities in the city of Cape Town in 2010. It is argued that emerging super-diversity in the form of African immigration, the commercialisation of Islam and increasing freedoms for women in South Africa impact on women’s engagement with religion and diversifies their identity. The paper also offers glimpses into the diversity of Islam in Cape Town, suggesting that this religion is not monolithic in the city and that it is continuously di...

  5. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  6. The continental slope current system between Cape Verde and the Canary Islands

    Directory of Open Access Journals (Sweden)

    Jesús Peña-Izquierdo

    2012-08-01

    Full Text Available We use hydrographic, velocity and drifter data from a cruise carried out in November 2008 to describe the continental slope current system in the upper thermocline (down to 600 m between Cape Verde and the Canary Islands. The major feature in the region is the Cape Verde Frontal Zone (CVFZ, separating waters from tropical (southern and subtropical (northern origin. The CVFZ is found to intersect the slope north of Cape Blanc, between 22°N and 23°N, but we find that southern waters are predominant over the slope as far north as 24°N. South of Cape Blanc (21.25°N the Poleward Undercurrent (PUC is a prominent northward jet (50 km wide, reaching down to 300 m and indistinguishable from the surface Mauritanian Current. North of Cape Blanc the upwelling front is found far offshore, opening a near-slope northward path to the PUC. Nevertheless, the northward PUC transport decreases from 2.8 Sv at 18°N to 1.7 Sv at 24°N, with about 1 Sv recirculating ofshore just south of Cape Blanc, in agreement with the trajectory of subsurface drifters. South of the CVFZ there is an abrupt thermohaline transition at σϴ=26.85 kg m–3, which indicates the lower limit of the relatively pure (low salt and high oxygen content South Atlantic Central Water (SACW variety that coexists with the dominant locally-diluted (salinity increases through mixing with North Atlantic Central Water but oxygen diminishes because of enhanced remineralization Cape Verde (SACWcv variety. At 16°N about 70% of the PUC transport corresponds to the SACW variety but but this is transformed into 40% SACWcv at 24°N. However, between Cape Verde and Cape Blanc and in the 26.85 < σϴ < 27.1 layer, we measure up to 0.8 Sv of SACWcv being transported south. The results strongly endorse the idea that the slope current system plays a major role in tropical-subtropical water-mass exchange.

  7. The Grain-size Patchiness of Braided Gravel-Bed Streams - example of the Urumqi River (northeast Tian Shan, China)

    Science.gov (United States)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Meunier, P.; Malverti, L.; Ye, B.

    2014-02-01

    In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.

  8. Fluvial gravel stabilization by net-spinning Hydropsychid caddisflies: exploring the magnitude and geographic scope of ecosystem engineering effect and evaluating resistance to anthropogenic stresses

    Science.gov (United States)

    Daniels, M.; Albertson, L.; Sklar, L. S.; Tumolo, B.; Mclaughlin, M. K.

    2017-12-01

    Several studies have demonstrated the substantial effects that organisms can have on earth surface processes. Known as ecosystem engineers, in streams these organisms maintain, modify, or create physical habitat structure by influencing fluvial processes such as gravel movement, fine sediment deposition and bank erosion. However, the ecology of ecosystem engineers and the magnitude of ecosystem engineering effects in a world increasingly influence by anthropogenically-driven changes is not well understood. Here we present a synthesis of research findings on the potential gravel stabilization effects of Hydropsychid caddisflies, a globally distributed group of net-spinning insects that live in the benthic substrate of most freshwater streams. Hydropsychid caddisflies act as ecosystem engineers because these silk structures can fundamentally alter sediment transport conditions, including sediment stability and flow currents. The silk nets spun by these insects attach gravel grains to one another, increasing the shear stress required to initiate grain entrainment. In a series of independent laboratory experiments, we investigate the gravel size fractions most affected by these silk attachments. We also investigate the role of anthropogenic environmental stresses on ecosystem engineering potential by assessing the impact of two common stressors, high fine sediment loads and stream drying, on silk structures. Finally, an extensive field survey of grain size and Hydropsychid caddisfly population densities informs a watershed-scale network model of Hydropsychid caddisfly gravel stabilizing potential. Our findings provide some of the first evidence that caddisfly silk may be a biological structure that is resilient to various forms of human-mediated stress and that the effects of animal ecosystem engineers are underappreciated as an agent of resistance and recovery for aquatic communities experiencing changes in sediment loads and hydrologic regimes.

  9. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    Science.gov (United States)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  10. Short Communications: First record of freshwater fish on the Cape ...

    African Journals Online (AJOL)

    During a non-exhaustive survey of freshwater bodies on five islands of the archipelago, the first presence of a freshwater fish was recorded. Using barcoding sequences, the species was identified as the guppy (Poecilia reticulata), a highly invasive species alien to the Cape Verdean Islands. Key words: Cape Verde, guppy, ...

  11. Research collaboration 2011-2012: A joint publication highlighting the research partnerships between the CSIR and University of the Western Cape, University of Cape Town, Stellenbosch University

    CSIR Research Space (South Africa)

    CSIR

    2012-01-01

    Full Text Available CSIR’s partnerships with the University of the Western Cape (UWC), University of Cape Town (UCT) and Stellenbosch University (SU) seek to conduct research that improves the quality of the lives of the people of South Africa by responding...

  12. Hydrogeology - AQUIFER_SYSTEMS_UNCONSOLIDATED_IDNR_IN: Unconsolidated Aquifer Systems of Indiana (Indiana Department of Natural Resources, 1:48,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — AQUIFER_SYSTEMS_UNCONSOLIDATED_IDNR_IN is a polygon shapefile that shows unconsolidated aquifer systems of the state of Indiana at a scale of 1:48,000. The following...

  13. Optimization of Design of Aquifer Storage and Recovery System (ASTR) for Enhanced Infiltration Rate with Reduced Cost at the Coastal Aquifers of South-Western Bangladesh

    Science.gov (United States)

    Nawrin, N.; Ahmed, K. M.; Rahman, M. M.

    2016-12-01

    Increasing salinity of natural drinking water sources has been reported as one of the many problems that affect low-income countries. Safe potable water sources in coastal Bangladesh have become contaminated by varying degrees of salinity due to saltwater intrusion, cyclone and storm surges and increased shrimp and crab farming along the coastal areas. This crisis is also exacerbated owing to climate change. The problem of salinity can have serious implications to public health. Here Managed Aquifer Recharge (MAR) has been ascertained as a better solution to overcome the fresh water shortage in the coastal belt of Bangladesh in terms of groundwater quality improvement and supply fresh water even during the dry period. 19 MAR systems have been built and tested in the area for providing community water supply by way of creating freshwater buffer zone in the brackish aquifers through artificial recharge of pond or rooftop rainwater. These existing ASTR schemes consist of sand filtration tank with 4 to 6 large diameter infiltration wells filled with sorted gravel. These larger diameter recharge wells make the construction and maintenance expensive and little difficult for the rural communities. Therefore, modification of design is required for enhancing infiltration rates with reduced costs. As the design of the existing MAR system have confronted some problems, the details of design, construction and performance have been studied from previous investigations and a new modified ASTR scheme has been demonstrated to amplify the infiltration rate along with monitoring scheme. Smaller 4 inch diameter empty recharge wells and PVC screen have been used in the newly developed design. Daily infiltration rate has been increased to 8 to 10 m3/d compared to 4 to 6 m3/d in the old design. Three layered sand filtration tank has been prepared by modification of an abandoned PSF. Time needed for lowering EC to acceptable limits has been found to be significantly lower than the pre

  14. Hydrogeology of the Umm Er Radhuma Aquifer (Arabian peninsula)

    Science.gov (United States)

    Dirks, Heiko; Al Ajmi, Hussain; Kienast, Peter; Rausch, Randolf

    2018-03-01

    The aim of this article is to enhance the understanding of the Umm Er Radhuma aquifer's genesis, and its hydraulic and hydrochemical development over time. This is a prerequisite for wise use of the fossil groundwater resources contained within. The Umm Er Radhuma is a karstified limestone aquifer, extending over 1.6 Mio. km2 in the eastern part of the Arabian Peninsula. Both epigene and hypogene karstification contributed to the genesis of what is today the most prolific aquifer in the region. Besides man-made abstractions, even the natural outflows are higher than the small recharge (natural storage depletion). The Umm Er Radhuma shows that large aquifers in arid regions are never in "steady state" (where inflows equal outflows), considering Quaternary climate history. The aquifer's adaption to climate changes (precipitation, sea level) can be traced even after thousands of years, and is slower than the climate changes themselves.

  15. Simple method for quick estimation of aquifer hydrogeological parameters

    Science.gov (United States)

    Ma, C.; Li, Y. Y.

    2017-08-01

    Development of simple and accurate methods to determine the aquifer hydrogeological parameters was of importance for groundwater resources assessment and management. Aiming at the present issue of estimating aquifer parameters based on some data of the unsteady pumping test, a fitting function of Theis well function was proposed using fitting optimization method and then a unitary linear regression equation was established. The aquifer parameters could be obtained by solving coefficients of the regression equation. The application of the proposed method was illustrated, using two published data sets. By the error statistics and analysis on the pumping drawdown, it showed that the method proposed in this paper yielded quick and accurate estimates of the aquifer parameters. The proposed method could reliably identify the aquifer parameters from long distance observed drawdowns and early drawdowns. It was hoped that the proposed method in this paper would be helpful for practicing hydrogeologists and hydrologists.

  16. A 2D hydrodynamic-sedimentological model for gravel-bed rivers. Part I: theory and validation

    Directory of Open Access Journals (Sweden)

    Gabriel Kaless

    2013-09-01

    Full Text Available This paper presents a novel 2D-depth average model especially developed for gravel-bed rivers, named Lican-Leufú (Lican=pebble and Leufu=river, in Mapuche’s language, the native inhabitants of Central Patagonia, Argentina. The model consists of three components: a hydrodynamic, a sedimentological, and a morphological model. The flow of water is described by the depth-averaged Reynolds equations for unsteady, free-surface, shallow water flows. It includes the standard k-e model for turbulence closure. Sediment transport can be divided in different size classes (sand-gravel mixture and the equilibrium approach is used for Exner’s equation. The amour layer is also included in the structure of the model and the surface grain size distribution is also allowed to evolve. The model simulates bank slides that enable channel widening. Models predictions were tested against a flume experiment where a static armour layer was developed under conditions of sediment starvations and general good agreements were found: the model predicted adequately the sediment transport, grain size of transported material, final armour grain size distribution and bed elevation.

  17. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  18. Geohydrology of the Winchester Subbasin, Riverside County, California

    Science.gov (United States)

    Kaehler, Charles A.; Burton, Carmen A.; Rees, Terry F.; Christensen, Allen H.

    1998-01-01

    The 20-square-mile Winchester structural subbasin is an alluvium-filled paleocanyon that is as much as 900 feet deep. The alluvial aquifer is composed of detrital material that generally ranges in size from clay to fine gravel; the fine and coarse materials are mixed in some places and inter- bedded in others. The apparent lenticularity of fine- and coarse-grained materials and differing water quality with depth indicate that the aquifer is partly or locally confined.

  19. Clausius-Clapeyron Scaling of Convective Available Potential Energy (CAPE) in Cloud-Resolving Simulations

    Science.gov (United States)

    Seeley, J.; Romps, D. M.

    2015-12-01

    Recent work by Singh and O'Gorman has produced a theory for convective available potential energy (CAPE) in radiative-convective equilibrium. In this model, the atmosphere deviates from a moist adiabat—and, therefore, has positive CAPE—because entrainment causes evaporative cooling in cloud updrafts, thereby steepening their lapse rate. This has led to the proposal that CAPE increases with global warming because the strength of evaporative cooling scales according to the Clausius-Clapeyron (CC) relation. However, CAPE could also change due to changes in cloud buoyancy and changes in the entrainment rate, both of which could vary with global warming. To test the relative importance of changes in CAPE due to CC scaling of evaporative cooling, changes in cloud buoyancy, and changes in the entrainment rate, we subject a cloud-resolving model to a suite of natural (and unnatural) forcings. We find that CAPE changes are primarily driven by changes in the strength of evaporative cooling; the effect of changes in the entrainment rate and cloud buoyancy are comparatively small. This builds support for CC scaling of CAPE.

  20. Sodium fire aerosol loading capacity of several sand and gravel filters

    International Nuclear Information System (INIS)

    Barreca, J.R.; McCormack, J.D.

    1980-04-01

    Improved specific loading capacity for sodium fire aerosols was the objective of a sand and gravel test series. The aerosol capacity and related differential pressure of eight aggregate filters is presented. A maximum specific aerosol capacity, for dry aerosol, of 2.4 kg (Na) m -2 was obtained. This filter was loaded to a final differential pressure of 2.6 kPa. The average superficial face velocity was 0.5 cm/s and the average efficiency was 99.8%. The test results indicate that filter capacity increases with aerosol moisture content and with decreasing superficial velocity

  1. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.

    Science.gov (United States)

    Dold, Bernhard; Diaby, Nouhou; Spangenberg, Jorge E

    2011-06-01

    We present the study of the geochemical processes associated with the first successful remediation of a marine shore tailings deposit in a coastal desert environment (Bahía de Ite, in the Atacama Desert of Peru). The remediation approach implemented a wetland on top of the oxidized tailings. The site is characterized by a high hydraulic gradient produced by agricultural irrigation on upstream gravel terraces that pushed river water (∼500 mg/L SO(4)) toward the sea and through the tailings deposit. The geochemical and isotopic (δ(2)H(water) and δ(18)O(water), δ(34)S(sulfate), δ(18)O(sulfate)) approach applied here revealed that evaporite horizons (anhydrite and halite) in the gravel terraces are the source of increased concentrations of SO(4), Cl, and Na up to ∼1500 mg/L in the springs at the base of the gravel terraces. Deeper groundwater interacting with underlying marine sequences increased the concentrations of SO(4), Cl, and Na up to 6000 mg/L and increased the alkalinity up to 923 mg/L CaCO(3) eq. in the coastal aquifer. These waters infiltrated into the tailings deposit at the shelf-tailings interface. Nonremediated tailings had a low-pH oxidation zone (pH 1-4) with significant accumulations of efflorescent salts (10-20 cm thick) at the surface because of upward capillary transport of metal cations in the arid climate. Remediated tailings were characterized by neutral pH and reducing conditions (pH ∼7, Eh ∼100 mV). As a result, most bivalent metals such as Cu, Zn, and Ni had very low concentrations (around 0.01 mg/L or below detection limit) because of reduction and sorption processes. In contrast, these reducing conditions increased the mobility of iron from two sources in this system: (1) The originally Fe(III)-rich oxidation zone, where Fe(III) was reduced during the remediation process and formed an Fe(II) plume, and (2) reductive dissolution of Fe(III) oxides present in the original shelf lithology formed an Fe-Mn plume at 10-m depth. These

  2. ENVIRONMENTAL FACTORS AND CHEMICAL AND MICROBIOLOGICAL WATER QUALITY CONSTITUTENTS RELATED TO THE PRESENCE OF ENTERIC VIRUSES IN GROUND WATER FROM SMALL PUBLIC WATER SUPPLIES IN SOUTHEASTERN MICHIGAN

    Science.gov (United States)

    A study of small public ground-water-supply wells that produce water from discontinuous sand and gravel aquifers was done from July 1999 through July 2001 in southeastern Michigan. Samples were collected to determine the occurrence of viral pathogens and microbiological indicato...

  3. Evaluating private land conservation in the Cape Lowlands, South Africa.

    Science.gov (United States)

    Von Hase, Amrei; Rouget, Mathieu; Cowling, Richard M

    2010-10-01

    Evaluation is important for judiciously allocating limited conservation resources and for improving conservation success through learning and strategy adjustment. We evaluated the application of systematic conservation planning goals and conservation gains from incentive-based stewardship interventions on private land in the Cape Lowlands and Cape Floristic Region, South Africa. We collected spatial and nonspatial data (2003-2007) to determine the number of hectares of vegetation protected through voluntary contractual and legally nonbinding (informal) agreements with landowners; resources spent on these interventions; contribution of the agreements to 5- and 20-year conservation goals for representation and persistence in the Cape Lowlands of species and ecosystems; and time and staff required to meet these goals. Conservation gains on private lands across the Cape Floristic Region were relatively high. In 5 years, 22,078 ha (27,800 ha of land) and 46,526 ha (90,000 ha of land) of native vegetation were protected through contracts and informal agreements, respectively. Informal agreements often were opportunity driven and cheaper and faster to execute than contracts. All contractual agreements in the Cape Lowlands were within areas of high conservation priority (identified through systematic conservation planning), which demonstrated the conservation plan's practical application and a high level of overlap between resource investment (approximately R1.14 million/year in the lowlands) and priority conservation areas. Nevertheless, conservation agreements met only 11% of 5-year and 9% of 20-year conservation goals for Cape Lowlands and have made only a moderate contribution to regional persistence of flora to date. Meeting the plan's conservation goals will take three to five times longer and many more staff members to maintain agreements than initially envisaged. © 2010 Society for Conservation Biology.

  4. Anemia and associated factors among school-age children in Cape ...

    African Journals Online (AJOL)

    Anemia is a problem affecting a large group of school children in sub-Saharan Africa, contributing to morbidity in this region. In Cape Verde the magnitude of anemia in school-age children is unknown. The study aimed to assess the prevalence of anemia and associated factors among children in Cape Verde. The data are ...

  5. isotopic characteristics of aquifers in sinai

    International Nuclear Information System (INIS)

    Al-Gamal, S.A.

    2004-01-01

    the environmental isotopes data (expressed as δ 2 d and δ 18 O) of different aquifers in sinai were treated using correlation and regression techniques. whereas, rain water isotopic data were treated using empirical orthogonal functions (EOF) techniques. environmental isotopes for different aquifers expressed in terms of O-18 and H-2, were taken to represent the isotopic characteristics. regression equations using the highly correlated variables of δ 2 d and δ 18 O were constructed for each aquifer. the latitudinal variations (of rainwater in sinai and selected climatic stations east mediterranean ) versus rainwater isotopic compositions were analyzed using the normalized variables. it was found that the latitudinal variations of the rainwater isotopic compositions ( δ 2 D, δ 18 O), vapor pressure, and surface temperature occurred in parallel and decreased with latitude. in the east mediterranean, empirical linear relationship between altitude and δ 2 D has indicted that the rate of change of δ 2 D with height is comparable with the dry lapse rate in the atmosphere.The obtained regression equations of environmental isotopes data have impacted on different slopes and different constants expressing the non-homogeneity in the isotopic composition of rainwater recharging the aquifers of sinai , due to the presence of different air masses

  6. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

    Science.gov (United States)

    Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.

    2016-11-01

    A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

  7. Drought-sensitive aquifer settings in southeastern Pennsylvania

    Science.gov (United States)

    Zimmerman, Tammy M.; Risser, Dennis W.

    2005-01-01

    This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey, to determine drought-sensitive aquifer settings in southeastern Pennsylvania. Because all or parts of southeastern Pennsylvania have been in drought-warning or drought-emergency status during 6 of the past 10 years from 1994 through 2004, this information should aid well owners, drillers, and water-resource managers in guiding appropriate well construction and sustainable use of Pennsylvania's water resources. 'Drought-sensitive' aquifer settings are defined for this study as areas unable to supply adequate quantities of water to wells during drought. Using information from previous investigations and a knowledge of the hydrogeology and topography of the study area, drought-sensitive aquifer settings in southeastern Pennsylvania were hypothesized as being associated with two factors - a water-table decline (WTD) index and topographic setting. The WTD index is an estimate of the theoretical water-table decline at the ground-water divide for a hypothetical aquifer with idealized geometry. The index shows the magnitude of ground-water decline after cessation of recharge is a function of (1) distance from stream to divide, (2) ground-water recharge rate, (3) transmissivity, (4) specific yield, and (5) duration of the drought. WTD indices were developed for 39 aquifers that were subsequently grouped into categories of high, moderate, and low WTD index. Drought-sensitive settings determined from the hypothesized factors were compared to locations of wells known to have been affected (gone dry, replaced, or deepened) during recent droughts. Information collected from well owners, drillers, and public agencies identified 2,016 wells affected by drought during 1998-2002. Most of the available data on the location of drought-affected wells in the study area were

  8. Simulating groundwater flow in karst aquifers with distributed parameter models—Comparison of porous-equivalent media and hybrid flow approaches

    Science.gov (United States)

    Kuniansky, Eve L.

    2016-09-22

    Understanding karst aquifers, for purposes of their management and protection, poses unique challenges. Karst aquifers are characterized by groundwater flow through conduits (tertiary porosity), and (or) layers with interconnected pores (secondary porosity) and through intergranular porosity (primary or matrix porosity). Since the late 1960s, advances have been made in the development of numerical computer codes and the use of mathematical model applications towards the understanding of dual (primary [matrix] and secondary [fractures and conduits]) porosity groundwater flow processes, as well as characterization and management of karst aquifers. The Floridan aquifer system (FAS) in Florida and parts of Alabama, Georgia, and South Carolina is composed of a thick sequence of predominantly carbonate rocks. Karst features are present over much of its area, especially in Florida where more than 30 first-magnitude springs occur, numerous sinkholes and submerged conduits have been mapped, and numerous circular lakes within sinkhole depressions are present. Different types of mathematical models have been applied for simulation of the FAS. Most of these models are distributed parameter models based on the assumption that, like a sponge, water flows through connected pores within the aquifer system and can be simulated with the same mathematical methods applied to flow through sand and gravel aquifers; these models are usually referred to as porous-equivalent media models. The partial differential equation solved for groundwater flow is the potential flow equation of fluid mechanics, which is used when flow is dominated by potential energy and has been applied for many fluid problems in which kinetic energy terms are dropped from the differential equation solved. In many groundwater model codes (basic MODFLOW), it is assumed that the water has a constant temperature and density and that flow is laminar, such that kinetic energy has minimal impact on flow. Some models have

  9. Intensively exploited Mediterranean aquifers: resilience and proximity to critical points of seawater intrusion

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2013-11-01

    We investigate here seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta Aquifer, the Israel Coastal Aquifer and the Cyprus Akrotiri Aquifer. Using a generalized analytical sharp-interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future sea intrusion forcings. We identify two different critical limits of sea intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete sea intrusion upto the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that sea intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that the advance of seawater currently seriously threatens the Nile Delta Aquifer and the Israel Coastal Aquifer. The Cyprus Akrotiri Aquifer is currently somewhat less threatened by increased seawater intrusion.

  10. RECURRENT CONVULSIONS IN CAPE TOWN CHILDREN*

    African Journals Online (AJOL)

    1970-11-03

    Nov 3, 1970 ... Child Health, Medical School, University of Cape Town studied and the .... Sex Distribution (Table III) ... family history in children with brain damage is surprisingly high. .... nized that more male infants develop the respiratory.

  11. Optimal Aquifer Pumping Policy to Reduce Contaminant Concentration

    Directory of Open Access Journals (Sweden)

    Ali Abaei

    2012-01-01

    Full Text Available Different sources of ground water contamination lead to non-uniform distribution of contaminant concentration in the aquifer. If elimination or containment of pollution sources was not possible, the distribution of contaminant concentrations could be modified in order to eliminate peak concentrations using optimal water pumping discharge plan. In the present investigation Visual MODFLOW model was used to simulate the flow and transport in a hypothetic aquifer. Genetic Algorithm (GA also was applied to optimize the location and pumping flow rate of wells in order to reduce contaminants peak concentrations in aquifer.

  12. Sedimentological analysis of a contaminated groundwater aquifer

    International Nuclear Information System (INIS)

    Towse, D.

    1991-01-01

    The use of sedimentological reservoir analysis techniques adapted from standard oilfield practice can improve the efficiency and reduce the costs of the evaluation of groundwater aquifers and the design of restoration programs. An evaluation/restoration program at a site in California drilled over 200 test wells in about 750 ac. All wells were logged lithologically and with wireline. The shallow aquifer is a complex braided alluvial floodplain deposit of Late Quaternary age. Analysis demonstrates depositional and erosional responses to periodic hinterland uplifts and to changing climatic conditions. Channel, overbank, lacustrine, and minor deltaic deposits can be recognized. The aquifer architecture has been interpreted to explain the movement of fuel and halogenated hydrocarbon solvents in the sediments and water. Routine engineering geology techniques and hydrologic tests were used to evaluate contamination and to design experimental restoration processes. As demonstrated here, sedimentological techniques show promise in reducing the costs and time required for this type of study. The abundant detailed data will be used in an attempt to develop a microcomputer-based expert system for rapid preliminary analyses of similar aquifers or reservoirs

  13. Cell killing and radiosensitization by caffeic acid phenethyl ester (CAPE) in lung cancer cells

    International Nuclear Information System (INIS)

    Chen, Miao-Fen; Chen, Wen-Cheng; Wu, Chun-Te; King, P.C.

    2004-01-01

    Caffeic acid phenethyl ester (CAPE) is a biologically active ingredient of honeybee propoplis. The cytotoxicity and radiation sensitization effects of CAPE were evaluated in human lung cancer A549 cells and normal lung fibroblast WI-38 cells. A549 cells treated with 6 μg/ml CAPE showed marked growth inhibition (60%) at 48 hr after treatments. During the same time, the number of viable cells decreased to 46% of the control value. In contrast, WI-38 cells showed 20% growth inhibition with no change in the number of viable cells under the same treatment conditions. At 72 hr after CAPE treatment (6 μg/ml), the percentage of apoptotic cells in A549 cultures increased significantly to 67% and an S/G2 arrest was also detected in the culture. Furthermore, there was a significant decrease in the level of intracellular glutathione and hydrogen peroxide contents within one hr after CAPE treatment, and the expression of cyclin B 1 was reduced 6 hr after treatment. The radiation sensitization effect of CAPE on A549 cells was determined from the clonogenic survival curves, and the results showed a small but significant difference in radiation survival between cells treated with or without CAPE. Taken together, our results suggest that the effects of CAPE on differential cytotoxicity, apoptosis, and radiosensitization are associated with glutathione depletion that occurred shortly after treatments. (author)

  14. The role of eclogite in the mantle heterogeneity at Cape Verde

    DEFF Research Database (Denmark)

    Barker, Abigail Katrine; Holm, Paul Martin; Troll, Valentin R.

    2014-01-01

    The Cape Verde hotspot, like many other Ocean Island Basalt provinces, demonstrates isotopic heterogeneity on a 100–200 km scale. The heterogeneity is represented by the appearance of an EM1-like component at several of the southern islands and with a HIMU-like component present throughout...... have been limited. We apply the minor elements in olivine approach (Sobolev et al. in Nature 434:590–597, 2005; Science, doi:10.1126/science.1138113, 2007), to determine and quantify the contributions of peridotite, pyroxenite and eclogite melts to the mantle heterogeneity observed at Cape Verde. Cores...... of olivine phenocrysts of the Cape Verde volcanics have low Mn/FeO and low Ni*FeO/MgO that deviate from the negative trend of the global array. The global array is defined by mixing between peridotite and pyroxenite, whereas the Cape Verde volcanics indicate contribution of an additional eclogite source...

  15. Aspects of the digestion in the Cape porcupine | van Jaarsveld ...

    African Journals Online (AJOL)

    The digestive capabilities of the Cape porcupine (Hystrix africaeaustralis) were studied using captive and field animals. The stomach contents comprised 6,47% of the body mass and had a low pH (2,0).The Cape porcupine also has a long small intestine (670 em). The large stomach and small intestine form a very efficient ...

  16. Tourism Policies and the Space Economy of the Eastern Cape ...

    African Journals Online (AJOL)

    The key objective of this paper is to x-ray the situation in the tourism development process of the post-1994 tourism sector of the Eastern Cape Province. This paper uses empirical data to examine the extent to which actors in the Eastern Cape tourism sector interpreted the national tourism policies. The White Paper on ...

  17. Disposal of carbon dioxide in aquifers in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Winter, E.M.; Bergman, P.D.

    1995-11-01

    Deep saline aquifers were investigated as potential disposal sites for CO{sub 2}. The capacity of deep aquifers for CO{sub 2} disposal in the U.S. is highly uncertain. A rough estimate, derived from global estimates, is 5,500 Gt of CO{sub 2}. Saline aquifers underlie the regions in the U.S. where most utility power plants are situated. Therefore, approximately 65 percent of CO{sub 2} from power plants could possibly be injected directly into deep saline aquifers below these plants, without the need for long pipelines.

  18. The Tunisian Jurassic aquifer in the North African Sahara aquifer system: information derived from two-dimensional seismic reflection and well logs

    Science.gov (United States)

    Ben Lasmar, Rafika; Guellala, Rihab; Garrach, Mohamed; Mahroug, Ali; Sarsar Naouali, Benen; Inoubli, Mohamed Hédi

    2017-12-01

    Southern Tunisia is an arid area where socio-economic activities are dependent on groundwater resources. The presented study aims to better characterize the Jurassic aquifer based on geological and geophysical data, with a view to develop a rational exploitation program. Well logs are used to precisely determine the position and composition of the known Jurassic aquifer layers and to identify others able to produce good quality water. The logs show that limestones, sandstones and dolomites of the Krachoua, Techout and Foum Tataouine formations are the main Jurassic aquifers. Sixty-eight seismic-reflection sections are integrated within this study. The interpolation between the interpreted sections leads to the construction of isochronous isopach maps and geoseismic sections, and their analysis finds that compressive and extensive tectonic deformations have influenced the Jurassic aquifer geometry. The Hercynian orogeny phase manifestation is remarkable in that there are several stratigraphic gaps in the Jurassic sequence. The E-W, NW-SE, and NNW-SSE accidents, reactivated in normal faults since the Permian to Lower Cretaceous epochs, have generated the structures found in the Jurassic series, such as subsided and raised blocks. Their syn-sedimentary activity has controlled the thickness and facies of these series. The Cretaceous, Tortonian and Post-Villafranchian compressions are responsible for the Jurassic-deposits folding in some localities. The highlighted tectonic and sedimentary events have an important impact on the Jurassic aquifer function by favoring the Jurassic aquifer interconnections and their connections with the Triassic and Cretaceous permeable series.

  19. AMPR BRIGHTNESS TEMPERATURE CAPE EXPERIMENT V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microwave Precipitation Radiometer (AMPR) was deployed during the Convection and Precipitation/Electrification Experiment (CaPE). AMPR data...

  20. Upper Basalt-Confined Aquifer System in the Southern Hanford Site

    International Nuclear Information System (INIS)

    Thorne, P.

    1999-01-01

    The 1990 DOE Tiger Team Finding GW/CF-202 found that the hydrogeologic regime at the Hanford Site was inadequately characterized. This finding also identified the need for completing a study of the confined aquifer in the central and southern portions of the Hanford Site. The southern portion of the site is of particular interest because hydraulic-head patterns in the upper basalt-confined aquifer system indicate that groundwater from the Hanford central plateau area, where contaminants have been found in the aquifer, flows southeast toward the southern site boundary. This results in a potential for offsite migration of contaminants through the upper basalt-confined aquifer system. Based on the review presented in this report, available hydrogeologic characterization information for the upper basalt-confined aquifer system in this area is considered adequate to close the action item. Recently drilled offsite wells have provided additional information on the structure of the aquifer system in and near the southern part of the Hanford Site. Information on hydraulic properties, hydrochemistry, hydraulic heads and flow directions for the upper basalt-confined aquifer system has been re-examined and compiled in recent reports including Spane and Raymond (1993), Spane and Vermeul ( 1994), and Spane and Webber (1995)

  1. CO2/Brine transport into shallow aquifers along fault zones.

    Science.gov (United States)

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  2. San Pedro River Aquifer Binational Report

    Science.gov (United States)

    Callegary, James B.; Minjárez Sosa, Ismael; Tapia Villaseñor, Elia María; dos Santos, Placido; Monreal Saavedra, Rogelio; Grijalva Noriega, Franciso Javier; Huth, A. K.; Gray, Floyd; Scott, C. A.; Megdal, Sharon; Oroz Ramos, L. A.; Rangel Medina, Miguel; Leenhouts, James M.

    2016-01-01

    The United States and Mexico share waters in a number of hydrological basins and aquifers that cross the international boundary. Both countries recognize that, in a region of scarce water resources and expanding populations, a greater scientific understanding of these aquifer systems would be beneficial. In light of this, the Mexican and U.S. Principal Engineers of the International Boundary and Water Commission (IBWC) signed the “Joint Report of the Principal Engineers Regarding the Joint Cooperative Process United States-Mexico for the Transboundary Aquifer Assessment Program" on August 19, 2009 (IBWC-CILA, 2009). This IBWC “Joint Report” serves as the framework for U.S.-Mexico coordination and dialogue to implement transboundary aquifer studies. The document clarifies several details about the program such as background, roles, responsibilities, funding, relevance of the international water treaties, and the use of information collected or compiled as part of the program. In the document, it was agreed by the parties involved, which included the IBWC, the Mexican National Water Commission (CONAGUA), the U.S. Geological Survey (USGS), and the Universities of Arizona and Sonora, to study two priority binational aquifers, one in the San Pedro River basin and the other in the Santa Cruz River basin. This report focuses on the Binational San Pedro Basin (BSPB). Reasons for the focus on and interest in this aquifer include the fact that it is shared by the two countries, that the San Pedro River has an elevated ecological value because of the riparian ecosystem that it sustains, and that water resources are needed to sustain the river, existing communities, and continued development. This study describes the aquifer’s characteristics in its binational context; however, most of the scientific work has been undertaken for many years by each country without full knowledge of the conditions on the other side of the border. The general objective of this study is to

  3. Using multiple bed load measurements: Toward the identification of bed dilation and contraction in gravel-bed rivers

    Science.gov (United States)

    Marquis, G. A.; Roy, A. G.

    2012-02-01

    This study examines bed load transport processes in a small gravel-bed river (Béard Creek, Québec) using three complementary methods: bed elevation changes between successive floods, bed activity surveys using tags inserted into the bed, and bed load transport rates from bed load traps. The analysis of 20 flood events capable of mobilizing bed material led to the identification of divergent results among the methods. In particular, bed elevation changes were not consistent with the bed activity surveys. In many cases, bed elevation changes were significant (1 to 2 times the D50) even if the bed surface had not been activated during the flood, leading to the identification of processes of bed dilation and contraction that occurred over 10% to 40% of the bed surface. These dynamics of the river bed prevent accurate derivation of bed load transport rates from topographic changes, especially for low magnitude floods. This paper discusses the mechanisms that could explain the dilation and contraction of particles within the bed and their implications in fluvial dynamics. Bed contraction seems to be the result of the winnowing of the fine sediments under very low gravel transport. Bed dilation seems to occur on patches of the bed at the threshold of motion where various processes such as fine sediment infiltration lead to the maintenance of a larger sediment framework volume. Both processes are also influenced by flood history and the initial local bed state and in turn may have a significant impact on sediment transport and morphological changes in gravel-bed rivers.

  4. Wall roughness effects on flow and scouring in curved channels with gravel bed

    OpenAIRE

    Hersberger, Daniel S.

    2002-01-01

    Wall roughness effects on flow and scouring in curved channels with gravel bed In the narrow valleys in Alpine regions, rivers frequently flow across constructed zones, passing through villages and cities. Due to limited space, the protection from high floods often needs to be ensured by protection walls. During floods, these protection walls may be endangered by scour phenomena, especially if they are located in bends. In the past, the potential danger of underscoured structures was reduced ...

  5. Identifying Stream/Aquifer Exchange by Temperature Gradient in a Guarani Aquifer System Outcrop Zone

    Science.gov (United States)

    Wendland, E.; Rosa, D. M. S.; Anache, J. A. A.; Lowry, C.; Lin, Y. F. F.

    2017-12-01

    Recharge of the Guarani Aquifer System (GAS) in South America is supposed to occur mainly in the outcrop zones, where the GAS appears as an unconfined aquifer (10% of the 1.2 Million km2 aquifer extension). Previous evaluations of recharge are based essentially on water balance estimates for the whole aquifer area or water table fluctuations in monitoring wells. To gain a more detailed understanding of the recharge mechanisms the present work aimed to study the stream aquifer interaction in a watershed (Ribeirão da Onça) at an outcrop zone. Two Parshall flumes were installed 1.3 km apart for discharge measurement in the stream. Along this distance an optic fiber cable was deployed to identify stretches with gaining and losing behavior. In order to estimate groundwater discharge in specific locations, 8 temperature sticks were set up along the stream reach to measure continuously the vertical temperature gradient. A temperature probe with 4 thermistors was also used to map the shallow streambed temperature gradient manually along the whole distance. The obtained results show a discharge difference of 250 m3/h between both flumes. Since the last significant rainfall (15 mm) in the watershed occurred 3 months ago, this value can be interpreted as the base flow contribution to the stream during the dry season. Given the temperature difference between groundwater ( 24oC) and surface water ( 17oC) the fiber-optic distributed temperature sensing (FO-DTS) allowed the identification of stretches with gaining behavior. Temperature gradients observed at the streambed varied between 0.67 and 14.33 oC/m. The study demonstrated that heat may be used as natural tracer even in tropical conditions, where the groundwater temperature is higher than the surface water temperature during the winter. The obtained results show that the discharge difference between both flumes can not be extrapolated without detailed analysis. Gaining and loosing stretches have to be identified on order

  6. Estimating aquifer transmissivity from geo-electrical sounding ...

    African Journals Online (AJOL)

    Aquifer resistivity range from 4.26 ohm-m to 755.3 ohm-m with maximum thickness of 52.25m. A maximum 55.52m depth- tobasement was obtained in the study area. Based on the model obtained, aquifer Transmissivity was calculated and was used to delineate the study area into prospective low and high groundwater ...

  7. Managed aquifer recharge: rediscovering nature as a leading edge technology.

    Science.gov (United States)

    Dillon, P; Toze, S; Page, D; Vanderzalm, J; Bekele, E; Sidhu, J; Rinck-Pfeiffer, S

    2010-01-01

    Use of Managed Aquifer Recharge (MAR) has rapidly increased in Australia, USA, and Europe in recent years as an efficient means of recycling stormwater or treated sewage effluent for non-potable and indirect potable reuse in urban and rural areas. Yet aquifers have been relied on knowingly for water storage and unwittingly for water treatment for millennia. Hence if 'leading edge' is defined as 'the foremost part of a trend; a vanguard', it would be misleading to claim managed aquifer recharge as a leading edge technology. However it has taken a significant investment in scientific research in recent years to demonstrate the effectiveness of aquifers as sustainable treatment systems to enable managed aquifer recharge to be recognised along side engineered treatment systems in water recycling. It is a 'cross-over' technology that is applicable to water and wastewater treatment and makes use of passive low energy processes to spectacularly reduce the energy requirements for water supply. It is robust within limits, has low cost, is suitable from village to city scale supplies, and offers as yet almost untapped opportunities for producing safe drinking water supplies where they do not yet exist. It will have an increasingly valued role in securing water supplies to sustain cities affected by climate change and population growth. However it is not a universal panacea and relies on the presence of suitable aquifers and sources of water together with effective governance to ensure human health and environment protection and water resources planning and management. This paper describes managed aquifer recharge, illustrates its use in Australia, outlining economics, guidelines and policies, and presents some of the knowledge about aquifer treatment processes that are revealing the latent value of aquifers as urban water infrastructure and provide a driver to improving our understanding of urban hydrogeology.

  8. Decision Support System for Aquifer Recharge (AR) and Aquifer Storage and Recovery (ASR) Planning, Design, and Evaluation - Principles and Technical Basis

    Science.gov (United States)

    Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at...

  9. Study on weathering index for improving the reliability of terrace correlation and chronology. Part 2. Understanding weathering condition of terrace gravel and induction of application requirement for correlation index

    International Nuclear Information System (INIS)

    Hamada, Takaomi

    2012-01-01

    Geomorphographic survey of fluvial terraces, geological exploration, borehole drilling and investigation, and analysis of weathering condition of terrace gravels were carried out in Chuetsu area, Niigata prefecture, where a great deal of geomorphostratigraphic and tephrostratigraphic data are available. The results of these surveys and investigations indicate that weathering degree of terrace gravels can be considered as an index of the terrace age, and also provide points to remember for sampling and method of sampling and observation. The effective porosity and the thickness of weathering rind of gravels, which are indexes for weathering degree evaluation, in boring core, increase above the depth of about 5m from the top of the hole. Weathering doesn't reach the deep portion, therefore, investigation and evaluation for the weathering degree of terrace gravels must be carried out on the upper portion. Weathering rind thickness and effective porosity of the gravels are dispersive. Dispersion of the weathering rind thickness can be reduced by confining to andesite, and dispersion of the effective porosity can be reduced by limiting range of gravel size. Reducing dispersion, increase trend with age becomes clear in change of the weathering rind thickness and the effective porosity in many of the studied area. It shows that weathering rind thickness and effective porosity are effective for terrace correlation. Dispersion of data in an outcrop isn't small, but data from neighboring terraces with the same age are not different each other. It indicates that weathering rind thickness and effective porosity can be quantitative indexes for terrace age evaluation. In area where weathering rind is effective for terrace correlation, the rate of the weathering rind formation of andesite gravels is about 0.04mm/1000 years. Therefore, MIS6 terraces and MIS8 terraces can be distinguished each other by means of thickness of the weathering rind. This formation rate falls inside the

  10. Radial flow towards well in leaky unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  11. Restoration of Wadi Aquifers by Artificial Recharge with Treated Waste Water

    KAUST Repository

    Missimer, Thomas M.; Drewes, Jö rg E.; Amy, Gary L.; Maliva,, Robert G.; Keller, Stephanie

    2012-01-01

    , such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge

  12. Population size, breeding biology and on-land threats of Cape Verde petrel (Pterodroma feae) in Fogo Island, Cape Verde.

    Science.gov (United States)

    Militão, Teresa; Dinis, Herculano Andrade; Zango, Laura; Calabuig, Pascual; Stefan, Laura M; González-Solís, Jacob

    2017-01-01

    Cape Verde petrel (Pterodroma feae) is currently considered near threatened, but little is known about its population size, breeding biology and on land threats, jeopardizing its management and conservation. To improve this situation, we captured, marked and recaptured (CMR) birds using mist-nets over 10 years; measured and sexed them; monitored up to 14 burrows, deployed GPS devices on breeders and analyzed activity data of geolocators retrieved from breeders in Fogo (Cape Verde). We set cat traps over the colony and investigated their domestic/feral origin by marking domestic cats from a nearby village with transponders, by deploying GPS devices on domestic cats and by performing stable isotope analyses of fur of the trapped and domestic cats. The population of Fogo was estimated to be 293 birds, including immatures (95% CI: 233-254, CMR modelling). Based on geolocator activity data and nest monitoring we determined the breeding phenology of this species and we found biometric differences between sexes. While monitoring breeding performance, we verified a still ongoing cat predation and human harvesting. Overall, data gathered from trapped cats without transponder, cats GPS trips and the distinct isotopic values between domestic and trapped cats suggest cats visiting the colony are of feral origin. GPS tracks from breeders showed birds left and returned to the colony using the sector NE of the islands, where high level of public lights should be avoided specially during the fledging period. Main threats for the Cape Verde petrel in the remaining breeding islands are currently unknown but likely to be similar to Fogo, calling for an urgent assessment of population trends and the control of main threats in all Cape Verde Islands and uplisting its conservation status.

  13. Population size, breeding biology and on-land threats of Cape Verde petrel (Pterodroma feae in Fogo Island, Cape Verde.

    Directory of Open Access Journals (Sweden)

    Teresa Militão

    Full Text Available Cape Verde petrel (Pterodroma feae is currently considered near threatened, but little is known about its population size, breeding biology and on land threats, jeopardizing its management and conservation. To improve this situation, we captured, marked and recaptured (CMR birds using mist-nets over 10 years; measured and sexed them; monitored up to 14 burrows, deployed GPS devices on breeders and analyzed activity data of geolocators retrieved from breeders in Fogo (Cape Verde. We set cat traps over the colony and investigated their domestic/feral origin by marking domestic cats from a nearby village with transponders, by deploying GPS devices on domestic cats and by performing stable isotope analyses of fur of the trapped and domestic cats. The population of Fogo was estimated to be 293 birds, including immatures (95% CI: 233-254, CMR modelling. Based on geolocator activity data and nest monitoring we determined the breeding phenology of this species and we found biometric differences between sexes. While monitoring breeding performance, we verified a still ongoing cat predation and human harvesting. Overall, data gathered from trapped cats without transponder, cats GPS trips and the distinct isotopic values between domestic and trapped cats suggest cats visiting the colony are of feral origin. GPS tracks from breeders showed birds left and returned to the colony using the sector NE of the islands, where high level of public lights should be avoided specially during the fledging period. Main threats for the Cape Verde petrel in the remaining breeding islands are currently unknown but likely to be similar to Fogo, calling for an urgent assessment of population trends and the control of main threats in all Cape Verde Islands and uplisting its conservation status.

  14. April 1992 Cape Mendocino, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — On April 25, 1992 at 11:06 am local time (April 25 at 18:06 GMT), a magnitude 7.1 earthquake occurred in the Cape Mendocino area. Two additional earthquakes,...

  15. Hydrostratigraphy and hydrogeology of the western part of Maira area, Khyber Pakhtunkhwa, Pakistan: A case study by using electrical resistivity

    KAUST Repository

    Farid, Asam M.; Jadoon, Khan; Akhter, Gulraiz; Iqbal, Muhammad Asim

    2012-01-01

    at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate

  16. Why does tropical convective available potential energy (CAPE) increase with warming?

    Science.gov (United States)

    Seeley, Jacob T.; Romps, David M.

    2015-12-01

    Recent work has produced a theory for tropical convective available potential energy (CAPE) that highlights the Clausius-Clapeyron (CC) scaling of the atmosphere's saturation deficit as a driver of increases in CAPE with warming. Here we test this so-called "zero-buoyancy" theory for CAPE by modulating the saturation deficit of cloud-resolving simulations of radiative-convective equilibrium in two ways: changing the sea surface temperature (SST) and changing the environmental relative humidity (RH). For earthlike and warmer SSTs, undilute parcel buoyancy in the lower troposphere is insensitive to increasing SST because of a countervailing CC scaling that balances the increase in the saturation deficit; however, buoyancy increases dramatically with SST in the upper troposphere. Conversely, in the RH experiment, undilute buoyancy throughout the troposphere increases monotonically with decreasing RH. We show that the zero-buoyancy theory successfully predicts these contrasting behaviors, building confidence that it describes the fundamental physics of CAPE and its response to warming.

  17. Ground-water availability in the eastern part of the Lake Ontario Basin, New York

    Science.gov (United States)

    Miller, Todd S.

    1986-01-01

    A set of three maps show surficial geology, significant unconsolidated aquifers and well yield, and selected well locations for the Lake Ontario basin, New York. In the low areas , glaciers and wave action of former high-level lakes deposited permeable sand and gravel to form aquifers that yield more than 10 gal/min of water to wells. Small quantities of water (less than 2 gal/min) can be pumped from dug wells that top till and fine lake-sediment deposits. (USGS)

  18. EPA Sole Source Aquifers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information on sole source aquifers (SSAs) is widely used in assessments under the National Environmental Policy Act and at the state and local level. A national...

  19. Polytocy in the Cape serotine bat Eptesicus capensis (A. Smith 1829 ...

    African Journals Online (AJOL)

    Polytocy is described in the Cape serotine bat, Eptesicus capensis,and discussed in relation to the occurrence of multiple births in other microchiropteran bat species in the southern African subregion. Although twins appear to be characteristic of the Cape serotine bat, triplets and even the occasional quadruplets occur.

  20. Hydrologic analysis of data for the Lost Lake Aquifer Zone of the Steel Pond Aquifer at recovery well RWM-16

    International Nuclear Information System (INIS)

    Wells, D.G.; Cook, J.W.; Hiergesell, R.A.

    1993-04-01

    This report presents the results of an analysis of data obtained from a large-scale, multiple-well aquifer test of the sandy unit referred to as the Lost Lake Aquifer Zone of the Steed Pond Aquifer in an area just south of the A and M Areas. Pumping was conducted at recovery well RWM-16, which is located near the MSB-40 well cluster, approximately 4000 feet south of the M-Area Basin. RWM-16 is located in the lower left portion of Figure 1, which also illustrates the general relationship of the testing site to the A and M Areas and other monitor wells. The data generated from testing RWM-16 was used to calculate estimates of transmissivity and storage for the aquifer system within which RWM-16 is screened. These parameters are related to hydraulic conductivity and storativity of the aquifer system by the vertical thickness of the unit. The leakage coefficient for the overlying confining unit is also estimated. This information is needed to refine conceptual understanding of the groundwater flow system beneath the A and M Areas. The refined conceptual model will more adequately describe the pattern of groundwater flow, and will contribute to updating the open-quotes Zone of Captureclose quotes model that has been used in the initial phases of designing a groundwater remediation system in the A and M Areas

  1. The Security and Development Nexus in Cape Town

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2010-01-01

    In this article, I argue that the security and development nexus takes on specific forms depending on the context, and that in Cape Town’s coloured townships it is embodied in policies and practices around what has come to be known as the ‘war on gangs’. Furthermore, the war on gangs in Cape Town...... bears resemblances to counterinsurgency strategies — not least in the sense that both are responses to a similar problem of governance. This comparison allows us explore how citizenship is being reconfigured for residents of the townships in ways that resemble what James Holston (2007) calls...

  2. Characterising Bedrock Aquifer Systems in Korea Using Paired Water-Level Monitoring Data

    Directory of Open Access Journals (Sweden)

    Jae Min Lee

    2017-06-01

    Full Text Available This study focused on characterising aquifer systems based on water-level changes observed systematically at 159 paired groundwater monitoring wells throughout Korea. Using spectral analysis, principal component analysis (PCA, and cross-correlation analysis with linear regression, aquifer conditions were identified from the comparison of water-level changes in shallow alluvial and deep bedrock monitoring wells. The spectral analysis could identify the aquifer conditions (i.e., unconfined, semi-confined and confined of 58.5% of bedrock wells and 42.8% of alluvial wells: 93 and 68 wells out of 159 wells, respectively. Even among the bedrock wells, 50 wells (53.7% exhibited characteristics of the unconfined condition, implying significant vulnerability of the aquifer to contaminants from the land surface and shallow depths. It appears to be better approach for deep bedrock aquifers than shallow alluvial aquifers. However, significant portions of the water-level changes remained unclear for categorising aquifer conditions due to disturbances in data continuity. For different aquifer conditions, PCA could show typical pattern and factor scores of principal components. Principal component 1 due to wet-and-dry seasonal changes and water-level response time was dominant covering about 55% of total variances of each aquifer conditions, implying the usefulness of supplementary method of aquifer characterisation. Cross-correlation and time-lag analysis in the water-level responses to precipitations clearly show how the water levels in shallow and deep wells correspond in time scale. No significant differences in time-lags was found between shallow and deep wells. However, clear time-lags were found to be increasing from unconfined to confined conditions: from 1.47 to 2.75 days and from 1.78 to 2.75 days for both shallow alluvial and deep bedrock wells, respectively. In combination of various statistical methods, three types of water-level fluctuation

  3. Urban Ecology in Cape Town: South African Comparisons and Reflections

    Directory of Open Access Journals (Sweden)

    Sarel S. Cilliers

    2012-09-01

    Full Text Available Little urban ecological research has been done in South Africa. The papers in the Ecology and Society special feature Urban Ecological and Social-Ecological Research in the City of Cape Town make, therefore, an important contribution to the development of urban ecology locally and globally. Different approaches have been used in the study of urban ecology of different urban areas in South Africa. Cape Town is situated in a biodiversity hotspot and is the only South African city which includes a national park. As a result the urban ecological studies were mainly driven by urban nature conservation concerns. In other cities such as Durban, open space planning and environmental management were the major issues which focused ecological studies on urban areas whereas other studies of urban areas in the Eastern Cape and North-West provinces included private and public open spaces and man-made habitats. We reflect on the Cape Town studies in a South African context and highlight conservation of biodiversity, protection of ecosystem services, management of control measures, and the conflict between humans and nature. A brief synthesis has also been given of South African urban ecological research in general.

  4. Continuous Flow of Upper Labrador Sea Water around Cape Hatteras.

    Science.gov (United States)

    Andres, Magdalena; Muglia, Mike; Bahr, Frank; Bane, John

    2018-03-14

    Six velocity sections straddling Cape Hatteras show a deep counterflow rounding the Cape wedged beneath the poleward flowing Gulf Stream and the continental slope. This counterflow is likely the upper part of the equatorward-flowing Deep Western Boundary Current (DWBC). Hydrographic data suggest that the equatorward flow sampled by the shipboard 38 kHz ADCP comprises the Upper Labrador Sea Water (ULSW) layer and top of the Classical Labrador Sea Water (CLSW) layer. Continuous DWBC flow around the Cape implied by the closely-spaced velocity sections here is also corroborated by the trajectory of an Argo float. These findings contrast with previous studies based on floats and tracers in which the lightest DWBC constituents did not follow the boundary to cross under the Gulf Stream at Cape Hatteras but were diverted into the interior as the DWBC encountered the Gulf Stream in the crossover region. Additionally, our six quasi-synoptic velocity sections confirm that the Gulf Stream intensified markedly at that time as it approached the separation point and flowed into deeper waters. Downstream increases were observed not only in the poleward transport across the sections but also in the current's maximum speed.

  5. Using Sentinel-2A multispectral imagery to explore for deep groundwater resources in the Ceres-Tankwa Karoo, Western Cape, South Africa: Significance for the 'water-energy(-food) nexus' in an arid region

    Science.gov (United States)

    Hartnady, Chris; Wise, Edward; Hartnady, Michael; Olianti, Camille; Hay, E. Rowena

    2017-04-01

    The Ceres-Tankwa region is an arid region in the south-western part of the main Karoo Basin, underlain by folded and faulted strata of the Cape and lower Karoo Supergroups in the syntaxis zone between the Western and Southern branches of the Cape Fold Belt. Explored for oil in the mid-1960s, with the drilling of the >3000 m deep KL1/65 borehole, the area recently attracted attention as a potential shale-gas prospect with the drilling in 2015 of the 671 m-deep KZF-1 research borehole on the farm Zandfontein (de Kock et al, 2016). KZF-1 encountered no positive indication of methane gas in the carbonaceous shale target but intersected a strong flow of deep groundwater from fractures in the basal Dwyka tillite. The accidental discovery of deep artesian groundwater, probably originating from the underlying Cape Supergroup aquifers and of significantly better quality than the shallow aquifer utilised by local farmers, has important implications for future development here. Using 13-channel multispectral data from the European Space Agency satellite Sentinel-2A, a false-colour composite image, centred about the KZF-1 location, was assembled by combination of selected spectral band-ratios. Stratigraphic layering and associated folding within the hitherto undivided, pelitic Tierberg Formation (Ecca Group), is revealed in striking new detail, together with narrow lines of stratal offset corresponding to previously unmapped faults. KZF-1 is evidently sited within an anomalous NE/SW-striking belt, unlike the general NNW/SSE strike of Cape-Karoo sequence strata in the north-western part of the image. Associated with a notable strike change of a lower Tierberg marker unit, subparallel to and aligned with a similar trend in the Swartruggens mountain foothills to the SW, a deep-seated, controlling, NE/SW-striking fault structure may continue downwards from the lower Karoo units into the underlying Cape strata, providing hydraulic connection. With the looming threat of global

  6. Determining shallow aquifer vulnerability by the DRASTIC model ...

    Indian Academy of Sciences (India)

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been ...

  7. Instream sand and gravel mining: Environmental issues and regulatory process in the United States

    Science.gov (United States)

    Meador, M.R.; Layher, A.O.

    1998-01-01

    Sand and gravel are widely used throughout the U.S. construction industry, but their extraction can significantly affect the physical, chemical, and biological characteristics of mined streams. Fisheries biologists often find themselves involved in the complex environmental and regulatory issues related to instream sand and gravel mining. This paper provides an overview of information presented in a symposium held at the 1997 midyear meeting of the Southern Division of the American Fisheries Society in San Antonio, Texas, to discuss environmental issues and regulatory procedures related to instream mining. Conclusions from the symposium suggest that complex physicochemical and biotic responses to disturbance such as channel incision and alteration of riparian vegetation ultimately determine the effects of instream mining. An understanding of geomorphic processes can provide insight into the effects of mining operations on stream function, and multidisciplinary empirical studies are needed to determine the relative effects of mining versus other natural and human-induced stream alterations. Mining regulations often result in a confusing regulatory process complicated, for example, by the role of the U.S. Army Corps of Engineers, which has undergone numerous changes and remains unclear. Dialogue among scientists, miners, and regulators can provide an important first step toward developing a plan that integrates biology and politics to protect aquatic resources.

  8. Large submarine sand waves and gravel lag substrates on Georges Bank off Atlantic Canada

    Science.gov (United States)

    Todd, B.J.; Valentine, Page C.; Harris, Peter T; Baker, E.K.

    2012-01-01

    Georges Bank is a large, shallow, continental shelf feature offshore of New England and Atlantic Canada. The bank is mantled with a veneer of glacial debris transported during the late Pleistocene from continental areas lying to the north. These sediments were reworked by marine processes during postglacial sea-level transgression and continue to be modified by the modern oceanic regime. The surficial geology of the Canadian portion of the bank is a widespread gravel lag overlain in places by well sorted sand occurring as bedforms. The most widespread bedforms are large, mobile, asymmetrical sand waves up to 19 m in height formed through sediment transport by strong tidal-driven and possibly storm-driven currents. Well-defined curvilinear bedform crests up to 15 km long form a complex bifurcating pattern having an overall southwest–northeast strike, which is normal to the direction of the major axis of the semidiurnal tidal current ellipse. Minor fields of immobile, symmetrical sand waves are situated in bathymetric lows. Rare mobile, asymmetrical barchan dunes are lying on the gravel lag in areas of low sand supply. On Georges Bank, the management of resources and habitats requires an understanding of the distribution of substrate types, their surface dynamics and susceptibility to movement, and their associated fauna.

  9. Tracers Detect Aquifer Contamination

    National Research Council Canada - National Science Library

    Enfield, Carl

    1995-01-01

    The EPA's National Laboratory (NRMRL) at Ada, OK, along with the University of Florida and the University of Texas, have developed a tracer procedure to detect the amount of contamination in aquifer formations...

  10. VULNERABILITY AND RISK OF CONTAMINATION KARSTIC AQUIFERS

    Directory of Open Access Journals (Sweden)

    Yameli Aguilar

    2013-08-01

    Full Text Available Karstic systems occupy nearly 20% of the surface of the earth and are inhabited by numerous human communities. Karstic aquifers are the most exposed to pollution from human activities. Pollution of karstic aquifers is a severe environmental problem worldwide.  In order to face the vulnerability of karstic aquifers to pollution, researchers have created a diversity of study approaches and models, each one having their own strengths and weaknesses depending on the discipline from which they were originated, thus requiring a thorough discussion within the required multidisciplinary character. The objective of this article was to analyze the theoretical and methodological approaches applied to the pollution of karstic aquifers. The European hydrogeological, land evaluation, hydropedological and a geographic approach were analyzed. The relevance of a geomorphological analysis as a cartographic basis for the analysis of vulnerability and risks were emphasized. From the analysis of models, approaches and methodologies discussed the following recommendation is made: to form an interdisciplinary work team, to elaborate a conceptual model according to the site and the working scale and to e, apply and validate the model.

  11. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  12. Measures to Facilitate Necessity Entrepreneurship : Western Cape South Africa

    OpenAIRE

    Macura, Alexander; Sjölund, John

    2005-01-01

    Problem- In the townships and rural areas of the Western Cape province of South Africa unemployment can be as high as 60%. For many, starting a business is the only viable option to survive. There are many organizations seeking to help entrepreneurs to successfully start and manage a business, but services are significantly lacking. We therefore wish to determine what business service providers in the Western Cape are doing today to help necessity entrepreneurs succeed, and what can be done b...

  13. The timing of scour and fill in a gravel-bedded river measured with buried accelerometers

    Science.gov (United States)

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.

    2013-01-01

    A device that measures the timing of streambed scour and the duration of sediment mobilization at specific depths of a streambed was developed using data-logging accelerometers placed within the gravel substrate of the Cedar River, Washington, USA. Each accelerometer recorded its orientation every 20 min and remained stable until the surrounding gravel matrix mobilized as sediment was transported downstream and scour reached the level of the accelerometer. The accelerometer scour monitors were deployed at 26 locations in salmon-spawning habitat during the 2010–2011 flood season to record when the streambed was scoured to the depth of typical egg-pocket deposition. Scour was recorded at one location during a moderate high-flow event (65 m3/s; 1.25–1.5-year recurrence interval) and at 17 locations during a larger high-flow event (159 m3/s; 7-year recurrence interval). Accelerometer scour monitors recorded periods of intermittent sediment mobilization and stability within a high-flow event providing insight into the duration of scour. Most scour was recorded during the rising limb and at the peak of a flood hydrograph, though some scour occurred during sustained high flows following the peak of the flood hydrograph.

  14. Is a changing climate affecting the tropical cyclone behavior of Cape Verde?

    Science.gov (United States)

    Emmenegger, T. W.; Mann, M. E.; Evans, J. L.

    2016-12-01

    An existing dataset of synthetic tropical cyclone (TC) tracks derived from climate change simulations were used to explore TC variability within a 250 km radius of the Cape Verde Islands (16.5388N, 23.0418W). The synthetic sets were examined according to genesis point location, track projection, intensity, frequency, and seasonality within the observational era (1851 AD to present). These factors of TC variability have been shown to be strongly related to climate oscillations, thus the historical era was grouped by the increasing and decreasing regimes of sea surface temperature (SST) in the main development region (MDR) of the Atlantic Ocean. Numerous studies have examined Atlantic Basin activity throughout this era; the goal of this study is to investigate possible variations in TC behavior around Cape Verde, ultimately determining whether Cape Verde experiences similar fluctuations in activity as observed basin-wide. We find that several facets of TC variability such as intensity, seasonality, and genesis point location around Cape Verde are not significantly different to that of the entire basin, thus forecasts of the entire basin in these respects may also apply to our site. A long-term trend of increasing TC frequency can be identified basin-wide within the observed set, yet activity around Cape Verde does not display this same behavior observably or in any synthetic set. A relationship between the location of genesis points and the regimes of SST fluctuation is shown to be existent. We find both more observed and synthetic genesis points within the vicinity of Cape Verde during cool periods, and an eastward and equatorward shift in cyclogenesis is evident during warm regimes. This southeastern shift in genesis points attributes to the increased intensities of TCs seen during periods of warmer SST. Years of increased SST are additionally linked to an earlier seasonality in Cape Verde.

  15. Hydrogeology and groundwater quality of the glaciated valleys of Bradford, Tioga, and Potter Counties, Pennsylvania

    Science.gov (United States)

    Williams, John H.; Taylor, Larry E.; Low, Dennis J.

    1998-01-01

    The most important sources of groundwater in Bradford, Tioga, and Potter Counties are the stratified-drift aquifers. Saturated sand and gravel primarily of outwash origin forms extensive unconfined aquifers in the valleys. Outwash is underlain in most major valleys by silt, clay, and very fine sand of lacustrine origin that comprise extensive confining units. The lacustrine confining units locally exceed 100 feet in thickness. Confined aquifers of ice-contact sand and gravel are buried locally beneath the lacustrine deposits. Bedrock and till are the basal confining units of the stratifies-drift aquifer systems. Recharge to the stratified-drift aquifers if by direct infiltration of precipitation, tributary-stream infiltration, infiltration of unchanneled runoff at the valley walls, and groundwater inflow from the bedrock and till uplands. Valley areas underlain by superficial sand and gravel contribute about 1 million gallons per day per square mile of water from precipitation to the aquifers. Tributary streams provide recharge of nearly 590 gallons per day per foot of stream reach. Water is added at the rate of 1 million gallons per day per square mile of bordering uplands not drained by tributary streams to the stratified-drift aquifers from unchanneled runoff and groundwater inflow. Induced infiltration can be a major source of recharge to well fields completed in unconfined stratified-drift aquifers that are in good hydraulic connection with surface water. The well fields of an industrial site in North Towanda, a public-water supplier at Tioga Point, and the U.S. Fish and Wildlife Service at Asaph accounted for 75 percent of the 10.8 million gallons per day pf groundwater withdrawn by public suppliers and other selected users in 1985. The well fields tap stratified-drift aquifers that are substantially recharged by induced infiltration or tributary-stream infiltration. Specific-capacity data from 95 wells indicate that most wells completed in stratified

  16. FEWA: a Finite Element model of Water flow through Aquifers

    International Nuclear Information System (INIS)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables

  17. FEWA: a Finite Element model of Water flow through Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Huff, D.D.

    1983-11-01

    This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.

  18. Analysis of bathymetric surveys to identify coastal vulnerabilities at Cape Canaveral, Florida

    Science.gov (United States)

    Thompson, David M.; Plant, Nathaniel G.; Hansen, Mark E.

    2015-10-07

    Cape Canaveral, Florida, is a prominent feature along the Southeast U.S. coastline. The region includes Merritt Island National Wildlife Refuge, Cape Canaveral Air Force Station, NASA’s Kennedy Space Center, and a large portion of Canaveral National Seashore. The actual promontory of the modern Cape falls within the jurisdictional boundaries of Cape Canaveral Air Force Station. Erosion hazards result from winter and tropical storms, changes in sand resources, sediment budgets, and sea-level rise. Previous work by the USGS has focused on the vulnerability of the dunes to storms, where updated bathymetry and topography have been used for modeling efforts. Existing research indicates that submerged shoals, ridges, and sandbars affect patterns of wave refraction and height, coastal currents, and control sediment transport. These seabed anomalies indicate the availability and movement of sand within the nearshore environment, which may be directly related to the stability of the Cape Canaveral shoreline. Understanding the complex dynamics of the offshore bathymetry and associated sediment pathways can help identify current and future erosion vulnerabilities due to short-term (for example, hurricane and other extreme storms) and long-term (for example, sea-level rise) hazards.

  19. The quality of our Nation's waters: water quality in the Upper Floridan aquifer and overlying surficial aquifers, southeastern United States, 1993-2010

    Science.gov (United States)

    Berndt, Marian P.; Katz, Brian G.; Kingsbury, James A.; Crandall, Christy A.

    2015-01-01

    About 10 million people rely on groundwater from the Upper Floridan and surficial aquifers for drinking water. The Upper Floridan aquifer also is of primary importance to the region as a source of water for irrigation and as a source of crystal clear water that discharges to springs and streams providing recreational and tourist destinations and unique aquatic habitats. The reliance of the region on the Upper Floridan aquifer for drinking water and for the tourism and agricultural economies highlights the importance of long-term management to sustain the availability and quality of these resources.

  20. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.