WorldWideScience

Sample records for grass plant named

  1. Names of Southern African grasses: Name changes and additional ...

    African Journals Online (AJOL)

    The main reasons for changes in botanical names are briefly reviewed, with examples from the lists. At this time, about 1040 grass species and subspecific taxa are recognized in the subcontinent. Keywords: botanical research; botanical research institute; botany; grass; grasses; identification; name change; nomenclature; ...

  2. Does crotalaria (Crotalaria breviflora or pumpkin (Cucurbita moschata inter-row cultivation in restoration plantings control invasive grasses?

    Directory of Open Access Journals (Sweden)

    Ricardo Gomes César

    2013-08-01

    Full Text Available Alternative methods to control invasive fodder grasses are necessary to reduce the use of herbicides in forest restoration, which has been carried out primarily in riparian zones. We sought to investigate if inter-row cultivation of crotalaria (Crotalaria breviflora DC or pumpkin (Cucurbita moschata Duschene ex. Poir with native tree species is an efficient strategy to control invasive fodder grasses in restoration plantings. We tested five treatments in a randomized block design, namely (1 control of brachiaria grass (Urochloa decumbens (Stapf. Webster with glyphosate in the implementation and post-planting grass control of the reforestation, (2 and 3 glyphosate use in the implementation and inter-row sowing of crotalaria (2 or pumpkin (3, and control of brachiaria by mowing in the post-planting phase, (4 and 5 mowing in the implementation and inter-row sowing of crotalaria (4 or pumpkin (5, and control of brachiaria by mowing in the post-planting phase. Post-planting grass control was carried out four and nine months after tree seedling planting. Throughout 13 months, we evaluated the percentage of ground cover by brachiaria grass, pumpkin production, and native tree seedling mortality, height and crown cover. The exclusive use of glyphosate, without inter-row sowing of pumpkin or crotalaria showed the most favorable results for controlling brachiaria grass and, consequently, for tree seedling development. Hence, inter-row cultivation of green manure or short-lived crop species is not enough to control invasive grasses in restoration plantings, and complementary weeding is necessary to reduce the highly competitive potential of C4 grasses for supporting native species seedlings growth.

  3. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  4. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  5. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  6. Differentiation of plant age in grasses using remote sensing

    Science.gov (United States)

    Knox, Nichola M.; Skidmore, Andrew K.; van der Werff, Harald M. A.; Groen, Thomas A.; de Boer, Willem F.; Prins, Herbert H. T.; Kohi, Edward; Peel, Mike

    2013-10-01

    Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (AVNIRn+log(ASWIR2n))/(AVNIRn-log(ASWIR2n)), where AVNIRn and ASWIR2n are the respective normalised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.

  7. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2016-09-01

    Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.

  8. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Science.gov (United States)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  9. Grasses as invasive plants in South Africa revisited: Patterns, pathways and management

    Directory of Open Access Journals (Sweden)

    Vernon Visser

    2017-03-01

    Full Text Available Background: In many countries around the world, the most damaging invasive plant species are grasses. However, the status of grass invasions in South Africa has not been documented recently. Objectives: To update Sue Milton’s 2004 review of grasses as invasive alien plants in South Africa, provide the first detailed species level inventory of alien grasses in South Africa and assess the invasion dynamics and management of the group. Method: We compiled the most comprehensive inventory of alien grasses in South Africa to date using recorded occurrences of alien grasses in the country from various literature and database sources. Using historical literature, we reviewed past efforts to introduce alien grasses into South Africa. We sourced information on the origins, uses, distributions and minimum residence times to investigate pathways and patterns of spatial extent. We identified alien grasses in South Africa that are having environmental and economic impacts and determined whether management options have been identified, and legislation created, for these species. Results: There are at least 256 alien grass species in the country, 37 of which have become invasive. Alien grass species richness increased most dramatically from the late 1800s to about 1940. Alien grass species that are not naturalised or invasive have much shorter residence times than those that have naturalised or become invasive. Most grasses were probably introduced for forage purposes, and a large number of alien grass species were trialled at pasture research stations. A large number of alien grass species in South Africa are of Eurasian origin, although more recent introductions include species from elsewhere in Africa and from Australasia. Alien grasses are most prevalent in the south-west of the country, and the Fynbos Biome has the most alien grasses and the most widespread species. We identified 11 species that have recorded environmental and economic impacts in the

  10. Potential of Electric Power Production from Microbial Fuel Cell (MFC in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Directory of Open Access Journals (Sweden)

    Zaman Badrus

    2018-01-01

    Full Text Available Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media. Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  11. On streamlining the Ukrainian names of plants. Information 7. Spelling the names of plant varieties.

    Directory of Open Access Journals (Sweden)

    В. М. Меженський

    2016-07-01

    Full Text Available Purpose. To analyse the practice of transliteration of the Ukrainian cultivar names and rendering foreign names by means of the Ukrainian language, as well as special aspects of cultivar names spelling in special literature. Results. Cultivar names as a special category require preservation of primary graphics or sound type in the other language. This can be achieved by direct inclusion of the original name to the Ukrainian text or by practical transcribing, but not by transliteration or translation. Otherwise, Ukrainian names should be transliterated for inclusion to the texts in Latin characters. Transcription/transliteration in both directions is performed from the source language, though, as practice shows, in some Ukrainian publications the Russian is wrongly used as an intermediary language. Some national scientific publications ignore the recommendations of the International Code of Nomenclature for Cultivated Plants that is not conducive to the success of scientific communication in the globalized world. Conclusions. The foreign names of plant varieties should be entered into the Ukrainian text keeping the original spelling or by means of practical transcription. The loan of foreign names is performed by transcribing directly from the source language; if the language doesn’t have the Latin alphabet, Latinized name transcription is acceptable. Recommendations of the International Code of Nomenclature for Cultivated Plants that concern graphic highlighting of the cultivar names in the text enclosing them in single quotation marks and writing each word of a cultivar name with a capital letter should necessarily be applied in the foreign-language publications and extended to the Ukrainian special literature, at least, in terms of the use of single quotation marks. Ukrainian names should be transliterated only in accordance with the regulations.

  12. African names for American plants

    NARCIS (Netherlands)

    Andel, van T.R.

    2015-01-01

    African slaves brought plant knowledge to the New World, sometimes applying it to related plants they found there and sometimes bringing Old World plants with them. By tracing the linguistic parallels between names for plants in African languages and in communities descended from African slaves,

  13. Plants and geographical names in Croatia.

    Science.gov (United States)

    Cargonja, Hrvoje; Daković, Branko; Alegro, Antun

    2008-09-01

    The main purpose of this paper is to present some general observations, regularities and insights into a complex relationship between plants and people through symbolic systems like geographical names on the territory of Croatia. The basic sources of data for this research were maps from atlas of Croatia of the scale 1:100000. Five groups of maps or areas were selected in order to represent main Croatian phytogeographic regions. A selection of toponyms from each of the map was made in which the name for a plant in Croatian language was recognized (phytotoponyms). Results showed that of all plant names recognized in geographical names the most represented are trees, and among them birch and oak the most. Furthermore, an attempt was made to explain the presence of the most represented plant species in the phytotoponyms in the light of general phytogeographical and sociocultural differences and similarities of comparing areas. The findings confirm an expectation that the genera of climazonal vegetation of particular area are the most represented among the phytotoponyms. Nevertheless, there are ample examples where representation of a plant name in the names of human environment can only be ascribed to ethno-linguistic and socio-cultural motives. Despite the reductionist character of applied methodology, this research also points out some advantages of this approach for ethnobotanic and ethnolinguistic studies of greater areas of human environment.

  14. Diversity of alkane hydroxylase genes on the rhizoplane of grasses planted in petroleum-contaminated soils

    OpenAIRE

    Tsuboi, Shun; Yamamura, Shigeki; Nakajima-Kambe, Toshiaki; Iwasaki, Kazuhiro

    2015-01-01

    The study investigated the diversity and genotypic features of alkane hydroxylase genes on rhizoplanes of grasses planted in artificial petroleum-contaminated soils to acquire new insights into the bacterial communities responsible for petroleum degradation in phytoremediation. Four types of grass (Cynodon dactylon, two phenotypes of Zoysia japonica, and Z. matrella) were used. The concentrations of total petroleum hydrocarbon effectively decreased in the grass-planted systems compared with t...

  15. Anthroponyms in Finno-Permic Compound Plant Names

    Directory of Open Access Journals (Sweden)

    Igor V. Brodsky

    2017-07-01

    Full Text Available With reference to Finno-Permic languages (a branch of Finno-Ugric languages excluding Ugric languages, the article analyses compound names of plants (phytonyms containing Permic languages, which, inter alia, can be explained by the incompleteness of collected data. Most of phytonyms with anthroponymic elements are attested in the Finnish and Estonian languages, while in the other Finno-Permic languages such attestations are rare. The anthroponyms appearing in names of plants are divided into two groups: a personal names of Biblical origin (e.g. Finnish Aapraham, Aatam, Jeesus, Maaria, b other anthroponyms. In the first group, the most numerous are Balto-Fennic phytonyms with the names Johannes and Maria and their national variants. The name Johannes (Finnish Juhannus, Estonian Jaan is most often present in the names of herbaceous plants flourishing in the period of celebration of Saint John’s Eve. Traditionally, this feast is associated with numerous rites and customs in which some plants play a significant role. An interesting formal feature of Balto-Fennic deanthroponymic compound names of plants is alliteration, i.e. repetition of identical or similar sound clusters in the beginning of each part of the word, as in Finnish liisanlilukka ‘stone bramble,’ simonsien’ ‘chanterelle, girolle’.

  16. Forage yield and nutritive value of Tanzania grass under nitrogen supplies and plant densities

    Directory of Open Access Journals (Sweden)

    Fabrício Paiva de Freitas

    2012-04-01

    Full Text Available The objective of this experiment was to evaluate the nitrogen and plant density influence on the yield, forage dissection and nutritive value of Tanzania grass (Panicum maximum Jacq.. The design was of completely randomized blocks with three replications in a factorial arrangement with four nitrogen levels (0, 80, 160 or 320 kg/ha N and three plant densities (9, 25 or 49 plants/m². The plots were cut at 25 cm from soil level when the canopy reached 95% of light interception. The total dry matter forage yield and dry matter forage yield per harvest increased linearly with the nitrogen fertilization. The leaf and stem yield had the same response. The senesced forage yield was quadratically influenced by the nitrogen. The stems ratio in the morphologic composition was high in the high nitrogen levels and in the low plant densities. The leaf:stem ratio showed high values in this trial, but it was increased in plots without nitrogen and high plant density. The pre-grazing height was reduced with the increase in plant density. The nutritive value was favored by the nitrogen fertilization, which increased the crude protein level and reduced neutral detergent fiber and lignin. These factors increased the leaf and stem in vitro digestibility of organic matter. Nitrogen fertilization increases the forage yield of Tanzania grass under rotational grazing. After the establishment, plant density has little influence on the Tanzania grass yield and its forage dissection. The harvest with 95% light interception improves the structure and nutritive value of Tanzania grass pastures.

  17. 'Bio-energy Schaffhausen': biogas, proteins and fibres, all three from grass

    International Nuclear Information System (INIS)

    Widmer, F.; Mueller, P.H.

    2002-01-01

    Bioenergie Schaffhausen Ltd., Switzerland, has commissioned the first industrial bio-refinery for processing grass. This unique grass refinery process provides a new industrial utilisation of grass. The products are green power and technical fibres for heat and sound insulation. The green electricity and green gas are made and sold by Etawatt Ltd. and Schaffhausen City Works, the green heat is used internally as process heat. All plant components are utilised for generation of value-added products, which makes the plant economically profitable even at a relatively small scale. The fully continuous and automated plant includes raw material reception, pre-treatment, fractionation, separation, and drying of fibres; separation of protein; juice treatment and conversion to biogas in a so-called UASB reactor; gas cleaning and conversion to electricity and process heat in a combined heat and power plant. The design capacity of the plant is 20,000 t fresh grass or 5,000 t dry substance input per year in two shifts. The plant supplier is '2B Biorefineries' (www.2bio.ch). The start up was in October 2001. Over 500 tons of grass have been processed. The grass refinery has produced so far 78,000 m 3 biogas, 150,000 kWh green electricity and 250,000 kWh green heat. Further, 80 tons of insulation fibres have been produced and sold in the market under the brand name '2B Gratec'. Over 30 buildings have been insulated. The washer and drier have not reached production capacity. The drying is a critical process for fibre quality. The drier is being modified and a new washer is being installed. It is planned to run at design capacity from May 2003. (author)

  18. Morphogenesis of Tanzania guinea grass under nitrogen doses and plant densities

    Directory of Open Access Journals (Sweden)

    Thiago Gomes dos Santos Braz

    2011-07-01

    Full Text Available The objective of this work was to evaluate effects of nitrogen fertilization and plant density on morphogenesis of Tanzania guinea grass. It was used a random block design with 12 treatments and two replications in a 4 × 3 factorial arrangement, with four doses of nitrogen (N (without N application, 80, 160 or 320 kg/ha.year and three plant densities (9, 25 or 49 plants/m². Harvest was performed at 25 cm from the ground when the canopy intercepted 95% of the incident light. Rates of leaf appearance and pseudostem elongation were positively and linearly influenced by nitrogen, whereas phillochron and leaf life span were influenced linearly and negatively. Leaf elongation responded positively to two factors, whereas leaf senescence rate and number of live leaves were not influenced by the factors evaluated. Number of total, basal and aerial tillers were greater at the density of 9 plants/m² and at the nitrogen dose of 320 kg/ha.year. Nitrogen increases production of leaves and tillers in Tanzania guinea grass defoliated at 95% of light interception, but high density of plants reduces the number of tiller per bunch.

  19. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  20. Analysis of two heterologous flowering genes in ¤Brachypodium distachyon¤ demonstrates its potential as a grass model plant

    DEFF Research Database (Denmark)

    Olsen, P.; Lenk, I.; Jensen, Christian S.

    2006-01-01

    Despite the great contribution of model organisms, such as Arabidopsis and rice to understand biological processes in plants, these models are less valuable for functional studies of particular genes from temperate grass crop species. Therefore a new model plant is required, displaying features...... including close phylogenetic relationship to the temperate grasses, vernalisation requirement, high transformation efficiency, small genome size and a rapid life cycle. These requirements are all fulfilled by the small annual grass Brachypodium distachyon. As a first step towards implementing this plant...

  1. Headwater fish population responses to planting grass filter strips adjacent to channelized agricultural headwater streams

    Science.gov (United States)

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Only a limited amount of information is available on the ecological effects of planting grass filter strips adjacent to channe...

  2. Plant-beneficial elements status assessment in soil-plant system in the vicinity of a chemical industry complex: shedding light on forage grass safety issues.

    Science.gov (United States)

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-02-01

    Human health is closely linked with soils via plants, grazers, or plant-based products. This study estimated plant-beneficial elements (macronutrients: K, P; secondary macronutrients: Ca, Mg; micronutrients: Mo, Mn, Na, Ni, Se) in both soils and shoots of two forage grass species (Eriophorum angustifolium and Lolium perenne) prevalent in the vicinity of a chemical industry complex (Estarreja, Portugal). Both soils and plants from the chemical industrial areas exhibited differential concentrations of the studied elements. In soils, the role of contamination was evidenced as insignificant in context of its impact on all the tested macro and secondary macronutrients except P, and micronutrients such as Mo and Ni. In forage grass plant shoots, the role of contamination was evidenced as insignificant in relation to its impact on all the tested macro and secondary macronutrients except K. Between the two forage grass plants, high Se-harboring L. perenne cannot be recommended for its use as animal feed.

  3. Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Štrok, Marko, E-mail: Marko.Strok@ijs.si; Smodiš, Borut, E-mail: Borut.Smodis@ijs.si

    2013-08-15

    Highlights: • Soil and grass samples were collected from sites at the uranium mill tailings pile. • {sup 238}U, {sup 230}Th, {sup 226}Ra and {sup 210}Pb activity concentrations were determined. • Soil-to-plant transfer factors were determined and are comparable with literature. • Potential use of grass as a monitor of radionuclide migration was evaluated. • Grass has potential in predicting {sup 238}U and {sup 226}Ra migration. -- Abstract: The activity concentrations of {sup 238}U, {sup 230}Th, {sup 226}Ra and {sup 210}Pb were determined in soil and grass samples collected from sites at the uranium mill tailings waste pile, which lies near the former uranium mine at Žirovski vrh in Slovenia. Soil-to-plant transfer factors were determined and the potential use of grass as a monitor of radionuclide migration from the waste pile was evaluated. It was found that grass was not suitable for monitoring {sup 230}Th and {sup 210}Pb migration (no linear correlation between soil and grass activity concentrations) but has potential in predicting {sup 238}U and {sup 226}Ra migration (linear correlation between soil and grass activity concentrations). Soil-to-plant transfer factors for grass were in the range from 0.0014 to 0.015 kg/kg DM for {sup 238}U, 0.0039 to 0.012 kg/kg DM for {sup 230}Th, 0.035 to 0.46 kg/kg DM for {sup 226}Ra and 0.098 to 1.5 kg/kg DM for {sup 210}Pb.

  4. Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

    Directory of Open Access Journals (Sweden)

    Yong Seong Lee

    2017-12-01

    Full Text Available This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F, a bacterial grass culture (G, a 1/3 volume of G plus 2/3 F (GF, and F plus a synthetic fungicide (FSf were applied to tomato leaves and roots. The result showed that the severity of Alternariasolani and Botrytiscinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

  5. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species

    Science.gov (United States)

    Garbuzov, Mihail; Reidinger, Stefan; Hartley, Susan E.

    2011-01-01

    Background and Aims The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator. Methods Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria). Key Results In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon. Conclusions It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure. PMID:21868406

  6. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  7. List of New Names of Plant Pathogenic Bacteria (2008-2010)

    Science.gov (United States)

    In 2010 the International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria published the Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007 to provide an authoritative register of names of plant pathogens. In this manuscript we up-date the list of na...

  8. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. [Old English plant names from the linguistic and lexicographic viewpoint].

    Science.gov (United States)

    Sauer, Hans; Krischke, Ulrike

    2004-01-01

    Roughly 1350 Old English plant names have come down to us; this is a relatively large number considering that the attested Old English vocabulary comprises ca. 24 000 words. The plant names are not only interesting for botanists, historians of medicine and many others, but also for philologists and linguists; among other aspects they can investigate their etymology, their morphology (including word-formation) and their meaning and motivation. Practically all Old English texts where plant names occur have been edited (including glosses and glossaries), the names have been listed in the Old English dictionaries, and some specific studies have been devoted to them. Nevertheless no comprehensive systematic analysis of their linguistic structure has been made. Ulrike Krischke is preparing such an analysis. A proper dictionary of the Old English plant names is also a desideratum, especially since the Old English dictionaries available and in progress normally do not deal with morphological and semantic aspects, and many do not provide etymological information. A plant-name dictionary concentrating on this information is being prepared by Hans Sauer and Ulrike Krischke. In our article here, we sketch the state of the art (ch. 1), we deal with some problems of the analysis of Old English plant names (ch. 2), e.g. the delimitation of the word-field plant names, the identification of the plants, errors and problematic spellings in the manuscripts. In ch. 3 we sketch the etymological structure according to chronological layers (Indo-European, Germanic, West-Germanic, Old English) as well as according to the distinction between native words and loan-words; in the latter category, we also mention loan-formations based on Latin models. In ch. 4 we survey the morphological aspects (simplex vs. complex words); among the complex nouns, compounds are by far the largest group (and among those, the noun + noun compounds), but there are also a few suffix formations. We also briefly

  10. Identifying and naming plant-pathogenic fungi: past, present, and future.

    Science.gov (United States)

    Crous, Pedro W; Hawksworth, David L; Wingfield, Michael J

    2015-01-01

    Scientific names are crucial in communicating knowledge about fungi. In plant pathology, they link information regarding the biology, host range, distribution, and potential risk. Our understanding of fungal biodiversity and fungal systematics has undergone an exponential leap, incorporating genomics, web-based systems, and DNA data for rapid identification to link species to metadata. The impact of our ability to recognize hitherto unknown organisms on plant pathology and trade is enormous and continues to grow. Major challenges for phytomycology are intertwined with the Genera of Fungi project, which adds DNA barcodes to known biodiversity and corrects the application of old, established names via epi- or neotypification. Implementing the one fungus-one name system and linking names to validated type specimens, cultures, and reference sequences will provide the foundation on which the future of plant pathology and the communication of names of plant pathogens will rest.

  11. Pre-study - mobile briquetting plant for reed canary grass in inland Northern Sweden; Foerstudie - mobil briketteringsanlaeggning foer roerflen i norrlands inland

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Lundmark, Bo

    2009-07-01

    The aim of this preliminary study was to summarize existing information and to develop an outline plan for a mobile briquette plant based on the conditions and requirements of reed canary grass production on forestry land. The results of the study show that there is potential to build up small-scale briquette production from reed canary grass in the areas around Arvidsjaur, Lycksele and Malaa. Important conclusions from the study are that there are potential users for reed canary grass briquettes in all three areas studied, but that profitability for mobile briquette plants is dependent on the willingness of the users to pay well for the briquettes. These briquette plants would need a relatively high degree of automation for commercial operation to be profitable. The first plant should therefore be collocated with another business so that staff, machinery (e.g. loader) and storage space can be shared with other operations. One appropriate location would be to build up activities for a mobile reed canary grass briquette plant around Glommers Miljoeenergi's pellet plant in Glommerstraesk. Thus, the plant could be used as a demonstration mobile unit, with a stationary 'home production base'CO{sub 2} Glommerstraesk

  12. Evapotranspiration in three plant communities of a Rhigozum ...

    African Journals Online (AJOL)

    Evapotranspiration losses in three Rhigozum trichotomum plant communities namely, pure grass, pure R. trichotomum and a mixed stand of grass and R. trichotomum were determined during the 1985-86 growing season. Three hydrologically isolated plots in each community type were irrigated and changes in soil water ...

  13. Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub-steppe communities

    Science.gov (United States)

    Sheel Bansal; Roger L. Sheley; Bob Blank; Edward A. Vasquez

    2014-01-01

    Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation...

  14. The conditions for use of reed canary grass briquettes and chopped reed canary grass in small heating plants; Foerutsaettningar foer anvaendning av roerflensbriketter och hackad roerflen i mindre vaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Davidsson, Kent; Holmgren, Magnus A. (Swedish National Testing and Research Inst., Boraas (Sweden)); Hedman, Henry; Oehman, Rikard; Leffler, Joel (ETC, Piteaa (Sweden))

    2010-09-15

    The aim of this study was to test fuel blends of briquettes and chopped reed canary grass in three existing heating plants (50 kW - 500 kW) and elucidate the requirements for good performance and low emissions. In addition, the study investigated production of reed canary grass briquettes using a Polish screw press developed for straw. Some tests with a bale shredder were also undertaken. The screw press technique is of interest for reed canary grass because it is a simple technique, easy to handle, developed for small scale production, and for straw. The test with reed canary grass in this study showed that the technique worked well but that further adjustments and a longer test period are needed in order to achieve higher bulk density and mechanical strength. The test with chopped reed canary grass shows that a system with a forage harvester is slightly more effective than baling and cutting in a bale shredder. The study concluded that few existing heating plants of size 50 kW-1 MW that currently use wood fuels will be able to use reed canary grass without adjustment, conversion or replacement of the combustion equipment. Reed canary grass has 15-20 times higher ash content than wood briquettes and 2-3 times higher ash content than forest residue; the combustion equipment must be able to handle these properties. The boiler must be equipped with a continuously operating ashing system and it must be possible to move the ash bed mechanically. There is a risk of high content of unburned matter if the residence time in the boiler is too short, due to the structure and low bulk density of the reed canary grass ash. Using a blend of wood briquettes and reed canary briquettes results in lower ash content, but also affects the ash chemistry and tends to lower the initial ash fusion temperature compared to using 100 % reed canary grass. Blending chopped reed canary grass and wood chips in an existing small scale heating plant also requires measures to achieve an even fuel

  15. List of new names of plant pathogenic bacteria (2011-2012)

    Science.gov (United States)

    The International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria has responsibility to evaluate the names of newly proposed pathovars for adherence to the International Standards for Naming Pathovars of Phytopathogenic Bacteria. Currently, the Comprehensive List of...

  16. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  17. Spreaders, igniters, and burning shrubs: plant flammability explains novel fire dynamics in grass-invaded deserts.

    Science.gov (United States)

    Fuentes-Ramirez, Andres; Veldman, Joseph W; Holzapfel, Claus; Moloney, Kirk A

    2016-10-01

    Novel fire regimes are an important cause and consequence of global environmental change that involve interactions among biotic, climatic, and human components of ecosystems. Plant flammability is key to these interactions, yet few studies directly measure flammability or consider how multiple species with different flammabilities interact to produce novel fire regimes. Deserts of the southwestern United States are an ideal system for exploring how novel fire regimes can emerge when fire-promoting species invade ecosystems comprised of species that did not evolve with fire. In these deserts, exotic annual grasses provide fuel continuity across landscapes that did not historically burn. These fires often ignite a keystone desert shrub, the fire-intolerant creosote bush, Larrea tridentata (DC.) Coville. Ignition of Larrea is likely catalyzed by fuels produced by native plants that grow beneath the shrubs. We hypothesize that invasive and native species exhibit distinct flammability characteristics that in combination determine spatial patterns of fire spread and intensity. We measured flammability metrics of Larrea, two invasive grasses, Schismus arabicus and Bromus madritensis, and two native plants, the sub-shrub Ambrosia dumosa and the annual herb Amsinckia menziesii. Results of laboratory experiments show that the grasses carry fire quickly (1.32 cm/s), but burn for short duration (0.5 min) at low temperatures. In contrast, native plants spread fire slowly (0.12 cm/s), but burn up to eight times longer (4 min) and produced hotter fires. Additional experiments on the ignition requirements of Larrea suggest that native plants burn with sufficient temperature and duration to ignite dead Larrea branches (time to ignition, 2 min; temperature at ignition 692°C). Once burning, these dead branches ignite living branches in the upper portions of the shrub. Our study provides support for a conceptual model in which exotic grasses are "spreaders" of fire and native

  18. Analysis of the soil food web structure under grass and grass clover

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Smeding, F.W.; Vries, de F.T.; Bloem, J.

    2006-01-01

    The below ground biodiversity of soil organisms plays an important role in the functioning of the the soil ecosystem, and consequently the above ground plant production. The objective of this study is to investigate the effect of grass or grass-clover in combination with fertilisation on the soil

  19. Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils.

    Science.gov (United States)

    Sánchez, Virtudes; López-Bellido, Francisco Javier; Cañizares, Pablo; Rodríguez, Luis

    2017-10-01

    Pollution of soil and groundwater by atrazine has become an increasing environmental concern in the last decade. A phytoremediation test using plastic pots was conducted in order to assess the ability of several crops and grasses to remove atrazine from a soil of low permeability spiked with this herbicide. Four plant species were assessed for their ability to degrade or accumulate atrazine from soils: two grasses, i.e., ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea), and two crops, i.e., barley (Hordeum vulgare) and maize (Zea mays). Three different doses of atrazine were used for the contamination of the pots: 2, 5 and 10 mg kg -1 . 16 days after spiking, the initial amount of atrazine was reduced by 88.6-99.6% in planted pots, while a decrease of only 63.1-78.2% was found for the unplanted pots, thus showing the contribution of plants to soil decontamination. All the plant species were capable of accumulating atrazine and its N-dealkylated metabolites, i.e., deethylatrazine and deisopropylatrazine, in their tissues. Some toxic responses, such as biomass decreases and/or chlorosis, were observed in plants to a greater or lesser extent for initial soil doses of atrazine above 2 mg kg -1 . Maize was the plant species with the highest ability to accumulate atrazine derivatives, reaching up to 38.4% of the initial atrazine added to the soil. Rhizosphere degradation/mineralization by microorganisms or plant enzymes, together with degradation inside the plants, have been proposed as the mechanisms that contributed to a higher extent than plant accumulation to explain the removal of atrazine from soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Grass or fern competition reduce growth and survival of planted tree seedlings

    Science.gov (United States)

    Larry H. McCormick; Todd W. Bowersox

    1997-01-01

    Bareroot seedlings of northern red oak, white ash, yellow-poplar and white pine were planted into herbaceous communities at three forested sites in central Pennsylvania that were clearcut 0 to 1 year earlier. Seedlings were grown 4 years in the presence and absence of either an established grass or hay-scented fern community. Survival and height growth were measured...

  1. DEPENDENCE OF GRASS COVER TAXONOMIC AND ECOLOGICAL STRUCTURE ON THE ANTHROPOGENIC IMPACT IN FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    N. V. Miroshnik

    2016-01-01

    Full Text Available Pine forests Chigirinsky Bor grow on fresh sod-podzolic soils formed on ancient alluvial deposits. Pine forests are characterized by stringent moisture regimes and constantly suffer from lack of productive moisture in soil.  Industrial development of Cherkasy in 60th years of ХХ century leaded air pollution and emissions of SO2, NOx, NH3, and dust. This contributed to significant negative influence on the surrounding forest ecosystems from enterprises of  Cherkassy industrial agglomeration. The grass cover in pine stands of Chigirinsky Bor transforms into xerophytic grasses and ruderal communities under the impact of negative biotic and abiotic factors. They are namely the anthropogenic violation of forest conditions, stands decline, recreational and industrial tree crowns understocking, xerophytic and heliophytic transformations of forest conditions. All the above mentioned caused strong ruderal and adventive transformation of grass cover. We registered the changes in nitrophilous plant spread regards the Cherkasy industrial agglomeration approaching which emits toxic with nitrogen-containing gases. Adventive and other non-forest species displace ferns and mosses, the ratio of ecomorfs is also changes due to increase of the quantity and development activation of annuals, xerophytic, ruderal, and nitrofil plants. The Asteraceae/Brassicaceae 3:1 ratio indicates significant anthropogenic violations in the region. We fixed the xerophytic, ruderal, and adventive transformation of grass cover in forest ecosystems. It is also founded the tendency of expanding the fraction of mesophilic plant species due to alterations in water regime (creation of Kremenchug reservoir and draining of floodplain Tyasmyn. When approaching the Cherkasy industrial agglomeration the grass cover degradation is clearly observed on the environmental profile. All this causes the forest ecosystem degradation and gradual loss of forest vegetation typical characteristics. We

  2. Mutation breeding of vegetatively propagated turf and forage Bermuda grass

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1982-01-01

    Tifgreen, Tifway and Tifdwarf, sterile triploid (2n = 27)F 1 hybrids between Cynodon dactylon and C. transvaalensis, are widely used turf grasses bred at Tifton, Georgia. They cannot be improved by conventional breeding methods. Attempts to improve them by treating short dormant rhizome sections with EMS failed but exposing them to 7-9 kR of gamma radiation produced 158 mutants. These have been evaluated at Tifton, and Beltsville, Maryland, and nine that appear to be better than the parents in one or more characteristics were planted in 8 x 10 m plots in triplicate in 1977. Test results to date suggest that one or more of these will be good enough to warrant a name and release to the public. Coastcross-1 is an outstanding sterile F 1 hybrid Bermuda grass that gives 35% more beef per acre but lacks winter hardiness. Since 1971, several million sprigs of Coastcross-1 have been exposed to 7 kR and have been planted and screened for winter survival at the Georgia Mountain Experiment Station. Chlorophyll-deficient mutants have appeared and one mutant slightly, but significantly, more winter hardy than Coastcross-1 has been obtained. Sprigs of this mutant named Coastcross 1-M3 are being irradiated and screened in an attempt to increase its winter hardiness. (author)

  3. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  4. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  5. Evaluating grasses as a long-term energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.G.; Riche, A.B.

    2001-07-01

    The work reported here is part of an ongoing project that aims to evaluate the yields of three perennial rhizomatous grasses and determine their suitability as bio-energy crops. The work began in 1993, and the grasses have been monitored continuously since that time. This report covers the period 1999/2000, and includes: the performance of plots of the energy grasses Miscanthus grass, switchgrass and reed canary grass seven years after they were planted; assessment of the yield of 15 genotypes of Miscanthus planted in 1997; monitoring all the species throughout the growing period for the presence of pests, weeds and diseases; measurement of the amount of nitrate leached from below Miscanthus grass; investigating the occurrence of lodging in switchgrass. (Author)

  6. One fungus, one name promotes progressive plant pathology.

    Science.gov (United States)

    Wingfield, Michael J; De Beer, Z Wilhelm; Slippers, Bernard; Wingfield, Brenda D; Groenewald, Johannes Z; Lombard, Lorenzo; Crous, Pedro W

    2012-08-01

    The robust and reliable identification of fungi underpins virtually every element of plant pathology, from disease diagnosis to studies of biology, management/control, quarantine and, even more recently, comparative genomics. Most plant diseases are caused by fungi, typically pleomorphic organisms, for which the taxonomy and, in particular, a dual nomenclature system have frustrated and confused practitioners of plant pathology. The emergence of DNA sequencing has revealed cryptic taxa and revolutionized our understanding of relationships in the fungi. The impacts on plant pathology at every level are already immense and will continue to grow rapidly as new DNA sequencing technologies continue to emerge. DNA sequence comparisons, used to resolve a dual nomenclature problem for the first time only 19 years ago, have made it possible to approach a natural classification for the fungi and to abandon the confusing dual nomenclature system. The journey to a one fungus, one name taxonomic reality has been long and arduous, but its time has come. This will inevitably have a positive impact on plant pathology, plant pathologists and future students of this hugely important discipline on which the world depends for food security and plant health in general. This contemporary review highlights the problems of a dual nomenclature, especially its impact on plant pathogenic fungi, and charts the road to a one fungus, one name system that is rapidly drawing near. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  7. Production of ethanol from lepthochloa fusca L. (kallar grass) and panicum maximum using cellulases from trichoderma SSP and cultures of saccharomyces carlsbergensis

    International Nuclear Information System (INIS)

    Rajoka, M.I.; Malik, K.A.

    1991-01-01

    Saline sodic soils have been used for production of biomass using salt tolerant grass, kallar grass followed by lesser tolerant plants, namely, sasbania aculeata or Panicum maximum or to provide biomass throughout the year for it utilization for microbial conversion. These substrates have been utilized to produce single cell protein and cellases or hemicellulases. The enzyme titer obtained after growth of cellulomonas biazotea on kallar grass could saccharify wheat straw ad bagasse for subsequent conversion to ethanol but kallar grass itself was saccharified to lesser extent, however, enzyme titres from different fungi could saccherify the biomass produced on saline lands to monomeric sugars. In these studies, the enzyme titre from Trichoderma spp. were used for saccharification purpose. (author)

  8. High green fodder yielding new grass varieties

    OpenAIRE

    C. Babu, K. Iyanar and A. Kalamani

    2014-01-01

    Two high biomass yielding forage grass varieties one each in Cumbu Napier hybrid and Guinea grass have been evolved at the Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore and identified for release at national (All India) level as Cumbu Napier hybrid grass CO (BN) 5 and Guinea grass CO (GG) 3 during 2012 and 2013 respectively. Cumbu Napier hybrid grass CO (BN) 5 secured first rank at all national level with reference to green ...

  9. Feed intake, growth performance and digestibility in goats fed whole corn plant silage and Napier grass

    Directory of Open Access Journals (Sweden)

    Khaing, K.T.

    2015-06-01

    Full Text Available Shortage and inconsistent quality of forage in developing countries are the major constraints to the development of ruminant sector. To overcome these problems, feeding of ruminants with conserved forages is an important feeding strategy to ensure the success of ruminant production in the third world countries. The use of whole corn plant as silage has drawn many attention due to high protein efficiency, relatively high digestible energy and total digestible nutrients. Thus, the objective of this study was to determine feed intake, growth performance and nutrients digestibility in goats fed different inclusion level of whole corn plant silage to Napier grass based diets. Fifteen male Boer cross goats around six months old and approximately 18.54 ? 1.83 kg of body weight were used as experimental animals. The goats were assigned into five treatment groups consisted of different proportions of Napier grass (G and whole plant corn silage (CS ?T1:100/0 G/CS; T2:75/25 G/CS; T3:50/50 G/CS; T4:25/75 G/CS and T5:0/100 G/CS. The increase of corn silage to Napier grass proportion demonstrates increase in dry matter intake and growth performance in the goats. The highest nutrient digestibility was observed in T5:0/100 G/CS and T3:50/50 G/CS. It can be concluded that high proportion of corn silage to grass diets had resulted in increases in feed intake and growth performance of goats. Feeding the animals with T5 and T3 resulted in high nutrient utilization compared to other treatments. However, the highest growth performance was observed in animals that were fed with T5 diets.

  10. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective.

    Directory of Open Access Journals (Sweden)

    Abul Kalam Azad

    Full Text Available Major intrinsic proteins (MIPs, commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs. Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R selectivity filter and Froger's positions (FPs] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2 had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non

  11. Identification of a locus characteristic of male individuals of buffalo grass [Buchloe dactyloides (Nutt.) Engelm.] by using an RAPD marker.

    Science.gov (United States)

    Li, Y X; Wang, X G; Yang, C H; Cong, L L; Wu, F F; Xue, J G; Han, Y H

    2013-09-27

    Buffalo grass [Buchloe dactyloides (Nutt.) Engelm.] plants can be either male, female, or hermaphrodite (monoecious). As there is no morphological difference in the early vegetative growth of these three classes of plants, it is worthwhile to use molecular biological methods to attempt to identify the sex of a plant at this early growth period. In this study, we identified 23 plants that had a stable sex for over at least 3 years. Of these, 9 were male plants, 10 were female plants, and 4 were hermaphrodites. Screening of 300 RAPD primers identified a primer, namely S211 (5'-ttccccgcga-3'), which is capable of identifying male plants. The specific fragment was cloned, sequenced, and submitted to the GenBank database (accession No. JN982469). When used to identify the sex of 188 plants during their first growing season, the S211 primer correctly identified 85.8% of all male plants. Our results showed that the S211 primer can identify the male, and in doing so, it facilitates buffalo grass breeding work.

  12. Preliminary studies on allelopatic effect of some woody plants on seed germination of rye-grass and tall fescue.

    Science.gov (United States)

    Arouiee, H; Nazdar, T; Mousavi, A

    2010-11-01

    In order to investigation of allelopathic effects of some ornamental trees on seed germination of rye-grass (Lolium prenne) and tall fescue (Festuca arundinaceae), this experiment was conducted in a randomized complete block design with 3 replicates at the laboratory of Horticultural Sciences Department of Ferdowsi University of Mashhad, during 2008. In this research, we studied the effect of aqueous and hydro-alcoholic extracts of Afghanistan pine (Pinus eldarica), arizona cypress (Cupressus arizonica), black locust (Robinia psedue acacia) and box elder (Acer negundo) leaves that prepared in 1:5 ratio on seed germination percent and rate for two grasses. The results showed that all extracts decreased statistically seed germination in compared to control treatment. The highest germination percentage and germination rate of tested grass detected in control treatment. Hydro-alcoholic extracts of all woody plants (15, 30%) were completely inhibited seed germination of rye-grass and tall fescue. Also aqueous extract of arizona cypress was completely inhibited seed germination of tall fescue and had more inhibitory activity than other aqueous extracts on rye-grass. Between aqueous extracts, the highest and lowest seed germination of rye-grass was found in Afghanistan pine and arizona cypress, respectively.

  13. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  14. Reed canary grass tried as a fuel in commercial district heating plants in Denmark; Provfoerbraenning av energigraeset roerflen vid tvaa kommersiella halmeldade anlaeggningar i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, J [Sveriges Lantbruksuniversitet, Enheten foer Biomassa, Biobraenslen och Fibergroedor, Umeaa (Sweden)

    1992-03-01

    In two different types of district heating combustion plants in Denmark, normally using straw as fuel, the energy grass Reed canary grass (summer harvested) has been tested as a new fuel. The combustion plant in Ringsted burns the fuel as whole bales with the so called `cigar method`. In Nykoebing the fuel is burned on a rust as unpacked bales using a straw divider to divide the bales. The heating effect of the combustion plants is 4.5 MW and 4.0 MW, respectively. For both plants, there was no handling or technical problem observed in the test with Reed canary grass compared to straw. The analysis of the emission to air shows high average values for CO- and NO{sub x} during the test period which is unacceptable according to Swedish limit values for emissions. For combustion plants with a heating effect over 10 MW, the limit values for NO{sub x} is 100-200 mg/MJ. For smaller plants there are no limits values today but in the future demands for limitation of NO{sub x} emission may come. For both plants, the O{sub 2}-content in fumes varied a lot, with a high mean value, about 10%. The content of chlorine in straw and energy grass can reach high levels. Most of the chlorine binds up in the ash (KCl), and therefore the emission of HCl are low. The emission to air of SO{sub x}, which is 100 mg/MJ, is below the limit value for smaller plants. The variation of moisture and the low density are the properties of grass and straw that mainly causes problems in the combustion and gives high emission levels. Today it seems to be necessary to press the material into fuel briquetts or fuel pellets to get a better combustion, that can meet environmental demands. (7 figs., 17 tabs.).

  15. Reed canary grass tried as a fuel in commercial district heating plants in Denmark. Provfoerbraenning av energigraeset roerflen vid tvaa kommersiella halmeldade anlaeggningar i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Burvall, J [Sveriges Lantbruksuniversitet, Enheten foer Biomassa, Biobraenslen och Fibergroedor, Umeaa (Sweden)

    1992-03-01

    In two different types of district heating combustion plants in Denmark, normally using straw as fuel, the energy grass Reed canary grass (summer harvested) has been tested as a new fuel. The combustion plant in Ringsted burns the fuel as whole bales with the so called 'cigar method'. In Nykoebing the fuel is burned on a rust as unpacked bales using a straw divider to divide the bales. The heating effect of the combustion plants is 4.5 MW and 4.0 MW, respectively. For both plants, there was no handling or technical problem observed in the test with Reed canary grass compared to straw. The analysis of the emission to air shows high average values for CO- and NO[sub x] during the test period which is unacceptable according to Swedish limit values for emissions. For combustion plants with a heating effect over 10 MW, the limit values for NO[sub x] is 100-200 mg/MJ. For smaller plants there are no limits values today but in the future demands for limitation of NO[sub x] emission may come. For both plants, the O[sub 2]-content in fumes varied a lot, with a high mean value, about 10%. The content of chlorine in straw and energy grass can reach high levels. Most of the chlorine binds up in the ash (KCl), and therefore the emission of HCl are low. The emission to air of SO[sub x], which is 100 mg/MJ, is below the limit value for smaller plants. The variation of moisture and the low density are the properties of grass and straw that mainly causes problems in the combustion and gives high emission levels. Today it seems to be necessary to press the material into fuel briquetts or fuel pellets to get a better combustion, that can meet environmental demands. (7 figs., 17 tabs.).

  16. The bear in Eurasian plant names: motivations and models.

    Science.gov (United States)

    Kolosova, Valeria; Svanberg, Ingvar; Kalle, Raivo; Strecker, Lisa; Özkan, Ayşe Mine Gençler; Pieroni, Andrea; Cianfaglione, Kevin; Molnár, Zsolt; Papp, Nora; Łuczaj, Łukasz; Dimitrova, Dessislava; Šeškauskaitė, Daiva; Roper, Jonathan; Hajdari, Avni; Sõukand, Renata

    2017-02-21

    Ethnolinguistic studies are important for understanding an ethnic group's ideas on the world, expressed in its language. Comparing corresponding aspects of such knowledge might help clarify problems of origin for certain concepts and words, e.g. whether they form common heritage, have an independent origin, are borrowings, or calques. The current study was conducted on the material in Slavonic, Baltic, Germanic, Romance, Finno-Ugrian, Turkic and Albanian languages. The bear was chosen as being a large, dangerous animal, important in traditional culture, whose name is widely reflected in folk plant names. The phytonyms for comparison were mostly obtained from dictionaries and other publications, and supplemented with data from databases, the co-authors' field data, and archival sources (dialect and folklore materials). More than 1200 phytonym use records (combinations of a local name and a meaning) for 364 plant and fungal taxa were recorded to help find out the reasoning behind bear-nomination in various languages, as well as differences and similarities between the patterns among them. Among the most common taxa with bear-related phytonyms were Arctostaphylos uva-ursi (L.) Spreng., Heracleum sphondylium L., Acanthus mollis L., and Allium ursinum L., with Latin loan translation contributing a high proportion of the phytonyms. Some plants have many and various bear-related phytonyms, while others have only one or two bear names. Features like form and/or surface generated the richest pool of names, while such features as colour seemed to provoke rather few associations with bears. The unevenness of bear phytonyms in the chosen languages was not related to the size of the language nor the present occurence of the Brown Bear in the region. However, this may, at least to certain extent, be related to the amount of the historical ethnolinguistic research done on the selected languages.

  17. Performance of Vetiver Grass (Vetiveria zizanioides for Phytoremediation of Contaminated Water

    Directory of Open Access Journals (Sweden)

    Syed Hasan Sharifah Nur Munirah

    2017-01-01

    Full Text Available In tolerance towards metal uptake, there is a need to evaluate the performance of vetiver grass for metal removal to reduce water impurity. This study was aimed to evaluate contaminant removal by vetiver grass at varying root length and plant density and determine the metal uptake in vetiver plant biomass. Pollutant uptake of vetiver grass was conducted in laboratory experiment and heavy metal analysis was done using acid digestion and Atomic Absorption Spectrometry. Findings indicated that the removal of heavy metal was decreased in seven days of the experiment where iron shows the highest percentage (96%; 0.42 ppm of removal due to iron is highly required for growth of vetiver grass. Removal rate of heavy metals in water by vetiver grass is ranked in the order of Fe>Zn>Pb>Mn>Cu. Results also demonstrated greater removal of heavy metals (Cu, Fe, Mn, Pb, Zn at greater root length and higher density of vetiver grass because it increased the surface area for metal absorption by plant root into vetiver plant from contaminated water. However, findings indicated that accumulation of heavy metals in plant biomass was higher in vetiver shoot than in root due to metal translocation from root to the shoot. Therefore, the findings have shown effective performance of vetiver grass for metal removal in the phytoremediation of contaminated water.

  18. Rehabilitation experiment by phytoremediation using lawn grass

    International Nuclear Information System (INIS)

    2012-08-01

    Measures against environmental contamination by radioactive materials originated from the Fukushima Nuclear Accident (May, 2011), are being conducted in Fukushima and surrounding prefectures. Regarding to the measures, a phytoremediation experiment with several types of lawn grasses in a field scale have been carried out. Lawn grasses are generally characterized by shallow rhizosphere, high density and root mat formation. Decontamination effectiveness of radioactive cesium by plant uptake and by sod removing was investigated. As a result, the range of decontamination factors by plant uptake was below than 1% because of low transfer rate form soil to plant. On the other hand, maximum decontamination factor by sod removing reached about 100%. Decontamination activities with various methods will be implemented according to the national decontamination policy and related plans in each municipality. The phytoremediation method with lawn grass would be applicable in limited circumstances. (author)

  19. Tackling Contentious Invasive Plant Species: A Case Study of Buffel Grass in Australia

    Science.gov (United States)

    Grice, Anthony C.; Friedel, Margaret H.; Marshall, Nadine A.; van Klinken, Rieks D.

    2012-02-01

    Introduced plants that have both production values and negative impacts can be contentious. Generally they are either treated as weeds and their use prohibited; or unfettered exploitation is permitted and land managers must individually contend with any negative effects. Buffel grass ( Cenchrus ciliaris) is contentious in Australia and there has been no attempt to broadly and systematically address the issues surrounding it. However, recent research indicates that there is some mutual acceptance by proponents and opponents of each others' perspectives and we contend that this provides the basis for a national approach. It would require thorough and on-going consultation with stakeholders and development of realistic goals that are applicable across a range of scales and responsive to regional differences in costs, benefits and socio-economic and biophysical circumstances. It would be necessary to clearly allocate responsibilities and ascertain the most appropriate balance between legislative and non-legislative mechanisms. A national approach could involve avoiding the introduction of additional genetic material, countering proliferation in regions where the species is sparse, preventing incursion into conservation reserves where it is absent, containing strategically located populations and managing communities to prevent or reduce dominance by buffel grass. This approach could be applied to other contentious plant species.

  20. Responses of three grass species to creosote during phytoremediation

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    Phytoremediation of creosote-contaminated soil was monitored in the presence of Tall fescue, Kentucky blue grass, or Wild rye. For all three grass species, plant growth promoting rhizobacteria (PGPR) were evaluated for plant growth promotion and protection of plants from contaminant toxicity. A number of parameters were monitored including plant tissue water content, root growth, plant chlorophyll content and the chlorophyll a/b ratio. The observed physiological data indicate that some plants mitigated the toxic effects of contaminants. In addition, in agreement with our previous experiments reported in the accompanying paper (Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soil. Environ. Poll. doi: 10.1016/j.envpol.2003.09.031), PGPR were able to greatly enhance phytoremediation. PGPR accelerated plant growth, especially roots, in heavily contaminated soils, diminishing the toxic effects of contaminants to plants. Thus, the increased root biomass in PGPR-treated plants led to more effective remediation. - Plant growth promoting rhizobacteria enhanced growth and remediation of three grass species

  1. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  2. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    Science.gov (United States)

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  3. Analysis of Fusarium causing dermal toxicosis in marram grass planters

    NARCIS (Netherlands)

    Snijders, CHA; Samson, RA; Hoekstra, ES; Ouellet, T; Miller, JD; deRooijvanderGoes, PCEM; Baar, AJM; Dubois, AEJ; Kauffman, HF

    1996-01-01

    In the European coastal dunes, marram grass (Ammophila arenaria) is planted in order to control sand erosion. In the years 1986 to 1991, workers on the Wadden islands in the Netherlands planting marram grass showed lesions of skin and mucous membranes, suggesting a toxic reaction. Fusarium culmorum

  4. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  5. A review of issues of nomenclature and taxonomy of Hypericum perforatum L. and Kew's Medicinal Plant Names Services.

    Science.gov (United States)

    Dauncey, Elizabeth Anne; Irving, Jason Thomas Whitley; Allkin, Robert

    2017-10-16

    To review which names are used to refer to Hypericum perforatum L. in health regulation and medicinal plant references, and the potential for ambiguity or imprecision. Structured searches of Kew's Medicinal Plant Names Services Resource, supplemented with other online bibliographic resources, found that the scientific name Hypericum perforatum L. is used consistently in the literature, but variation between subspecies is rarely considered by researchers. Research is still published using only the common name 'St John's wort' despite it being imprecise; at least 80 other common names are also used for this plant in multiple languages. Ambiguous and alternative plant names can lead to ineffective regulation, misinterpretation of literature, substitution of raw material or the failure to locate all published research. Kew's Medicinal Plant Names Services (MPNS) maps all names used for each plant in medicinal plant references onto current taxonomy, thereby providing for disambiguation and comprehensive access to the regulations and references that cite that plant, regardless of the name used. MPNS also supplies the controlled vocabulary for plant names now required for compliance with a new standard (Identification of Medicinal Products, IDMP) adopted by medicines regulators worldwide. © 2017 Royal Pharmaceutical Society.

  6. Controlling grass weeds on hard surfaces

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Kristoffersen, Palle; Andreasen, Christian

    2012-01-01

    An experiment was conducted on a specially designed hard surface to study the impact of time interval between flaming treatments on the regrowth and flower production of two grass weeds. The goal of this experiment was to optimize the control of annual bluegrass and perennial ryegrass, both species...... that are very difficult to control without herbicides. Aboveground biomass from 72 plants per treatment was harvested and dry weights were recorded at regular intervals to investigate how the plants responded to flaming. Regrowth of the grasses was measured by harvesting aboveground biomass 2 wk after......, as they did not increase the reduction of aboveground biomass compared with the 7-d treatment interval. Knowledge on the regrowth of grass weeds after flaming treatments provided by this study can help improve recommendations given to road keepers and park managers for management on these weeds. Nomenclature...

  7. Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grasses.

    Directory of Open Access Journals (Sweden)

    Kevin M King

    Full Text Available The fungal genus Rhynchosporium (causative agent of leaf blotch contains several host-specialised species, including R. commune (colonising barley and brome-grass, R. agropyri (couch-grass, R. secalis (rye and triticale and the more distantly related R. orthosporum (cocksfoot. This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.

  8. The effect of nitrogen availability and water conditions on competition between a facultative CAM plant and an invasive grass.

    Science.gov (United States)

    Yu, Kailiang; D'Odorico, Paolo; Carr, David E; Personius, Ashden; Collins, Scott L

    2017-10-01

    Plants with crassulacean acid metabolism (CAM) are increasing their abundance in drylands worldwide. The drivers and mechanisms underlying the increased dominance of CAM plants and CAM expression (i.e., nocturnal carboxylation) in facultative CAM plants, however, remain poorly understood. We investigated how nutrient and water availability affected competition between Mesembryanthemum crystallinum (a model facultative CAM species) and the invasive C 3 grass Bromus mollis that co-occur in California's coastal grasslands. Specifically we investigated the extent to which water stress, nutrients, and competition affect nocturnal carboxylation in M. crystallinum . High nutrient and low water conditions favored M. crystallinum over B. mollis , in contrast to high water conditions. While low water conditions induced nocturnal carboxylation in 9-week-old individuals of M. crystallinum , in these low water treatments, a 66% reduction in nutrient applied over the entire experiment did not further enhance nocturnal carboxylation. In high water conditions M. crystallinum both alone and in association with B. mollis did not perform nocturnal carboxylation, regardless of the nutrient levels. Thus, nocturnal carboxylation in M. crystallinum was restricted by strong competition with B. mollis in high water conditions. This study provides empirical evidence of the competitive advantage of facultative CAM plants over grasses in drought conditions and of the restricted ability of M. crystallinum to use their photosynthetic plasticity (i.e., ability to switch to CAM behavior) to compete with grasses in well-watered conditions. We suggest that a high drought tolerance could explain the increased dominance of facultative CAM plants in a future environment with increased drought and nitrogen deposition, while the potential of facultative CAM plants such as M. crystallinum to expand to wet environments is expected to be limited.

  9. Relationship between the Names of People and Enterprises with Plant Origin with Phytotoponyms in Five Croatian Regions.

    Science.gov (United States)

    Sindik, Joško; Carić, Tonko

    2016-04-01

    In this study, the first and last names of people (FN and LN), enterprises (EN) (with plants'species roots in their names) and phytotoponyms (PT) in five Croatian regions are analyzed, in their relationships. The goals of the study were: to determine the correlations between FN, LN, EN and PT; to determine the latent structure of these variables; to forecast number of PT (criterion) on the base of predictors (FN, LN, EN); to determine grouping of the places (within certain regions) as cases by two plants' categorizations; to determine grouping of the plants as cases by regions. We have analyzed 15 places, grouped in five regions, with 39 different plant species. The results revealed that the only principal component highly positively correlated with the variables last name and office name, while the projections for the variables first name (moderate high) and phytotoponyms (low size) were negative. Prediction of the criteria phytotoponyms is satisfactorily good, using three predictors: last name, first name and the office name. First cluster analysis revealed that phytotoponyms are mostly related with trees and deciduous plants, while names are related with trees, deciduous and herbaceous plants. Second cluster analysis obtained clear distinction between regions in dominant PTs, based on certain plants' names. The results indicate clear association between phytotoponyms and names of people.

  10. Pyrenean meadows in Natura 2000 network: grass production and plant biodiversity conservation

    Energy Technology Data Exchange (ETDEWEB)

    Reine, R.; Barrantes, O.; Chocarro, C.; Juarez, A.; Broca, A.; Maestro, M.; Ferrer, C.

    2014-06-01

    In semi-natural mountain meadows, yield and forage quality must be reconciled with plant biodiversity conservation. This study was performed to analyze the relationships between these three parameters. To quantify plant biodiversity and pastoral value (PV), phyto sociological inventories were performed in 104 semi-natural meadows in the Central Spanish Pyrenees included in the Natura 2000 network. Forage yields were calculated and forage samples were analyzed for relative feed value (RFV). We identified two main types of meadows: (i) those that had more intensive management, relatively close to farm buildings, with little or no slope, dominated by grasses, with low plant biodiversity, high PV and yield, but low forage quality and (ii) those that had less intensive management, distant from farm buildings, on slopes, richer in other forbs, with high plant biodiversity and forage quality, but low PV and yield. Conservation policies should emphasize less intensive management practices to maintain plant diversity in the semi-natural meadows in the Pyrenees. The widespread view that other forbs have low nutritional value should be revised in future research. These species often are undervalued by the PV method, because their nutritional quality, digestibility and intake are poorly understood. (Author)

  11. Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Science.gov (United States)

    Schnable, James C.; Freeling, Michael; Lyons, Eric

    2012-01-01

    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community. PMID:22275519

  12. MACRO NUTRIENTS UPTAKE OF FORAGE GRASSES AT DIFFERENT SALINITY STRESSES

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The high concentration of sodium chloride (NaCl in saline soils has negative effects on the growth ofmost plants. The experiment was designed to evaluate macro nutrient uptake (Nitrogen, Phosphorus andPotassium of forage grasses at different NaCl concentrations in growth media. The experiment wasconducted in a greenhouse at Forage Crops Laboratory of Animal Agriculture Faculty, Diponegoro University.Split plot design was used to arrange the experiment. The main plot was forage grasses (Elephant grass(Pennisetum purpureum and King grass (Pennisetum hybrida. The sub plot was NaCl concentrationin growth media (0, 150, and 300 mM. The nitrogen (N, phosphorus (P and potassium (K uptake in shootand root of plant were measured. The result indicated increasing NaCl concentration in growth mediasignificantly decreased the N, P and K uptake in root and shoot of the elephant grass and king grass. Thepercentage reduction percentage of N, P and K uptake at 150 mM and 300 mM were high in elephant grassand king grass. It can be concluded that based on nitrogen, phosphorus and potassium uptake, elephantgrass and king grass are not tolerant to strong and very strong saline soil.

  13. Aggressiveness of loose kernel smut isolate from Johnson grass on sorghum line BTx643

    Science.gov (United States)

    An isolate of loose kernel smut obtained from Johnson grass was inoculated unto six BTx643 sorghum plants in the greenhouse to determine its aggressiveness. All the BTx643 sorghum plants inoculated with the Johnson grass isolate were infected. Mean size of the teliospores from the Johnson grass, i...

  14. Vernacular Names and Toba Knowledge of the Plant World

    Directory of Open Access Journals (Sweden)

    Martínez, Gustavo J.

    2009-12-01

    Full Text Available The authors explore the perception of plants by the Toba of Rio Bermejito (Central Chaco, Argentina by analyzing the vernacular names of Toba phytonymy. After adopting an interdisciplinary approach to the subject that combines contributions from the fields of linguistics and ethnobotany, the authors present a corpus of names and a discussion of the morpho-syntactic processes and semantic relations that are involved in the Toba naming of the species of plants. They found that the nomenclature makes reference to distinctive features and physiological or environmental aspects of the species, together with reference to their function in Toba culture. In addition, the list of plant names reveals characteristic properties of the world of hunters and gatherers; for instance, the high frequency in the list of names related to morphological aspects that call to mind the animal world as well. The analysis provides evidence of the depth and keenness of the Toba in observing and understanding their natural environment.

    A partir del análisis de las denominaciones vernáculas en la fitonimia toba, este trabajo aborda la percepción y el conocimiento del entorno vegetal entre los tobas del río Bermejito (Chaco Central, Argentina. Desde una perspectiva interdisciplinar que combina los aportes de la lingüistica y la etnobotánica, se presenta el corpus de nombres documentado y se estudian los procesos morfosintácticos y las relaciones semánticas que intervienen en la denominación de las especies vegetales. Entre los aspectos analizados, la nomenclatura revela referencias a características distintivas y a aspectos fisiológicos o ecológicos de las especies, así como a su uso o función para la cultura. Asimismo, las denominaciones ponen de manifiesto atributos característicos de los pueblos cazadoresrecolectores, como lo demuestra la gran proporción de nombres que apelan a caracteres morfológicos por similitud con el mundo animal. El an

  15. Intercropping of corn, brachiaria grass and leguminous plants: productivity, quality and composition of silages

    Directory of Open Access Journals (Sweden)

    Patrícia Monteiro Costa

    2012-10-01

    Full Text Available The present study was carried out with the objective to evaluate the productive and qualitative characteristics of forages produced in systems of intercropping of corn, brachiaria grass and different leguminous plants. Productivity, bromatological composition and the fermentative profile of the silages from the following treatments were evaluated: corn in exclusive cultivation (CEC; intercropping of corn with brachiaria grass (CB; intercropping of corn, brachiaria grass and Calopogonium mucunoides (CBCal; intercropping of corn, brachiaria grass and Macrotyloma axillare (CBMac; and intercropping of corn, brachiaria grass and Stylozanthes capitata (CBSty. The experimental design utilized was completely randomized. For each type of cultivation, five plots or replications of three linear meters were harvested, and the material was separated. The variables assessed were: dry matter productivity per area; dry matter productivity of corn per area; crude protein production per area and productivity of total digestible nutrients per area. The material originated from the cultures was ensiled, with dry matter between 28 and 32%. After, the material was placed and compacted appropriately in bucket silos. A sample was collected from each replication for determination of the contents of DM, crude protein (CP, ether extract (EE, lignin, neutral and acid detergent fibers (NDF and ADF and TDN. A fraction of the sample of silages from each treatment was compressed for extraction of the juice and determination of the silage quality. There was difference between the forms of cultivation for the dry matter production per hectare. The CEC with production of 11920.1 kg DM/ha did not differ from CB (8997.41 kg DM/ha or CBCal (10452.10 kg DM/ha; however, it was superior to CBMac (8429.75 kg DM/ha and to CBSty (8164.83 kg DM/ha. The contents of DM, CP, NDF, ADF, lignin and TDN did not differ between the silages from the different treatments. All the silages presented

  16. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  17. Status of exotic grasses and grass-like vegetation and potential impacts on wildlife in New England

    Science.gov (United States)

    DeStefano, Stephen

    2013-01-01

    The Northeastern section of the United States, known as New England, has seen vast changes in land cover and human population over the past 3 centuries. Much of the region is forested; grasslands and other open-land cover types are less common, but provide habitat for many species that are currently declining in abundance and distribution. New England also consists of some of the most densely populated and developed states in the country. The origin, distribution, and spread of exotic species are highly correlated with human development. As such, exotics are common throughout much of New England, including several species of graminoids (grasses and grass-like plants such as sedges and rushes). Several of the more invasive grass species can form expansive dense mats that exclude native plants, alter ecosystem structure and functions, and are perceived to provide little-to-no value as wildlife food or cover. Although little research has been conducted on direct impacts of exotic graminoids on wildlife populations in New England, several studies on the common reed (Phragmites australis) in salt marshes have shown this species to have variable effects as cover for birds and other wildlife, depending on the distribution of the plant (e.g., patches and borders of reeds are used more by wildlife than expansive densely growing stands). Direct impacts of other grasses on wildlife populations are largely unknown. However, many of the invasive graminoid species that are present in New England have the capability of outcompeting native plants and thereby potentially affecting associated fauna. Preservation, protection, and restoration of grassland and open-land cover types are complex but necessary challenges in the region to maintain biological and genetic diversity of grassland, wetland, and other open-land obligate species.

  18. Pyrenean meadows in Natura 2000 network: grass production and plant biodiversity conservation

    Directory of Open Access Journals (Sweden)

    Ramón Reiné

    2014-02-01

    Full Text Available In semi-natural mountain meadows, yield and forage quality must be reconciled with plant biodiversity conservation. This study was performed to analyze the relationships between these three parameters. To quantify plant biodiversity and pastoral value (PV, phytosociological inventories were performed in 104 semi-natural meadows in the Central Spanish Pyrenees included in the Natura 2000 network. Forage yields were calculated and forage samples were analyzed for relative feed value (RFV. We identified two main types of meadows: (i those that had “more intensive management,” relatively close to farm buildings, with little or no slope, dominated by grasses, with low plant biodiversity, high PV and yield, but low forage quality and (ii those that had “less intensive management,” distant from farm buildings, on slopes, richer in “other forbs”, with high plant biodiversity and forage quality, but low PV and yield. Conservation policies should emphasize less intensive management practices to maintain plant diversity in the semi-natural meadows in the Pyrenees. The widespread view that “other forbs” have low nutritional value should be revised in future research. These species often are undervalued by the PV method, because their nutritional quality, digestibility and intake are poorly understood.

  19. Tree-grass interactions on an East African savanna : the effects of facilitation, competition, and hydraulic lift

    NARCIS (Netherlands)

    Ludwig, F.

    2001-01-01

    Keywords: Rangelands, Semi-arid areas, stable isotopes, Acacia, C 4- grasses, plant nutrients, soil nutrients, soil water, plant water relations

    Savanna trees can either increase or decrease the productivity of understorey grasses. Trees reduce grass

  20. Information on plant foods in eBASIS: what is in a correct botanical scientific name?

    DEFF Research Database (Denmark)

    Pilegaard, Kirsten; Eriksen, Folmer Damsted; Sørensen, Marten

    2010-01-01

    Information Resource (EuroFIR)-NETTOX Plant List (2007) presents scientific and vernacular names in 15 European languages for around 325 major European plant/mushroom foods and also for different parts of these foods. This list and its predecessor, the NETTOX List of Food Plants, have been used by national...... food authorities and within the European Union for consideration of plants and mushrooms that have been used to a significant degree up to 1997 and are therefore not covered by the novel food regulation (European Parliament and Council of the European Union, 1997). The species and the plant part...... studied are insufficiently characterised in many scientific papers. This paper informs about the naming of plants and mushrooms as an aid for scientists who are not botanists or mycologists themselves. Knowledge on scientific names used, including synonyms, may also be important for finding all relevant...

  1. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance.

    Science.gov (United States)

    Clement, Stephen L; Hu, Jinguo; Stewart, Alan V; Wang, Bingrui; Elberson, Leslie R

    2011-01-01

    Seed-borne Epichloë/Neotyphodium Glenn, Bacon, Hanlin (Ascomycota: Hypocreales: Clavicipitaceae) fungal endophytes in temperate grasses can provide protection against insect attack with the degree of host resistance related to the grass-endophyte symbiotum and the insect species involved in an interaction. Few experimental studies with wild grass-endophyte symbiota, compared to endophyte-infected agricultural grasses, have tested for anti-insect benefits, let alone for resistance against more than one insect species. This study quantified the preference and performance of the bird cherry oat-aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae) and the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), two important pests of forage and cereal grasses, on Neotyphodium-infected (E+) and uninfected (E-) plants of the wild grass Alpine timothy, Phleum alpinum L. (Poales: Poaceae). The experiments tested for both constitutive and wound-induced resistance in E+ plants to characterize possible plasticity of defense responses by a wild E+ grass. The aphid, R. padi preferred E- over E+ test plants in choice experiments and E+ undamaged test plants constitutively expressed antibiosis resistance to this aphid by suppressing population growth. Prior damage of E+ test plants did not induce higher levels of resistance to R. padi. By contrast, the beetle, O. melanopus showed no preference for E+ or E- test plants and endophyte infection did not adversely affect the survival and development of larvae. These results extend the phenomenon of variable effects of E+ wild grasses on the preference and performance of phytophagous insects. The wild grass- Neotyphodium symbiotum in this study broadens the number of wild E+ grasses available for expanded explorations into the effects of endophyte metabolites on insect herbivory.

  2. A review on moringa tree and vetiver grass - Potential biorefinery feedstocks.

    Science.gov (United States)

    Raman, Jegannathan Kenthorai; Alves, Catarina M; Gnansounou, Edgard

    2018-02-01

    Plants and derivatives have been explored for unlimited purposes by mankind, from crop cultivation for providing food and animal feed, to the use for cosmetics, therapeutics and energy. Moringa tree and vetiver grass features, capabilities and applications were explored through a literature review. The suitability of these plants for the bioenergy industry products is evidenced, namely for bioethanol, biogas and biodiesel, given the lignocellulosic biomass content of these plants and characteristics of moringa seed oil. In addition, moringa leaves and pods are an important source for food and animal feed industries due to their high nutrient value. Thus, the co-cultivation of moringa and vetiver could provide energy and food security, and contribute to more sustainable agricultural practices and for the development of rural areas. Policymakers, institutions and scientific community must engage to promote the cultivation of multipurpose crops to cope with energy and food industries competition for biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Native plant naming by high-school students of different socioeconomic status: implications for botany education

    Science.gov (United States)

    Bermudez, Gonzalo M. A.; Díaz, Sandra; De Longhi, Ana L.

    2018-01-01

    People's diminished awareness of plants, affected by anthropogenic environmental deterioration, has challenged science education to overcome the obstacles impeding a better understanding of their meaning and value. The aim of this study was to investigate the influence of the socioeconomic status of high-school students, as indicated by their attendance at private or state schools, on their knowledge of native plants. In total, 321 students aged 15-18 were asked to write down 10 plants native to Córdoba, Argentina, in a freelist questionnaire. Students listed a mean of 6.8 species of a total of 165 different categories of plant names. The majority of the species named were exotic to Córdoba (63%) or Argentina (50.6%, of which 33.8% were adventitious), indicating an 'adventitious-to-native' effect by which all spontaneously reproducing plants were presumed to be native species. However, the 20 most frequently named plants were mainly native, with 'Algarrobo' (Prosopis spp.) and 'Espinillo' (Vachellia caven) being the most mentioned. Students' socioeconomic status had a significant effect on the number of species named, with the students of state schools (where the less well-off sectors of the society attend) mentioning more species and, among these, more native ones than the students from private schools. Furthermore, we defined size, colour and scent as being conspicuous traits of plant flowers that are relevant for human perception, and found that the most frequently named adventitious species, unlike the native ones, were those exhibiting big brightly-coloured flowers which ranged from being inodorous to having medium intensity scents.

  4. Grass leaves as potential hominin dietary resources.

    Science.gov (United States)

    Paine, Oliver C C; Koppa, Abigale; Henry, Amanda G; Leichliter, Jennifer N; Codron, Daryl; Codron, Jacqueline; Lambert, Joanna E; Sponheimer, Matt

    2018-04-01

    Discussions about early hominin diets have generally excluded grass leaves as a staple food resource, despite their ubiquity in most early hominin habitats. In particular, stable carbon isotope studies have shown a prevalent C 4 component in the diets of most taxa, and grass leaves are the single most abundant C 4 resource in African savannas. Grass leaves are typically portrayed as having little nutritional value (e.g., low in protein and high in fiber) for hominins lacking specialized digestive systems. It has also been argued that they present mechanical challenges (i.e., high toughness) for hominins with bunodont dentition. Here, we compare the nutritional and mechanical properties of grass leaves with the plants growing alongside them in African savanna habitats. We also compare grass leaves to the leaves consumed by other hominoids and demonstrate that many, though by no means all, compare favorably with the nutritional and mechanical properties of known primate foods. Our data reveal that grass leaves exhibit tremendous variation and suggest that future reconstructions of hominin dietary ecology take a more nuanced approach when considering grass leaves as a potential hominin dietary resource. Copyright © 2017. Published by Elsevier Ltd.

  5. Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi

    International Nuclear Information System (INIS)

    Entry, J.A.; Watrud, L.S.; Reeves, M.

    1999-01-01

    The use of plants to accumulate low level radioactive waste from soil, followed by incineration of plant material to concentrate radionuclides may prove to be a viable and economical method of remediating contaminated areas. We tested the influence of arbuscular mycorrhizae on 137 Cs and 90 Sr uptake by bahia grass (Paspalum notatum), johnson grass (Sorghum halpense) and switchgrass (Panicum virginatum) for the effectiveness on three different contaminated soil types. Exposure to 137 Cs or 90 Sr over the course of the experiment did not affect above ground biomass of the three grasses. The above ground biomass of bahia, johnson and switchgrass plants accumulated from 26.3 to 71.7% of the total amount of the 137 Cs and from 23.8 to 88.7% of the total amount of the 90 Sr added to the soil after three harvests. In each of the three grass species tested, plants inoculated with Glomus mosseae or Glomus intraradices had greater aboveground plant biomass, higher concentrations of 137 Cs or 90 Sr in plant tissue, % accumulation of 137 Cs or 90 Sr from soil and plant bioconcentration ratios at each harvest than those that did not receive mycorrhizal inoculation. Johnson grass had greater aboveground plant biomass, greater accumulation of 137 Cs or 90 Sr from soil and plant higher bioconcentration ratios with arbuscular mycorrhizal fungi than bahia grass and switchgrass. The greatest accumulation of 137 Cs and 90 Sr was observed in johnson grass inoculated with G. mosseae. Grasses can grow in wide geographical ranges that include a broad variety of edaphic conditions. The highly efficient removal of these radionuclides by these grass species after inoculation with arbuscular mycorrhizae supports the concept that remediation of radionuclide contaminated soils using mycorrhizal plants may present a viable strategy to remediate and reclaim sites contaminated with radionuclides

  6. Response of itchgrass and johnson grass to asulam/dalapon combinations

    International Nuclear Information System (INIS)

    Hook, B.J.

    1986-01-01

    Activities of asumlam [methyl[(4-aminophenyl)sulfonyl]carbamate], dalapon (2,2-dichloropropionic acid) and asulam/dalapon combinations on itchgrass (Rottboellia exaltata L.f.) and johnson grass [Sorghum halepense (L.) Pers.] were examined. When metabolism of 14 C-asulam was monitored, seven days after application, 97-100% of recovered 14 C co-chromatographed with 14 C-asulam. Itchgrass exhibited rapid uptake of 14 C-asulam within 8 hr after application. Asumlam concentrations remained constant in the plant between 8 and 72 hr. Johnson grass plants showed a differential response to asulam and asulam/dalapon treatments. Asulam-treated johnson grass absorbed 26-34% 14 C within 2 hr with no future significant increase in absorption in absorption through 72 hr. Treatment of johnson grass with asulam/dalapon enhanced 14 C absorption with time. At 24 and 72 hr 14 C levels were double that absorbed from treatment of asulam alone. Movement of 14 C-asulam in the apoplast and symplast of both itchgrass and johnson grass was noted. The highest radiolabel accumulated in the lower leaves of itchgrass and remained in the treated leaf of johnson grass

  7. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    Science.gov (United States)

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  8. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  9. On the number of genes controlling the grass stage in longleaf pine

    Science.gov (United States)

    C. Dana Nelson; C. Weng; Thomas L. Kubisiak; M. Stine; C.L. Brown

    2003-01-01

    The grass stage is an inherent and distinctive developmental trait of longleaf pine (Pinus palustris), in which height growth in the first few years after germination is suppressed. In operational forestry practice the grass stage extends for nvo to several years and often plays a role in planting failures and decisions to plant alternative species....

  10. Tree-grass interactions in savannas

    CSIR Research Space (South Africa)

    Scholes, RJ

    1997-01-01

    Full Text Available Savannas occur where trees and grasses interact to create a biome that is neither grassland nor forest. Woody and gramineous plants interact by many mechanisms, some negative (competition) and some positive (facilitation). The strength and sign...

  11. A Rose by Any Other Name: Plant Identification Knowledge & Socio-Demographics.

    Directory of Open Access Journals (Sweden)

    Beth S Robinson

    Full Text Available Concern has been expressed over societal losses of plant species identification skills. These losses have potential implications for engagement with conservation issues, gaining human wellbeing benefits from biodiversity (such as those resulting from nature-based recreational activities, and early warning of the spread of problematic species. However, understanding of the prevailing level of species identification skills, and of its key drivers, remains poor. Here, we explore socio-demographic factors influencing plant identification knowledge and ability to classify plants as native or non-native, employing a novel method of using real physical plants, rather than photographs or illustrations. We conducted face-to-face surveys at three different sites chosen to capture respondents with a range of socio-demographic circumstances, in Cornwall, UK. We found that survey participants correctly identified c.60% of common plant species, were significantly worse at naming non-native than native plants, and that less than 20% of people recognised Japanese knotweed Fallopia japonica, which is a widespread high profile invasive non-native in the study region. Success at naming plants was higher if participants were female, a member of at least one environmental, conservation or gardening organisation, in an older age group (than the base category of 18-29 years, or a resident (rather than visitor of the study area. Understanding patterns of variation in plant identification knowledge can inform the development of education and engagement strategies, for example, by targeting sectors of society where knowledge is lowest. Furthermore, greater understanding of general levels of identification of problematic invasive non-native plants can guide awareness and education campaigns to mitigate their impacts.

  12. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  13. Indigenous knowledge for plant species diversity: a case study of wild plants' folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China

    Directory of Open Access Journals (Sweden)

    Soyolt

    2008-01-01

    Full Text Available Abstract Folk names of plants are the roots of traditional plant biodiversity knowledge. This paper mainly records and analyses the wild plant folk names of the Mongolians in the Ejina desert area based on a field survey for collection and identification of voucher specimens. The results show that a total of 121 folk names of local plants have correspondence with 93 scientific species which belong to 26 families and 70 genera. The correspondence between plants' Mongol folk names and scientific species may be classified as one to one correspondence, multitude to one correspondence and one to multitude correspondence. The Ejina Mongolian plant folk names were formed on the basis of observations and an understanding of the wild plants growing in their desert environment. The high correspondence between folk names and scientific names shows the scientific meaning of folk botanical nomenclature and classification. It is very useful to take an inventory of biodiversity, especially among the rapid rural appraisal (RRA in studying biodiversity at the community level.

  14. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    Directory of Open Access Journals (Sweden)

    Margarita Mauro-Herrera

    Full Text Available The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet and its wild relative S. viridis (green foxtail. In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.

  15. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria.

    Science.gov (United States)

    Mauro-Herrera, Margarita; Doust, Andrew N

    2016-01-01

    The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.

  16. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant

    International Nuclear Information System (INIS)

    Khan, Sumaira; Kazi, Tasneem Gul; Kolachi, Nida Fatima; Baig, Jameel Ahmed; Afridi, Hassan Imran; Shah, Abdul Qadir; Kumar, Sham; Shah, Faheem

    2011-01-01

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V 5+ species from soil, vegetable and grass samples using Na 2 CO 3 in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V 5+ and V 4+ determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 μg/g in test and control soil samples, respectively. The contents of V 5+ and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 μg/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P 5+ and V 4+ species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence.

  17. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: implications for leaf wax reproduction and plant physiology.

    Science.gov (United States)

    Gao, Li; Huang, Yongsong

    2013-06-01

    Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.

  18. Medicinal plant uses and names from the herbarium of Francesc Bolòs (1773-1844).

    Science.gov (United States)

    Gras, Airy; Garnatje, Teresa; Ibáñez, Neus; López-Pujol, Jordi; Nualart, Neus; Vallès, Joan

    2017-05-23

    Ethnobotany takes into account past uses to be projected into the present and future. Most current ethnobotanical research is focused, especially in industrialised countries, on obtaining information of plant uses from elderly people. Historical ethnobotany is less cultivated, although papers have demonstrated its interest. Particularly poor, but potentially very relevant, is the attention paid to historical herbaria as a source of data on useful plants. Bearing this in mind, we studied the herbarium of the Catalan pharmacist and naturalist Francesc Bolòs (1773-1844), which contains information on medicinal uses and folk names, with the aim of establishing a catalogue of plants and uses and tracing them through old and contemporary literature. The ca. 6000 plant specimens of this herbarium were investigated to assess those including plant uses and names. These taxa have been thoroughly revised. The data have been tabulated, their biogeographic profile, possible endemic or threatened status, or invasive behaviour have been assessed, and the content regarding medicinal uses, as well as folk names, has been studied. The medicinal terms used have been interpreted as per current days' medicine. The popular names and uses have been compared with those appearing in a certain number of works published from 11th to 20th centuries in the territories covered by the herbarium and with all the data collected in 20th and 21st centuries in an extensive database on Catalan ethnobotany. A total of 385 plant specimens (381 taxa) have been detected bearing medicinal use and folk names information. We collected data on 1107 reports of plant medicinal properties (in Latin), 32 indications of toxicity, nine reports of food use, and 123, 302 and 318 popular plant names in Catalan, Spanish and French, respectively. The most quoted systems are digestive, skin and subcutaneous tissue (plus traumatic troubles) and genitourinary. Relatively high degrees of coincidence of plant names and uses

  19. A method for named entity normalization in biomedical articles: application to diseases and plants.

    Science.gov (United States)

    Cho, Hyejin; Choi, Wonjun; Lee, Hyunju

    2017-10-13

    In biomedical articles, a named entity recognition (NER) technique that identifies entity names from texts is an important element for extracting biological knowledge from articles. After NER is applied to articles, the next step is to normalize the identified names into standard concepts (i.e., disease names are mapped to the National Library of Medicine's Medical Subject Headings disease terms). In biomedical articles, many entity normalization methods rely on domain-specific dictionaries for resolving synonyms and abbreviations. However, the dictionaries are not comprehensive except for some entities such as genes. In recent years, biomedical articles have accumulated rapidly, and neural network-based algorithms that incorporate a large amount of unlabeled data have shown considerable success in several natural language processing problems. In this study, we propose an approach for normalizing biological entities, such as disease names and plant names, by using word embeddings to represent semantic spaces. For diseases, training data from the National Center for Biotechnology Information (NCBI) disease corpus and unlabeled data from PubMed abstracts were used to construct word representations. For plants, a training corpus that we manually constructed and unlabeled PubMed abstracts were used to represent word vectors. We showed that the proposed approach performed better than the use of only the training corpus or only the unlabeled data and showed that the normalization accuracy was improved by using our model even when the dictionaries were not comprehensive. We obtained F-scores of 0.808 and 0.690 for normalizing the NCBI disease corpus and manually constructed plant corpus, respectively. We further evaluated our approach using a data set in the disease normalization task of the BioCreative V challenge. When only the disease corpus was used as a dictionary, our approach significantly outperformed the best system of the task. The proposed approach shows robust

  20. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  1. Molecular features of grass allergens and development of biotechnological approaches for allergy prevention.

    Science.gov (United States)

    Devis, Deborah L; Davies, Janet M; Zhang, Dabing

    2017-09-01

    Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses. Copyright © 2017. Published by Elsevier Inc.

  2. Antimicrobial Activity of Plant Extracts from Aloe Vera, Citrus Hystrix, Sabah Snake Grass and Zingiber Officinale against Pyricularia Oryzae that causes Rice Blast Disease in Paddy Plants

    Science.gov (United States)

    Uda, M. N. A.; Harzana Shaari, N.; Shamiera. Said, N.; Hulwani Ibrahim, Nur; Akhir, Maisara A. M.; Khairul Rabani Hashim, Mohd; Salimi, M. N.; Nuradibah, M. A.; Hashim, Uda; Gopinath, Subash C. B.

    2018-03-01

    Rice blast disease, caused by the fungus known as Pyricularia oryzae, has become an important and serious disease of rice worldwide. Around 50% of production may be lost in a field moderately affected by infection and each year the fungus destroys rice, which is enough to feed an estimated 60 million people. Therefore, use of herbal plants offer an alternative for the management of plant diseases. Herbal plant like Aloe vera, Citrus hystrix, Sabah snake grass and Zingiber officinale extracts can be used for controlling disease of rice blast. In this study, these four herbal plants were used for evaluating antimicrobial activity against rice plant fungus Pyricularia oryzae, which causes rice blast disease.

  3. The uptake of uranium from soil to vetiver grass (vetiver zizanioides (L.) nash)

    International Nuclear Information System (INIS)

    Luu Viet Hung; Bui Duy Cam; Dang Duc Nhan

    2012-01-01

    Uranium uptake of vetiver grass (Vetiveria zizanioides (L.) Nash) from Eutric Fluvisols (AK), Albic Acrisols (LP), Dystric Fluvisols (TT) and Ferralic Acrisols (TC) in northern Vietnam is assessed. The soils were mixed with aqueous solution of uranyl nitrate to make soils be contaminated with uranium at 0, 50, 100, 250 mg per kg before planting the grass. The efficiency of uranium uptake by the grass was assessed based on the soil-to-plant transfer factor (TF U , kg kg -1 ). It was found that the TF U values are dependent upon the soil properties. CEC facilitates the uptake and the increase soil pH could reduce the uptake and translocation of uranium in the plant. Organic matter content as well as ferrous and potassium inhibit the uranium uptake of the grass. It was revealed that the lower fertile soil the higher uranium uptake. The grass could tolerate to the high extent (up to 77%) of uranium in soils and could survive and grow well without fertilization. The translocation of uranium in root for all the soil types studies almost higher than that in its shoot. It seem that vetiver grass potentially be use for the purpose of phytoremediation of soils contaminated with uranium. (author)

  4. Estimation of grass to cow's milk transfer coefficients for emergency situations

    International Nuclear Information System (INIS)

    Ujwal, P.; Karunakara, N.; Yashodhara, I.; Rao, Chetan; Kumara, Sudeep; Dileep, B.N.; Ravi, P.M.

    2012-01-01

    Several studies have been reported on soil to grass equilibrium transfer factors and grass to cow's milk transfer coefficients for 137 Cs for the environs of different nuclear power plants of both India and other parts of the world. In such studies, the activity concentration of 137 Cs is measured in grass collected from different places. Cow's milk samples are collected from nearby localities or from milk dairies and analyzed for 137 Cs and the grass to cow's milk transfer coefficient is estimated. In situation where 137 Cs is not present in measurable activity concentrations, its stable counterpart (Cs) is measured for the estimation of transfer coefficients. These transfer coefficient values are generally used in theoretical models to estimate the dose to the population for hypothetical situation of emergency. It should be noted that the transfer coefficients obtained for equilibrium conditions may not be totally applicable for emergency situation. However, studies aimed at evaluating transfer coefficients for emergency situations are sparse because nuclear power plants do not release 137 Cs during normal operating situations and therefore simulating situation of emergency release is not possible. Hence, the only method to estimate the grass to milk transfer coefficient for emergency situation is to spike the grass with small quantity of stable Cs. This paper reports the results of grass to milk transfer coefficients for stable isotope of Cesium (Cs) for emergency situation

  5. Acquisition and validation of transfer data for Ru from reprocessing plants

    International Nuclear Information System (INIS)

    Blasius, E.; Huth, R.; Krumrey, R.; Neumann, W.; Woll, G.

    1988-01-01

    The aim of the investigation is to determine the ruthenium transfer factor from soil to plants on the basis of selected useful plants and food plants, namely potatoes, summer wheat and pasture grass. For this purpose ruthenium is used in the form of dioxide, chloride and nitrosyl complexes. Tests are made in field patches with inactive ruthenium and in isotope laboratories with Ru-106 or Ru-103. After the harvest of the plants the ruthenium is determined by means of electrothermal atomic absorption spectrometry in pyrolytically coated graphite pipes. (orig./RB) [de

  6. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    Science.gov (United States)

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  7. Immunochemical Analysis of Paxilline and Ergot Alkaloid Mycotoxins in Grass Seeds and Plants.

    Science.gov (United States)

    Bauer, Julia I; Gross, Madeleine; Cramer, Benedikt; Humpf, Hans-Ulrich; Hamscher, Gerd; Usleber, Ewald

    2018-01-10

    Limited availability of toxin standards for lolitrem B and ergovaline impedes routine control of grasses for endophyte toxins. This study aimed at assessing the applicability of an enzyme immunoassay (EIA) for the indole-diterpene mycotoxin paxilline, in combination with a generic EIA for ergot alkaloids, as alternative parameters for screening purposes. Analysis of grass seeds and model pastures of four different grass species showed that both EIAs yielded highly positive results for paxilline and ergot alkaloids in perennial ryegrass seeds. Furthermore, evidence for natural occurrence of paxilline in grass in Germany was obtained. High performance liquid chromatography-tandem mass spectrometry analysis qualitatively confirmed the paxilline EIA results but showed that paxilline analogues 1'-O-acetylpaxilline and 13-desoxypaxilline were the predominant compounds in seeds and grass. In the absence of easily accessible reference standards for specific analysis of some major endophyte toxins, analysis of paxilline and ergot alkaloids by EIA may be suitable substitute parameters. The major advantage of this approach is its ease of use and speed, providing an analytical tool which could enhance routine screening for endophyte toxins in pasture.

  8. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sumaira, E-mail: skhanzai@gmail.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kolachi, Nida Fatima, E-mail: nidafatima6@gmail.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kumar, Sham; Shah, Faheem [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-06-15

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V{sup 5+} species from soil, vegetable and grass samples using Na{sub 2}CO{sub 3} in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V{sup 5+} and V{sup 4+} determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 {mu}g/g in test and control soil samples, respectively. The contents of V{sup 5+} and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 {mu}g/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P < 0.01). Statistical evaluations indicate that the sum of concentrations of V{sup 5+} and V{sup 4+} species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence.

  9. Coupling carbon allocation with leaf and root phenology predicts tree-grass partitioning along a savanna rainfall gradient

    Science.gov (United States)

    Haverd, V.; Smith, B.; Raupach, M.; Briggs, P.; Nieradzik, L.; Beringer, J.; Hutley, L.; Trudinger, C. M.; Cleverly, J.

    2016-02-01

    The relative complexity of the mechanisms underlying savanna ecosystem dynamics, in comparison to other biomes such as temperate and tropical forests, challenges the representation of such dynamics in ecosystem and Earth system models. A realistic representation of processes governing carbon allocation and phenology for the two defining elements of savanna vegetation (namely trees and grasses) may be a key to understanding variations in tree-grass partitioning in time and space across the savanna biome worldwide. Here we present a new approach for modelling coupled phenology and carbon allocation, applied to competing tree and grass plant functional types. The approach accounts for a temporal shift between assimilation and growth, mediated by a labile carbohydrate store. This is combined with a method to maximize long-term net primary production (NPP) by optimally partitioning plant growth between fine roots and (leaves + stem). The computational efficiency of the analytic method used here allows it to be uniquely and readily applied at regional scale, as required, for example, within the framework of a global biogeochemical model.We demonstrate the approach by encoding it in a new simple carbon-water cycle model that we call HAVANA (Hydrology and Vegetation-dynamics Algorithm for Northern Australia), coupled to the existing POP (Population Orders Physiology) model for tree demography and disturbance-mediated heterogeneity. HAVANA-POP is calibrated using monthly remotely sensed fraction of absorbed photosynthetically active radiation (fPAR) and eddy-covariance-based estimates of carbon and water fluxes at five tower sites along the North Australian Tropical Transect (NATT), which is characterized by large gradients in rainfall and wildfire disturbance. The calibrated model replicates observed gradients of fPAR, tree leaf area index, basal area, and foliage projective cover along the NATT. The model behaviour emerges from complex feedbacks between the plant

  10. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2018-04-01

    Full Text Available Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.

  11. KINSHIP ANALYSIS OF GRASS JELLY IN REGENCY OF GIANYAR, TABANAN AND BADUNG BASED ON MORPHOLOGICAL AND ANATOMICAL CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Eka Budi Mursa fitri

    2016-12-01

    Full Text Available Grass jelly is one of the plants that has considerable potential as medicine and drinks. This study was conducted to determine how kinship plant species Grass jelly from three districts. The Exploration of Grass jelly plants conducted in Gianyar, Tabanan and Badung, Bali province. Making preparations in the Structures Laboratory of Plant Development (SPT Faculty Udayana University and the Center of Veterinary (BBVet. This research was carried out from September 2015-January 2016. This research method using the technique of embedding and fresh slices, FAA fixative (formaldehyde: glacial acetic acid: alcohol 70% = 1: 1: 9, 1% safranin staining in 70% alcohol. For the analysis of kinship qualitative and quantitative data were suspended leaf anatomical characters to create table Taxonomy Operation Unit (OTU. The results are used OTU table into mini-tab program version 14.The result showed that four species of grass jelly plants are Cyclea barbata, Stephania japonica, Stephania capitata and Cocculus orbiculatus. Leaf form is like shields and ellipse. Kinship four types of plant grass jelly from three districts are very much based on morphological and anatomical characters (level 15.64% similarity.

  12. The effects of energy grass plantations on biodiversity. 2nd annual report

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.

    2004-07-01

    This report, which covers the year 2003 growing season, is the second annual report about a project to investigate the ecological impact on biodiversity of plantations of biomass grass crops grown in Hertfordshire in the UK. Wildlife monitoring was carried out at five field sites growing the perennial rhizomatous grass crops Miscanthus, reed canary grass and switch grass. The report covers the findings from wildlife surveys for the 2003 season, the final results from the invertebrate identification from the 2002 season, data entry from the 2002 and 2003 seasons, and the continued invertebrate identification during the 2003 season. Butterfly assessments and an evaluation of crop characteristics such as plant height, plant/stem density and biomass yield were also performed. Results are presented with respect to crop field characteristics, pests and diseases, ground flora, ground beetles, birds, small mammals, butterflies and epigeal invertebrates. Plans for the next growing season are outlined.

  13. Grass survey of the Itremo Massif records endemic central highland ...

    African Journals Online (AJOL)

    Grasses are members of the plant family Poaceae, and are primar- ily known for their ... Madagascar Conservation & Development is the journal of. Indian Ocean .... cording to the classification by Kellogg (2015). With 64 ..... Flowering plants.

  14. Grass-roots approach: developing qualified nuclear personnel

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Nuclear power plants experiencing personnel recruitment problems are trying a grass-roots approach to increase the manpower pool. The Philadelphia Electric Co. and the Toledo Edison Co. are working with local educational institutions to offer nuclear-technology training specific to the needs of nuclear plants. The utilities' investment covers much of the cost of instruction as well as continued training for employees

  15. Recovery of 15N-urea in soil-plant system of tanzania grass pasture

    International Nuclear Information System (INIS)

    Martha Junior, Geraldo Bueno; Vilela, Lourival; Corsi, Moacyr; Trivelin, Paulo Cesar Ocheuze

    2009-01-01

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea- 15 N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of 15 N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of 15 N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p 15 N (kg ha -1 ) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  16. The Evaluation of Alkali Grass (Puccinellia ciliata Bor Populations in Aydin Province of Turkey

    Directory of Open Access Journals (Sweden)

    İlkay Yavaş

    2017-08-01

    Full Text Available Alkali grass grows in waterlogged, saline and alaline soils. The main problem in these soils is minerals at toxic level. The toxic ions are chloride, sodium and boron. A number of techniques have been investigated for removing toxic metals from the soil. Today, the cost-effective and environmentally technique is phytoremediation, using hyperaccumulator plants. Alkali grass (Puccinellia ciliata Bor is suggested as a hyperaccumulator plant by the combination of more favourable characteristics with salt and waterlogging tolerance, high biomass value and convincing nutritive value for adverse environmental conditions. For this reason, we collected alkali grass and soil samples from five different locations in Aydın-Muğla highway, Turanlar and Sınırteke villages in Germencik-Aydın. In the soil analysis, we observed that K accumulation varies between root, shoot and panicle at least whereas Na and B shows more variation on whole plant portions among locations. Intense aerenchyma development on the root tips of Puccinellia plant was observed and it is determined as radial lysogenic aerenchyma formation. Average plant height and dry matter values were between 47.2-74.4 cm and 15.61-80.85 g/plant according to locations. The highest plant height value was obtained from the first location whereas the highest dry matter yield was detected in the fifth location. In conclusion, plants from fifth location can be regarded as fodder plants in these areas. Our results indicated that alkali grass can be effective for phytoextraction of sodium and boron from contaminated sites.

  17. Pesticide-contaminated feeds in integrated grass carp aquaculture: toxicology and bioaccumulation.

    Science.gov (United States)

    Pucher, J; Gut, T; Mayrhofer, R; El-Matbouli, M; Viet, P H; Ngoc, N T; Lamers, M; Streck, T; Focken, U

    2014-02-19

    Effects of dissolved pesticides on fish are widely described, but little is known about effects of pesticide-contaminated feeds taken up orally by fish. In integrated farms, pesticides used on crops may affect grass carp that feed on plants from these fields. In northern Vietnam, grass carp suffer seasonal mass mortalities which may be caused by pesticide-contaminated plants. To test effects of pesticide-contaminated feeds on health and bioaccumulation in grass carp, a net-cage trial was conducted with 5 differently contaminated grasses. Grass was spiked with 2 levels of trichlorfon/fenitrothion and fenobucarb. Unspiked grass was used as a control. Fish were fed at a daily rate of 20% of body mass for 10 d. The concentrations of fenitrothion and fenobucarb in pond water increased over time. Effects on fish mortality were not found. Fenobucarb in feed showed the strongest effects on fish by lowering feed uptake, deforming the liver, increasing blood glucose and reducing cholinesterase activity in blood serum, depending on feed uptake. Fenobucarb showed increased levels in flesh in all treatments, suggesting bio-concentration. Trichlorfon and fenitrothion did not significantly affect feed uptake but showed concentration-dependent reduction of cholinesterase activity and liver changes. Fenitrothion showed bioaccumulation in flesh which was dependant on feed uptake, whereas trichlorfon was only detected in very low concentrations in all treatments. Pesticide levels were all detected below the maximum residue levels in food. The pesticide-contaminated feeds tested did not cause mortality in grass carp but were associated with negative physiological responses and may increase susceptibility to diseases.

  18. Uptake of Radium by Grass and Shrubs Grown on Mineral Heaps: A Preliminary Study

    International Nuclear Information System (INIS)

    Laili, Z.; Omar, M.; Yusof, M.A. Wahab; Ibrahim, M.Z.

    2015-01-01

    A preliminary study of the uptake of 226 Ra and 228 Ra by grass and shrubs grown on mineral heaps was carried out. Activity concentrations of 226 Ra and 228 Ra in grass and shrubs were measured using gamma spectrometry. The result showed that grass and shrubs grown on mineral heaps contained elevated levels of radium compared to grass and shrubs grown on normal soils. Thus, these plants might be used for phytoremediation of radium contaminated soil. (author)

  19. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization.

    Science.gov (United States)

    Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V

    2005-03-01

    * The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.

  20. Interaction between Vetiver Grass Roots and Completely Decomposed Volcanic Tuff under Rainfall Infiltration Conditions

    Directory of Open Access Journals (Sweden)

    Ling Xu

    2018-01-01

    Full Text Available The important role of vetiver grass roots in preventing water erosion and mass movement has been well recognized, though the detailed influence of the grass roots on soil has not been addressed. Through planting vetiver grass at the Kadoorie Farm in Hong Kong and leaving it to grow without artificial maintenance, the paper studies the influence of vetiver grass roots on soil properties and slope stability. Under the natural conditions of Hong Kong, growth of the vetiver grass roots can reach 1.1 m depth after one and a half year from planting. The percentage of grain size which is less than 0.075 mm in rooted soil is more than that of the nonrooted soil. Vetiver grass roots can reduce soil erosion by locking the finer grain. The rooted soil of high finer grain content has a relatively small permeability. As a result, the increase in water content is therefore smaller than that of nonrooted soil in the same rainfall conditions. Shear box test reveals that the vetiver grass roots significantly increased the peak cohesion of the soil from 9.3 kPa to 18.9 kPa. The combined effects of grass roots on hydrological responses and shearing strength significantly stabilize the slope in local rainfall condition.

  1. Phytostabilisation potential of lemon grass (Cymbopogon flexuosus (Nees ex Stend) Wats) on iron ore tailings.

    Science.gov (United States)

    Mohanty, M; Dhal, N K; Patra, P; Das, B; Reddy, P S R

    2012-01-01

    The present pot culture study was carried out for the potential phytostabilisation of iron ore tailings using lemon grass (Cymbopogon flexuosus) a drought tolerant, perennial, aromatic grass. Experiments have been conducted by varying the composition of garden soil (control) with iron ore tailings. The various parameters, viz. growth of plants, number of tillers, biomass and oil content of lemon grass are evaluated. The studies have indicated that growth parameters of lemon grass in 1:1 composition of garden soil and iron ore tailings are significantly more (-5% increase) compared to plants grown in control soil. However, the oil content of lemon grass in both the cases more or less remained same. The results also infer that at higher proportion of tailings the yield of biomass decreases. The studies indicate that lemongrass with its fibrous root system is proved to be an efficient soil binder by preventing soil erosion.

  2. Inoculation of plant growth promoting rhizobia in Sudan grass (Sorghum × sudanense (Piper Stapf cv. Sudanense and millet (Pennisetum glaucum (L. R.Br. cv. BRS1501

    Directory of Open Access Journals (Sweden)

    Rafael Goulart Machado

    2018-01-01

    Full Text Available Rhizobia are able to increase yield of non-leguminous species through production of phyto-stimulating substances. This study aimed to evaluate the inoculation effect of rhizobia UFRGS Lc348 and VP16 on millet and Sudan grass yield and germination, and verify the enrichment effect of culture medium with tryptophan, which leads on the rhizobium/plant interaction. Experiments in vitro and greenhouse conditions were conducted. In millet, the inoculation with VP16 grown in culture medium with or without tryptophan induces greater length of hypocotyl and epicotyl under in vitro conditions. UFRGS Lc348 treatment induces longer hypocotyls of millet under in vitro conditions. No effects were observed with the millet inoculation in greenhouse. In Sudan grass, inoculation with VP16 enriched with tryptophan increased dry matter in shoots of adult plants. In millet seedlings had achieved an increasing in elongation in vitro conditions, which could represent an adaptive advantage in the search for water and nutrients in the rhizospheric environment during the initial growth of millet. Similarly, if verified in field conditions, Sudan grass had achieved an increasing in greenhouse conditions with the inoculation of tryptophan-enriched VP16, which could be correlated with a significant gain in crop yield. Therefore, these relationships between tryptophan-enriched VP16 and Sudan grass should be verified in subsequent studies under field conditions.

  3. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  4. Detecting bacterial endophytes in tropical grasses of the Brachiaria ...

    African Journals Online (AJOL)

    Plant-growth-promoting (PGP) bacteria include a diverse group of soil bacteria thought to stimulate plant growth by various mechanisms. Brachiaria forage grasses, of African origin, are perennials that often grow under low-input conditions and are likely to harbour unique populations of PGP bacteria. Three bacterial strains ...

  5. resistance of napier grass clones to napier grass stunt disease

    African Journals Online (AJOL)

    ACSS

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease. (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  6. Resistance of Napier grass clones to Napier grass Stunt Disease ...

    African Journals Online (AJOL)

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  7. Potential of Cogon Grass as an Oil Sorbent

    OpenAIRE

    Wiloso, Edi Iswanto; Barlianti, Vera; Anggraini, Irni Fitria; Hendarsyah, Hendris

    2012-01-01

    Experiments on the potential of Cogon grass (lmperata cylindrica), a weed harmful to other plants, for use as a low-cost and biodegradable oil sorbent were carried out under various spill conditions. Flowers of Cogon grass adsorbed much larger amount of high-viscosity lubricating oil (57.9 g-oil/g-sorbent) than that adsorbed by Peat Sorb (7.7 g-oil/g-sorbent), a commercial oilsorbent based on peat. However, the flowers adsorbed only 27.9 g of low-viscosity crude oillgsorbent. In an oil-water ...

  8. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Science.gov (United States)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  9. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  10. Modelling the transfer of 14C from the atmosphere to grass: A case study in a grass field near AREVA-NC La Hague

    International Nuclear Information System (INIS)

    Aulagnier, C.; Le Dizès, S.; Maro, D.; Hébert, D.; Lardy, R.; Martin, R.; Gonze, M.-A.

    2012-01-01

    Radioactive 14 C is formed as a by-product of nuclear power generation and from operation of nuclear fuel reprocessing plants like AREVA-NC La Hague (North France), which releases about 15 TBq per year of 14 C into the atmosphere. Since the autumn of 2006, 14 C activity concentrations in samples from the terrestrial environment (air, grass and soil) have been monitored monthly on grassland 2 km downwind of the reprocessing plant. The monitoring data provides an opportunity to validate radioecology models used to assess 14 C transfer to grassland ecosystems. This article compares and discusses the ability of two different models to reproduce the observed temporal variability in grass 14 C activity in the vicinity of AREVA-NC La Hague. These two models are the TOCATTA model which is specifically designed for modelling transfer of 14 C and tritium in the terrestrial environment, and PaSim, a pasture model for simulating grassland carbon and nitrogen cycling. Both TOCATTA and PaSim tend to under-estimate the magnitude of observed peaks in grass 14 C activity, although they reproduce the general trends. PaSim simulates 14 C activities in substrate and structural pools of the plant. We define a mean turn-over time for 14 C within the plant, which is based on both experimental data and the frequency of cuts. An adapted PaSim result is presented using the 15 and 20 day moving average results for the 14 C activity in the substrate pool, which shows a good match to the observations. This model reduces the Root Mean Square Error (RMSE) by nearly 40% in comparison to TOCATTA. - Highlights: ► We model 14 C transfer from the atmosphere to grass near AREVA-NC reprocessing plant. ► Both models considered under-estimate the observed variability and highest peaks. ► A model based solely on the sap 14 C activity and mean turn-over time is considered. ► It performs well and could be applied to case studies around nuclear facilities.

  11. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  12. Common mycelial networks impact competition in an invasive grass.

    Science.gov (United States)

    Workman, Rachael E; Cruzan, Mitchell B

    2016-06-01

    Mycorrhizal hyphal complexes can connect multiple host plants to form common mycelial networks (CMNs) that may affect plant competitive outcomes and community composition through differential resource allocation. The impacts of CMN interactions on invasive plants are not well understood and could be crucial to the understanding of invasive plant establishment and success. We grew the invasive grass Brachypodium sylvaticum in intra- and interspecific pairings with native grass Bromus vulgaris in a greenhouse and controlled for the effects of CMN and root interactions by manipulating the belowground separation between competitors. Comparison of plant growth in pots that allowed CMN interactions and excluded root competition and vice versa, or both, allowed us to delineate the effects of network formation and root competition on invasive plant establishment and performance. Brachypodium sylvaticum grown in pots allowing for only hyphal interactions, but no root competition, displayed superior growth compared with conspecifics in other treatments. Invasive performance was poorest when pairs were not separated by a barrier. Shoot nitrogen content in B. sylvaticum was higher in mycorrhizal plants only when connections were allowed between competitors. Our results indicate that the presence of CMN networks can have positive effects on B. sylvaticum establishment and nutrient status, which may affect plant competition and invasion success. © 2016 Botanical Society of America.

  13. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  14. Distribution, Diversity, and Long-Term Retention of Grass Short Interspersed Nuclear Elements (SINEs).

    Science.gov (United States)

    Mao, Hongliang; Wang, Hao

    2017-08-01

    Instances of highly conserved plant short interspersed nuclear element (SINE) families and their enrichment near genes have been well documented, but little is known about the general patterns of such conservation and enrichment and underlying mechanisms. Here, we perform a comprehensive investigation of the structure, distribution, and evolution of SINEs in the grass family by analyzing 14 grass and 5 other flowering plant genomes using comparative genomics methods. We identify 61 SINE families composed of 29,572 copies, in which 46 families are first described. We find that comparing with other grass TEs, grass SINEs show much higher level of conservation in terms of genomic retention: The origin of at least 26% families can be traced to early grass diversification and these families are among most abundant SINE families in 86% species. We find that these families show much higher level of enrichment near protein coding genes than families of relatively recent origin (51%:28%), and that 40% of all grass SINEs are near gene and the percentage is higher than other types of grass TEs. The pattern of enrichment suggests that differential removal of SINE copies in gene-poor regions plays an important role in shaping the genomic distribution of these elements. We also identify a sequence motif located at 3' SINE end which is shared in 17 families. In short, this study provides insights into structure and evolution of SINEs in the grass family. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Lignin and etherified ferulates impact digestibility and structural composition of three temperate perennial grasses

    Science.gov (United States)

    Breeding grasses for increased digestibility increases their value and profitability in ruminant livestock production systems. Digestibility can be improved in grasses by either increasing the concentration of soluble and readily fermentable carbohydrates or by altering the plant cell wall to create...

  16. Colonization of torrefied grass fibers by plant-beneficial microorganisms

    NARCIS (Netherlands)

    Trifonova, R.; Babini, V.; Postma, J.; Ketelaars, J.J.M.H.; van Elsas, J.D.

    This study aimed to assess the colonization of thermally treated (i.e. torrefied) grass fibers (TGFs), a new prospective ingredient of potting soil. Eleven bacterial strains and one fungus, Coniochaeta ligniaria F/TGF15, all isolated from TGF or its extract after inoculation with a soil microbial

  17. Colonization of torrefied grass fibers by plant beneficial microorganisms

    NARCIS (Netherlands)

    Trifonova, R.D.; Babini, V.; Postma, J.; Ketelaars, J.J.M.H.; Elsas, van J.D.

    2009-01-01

    This study aimed to assess the colonization of thermally treated (i.e. torrefied) grass fibers (TGFs), a new prospective ingredient of potting soil. Eleven bacterial strains and one fungus, Coniochaeta ligniaria F/TGF15, all isolated from TGF or its extract after inoculation with a soil microbial

  18. Nitrogen washing from C3 and C4 cover grasses residues by rain

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2010-12-01

    Full Text Available Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum and congo grass (Brachiaria ruziziensis with the C4 photosynthetic pathway, and black oat (Avena Strigosa and triticale (X Triticosecale, with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

  19. Rectification of invalidly published new names for plants from the late Eocene of North Bohemia

    Directory of Open Access Journals (Sweden)

    Kvaček Zlatko

    2015-12-01

    Full Text Available Valid publication of new names of fossil plant taxa published since 1 January 1996 requires a diagnosis or description in English, besides other requirements included in the International Code of Nomenclature for algae, fungi, and plants (Melbourne Code adopted by the Eighteenth International Botanical Congress, Melbourne, Australia, July 2011 (McNeill et al. 2012. In order to validate names published from the late Eocene flora of the Staré Sedlo Formation, North Bohemia, diagnosed only in German (Knobloch et al. 1996, English translations are provided, including references to the type material and further relevant information.

  20. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  1. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  2. Investigating C4 Grass Contributions to N-alkane Based Paleoclimate Reconstructions

    Science.gov (United States)

    Doman, C. E.; Enders, S. K.; Chadwick, O.; Freeman, K. H.

    2014-12-01

    Plant wax n-alkanes are long-chain, saturated hydrocarbons contained within the protective waxy cuticle on leaves. These lipids are pervasive and persistent in soils and sediments and thus are ideal biomarkers of ancient terrestrial organic matter. In ecosystems dominated by C3 plants, the relationship between the carbon isotopic value of whole leaves and lipids is fairly well documented, but this relationship has not been fully investigated for plants that use C4 photosynthesis. In both cases, it is unclear if the isotopic relationships are sensitive to environmental conditions, or reflect inherited characteristics. This study used a natural climate gradient on the Kohala peninsula of Hawaii to investigate relationships between climate and the δ13C and δ2H values of n-alkanes in C3 and C4 plants. δ13C of C3 leaves and lipids decreased 5 ‰ from the driest to the wettest sites, consistent with published data. Carbon isotope values of C4 plants showed no relationship to moisture up to 1000 mm mean annual precipitation (MAP). Above this threshold, δ 13C values were around 10‰ more depleted, likely due to a combination of canopy effects and C4 grasses growing in an uncharacteristically wet and cold environment. In C3 plants, the fractionation between leaf and lipid carbon isotopes did not vary with MAP, which allows estimations of δ13C leaf to be made from alkanes preserved in ancient sediments. Along this transect, C3 plants produce around twice the quantity of n-alkanes as C4 grasses. C4 grasses produce longer carbon chains. As a result, n-alkanes in the geologic record will be biased towards C3 plants, but the presence of alkanes C33 and C35 indicate the contributions of C4 grasses. In both C3 and C4 plants, average chain length increased with mean annual precipitation, but the taxonomic differences in chain length were greater than environmental differences. Hydrogen isotopes of n-alkanes show no trends with MAP, but do show clear differences between plant

  3. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  4. Climate change and the invasion of California by grasses

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dangremond, Emily

    2012-01-01

    Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily...... invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait...

  5. Usability value and heavy metals accumulation in forage grasses grown on power station ash deposit

    Directory of Open Access Journals (Sweden)

    Simić Aleksandar S.

    2015-01-01

    Full Text Available The study of five forage grasses (Lolium multiflorum, Festuca rubra, Festuca arundinacea, Arrhenatherum elatius and Dactylis glomerata was conducted on an uncontaminated cultivated land, of leached chernozem type, and on “Nikola Tesla A” (TENT A thermal power station ash deposit. The concentrations of: As, Pb, Cd, Zn, Ni, Fe i Cu in grasses grown on two media were compared. Grass samples have been collected in tillering stage, when they were in full development. During the vegetative period three replications cut was conducted at about 3-5 cm height, imitating mowing and grazing. The concentrations of As and Ni were elevated in media samples collected from TENT A ash deposit, while the level of all studied elements in soil samples collected from cultivated land were within allowed limits. The variance of certain elements amounts in plant material collected from TENT A ash deposit was less homogeneous; the concentrations of As, Fe and Ni were higher in grasses collected from ash deposit, but Pb and Cu concentrations were higher in grasses grown on cultivated land. The concentrations of Zn were approximately the same in plants collected from the sites, whereas Cd concentrations were slightly increased in grasses grown on ash deposit. In general, it can be concluded from the results of this study that the concentrations of heavy metals in plants collected from both sites do not exceed maximal tolerant levels for fodder. The use of grasses grown on ash deposit for forage production should be taken with reserve. [Projekat Ministarstva nauke Republike Srbije, br. TR 31016: Unapređenje tehnologije gajenja krmnih biljaka na oranicama i travnjacima

  6. Ecophysiological responses of native and invasive grasses to simulated warming and drought

    Science.gov (United States)

    Ravi, S.; Law, D. J.; Wiede, A.; Barron-Gafford, G. A.; Breshears, D. D.; Dontsova, K.; Huxman, T. E.

    2011-12-01

    Climate models predict that many arid regions around the world - including the North American deserts - may become affected more frequently by recurrent droughts. At the same time, these regions are experiencing rapid vegetation transformations such as invasion by exotic grasses. Thus, understanding the ecophysiological processes accompanying exotic grass invasion in the context of rising temperatures and recurrent droughts is fundamental to global change research. Under ambient and warmer (+ 4° C) conditions inside the Biosphere 2 facility, we compared the ecophysiological responses (e.g. photosynthesis, stomatal conductance, pre-dawn leaf water potential, light & CO2 response functions, biomass) of a native grass - Heteropogan contortus (Tangle head) and an invasive grass - Pennisetum ciliare (Buffel grass) growing in single and mixed communities. Further, we monitored the physiological responses and mortality of these plant communities under moisture stress conditions, simulating a global change-type-drought. The results indicate that the predicted warming scenarios may enhance the invasibility of desert landscapes by exotic grasses. In this study, buffel grass assimilated more CO2 per unit leaf area and out-competed native grasses more efficiently in a warmer environment. However, scenarios involving a combination of drought and warming proved disastrous to both the native and invasive grasses, with drought-induced grass mortality occurring at much shorter time scales under warmer conditions.

  7. Extending juvenility in grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    2017-04-11

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.

  8. Genetic resources of perennial forage grasses in Serbia: Current state, broadening and evaluation

    Directory of Open Access Journals (Sweden)

    Sokolović Dejan

    2017-01-01

    Full Text Available Due to historical background of vegetation development, geographical position, climate and relief, Serbia represents one of the 158 world biodiversity centres, based upon the number of plant species and territory size (biodiversity index 0.72. Large areas in Serbia are under natural grasslands and pastures, composed of forage grass species, and important as source of natural plant genetic diversity and germplasm for breeding. These eco-systems represent basic prerequisites for sustainable forage production, but very low potential of them is utilized and genetic resources are not protected. Family Poaceae is present in Serbia flora with 70 genera and among them from the aspect of forage production and quality, the most important are perennial Festuca, Lolium, Dactylis, Phleum, Bromus, Arrhenatherum, Poa and Agrostis species. Most of these grasses have been bred in Serbia and lot of cultivars were released. These cultivars contain autochthonous Serbian material and represent great and important resource of genetic variability. Therefore, collecting of new samples which are acclimatised to local eco-geographical conditions and including them in plant ex situ gene bank is of exceptional importance for further utilization in different plant breeding programmes as well as genetic resources protection. These autochthonous populations have natural variability and very often have satisfactory yielding performance in comparison with introduced cultivars, which referred them for direct phenotypic selection for cultivars release. Broadening of forage grasses genotypes collection is permanent objective of Serbian scientists. Collected accessions are being characterized and evaluated for important phenological, morphological and agronomical traits. In this paper genetic resources of forage grass species, their diversity and potentials, state of the grasses gene banks, as well as possibility for breeding of new cultivars has been analysed.

  9. Study of Feasibility Integrated Agroindustry Development Unit Black Grass Jelly Powder (Mesona palustris in Province of East Java

    Directory of Open Access Journals (Sweden)

    Irvan Adhin Cholilie

    2017-01-01

    Full Text Available Potential of black grass jelly plant in Indonesia is very prospective. These plants grow in areas such as Malang East Java, Pacitan, Magetan and Ponorogo. In 2010 the production of dried black grass jelly of 568 tons with a total productivity of 8.6 tons / year.  Location selection of the plant with a score weighting method produces the highest value of 4,16 for the city of Surabaya, so the establishment of the plant will be held in Surabaya. Therefore, it is necessary the application of a suitable drying models for this factory that is tunnel dryer based on the results of research and with the highest value is 4,281. To ensure the availability of black grass jelly dried leaves as raw materials of black grass jelly powder it is necessary to establish a partnership between farmers and companies. The partnership pattern that works best for black grass jelly powder factory is a partnership “inti plasma”. It is based on research with the results of the assessment and weighting by using pairwise comparison and rating scale, the value of the highest weight in the “inti plasma” partnership with a value of 4,893. By implementing this partnership will allow the factory to obtain raw materials easily and is more economical and can always be available throughout the year for partnering with farmers.    Keywords: black grass jelly powder, drying method, financial feasibility analysis, partnership patterns

  10. SEASONALITY OF ANNUAL PLANT ESTABLISHMENT INFLUENCES THE INTERACTIONBETWEEN THE NON-NATIVE ANNUAL GRASS BROMUS MADRITENSIS SSP. RUBENS AND MOJAVE DESERT PERENNIALS

    Energy Technology Data Exchange (ETDEWEB)

    L A. DEFALCO; G. C. FERNANDEZ; R. S. NOWAK

    2004-01-01

    Competition between native and non-native species can change the composition and structure of plant communities, but in deserts the timing of non-native plant establishment can modulate their impacts to native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native perennials--Larrea iridentata, Achnatherum hymenoides, and Pleuraphis rigida--in either winter or spring. Additional plots were prepared for the Same perennial species and seasons, but with a mixture of native annual species. Relative growth rates of perennial shoots (RGRs) declined with increasing Bromus biomass when Bromus that was established in winter had 2-3 mo of growth and high water use before perennial growth began. However, this high water use did not significantly reduce water potentials for the perennials, suggesting Bromus that established earlier depleted other soil resources, such as N, otherwise used by perennial plants. Spring-established Bromus had low biomass even at higher densities and did not effectively reduce RGRs, resulting in an overall lower impact to perennials than when Bromus was established in winter. Similarly, growth and reproduction of perennials with mixed annuals as neighbors did not differ from those with Bromus neighbors of equivalent biomass, but densities of these annuals did not support the high biomass necessary to reduce perennial growth. Thus, impacts of native Mojave Desert annuals to perennials are expected to be lower than those of Bromus because seed dormancy and narrow requirements for seedling survivorship produce densities and biomass lower than those achieved by Bromus. In comparing the effects of Bromus among perennial species, the impact of increased Bromus biomass on RGR was lower for Larrea than for the two perennial grasses, probably because Lurrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This contrasts

  11. Host status of false brome grass to the leaf rust fungus Puccinia brachypodii and the stripe rust fungus P. Striiformis

    NARCIS (Netherlands)

    Barbieri, M.; Marcel, T.C.; Niks, R.E.

    2011-01-01

    Purple false brome grass (Brachypodium distachyon) has recently emerged as a model system for temperate grasses and is also a potential model plant to investigate plant interactions with economically important pathogens such as rust fungi. We determined the host status of five Brachypodium species

  12. Development of herbicide resistance in black-grass (Alopecurus myosuroides in Bavaria

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2016-02-01

    Full Text Available Black-grass (Alopecurus myosuroides is one of the most important grass weeds in Bavaria. Chemical weed control with high efficacy is very important in crops like winter cereals, oilseed rape and maize. Crop rotations with more winter cereals, reduced soil cultivation and e.g. contract harvesting enhanced distribution of blackgrass in arable farming regions. Effects of herbicide resistance were observed since the last 20 years. The blackgrass herbicide resistance is well observed by the official plant protection service of Bavaria. A wide experience of resistance tests shows the development of resistant black-grass and provides an opportunity for future prospects in resistance dynamics.

  13. Downy brome control and impacts on perennial grass abundance: a systematic review spanning 64 years

    Science.gov (United States)

    Given the high cost of restoration and the underlying assumption that reducing annual grass abundance is a necessary precursor to rangeland restoration in the Intermountain West, USA, we sought to identify limitations and strengths of annual grass and woody plant reduction methods and refine future ...

  14. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Sun, Jian; Wang, Long; Ma, Lin; Min, Fenli; Huang, Tao; Zhang, Yi; Wu, Zhenbin; He, Feng

    2017-12-01

    Grass carp can weaken the growth and reproductive capacity of submerged macrophytes by consuming valuable tissues, but factors affecting palatability of submerged macrophytes for grass carp rarely are considered. In this study, relative consumption rate of grass carp with regard to submerged macrophytes was in the following order: Hydrilla verticillata > Vallisneria natans > Ceratophyllum demersum > Myriophyllum spicatum. Firmness of macrophytes was in the following order: M. spicatum > C. demersum > H. verticillata = V. natans, whereas shear force was M. spicatum > C. demersum > H. verticillata > V. natans. After crude extracts of M. spicatum were combined with H. verticillata, grass carp fed on fewer macrophyte pellets that contained more plant secondary metabolites (PSMs). This indicated that structure and PSMs affected palatability of macrophytes.PSMs do not contribute to reduction in palatability through inhibition of intestinal proteinases activity, but they can cause a decrease in the abundance of Exiguobacterium, Acinetobacter-yielding proteases, lipases, and cellulose activity, which in turn can weaken the metabolic capacity of grass carp and adversely affect their growth. Thus, the disadvantages to the growth and development of grass carp caused by PSMs may drive grass carp to feed on palatable submerged macrophytes with lower PSMs.

  15. Management techniques for the control of Melinis minutiflora P. Beauv. (molasses grass: ten years of research on an invasive grass species in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Carlos Romero Martins

    2017-09-01

    Full Text Available ABSTRACT The invasion of exotic species is considered to be a major threat to the preservation of biodiversity. In the Parque Nacional de Brasília (National Park of Brasília, the invasive Melinis minutiflora (molasses grass occupies more than 10 % of the area of the park. The present, long-term, study compared two treatments of exposure to molasses grass: 1 fire and 2 integrated management (fire + herbicide sprays + manual removal. The aerial biomass of molasses grass in the experimental area initially represented ca. 55 % of the total aerial biomass, a percentage that apparently did not influence native plant species richness at this site. Fire alone was not sufficient to control molasses grass, which attained its pre-treatment biomass values after two years. Integrated management reduced, and maintained, biomass to less than 1 % of its original value after ten years, and maintained this level throughout the study, demonstrating that it is a promising strategy for the recovery of areas invaded by molasses grass in the Cerrado. However, because of the recolonization by molasses grass, long-term monitoring efforts are targeting outbreaks, which would require immediate intervention in order to maintain the native biological diversity of the region.

  16. Induced mutations in highly heterozygous vegetatively propagated grasses

    International Nuclear Information System (INIS)

    Powell, J.B.

    1976-01-01

    Experience with mutation induction of turf and forage grasses indicates that much progress can be achieved by this method. More than 300 mutations have been produced in our laboratory in the cultivars Tifgreen and Tifdwarf bermudagrass (Cynodon sp.). In the Tifway and Tifcote bermudagrasses we have demonstrated similar mutation responses. The first three clones are triploids and Tifcote is a probable tetraploid. No seeds are set on these clones. Two clones of bermudagrass, Coastal and Coastcross-1, occupy millions of hectares in the USA. Both are mutable and are known to be hybrids with 36 chromosomes. Biotypes of dallisgrass (Paspalum dilatatum Poir.) exist with 40 and 50 chromosomes and reproduce as sexual and obligate apomictic forms. Gamma-ray and thermal-neutron treatment of seed of these biotypes produced mutants that maintained the maternal characteristics in subsequent generations. Bahiagrass (Paspalum notatum Fluegge) also has sexual and apomictic biotypes. Some success was indicated for increased seed set by mutagen treatment. Kentucky bluegrass (Poa pratensis L.) is a facultative apomict with varying numbers of chromosomes in different cultivars. Gamma-ray mutagen treatment of rhizomes produced numerous mutations for plant type and disease reaction. Most mutations perpetuate themselves through the seed. The characteristic in common with all these grasses is their heterozygosity, which is maintained by the vegetative propagation or apomictic mode of reproduction. The experience in using ionizing radiation to induce heritable changes in these vegetatively propagated grasses is one of considerable success. Mutation rates in some of these irradiated grasses exceeded 65% and aberrant plants with characteristics previously never observed were found. Numerous hemizygous and heterozygous loci seem to be a sensitive target for mutagens. (author)

  17. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus and Crisp Grass Carp

    Directory of Open Access Journals (Sweden)

    Ermeng Yu

    2014-01-01

    Full Text Available Grass carp (Ctenopharyngodon idellus is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.

  18. Does the name really matter? The importance of botanical nomenclature and plant taxonomy in biomedical research.

    Science.gov (United States)

    Bennett, Bradley C; Balick, Michael J

    2014-03-28

    Medical research on plant-derived compounds requires a breadth of expertise from field to laboratory and clinical skills. Too often basic botanical skills are evidently lacking, especially with respect to plant taxonomy and botanical nomenclature. Binomial and familial names, synonyms and author citations are often misconstrued. The correct botanical name, linked to a vouchered specimen, is the sine qua non of phytomedical research. Without the unique identifier of a proper binomial, research cannot accurately be linked to the existing literature. Perhaps more significant, is the ambiguity of species determinations that ensues of from poor taxonomic practices. This uncertainty, not surprisingly, obstructs reproducibility of results-the cornerstone of science. Based on our combined six decades of experience with medicinal plants, we discuss the problems of inaccurate taxonomy and botanical nomenclature in biomedical research. This problems appear all too frequently in manuscripts and grant applications that we review and they extend to the published literature. We also review the literature on the importance of taxonomy in other disciplines that relate to medicinal plant research. In most cases, questions regarding orthography, synonymy, author citations, and current family designations of most plant binomials can be resolved using widely-available online databases and other electronic resources. Some complex problems require consultation with a professional plant taxonomist, which also is important for accurate identification of voucher specimens. Researchers should provide the currently accepted binomial and complete author citation, provide relevant synonyms, and employ the Angiosperm Phylogeny Group III family name. Taxonomy is a vital adjunct not only to plant-medicine research but to virtually every field of science. Medicinal plant researchers can increase the precision and utility of their investigations by following sound practices with respect to botanical

  19. A novel method to characterize silica bodies in grasses.

    Science.gov (United States)

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  20. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Africa's wild C4 plant foods and possible early hominid diets.

    Science.gov (United States)

    Peters, Charles R; Vogel, John C

    2005-03-01

    A small minority of Africa's wild plant foods are C4. These are primarily the seeds of some of the C4 grasses, the rootstocks and stem/leaf bases of some of the C4 sedges (especially papyrus), and the leaves of some of the C4 herbaceous dicots (forbs). These wild food plants are commonly found in disturbed ground and wetlands (particularly the grasses and sedges). Multiple lines of evidence indicate that C4 grasses were present in Africa by at least the late Miocene. It is a reasonable hypothesis that the prehistory of the C4 sedges parallels that of the C4 grasses, but the C4 forbs may not have become common until the late Pleistocene. CAM plants may have a more ancient history, but offer few opportunities for an additional C4-like dietary signal. The environmental reconstructions available for the early South African hominid sites do not indicate the presence of large wetlands, and therefore probably the absence of a strong potential for a C4 plant food diet. However, carbon isotope analyses of tooth enamel from three species of early South African hominids have shown that there was a significant but not dominant contribution of C4 biomass in their diets. Since it appears unlikely that this C4 component could have come predominantly from C4 plant foods, a broad range of potential animal contributors is briefly considered, namely invertebrates, reptiles, birds, and small mammals. It is concluded that the similar average C4 dietary intake seen in the three South African hominid species could have been acquired by differing contributions from the various sources, without the need to assume scavenging or hunting of medium to large grazing ungulates. Effectively similar dominantly dryland paleo-environments may also be part of the explanation. Theoretically, elsewhere in southern and eastern Africa, large wetlands would have offered early hominids greater opportunities for a C4 plant diet.

  2. Effects of rye grass coverage on soil loss from loess slopes

    Directory of Open Access Journals (Sweden)

    Yuequn Dong

    2015-09-01

    Full Text Available Vegetative coverage is commonly used to reduce urban slope soil erosion. Laboratory experimental study on soil erosion under grass covered slopes is conventionally time and space consuming. In this study, a new method is suggested to study the influences of vegetation coverage on soil erosion from a sloped loess surface under three slope gradients of 5°, 15°, and 25°; four rye grass coverages of 0%, 25%, 50%, and 75%; and three rainfall intensities of 60, 90, and 120 mm/h with a silt-loamy loess soil. Rye grasses were planted in the field with the studied soil before being transplanted into a laboratory flume. Grass was allowed to resume growth for a period before the rain simulation experiment. Results showed that the grass cover reduced soil erosion by 63.90% to 92.75% and sediment transport rate by 80.59% to 96.17% under different slope gradients and rainfall intensities. The sediment concentration/sediment transport rate from bare slope was significantly higher than from a grass-covered slope. The sediment concentration/transport rate from grass-covered slopes decreased linearly with grass coverage and increased with rainfall intensity. The sediment concentration/transport rate from the bare slope increased as a power function of slope and reached the maximum value at the gradient of about 25°, whereas that from grass-covered slope increased linearly and at much lower levels. The results of this study can be used to estimate the effect of vegetation on soil erosion from loess slopes.

  3. Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth

    Science.gov (United States)

    Belnap, J.; Sherrod, S.K.

    2009-01-01

    Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum

  4. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  5. Biogas production from anaerobic codigestion of cowdung and elephant grass (Pennisetum Purpureum) using batch digester

    Science.gov (United States)

    Haryanto, Agus; Hasanudin, Udin; Afrian, Chandra; Zulkarnaen, Iskandar

    2018-03-01

    This study aimed at determining biogas production from codigestion of Elephant grass and cowdung using batch digester. Fresh grass was manually chopped with a maximum length of 3 cm. Chopped grass (25 kg) was perfectly mixed with fresh cowdung (25 kg). The mixture was introduced into a 220-liter batch drum digester. The substrate was diluted with water at different rates (P1 = 50 L, P2 = 75 L, and P3 = 100 L) and was stirred thoroughly. Six digesters were prepared as duplicate for each treatment. Two other digesters containing only 25 kg cowdung diluted with 25 L water were also provided as control treatment (P0). The digesters were air tightly sealed for 70 days. Observation was conducted on daily temperature, substrate pH (initial and final), TS and VS content, biogas yield and biogas composition. Results showed that final pH of grass containing substrate was in the acidic range, namely 4.50, 4.62, 6.82, whereas that of control (P0) was normal with pH of 7.30. Digester with substrate composition 25:25:100 (cowdung:grass:water) produced the highest biogas total (524.3 L). Biogas yield of codigestion, however, was much lower as compared to that of control, namely 7.35, 16.75, and 111.72 L/kg VS r respectively for treatment P1, P2, P3. with dilution rate of 50, 75, and 100 L. Biogas produced from control digester had methane content of 53.88%. In contrast, biogas resulted from all treatments contained low methane (the highest was 31.37%). Methane yield of 39.3 L/kg TS removal was achieved from digester with dilution 100 L (P3). Mechanical pretreatment is suggested to break Elephant grass down into smaller particles prior to introducing it into the digestion process.

  6. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  7. Optimal prescribed burn frequency to manage foundation California perennial grass species and enhance native flora

    Science.gov (United States)

    Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except for in a few instances. We studied the use of late spring prescribed burns over a span of eleven years on experimental plots in which the pere...

  8. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    OpenAIRE

    Masoud Noshadi; Hosein Valizadeh

    2017-01-01

    Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant o...

  9. Succession and Fermentation Products of Grass Carp (Ctenopharyngodon idellus Hindgut Microbiota in Response to an Extreme Dietary Shift

    Directory of Open Access Journals (Sweden)

    Yao Tong Hao

    2017-08-01

    Full Text Available Dietary intake affects the structure and function of microbes in host intestine. However, the succession of gut microbiota in response to changes in macronutrient levels during a long period of time remains insufficiently studied. Here, we determined the succession and metabolic products of intestinal microbiota in grass carp (Ctenopharyngodon idellus undergoing an abrupt and extreme diet change, from fish meal to Sudan grass (Sorghum sudanense. Grass carp hindgut microbiota responded rapidly to the diet shift, reaching a new equilibrium approximately within 11 days. In comparison to animal-diet samples, Bacteroides, Lachnospiraceae and Erysipelotrichaceae increased significantly while Cetobacterium decreased significantly in plant-diet samples. Cetobacterium was negatively correlated with Bacteroides, Lachnospiraceae and Erysipelotrichaceae, while Bacteroides was positively correlated with Lachnospiraceae. Predicted glycoside hydrolase and polysaccharide lyase genes in Bacteroides and Lachnospiraceae from the Carbohydrate-Active enZymes (CAZy database might be involved in degradation of the plant cell wall polysaccharides. However, none of these enzymes was detected in the grass carp genome searched against dbCAN database. Additionally, a significant decrease of short chain fatty acids levels in plant-based samples was observed. Generally, our results suggest a rapid adaption of grass carp intestinal microbiota to dietary shift, and that microbiota are likely to play an indispensable role in nutrient turnover and fermentation.

  10. High uptake of 2,4,6-trinitrotoluene by vetiver grass - Potential for phytoremediation?

    International Nuclear Information System (INIS)

    Makris, Konstantinos C.; Shakya, Kabindra M.; Datta, Rupali; Sarkar, Dibyendu; Pachanoor, Devanand

    2007-01-01

    2,4,6-Trinitrotoluene (TNT) is a potent mutagen, and a Group C human carcinogen that has been widely used to produce munitions and explosives. Vast areas that have been previously used as ranges, munition burning, and open detonation sites are heavily contaminated with TNT. Conventional remediation activities in such sites are expensive and damaging to the ecosystem. Phytoremediation offers a cost-effective, environment-friendly solution, utilizing plants to extract TNT from contaminated soil. We investigated the potential use of vetiver grass (Vetiveria zizanioides) to effectively remove TNT from contaminated solutions. Vetiver grass plants were grown in hydroponic systems containing 40 mg TNT L -1 for 8 d. Aqueous concentrations of TNT reached the method detection limit (∼1 μg L -1 ) within the 8-d period, demonstrating high affinity of vetiver for TNT, without any visible toxic effects. Results from this preliminary hydroponic study are encouraging, but in need of verification using TNT-contaminated soils. - Vetiver grass demonstrates ability to absorb TNT in aqueous media

  11. Persistence of Overseeded Cool-Season Grasses in Bermudagrass Turf

    Directory of Open Access Journals (Sweden)

    Thomas Serensits

    2011-01-01

    Full Text Available Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass did not establish well, resulting in unacceptable cover. Perennial ryegrass generally persisted the most one year after seeding, either because of summer survival of plants or because of new germination the following fall. Plant counts one year after seeding were greater in the higher seeding rate treatment compared to the lower seeding treatment rate of perennial ryegrass, suggesting new germination had occurred. Plant counts one year after seeding plots with intermediate ryegrass or Italian ryegrass were attributed primarily to latent germination and not summer survival. Applications of foramsulfuron generally did not prevent overseeded species stand one year after seeding, supporting the conclusion of new germination. Although quality is less with intermediate ryegrass compared to perennial ryegrass, it transitions out easier than perennial ryegrass, resulting in fewer surviving plants one year later.

  12. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  13. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  14. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  15. Does plant uptake or low soil mineral-N production limit mineral-N losses to surface waters and groundwater from soils under grass in summer?

    International Nuclear Information System (INIS)

    Bhatti, Ambreen; McClean, Colin J.; Cresser, Malcolm S.

    2013-01-01

    Summer minima and autumn/winter maxima in nitrate concentrations in rivers are reputedly due to high plant uptake of nitrate from soils in summer. A novel alternative hypothesis is tested here for soils under grass. By summer, residual readily mineralizable plant litter from the previous autumn/winter is negligible and fresh litter input low. Consequently little mineral-N is produced in the soil. Water-soluble and KCl-extractable mineral N in fresh soils and soils incubated outdoors for 7 days have been monitored over 12 months for soil transects at two permanent grassland sites near York, UK, using 6 replicates throughout. Vegetation-free soil is shown to produce very limited mineral-N in summer, despite the warm, moist conditions. Litter accumulates in autumn/winter and initially its high C:N ratio favours N accumulation in the soil. It is also shown that mineral-N generated monthly in situ in soil substantially exceeds the monthly mineral-N inputs via wet deposition at the sites. -- Highlights: •Soil mineral-N has been measured over a year at two grassland sites in the UK. •Rates of mineral-N production have also been measured in vegetation-free soils. •In summer, though soils were warm and moist, rate of mineral-N production was low. •The effect is attributed to low litter inputs in summer when grass is growing well. •Low mineral-N production in summer must be limiting N losses to fresh waters. -- Low mineral-N production in soils under grass limits summer N losses to surface- and ground-waters

  16. Comparative study of the growth and carbon sequestration potential of Bermuda grass in industrial and urban areas

    Directory of Open Access Journals (Sweden)

    Usman Ali

    2018-06-01

    Full Text Available Climate change is a global phenomenon occurring throughout the world. Greenhouse gases (GHGs especially carbon dioxide (CO2 considered to be the major culprit to bring these changes. So, carbon (C sequestration by any mean could be useful to reduce the CO2 level in atmosphere. Turf grasses have the ability to sequester C and minimize the effects of GHGs on the environment. In order to study that how turf grasses can help in C sequestration, Bermuda grass (Cynodon dactylon was grown both at industrial and urban location and its effect on C storage were assessed by soil and plant analysis. Dry deposition of ammonium and nitrate was maximum at both locations through the year. However wet deposition was highest during the months of high rainfall. It was examined through soil analysis that soil organic matter, soil C and nitrogen in both locations increased after second mowing of grass. However, soil pH 6.68 in urban and 7.00 in industrial area and EC 1.86 dS/m in urban and 1.90 dS/m in industrial area decreased as the grass growth continue. Soil fresh weight (27.6 g in urban and (27.28 g industrial area also decreased after first and second mowing of grass. The C levels in plant dry biomass also increased which showed improved ability of plant to uptake C from the soil and store it. Similarly, chlorophyll contents were more in industrial area compared to urban area indicates the positive impact of high C concentration. Whereas stomatal conductance was reduced in high C environment to slow down respiration process. Hence, from present study it can be concluded that the Bermuda grass could be grown in areas with high C concentration in atmosphere for sequestrating C in soil.

  17. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    Science.gov (United States)

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  18. Long term effects of ash fertilization of reed canary grass; Laangtidseffekter av askgoedsling vid roerflensodling

    Energy Technology Data Exchange (ETDEWEB)

    Palmborg, Cecilia; Lindvall, Eva

    2011-03-15

    Reed canary grass (RCG) is a bio-energy crop with large potential. It is a 1.5 . 2.5 m tall grass that is harvested in spring when it is grown as a fuel. At spring harvest it yields 3 . 10 ton field dried material per ha and year. One disadvantage when reed canary grass is used as a fuel is the high ash content, 5-10 %. This means that large quantities of ash have to be deposited which is expensive, about 1000 SEK/ton. However, since reed canary grass ash contains reasonable amounts of plant nutrients like phosphorous (P), potassium (K) and magnesium (Mg) it could be recycled as fertilizer in agriculture. The ash can be used without any pretreatment since, in agriculture, plant availability is desirable. The aim of this project, was to evaluate a field experiment, where ash was used as a fertilizer in reed canary grass. The experiment was established at the SLU research station in Umea, Sweden in the spring 2002. Three different fertilizer treatments were applied: Treatment A was fertilized with an ash produced by combustion of RCG together with municipal wastes (paper, plastic, leather), treatment B, an ash from combustion of RCG, and for treatment C commercial fertilizers were used. In total, 100 kg ha-1 of nitrogen (N), 15 kg ha-1 of phosphorous (P) and 80 kg ha-1 of potassium (K), were applied each year in all treatments. The amount of ash in treatment A and B was calculated from the chemical analysis of the ashes to be equal to the required amount of P, while K and N were supplied also by commercial fertilizers. [Table 1. Composition of the ashes] Literature study: There is a lack of knowledge about fertilization with reed canary grass ash, since few experiments have been conducted. The composition of reed canary grass is dependent of harvest date and the soil substrate. The amount of ash and the amount of harmful substances such as potassium and chloride generally decreases over winter, giving an increased fuel quality from spring harvest compared to autumn

  19. Designing hybrid grass genomes to control runoff generation

    Science.gov (United States)

    MacLeod, C.; Binley, A.; Humphreys, M.; King, I. P.; O'Donovan, S.; Papadopoulos, A.; Turner, L. B.; Watts, C.; Whalley, W. R.; Haygarth, P.

    2010-12-01

    Sustainable management of water in landscapes requires balancing demands of agricultural production whilst moderating downstream effects like flooding. Pasture comprises 69% of global agricultural areas and is essential for producing food and fibre alongside environmental goods and services. Thus there is a need to breed forage grasses that deliver multiple benefits through increased levels of productivity whilst moderating fluxes of water. Here we show that a novel grass hybrid that combines the entire genomes of perennial ryegrass (Lolium perenne - the grass of choice for Europe’s forage agriculture) and meadow fescue (Festuca pratensis) has a significant role in flood prevention. Field plot experiments established differences in runoff generation with the hybrid cultivar reducing runoff by 50% compared to perennial ryegrass cultivar, and by 35% compared to a meadow fescue cultivar (34 events over two years, replicated randomized-block design, statistically significant differences). This important research outcome was the result of a project that combined plant genetics, soil physics and plot scale hydrology to identify novel grass genotypes that can reduce runoff from grassland systems. Through a coordinated series of experiments examining effects from the gene to plot scale, we have identified that the rapid growth and then turnover of roots in the L. perenne x F. pratensis hybrid is likely to be a key mechanism in reducing runoff generation. More broadly this is an exciting first step to realizing the potential to design grass genomes to achieve both food production, and to deliver flood control, a key ecosystem service.

  20. Tillering dynamics of Tanzania guinea grass under nitrogen levels and plant densities - doi: 10.4025/actascianimsci.v34i4.13382

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2012-10-01

    Full Text Available This study evaluated the influence of nitrogen levels (N and plant density (D on the tillering dynamics of Tanzania guinea grass (Panicum maximum Jacq.. Treatments were arranged in a completely randomized block design with 12 treatments and two replicates in a factorial scheme (4 × 3 with four levels of N (0, 80, 160 or 320 kg ha-1 N and three plant densities (9, 25, and 49 plant m-². Higher number of tillers was observed in the treatment with 9 plants m-² and under higher levels of N, especially in the second and third generations. Still, the N influenced quadratically the appearance rate of basal and total tillers, which were also affected by plant density and interaction N × D. However, the appearance rate of aerial tiller was not influenced by factors evaluated. The mortality rate of total tiller was influenced quadratically by the nitrogen levels and plant densities. The mortality rate of basal tiller responded quadratically to plant density, whereas the mortality rate of aerial tiller increased linearly with fertilization. Pastures with low or intermediate densities fertilized with nitrogen, presented a more intense pattern of tiller renewal.

  1. The study of desiccation-tolerance in drying leaves of the desiccation-tolerant grass Sporobolus elongatus and the desiccation-sensitive grass Sporobolus pyramidalis.

    Science.gov (United States)

    Ghasempour, Hamid Reza; Kianian, Jahanbakheshe

    2007-03-01

    Hydrated leaves of the resurrection grass Sporobolus elongatus are not desiccation tolerant (DT), but moderate to severe drought stress can induce their DT with the leaves remain attach to drying intact plants. In vivo protein synthesis was studied with SDS-page of extracts of leaves of intact drying plants of S. elongatus (a desiccation-Tolerant grass (DT)) and S. pyramidalis (a desiccation-sensitive species (DS)). Free proline increased in drying leaves. Soluble sugar contents also increased with drying but were less than fully hydrated leaves at 8% RWC. Total protein also showed an increase with an exception at 8% RWC which showed a decrease. SDS-page of extracts of drying leaves of both DT and DS plants were studied as relative water contents (RWC) decreased. In first phase, DT species at 58% RWC (80-51% RWC range), two proteins increased in contents. In the second phase, at 8% (35-4% RWC range) two new bands increased and two bands decreased. In leaves of DS species some bands decreased as drying progressed. Also, as drying advanced free proline increased in DT species. Total protein increased as drying increased but at 8% RWC decreased. All data of results are consistent with current views about studied factors and their roles during drying and induction of desiccation tolerance in DT plants.

  2. Post-harvest treatments in smooth-stalked meadow grass (Poa pratensis L.) - effect on carbohydrates and tiller development

    DEFF Research Database (Denmark)

    Boelt, Birte

    2007-01-01

    Temperate grass species require a period of short days/low temperature to respond to flower induction stimuli. The same environmental conditions stimulate the increase in carbohydrate concentration in aboveground biomass and the accumulation of reserve carbohydrates in the basal plant parts....... The present investigation was initiated to investigate the effect of post-harvest treatments on dry matter production in autumn, carbohydrate content, the number of reproductive tillers and seed yield in a turf-type cultivar ‘Conni' of smooth-stalked meadow grass. The results show that post-harvest treatments...... harvest and all residues removed. The results from plant samples in autumn indicate that decreasing aboveground biomass production leads to a higher carbohydrate concentration which may stimulate the reproductive development in smooth-stalked meadow grass....

  3. The energy balance of utilising meadow grass in Danish biogas production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Raju, Chitra Sangaraju; Kucheryavskiy, Sergey V.

    2015-01-01

    of meadow areas, different relevant geo-datasets, spatial analyses, and various statistical analyses. The results show that values for the energy return on energy invested (EROEI) ranging from 1.7 to 3.3 can be obtained when utilising meadow grasses in local biogas production. The total national net energy......This paper presents a study of the energy balance of utilising nature conservation biomass from meadow habitats in Danish biogas production. Utilisation of nature conservation grass in biogas production in Denmark represents an interesting perspective for enhancing nature conservation of the open...... grassland habitats, while introducing an alternative to the use of intensively cultivated energy crops as co-substrates in manure based biogas plants. The energy balance of utilising nature conservation grass was investigated by using: data collected from previous investigations on the productivity...

  4. Effects of climate on deer bone δ15N and δ13C: Lack of precipitation effects on δ15N for animals consuming low amounts of C 4 plants

    Science.gov (United States)

    Cormie, A. B.; Schwarcz, H. P.

    1996-11-01

    We have examined the relationship of bone collagen δ15N and δ13C to climatic variables, humidity, temperature, and amount of precipitation using fifty-nine specimens of North American white-tailed deer ( Odocoileus virginianus) from forty-six different locations. In previous studies of African mammals there was a significant correlation between bone collagen δ15N and local amount of precipitation. Results presented here similarly show an increase in δ15N with decreasing amount of precipitation but only for 25% of the animals, namely those consuming more than 10% C 4 plants. These animals also exhibited a significant correlation between δ13C and temperature which mirrors previous observations for grasses suggesting that these deer consume grasses during times of population and nutrient stress. In contrast, even in dry areas containing high proportions of C 4 grasses, the majority of the deer had consumed low amounts of C 4 plants and these deer did not have δ15N which correlate with amount of precipitation. Only when deer deviated from their normal feeding pattern by consuming C 4 plants or grasses did their δ15N correlate with amount of rainfall. For these animals, consumption of C 4 plants or grasses may signal conditions of water and nutrient stress. An increase in δ15N of bone collagen may result from combined effects from excretion of concentrated urine (to conserve water) and increased internal recycling of nitrogen (to conserve nitrogen).

  5. Influence of grass pellet production on pyrrolizidine alkaloids occurring in Senecio aquaticus-infested grassland.

    Science.gov (United States)

    Gottschalk, Christoph; Ostertag, Johannes; Meyer, Karsten; Gehring, Klaus; Thyssen, Stefan; Gareis, Manfred

    2018-04-01

    1,2-Dehydro-pyrrolizidine alkaloids (PA) and their N-oxides (PANO) exhibit acute and chronic toxic effects on the liver and other organs and therefore are a hazard for animal and human health. In certain regions of Germany, an increasing spread of Senecio spp. (ragwort) on grassland and farmland areas has been observed during the last years leading to a PA/PANO-contamination of feed and food of animal and plant origin. This project was carried out to elucidate whether the process of grass pellet production applying hot air drying influences the content of PA and PANO. Samples of hay (n = 22) and grass pellets (n = 28) originated from naturally infested grassland (around 10% and 30% dominance of Senecio aquaticus) and from a trial plot with around 50% dominance. Grass pellets were prepared from grass originating from exactly the same plots as the hay samples. The samples were analysed by liquid chromatography-tandem mass spectrometry for PA/PANO typically produced by this weed. The results of the study revealed that PA/PANO levels (predominantly sum of senecionine, seneciphylline, erucifoline and their N-oxides) in hay ranged between 2.1 and 12.6 mg kg -1 dry matter in samples with 10% and 30% dominance of S. aquaticus, respectively. Samples from the trial plot (50% dominance) had levels of up to 52.9 mg kg -1 . Notably, the hot air drying process during the production of grass pellets did not lead to a reduction of PA/PANO levels. Instead, the levels in grass pellets with 10% and 30% S. aquaticus ranged from 3.1 to 55.1 mg kg -1 . Grass pellets from the trial plot contained up to 96.8 mg kg -1 . In conclusion, hot air drying and grass pellet production did not affect PA/PANO contents in plant material and therefore, heat-dried products cannot be regarded as safe in view of the toxic potential of 1,2-dehydro-pyrrolizidine alkaloids.

  6. Effects of urban grass coverage on rainfall-induced runoff in Xi'an loess region in China

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available In this study, laboratory rainfall simulation experiments were conducted to investigate the regulatory effects of grass coverage on rainfall-runoff processes. A total of 80 grass blocks planted with well-grown manilagrass, together with their root systems, were sampled from an eastern suburban area of Xi'an City in the northwest arid area of China and sent to a laboratory for rainfall simulation experiments. The runoff and infiltration processes of a slope with different grass coverage ratios and vegetation patterns were analyzed. The results show that the runoff coefficient decreases with the increase of the grass coverage ratio, and the influence of grass coverage on the reduction of runoff shows a high degree of spatial variation. At a constant grass coverage ratio, as the area of grass coverage moves downward, the runoff coefficient, total runoff, and flood peak discharge gradually decrease, and the flood peak occurs later. With the increase of the grass coverage ratio, the flood peak discharge gradually decreases, and the flood peak occurs later as well. In conclusion, a high grass coverage ratio with the area of grass coverage located at the lower part of the slope will lead to satisfactory regulatory effects on rainfall-induced runoff.

  7. Effect of Trinexapac-Ethyl and Traffic Stress on Physiological and Morphological Characteristics of Wheat Grass(Agropyron desertorum

    Directory of Open Access Journals (Sweden)

    M. H. Sheikh Mohamadi

    2015-06-01

    Full Text Available In order to evaluate the effect of trinexapac ethyl concentrations (0, 250 and 500 g/h and traffic stress (traffic and non traffic treatments on wheat grass physiological and morphological traits, an experiment was conducted on research farm of Isfahan University of Technology in 2011 - 2012 as factorial in completely randomized designs with three replications. The studied traits involved plant height and plant density, shoot dry weight and fresh weights, tillering, chlorophyll level, roots and shoot dissolved carbohydrates. Results showed that Trinexapac ethyl reduced plant height, fresh weight and dry weight of cut parts significantly. Application of 250 and 500 g/h Trinexapac ethyl decreased plant height by 21.23 percent and 31.85 percent respectively. Application of Trinexapac ethyl improved plant height, tillering and chlorophyll level. In contrast, chlorophyll level was decreased substantially under traffic treatment and this treatment did not affect wheat grass density and tillering significantly. Under 500 g/h Trinexapac ethyl treatment, tillering was increased by 36 percent compared with under control condition one. Results showed that Trinexapac ethyl application and traffic increased dissolved carbohydrates of root and shoot significantly. As a result, it was found that wheat grass is a traffic resistant plant and it seems that the use of Trinexapac ethyl increases plant resistance to traffic stress

  8. Reversing land degradation through grasses: a systematic meta-analysis in the Indian tropics

    Science.gov (United States)

    Mandal, Debashis; Srivastava, Pankaj; Giri, Nishita; Kaushal, Rajesh; Cerda, Artemi; Meherul Alam, Nurnabi

    2017-02-01

    Although intensive agriculture is necessary to sustain the world's growing population, accelerated soil erosion contributes to a decrease in the environmental health of ecosystems at local, regional and global scales. Reversing the process of land degradation using vegetative measures is of utmost importance in such ecosystems. The present study critically analyzes the effect of grasses in reversing the process of land degradation using a systematic review. The collected information was segregated under three different land use and land management situations. Meta-analysis was applied to test the hypothesis that the use of grasses reduces runoff and soil erosion. The effect of grasses was deduced for grass strip and in combination with physical structures. Similarly, the effects of grasses were analyzed in degraded pasture lands. The overall result of the meta-analysis showed that infiltration capacity increased approximately 2-fold after planting grasses across the slopes in agricultural fields. Grazing land management through a cut-and-carry system increased conservation efficiencies by 42 and 63 % with respect to reduction in runoff and erosion, respectively. Considering the comprehensive performance index (CPI), it has been observed that hybrid Napier (Pennisetum purpureum) and sambuta (Saccharum munja) grass seem to posses the most desirable attributes as an effective grass barrier for the western Himalayas and Eastern Ghats, while natural grass (Dichanthium annulatum) and broom grass (Thysanolaena maxima) are found to be most promising grass species for the Konkan region of the Western Ghats and the northeastern Himalayan region, respectively. In addition to these benefits, it was also observed that soil carbon loss can be reduced by 83 % with the use of grasses. Overall, efficacy for erosion control of various grasses was more than 60 %; hence, their selection should be based on the production potential of these grasses under given edaphic and agro

  9. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans.

    Directory of Open Access Journals (Sweden)

    Kalpana Sharma

    Full Text Available Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum, and two C4 grasses, Japanese stilt grass (Microstegium vimineum and bahia grass (Paspalum notatum. Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.

  10. Uptake of 2,4,6-Trinitrotoluene (TNT) by Vetiver grass (Vetiviera ziznoides L.) -- Preliminary results from a hydroponic study

    Science.gov (United States)

    Shakya, K. M.; Sarkar, D.; Datta, R.; Makris, K.; Pachanoor, D.

    2006-05-01

    2,4,6-Trinitrotoluene(TNT) is a potent mutagen and a Group C human carcinogen that has been widely used to produce munitions and explosives. As a result, vast areas that have been previously used as military ranges, munition burning and open detonation sites have been heavily contaminated with TNT. Conventional remedial activities in such contaminated sites commonly rely on methods such as incineration, land filling and soil composting. Phytoremediation offers a cost-effective solution, utilizing plants to phytoextract TNT from the contaminated soil. We propose the use of vetiver grass (Vetiveria zizanoides) to remove TNT from such contaminated soils. Vetiver is a fast-growing and adaptive grass, enabling its use in TNT-contaminated sites in a wide variety of soil types and climate. We also hypothesized that TNT removal by vetiver grass will be enhanced by utilizing a chaotropic agent (urea) to alter rhizosphere/root hair chemical environment. The objectives of this preliminary hydroponic study were: i) to investigate the effectiveness of vetiver grass in removing TNT from solution, and ii) to evaluate the use of a common agrochemical (urea) in enhancing TNT removal by vetiver grass. Vetiver plants were grown in a hydroponic system with five different TNT concentrations (0, 5, 10, 25, and 50 mg TNT L-1) and three urea concentrations (0, 0.01 and 0.1%). A plant density of 10 g L-1 and three replicate vessels per treatment were used. Aliquots were collected at several time intervals up to 192 hour, and were analyzed for TNT with HPLC. Results showed that vetiver was able to remove TNT from hydroponic solutions. The overall magnitude and kinetics of TNT removal by vetiver grass was enhanced in the presence of urea. TNT removal kinetics depended on TNT and urea initial concentrations, suggestive of second-order kinetic reactions. Preliminary results are encouraging, but in need for verification using more detailed studies involving TNT-contaminated soils. Ongoing

  11. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  12. SQ grass sublingual allergy immunotherapy tablet for disease-modifying treatment of grass pollen allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dahl, Ronald; Roberts, Graham; de Blic, Jacques

    2016-01-01

    BACKGROUND: Allergy immunotherapy is a treatment option for allergic rhinoconjunctivitis (ARC). It is unique compared with pharmacotherapy in that it modifies the immunologic pathways that elicit an allergic response. The SQ Timothy grass sublingual immunotherapy (SLIT) tablet is approved in North...... America and throughout Europe for the treatment of adults and children (≥5 years old) with grass pollen-induced ARC. OBJECTIVE: The clinical evidence for the use of SQ grass SLIT-tablet as a disease-modifying treatment for grass pollen ARC is discussed in this review. METHODS: The review included...... the suitability of SQ grass SLIT-tablet for patients with clinically relevant symptoms to multiple Pooideae grass species, single-season efficacy, safety, adherence, coseasonal initiation, and cost-effectiveness. The data from the long-term SQ grass SLIT-tablet clinical trial that evaluated a clinical effect 2...

  13. Ecological review of black-grass (Alopecurus myosuroides Huds. propagation abilities in relationship with herbicide resistance

    Directory of Open Access Journals (Sweden)

    Maréchal, PY.

    2012-01-01

    Full Text Available Alopecurus myosuroides Huds. (black-grass has always been a major concern for cereal growers, and the development of herbicide resistance does not improve the situation. This review article summarizes the different traits involved in the dispersal pattern of herbicide resistant black-grass individuals within a susceptible field population. Therefore, the whole life cycle of black-grass is depicted from the seed to the seed. From the early vegetative development to the seed falling, every stage is described, taking into account how herbicide resistance can influence or exert a different impact compared to susceptible plants.

  14. A common registration-to-publication automated pipeline for nomenclatural acts for higher plants (International Plant Names Index, IPNI), fungi (Index Fungorum, MycoBank) and animals (ZooBank)

    NARCIS (Netherlands)

    Robert, Vincent

    2016-01-01

    Collaborative effort among four lead indexes of taxon names and nomenclatural acts (International Plant Name Index (IPNI), Index Fungorum, MycoBank and ZooBank) and the journals PhytoKeys, MycoKeys and ZooKeys to create an automated, pre-publication, registration workflow, based on a

  15. Floristic summary of plant species in the air pollution literature.

    Science.gov (United States)

    Bennett, J P

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  16. Comparative genomics analysis of rice and pineapple contributes to understand the chromosome number reduction and genomic changes in grasses

    Directory of Open Access Journals (Sweden)

    Jinpeng Wang

    2016-10-01

    Full Text Available Rice is one of the most researched model plant, and has a genome structure most resembling that of the grass common ancestor after a grass common tetraploidization ~100 million years ago. There has been a standing controversy whether there had been 5 or 7 basic chromosomes, before the tetraploidization, which were tackled but could not be well solved for the lacking of a sequenced and assembled outgroup plant to have a conservative genome structure. Recently, the availability of pineapple genome, which has not been subjected to the grass-common tetraploidization, provides a precious opportunity to solve the above controversy and to research into genome changes of rice and other grasses. Here, we performed a comparative genomics analysis of pineapple and rice, and found solid evidence that grass-common ancestor had 2n =2x =14 basic chromosomes before the tetraploidization and duplicated to 2n = 4x = 28 after the event. Moreover, we proposed that enormous gene missing from duplicated regions in rice should be explained by an allotetraploid produced by prominently divergent parental lines, rather than gene losses after their divergence. This means that genome fractionation might have occurred before the formation of the allotetraploid grass ancestor.

  17. Green grasses as light harvesters in dye sensitized solar cells

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  18. Descriptions of the immature stages and new host plant records of Notozulia entreriana (Berg) (Hemiptera: Cercopidae) pests of grasses in subtropical areas of the Americas.

    Science.gov (United States)

    Foieri, Alvaro; Lenicov, Ana M Marino De Remes; Virla, Eduardo G

    2016-04-11

    Notozulia entreriana (Berg) (Hemiptera: Cercopidae) is one of the most common spittlebugs inhabiting the subtropical region of the America, inflicting important economic damage to grass crops. The immature stages are described and illustrated; the main characteristics that distinguish instars are the body size, color, number of flagellomeres, and number of tibial and metatarsomere spines. A key for identification of nymphs is provided as a tool to develop field studies.  Nine host plants, all belonging to Poaceae, are recorded as breeding and feeding host plants from different localities in northern Argentina.

  19. GUI development for GRASS GIS

    Directory of Open Access Journals (Sweden)

    Martin Landa

    2007-12-01

    Full Text Available This article discusses GUI development for GRASS GIS. Sophisticated native GUI for GRASS is one of the key points (besides the new 2D/3D raster library, vector architecture improvements, etc. for the future development of GRASS. In 2006 the GRASS development team decided to start working on the new generation of GUI instead of improving the current GUI based on Tcl/Tk.

  20. A genomic approach to elucidating grass flower development

    Directory of Open Access Journals (Sweden)

    Dornelas Marcelo C.

    2001-01-01

    Full Text Available In sugarcane (Saccharum sp as with other species of grass, at a certain moment of its life cycle the vegetative meristem is converted into an inflorescence meristem which has at least two distinct inflorescence branching steps before the spikelet meristem terminates in the production of a flower (floret. In model dicotyledonous species such successive conversions of meristem identities and the concentric arrangement of floral organs in specific whorls have both been shown to be genetically controlled. Using data from the Sugarcane Expressed Sequence Tag (EST Project (SUCEST database, we have identified all sugarcane proteins and genes putatively involved in reproductive meristem and flower development. Sequence comparisons of known flower-related genes have uncovered conserved evolutionary pathways of flower development and flower pattern formation between dicotyledons and monocotyledons, such as some grass species. We have paid special attention to the analysis of the MADS-box multigene family of transcription factors that together with the APETALA2 (AP2 family are the key elements of the transcriptional networks controlling plant reproductive development. Considerations on the evolutionary developmental genetics of grass flowers and their relation to the ABC homeotic gene activity model of flower development are also presented.

  1. Adaptation of a decreaser and an increaser grass species to ...

    African Journals Online (AJOL)

    Grasses have developed through natural selection to deter, escape and tolerate herbivory, and to escape and tolerate fire. In the semi-arid grassveld of the Eastern Cape, the species Themeda triandra and Sporobolus fimbriatus have been classified as Decreaser and Increaser II plants respectively. Both species have ...

  2. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  3. Plant names - sanskrit and latin.

    Science.gov (United States)

    Sensarma, P

    1992-07-01

    Ascertaining the botanical identities of many of the plants described in Sanskrit literature is a difficult task. However, the problem can be solved by basing the studies on an authentic and ancient Sanskrit work. Thus the Garuda Purana was studied and the botanical identities of the numerous plants listed in chapter 202 of the Purvabhaga were ascertained.

  4. Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events

    Science.gov (United States)

    Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.

    2016-12-01

    Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks

  5. Determination of region-specific data of yield and quality of alternatives to silage maize in fodder crops – field trails with forage gras and clover grass mixtures, Sorghum as well as whole plant silage of grain

    Directory of Open Access Journals (Sweden)

    Wosnitza, Andrea

    2014-02-01

    Full Text Available This project should generate current regional results over a period of three years about the parameter yield and quality of alternative fodder crops to maize; this includes grass and clover grass mixtures, silage maize, varieties of Sorghum/millets and whole plant silages of wheat, rye and triticale. The tested silage maize showed the highest and most reliable average dry matter yield with 23 tons per hectare, with a very low variance. The Sorghum and millet varieties had dry matter yields of 3 to 5 tons per hectare below the silage maize yield but with individual values fluctuating in a broad range within years and locations. With values far below 28% the dry matter contents were not suitable for ensiling. The grass and clover grass mixtures are good, stable and established alternatives to maize for silage. They achieved high yields comparable with these of Sorghum but stable and with a highly suitable dry matter content for ensiling. The yield of the whole plant silages was up to 22% lower compared with maize. So none of the alternative crops can compete with the high level yield of silage maize in its favoured region, therefore would be a combination of two crops recommended. But some individual locally adapted mixtures or varieties of the alternative crops reached nearly 80% of the maize yield. Silage maize showed the highest level of the net energy content for lactation (NEL, followed by the values of the fodder crops and the whole plant silages. The Sorghum varieties showed the lowest NEL value of all tested cultures. The highest crude protein showed the fodder crops contents. Silage maize, Sorghum and the whole plant silages had values lying nearly around the 50% mark of the fodder crops.

  6. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    Science.gov (United States)

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

  7. “Effect of giant rat's tail grass ( Sporobolus pyramidalis p.beauv ) on ...

    African Journals Online (AJOL)

    Effect of giant rat's tail grass ( Sporobolus pyramidalis p.beauv ) on Total Petroleum ... the use of plants, have been adopted for the remediation of the affected soils. ... Residual TPH and heavy metals (chromium, Cr and lead, Pb) were ...

  8. A molecular identification system for grasses: a novel technology for forensic botany.

    Science.gov (United States)

    Ward, J; Peakall, R; Gilmore, S R; Robertson, J

    2005-09-10

    Our present inability to rapidly, accurately and cost-effectively identify trace botanical evidence remains the major impediment to the routine application of forensic botany. Grasses are amongst the most likely plant species encountered as forensic trace evidence and have the potential to provide links between crime scenes and individuals or other vital crime scene information. We are designing a molecular DNA-based identification system for grasses consisting of several PCR assays that, like a traditional morphological taxonomic key, provide criteria that progressively identify an unknown grass sample to a given taxonomic rank. In a prior study of DNA sequences across 20 phylogenetically representative grass species, we identified a series of potentially informative indels in the grass mitochondrial genome. In this study we designed and tested five PCR assays spanning these indels and assessed the feasibility of these assays to aid identification of unknown grass samples. We confirmed that for our control set of 20 samples, on which the design of the PCR assays was based, the five primer combinations produced the expected results. Using these PCR assays in a 'blind test', we were able to identify 25 unknown grass samples with some restrictions. Species belonging to genera represented in our control set were all correctly identified to genus with one exception. Similarly, genera belonging to tribes in the control set were correctly identified to the tribal level. Finally, for those samples for which neither the tribal or genus specific PCR assays were designed, we could confidently exclude these samples from belonging to certain tribes and genera. The results confirmed the utility of the PCR assays and the feasibility of developing a robust full-scale usable grass identification system for forensic purposes.

  9. Invertebrate populations in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Llysdinam Field Centre, School of Biosciences, Cardiff University, Newbridge-on-Wye, Llandrindod Wells, Powys, LD1 6NB (United Kingdom)

    2007-01-15

    Monitoring of invertebrates at four field sites in Herefordshire, England, growing miscanthus and reed canary-grass was carried out in 2002, 2003 and 2004 to investigate the ecological impact of these crops on ground beetles, butterflies and arboreal invertebrates. Ground beetles were sampled by pitfall trapping; and arboreal invertebrates by sweep netting and stem beating. The Centre for Ecology and Hydrology's Butterflies Monitoring Scheme methodology was used to record butterflies. The effects of the biomass crops on invertebrates were indirect, through the use of weeds as food resources and habitat. The greater diversity of weed flora within miscanthus fields than within reed canary-grass fields had a greater positive effect on invertebrates. Ground beetles, butterflies and arboreal invertebrates were more abundant and diverse in the most floristically diverse miscanthus fields. The difference in crop architecture and development between miscanthus and reed canary-grass was reflected in their differences in crop height and ground cover early on in the season. However, most of the difference in arthropod abundance between the two crops was attributed to the difference in the agronomic practice of growing the crops such as plant density, and the effect of this on weed growth. Since perennial rhizomatous grasses require a single initial planting and related tillage, and also no major chemical inputs; and because the crops are harvested in the spring and the land is not disturbed by cultivation every year, the fields were used as over-wintering sites for invertebrates suggesting immediate benefits to biodiversity. (author)

  10. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  11. Dichotomy in the NRT gene families of dicots and grass species.

    Directory of Open Access Journals (Sweden)

    Darren Plett

    Full Text Available A large proportion of the nitrate (NO(3(- acquired by plants from soil is actively transported via members of the NRT families of NO(3(- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2 family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium. We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3(- transporters and NO(3(- transport in grass crop species.

  12. Genetic modification of wetland grasses for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Czako, M.; Liang Dali; Marton, L. [Dept. of Biological Sciences, Univ. of South Carolina, Columbia, SC (United States); Feng Xianzhong; He Yuke [National Lab. of Plant Molecular Genetics, Shanghai Inst. of Plant Physiology, Chinese Academy of Sciences, Shanghai, SH (China)

    2005-04-01

    Wetland grasses and grass-like monocots are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for genetic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomercurial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible. (orig.)

  13. Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer

    OpenAIRE

    Syeda Maryam Hussain

    2016-01-01

    Plants produce a number of substances and products and primary and secondary metabolites (SM) are amongst them with many benefits but limitation as well. Usually, the fodder are not considered toxic to animals or as a source having higher SM. The Brachiaria decumbens has a considerable nutritional value, but it is considered as a toxic grass for causing photosensitization in animals, if the grass is not harvested for more than 30 days or solely. The absence of detailed information in the lite...

  14. The Legitimate Name of a Fungal Plant Pathogen and the Ethics of Publication in the Era of Traceability.

    Science.gov (United States)

    Gonthier, Paolo; Visentin, Ivan; Valentino, Danila; Tamietti, Giacomo; Cardinale, Francesca

    2017-04-01

    When more scientists describe independently the same species under different valid Latin names, a case of synonymy occurs. In such a case, the international nomenclature rules stipulate that the first name to appear on a peer-reviewed publication has priority over the others. Based on a recent episode involving priority determination between two competing names of the same fungal plant pathogen, this letter wishes to open a discussion on the ethics of scientific publications and points out the necessity of a correct management of the information provided through personal communications, whose traceability would prevent their fraudulent or accidental manipulation.

  15. Phenology largely explains taller grass at successful nests in greater sage-grouse.

    Science.gov (United States)

    Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E

    2018-01-01

    Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

  16. Green grasses as light harvesters in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a). Copyright © 2014 Elsevier B.V. All rights reserved.

  17. N resource of grasses and N2-fixation of alfalfa in mono-culture and mixture

    International Nuclear Information System (INIS)

    Zhu Shuxiu

    1992-01-01

    The N behavior in alfalfa and gramineous forage grasses, tall fescue, siberian wild rye, wheat grass and awnless brome were studied in potting and pasture experiments in 1986-1988 by using 15 N isotope dilution technique. Comparison was made between the mixed culture and mono-culture. The % Ndff and %Ndfs of grasses were decreased by 14.19% and 20.76% respectively, while %Ndfa of alfalfa was increased by 20.22% in mixed culture as compared with mono-culture. The 15 N and soil N uptake data revealed that this enhancement was largely due to a lower competitive ability for soil N by alfalfa than by grass in mixed stands, causing the alfalfa to depend more on atmospheric N 2 fixation. 20.62%of N of grasses in mixed culture was from the N 2 -fixation by alfalfa, causing N level in root-sphere of alfalfa decreasing, which was considered to be one of the reasons that %Ndfa increased in mixed culture. N transfer may be carried out by the decomposition of roots and nodules of alfalfa plants

  18. Production of tropical forage grasses under different shading levels

    Directory of Open Access Journals (Sweden)

    Francisco Eduardo Torres

    2017-12-01

    Full Text Available This study aimed to evaluate the forage production of three tropical forage grasses under different shading levels. The experiment was conducted in a greenhouse at Universidade Estadual de Mato Grosso do Sul, University Unit of Aquidauana (UEMS/UUA, in a soil classified as Ultisol sandy loam texture. The treatments consisted of three grasses species combinations (B. brizantha cv. Marandu, B. decumbens cv. Basilisck and Panicum maximum cv. Tanzania, submitted to four shading levels (0, 30, 50 and 75%, arranged in a completely randomized blocks design in a factorial 3 x 4, with eight replications. After harvest, the plants were separated into shoot and roots for determination of shoot fresh mass (SFM, shoot dry mass (SDM and roots dry mass production. After analysis of variance, the qualitative factor was subjected to comparison of averages by Tukey’s test, and the quantitative factor to analysis of polynomial regression, being interactions appropriately unfolded. It was verified that B. decumbens, by its linearly increasing production of forage and less decrease of root formation, is the most recommended for shading conditions compared to grasses Tanzania and Marandu.

  19. Effects of molasses grass, Melinis minutiflora volatiles on the foraging behavior of the cereal stemborer parasitoid, Cotesia sesamiae

    NARCIS (Netherlands)

    Gohole, L.S.; Overholt, W.A.; Khan, Z.R.; Pickett, J.A.; Vet, L.E.M.

    2003-01-01

    Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum (Sorghum bicolor), while the nonhost plant was molasses grass

  20. Effects of molasses grass, Melinis minutiflora volatiles on the foraging behavior of the cereal stemborer parasitoid, Cotesia sesamiae

    NARCIS (Netherlands)

    Gohole, L.S.; Overholt, W.A.; Khan, Z.U.; Pickett, J.A.; Vet, L.E.M.

    2003-01-01

    Olfactory responses of the cereal stemborer parasitoid Cotesia sesamiae to volatiles emitted by gramineous host and nonhost plants of the stemborers were studied in a Y-tube olfactometer. The host plants were maize (Zea mays) and sorghum ( Sorghum bicolor), while the nonhost plant was molasses grass

  1. Comparison between Urea and Goat Manure as Sources of Nitrogen for Napier Grass Grown on Terraced Hill

    Directory of Open Access Journals (Sweden)

    Rahman, M.M.

    2016-12-01

    Full Text Available Effects of two nitrogen (N sources on dry matter (DM yield and nutritive value of Napier grass were evaluated. The nitrogen (N fertiliser (at rate of 300 kg N ha?1 year?1 was applied by dividing the terraces of a hill under two treatments: T1 (urea and T2 (goat manure. There were three replicates of each treatment arranged within three blocks in a completely randomised design. Grass was cut at about 60?day interval. In the first to fourth harvests, grass receiving manure had higher plant height than those with urea application. Grass receiving manure had higher DM yield than urea in almost all of the cuttings. In the fourth harvest, grass receiving urea contained higher DM and organic matter (OM than manure. Similar result was found for fifth harvest where urea gave higher crude protein (CP than manure. Irrespective of harvesting frequencies, average DM, OM, CP and neutral detergent fibre contents were not significantly different between grasses fertilised with manure and urea. In conclusion, manure is recommended for economical cultivation of Napier grass on terrace of hill.

  2. Systems study of fuels from grains and grasses. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Benson, W.; Allen, A.; Athey, R.; McElroy, A.; Davis, M.; Bennett, M.

    1978-02-24

    The program reported on herein consists of a first phase analysis of the potential for significant and economically viable contributions to U.S. energy needs from grasses and grains by the photosynthetic production of biomass. The study does not include other cultivated crops such as sugar cane, sugar beets, cotton, tobacco, vegetables, fruits, etc. The scope of the study encompasses grain crop residues, whole plant biomass from grain crops and nongrain crops on cropland, and whole plant biomass from grasses on pasture, rangeland, and federal range. The basic approach to the study involves first an assessment of current total biomass generation from the various grasses and grains on cropland, pasture, range, and federal range, and aggregating the production by combinations of crop residues and whole plant biomass; second, evaluation of possibilities for introduction of new crops and expanding production to marginal or presently idle land; third, development of proposed reasonable scenarios for actually harvesting biomass from selected combinations of crop residues, forages and hays, and new crops from land now in production, plus additional marginal or underutilized land brought into production; and finally, assessment on national and regional or local scales of the production that might be affected by reasonable scenarios. This latter effort includes analysis of tentative possibilities for reallocating priorities and needs with regard to production of grain for export or for livestock production. The overall program includes a case study analysis of production economics for a representative farm of about 1,000 acres (405 ha) located in Iowa.

  3. 238U, and its decay products, in grasses from an abandoned uranium mine

    Science.gov (United States)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  4. Grass-cellulose as energy source for biological sulphate removal from acid mine effluents

    CSIR Research Space (South Africa)

    Greben, HA

    2008-11-01

    Full Text Available The biological sulphate removal technology requires carbon and energy sources to reduce sulphate to sulphide. Plant biomass, e.g. grass, is a sustainable source of energy when cellulose is utilised during anaerobic degradation, producing volatile...

  5. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall

    Science.gov (United States)

    Li, Changjia; Pan, Chengzhong

    2018-03-01

    The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is

  6. Recursion to food plants by free-ranging Bornean elephant.

    Science.gov (United States)

    English, Megan; Gillespie, Graeme; Goossens, Benoit; Ismail, Sulaiman; Ancrenaz, Marc; Linklater, Wayne

    2015-01-01

    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have

  7. Diet Switching by Mammalian Herbivores in Response to Exotic Grass Invasion.

    Directory of Open Access Journals (Sweden)

    Carolina Bremm

    Full Text Available Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers and Ovis aries (ewes grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.

  8. Ecophysiological Responses of Invasive and Native Grass Communities with Simulated Warming

    Science.gov (United States)

    Quade, B.; Ravi, S.; Huxman, T. E.

    2010-12-01

    William Quade1, Sujith Ravi2, Ashley Weide2, Greg Barron-Gafford2, Katerina Dontsova2 and Travis E Huxman2 1Carthage College, WI 2 B2 Earthscience & UA Biosphere 2, University of Arizona, Tucson. Abstract Climate change, anthropogenic disturbances and lack of proper management practices have rendered many arid regions susceptible to invasions by exotic grasses with consequent ecohydrological, biogeochemical and socio economic implications. Thus, understanding the ecophysiological processes driving these large-scale vegetation shifts in drylands, in the context of rising temperatures and recurrent droughts is fundamental to global change research. Using the Biosphere 2 facility to maintain distinct temperature treatments of ambient and predicted warmer conditions (+ 4o C) inside, we compared the physiological (e.g. photosynthesis, stomatal conductance, biomass) responses of a native grass - Heteropogan contortus (Tanglehead) and an invasive grass - Pennisetum ciliare (Buffelgrass) growing in single and mixed communities. The results indicate that Buffelgrass can assimilate more CO2 per unit leaf area under current conditions, though warming seems to inhibit the performance when looking at biomass, photosynthesis and stomatal conductance. Under similar moisture regimes Buffelgrass performed better than Tangle head in mixed communities regardless of the temperature. Both grasses had decrease in stomatal conductance with warmer conditions, however the Buffel grass did not have the same decrease of conductance when planted in a mixed communities. Key words: Buffelgrass, Tanglehead, Biosphere 2, stomatal conductance, climate change

  9. The Application Of Liquid Fertilizer Made Of Traditional Market Organic Wastes On Growth Of Setaria Grass (Setaria splendida Stapf

    Directory of Open Access Journals (Sweden)

    Hendarto Eko

    2018-01-01

    Full Text Available There are hugh amount of traditional market organic wastes that may polute the environment. In general, the wastes are utilized for compost making and liquid fertilizer as well for plant. The use of liquid fertilizer from organic wastes of traditional markets opens up opportunities for misplaced cultivation of Setaria grass (Setaria splendida Stapf, which is required by ruminant farms. This research was conducted to evaluate the best mixture of water to the fertilizer in term of its effectiveness on the variables and experimental method using Completely Randomized Design. The treatments were: 6 doses of mixtures namely 0, 10, 20, 30, 40 and 50 liters of water, each of which was mixed with 10 liters of liquid fertilizer. The variables measured were the height, the numbers of tillers, the numbers of leaves, and canopy. The results of the study showed that the doses of water in the fertilizer did not indicate any significant differences (P > 0.05 on all variables being studied, however, the linear equation showed that greater concentrations of water in the fertilizer tended to decrease the growth of Setaria grass. Suggested use of water on the liquid fertilizer mixture should be not greater than 30 l – 10 l fertilizer.

  10. The Application Of Liquid Fertilizer Made Of Traditional Market Organic Wastes On Growth Of Setaria Grass (Setaria splendida Stapf)

    Science.gov (United States)

    Hendarto, Eko; Suwarno

    2018-02-01

    There are hugh amount of traditional market organic wastes that may polute the environment. In general, the wastes are utilized for compost making and liquid fertilizer as well for plant. The use of liquid fertilizer from organic wastes of traditional markets opens up opportunities for misplaced cultivation of Setaria grass (Setaria splendida Stapf), which is required by ruminant farms. This research was conducted to evaluate the best mixture of water to the fertilizer in term of its effectiveness on the variables and experimental method using Completely Randomized Design. The treatments were: 6 doses of mixtures namely 0, 10, 20, 30, 40 and 50 liters of water, each of which was mixed with 10 liters of liquid fertilizer. The variables measured were the height, the numbers of tillers, the numbers of leaves, and canopy. The results of the study showed that the doses of water in the fertilizer did not indicate any significant differences (P > 0.05) on all variables being studied, however, the linear equation showed that greater concentrations of water in the fertilizer tended to decrease the growth of Setaria grass. Suggested use of water on the liquid fertilizer mixture should be not greater than 30 l - 10 l fertilizer.

  11. Study of the organic -15N mineralization in an Oxisol and its absorption by a grass (Melinis minutiflora Beauv.)

    International Nuclear Information System (INIS)

    Urquiaga C, S.; Libardi, P.L.; Reichardt, K.; Padovese, P.P.; Moraes, S.O.; Victoria, R.L.

    1982-01-01

    Mineralization of organic-N to soil samples of an Oxisol as 15 N-labeled bean straw, with and without N from fertilizer (urea) was studied, as well as the effect of expanded vermiculite in the production and absorption of the mineralized-N by a grass. The experiment was conducted in plastic pots. The fertilizer urea (46,64%N) utilized was labelled (5,2% of 15 N) atoms). All experimental pots received 150 ppm of P and K as simple superphosphate (18% P 2 O 5 ) and 26% CaO) and potassium sulphate (60% K 2 O), respectively. The grass was planted by putting 8 small pieces by pot. The aerial part was harvested at 30 days intervals. Grass production was a function of the N available and bean straw behaved as an important N source for the plants; at 30 days (first sampling) the production N extraction and efficiency of utilization of the organic N were at their maximum, decreasing (p=0,01) at each following harvest; after the first sampling the mineralization rate of organic N was very low, decreasing significantly the grass production; N fertilizer favoured significantly the mineralization and the efficiency of utilization of the organic-N applied; vermiculite did not affect either production or the N extraction by the grass; in the soil mineral-N, after the culture, the percentage of N from labelled sources was two times that of the total-N and lower than in the plant in the final harvest. (Author) [pt

  12. Responses of C4 grasses to atmospheric CO2 enrichment : I. Effect of irradiance.

    Science.gov (United States)

    Sionit, Nasser; Patterson, David T

    1984-12-01

    The growth and photosynethetic responses to atmospheric CO 2 enrichment of 4 species of C 4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO 2 enrichment would yield proportionally greater growth enhancement in the C 4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 μl 1 -1 CO 2 and 1,000 or 150 μmol m -2 s -1 photosynthetic photon flux density (PPFD). An increase in CO 2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO 2 . Plants grown in CO 2 -enriched atmosphere had lower photosynthetic capacity relative to the low CO 2 grown plants when exposed to lower CO 2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO 2 compensation point for photosynthesis.

  13. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  14. A non-flowering green panic grass (Panicum maximum var. trichoglume) obtained through gamma irradiation

    International Nuclear Information System (INIS)

    Shivashankar, G.; Mahishi, D.M.; Kulkarni, R.S.

    1988-01-01

    Full text: Suppression of flowering has many advantages in a forage crop. Such genotypes are not only expected to give more yield but also to be more nutritious. Non-flowering plants also remain fresh and green for a longer period in the field compared to the flowering types. Green panic (Panicum maximum var. trichoglume) is a high yielding, nutritious, fast growing and drought tolerant grass that has a potential to grow even under partial shade conditions. However, the major drawback of this grass is that it flowers early and profusely, with the result that most of the nutrients are diverted towards panicle formation. With an objective to suppress the panicle initiation a mutation breeding programme was taken up. Seeds of green panic grass were subjected to gamma ray treatment with doses of 40, 50 and 60 krad. From the large spectrum of variation observed for flowering habit quite a few non-flowering plants were isolated and of these the one from 40 krad treatment was prominent. This non-flowering plant yielded more green foliage than the flowering type and recorded an increase to the extend of 10.5% and 22.5% in monthly and bi-monthly harvests respectively. The increase in green foliage yield was directly attributable to an increase in the number of tillers and concomitant reduction in culm weight. Unlike in the flowering types the mutant had more accumulation of dry matter in the leaves rather than the stem. Further nutritional analysis of leaves showed that the non-flowering plant is superior with 6.04% crude protein which represents 100% increase over that of flowering type. The calcium content (0.5%) was also double and the moisture content (11.70%) was higher in the non-flowering plant. The crude fibre content was reduced by 2%. Inhibition of flowering is a common feature in mutagen treated material, but it is seldom inherited. In sugarcane non-arrowing mutants have been induced with advantage to increase the sugar content (Walker and Sisodia, 1969). The

  15. Quantification of root associated nitrogen fixation in kallar grass as estimated by sup/15/nitrogen isotope dilution

    International Nuclear Information System (INIS)

    Malik, K.A.; Zafar, Y.

    1985-01-01

    Present investigations were made by using sup/15/N isotope dilution technique to quantitatively estimate BNF in Kallar grass when grown under controlled conditions in nutrient solution and inoculated with N sub/2/-fixing bacteria. Azospirillum brasilense and two isolates from the rhizosphere of kallar grass were used as inoculant. After harvest acetylen reduction of roots, total yield, total N and sup/15/ N analysis were made. Total-N in inoculated treatments was 2-3 times higher than in control and so were the fresh and dry weight yields. The estimates based on isotopic dilution indicated that 50-70 percent N in the plant was derived from BNF in case of inoculated treatment. The results based on N balance gave relatively lower values of 40-60 percent of total N derived from fixation. The data revealed that in Kallar grass a substantial amount of plant N is derived from BNF. (orig./A.B.)

  16. Loss of native herbaceous species due to woody plant encroachment facilitates the establishment of an invasive grass.

    Science.gov (United States)

    Alofs, Karen M; Fowler, Norma L

    2013-03-01

    Although negative relationships between diversity (frequently measured as species richness) and invasibility at neighborhood or community scales have often been reported, realistic natural diversity gradients have rarely been studied at this scale. We recreated a naturally occurring gradient in species richness to test the effects of species richness on community invasibility. In central Texas savannas, as the proportion of woody plants increases (a process known as woody plant encroachment), herbaceous habitat is both lost and fragmented, and native herbaceous species richness declines. We examined the effects of these species losses on invasibility in situ by removing species that occur less frequently in herbaceous patches as woody plant encroachment advances. This realistic species removal was accompanied by a parallel and equivalent removal of biomass with no changes in species richness. Over two springs, the nonnative bunchgrass Bothriochloa ischaemum germinated significantly more often in the biomass-removal treatment than in unmanipulated control plots, suggesting an effect of native plant density independent of diversity. Additionally, significantly more germination occurred in the species-removal treatment than in the biomass-removal treatment. Changes in species richness had a stronger effect on B. ischaemum germination than changes in plant density, demonstrating that niche-related processes contributed more to biotic resistance in this system than did species-neutral competitive interactions. Similar treatment effects were found on transplant growth. Thus we show that woody plant encroachment indirectly facilitates the establishment of an invasive grass by reducing native diversity. Although we found a negative relationship between species richness and invasibility at the scale of plots with similar composition and environmental conditions, we found a positive relationship between species richness and invasibility at larger scales. This apparent

  17. Congo grass grown in rotation with soybean affects phosphorus bound to soil carbon

    Directory of Open Access Journals (Sweden)

    Alexandre Merlin

    2014-06-01

    Full Text Available The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

  18. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata).

    Science.gov (United States)

    Su, Yi; Han, Fengxiang X; Chen, Jian; Sridhar, B B Maruthi; Monts, David L

    2008-01-01

    The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.

  19. Leaf silicification in grasses - a review. | P.J. | African Journal of ...

    African Journals Online (AJOL)

    Silica is absorbed from the soil by many grasses in an active or passive manner depending upon depending upon the species involved. It is carried upwards in the transpiration stream and deposited throughout the plant where it polymerizes to form amorphous silica gel. Deposition appears to be a passive process but ...

  20. Fungi colonising the above-ground parts of fodder galega (Galega orientalis Lam. cultivated in pure sowing and mixed with smooth brome-grass (Bromus inermis Leyss.

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available Field experiments were carried out in 1999-2001 in the experimental field in Knopin near Dobre Miasto to determine the intensity of fodder galega diseases cultivated in pure sowing and mixed with smooth brome-grass (the Hillstrand and Auld' s modified scale, 1982. The fungi colonising the phyllosphere of fodder galega were analysed in a laboratory (Chruoeciak , 1974. The following symptoms were observed in fodder galega: ascochyta blight (Ascochyta sp., gray mould (Botrytis cinerea and plant wilting (Fusarium oxysporum.. The climatic conditions had an effect on the development of diseases. The greatest intensity of gray mould (Ii = 24.3% and plant wilting (17.9% of plants with the disease symptoms were observed in 2001. Ascochyta blight occurred with the lowest intensity and the highest infection index in 1999 in the cultivation of fodder galega mixed with smooth brome-grass was only 12.1%. The type of cultivation also modified fodder galega disease intensity. Gray mould and plant wilting developed better in pure sowing than in mixed sowing with smooth brome-grass. Throughout the entire experiment period the average infection index was 22.8% and 15.9% of plants with the wilt symptoms. Ascochyta blight found better conditions for development in plants cultivated in a mix with smooth brome-grass (average infection index - 10.0%. The fodder galega phyllosphere provided 4149 fungal isolates represented by 17 species and yeast-like fungi. Yeast-like fungi dominated (75.6% of the total isolates. The following species were less numerous: Botrytis cinerea, Humicola brevis, Acremonium strictum and Cladosporium cladosporioides. From the leaves of fodder galega cultivated in pure sowing, 3.8% more fungi were obtained than from the leaves of plants cultivated with a mix of smooth brome-grass, including more frequently isolated pathogenic fungi representing the genera of Fusarium and the species of Botrytis cinerea.

  1. Botanical name changes – nuisance or a quest for precision?

    Directory of Open Access Journals (Sweden)

    Bruce G. Cook

    2015-01-01

    Full Text Available To understand the need for the seemingly regular changes to plant names applied to many tropical forage species, it is necessary to be aware of the rules that govern botanical nomenclature.  The binomial naming system, first proposed in 1753, is governed by rules defined in the International Code of Nomenclature for algae, fungi and plants (ICN.  These rules have been strengthened as necessary over the years in the interest of providing practitioners with plant names that are unique for each species, and presented in an hierarchical format that shows the evolutionary relationships between plants.  This paper includes a table of name changes accepted by the USDA Germplasm Resources Information Network (GRIN for species used in tropical forage research and development over the last half century.  The need to use legitimate plant names is emphasized and suggestions are made on how practitioners might best deal with the changes.Keywords: Taxonomy, nomenclature, tropical forages.DOI: 10.17138/TGFT(334-40

  2. Effects of Altered Seasonality of Precipitation on Grass Production and Grasshopper Performance in a Northern Mixed Prairie.

    Science.gov (United States)

    Branson, David H

    2017-06-01

    Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of herbivory on vegetation. We modified seasonal patterns of precipitation and grasshopper density in a manipulative experiment to examine if seasonality of drought combined with herbivory affected plant biomass, nitrogen content, and grasshopper performance. Grass biomass was affected by both precipitation and grasshopper density treatments, while nitrogen content of grass was higher with early-season drought. Proportional survival was negatively affected by initial density, while survival was higher with early drought than with full-season drought. Drought timing affected the outcome, with early summer drought increasing grass nitrogen content and grasshopper survival, while season-long and late-season drought did not. The results support arguments that our knowledge of plant responses to seasonal short-term variation in climate is limited and illustrate the importance of experiments manipulating precipitation phenology. The results confirm that understanding the season of drought is critical for predicting grasshopper population dynamics, as extreme early summer drought may be required to strongly affect Melanoplus sanguinipes (F.) performance. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  3. Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates

    Directory of Open Access Journals (Sweden)

    Geczy Carolyn L

    2003-09-01

    Full Text Available Abstract Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis, rye grass (Lolium perenne and Bermuda grass (Cynodon dactylon were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1.

  4. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil.

    Science.gov (United States)

    Fatima, Kaneez; Afzal, Muhammad; Imran, Asma; Khan, Qaiser M

    2015-03-01

    Different grasses and trees were tested for their growth in a crude oil contaminated soil. Three grasses, Lolium perenne, Leptochloa fusca, Brachiaria mutica, and two trees, Lecucaena leucocephala and Acacia ampliceps, were selected to investigate the diversity of hydrocarbon-degrading rhizospheric and endophytic bacteria. We found a higher number of hydrocarbon degrading bacteria associated with grasses than trees and that the endophytic bacteria were taxonomically different from rhizosphere associated bacteria showing their spatial distribution with reference to plant compartment as well as genotype. The rhizospheric soil yielded 22 (59.45 %), root interior yielded 9 (24.32 %) and shoot interior yielded 6 (16.21 %) hydrocarbon-degrading bacteria. These bacteria possessed genes encoding alkane hydroxylase and showed multiple plant growth-promoting activities. Bacillus (48.64 %) and Acinetobacter (18.91 %) were dominant genera found in this study. At 2 % crude oil concentration, all bacterial isolates exhibited 25 %-78 % oil degradation and Acinetobacter sp. strain BRSI56 degraded maximum. Our study suggests that for practical application, support of potential bacteria combined with the grasses is more effective approach than trees to remediate oil contaminated soils.

  5. Forage tree legumes. II. Investigation of nitrogen transfer to an associated grass using a split-root technique

    International Nuclear Information System (INIS)

    Catchpoole, D.W.; Blair, G.J.

    1990-01-01

    The glasshouse study reported, employed a split-root technique, whereby trees of leucaena and gliricidia were grown in boxes with 15 N fed to one half of the root system and the transfer of N to the other half of the box was measured by sampling tree and planted grass. Detection of 15 N in the grass tops and roots from the unlabelled half of the box was used to indicate N transfer from the tree roots to the grass. Transfer of labelled N to the grass amounted to 4.1% in the first 6 week period when 15 N was being injected in the tree root zone. A harvest of the tree and grass was made at 6 weeks and both allowed to regrow for a further 6 weeks with no further addition of 15 N. Over the entire 12 week experimental period 7.6% of the labelled N from the tree was transferred to the grass. The low proportion of N transferred from tree legume to the grass in this experiment, where herbage was cut and removed, is similar to the findings in the earlier field experiment and indicates that, in such a system, little direct beneficial effect of N fixation would be expected in an understorey grass or food crop. 24 refs., 4 tabs

  6. Effect of lime, N, P, and K amendments to surface-mined coal spoils on yield and chemical composition of common Bermuda grass

    Energy Technology Data Exchange (ETDEWEB)

    Ebelhar, M W; Barnhisel, R I; Akin, G W; Powell, J L

    1982-12-01

    Common Bermuda grass (Cynodon dactylon, L. Pers.) was used as an alternative to cool-season grasses such as tall fescue (Festuca arundinacea Schreb.) on acid sandstone surface-mine spoils in western Kentucky. Lime, N, P, and K fertilizer amendments were evaluated as to their effects in promoting Bermuda grass growth and development. The applied lime was effective in raising the pH from 3.4 to 4.6, 5.7, and 6.3 for the 18, 36 and 72 metric ton/ha treatments, respectively, over a 17-month period. Nitrogen was found to affect Bermuda grass production significantly and severe deficiency symptoms were observed where N was not applied. Dry matter yields increased significantly with each additional increment of N applied. Although the application of P and K increased the concentration of these ions in the plant tissues, the main influence of P and K was to increase the plants' resistance to winter killing; little effect on total dry matter production was observed. 19 references.

  7. Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties.

    Science.gov (United States)

    Tamura, Ken-Ichi; Sanada, Yasuharu; Tase, Kazuhiro; Kawakami, Akira; Yoshida, Midori; Yamada, Toshihiko

    2014-04-01

    Fructans can act as cryoprotectants and contribute to freezing tolerance in plant species, such as in members of the grass subfamily Pooideae that includes Triticeae species and forage grasses. To elucidate the relationship of freezing tolerance, carbohydrate composition and degree of polymerization (DP) of fructans, we generated transgenic plants in the model grass species Brachypodium distachyon that expressed cDNAs for sucrose:fructan 6-fructosyltransferases (6-SFTs) with different enzymatic properties: one cDNA encoded PpFT1 from timothy grass (Phleum pratense), an enzyme that produces high-DP levans; a second cDNA encoded wft1 from wheat (Triticum aestivum), an enzyme that produces low-DP levans. Transgenic lines expressing PpFT1 and wft1 showed retarded growth; this effect was particularly notable in the PpFT1 transgenic lines. When grown at 22 °C, both types of transgenic line showed little or no accumulation of fructans. However, after a cold treatment, wft1 transgenic plants accumulated fructans with DP = 3-40, whereas PpFT1 transgenic plants accumulated fructans with higher DPs (20 to the separation limit). The different compositions of the accumulated fructans in the two types of transgenic line were correlated with the differences in the enzymatic properties of the overexpressed 6-SFTs. Transgenic lines expressing PpFT1 accumulated greater amounts of mono- and disaccharides than wild type and wft1 expressing lines. Examination of leaf blades showed that after cold acclimation, PpFT1 overexpression increased tolerance to freezing; by contrast, the freezing tolerance of the wft1 expressing lines was the same as that of wild type plants. These results provide new insights into the relationship of the composition of water-soluble carbohydrates and the DP of fructans to freezing tolerance in plants.

  8. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    Directory of Open Access Journals (Sweden)

    Thomas C Wagner

    Full Text Available Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody

  9. Prognoses of plant community changes in the territories not used for agriculture after the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Timofeev, S.F.; Podolyak, A.G.; Avseenko, S.V.; Sapegin, L.M.; Dayneko, N.M.

    1997-01-01

    Science-research in the zones of eviction in the Bragin district of the Gomel region confirms interdependence between development of plants' communities and such factors as type of soil, kind of agricultural field, the term of nonuse. The study of vegetation change on the former fields, represented by turf-podsol soil, indicates that plant community has by now been formed on it, in which out of 100% projection cover prevail Artemisia absinthium L., - 40%, Artemisia campestris L. -20%, Artemisia vulgaris L. -5%, Elytrigia repens (L.) Nevski - 30%. On lower lots, represented by turf-podsol swampy soil, prevail Elytrigia repens - 60%, Artemisia absinthium -20%, Erigeron canadensis - 10%. So, on the unused arable land the tendency to form communities of Elytrigia repens is observed. In 10-15 years there may be a community here, consisting of bunch-grasses an densely turfed grasses. On the haymaking and pasture meadows, sowing plants are replaced by rhizome bunch-grasses (Poa pratensis L.) rhizome (Elytrigia repens) and diverse grasses (Artemisia absinthium, Achillea millefolium, Erigeron canadensis and others). On sowing meadows, situated on peat-swamp soil, Urtica dioica L. took root. It formed powerful herbage with 80-90% projection cover, which prevents the renewing of grasses. Only after gradual decrease of Urtica dioica there will appear different grasses, as well as rhisome grasses. In future this land can be used for haymaking. It is impossible to use this kind of soil without herbicides in large quantity, which may create additional problems of ecological character

  10. Meadow-grass gall midge

    DEFF Research Database (Denmark)

    Hansen, Lars Monrad

    The area with meadow-grass (Poa pratensis, L.) grown for seed production in Den-mark is a significant proportion of the entire seed production. The meadow-grass gall midge (Mayetiola schoberi, Barnes 1958) is of considerable economic importance since powerful attacks can reduce the yield...

  11. The Genetics of Biofuel Traits in Panicum Grasses: Developing a Model System with Diploid Panicum Hallii

    Energy Technology Data Exchange (ETDEWEB)

    Juenger, Thomas [Univ. of Texas, Austin, TX (United States). Dept. of Integrative Biology; Wolfrum, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-31

    Our DOE funded project focused on characterizing natural variation in C4 perennial grasses including switchgrass (Panicum virgatum) and Hall’s panicgrass (Panicum hallii). The main theme of our project was to better understand traits linked with plant performance and that impact the utility of plant biomass as a biofuel feedstock. In addition, our project developed tools and resources for studying genetic variation in Panicum hallii. Our project successfully screened both Panicum virgatum and Panicum hallii diverse natural collections for a host of phenotypes, developed genetic mapping populations for both species, completed genetic mapping for biofuel related traits, and helped in the development of genomic resources of Panicum hallii. Together, these studies have improved our understanding of the role of genetic and environmental factors in impacting plant performance. This information, along with new tools, will help foster the improvement of perennial grasses for feedstock applications.

  12. Impact of different plants on the gas profile of a landfill cover

    International Nuclear Information System (INIS)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-01-01

    Research highlights: → Plants influence gas profile and methane oxidation in landfill covers. → Plants regulate water content and increase the availability of oxygen for methane oxidation. → Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  13. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    Science.gov (United States)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    Arsenic is one of the most harmful and toxic metals, being a Group A human carcinogen. Mining activities as well as the use of arsenic-containing pesticides have resulted in the contamination of a wide variety of sites including mine tailings, cattle dip sites, wood treatment sites, pesticide treatment areas, golf courses, etc. Phytoremediation has emerged as a novel and promising technology, which uses plants to clean up contaminated soil and water taking advantage of plant's natural abilities to extract and accumulate various contaminants. This method has distinct advantages, since it maintains the biological properties and physical structure of the soil, is environment friendly, and above all, inexpensive. However, effective remediation of contaminated residential soils using a specific plant species is an immensely complex task whose success depends on a multitude of factors including the ability of the target plant to uptake, translocate, detoxify, and accumulate arsenic in its system. One of the major challenges in phytoremediation lies in identifying a fast- growing, high biomass plant that can accumulate the contaminant in its harvestable parts. vetiver grass (Vetiveria zizanioides) is a fast-growing perennial grass with strong ecological adaptability and large biomass. While this plant is not a hyperaccumulator of arsenic, it has been reported to be able to tolerate and accumulate considerable amounts of arsenic. Being a high biomass, fast-growing plant, vetiver has the potential to be used for arsenic remediation. The present study investigates the potential of vetiver grass to tolerate and accumulate arsenic in soils with varying physico-chemical properties. A greenhouse study is in progress to study the uptake, tolerance and stress response of vetiver grass to inorganic arsenical pesticide. A column study was set up using 5 soils (Eufaula, Millhopper, Orelia, Orla, and Pahokee Muck) contaminated with sodium arsenite at 4 different concentrations of

  14. PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS

    Directory of Open Access Journals (Sweden)

    V. Petras

    2016-06-01

    Full Text Available Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM, and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM. Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL, Point Cloud Library (PCL, and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

  15. Nutritional value of cabbage and kikuyu grass as food for grass carp ...

    African Journals Online (AJOL)

    and digestibility coefficients were obtained for the protein, fibre, ash and fat contents of both ... Cabbage is a superior feed compared to grass for raising grass carp and a suitable low-cost alternative ... Materials and Methods ... from jumping out and was fitted with an air lift under- .... In: Aquatic weeds in South East Asia.

  16. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  17. Forage production of grass-legume binary mixtures on Intermountain Western USA irrigated pastures

    Science.gov (United States)

    A well-managed irrigated pasture is optimized for forage production with the use of N fertilizer which incurs extra expense. The objective was to determine which binary grass-legume mixture and mixture planting ratio of tall fescue (Festuca arundinacea Schreb.) (TF), meadow brome (Bromus bieberstei...

  18. Divergent evapotranspiration partition dynamics between shrubs and grasses in a shrub-encroached steppe ecosystem.

    Science.gov (United States)

    Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin

    2018-06-04

    Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Transfer of radiocaesium to barley, rye grass and pea

    International Nuclear Information System (INIS)

    Oehlenschlaeger, M.; Gissel-Nielsen, G.

    1989-11-01

    In areas with intensive farming, as in Denmark, it is of great interest to identify possible countermeasures to be taken in order to reduce the longterm effects of radioactive contamination of arable land. The most important longer-lived radionuclides from the Chernobyl were 137 Cs and 134 Cs. The aim of the present project was to identify crops with relatively low or high root uptake of these two isotopes. Although such differences may be small, a shift in varieties might be a cost-effective way to reduce collective doses. The experiment was carried out at Risoe National Laboratory in the summer of 1988. The species used were: spring barley (Hordeum vulgare L) varieties: Golf, Apex, Anker, Sila; Perennial rye grass (Lolium perenne L.) varieties: Darbo (early) and Patoro (late); Italian rye-grass (Lolium multiflorum) variety: Prego; and pea (Pisum arvense L.) variety: Bodil. Each crop was grown in two types of soil, a clay-loam and an organic soil. 137 Cs was added to the clay-loam. The organic soil, which was contaminated with 137 Cs from the Chernobyl accident, was supplied with 134 Cs. Sila barley and Italian rye-grass were identified among the species tested as plants with a relative high uptake of radio-caesium. (author)

  20. Recursion to food plants by free-ranging Bornean elephant

    Directory of Open Access Journals (Sweden)

    Megan English

    2015-08-01

    Full Text Available Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant’s preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when

  1. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. [Argonne National Lab., IL (United States); Gerdes, D.; Youngs, D. [Army Construction Engineering Research Lab., Champaign, IL (United States)

    1992-07-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  2. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. (Argonne National Lab., IL (United States)); Gerdes, D.; Youngs, D. (Army Construction Engineering Research Lab., Champaign, IL (United States))

    1992-01-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  3. Vetiver grass is capable of removing TNT from soil in the presence of urea

    Energy Technology Data Exchange (ETDEWEB)

    Das, Padmini [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States); Datta, Rupali [Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 (United States); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.c [Cyprus International Institute for Environmental and Public Health in Association with Harvard School Of Public Health, Cyprus University of Technology, Limassol (Cyprus); Sarkar, Dibyendu [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States)

    2010-05-15

    The high affinity of vetiver grass for 2,4,6 trinitrotoluene (TNT) and the catalytic effectiveness of urea in enhancing plant uptake of TNT in hydroponic media we earlier demonstrated were further illustrated in this soil-pot-experiment. Complete removal of TNT in urea-treated soil was accomplished by vetiver at the low initial soil-TNT concentration (40 mg kg{sup -1}), masking the effect of urea. Doubling the initial TNT concentration (80 mg kg{sup -1}) significantly (p < 0.002) increased TNT removal by vetiver, in the presence of urea. Without vetiver grass, no significant (p = 0.475) change in the soil-TNT concentrations was observed over a period of 48 days, suggesting that natural attenuation of soil TNT could not explain the documented TNT disappearance from soil. - Vetiver grass in the presence of urea effectively removes TNT from soil.

  4. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium

    Directory of Open Access Journals (Sweden)

    Gołda Sylwia

    2016-03-01

    Full Text Available The aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF and translocation factor (TF. All three tested species of grasses had TF 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.

  5. Accelerated development in Johnsongrass seedlings (Sorghum halepense) suppresses the growth of native grasses through size-asymmetric competition.

    Science.gov (United States)

    Schwinning, Susanne; Meckel, Heather; Reichmann, Lara G; Polley, H Wayne; Fay, Philip A

    2017-01-01

    Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium scoparius) and switchgrass (Panicum virgatum). We predicted that a) the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b) competitive effect and response would be negatively correlated and c) soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding) ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass critical mechanism by which exotic invasive species displace functionally similar native species and alter the functional dynamics of native communities.

  6. Heavy metal concentration in forage grasses and extractability from some acid mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.W.; Ibeabuchi, I.O.; Sistani, K.R.; Shuford, J.W. (Alabama A and M University, Normal (United States). Department of Plant and Soil Science)

    1993-06-01

    Laboratory and greenhouse studies were conducted on several forage grasses, bermudagrass ([ital Cynodon dactylon]), creeping red fescue ([ital Festuca rubra]), Kentucky 31-tall fescue ([ital Festuca arundinacea]), oat ([ital Avena sativa]), orchardgrass ([ital Dactylis glomerata]), perennial ryegrass ([ital Lolium perenne]), sorghum ([ital Sorghum bicolor]), triticale (X. [ital triticosecale Wittmack]), and winter wheat ([ital Triticum aestivum]) grown on three Alabama acid mine spoils to study heavy metal accumulation, dry matter yield and spoil metal extractability by three chemical extractants (Mehlich 1, DTPA, and 0.1 M HCl). Heavy metals removed by these extractants were correlated with their accumulation by several forage grasses. Among the forages tested, creeping red fescue did not survive the stressful conditions of any of the spoils, while orchard grass and Kentucky 31-tall fescue did not grow in Mulberry spoil. Sorghum followed by bermudagrass generally produced the highest dry matter yield. However, the high yielding bermudagrass was most effective in accumulating high tissue levels of Mn and Zn from all spoils (compared to the other grasses) but did not remove Ni. On the average, higher levels of metals were extracted from spoils in the order of 0.1 M HCl[gt] Mehlich 1[gt] DTPA. However, DTPA extracted all the metals from spoils while Mehlich 1 did not extract Pb and 0.1 M HCl did not extract detectable levels of Ni. All of the extractants were quite effective in determining plant available Zn from the spoils. For the other metals, the effective determination of plant availability depended on the crop, the extractant, and the metal in concert. 20 refs., 6 tabs.

  7. Common garden comparisons of reproductive, forage and weed suppression potential of rangeland rehabilitation grasses of the Great Basin

    Science.gov (United States)

    Common garden experiments are a means to remove environmental effects. Using 8 species of perennial rangeland grasses, we established a common garden (3 reps x28 plants = 84 plants/species). We found that ‘Hycrest’ crested wheatgrass (Agropyron cristatum) and bluebunch wheatgrass (Pseudoroegneria sp...

  8. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees.

    Science.gov (United States)

    Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María-Nazaret; Jiménez-Cárceles, Francisco J; Conesa, Héctor M

    2014-01-15

    The goal of this work was to assess the selection of the most suitable combination of plant species for the phytomanagement of mine tailings, by comparing among different plant life-forms (grasses, shrubs and trees). A comparison on induced rhizosphere changes generated by four plant species (the grass Piptatherum miliaceum, the shrub Helichrysum decumbens, and the trees, Pinus halepensis and Tetraclinis articulata) and high density vegetation patches (fertility islands) at a mine tailing located at Southeast Spain and the description of their physiological status employing stable isotopes analyses were carried out. The edaphic niches for plant growth were determined by salinity, organic matter and total soil nitrogen while metal(loid)s concentrations played a minor role. Induced changes in plant rhizospheres had a significant impact in soil microbiology. While grasses and shrubs may play an important role in primary ecological succession, trees seem to be the key to the development of fertility islands. The low δ(15)N values (-8.00‰) in P. halepensis needles may reflect higher ectomycorrhizal dependence. Large differences in leaf δ(18)O among the plant species indicated contrasting and complementary water acquisition strategies. Leaf δ(13)C values (-27.6‰) suggested that T. articulata had higher water use efficiency than the rest of species (-29.9‰). The implement of a diverse set of plant species with contrasting life forms for revegetating tailings may result in a more efficient employment of water resources and a higher biodiversity not only in relation to flora but soil microbiology too. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparison of silage and hay of dwarf Napier grass (Pennisetum purpureum) fed to Thai native beef bulls.

    Science.gov (United States)

    Mapato, Chaowarit; Wanapat, Metha

    2018-03-23

    Both quantity and quality of forages are important in dry season feeding. Eight Thai native beef bulls were arranged in a Completely randomized design to evaluate dwarf Napier namely Sweet grass (Pennisetum purpureum cv. Mahasarakham) preserved as silage or hay on feed intake, digestibility, and rumen fermentation. The animals were fed with forage ad libitum supplemented with concentrate mixture at 1.0% of BW for 21 days; data were collected during the last 7 days. The results showed that there were differences (P  0.05) in animals fed silage and hay. Sweet grass is better preserved as hay rather than silage.

  10. Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas.

    Science.gov (United States)

    Donzelli, D; De Michele, C; Scholes, R J

    2013-09-07

    The co-existence of trees and grasses in savannas in general can be the result of processes involving competition for resources (e.g. water and nutrients) or differential response to disturbances such as fire, animals and human activities; or a combination of both broad mechanisms. In moist savannas, the tree-grass coexistence is mainly attributed to of disturbances, while in dry savannas, limiting resources are considered the principal mechanism of co-existence. Virtually all theoretical explorations of tree-grass dynamics in dry savannas consider only competition for soil water. Here we investigate whether coexistence could result from a balanced competition for two resources, namely soil water and mineral nitrogen. We introduce a simple dynamical resource-competition model for trees and grasses. We consider two alternative hypotheses: (1) trees are the superior competitors for nitrogen while grasses are superior competitors for water, and (2) vice-versa. We study the model properties under the two hypotheses and test each hypothesis against data from 132 dry savannas in Africa using Kendall's test of independence. We find that Hypothesis 1 gets much more support than Hypothesis 2, and more support than the null hypothesis that neither is operative. We further consider gradients of rainfall and nitrogen availability and find that the Hypothesis 1 model reproduces the observed patterns in nature. We do not consider our results to definitively show that tree-grass coexistence in dry savannas is due to balanced competition for water and nitrogen, but show that this mechanism is a possibility, which cannot be a priori excluded and should thus be considered along with the more traditional explanations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. PLANT NAMES – SANSKRIT AND LATIN

    Science.gov (United States)

    Sensarma, P.

    1992-01-01

    Ascertaining the botanical identities of many of the plants described in Sanskrit literature is a difficult task. However, the problem can be solved by basing the studies on an authentic and ancient Sanskrit work. Thus the Garuda Purana was studied and the botanical identities of the numerous plants listed in chapter 202 of the Purvabhaga were ascertained. PMID:22556589

  12. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Soliman, I.A.; Visser, de H.; Vuuren, van A.M.

    1999-01-01

    Grass samples were harvested during the 1993 growing season after a precut on April 27, 1993 and were stored frozen or left to ensile in 30-L buckets. Effects on chemical composition and fermentation kinetics of the maturation of the grass and of ensiling were investigated. Chemical composition and

  13. An idealized model for tree-grass coexistence in savannas : The role of life stage structure and fire disturbances

    NARCIS (Netherlands)

    Baudena, Mara|info:eu-repo/dai/nl/340303867; D'Andrea, Fabio; Provenzale, A.

    2010-01-01

    1. We discuss a simple implicit-space model for the competition of trees and grasses in an idealized savanna environment. The model represents patch occupancy dynamics within the habitat and introduces life stage structure in the tree population, namely adults and seedlings. A tree can be

  14. Long-term decomposition of grass roots as affected by elevated atmospheric carbon dioxide

    NARCIS (Netherlands)

    Ginkel, van J.H.; Gorissen, A.; Veen, van J.A.

    1996-01-01

    Carbon input into the soil and decomposition processes under elevated CO2 are highly relevant for C sequestering in the soil. Plant growth and decomposition of root material under ambient and elevated atmospheric CO2 concentrations were monitored in wind tunnels. Grass roots (Lolium perenne L.) were

  15. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  16. The ghost of outcrossing past in downy brome, an inbreeding annual grass

    Science.gov (United States)

    Susan E. Meyer; Sudeep Ghimire; Samuel Decker; Keith R. Merrill; Craig E. Coleman

    2013-01-01

    We investigated the frequency of outcrossing in downy brome (Bromus tectorum L.), a cleistogamous weedy annual grass, in both common garden and wild populations, using microsatellite and single nucleotide polymorphic (SNP) markers. In the common garden study, 25 lines with strongly contrasting genotypes were planted in close proximity. We fingerprinted 10 seed progeny...

  17. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System.

    Directory of Open Access Journals (Sweden)

    Akanksha Sharma

    Full Text Available Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their

  18. Sonoran Desert ecosystem transformation by a C4 grass without the grass/fire cycle

    Science.gov (United States)

    Olsson, Aaryn D.; Betancourt, Julio; McClaran, Mitchel P.; Marsh, Stuart E.

    2012-01-01

    Aim Biological invasions facilitate ecosystem transformation by altering the structure and function, diversity, dominance and disturbance regimes. A classic case is the grass–fire cycle in which grass invasion increases the frequency, scale and/or intensity of wildfires and promotes the continued invasion of invasive grasses. Despite wide acceptance of the grass–fire cycle, questions linger about the relative roles that interspecific plant competition and fire play in ecosystem transformations. Location Sonoran Desert Arizona Upland of the Santa Catalina Mountains, Arizona, USA. Methods We measured species cover, density and saguaro (Carnegiea gigantea) size structure along gradients of Pennisetum ciliare invasion at 10 unburned/ungrazed P. ciliare patches. Regression models quantified differences in diversity, cover and density with respect to P. ciliare cover, and residence time and a Fisher's exact test detected demographic changes in saguaro populations. Because P. ciliare may have initially invaded locations that were both more invasible and less diverse, we ran analyses with and without the plots in which initial infestations were located. Results Richness and diversity decreased with P. ciliare cover as did cover and density of most dominant species. Richness and diversity declined with increasing time since invasion, suggesting an ongoing transformation. The proportion of old-to-young Carnegiea gigantea was significantly lower in plots with dominant P. ciliare cover. Main conclusions Rich desert scrub (15–25 species per plot) was transformed into depauperate grassland (2–5 species per plot) within 20 years following P. ciliare invasion without changes to the fire regime. While the onset of a grass–fire cycle may drive ecosystem change in the later stages and larger scales of grass invasions of arid lands, competition by P. ciliare can drive small-scale transformations earlier in the invasion. Linking competition-induced transformation rates with

  19. Remediation and reclamation of soils heavily contaminated with toxic metals as a substrate for greening with ornamental plants and grasses.

    Science.gov (United States)

    Jelusic, Masa; Lestan, Domen

    2015-11-01

    Soils highly contaminated with toxic metals are currently treated as waste despite their potential inherent fertility. We applied EDTA washing technology featuring chelant and process water recovery for remediation of soil with 4037, 2527, and 26 mg kg(-1) of Pb, Zn and Cd, respectively in a pilot scale. A high EDTA dose (120 mmol kg(-1) of soil) removed 70%, 15%, and 58% of Pb, Zn, and Cd, respectively, and reduced human oral bioaccessibility of Pb below the limit of quantification and that of Zn and Cd 3.4 and 3.2 times. In a lysimeters experiment, the contaminated and remediated soils were laid into two garden beds (4×1×0.15 m) equipped with lysimeters, and subjected to cultivation of ornamental plants: Impatiens walleriana, Tagetes erecta, Pelargonium×peltatum, and Verbena×hybrida and grasses: Dactylis glomerata, Lolium multiflorum, and Festuca pratensis. Plants grown on remediated soil demonstrated the same or greater biomass yield and reduced the uptake of Pb, Zn and Cd up to 10, 2.5 and 9.5 times, respectively, compared to plants cultivated on the original soil. The results suggest that EDTA remediation produced soil suitable for greening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of two phyto hormone producer rhizobacteria on the bermuda grass growth response and tolerance to phenanthrene

    International Nuclear Information System (INIS)

    Guerrero-Zuniga, A.; Rojas-Contreras, A.; Rodriguez-Dorantes, A.; Montes-Villafan, S.

    2009-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria that have the ability to relieve environmental stress in plants, increasing the plant growth potential. Of importance to phytoremediation, PGPR stimulate plant root development and enhance root growth.This study evaluated the growth response and the tolerance to phenanthrene of Bermuda grass: Cynodon dactylon inoculated with two phytohormone producer rhizobacteria: strains II and III, isolated from a contaminated soil with petroleum hydrocarbons. (Author)

  1. Effect of two phyto hormone producer rhizobacteria on the bermuda grass growth response and tolerance to phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Zuniga, A.; Rojas-Contreras, A.; Rodriguez-Dorantes, A.; Montes-Villafan, S.

    2009-07-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria that have the ability to relieve environmental stress in plants, increasing the plant growth potential. Of importance to phytoremediation, PGPR stimulate plant root development and enhance root growth.This study evaluated the growth response and the tolerance to phenanthrene of Bermuda grass: Cynodon dactylon inoculated with two phytohormone producer rhizobacteria: strains II and III, isolated from a contaminated soil with petroleum hydrocarbons. (Author)

  2. Post-ruminal digestibility of crude protein from grass and grass silages in cows

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2006-01-01

    Grass samples were grown on a clay or sandy soil, fertilised with 150 or 300 kg N/ha per year, and harvested on different days during two consecutive growing seasons. The grass samples were stored frozen or ensiled after wilting to approximately 250 or 450 g DM/kg. The recoveries of crude protein

  3. Germination timing and rate of locally collected western wheatgrass and smooth brome grass: the role of collection site and light sensitivity along a riparian corridor

    Science.gov (United States)

    The ecological integrity of riparian areas is reduced by biological plant invaders like smooth brome grass (Bromus inermis). Smooth brome actively invades recently disturbed riparian zones by its high seed production and fast seedling establishment. Restoring native perennial grasses to these regio...

  4. Toxic and feeding deterrent effects of native aquatic macrophytes on exotic grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Murphy, Joseph E; Beckmen, Kimberlee B; Johnson, Julie K; Cope, Rhian B; Lawmaster, Todd; Beasley, Val R

    2002-08-01

    Declines of amphibians have been attributed to many factors including habitat degradation. The introduction of grass carp (Ctenopharyngodon idella) as a biological agent for aquatic plant control in ponds and lakes managed narrowly for human recreation has likely contributed to amphibian declines through massive plant removal and associated habitat simplification and thus degradation. This research examined the interactions among grass carp and three Midwestern aquatic plants (Jussiaea repens, Ranunculus longirostris, and R. flabellaris) that may be of value in rehabilitation of habitats needed by amphibians. The feeding preference study found that C. idella avoided eating both J. repens and R. longirostris. Ranunculus species studied to date contain a vesicant toxin called ranunculin that is released upon mastication. The study that compared the effects of R. flabellaris, J. repens and a control food administered by tube feeding to C. idella found significant lesions only in the mucosal epithelium of the individuals exposed to R.flabellaris. The avoidance by C. idella of J. repens and R. longirostris in the feeding preference study, and the significant toxicity of R. flabellaris demonstrated by the dosing study, indicate these plants warrant further examination as to their potential effectiveness in aquatic amphibian habitat rehabilitation.

  5. Characterization of forage and extrusa clones dwarf elephant grass under rotational stocking

    Directory of Open Access Journals (Sweden)

    Tatiana Pires Pereira

    2014-10-01

    Full Text Available The objective of this trial was to evaluate the behavior ingestive of crossbred heifers and chemical characteristics of the material from two clones of dwarf elephant grass (BRS Kurumi ‘and CNPGL 01/03/00 submitted to different management strategies through sampling of forage (whole plant extrusa and manual hand plucking. The experiment was conducted at Embrapa Dairy Cattle, Coronel Pacheco, MG. We used a completely randomized design with factorial (2x2x2 with three replications. The treatments consisted of two clones of elephant grass (BRS Kurumi ‘and CNPGL 01/03/00, two light interception at the entrance of the animals (90 and 95% and two heights of post-grazing residue (30 and 50 cm with three replications. The chemical analysis showed that the methodology manual grazing simulation enables an acceptable estimate of the forage selected by grazing animals and the sampling of the whole plant is not selected by the animal diet. To harvest extrusa rate evaluation and mass bit, fractions and chemical composition of the plant of the ingested material was taken. Characteristics, structural and nutritional value of clone BRS ‘Kurumi’ facilitated greater forage intake by the animal, suggesting its use in grazing systems.

  6. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Allelopathic activity of some grass species on Phleum pratense seed germination subject to their density

    Directory of Open Access Journals (Sweden)

    Halina Lipińska

    2012-12-01

    Full Text Available Efficient utilization of allelopathy in the agricultural practice requires searching for some species and developmental stages when the allelopathic substances are generated in bioactive concentrations. That also requires the knowledge of allelopathy mechanisms and primarily its separation from the other aspects of plant activity, mainly from competition for environmental resources. This task, however, has remained vital in the studies on plant interference, being extremely difficult to perform under field conditions. Therefore, the studies were conducted in the laboratory. To determine the activity of an allelopathic agent of the selected grass species, the density dependent phytotoxicity model was employed. The model is based on the fact that an increase of acceptor plants density evokes a decrease of their response to the allelopathic compounds, whereas the negative effects of the competition become more intense. A higher rate of acceptor plants growth accompanying their density increase in the given object does not agree with the competition rules and thus, it may imply an allelopathic background of the observed changes. In the presented studies, the allelopathic properties of grasses - donors were evaluated by studying the effect of two densities of the emerging seeds and two- and four weeks aged seedlings of F. arundinacea, L. multiflorum, L. perenne and P. pratensis. The tested species - acceptor Ph. pratensis was sown in the density of 10 and 20 seeds in a pan. The results revealed that the germination of acceptor seeds was differentiated depending on their density in the pan, and on the species, density and the age of the donor. Inhibition of Ph. pratense seed germination in objects with a lover density may prove allelopathic effects of the studied donor grasses.

  8. Accelerated development in Johnsongrass seedlings (Sorghum halepense suppresses the growth of native grasses through size-asymmetric competition.

    Directory of Open Access Journals (Sweden)

    Susanne Schwinning

    Full Text Available Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense, big bluestem (Andropogon gerardii, little bluestem (Schizachyrium scoparius and switchgrass (Panicum virgatum. We predicted that a the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b competitive effect and response would be negatively correlated and c soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  9. Spatial and temporal soil moisture resource partitioning by trees and grasses in a temperate savanna, Arizona, USA.

    Science.gov (United States)

    Weltzin, Jake F; McPherson, Guy R

    1997-10-01

    Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr. We predicted that (1) tree seedlings and bunchgrasses utilize shallow sources of soil water, (2) mature savanna trees use deeper sources of water, and (3) trees switch from shallow to deep water sources within 1 year of germination. We found that Q. emoryi trees, saplings, and seedlings (about 2 months, 1 year, and 2 years old), and the dominant bunchgrass [Trachypogon montufari (H.B.K.) Nees.] utilized seasonally available moisture from different depths within the soil profile depending on size/age relationships. Sapling and mature Q. emoryi acquired water from >50 cm deep, 2-month-old seedlings utilized water from emoryi within extant stands of native grasses. The potential for subsequent interaction between Q. emoryi and native grasses was evidenced by similar patterns of soil water use by 1- and 2-year-old seedlings and grasses. Q. emoryi seedlings did not switch from shallow to deep sources of soil water within 2 years of germination: water use by these seedlings apparently becomes independent of water use by grasses after 2 years of age. Finally, older trees (saplings, mature trees) use water from deeper soil layers than grasses, which may facilitate the stable coexistence of mature trees and grasses. Potential shifts in the seasonality of precipitation may alter interactions between woody plants and grasses within temperate savannas characterized by bimodal precipitation regimes: reductions in summer precipitation or soil moisture may be particularly detrimental to warm-season grasses and seedlings of Q. emoryi.

  10. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Science.gov (United States)

    Fischer, Christine; Roscher, Christiane; Jensen, Britta; Eisenhauer, Nico; Baade, Jussi; Attinger, Sabine; Scheu, Stefan; Weisser, Wolfgang W; Schumacher, Jens; Hildebrandt, Anke

    2014-01-01

    Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species) and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs). In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i) direct, probably by modifying the pore spectrum and (ii) indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  11. Dry Matter Yield And Competitiveness Of Alang-alang (Imperata Cylindrica) And Guinea Grass (Panicum Maximum) In Intercropping

    OpenAIRE

    Rusdy, M

    2012-01-01

    The objectives of this experiment were to determine dry matter yield and competitiveness of alang-alang (Imperata cylindrica) and Guinea grass (Panicum maximum) in intercropping. The experiment was arranged in factorial combinations of four planting proportions, two levels of nitrogen fertilization and three harvesting intervals with three replications. Planting proportions were 0, 33.3, 66.7, and 100% of alang-alang (planting densities of 0, 1, 2 and 3 plants/pot) combined with 100, 66.7, 33...

  12. Grass pollen immunotherapy induces highly cross-reactive IgG antibodies to group V allergen from different grass species

    NARCIS (Netherlands)

    van Ree, R.; Brewczyński, P. Z.; Tan, K. Y.; Mulder-Willems, H. J.; Widjaja, P.; Stapel, S. O.; Aalberse, R. C.; Kroon, A. M.

    1995-01-01

    Sera from two groups of patients receiving grass pollen immunotherapy were tested on IgG reactivity with group V allergen from six different grass species. One group of patients was treated with a mixture of 10 grass species, and the other with a mixture of five. Only Lolium perenne, Dactylis

  13. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Rasmussen, Jim; Jensen, Henning Høgh

    2012-01-01

    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red...... amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes...

  14. Spatiotemporal Variation in the Environmental Controls of C4-Grass Origin and Ecology: Insights from Grass-Pollen δ13C Data

    Science.gov (United States)

    Nelson, D. M.; Urban, M.; Hu, F.

    2014-12-01

    Understanding the environmental factors controlling the origin and shifting abundance of C4 grasses in Earth's history is useful for projecting the response of C4-grass dominated grasslands to future environmental change. Unfortunately, grass pollen is typically morphologically indistinct, making palynological analysis a blunt tool for studying C4-grasses in the paleorecord. δ13C of individual grass-pollen grains using a spooling wire microcombustion device interfaced with an isotope ratio mass spectrometer (Single Pollen Isotope Ratio AnaLysis, SPIRAL) overcomes this challenge and the potential biases of δ13C data from other substrates (e.g. leaf waxes). To assess the presence and relative abundance of C3- and C4-grass pollen in samples of unknown composition, we developed a hierarchical Bayesian model, trained with ~1,900 δ13C values from pollen grains of 31 grass species. Surface-sediment data from Africa, Australia, and North America demonstrate the reliability of this technique for quantifying C4-grass abundance on the landscape. To investigate the timing and control of the origin of C4-grasses we analyzed samples from the Oligocene-Miocene from Europe and from the Eocene from North America. Results indicate that C4 grasses appeared on the landscape of southwest Europe no later than the early Oligocene, implying that low atmospheric pCO2 may not have been the main driver and/or precondition for the development of C4 photosynthesis in the grass family. In contrast, we found no evidence for C4 grasses in the southeast United States before pCO2 fell. In application of SPIRAL to the late Quaternary, we found that shifts in pCO2 and moisture balance exerted key controls on the relative abundance of C3 and C4 grasses in Africa and Australia. Overall, our results imply that as in the past, future changes in the C3/C4 composition of grass-dominated ecosystems will likely exhibit striking spatiotemporal variability as a result of differing combinations of

  15. Uptake and Transformation of the Propellants 2,4-DNT, Perchlorate and Nitroglycerin by Grasses

    Science.gov (United States)

    2006-07-31

    they stabilize and prevent contamination from spreading. Grasses native to a region tend to grow rapidly and can be easily cultivated without digging...to the live soil. The alternative of cultivating strictly sterile plants was deemed too difficult. In addition problems often result from experiments...Lu Yu, Jaclyn E.Cafias, Cobb G.P., Jackson W.A. Anderson T.A. "Uptake of perchlorate in terrestrial plants." Ecotoxicology and Environmental Safety 58

  16. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    Science.gov (United States)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  17. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    Andra, Syam S.; Datta, Rupali; Sarkar, Dibyendu; Saminathan, Sumathi K.M.; Mullens, Conor P.; Bach, Stephan B.H.

    2009-01-01

    Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PC n , metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg -1 dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PC n , and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg -1 EDTA, vetiver accumulated 4460 and 480 mg Pb kg -1 dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC 1 ) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC 1 -Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass. - Chelated lead in conjunction with phytochelatins synthesis and complexation reduces stress in the lead tolerant vetiver grass.

  18. INTERACTION OF GRASS COMPETITION AND OZONE STRESS ON C/N RATIO IN PONDEROSA PINE

    Science.gov (United States)

    Individual ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings were grown with three levels of blue wild-rye grass (Elymus glaucus Buckl.) (0,32, or 88 plants m-2) to determine if the presence of a natural competitor altered ponderosa pine seedling response to ozone. Gras...

  19. Uptake of 2,4-bis(Isopropylamino)-6-methylthio-s-triazine by Vetiver Grass (Chrysopogon zizanioides L.) from Hydroponic Media.

    Science.gov (United States)

    Sun, S X; Li, Y M; Zheng, Y; Hua, Y; Datta, R; Dan, Y M; Lv, P; Sarkar, D

    2016-04-01

    2,4-bis(Isopropylamino)-6-methylthio-s-triazine (prometryn) poses a risk to aquatic environments in several countries, including China, where its use is widespread, particularly due to its chemical stability and biological toxicity. Vetiver grass (Chrysopogon zizanioides L.) was tested for its potential for phytoremediation of prometryn. Vetiver grass was grown in hydroponic media in a greenhouse, in the presence of prometryn, with appropriate controls. Plant uptake and removal of prometryn from the media were monitored for a period of 67 days. The results showed that the removal of the prometryn in the media was expedited by vetiver grass. The removal half-life (t1/2) was shortened by 11.5 days. Prometryn removal followed first-order kinetics (Ct = 1.8070e(-0.0601t)). This study demonstrated the potential of vetiver grass for the phytoremediation for prometryn.

  20. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    International Nuclear Information System (INIS)

    Deram, Annabelle; Denayer, Franck-Olivier; Petit, Daniel; Van Haluwyn, Chantal

    2006-01-01

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 μg g -1 . Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass

  1. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Deram, Annabelle [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France)]. E-mail: aderam@ilis.univ-lille2.fr; Denayer, Franck-Olivier [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France); Petit, Daniel [Laboratoire de Genetique et Evolution des Populations Vegetales, UPRESA-CNRS 8016, Bat SN2, Universite des Sciences et Techniques de Lille, 59655 Villeneuve d' Ascq, F59655 France (France); Van Haluwyn, Chantal [Faculte des Sciences Pharmaceutiques et Biologiques, Departement de Botanique, Universite Droit et Sante de Lille, EA 2690, B.P. 83, 59006 Lille Cedex (France)

    2006-03-15

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 {mu}g g{sup -1}. Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass.

  2. Elaborations of Institute of Chemistry by name V.I. Nikitin-to the industry (by the example of aluminium plant)

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In this monograph elaborations of sciences of Institute of Chemistry by name V.I. Nikitin for country needs was systematized . Special attention is devote to complex wastes reprocessing of aluminium plant in Tajikistan. This book mean to scientists and engineer-technical employees

  3. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity.

    Science.gov (United States)

    Zhong, Zhiwei; Wang, Deli; Zhu, Hui; Wang, Ling; Feng, Chao; Wang, Zhongnan

    2014-04-01

    Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.

  4. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  5. Photosynthetic light response of the C4 grasses Brachiaria brizantha and B. humidicola under shade

    Directory of Open Access Journals (Sweden)

    Dias-Filho Moacyr Bernardino

    2002-01-01

    Full Text Available Forage grasses in tropical pastures can be subjected to considerable diurnal and seasonal reductions in available light. To evaluate the physiological behavior of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola to low light, the photosynthetic light response and chlorophyll contents of these species were compared for plants grown outdoors, on natural soil, in pots, in full sunlight and those shaded to 30 % of full sunlight, over a 30-day period. Both species showed the ability to adjust their photosynthetic behavior in response to shade. Photosynthetic capacity and light compensation point were lower for shade plants of both species, while apparent quantum yield was unaffected by the light regime. Dark respiration and chlorophyll a:b ratio were significantly reduced by shading only in B. humidicola. B. humidicola could be relatively more adapted to succeed, at least temporarily, in light-limited environments.

  6. Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix.

    Science.gov (United States)

    Liu, Rui; Xiao, Nan; Wei, Shuhe; Zhao, Lixing; An, Jing

    2014-03-01

    The rhizosphere effect of a special phytoremediating species known as Fire Phoenix on the degradation of polycyclic aromatic hydrocarbons (PAHs) was investigated, including changes of the enzymatic activity and microbial communities in rhizosphere soil. The study showed that the degradation rate of Σ8PAHs by Fire Phoenix was up to 99.40% after a 150-day culture. The activity of dehydrogenase (DHO), peroxidase (POD) and catalase (CAT) increased greatly, especially after a 60-day culture, followed by a gradual reduction with an increase in the planting time. The activity of these enzymes was strongly correlated to the higher degradation performance of Fire Phoenix growing in PAH-contaminated soils, although it was also affected by the basic characteristics of the plant species itself, such as the excessive, fibrous root systems, strong disease resistance, drought resistance, heat resistance, and resistance to barren soil. The activity of polyphenoloxidase (PPO) decreased during the whole growing period in this study, and the degradation rate of Σ8PAHs in the rhizosphere soil after having planted Fire Phoenix plants had a significant (R(2)=0.947) negative correlation with the change in the activity of PPO. Using an analysis of the microbial communities, the results indicated that the structure of microorganisms in the rhizosphere soil could be changed by planting Fire Phoenix plants, namely, there was an increase in microbial diversity compared with the unplanted soil. In addition, the primary advantage of Fire Phoenix was to promote the growth of flora genus Gordonia sp. as the major bacteria that can effectively degrade PAHs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Science.gov (United States)

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  8. Brachypodium distachyon. A New Model System for Functional Genomics in Grasses1

    Science.gov (United States)

    Draper, John; Mur, Luis A.J.; Jenkins, Glyn; Ghosh-Biswas, Gadab C.; Bablak, Pauline; Hasterok, Robert; Routledge, Andrew P.M.

    2001-01-01

    A new model for grass functional genomics is described based on Brachypodium distachyon, which in the evolution of the Pooideae diverged just prior to the clade of “core pooid” genera that contain the majority of important temperate cereals and forage grasses. Diploid ecotypes of B. distachyon (2n = 10) have five easily distinguishable chromosomes that display high levels of chiasma formation at meiosis. The B. distachyon nuclear genome was indistinguishable in size from that of Arabidopsis, making it the simplest genome described in grasses to date. B. distachyon is a self-fertile, inbreeding annual with a life cycle of less than 4 months. These features, coupled with its small size (approximately 20 cm at maturity), lack of seed-head shatter, and undemanding growth requirements should make it amenable to high-throughput genetics and mutant screens. Immature embryos exhibited a high capacity for plant regeneration via somatic embryogenesis. Regenerated plants display very low levels of albinism and have normal fertility. A simple transformation system has been developed based on microprojectile bombardment of embryogenic callus and hygromycin selection. Selected B. distachyon ecotypes were resistant to all tested cereal-adapted Blumeria graminis species and cereal brown rusts (Puccinia reconditia). In contrast, different ecotypes displayed resistance or disease symptoms following challenge with the rice blast pathogen (Magnaporthe grisea) and wheat/barley yellow stripe rusts (Puccinia striformis). Despite its small stature, B. distachyon has large seeds that should prove useful for studies on grain filling. Such biological characteristics represent important traits for study in temperate cereals. PMID:11743099

  9. Ethnobotany of Heracleum persicum Desf. ex Fisch., an invasive species in Norway, or how plant names, uses, and other traditions evolve.

    Science.gov (United States)

    Alm, Torbjørn

    2013-06-24

    Heracleum persicum was introduced to Norway as an ornamental in the 1830's. Towards the end of the 19th century, it started spreading outside gardens, later to become a frequent sight in the major towns and settlements of North Norway - and a veritable pest plant. During the last 100 years or so, a substantial ethnobotanical tradition related to the species has evolved, demonstrating that folk knowledge is not only forgotten and lost, but also charting new terrain. This survey is based on data extracted from all relevant publications, including botanical literature, travel accounts, newspaper notes, etc., as far as they have come to my attention. In addition, information on vernacular names and various uses of the H. persicum in Norway has been extracted from my own, substantial archive of interviews, questionnaires, and correspondence related to the ethnobotany of Norway. Where extant, H. persicum tends to be known to everyone, even by city dwellers who otherwise generally neglect plants. People tend to love or hate it, and in Tromsø, the largest town of northern Norway, the species has become more or less emblematic of the city. Both here and in other areas of northern Norway, it is referred to by a variety of vernacular names, partly borrowed from other species, partly derived from the Latin genus name, and partly coined for this species only. In the latter group, tromsøpalme ('the palm of Tromsø') has proved by far the most popular invention. It was seemingly first used (and coined) by German soldiers during the World War II occupation of Norway, but now largely replaces other vernacular names. The plant is still popular with children, who frequently play in and with it, whereas adults have been more prone to speculate on its origins - and how to get rid of it. Salt is the most popular "herbicide" for this purpose. Over the years, H. persicum has accumulated at least twenty different vernacular names in Norway, and a variety of other traditions. By necessity

  10. Grass species influence on plant N uptake - Determination of atmospheric N deposition to a semi-natural peat bog site using a 15N labelling approach

    Science.gov (United States)

    Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.

    2014-05-01

    Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach

  11. Changing the energy climate: clean and green heat from grass biofuel pellets

    International Nuclear Information System (INIS)

    Jannasch, R.; Samson, R.; DeMaio, A.; Adams, T.; Ho Lem, C.

    2001-01-01

    Uncertain energy supplies and international agreements to reduce greenhouse gas (GHG) emissions have created unique opportunities for biofuel development. Pelleted fuels from warm season grasses such as switchgrass (Panicum virgatum) can be grown for $3-4/GigaJoule (GJ) with only minor emissions of CO 2 . Using close-coupled gasifer combustion technology, switchgrass fuel pellets emit 86%, 91%, 71% and 89% less CO 2 than electricity, heating oil, natural gas and propane, respectively. Every 100 ha of switchgrass converted into pellet form and used to displace fossil fuel for space-heating prevents the emission of 1000 tonnes of CO 2 . Heating an average Ontario house with a 90GJ heat demand costs $1213 with switchgrass pellets compared to $2234, $1664, $882 and $3251 with electricity, heating oil, natural gas and propane, respectively. An estimated 23.4 million acres of agricultural land in Canada could potentially be converted to perennial grass biofuel production. The depressed farm sector would benefit economically from energy farming. Low-grade heat energy derived from grass pellets could displace some of the 30,000 GigaWatt Hours of electricity currently used for home heating in Quebec, Ontario and Manitoba. Surplus electricity could be exported or used to replace nuclear or coal burning plants. Contrary to prevailing beliefs that reducing GHG emissions will raise societal energy costs, pelletized grass biofuels could provide consumers with less expensive and more GHG-friendly heating options than most fossil energy sources. If the political support and direction exist to implement the Kyoto Protocol as intended, grass pellets could well become a heating fuel of choice in North America. (author)

  12. Interspecific competition changes photosynthetic and oxidative stress response of barley and barnyard grass to elevated CO2 and temperature

    Directory of Open Access Journals (Sweden)

    Irena Januskaitiene

    2018-03-01

    Full Text Available This work focuses on the investigation of competition interaction between C3 crop barley (Hordeum vulgare L. and C4 weed barnyard grass (Echinochloa crus-galli L. at 2 times higher than ambient [CO2] and +4 0C higher ambient temperature climate conditions. It was hypothesized that interspecific competition will change the response of the investigated plants to increased [CO2] and temperature. The obtained results showed that in the current climate conditions, a higher biomass and photosynthetic rate and a lower antioxidant activity were detected for barley grown under interspecific competition effect. While in the warmed climate and under competition conditions opposite results were detected: a higher water use efficiency, a higher photosynthetic performance, a lower dissipated energy flux and a lower antioxidant enzymes activity were detected for barnyard grass plants. This study highlights that in the future climate conditions, barnyard grass will become more efficient in performance of the photosynthetic apparatus and it will suffer from lower oxidative stress caused by interspecific competition as compared to barley.

  13. Effect of sulfur levels on four tropical grasses in cerrado soils of mato grosso do sul, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Carlos Casagrande, J.; Correa De Souza, O.

    1982-01-01

    A greenhouse experiment was conducted to evaluate responses of four tropical grasses, Melinis minutiflora cv. Cabelo de Negro Hyparrhenia rufa, Brachiaria decumbens australian type and Setaria anceps cv. kazungula to five levels of sulfur (0, 15, 30, 45 and 60 kg/ha) in two cerrado Oxisols and one Entisol. Cuttings were done at 50, 95 and 150 days after plant exposure. Besides dry matter production, visible symptoms of sulfur deficiency were observed. Greater responses were associated with sulfur rates up to 30 kg/ha. Molasses grass and brachiaria were the most responsive species.

  14. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    Science.gov (United States)

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  15. The Effect of Different levels of Soil Moisture on Visual Quality, Morphological and Physiological Characteristics of Three Native Grass Species

    Directory of Open Access Journals (Sweden)

    ramin mahdavi

    2017-10-01

    Full Text Available Introduction: Over the last three decades, turfgrass breeders have put significant effort into breeding and developing turf species that have good drought resistance. As water conservation becomes an important issue, an interest is increasing in identifying grasses that require less water. Lack of water resources is most problems to increasing urban green spaces. Plants with good drought resistance are those that are able to survive stress by means of drought avoidance, drought tolerance at leaf water potentials, or both. The efficient use of water is made possible by understanding the effects of soil moisture water on crop development and yield. Drought affects the visual quality, growth rate and evapotranspiration. Researchers reported that turfgrass subjected to drought conditions for short periods could sustain a fairly good appearance by soil moisture about half of its consumptive use whenever soil moisture level falls to near permanent wilting point. Drought stress caused decrease in RWC and visual quality of many grass cultivars. In drought conditions resistance grass showed increase in proline content on their leaves. Therefore the use of native grasses with high-strength instead of imported grass with low-resistance is one way to increase landscape areas and reduce costs. The purpose of this study was to be compared native grasses with commercial grass cultivar “Super sport”. Materials and Methods: The objective of this study was to evaluate the effect of soil moisture stress levels included 85% (control, 65% and 45% of field capacity on native species Brumos tomentellus, Festuca rubra and F. arundinacea and commercial cultivars Super sport (control under greenhouse conditions. Plants were cultured in PVC containers measuring 9 cm in diameter and 60 cm deep. Soil was mixture of 70% loam soil, 20% pit mass and 10% sand. Greenhouse air temperature was maintained between 22 and 28 centigrade degree. All plants were maintained under

  16. Sediment trapping with indigenous grass species showing differences in plant traits in northwest Ethiopia

    NARCIS (Netherlands)

    Mekonnen, Mulatie; Keesstra, Saskia D.; Ritsema, Coen J.; Stroosnijder, Leo; Baartman, Jantiene E.M.

    2016-01-01

    Soil loss from an 8% sloping Teff field in north-western Ethiopia is significant (~ 70 t ha− 1 yr− 1), and thus found to be an important source of sediment. Grass barriers showing sediment trapping efficacy (STE) are important measures in trapping sediment inside Teff fields

  17. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis

    Directory of Open Access Journals (Sweden)

    Golzarian Mahmood R

    2011-09-01

    Full Text Available Abstract Wheat is one of the most important crops in Australia, and the identification of young plants is an important step towards developing an automated system for monitoring crop establishment and also for differentiating crop from weeds. In this paper, a framework to differentiate early narrow-leaf wheat from two common weeds from their digital images is developed. A combination of colour, texture and shape features is used. These features are reduced to three descriptors using Principal Component Analysis. The three components provide an effective and significant means for distinguishing the three grasses. Further analysis enables threshold levels to be set for the discrimination of the plant species. The PCA model was evaluated on an independent data set of plants and the results show accuracy of 88% and 85% in the differentiation of ryegrass and brome grass from wheat, respectively. The outcomes of this study can be integrated into new knowledge in developing computer vision systems used in automated weed management.

  18. How do earthworms, soil texture and plant composition affect infiltration along an experimental plant diversity gradient in grassland?

    Directory of Open Access Journals (Sweden)

    Christine Fischer

    Full Text Available BACKGROUND: Infiltration is a key process in determining the water balance, but so far effects of earthworms, soil texture, plant species diversity and their interaction on infiltration capacity have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: We measured infiltration capacity in subplots with ambient and reduced earthworm density nested in plots of different plant species (1, 4, and 16 species and plant functional group richness and composition (1 to 4 groups; legumes, grasses, small herbs, tall herbs. In summer, earthworm presence significantly increased infiltration, whereas in fall effects of grasses and legumes on infiltration were due to plant-mediated changes in earthworm biomass. Effects of grasses and legumes on infiltration even reversed effects of texture. We propose two pathways: (i direct, probably by modifying the pore spectrum and (ii indirect, by enhancing or suppressing earthworm biomass, which in turn influenced infiltration capacity due to change in burrowing activity of earthworms. CONCLUSIONS/SIGNIFICANCE: Overall, the results suggest that spatial and temporal variations in soil hydraulic properties can be explained by biotic processes, especially the presence of certain plant functional groups affecting earthworm biomass, while soil texture had no significant effect. Therefore biotic parameters should be taken into account in hydrological applications.

  19. Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation

    NARCIS (Netherlands)

    Gupta, V.V.S.R.; Kroker, S.J.; Hicks, M.; Davoren, W.; Descheemaeker, K.K.E.; Llewellyn, R.

    2014-01-01

    Non-symbiotic nitrogen (N2) fixation by diazotrophic bacteria is a potential source for biological N inputs in non-leguminous crops and pastures. Perennial grasses generally add larger quantities of above- and belowground plant residues to soil, and so can support higher levels of soil biological

  20. Transfer of plutonium and americium to grass vegetation as a function of radionuclide solid - solution portioning in soil

    International Nuclear Information System (INIS)

    Sokolik, G.; Ovsiannikova, S.; Ivanova, T.; Leinova, S.; Kimlenka, I.; Zakharenkov, V.; Zakharenkova, N.

    2004-01-01

    The aim of investigation is to determine the main parameters influencing the plutonium and americium migration in the soil plant system including concentration factor Cf and distribution coefficient K d . The C f factor characterising the ratio of radionuclide activity concentration in the plant specie (A p , Bq/kg) and root-inhabited layer of soil (A s , Bq/kg) has been used as a measure of biological availability of TUE. The K d coefficient estimating the ratio between radionuclide activity concentration in the equilibrium solid phase (A s.ph. ) and pore solution (A sol. , Bq/l) is considered as a measure of sorption ability of soil in respect to the radionuclide. The biological availability of 239,240 Pu and 241 Am for different grass species in various mineral and organic soils of natural and agrarian systems has been studied. The soils and grass vegetation were sampled in 1994 - 2001 in Bragin, Narovla, Khoiniki districts of Belarus (12 - 53 km from ChNPP). Since plant uptake depends primarily on radionuclide portion in the pore soil solution the proper solutions were separated from the soil samples of root-inhabited layer with the method of high-speed centrifugation. 239,240 Pu and 241 Am in the samples were determined radiochemically using alpha-spectrometer ALPHA-KING 676 A. Influence of composition of soil solution on the radionuclide soil plant transfer has been analysed. The interrelationships between the concentration factor (C f ), portion of radionuclide in the soil solution and coefficient K d have been considered. The results of investigations clearly demonstrated the dependence of TUE concentration factors for meadow sedge-herbaceous association of soil sorbing complex. As a rule, C f of americium is higher than that of plutonium. Differentiating of soils according to the C f value and the forecast of grass vegetation contamination by TUE in the different periods after catastrophe has been done. The levels of various soils contamination to receive

  1. Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Anders K. Mortensen

    2017-12-01

    Full Text Available The clover-grass ratio is an important factor in composing feed ratios for livestock. Cameras in the field allow the user to estimate the clover-grass ratio using image analysis; however, current methods assume the total dry matter is known. This paper presents the preliminary results of an image analysis method for non-destructively estimating the total dry matter of clover-grass. The presented method includes three steps: (1 classification of image illumination using a histogram of the difference in excess green and excess red; (2 segmentation of clover and grass using edge detection and morphology; and (3 estimation of total dry matter using grass coverage derived from the segmentation and climate parameters. The method was developed and evaluated on images captured in a clover-grass plot experiment during the spring growing season. The preliminary results are promising and show a high correlation between the image-based total dry matter estimate and the harvested dry matter ( R 2 = 0.93 with an RMSE of 210 kg ha − 1 .

  2. Mineralization of Organically Bound Nitrogen in Soil as Influenced by Plant Growth and Fertilization

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1982-01-01

    A loam soil containing an organic fraction labelled with15N was used for pot experiments with spring barley, rye-grass and clover. The organically bound labelled N was mineralized at a rate corresponding to a half-life of about 9 years. Fertilization with 106 and 424 kgN/ha of unlabelled N...... in the form of KNO3 significantly increased uptake of labelled N from the soil in barley and the first harvest of rye-grass crops. The fertilized plants removed all the labelled NH4 and NO3 present in the soil, whereas the unfertilized plants removed only about 80%. The second, third and fourth harvests...... of the unfertilized rye-grass took up more labelled N than the fertilized rye-grass. The total uptake in the four harvests was similar whether the plants were fertilized or not. Application of KCl to barley plants in amounts equivalent to that of KNO3 resulted in a small but insignificant increase in uptake...

  3. Bioethanol production from recovered napier grass with heavy metals.

    Science.gov (United States)

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017

  4. Naming names: the first women taxonomists in mycology

    Directory of Open Access Journals (Sweden)

    Sara Maroske

    2018-03-01

    Full Text Available The transition from amateur to professional in natural history is generally regarded as having taken place in the nineteenth century, but landmark events such as the 1917 appointment of mycologist Johanna Westerdijk (1883–1961 as the first female professor in the Netherlands indicate that the pattern of change for women was more varied and delayed than for men. We investigate this transition in mycology, and identify only 43 women in the Western World who published scientific mycological literature pre-1900, of whom twelve published new fungal taxa. By charting the emergence of these women over time, and comparing the output of self-taught amateurs and university graduates, we establish the key role of access to higher education in female participation in mycology. Using a suite of strategies, six of the self-taught amateurs managed to overcome their educational disadvantages and name names — Catharina Dörrien (the first to name a fungal taxon, Marie-Anne Libert, Mary Elizabeth Banning, Élise-Caroline Bommer, Mariette Rousseau, and Annie Lorrain Smith. By 1900, the professional era for women in mycology was underway, and increasing numbers published new taxa. Parity with male colleagues in recognition and promotion, however, remains an ongoing issue. Key words: Amateurs, Fungi, Gender studies, History of science, Plant pathology

  5. Determination of rare earth elements in water ore and grass sample around monazite dressing plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.

    1993-01-01

    High performance liquid chromatography technique for the analysis of rare earth elements; yttrium, cerium and lanthanum, was developed. A comparison of two mobile phases between α-hydroxy isobutyric acid and mandelic acid was carried out using C 1 8 column for separation and the amount of the rare earth elements were detected by post column complex formation with Arsenazo III. It was found that α-hydroxy isobutyric acid had higher efficiency in separation of the rare earth elements than mandelic acid when 1-octanesulfonic acid was used as an organic modifier. The optimum conditions of the mobile phase were comprised of the p H of 3.65, a flow rate of 1 ml/min which resulted in the values of resolution to be 13.62 between yttrium and cerium and 3.49 between cerium and lanthanum. Standard curves of yttrium and lanthanum yielded linear range of 0.1-45 and 1-60 ppm whereas the cerium curve was in the range of 1-100 ppm. The analyses of water, ore and grass samples collected around the monazite dressing plants from Prachuap Khiri Khan and Phuket showed that none of the rare earth elements was detected in all samples from Prachuap Khiri Khan. But 0.5 ppm of yttrium and 1.5 ppm of lanthanum were found in the water samples from Phuket while in the grass samples contained yttrium and cerium in the amounts of 2 ppm and 14 ppm whereas none was detected in the ore samples by this technique under the previous conditions

  6. Exchange of organic solvents between the atmosphere and grass--the use of open top chambers.

    Science.gov (United States)

    Binnie, J; Cape, J N; Mackie, N; Leith, I D

    2002-02-21

    Volatile organic compounds (VOC) are of increasing environmental significance as a result of continually increasing volumes of traffic on European roads. An open-top chamber fumigation system has been devised to investigate how these contaminants transfer between the atmosphere and the ground, and how they partition between and within air-plant-soil systems. Variation in chamber temperature, solar radiation in the chamber and chamber flow rate were identified as factors that affected final air concentrations. These were assessed and quantified for all individual chambers used--effectively characterising each chamber. The real-life VOC concentrations generated were stable and readily reproducible. Grass exposed to benzene, toluene, 1,1,1-trichloroethane and tetrachloroethene, respectively, equilibrated in response to a change in air concentration within hours. The rate of equilibration in exposed grass in all cases was independent of air temperature. 1,1,1-Trichloroethane and tetrachloroethene appear to be biologically inert demonstrating a simple physico-chemical approach to equilibrium, however, benzene and toluene do not appear independent of plant metabolic activity. Aqueous solubility can account for all of the toluene and benzene in the fumigated plant material.

  7. Factors influencing seed germination in Cerrado grasses

    Directory of Open Access Journals (Sweden)

    Rosana Marta Kolb

    2016-03-01

    Full Text Available Few studies address the ecology of herbs of Cerrado grasslands, which are ecosystems where the long dry season, high temperatures, insolation, fire and invasive grasses greatly influencing germination and the establishment of plants. We assessed germination of 13 species of Poaceae from Cerrado grasslands under nursery conditions or in germination chambers, the latter with i recently collected seeds and seeds after six months storage, ii under constant and alternating temperatures, and iii in the presence and absence of light. Germinability, mean germination time (MGT and required light were quantified to elucidate factors involved in successful germination. Germinability was low for most grasses, probably because of low seed viability. For most species, germinability and MGT were not altered by seed storage. Germination percentages were higher at alternating temperatures and in the presence of light, factors that are more similar to natural environmental situations compared with constant temperature or the absence of light. Our findings indicate that alternating temperatures and light incidence are key factors for germination of species of Poaceae. The maintenance of these environmental factors, which are crucial for the conservation of Cerrado grasslands, depends on appropriate management interventions, such as fire management and the control of biological invasion.

  8. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  9. Uptake Evaluation Of Glass house Grown Grasses In Radio phyto remediation Of Caesium-Contaminated Soil

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Nur Humaira' Lau Abdullah; Khairuddin Abdul Rahim

    2014-01-01

    A glass house experiment was performed to evaluate the uptake of grasses viz. Napier and Vetiver in radiophytoremediation of caesium-contaminated soil. The glass house radiophytoremediation experiment was designed according to the Randomized Complete Block Design (RCBD). The grasses were grown in troughs filled with soil mixed with a known specific activity of 134 Cs. Initial Cs activity and activity after different cultivation time intervals of 1, 3, 6 and 9 months were analyzed using gamma spectrometer direct measurement. The results showed the uptake of caesium by Napier and Vetiver after 9 months with the transfer factors (TF) were 4.70 and 6.25, respectively. Meanwhile, the remediation of caesium from contaminated soil at the same time was 95.25 % (Napier) and 95.58 % (Vetiver). Both grasses have been found to accumulate caesium, with Vetiver accumulating higher than Napier. Thus, the present study suggests that Vetiver could be used as a potential plant for radiophytoremediation of caesium. (author)

  10. Protein fraction and digestibility of marandu, xaraes and campo grande grasses in monocropping and intercropping systems under different sowing methods - doi: 10.4025/actascianimsci.v35i1.15134

    Directory of Open Access Journals (Sweden)

    Welma Santos Crunivel

    2013-01-01

    Full Text Available A study was carried out to evaluate the protein fraction and in vitro dry matter digestibility of marandu, xaraes grasses and campo grande in monocropping and intercropping systems under different planting methods, for a period of two years. The experimental design was a complete randomized block with four replications. The treatments consisted of the following crop systems: campo grande in monocropping; xaraés grass in monocropping; marandu grass in monocropping; xaraés intercropped with campo grande in rows; xaraés intercropped with campo grande, broadcast; marandu grass intercropped with campo grande in rows; and marandu intercropped with campo grand, broadcast. The evaluations were conducted for two years, consisting of seasonal evaluations (autumn, winter, spring and summer in the same plots, with repeated measurements over time. The results showed that xaraes and marandu grasses were similar between crop systems, indicating that both can be intercropped with campo grande. The intercropping of campo grande with Brachiaria brizantha cultivars improved the protein fraction and digestibility. The row method of planting provided better protein fractions and in vitro dry matter digestibility.

  11. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass

    Directory of Open Access Journals (Sweden)

    Aoife Joyce

    2018-03-01

    Full Text Available Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates. In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3 prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins. Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to

  12. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass.

    Science.gov (United States)

    Joyce, Aoife; Ijaz, Umer Z; Nzeteu, Corine; Vaughan, Aoife; Shirran, Sally L; Botting, Catherine H; Quince, Christopher; O'Flaherty, Vincent; Abram, Florence

    2018-01-01

    Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the

  13. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.

    Science.gov (United States)

    Linder, H P; Lehmann, Caroline E R; Archibald, Sally; Osborne, Colin P; Richardson, David M

    2018-05-01

    Poaceae (the grasses) is arguably the most successful plant family, in terms of its global occurrence in (almost) all ecosystems with angiosperms, its ecological dominance in many ecosystems, and high species richness. We suggest that the success of grasses is best understood in context of their capacity to colonize, persist, and transform environments (the "Viking syndrome"). This results from combining effective long-distance dispersal, efficacious establishment biology, ecological flexibility, resilience to disturbance and the capacity to modify environments by changing the nature of fire and mammalian herbivory. We identify a diverse set of functional traits linked to dispersal, establishment and competitive abilities. Enhanced long-distance dispersal is determined by anemochory, epizoochory and endozoochory and is facilitated via the spikelet (and especially the awned lemma) which functions as the dispersal unit. Establishment success could be a consequence of the precocious embryo and large starch reserves, which may underpin the extremely short generation times in grasses. Post-establishment genetic bottlenecks may be mitigated by wind pollination and the widespread occurrence of polyploidy, in combination with gametic self-incompatibility. The ecological competitiveness of grasses is corroborated by their dominance across the range of environmental extremes tolerated by angiosperms, facilitated by both C 3 and C 4 photosynthesis, well-developed frost tolerance in several clades, and a sympodial growth form that enabled the evolution of both annual and long-lived life forms. Finally, absence of investment in wood (except in bamboos), and the presence of persistent buds at or below ground level, provides tolerance of repeated defoliation (whether by fire, frost, drought or herbivores). Biotic modification of environments via feedbacks with herbivory or fire reinforce grass dominance leading to open ecosystems. Grasses can be both palatable and productive

  14. Nutritional Value And Yield of Kallar Grass (Leptochloa Fusca Linn) Hay and Its Effect on Reproductive Performance of Awassi Ewes Using Progesterone Radioimmunoassay

    International Nuclear Information System (INIS)

    Al-Masri, M R..; Zarkawi, M.; Khalifa, K.

    2007-01-01

    Nutritional value of Kallar grass (Leptochloa fusca Linn) hay (whole plant), a salt-tolerant plant, was estimated by determinning its composition (ash, crude protein CP, crude fibre CF, ether extract EE, neutral-detergent fiber NDF, acid-detergent fiber ADF, acid-detergent lignin ADL); and the in vitro organic matter digestibility (IVOMD), metabolizable energy (ME), net energy of lactation (NEL) and gross energy (GE). Moreover, dry matter, energy and protein yields per hectar were also estimated. The effects of feeding Kallar grass hay to pregnant Awassi ewes on reproductive performance, serum progesterone changes using radioimmunoassay, and on birth and weaning weights of lambs born were also determined. Experimental ewes received daily 300 g of Kallar grass hay in addition to lentil straw and concentrates to cover their nutritional requirements. The results indicated that the nutritive components of Kallar grass were (g kg -1 dry matter): ash 96, CP 93, CF 290, EE 21, NDF 755, ADF 416 and ADL 94. IVOMD was 49.3%, and energy values (MJ kg -1 dry matter) were: GE 26.88, ME 6.41 and NEL 3.02. Dry matter and crude protein yields of Kallar grass hay were 7875 and 732 kg ha -1 , respectively, and the energy produced (MJ ha -1 ) was: GE 211680, ME 50479 and NEL 23783. Kallar grass had no effects on the reproductive performance of pregnant Awassi ewes duration, of pregnancy (150.1 ± 2.2 days), progesterone patterns, birth (4.7±1.0 kg) or on weaning weights (22.7 ± ≤ 5.5 kg) of lambs.

  15. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, May 1, 1975--April 30, 1976

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1976-06-01

    Irradiation ( 60 Coγ source) was used for the genetic improvement of several warm season grasses and pearl millet. Results of plant breeding experiments using radioinduced mutants of Bermuda grass and millet are reported

  16. Grass Biomethane for Agriculture and Energy

    DEFF Research Database (Denmark)

    Korres, N.E.; Thamsiriroj, T.; Smith, B.

    2011-01-01

    have advanced the role of grassland as a renewable source of energy in grass biomethane production with various environmental and socio-economic benefits. It is underlined that the essential question whether the gaseous biofuel meets the EU sustainability criteria of 60% greenhouse gas emission savings...... by 2020 can be met since savings up to 89.4% under various scenarios can be achieved. Grass biomethane production compared to other liquid biofuels either when these are produced by indigenous of imported feedstocks is very promising. Grass biomethane, given the mature and well known technology...

  17. Interspecific associations and community structure: A local survey and analysis in a grass community

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-09-01

    Full Text Available Interspecific associations in the plant community may help to understand the self-organizing assembly and succession of the community. In present study, Pearson correlation, net correlation, Spearman rank correlation, and point correlation were used to detect the interspecific (inter-family associations of grass species (families using the sampling data collected in a grass community of Zhuhai, China. We found that most associations between grass species (families were positive associations. The competition/interference/niche separation between grass species (families was not significant. A lot of pairs of grass species and families with statistically significant interspecific (inter-family associations based on four correlation measures were discovered. Cluster trees for grass species/families were obtained by using cluster analysis. Relationship among positive/negative associations, interspecific relationship and community succession/stability/robustness was discussed. I held that species with significant positive or negative associations are generally keystone species in the community. Although both negative and positive associations occur in the community succession, the adaptation and selection will finally result in the successful coexistence of the species with significant positive associations in the climax community. As the advance of community succession, the significant positive associations increase and maximize in climax community, and the significant negative associations increase to a maximum and then decline into climax community. Dominance of significant positive associations in the climax community means the relative stablility and equilibrium of the community. No significant associations usually account for the majority of possible interspecific associations at each phase of community succession. They guarantee the robustness of community. They are candidates of keystone species. Lose of some existing keystone species might be

  18. Determining the regional potential for a grass biomethane industry

    International Nuclear Information System (INIS)

    Smyth, Beatrice M.; Smyth, Henry; Murphy, Jerry D.

    2011-01-01

    Research highlights: → We identified assessment criteria for determining the regional potential for grass biomethane. → Grass biomethane is distributed via the natural gas grid. → The criteria include: land use; grass yields; gas grid coverage; availability of co-substrates. → The county with the highest potential can fuel 50% of cars or supply 130% of domestic gas consumption. - Abstract: Grass biogas/biomethane has been put forward as a renewable energy solution and it has been shown to perform well in terms of energy balance, greenhouse gas emissions and policy constraints. Biofuel and energy crop solutions are country-specific and grass biomethane has strong potential in countries with temperate climates and a high proportion of grassland, such as Ireland. For a grass biomethane industry to develop in a country, suitable regions (i.e. those with the highest potential) must be identified. In this paper, factors specifically related to the assessment of the potential of a grass biogas/biomethane industry are identified and analysed. The potential for grass biogas and grass biomethane is determined on a county-by-county basis using multi-criteria decision analysis. Values are assigned to each county and ratings and weightings applied to determine the overall county potential. The potential for grass biomethane with co-digestion of slaughter waste (belly grass) is also determined. The county with the highest potential (Limerick) is analysed in detail and is shown to have ready potential for production of gaseous biofuel to meet either 50% of the vehicle fleet or 130% of the domestic natural gas demand, through 25 facilities at a scale of ca. 30 kt yr -1 of feedstock. The assessment factors developed in this paper can be used in other resource studies into grass biomethane or other energy crops.

  19. Plant-plant interactions in the restoration of Mediterranean drylands

    Science.gov (United States)

    Valdecantos, Alejandro; Fuentes, David; Smanis, Athanasios

    2014-05-01

    Plant-plant interactions are complex and dependent of both local abiotic features of the ecosystem and biotic relationships with other plants and animals. The net result of these interactions may be positive, negative or neutral resulting in facilitation, competition or neutralism, respectively (role of phylogeny). It has been proposed that competition is stronger between those individuals that share functional traits than between unrelated ones. The relative interaction effect of one plant on a neighbour may change in relation to resource availability - especially water in drylands. In addition, plants develop above and belowground biomass with time increasing the level and, eventually, changing the intensity and/or the direction of the interaction. In the framework of the restoration of degraded drylands, many studies have focused on the positive (nurse) effects of adult trees, shrubs and even grasses on artificially planted seedlings by improving the microclimate or providing protection against herbivores, but little is known about the interactions between seedlings of different life traits planted together under natural field conditions. In 2010 we established planting plots in two contrasted sites under semiarid Mediterranean climate and introduced one year old seedlings in different combinations of three species, two shrubs (Olea europaea and Pistacia lentiscus) and one grass (Stipa tenacissima). Half of the planting holes in each site were implemented with low-cost ecotechnological inputs to increase water availability by forcing runoff production and promoting deep infiltration (small plastic fabric + dry well). This resulted in four levels of abiotic stress. Biotic interactions were assessed by monitoring seedling survival and growth for three years after planting. The Relative Interaction Index (RII) of S. tenacissima on O. europaea was almost flat and close to 0 along the stress gradient since the beginning of the study suggesting limited interaction

  20. EGRADATION CHARACTERISTICS OF SOME SUDANESE GRASSES AND GAS PRODUCTION TECHNIQUES

    OpenAIRE

    A.O. Idris; C. Kijora; A.M. Salih; I. Bushara; H.A.A. Elbukhary

    2012-01-01

    Eighteen plant species, three ingredients, and six diets were studied for their degradation characteristics, using gas production techniques. The palatable grasses were selected during the rainy season from the range land of Kordofan, Sudan. The ingredients were Roselle seeds, Sorghum grain and Groundnut cake. The samples were incubated for 4, 8, 12, 24, 48, 72 and 96 h, using rumen inoculum of three of the sheep used for the nylon bag. The results showed a large variation between the differe...

  1. Examination of the selenium content of wheat grasses produced in different soil types in Csik Basin

    Directory of Open Access Journals (Sweden)

    Tamás M.

    2015-01-01

    Full Text Available In the course of the research, we determined selenium and dry matter content of 35 wheat grass and 35 wheat seed samples. The selenium content of the preparation plant probes was measured by spectrofluorimetric determination (λexcitation = 380 nm, λemission = 519 nm of the resulted piazselenol complex. It was established that between the selenium content of the wheat grass and wheat seed the correlation coefficient was 0.36 at p = 0.05 level, which indicates a medium-close correlation. Similarly, there was a medium-close correlation between the selenium content of the wheat grass calculated on dry-matter basis and total selenium content of the wheat, with a correlation coefficient of 0.40 at p = 0.02 level. Afterwards, beside the selenium content, we measured the selenomethionine content by ion-exchange chromatography and highperformance liquid chromatography, and the organic selenium content was calculated. A very close correlation was established between the total selenium, selenomethionine and calculated organic selenium content of wheat (the correlation coefficients were between 0.92 and 0.99 at p = 0.01 level. The correlation between the selenomethionine content of wheat grass and wheat seed was very weak (r = 0.23.

  2. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  3. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium.

    Science.gov (United States)

    Faeth, Stanley H; Gardner, Dale R; Hayes, Cinnamon J; Jani, Andrea; Wittlinger, Sally K; Jones, Thomas A

    2006-02-01

    The native North American perennial grass Achnatherum robustum (Vasey) Barkworth [= Stipa robusta (Vasey) Scribn.] or sleepygrass is toxic and narcotic to livestock. The causative agents are alkaloidal mycotoxins produced from infections by a systemic and asexual Neotyphodium endophyte. Recent studies suggest that toxicity is limited across the range of sleepygrass in the Southwest USA. We sampled 17 populations of sleepygrass with varying distance from one focal population known for its high toxicity levels near Cloudcroft, NM, USA. For some, we sampled individual plants twice within the same growing season and over successive years (2001-2004). We also determined infection levels in each population. In general, all populations were highly infected, but infection levels were more variable near the focal population. Only infected plants within populations near the Cloudcroft area produced alkaloids. The ergot alkaloid, ergonovine, comprised the bulk of the alkaloids, with lesser amounts of lysergic and isolysergic acid amides and ergonovinine alkaloids. Levels of all alkaloids were positively correlated among individual plants within and between growing seasons. Infected plants that produced no alkaloids in 1 yr did not produce any alkaloids within the same growing season or in other years. Levels of alkaloids in sleepygrass populations declined with distance from the Cloudcroft population, although infection levels increased. Infected plants in populations in northern New Mexico and southern Colorado produced no alkaloids at all despite 100% infectivity. Our results suggest that only specific Neotyphodium haplotypes or specific Neotyphodium-grass combinations produce ergot alkaloids in sleepygrass. The Neotyphodium haplotype or host-endophyte combination that produces toxic levels of alkaloids appears restricted to one locality across the range of sleepygrass. Because of the wide variation in alkaloid levels among populations, interactions between the endophyte

  4. Post-treatment efficacy of discontinuous treatment with 300IR 5-grass pollen sublingual tablet in adults with grass pollen-induced allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Didier, A; Malling, H-J; Worm, Marcel

    2013-01-01

    Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis.......Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis....

  5. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  6. Transcriptomic Identification of Drought-Related Genes and SSR Markers in Sudan Grass Based on RNA-Seq

    Directory of Open Access Journals (Sweden)

    Yongqun Zhu

    2017-05-01

    Full Text Available Sudan grass (Sorghum sudanense is an annual warm-season gramineous forage grass that is widely used as pasture, hay, and silage. However, drought stress severely impacts its yield, and there is limited information about the mechanisms of drought tolerance in Sudan grass. In this study, we used next-generation sequencing to identify differentially expressed genes (DEGs in the Sudan grass variety Wulate No.1, and we developed simple sequence repeat (SSR markers associated with drought stress. From 852,543,826 raw reads, nearly 816,854,366 clean reads were identified and used for analysis. A total of 80,686 unigenes were obtained via de novo assembly of the clean reads including 45,065 unigenes (55.9% that were identified as coding sequences (CDSs. According to Gene Ontology analysis, 31,444 unigenes were annotated, 11,778 unigenes were identified to 25 categories in the clusters of orthologous groups of proteins (KOG classification, and 11,223 unigenes were assigned to 280 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Additionally, there were 2,329 DEGs under a short-term of 25% polyethylene glycol (PEG treatment, while 5,101 DEGs were identified under the long-term of 25% PEG treatment. DEGs were enriched in pathways of carbon fixation in photosynthetic organisms and plant hormone signal transduction which played a leading role in short-term of drought stress. However, DEGs were mainly enriched in pathway of plant hormone signal transduction that played an important role under long-term of drought stress. To increase accuracy, we excluded all the DEGs of all controls, specifically, five DEGs that were associated with high PEG concentrations were found through RNA-Seq. All five genes were up-regulated under drought stress, but the functions of the genes remain unclear. In addition, we identified 17,548 SSRs obtained from 80,686 unigenes. The newly identified drought tolerance DEGs will contribute to transgenic breeding efforts, while

  7. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Andra, Syam S., E-mail: syam.andra@gmail.co [Environmental Geochemistry Laboratory, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX (United States); Datta, Rupali [Biological Sciences, Michigan Technological University, Houghton, MI (United States); Sarkar, Dibyendu [Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ (United States); Saminathan, Sumathi K.M. [Environmental Geochemistry Laboratory, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX (United States); Mullens, Conor P.; Bach, Stephan B.H. [Department of Chemistry, University of Texas at San Antonio, San Antonio, TX (United States)

    2009-07-15

    Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PC{sub n}, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg{sup -1} dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PC{sub n}, and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg {sup -1} EDTA, vetiver accumulated 4460 and 480 mg Pb kg{sup -1} dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC{sub 1}) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC{sub 1}-Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass. - Chelated lead in conjunction with phytochelatins synthesis and complexation reduces stress in the lead tolerant vetiver grass.

  8. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Science.gov (United States)

    Ehlers, Bodil K

    2011-01-01

    Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  9. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Directory of Open Access Journals (Sweden)

    Bodil K Ehlers

    Full Text Available Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms or not (soil microorganisms present in soil. The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene.The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  10. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    Science.gov (United States)

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  11. Some observation on the root growth of young apple trees and their uptake of nutrients when grown in herbicided strips in grassed orchards

    International Nuclear Information System (INIS)

    Atkinson, D.

    1977-01-01

    Root laboratory observations of the root growth of 4-year-old trees of Cox/M.26 planted in a herbicided strip in grass indicated that during the year 70% of the new growth occurred in the strip. Growth appeared to begin earlier during the year under bare soil than under grass. Nitrogen absorption from the strip and the grassed alley was assessed by measuring 15 N uptake; at 10 cm depth uptake was almost entirely from the strip. An experiment using 2-year-old trees of Cox/M.106 and 15 N placements at 7.5 and 15 cm depths in the strip and 15 cm in the grassed alley gave similar results. With 32 P as a tracer and similar trees a small amount of uptake from 25 cm depth under grass was detected. The experiments indicate that young trees produce most of their new roots in the herbicide strips where most of their nutrient uptake occurs and little or none from the grassed alleys. The absorption of nitrogen into the leaves was greater in early summer than autumn

  12. MT and WY Tamarix soil properties influence germination and early growth of three native grass species

    Science.gov (United States)

    As a riparian invader, Tamarix spp. often leads to native species (e.g., plains cottonwood and willows, grasses) decline and lower habitat quality. Since Tamarix excretes excess salt and has high salt tolerance, negative soil feedback via high soil salinity may negatively affect native plants. Howev...

  13. Potential of vetiver (vetiveria zizanioides l.) grass in removing selected pahs from diesel contaminated soil

    International Nuclear Information System (INIS)

    Nisa, W.U.; Rashid, A.

    2015-01-01

    Phytoremediation has been renowned as an encouraging technology for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils, little is known about how plant species behave during the process of PAH phytoremediation. Therefore, the aim of this study was to investigate the effectiveness of vetiver (Vetiveria zizanioides L.) plant in PAH phytoremediation and extraction potential of Vetiveria zizanioides for selected PAHs from the diesel contaminated soil. The field soil samples were spiked with varying concentrations (0.5% and 1%) of diesel and used for pot experiment which was conducted in greenhouse. Vetiver grass was used as experimental plant. Physico-chemical analysis of soil was performed before and after the experiment. Concentration of selected PAHs i.e. phenanthrene, pyrene and benzo(a)pyrene in soil was determined using HPLC. Plant parameters such as root/shoot length and dry mass were compared after harvest. Concentrations of PAHs were also determined in plant material and in soils after harvesting. Result showed that initial concentration of phenanthrene was significantly different from final concentration in treatments in which soil was spiked with diesel. Initial and final concentration of pyrene in soil was also significantly different from each other in two treatments in which soil was spiked with 1% diesel. Pyrene concentration was significantly different in roots and shoots of plants while benzo(a)pyrene concentration in treatments in which soil was spiked with diesel was also significantly different from roots and shoots. Phenanthrene was less extracted by the plant in all the treatments and it was present in higher concentration in soil as compared to plant. Our results indicate that vetiver grass has effectively removed PAHs from soil consequently a significantly higher root and shoot uptake of PAHs was observed than control treatments. Study concludes Vetiveria zizanioides as potentially promising plant specie for the removal

  14. Role of grass-legume communities in revegetation of a subalpine mine site in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K

    1982-01-01

    This study describes an investigation of the potential for pioneer grass-legume communities to stabilize and ameliorate geologically-fresh soil leading to the establishment of a self-sustaining, progressive plant succession on a surface-mined subalpine site. The study area is located 2000 m above sea level in the Canadian Rocky Mountains. Field studies revealed chronological trends in grass-legume communities at four sites revegetated during 1974-1978 including: species composition, legumes (Trifolium repens L., T. hybridum L. and Medicago sativa L.) performing increasingly poorly on the older sites; biomass changes, a shoot to root ratio (S/R) decreasing from 2.3 to 0.2 as the communities aged; and litter accumulation which continued even on the oldest site. Fertilizer (13-16-10) operationally applied at 150-391 kg/ha enhanced the growth of Dactylis gomerata L. and litter degradation, and acidified the soil. Nitrogen fertilization was also associated with two clear inverse relationships identified between D. glomerata and Festuca rubra L. biomass, and between soil pH and phosphorus levels. In greenhouse tests grasses were revealed to be more efficient soil nitrogen consumers than were legumes and nitrogen fixation decreased significantly (P < 0.01) and linearly with increasing grass seeding rates.

  15. 27 CFR 19.182 - Change in name of proprietor.

    Science.gov (United States)

    2010-04-01

    ... Plants Changes After Original Qualification § 19.182 Change in name of proprietor. Where there is to be a change in the individual, firm, or corporate name, the proprietor shall file application to amend the... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Change in name of...

  16. Radionuclide transfer to meadow plants

    International Nuclear Information System (INIS)

    Sanzharova, N.; Fesenko, S.; Belli, M.; Arkhipov, A.; Ivanova, T.; Perepelyatnikov, G.; Tsvetnova, O.

    1996-01-01

    Experimental data on 90 Sr and 137 Cs transfer to plants of natural and semi-natural meadows selected in the main CIS region contaminated due to the ChNPP accident are discussed. The highest TF's in grass stand are obtained for peatlands, and minimal ones - for dry meadows. 137 Cs content in plants decreased after the accident, on average, by a factor of 2-4. The dynamics of 137 Cs uptake by plants depends on meadow and soil properties. The first half life of 137 Cs transfer to plants change from 2,0 to 2,2 years and the second (slower) period half life change from 4,0 to 12 years for different meadow types. 90 Sr TF's are higher than those obtained for 137 Cs. The correlation between soil parameters and TP's are shown. 137 Cs TF's in grass stand depend on meadow type and decrease in the following order: peatlands> flood plain and wet (lowland) meadows> dry meadows

  17. Proposals to clarify and enhance the naming of fungi under the International Code of Nomenclature for algae, fungi, and plants.

    Science.gov (United States)

    Hawksworth, David L

    2015-06-01

    Twenty-three proposals to modify the International Code of Nomenclature for algae, fungi, and plants adopted in 2011 with respect to the provisions for fungi are made, in accordance with the wishes of mycologists expressed at the 10(th) International Mycological Congress in Bangkok in 2014, and with the support of the International Commission on the Taxonomy of Fungi (ICTF), the votes of which are presented here. The proposals relate to: conditions for epitypification, registration of later typifications, protected lists of names, removal of exemptions for lichen-forming fungi, provision of a diagnosis when describing a new taxon, citation of sanctioned names, avoiding homonyms in other kingdoms, ending preference for sexually typified names, and treatment of conspecific names with the same epithet. These proposals are also being published in Taxon, will be considered by the Nomenclature Committee for Fungi and General Committee on Nomenclature, and voted on at the 19(th) International Botanical Congress in Shenzhen, China, in 2017.

  18. Physiological and morphological effects of high water tables on early growth of giant reed (Arundo donax), elephant grass (Pennisetum purpureum), energycane and sugarcane (Saccharum spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, Stephen Peter [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed (Arundo donax), elephant grass (Pennisetum Purpureum), energycane (Saccharum spp.), and sugarcane (Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the water table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and

  19. Production of methane from kallar grass grown on saline sodic lands: metabolism of carbohydrates, methylated amines and methane precursors during digestion of kallar grass

    International Nuclear Information System (INIS)

    Tabassum, R.; Rajoka, M.I.; Malik, K.A.

    1991-01-01

    Mesophilic anaerobic digestion of kallar grass on saline sodic land was carried out in batch culture at laboratory scale with enriched culture from biogas plant. Analysis were made to determine biogas volume, gas composition and distribution of volatile fatty acids. The fermentation of kallar grass treated with 2% NaOH showed an increase in digestibility from 20-50% and the conversion efficiency approached 80-95% of theoretical yield which was fold higher than the one obtained from untreated substrates. The contents of methane in bio gas was markedly low during the first day of digestion but increased from 75 to 91% at the end of 20 days retention time. Low pH values (6.2) showed the accumulation of acetic butyric and propionic acids. Addition of carbohydrates, methylated amines and other methane precursors were found to stimulate methanogensis at low concentration (0.1%) carbohydrates, (1mM) methylated amines and methane precursors as compared to their higher concentrations. The phase contrast and fluorescence microscopic examinations showed the diverse microbial population of digestor contents. (author)

  20. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Progress report, November 1, 1977--October 31, 1978

    International Nuclear Information System (INIS)

    Hanna, W.W.; Burton, G.W.

    1978-05-01

    Progress is reported on plant breeding programs for the genetic improvement of warm season grasses using irradiation as a tool. Data are included from studies on alteration of the protein quantity and quality in pearl millet grain by irradiation and mutation breeding; the effects of nitrogen and genotype on pearl millet grain; the effects of seed size on quality in pearl millet; irradiation breeding of sterile triploid turf Bermuda grasses; irradiation breeding of sterile coastcross-1, a forage grass, to increase winter hardiness; use of irradiation to induce resistance to rust disease; and an economic assessment of irradiation-induced mutants for plant breeding programs

  1. Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Wirsel, Stefan G R

    2004-05-01

    A molecular approach was applied to investigate the colonisation of arbuscular mycorrhizal fungi (AMF) on the wetland grass Phragmites australis. A PCR assay targeting the traditional families of the Glomeromycota yielded products that were used to construct libraries of 18S rDNA. Five hundred and forty six clones were typed by restriction analysis and 76 representatives were sequenced. The majority corresponded to a wide range of taxa within Glomus group A, a few belonged to the "Diversisporaceae" and none to the genera Scutellospora or Acaulospora. Among these sequences, some were very similar to those reported earlier, e.g. Glomus mosseae and G. fasciculatum, other pointed to various new taxa. Although this wetland habitat harboured just one single plant species, phylogenetic analysis exhibited 21 AMF phylotypes, which is in the same range as reported for other natural ecosystems composed of more diverse host communities. Diversity indices supported the perception that the AMF mycoflora associated with this natural grass "monoculture" is not depauperate as it had been described for grasses of crop monocultures. Soil conditions determined the mycorrhizal state of the host, since AMF were not detected at the lakeward front of the reed belt, which is permanently waterlogged.

  2. Utilization of mixed cellulolytic microbes from termite extract, elephant faecal solution and buffalo ruminal fluid to increase in vitro digestibility of King Grass

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2007-06-01

    Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.

  3. Comparison of plant nutrient contents in vermicompost from selected ...

    African Journals Online (AJOL)

    In this experiment, earthworm, Eudrilus eugeniae was fed with different plant residues: grass clippings, sago waste and rice straw. These organic wastes were also left to decompose naturally as the control. Analysis on samples vermicompost showed that humic acid content was highest in rice straw, followed by grass ...

  4. Oxygen isotope fractionations across individual leaf carbohydrates in grass and tree species.

    Science.gov (United States)

    Lehmann, Marco M; Gamarra, Bruno; Kahmen, Ansgar; Siegwolf, Rolf T W; Saurer, Matthias

    2017-08-01

    Almost no δ 18 O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ 18 O relationship between leaf water and cellulose. We measured δ 18 O values of bulk leaf water (δ 18 O LW ) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ 18 O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18 O-enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (ε bio ) of more than 27‰ relative to δ 18 O LW , which might be explained by isotopic leaf water and sucrose synthesis gradients. δ 18 O LW and δ 18 O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (ε bio  = 25.1‰). Interestingly, damping factor p ex p x , which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ 18 O LW but not if modelled directly from δ 18 O of individual carbohydrates. We conclude that δ 18 O LW is not always a good substitute for δ 18 O of synthesis water due to isotopic leaf water gradients. Thus, compound-specific δ 18 O analyses of individual carbohydrates are helpful to better constrain (post-)photosynthetic isotope fractionation processes in plants. © 2017 John Wiley & Sons Ltd.

  5. Radiation and temperature influence on forage grasses yield

    International Nuclear Information System (INIS)

    Vadell, J.; Medrano, H.

    1986-01-01

    Biomass production has been studied in forage plants, as well as the temperature and radiation effects on plant growth. Four cultivars of grasses: Lolium multiflorum var westerwoldicum cv Promenade, Lolium perenne cvs Combi and Compas and Bromus inermis were growing as microswards in a growth chamber with constant temperature and outdoors. A field assay was done also with the same cultivars. L. multiflorum was the highest productive genotype anywhere showing also more active growth at low temperatures. Total production showed significant differences among genotypes. It was also a clear correspondence among microswards and field productions. Highest efficiency values (in % of PAR accumulated as dry matter) was obtained in 6th cut (April) achieving to 5.18 % in L. multiflorum. Biomass production variations through the growth period show a low correlation with <> and very high correlation with total irradiation received by the sward between consecutive cuts [es

  6. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    Science.gov (United States)

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  7. Animal or plant: which is the better fog water collector?

    Science.gov (United States)

    Nørgaard, Thomas; Ebner, Martin; Dacke, Marie

    2012-01-01

    Occasional fog is a critical water source utilised by plants and animals in the Namib Desert. Fog basking beetles (Onymacris unguicularis, Tenebrionidae) and Namib dune bushman grass (Stipagrostris sabulicola, Poaceae) collect water directly from the fog. While the beetles position themselves optimally for fog water collection on dune ridges, the grass occurs predominantly at the dune base where less fog water is available. Differences in the fog-water collecting abilities in animals and plants have never been addressed. Here we place beetles and grass side-by-side in a fog chamber and measure the amount of water they collect over time. Based on the accumulated amount of water over a two hour period, grass is the better fog collector. However, in contrast to the episodic cascading water run-off from the grass, the beetles obtain water in a steady flow from their elytra. This steady trickle from the beetles' elytra to their mouth could ensure that even short periods of fog basking--while exposed to predators--will yield water. Up to now there is no indication of specialised surface properties on the grass leafs, but the steady run-off from the beetles could point to specific property adaptations of their elytra surface.

  8. Animal or plant: which is the better fog water collector?

    Directory of Open Access Journals (Sweden)

    Thomas Nørgaard

    Full Text Available Occasional fog is a critical water source utilised by plants and animals in the Namib Desert. Fog basking beetles (Onymacris unguicularis, Tenebrionidae and Namib dune bushman grass (Stipagrostris sabulicola, Poaceae collect water directly from the fog. While the beetles position themselves optimally for fog water collection on dune ridges, the grass occurs predominantly at the dune base where less fog water is available. Differences in the fog-water collecting abilities in animals and plants have never been addressed. Here we place beetles and grass side-by-side in a fog chamber and measure the amount of water they collect over time. Based on the accumulated amount of water over a two hour period, grass is the better fog collector. However, in contrast to the episodic cascading water run-off from the grass, the beetles obtain water in a steady flow from their elytra. This steady trickle from the beetles' elytra to their mouth could ensure that even short periods of fog basking--while exposed to predators--will yield water. Up to now there is no indication of specialised surface properties on the grass leafs, but the steady run-off from the beetles could point to specific property adaptations of their elytra surface.

  9. 55-61 Effect of Plant Density on Morphological Characteristics, Yield a

    African Journals Online (AJOL)

    characteristics of Napier grass due to plant density during the establishment year. However, the ... resulting in slow growth rates, poor fertility and high rates of mortality (Osuji et al., ...... matter digestibility in vitro of leaf and stem of buffel grass ...

  10. Transfer factor of Radium -226, lead-210 and Polonium-210 from Norm contaminated soil to Atriplex, Afelfa and Bermuda grasses

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Mukhallati, H.; Al-Hamwi, A.

    2011-10-01

    transfer factors of Radium -226, lead-210 and Polonium-210 from contaminated soil with oil coproduced water to grazing plants in the north eastern region of Syria have been determined. contaminated soil was collected from one of the AL-Furat Petroleum Oil company oil fields;soil was distributed into several pots where the studied plants were planted in order to study the transfer factors of radioisotopes to them. Results have shown that the mean transfer factors of radium to green parts have reached has reached 0.0016 in Atriplex halimus L.,0.0021 in Atriplex canescens Nutt, 0.0025 in Atriplex Leucoclada Bioss,0.0082 in Bermuda grass and 0.0167 in Medicago Sativ L,which was the highest,while the transfer factors of polonium and lead were ten times higher than those for radium and reacted 0.012 in Atriplex Leucoclada Bioss, 0.011 in Atriplex canescens Nutt, 0.007 in Atriplex halimus L.0.32 in bermuda grass and 0.025 in Afelfa.(author)

  11. Soil-to-plant transfer of radiocaesium for selected tropical plant species in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, M.M.; Rahman, M.M.; Koddus, A.; Ahmad, G.U.; Voigt, G.

    2005-01-01

    Soil-to-plant transfer factors (TF) of radiocaesium ( 137 Cs) were determined under field condition for grassy vegetation grown in Bangladesh at contaminated land in the Atomic Energy Research Establishment (AERE) campus. TF values for rice, grass and grassy/root vegetations grown in the same type of soil were also measured under pot condition. TF values of 137 Cs for grassy vegetation (2.4 x 10 -2 -4.2 x 10 -2 with an average of 3.1 x 10 -2 ± 0.005) obtained under field condition were slightly lower than the values for grass and grassy/root vegetations (2.9 x 10 -2 -6.6 x 10 -2 with an average of 4.8 x 10 -2 ± 0.01 for grass and grassy vegetations and 2.3 x 10 -2 -5.6 x 10 -2 with an average of 4.0 x 10 -2 ± 0.009 for root vegetations, respectively) obtained under pot condition. However, TF values (9.0 x 10 -3 -2.6 x 10 -2 with an average of 1.9 x 10 -2 ± 0.004) obtained for rice were about a factor of 4 lower than the values obtained for grass and grassy/root vegetations. When the properties of the AERE soils as input parameters were used in the soil-plant transfer model of Absalom, the estimated TF values (4.5 x 10 -2 -6.7 x 10 -2 with an average of 5.3 x 10 -2 ± 0.006) were consistent with the measured values obtained for grass and grassy vegetations under pot condition, however, the model overestimates the TF values for rice

  12. When perception reflects reality: Non-native grass invasion alters small mammal risk landscapes and survival

    Science.gov (United States)

    Ceradnini, Joseph P.; Chalfoun, Anna

    2017-01-01

    Modification of habitat structure due to invasive plants can alter the risk landscape for wildlife by, for example, changing the quality or availability of refuge habitat. Whether perceived risk corresponds with actual fitness outcomes, however, remains an important open question. We simultaneously measured how habitat changes due to a common invasive grass (cheatgrass, Bromus tectorum) affected the perceived risk, habitat selection, and apparent survival of a small mammal, enabling us to assess how well perceived risk influenced important behaviors and reflected actual risk. We measured perceived risk by nocturnal rodents using a giving-up density foraging experiment with paired shrub (safe) and open (risky) foraging trays in cheatgrass and native habitats. We also evaluated microhabitat selection across a cheatgrass gradient as an additional assay of perceived risk and behavioral responses for deer mice (Peromyscus maniculatus) at two spatial scales of habitat availability. Finally, we used mark-recapture analysis to quantify deer mouse apparent survival across a cheatgrass gradient while accounting for detection probability and other habitat features. In the foraging experiment, shrubs were more important as protective cover in cheatgrass-dominated habitats, suggesting that cheatgrass increased perceived predation risk. Additionally, deer mice avoided cheatgrass and selected shrubs, and marginally avoided native grass, at two spatial scales. Deer mouse apparent survival varied with a cheatgrass–shrub interaction, corresponding with our foraging experiment results, and providing a rare example of a native plant mediating the effects of an invasive plant on wildlife. By synthesizing the results of three individual lines of evidence (foraging behavior, habitat selection, and apparent survival), we provide a rare example of linkage between behavioral responses of animals indicative of perceived predation risk and actual fitness outcomes. Moreover, our results

  13. VAM populations in relation to grass invasion associated with forest decline.

    Science.gov (United States)

    Vosatka, M; Cudlin, P; Mejstrik, V

    1991-01-01

    Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.

  14. Acacia sieberiana Effects on Soil Properties and Plant Diversity in Songa Pastures, Rwanda

    Directory of Open Access Journals (Sweden)

    C. P. Mugunga

    2013-01-01

    Full Text Available Effects of A. sieberiana trees on soil properties and plant diversity were investigated in Songa pastures, Rwanda. Tree characteristics and crown architecture of A. sieberiana were studied. Soil properties were assessed and plants were identified under and away from tree crowns. Counts of individual plants/species were done only under tree crowns. Nitrogen, P, and K were analysed in the soil, grass, and A. sieberiana leaves. Plant diversity was determined using Simpson's diversity index. Data were subjected to ANOVA. Soil organic carbon (SOC, cation exchange capacity (CEC, Ca2+, N and pH, and plant diversity were higher in soils under tree canopies than in open areas. Tree leaves were significantly richer in N and poorer in P and K as compared to grasses. Tree crowns grew wider and horizontal and developed intertwined secondary branching, reducing light intensity to as low as 38% under tree canopies compared to the open pasture. At 3 trees/ha stocking, A. sieberiana trees shaded 0.18 ha and herbaceous plants and grasses unpalatable to livestock dominated under tree canopies. A tradeoff of A. sieberiana tree value versus the loss of palatable grass due to tree presence needs to be assessed to decide whether the trees should be included in pastures and if yes, the apporpriate stocking identified.

  15. Grass survey of the Itremo Massif records endemic central highland ...

    African Journals Online (AJOL)

    Twenty species are endemic to the central highlands, and a further 1 4 species are restricted to Madagascar. Five ecological groups of grasses were identified in the Itremo Massif: shade species in gallery forests, open wet area species, fire grasses, anthropogenic disturbance associated grasses and rock-dwelling grasses.

  16. Rumen escape protein in grass and grass silage deterimened with a nylon bag and an enzymatic technique

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2004-01-01

    Rumen escape protein (REP) was determined for six grasses and 16 grass silages using a nylon bag technique and an in vitro technique using a proteolytic enzyme preparation of Streptomyces griseus. In vitro, the samples were incubated for 0, 1, 6 and 24 h. The highest correlation observed between

  17. EroGRASS : Failure of grass cover layers at seaward and shoreward dike slopes. design, construction and performance

    NARCIS (Netherlands)

    Verhagen, H.J.; Verheij, H.J.; Cao, T.M.; Dassanayake, D.; Roelvink, D.; Piontkowitz, T.

    2009-01-01

    A large number of the dikes in the North Sea and Baltic Sea regions are covered with grass that is exposed to hydraulic loading from waves and currents during storm surges. During previous storm surges the grass cover layers often showed large strength and remained undamaged. A clear physical

  18. Gas emission from anaerobic decomposition of plant resources

    Directory of Open Access Journals (Sweden)

    Marcela Bianchessi da Cunha-Santino

    Full Text Available Abstract: Aim The aim of this study was to quantify the emission rates of gases resulting from the anaerobic decomposition of different plant resources under conditions usually found in sediments of tropical aquatic systems and drained organic soils. Methods Incubations were prepared with green leaves, bark, twigs, plant litter, sugarcane stalks and leaves, soybean leaves, grasses, forest leaves and an aquatic macrophyte (Typha domingensis. Over 10 months, the daily volume of gas evolved from decay was measured and a kinetic model was used to describe the anaerobic mineralization. Results Using the mathematical model, it can be observed that the composition of the plant resources is heterogeneous. The temporal variation of the gas rates indicated that the mineralization of the labile fractions of detritus varied, on a carbon basis, from 16.2 (bark to 100% (samples composed of leaves, grasses and sugar cane stalks. High gas emissions were observed during the mineralization of grasses, sugar cane stalks, leaves and plant litter, while low volumes of gases were measured during the mineralization of bark, twigs, forest leaves and T. domingensis, which are the most fibrous and recalcitrant resources (carbon content: 83.8, 78.2, 64.8 and 53.4%, respectively. The mineralization of labile carbon presented half-life values, which varied from 41 (twigs to 295 days (grasses. Conclusions Considering the high amount of remaining recalcitrant fraction, the anaerobic decomposition of these plant resources showed a strong trend towards accumulating organic matter in flooded soils. Despite the higher temperatures found in the tropical environment, these environments represent a sink of particulate detritus due to its slow decomposition.

  19. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  20. Investigation of Desso GrassMaster® as application in hydraulic engineering

    NARCIS (Netherlands)

    Steeg, van der P.; Paulissen, M.P.C.P.; Roex, E.; Mommer, L.

    2015-01-01

    Dessa GrassMaster® is a reinforced grass system which is applied successfully on sports fields and enables to use a sports field more intensively than a normal grass field. In this report the possibility of an application of Dessa GrassMaster®in hydraulic conditions, with a focus on grass dikes, is

  1. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  2. Changes in Phytochemical Synthesis, Chalcone Synthase Activity and Pharmaceutical Qualities of Sabah Snake Grass (Clinacanthus nutans L. in Relation to Plant Age

    Directory of Open Access Journals (Sweden)

    Ali Ghasemzadeh

    2014-10-01

    Full Text Available In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old. The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74 was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW] and total phenolic (TP (18.21 mg/g DW were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW and gallic acid (5.96 mg/g DW were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50 values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP assay showed a higher activity in 6-month-old buds (488 μM of Fe(II/g than in 1-year-old buds (453 μM of Fe(II/g, in contrast to the DPPH result. Significant correlations (p < 0.05 were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity

  3. Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability

    Science.gov (United States)

    Christopher M. McGlone; Carolyn Hull Sieg; Thomas E. Kolb; Ty Nietupsky

    2012-01-01

    Competition and resource availability influence invasions into native perennial grasslands by nonnative annual grasses such as Bromus tectorum. In two greenhouse experiments we examined the influence of competition, water availability, and elevated nitrogen (N) and phosphorus (P) availability on growth and reproduction of the invasive annual grass B. tectorum and two...

  4. Germination of Themeda triandra (Kangaroo grass) as affected by ...

    African Journals Online (AJOL)

    Low rainfall in range areas restricts germination, growth and development of majority of range grasses. However, germination and establishment potential of forage grasses vary and depends on environmental conditions. Themeda triandra is an excellent known grass to grow under different environmental conditions.

  5. The importance of cross-reactivity in grass pollen allergy

    Directory of Open Access Journals (Sweden)

    Aleksić Ivana

    2014-01-01

    Full Text Available According to the data obtained from in vivo and in vitro testing in Serbia, a significant number of patients have allergic symptoms caused by grass pollen. We examined the protein composition of grass pollens (Dactylis glomerata, Lolium perenne and Phleum pratense and cross-reactivity in patients allergic to grass pollen from our region. The grass pollen allergen extract was characterized by SDS-PAGE, while cross-reactivity of single grass pollens was revealed by immunoblot analysis. A high degree of cross-reactivity was demonstrated for all three single pollens in the sera of allergic patients compared to the grass pollen extract mixture. Confirmation of the existence of cross-reactivity between different antigenic sources facilitates the use of monovalent vaccines, which are easier to standardize and at the same time prevent further sensitization of patients and reduces adverse reactions. [Projekat Ministarstva nauke Republike Srbije, br. 172049 i br. 172024

  6. Does hybridization of endophytic symbionts in a native grass increase fitness in resource-limited environments?

    DEFF Research Database (Denmark)

    Faeth, Stanley H.; Oberhofer, Martina; Saari, Susanna Talvikki

    2017-01-01

    to their grass hosts, especially in stressful environments. We tested the hybrid fitness hypothesis (HFH) that hybrid endophytes enhance fitness in stressful environments relative to non-hybrid endophytes. In a long-term field experiment, we monitored growth and reproduction of hybrid-infected (H+), non......-hybrid infected (NH+), naturally endophyte free (E-) plants and those plants from which the endophyte had been experimentally removed (H- and NH-) in resource-rich and resource-poor environments. Infection by both endophyte species enhanced growth and reproduction. H+ plants outperformed NH+ plants in terms...... of growth by the end of the experiment, supporting HFH. However, H+ plants only outperformed NH+ plants in the resource-rich treatment, contrary to HFH. Plant genotypes associated with each endophyte species had strong effects on growth and reproduction. Our results provide some support the HFH hypothesis...

  7. Development of a method for analyzing traces of ruthenium in plant materials and determination of the transfer factors soil/plant for ruthenium compounds from reprocessing plants

    International Nuclear Information System (INIS)

    Blasius, E.; Huth, R.; Neumann, W.

    1988-01-01

    In an artificial humous and sandy soil spiked with 106 Ru as RuO 2 and RuCl 3 , pasture grass was grown under artificial illumination in our laboratory. The amounts of ruthenium taken up by the plants were determined by γ-spectrometry. For open-air investigations with pasture grass, wheat and potatoes inactive ruthenium(III) chloride and ruthenium nitrosylchloride were used. Ruthenium was determined by electrothermal atomic absorption spectrometry (ETAAS) after destroying the organic material and concentrating the solution. The concentration and chemical form of the ruthenium exert an unimportant influence on the transfer factor. For the pasture-grass, the stems of wheat and the weed of potatoes it amounts to 0.00005 to 0.0015, for the ear of wheat to about 0.00005. In peeled potatoes there was no ruthenium detectable, therefore the limit of detection leads to a transfer factor ≤ 0.00001. So it is evident that ruthenium is little available for the roots of the plants. In the event of an accident in a nuclear plant the uptake of radioactive ruthenium by roots has only negligible radioecological consequences. This applies even if 50 years of ruthenium enrichment in the soil are assumed. (orig./RB)

  8. Comparison of planted soil infiltration systems for treatment of log yard runoff.

    Science.gov (United States)

    Hedmark, Asa; Scholz, Miklas; Aronsson, Par; Elowson, Torbjorn

    2010-07-01

    Treatment of log yard runoff is required to avoid contamination of receiving watercourses. The research aim was to assess if infiltration of log yard runoff through planted soil systems is successful and if different plant species affect the treatment performance at a field-scale experimental site in Sweden (2005 to 2007). Contaminated runoff from the log yard of a sawmill was infiltrated through soil planted with Alnus glutinosa (L.) Gärtner (common alder), Salix schwerinii X viminalis (willow variety "Gudrun"), Lolium perenne (L.) (rye grass), and Phalaris arundinacea (L.) (reed canary grass). The study concluded that there were no treatment differences when comparing the four different plants with each other, and there also were no differences between the tree and the grass species. Furthermore, the infiltration treatment was effective in reducing total organic carbon (55%) and total phosphorus (45%) concentrations in the runoff, even when the loads on the infiltration system increased from year to year.

  9. Thermogravimetric analysis of forest understory grasses

    Science.gov (United States)

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  10. Carbonate-silicate ratio for soil correction and influence on nutrition, biomass production and quality of palisade grass

    Directory of Open Access Journals (Sweden)

    Renato Ferreira de Souza

    2011-10-01

    Full Text Available Silicates can be used as soil correctives, with the advantage of being a source of silicon, a beneficial element to the grasses. However, high concentrations of silicon in the plant would affect the digestibility of the forage. To evaluate the influence of the substitution of the calcium carbonate by calcium silicate on the nutrition, biomass production and the feed quality of the palisade grass [Urochloa brizantha (C. Hochstetter ex A. Rich. R. Webster], three greenhouse experiments were conducted in completely randomized designs with four replications. Experimental units (pots contained a clayey dystrophic Rhodic Haplustox, a sandy clay loam dystrophic Typic Haplustox and a sandy loam dystrophic Typic Haplustox. Each soil received substitution proportions (0, 25, 50, 75 and 100 % of the carbonate by calcium silicate. The increase in the proportion of calcium silicate elevated the concentrations and accumulations of Si, Ca, Mg, and B, reduced Zn and did not alter P in the shoot of plants. The effects of the treatments on the other nutrients were influenced by the soil type. Inclusion of calcium silicate also increased the relative nutritional value and the digestibility and ingestion of the forage, while the concentration and accumulation of crude protein and the neutral detergent and acid detergent fibers decreased. Biomass production and feed quality of the palisade grass were generally higher with the 50 % calcium silicate treatment.

  11. Seasonal and inter-annual variation of Beryllium-7 deposition in birch-tree leaves and grass in the northeast upland area of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Michael, E-mail: poschl@mendelu.c [Department of Molecular Biology and Radiobiology, Faculty of Agronomy, Mendel University of Agriculture in Brno, Zemedelska 1, 61300 Brno (Czech Republic); Brunclik, Tomas, E-mail: brunclik@georadis.co [Georadis s.r.o., Hudcova 56b, 621 00 Brno (Czech Republic); Hanak, Jaromir, E-mail: jaromir.hanak@geology.c [Czech Geological Survey, Department of Environmental Geology and Geophysics, Leitnerova 22, 658 69 Brno (Czech Republic)

    2010-09-15

    The activity concentrations of Beryllium-7 ({sup 7}Be), a naturally occurring radioisotope produced in the atmosphere, were measured in leaves of birch-trees, above-ground parts of grass, soil and rainwater in the mountain massive Kralicky Sneznik (the northeast of the Czech Republic, altitude about 750 m) in the years of 2005, 2006 and 2007. Dried and ground samples of the plants and soils, and water samples from wet deposition were used to determine the {sup 7}Be content using a semiconductor gamma spectrometer. The {sup 7}Be values ranged from 147.0 to 279.6 Bq kg{sup -1}, from 48.7 to 740.8 Bq kg{sup -1}, from 2.1 to 8.7 Bq kg{sup -1}, and from 0.6 to 1.9 Bq kg{sup -1} in birch-tree leaves, grass samples, soils, and rainwater, respectively. Insignificant inter-annual variations but significant increase in the {sup 7}Be activity concentrations during the spring and summer months were observed in birch-tree leaves and grass samples. The seasonal variation of the {sup 7}Be concentrations in grass samples correlated (R{sup 2} = 0.4663 and 0.6489) with precipitation. No similar correlation was found for {sup 7}Be in birch-tree leaves. Beryllium-7 content in birch-tree leaves and in aerial parts of grass was mainly caused by direct transport of {sup 7}Be from wet deposition into aerial parts of the observed plants.

  12. One fungus, one name promotes progressive plant pathology

    NARCIS (Netherlands)

    Wingfield, M.J.; De Beer, Z.W.; Slippers, B.; Wingfield, B.D.; Groenewald, J.Z.; Lombard, L.; Crous, P.W.

    2011-01-01

    The robust and reliable identification of fungi underpins virtually every element of plant pathology, from disease diagnosis to studies of biology, management/control, quarantine and, even more recently, comparative genomics. Most plant diseases are caused by fungi, typically pleomorphic organisms,

  13. One fungus, one name promotes progressive plant pathology

    NARCIS (Netherlands)

    Wingfield, M.J.; Beer, de Z.W.; Slippers, B.; Wingfield, B.D.; Groenewald, J.Z.; Lombard, L.; Crous, P.W.

    2012-01-01

    The robust and reliable identification of fungi underpins virtually every element of plant pathology, from disease diagnosis to studies of biology, management/control, quarantine and, even more recently, comparative genomics. Most plant diseases are caused by fungi, typically pleomorphic organisms,

  14. Bud-bank and tiller dynamics of co-occurring C3 caespitose grasses in mixed-grass prairie.

    Science.gov (United States)

    Ott, Jacqueline P; Hartnett, David C

    2015-09-01

    Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence. © 2015 Botanical Society of America.

  15. Autopolyploids in fodder grass breeding: induction and field performance

    Energy Technology Data Exchange (ETDEWEB)

    Dabkevičienė, G.; Kemešytė, V.; Statkevičiūtė, G.; Lemežienė, N.; Brazauskas, G.

    2017-07-01

    Doubling of chromosome set directly affects plant performance through increase of organ size, higher feeding value and increased resistance to adverse environmental factors. Therefore efficient methods of polyploid induction are needed in order to develop new varieties of naturally diploid fodder grass species. The efficiency of antimitotic agents as colchicine, amiprophos-methyl, trifluralin and oryzalin was compared in a series of tetraploid induction experiments in Lolium multiflorum, L. perenne and Festuca pratensis, while newly developed tetraploid plants were compared to standard tetraploid varieties in the field trials. Colchicine treatment proved to be the most efficient method for in vitro cultured embryos in comparison with the other agents. Induced tetraploids of F. pratensis produced higher dry matter and seed yield and could be used for the development of new varieties. Induced tetraploid plants of Lolium spp. were equal to the standard varieties in field trials, therefore they could be used as parental genotypes in crosses. Induced tetraploids of F. pratensis produced higher dry matter and seed yield and could be used for development of new variety.

  16. The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity.

    Directory of Open Access Journals (Sweden)

    Monica Fernandez-Aparicio

    2016-09-01

    Full Text Available Broomrape weeds (Orobanche and Phelipanche spp. are root holoparasites that feed off a wide range of important crops. Among them, Orobanche crenata attacks legumes complicating their inclusion in cropping systems along the Mediterranean area and West Asia. The detrimental effect of broomrape parasitism in crop yield can reach up to 100% depending on infection severity and the broomrape-crop association. This work provides field data of the consequences of O. crenata infection severity in three legume crops i.e. faba bean, field pea and grass pea. Regression functions modelled productivity losses and revealed trends in dry matter allocation in relation to infection severity. The host species differentially limits parasitic sink strength indicating different levels of broomrape tolerance at equivalent infection severities. Reductions in host aboveground biomass were observed starting at low infection severity and half maximal inhibitory performance was predicted as 4.5, 8.2 and 1.5 parasites per faba bean, field pea and grass pea plant, respectively. Reductions in host biomass occurred in both vegetative and reproductive organs, the latter resulting more affected. The proportion of resources allocated within the parasite was concomitant to reduction of host seed yield indicating that parasite growth and host reproduction compete directly for resources within a host plant. However, the parasitic sink activity does not fully explain the total host biomass reduction because combined biomass of host-parasite complex was lower than the biomass of uninfected plants. In grass pea, the seed yield was negligible at severities higher than 4 parasites per plant. In contrast, faba bean and field pea sustained low but significant seed production at the highest infection severity. Data on seed yield and seed number indicated that the sensitivity of field pea to O. crenata limited the production of grain yield by reducing seed number but maintaining seed size

  17. The Effect of Orobanche crenata Infection Severity in Faba Bean, Field Pea, and Grass Pea Productivity.

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Flores, Fernando; Rubiales, Diego

    2016-01-01

    Broomrape weeds ( Orobanche and Phelipanche spp.) are root holoparasites that feed off a wide range of important crops. Among them, Orobanche crenata attacks legumes complicating their inclusion in cropping systems along the Mediterranean area and West Asia. The detrimental effect of broomrape parasitism in crop yield can reach up to 100% depending on infection severity and the broomrape-crop association. This work provides field data of the consequences of O. crenata infection severity in three legume crops, i.e., faba bean, field pea, and grass pea. Regression functions modeled productivity losses and revealed trends in dry matter allocation in relation to infection severity. The host species differentially limits parasitic sink strength indicating different levels of broomrape tolerance at equivalent infection severities. Reductions in host aboveground biomass were observed starting at low infection severity and half maximal inhibitory performance was predicted as 4.5, 8.2, and 1.5 parasites per faba bean, field pea, and grass pea plant, respectively. Reductions in host biomass occurred in both vegetative and reproductive organs, the latter resulting more affected. The increase of resources allocated within the parasite was concomitant to reduction of host seed yield indicating that parasite growth and host reproduction compete directly for resources within a host plant. However, the parasitic sink activity does not fully explain the total host biomass reduction because combined biomass of host-parasite complex was lower than the biomass of uninfected plants. In grass pea, the seed yield was negligible at severities higher than four parasites per plant. In contrast, faba bean and field pea sustained low but significant seed production at the highest infection severity. Data on seed yield and seed number indicated that the sensitivity of field pea to O. crenata limited the production of grain yield by reducing seed number but maintaining seed size. In contrast

  18. Dose-response relationship of a new Timothy grass pollen allergoid in comparison with a 6-grass pollen allergoid.

    Science.gov (United States)

    Pfaar, O; Hohlfeld, J M; Al-Kadah, B; Hauswald, B; Homey, B; Hunzelmann, N; Schliemann, S; Velling, P; Worm, M; Klimek, L

    2017-11-01

    Subcutaneous allergen immunotherapy with grass pollen allergoids has been proven to be effective and safe in the treatment of patients with allergic rhinoconjunctivitis. Based on the extensive cross-reactivity among Pooideae species, it has been suggested that grass pollen extracts could be prepared from a single species, rather than from a multiple species mixture. To find the optimal dose of a Phleum pratense (P. pratense) allergoid preparation and compare its efficacy and safety to a 6-grass pollen allergoid preparation. In this double-blind, placebo-controlled study (EudraCT: 2011-000674-58), three doses of P. pratense allergoid (1800 therapeutic units (TU), standard-dose 6000 TU and 18 000 TU) were compared with placebo and the marketed 6-grass pollen allergoid (6000 TU). In a pre-seasonal dosing regimen, 102 patients were randomized to five treatment groups and received nine subcutaneous injections. The primary efficacy endpoint was the change in weal size (late-phase reaction [LPR]) in response to the intracutaneous testing (ICT) before and after treatment, comparing the active allergoids to placebo. Secondary outcomes were the change in Total Nasal Symptom Score (TNSS) assessed in the allergen exposure chamber (AEC), the changes in P. pratense-serum-specific IgG 4 and the incidence of adverse events (AEs). All three doses of the P. pratense and the 6-grass pollen allergoid preparations were significantly superior to placebo for the primary outcome, whereas there were no significant differences in the change in TNSS. Compared to the standard-dose, the high-dose of P. pratense did not produce any additional significant benefit, but showed a slight increase in AEs. Yet this increase in AEs was lower than for the 6-grass pollen preparation. The standard-dose of the new P. pratense allergoid was comparable to the marketed 6-grass pollen preparation at equal dose for the parameters measured. © 2017 The Authors. Clinical & Experimental Allergy Published by John

  19. GRASS GIS: The first Open Source Temporal GIS

    Science.gov (United States)

    Gebbert, Sören; Leppelt, Thomas

    2015-04-01

    GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management

  20. Effects of an invasive grass on the demography of the Caribbean cactus Harrisia portoricensis: Implications for cacti conservation

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Meléndez-Ackerman, Elvia

    2012-05-01

    The impact of exotic species around the world is among the primary threats to the conservation and management of rare and endangered species. In this work we asked whether or not the presence of the African grass Megathyrsus maximus on Mona Island was associated with negative impacts on the demography of the endangered Caribbean cactus Harrisia portoricensis. To address this question we performed field observations where we compared demographic data collected at un-manipulated areas invaded by Megathyrsus with un-manipulated areas non-invaded by this exotic grass. Additionally, demographic data were also collected in areas in which we removed the exotic grass biomass using two alternative treatments: complete and partial grass removal. Results demonstrated that the presence of Megathyrsus has negative effects on demographic parameters of Harrisia at various stages throughout its life cycle. In general, the survival, growth, and reproduction of Harrisia plants were depressed under the presence of Megathyrsus. Growth and survival of seedlings and juveniles of Harrisia were more impacted by the presence of Megathyrsus than adult performance and seedling recruitment only occurred in areas with grass absence. Our combined results suggest that modifications of the micro-environment by the presence of Megathyrsus may add an additional level of vulnerability to the persistence of Harrisia, and as such this factor must be considered when designing conservation strategies for this endangered species. This study highlights the need for a greater emphasis on understanding the interactions between invasive grass species and native cacti, and the importance of such information in designing conservation strategies for cacti species elsewhere.

  1. The utilization of microbial inoculants based on irradiated compost in dryland remediation to increase the growth of king grass and maize

    International Nuclear Information System (INIS)

    TRD Larasati; N Mulyana; D Sudradjat

    2016-01-01

    This research was conducted to evaluate the capability of functional microbial inoculants to remediate drylands. The microbial inoculants used consist of hydrocarbon-degrading microbial inoculants and plant-growth-promoting microbial inoculants. Compost-based carrier was sterilized by a gamma irradiation dose of 25 kGy to prepare seed inoculants. The irradiated-compost-based hydrocarbon-degrading microbial inoculants and king grass (Pennisetum purpureum Schumach.) were used to remediate oil-sludge-contaminated soil using in-situ composting for 60 days. The results showed that they could reduce THP (total petroleum hydrocarbons) by up to 82.23%. Plant-growth-promoting microbial inoculants were able to increase the dry weight of king grass from 47.39 to 100.66 g/plant, N uptake from 415.53 to 913.67 mg/plant, and P uptake from 76.52 to 178.33 mg/plant. Cow dung and irradiated-compost-based plant-growth-promoting microbial inoculants were able to increase the dry weight of maize (Zea mays L.) from 5.75 to 6.63 ton/ha (12.54%) and dry weight of grain potential from 5.30 to 7.15 ton/ha (35.03%). The results indicate that irradiated-compost-based microbial inoculants are suitable for remediating a dryland and therefore increase potential resources and improve the quality of the environment. (author)

  2. Application of wood chips for soil mulching in the cultivation of ornamental grasses

    Directory of Open Access Journals (Sweden)

    Henschke Monika

    2016-12-01

    Full Text Available A mulch is a layer of material applied to the surface of the soil. Mulching plays an important role in the maintenance of green spaces. Organic materials are still sought for the preparation of mulches. Recently interest in wood chips has grown. The aim of the study was to determine the effect of mulching with pine and birch chips on the contents of phenolic compounds in the soil, as well as on the growth and flowering of ornamental grasses – Bouteloua gracilis (Kunth. Lag. ex Griffiths, Panicum virgatum L. and Pennisetum alopecuroides L. The content of phenolic compounds in the soil steadily increased from spring to autumn. Mulching led to a substantial increase in the level of phenolic compounds. In the first year of cultivation more phenolic compounds were released by chips of pine than birch, while in the second year this difference did not occur. Mulching had a negative impact on the growth and flowering of ornamental grasses, especially in the first year of cultivation. Ornamental grass sensitivity to the substances released from mulches decreased with the age of the plants and was dependent on the species – Bouteloua gracilis was found to be particularly sensitive.

  3. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    Science.gov (United States)

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. © 2016 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Two-stage digestion of renewable raw materials. Applying bioleaching for utilizing grass silage; Zweiphasige Vergaerung nachwachsender Rohstoffe. Einsatz des Bioleaching-Verfahrens zur Verwertung von Grassilage

    Energy Technology Data Exchange (ETDEWEB)

    Zielonka, S.; Lemmer, A.; Oechsner, H. [Hohenheim Univ., Stuttgart (Germany). Landesanstalt fuer Landwirtschaftliches Maschinen- und Bauwesen; Jungbluth, T. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Agrartechnik

    2007-07-01

    Currently renewable raw materials are being used in full scale biogas plants as co-substrates. Using grass silage frequently caused technical problems till now. Within the framework of this project, a process to digest grass silage as a single substrate is being developed. An intermittently operating two-stage process is used. As far as the degree of degradation and methane yields are concerned, good and promising results have been achieved. (orig.)

  5. Moringa oleifera leaf extract: An innovative priming tool for rangeland grasses

    OpenAIRE

    NOUMAN, Wasif; SIDDIQUI, Muhammad Tahir; BASRA, Shahzad Maqsood Ahmed

    2012-01-01

    Moringa oleifera leaf extract (MLE) is rich in amino acids, ascorbate, zeatin, minerals, and many other compounds known for their growth-promoting potential. This study was planned to explore the potential of MLE as a seed priming agent to increase the germination rate and plant vigor of 3 range grasses, i.e. Cenchrus ciliaris, Panicum antidotale, and Echinochloa crusgalli. The priming strategies used were hydropriming, CaCl2, PEG-8000 (-1.1 M Pa), MLE (concentrate; 1:10, 1:20, 1:30, and 1:40...

  6. Abiotic factors affect the recruitment and biomass of perennial grass and evergreen shrub seedlings in denuded areas of Patagonian Monte rangelands.

    Science.gov (United States)

    Bosco, Tomás; Bertiller, Mónica Beatriz; Carrera, Analía Lorena

    2018-07-15

    Assessing the ability of key species to cope with environmental stresses in disturbed areas is an important issue for recovery of degraded arid ecosystem. Our objective was to evaluate the effect of soil moisture, exposure to UV radiation, and presence/absence of litter with different chemistry on soil N, recruitment and biomass of seedlings of perennial grass (Poa ligularis and Nassella tenuis) and evergreen shrub species (Atriplex lampa and Larrea divaricata) in denuded areas. We carried out a microcosm experiment with soil blocks (28 cm depth) sowed with seeds of the target species, subjected to different levels of litter type (perennial grass-evergreen shrub mixture, evergreen shrub mixture, and no litter), UV radiation (near ambient and reduced UV), and soil water (high: 15-25% and low 5-15%). Periodically, during 6 months, we assessed soil-N (total and inorganic) at two depths and species seedling recruitment at microcosms. Additionally, emerged seedlings of each species were transplanted to individual pots containing soil and subjected to the same previous factors during 12 months. Then, all plants were harvested and biomass assessed. Only inorganic soil-N at the upper soil varied among treatments increasing with the presence of evergreen shrub litter, exposure to ambient UV, and high soil water. Inorganic soil-N, promoted by near ambient UV and high soil water, had a positive effect on recruitment of perennial grasses and A. lampa. Both litter types promoted the recruitment of perennial grasses. Evergreen shrub litter and high soil water promoted the recruitment of L. divaricata. Seedling biomass of perennial grasses increased with high soil water and reduced UV. Ambient UV had positive or null effects on biomass of evergreen shrub seedlings. High soil water increased biomass of L. divaricata seedlings. We concluded that soil water appeared as the most limiting factor for seedling recruitment of all species whereas inorganic soil N limited the

  7. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  8. Grazing impact on desert plants and soil seed banks: Implications for seed-eating animals

    Science.gov (United States)

    Pol, Rodrigo G.; Sagario, M. Cecilia; Marone, Luis

    2014-02-01

    We assess whether the knowledge of livestock diet helps to link grazing effects with changes in plant cover and soil seed bank size, aiming at inferring the consequences of grazing on seed-eating animals. Specifically, we test whether continuous and heavy grazing reduce the cover, number of reproductive structures and seed reserves of the same grass species whose seeds are selected and preferred by granivorous animals in the central Monte desert, Argentina. Grass cover and the number of grass spikes usually diminished under grazing conditions in the two localities studied (Telteca and Ñacuñán), and soil seed bank was consistently reduced in all three years evaluated owing to a decline of perennial grass and forb seeds. In particular, the abundance of those seeds selected and preferred by birds and ants (in all cases grass species) declined 70-92% in Ñacuñán, and 52-72% in Telteca. Reduction of perennial grass cover and spike number in grazed sites reinforced the causal link between livestock grazing and the decline of grass soil seed reserves throughout failed plant reproduction. Grass seed bank depletion suggests that grazing may trigger a "cascade" of mechanisms that affect the abundance and persistence of valuable fodder species as well as the availability of seed resources for granivorous animals.

  9. Lessons learned in managing alfalfa-grass mixtures

    Science.gov (United States)

    Grass-alfalfa mixtures have a number of benefits that make them attractive to producers. However, they can be problematic to establish and maintain. Research programs have made progress in understanding the benefits and challenges of alfalfa-grass mixtures. Mixtures may have greater winter survival ...

  10. Prediction of genetic gains by selection indices using mixed models in elephant grass for energy purposes.

    Science.gov (United States)

    Silva, V B; Daher, R F; Araújo, M S B; Souza, Y P; Cassaro, S; Menezes, B R S; Gravina, L M; Novo, A A C; Tardin, F D; Júnior, A T Amaral

    2017-09-27

    Genetically improved cultivars of elephant grass need to be adapted to different ecosystems with a faster growth speed and lower seasonality of biomass production over the year. This study aimed to use selection indices using mixed models (REML/BLUP) for selecting families and progenies within full-sib families of elephant grass (Pennisetum purpureum) for biomass production. One hundred and twenty full-sib progenies were assessed from 2014 to 2015 in a randomized block design with three replications. During this period, the traits dry matter production, the number of tillers, plant height, stem diameter, and neutral detergent fiber were assessed. Families 3 and 1 were the best classified, being the most indicated for selection effect. Progenies 40, 45, 46, and 49 got the first positions in the three indices assessed in the first cut. The gain for individual 40 was 161.76% using Mulamba and Mock index. The use of selection indices using mixed models is advantageous in elephant grass since they provide high gains with the selection, which are distributed among all the assessed traits in the most appropriate situation to breeding programs.

  11. Variation in important pasture grasses: I. Morphological and ...

    African Journals Online (AJOL)

    Variation in important pasture grasses: I. Morphological and geographical variation. ... Seven species are important pasture grasses throughout the western Transvaal, Orange Free State, northern Cape and Natal. ... Language: English.

  12. Carbon storage potential increases with increasing ratio of C4 to C3 grass cover and soil productivity in restored tallgrass prairies.

    Science.gov (United States)

    Spiesman, Brian J; Kummel, Herika; Jackson, Randall D

    2018-02-01

    Long-term soil carbon (C) storage is essential for reducing CO 2 in the atmosphere. Converting unproductive and environmentally sensitive agricultural lands to grasslands for bioenergy production may enhance C storage. However, a better understanding of the interacting effects of grass functional composition (i.e., relative abundance of C 4 and C 3 grass cover) and soil productivity on C storage will help guide sustainable grassland management. Our objective was to examine the relationship between grass functional composition and potential C storage and how it varies with potential soil productivity. We estimated C inputs from above- and belowground net primary productivity (ANPP and BNPP), and heterotrophic respiration (R H ) to calculate net ecosystem production (NEP), a measure of potential soil C storage, in grassland plots of relatively high- and low-productivity soils spanning a gradient in the ratio of C 4 to C 3 grass cover (C 4 :C 3 ). NEP increased with increasing C 4 :C 3 , but only in potentially productive soils. The positive relationship likely stemmed from increased ANPP, rather than BNPP, which was possibly related to efficient resource-use and physiological/anatomical advantages of C 4 plants. R H was negatively correlated with C 4 :C 3 , possibly because of changes in microclimate or plant-microbe interactions. It is possible that in potentially productive soils, C storage can be enhanced by favoring C 4 over C 3 grasses through increased ANPP and BNPP and reduced R H . Results also suggest that potential C storage gains from C 4 productivity would not be undermined by a corresponding increase in R H .

  13. Plant-soil feedbacks and the reversal of desertification with climate change

    Science.gov (United States)

    Our objective was to provide a conceptual framework for perennial grass recovery in a series of wet years, which includes both plant-soil feedbacks that increase available water to grasses and effects of precipitation on a sequence of recovery-related processes. We tested hypotheses based on this fr...

  14. The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution.

    Science.gov (United States)

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Sen; Ci, Zhijia; Kong, Xiangrui; Wang, Zhangwei

    2013-09-01

    One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p  0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g(-1), respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m(-3).

  15. Transgenesis and genomics in molecular breeding of pasture grasses and legumes for forage quality and other traits

    International Nuclear Information System (INIS)

    Spangenberg, G.

    2005-01-01

    Significant advances in the establishment of the methodologies required for the molecular breeding of temperate forage grasses (Lolium and Festuca species) and legumes (Trifolium and Medicago species) are reviewed. Examples of current products and approaches for the application of these methodologies to forage grass and legume improvement are outlined. The plethora of new technologies and tools now available for high-throughput gene discovery and genome-wide expression analysis have opened up opportunities for innovative applications in the identification, functional characterization and use of genes of value in forage production systems and beyond. Selected examples of current work in pasture plant genomics, xenogenomics, symbiogenomics and micro-array-based molecular phenotyping are discussed. (author)

  16. Enzymes from Fungal and Plant Origin Required for Chemical Diversification of Insecticidal Loline Alkaloids in Grass-Epichloë Symbiota

    Science.gov (United States)

    Pan, Juan; Bhardwaj, Minakshi; Nagabhyru, Padmaja; Grossman, Robert B.; Schardl, Christopher L.

    2014-01-01

    The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline), -NHCH3 (loline), -N(CH3)2 (N-methylloline), -N(CH3)Ac (N-acetylloline), -NHAc (N-acetylnorloline), and -N(CH3)CHO (N-formylloline). Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL) gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase) and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense) plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for the

  17. Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota.

    Science.gov (United States)

    Pan, Juan; Bhardwaj, Minakshi; Nagabhyru, Padmaja; Grossman, Robert B; Schardl, Christopher L

    2014-01-01

    The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline), -NHCH3 (loline), -N(CH3)2 (N-methylloline), -N(CH3)Ac (N-acetylloline), -NHAc (N-acetylnorloline), and -N(CH3)CHO (N-formylloline). Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL) gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase) and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense) plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for the

  18. Enzymes from fungal and plant origin required for chemical diversification of insecticidal loline alkaloids in grass-Epichloë symbiota.

    Directory of Open Access Journals (Sweden)

    Juan Pan

    Full Text Available The lolines are a class of bioprotective alkaloids that are produced by Epichloë species, fungal endophytes of grasses. These alkaloids are saturated 1-aminopyrrolizidines with a C2 to C7 ether bridge, and are structurally differentiated by the various modifications of the 1-amino group: -NH2 (norloline, -NHCH3 (loline, -N(CH32 (N-methylloline, -N(CH3Ac (N-acetylloline, -NHAc (N-acetylnorloline, and -N(CH3CHO (N-formylloline. Other than the LolP cytochrome P450, which is required for conversion of N-methylloline to N-formylloline, the enzymatic steps for loline diversification have not yet been established. Through isotopic labeling, we determined that N-acetylnorloline is the first fully cyclized loline alkaloid, implying that deacetylation, methylation, and acetylation steps are all involved in loline alkaloid diversification. Two genes of the loline alkaloid biosynthesis (LOL gene cluster, lolN and lolM, were predicted to encode an N-acetamidase (deacetylase and a methyltransferase, respectively. A knockout strain lacking both lolN and lolM stopped the biosynthesis at N-acetylnorloline, and complementation with the two wild-type genes restored production of N-formylloline and N-acetylloline. These results indicated that lolN and lolM are required in the steps from N-acetylnorloline to other lolines. The function of LolM as an N-methyltransferase was confirmed by its heterologous expression in yeast resulting in conversion of norloline to loline, and of loline to N-methylloline. One of the more abundant lolines, N-acetylloline, was observed in some but not all plants with symbiotic Epichloë siegelii, and when provided with exogenous loline, asymbiotic meadow fescue (Lolium pratense plants produced N-acetylloline, suggesting that a plant acetyltransferase catalyzes N-acetylloline formation. We conclude that although most loline alkaloid biosynthesis reactions are catalyzed by fungal enzymes, both fungal and plant enzymes are responsible for

  19. Expansion of plants with Crassulacean Acid Metabolism under global environment change

    Science.gov (United States)

    Yu, K.; D'Odorico, P.; Collins, S. L.; Carr, D.

    2016-12-01

    The abundance of plants with Crassulacean Acid Metabolism (CAM) has increased in many drylands worldwide. This is hypothesized to occur because CAM plants store water, take up CO2 at night, exhibit photosynthetic plasticity, and have high water use efficiency. The increased dominance of CAM plants, however, also depends on their competitive relationship with other functional groups, an aspect of CAM plant sensitivity to global environmental change that has remained largely understudied. Here, we investigated the response of CAM plants and their competitive relationships with C3 and C4 plants under global environmental change. We focused on two pairs of CAM and non-CAM species, namely Cylindropuntia imbricata (a constitutive CAM species) and Bouteloua eriopoda (C4 grass), which co-occur in desert grasslands in northern Mexico, and invasive Mesembryanthemum crystallinum (a facultative CAM species) and Bromus mollis (a C3 invasive grass), which coexist in California's coastal grasslands. A set of growth chamber experiments under altered CO2 and water conditions show that C. imbricata outcompeted B. eriopoda under drought conditions, while in well-watered conditions B. eriopoda was a stronger competitor for soil water than C. imbricata. Under drought conditions a more positive response to CO2 enrichment by C. imbricata indirectly disfavored B. eriopoda, which suggests that interspecific competition can outweigh the favorable direct effect of CO2 enrichment on plant growth. A set of greenhouse experiments under water, N, and soil salinity manipulations showed that drought, N deposition, and/or increased soil salinity served as important drivers for success of M. crystallinum invasion, while B. mollis exerted strong competitive effects on M. crystallinum for light and soil nutrients in well-watered conditions. M. crystallinum switched from C3 photosynthesis to CAM photosynthesis as an adaptive strategy in response to moderate intensity of competition from B. mollis, in

  20. The Uptake by Plants of Diethylstilboestrol and of Its Glucuronide

    DEFF Research Database (Denmark)

    Gregers Hansen, B.

    1964-01-01

    The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments. It is con......The uptake of diethylstilboestrol and its glucuronide by plants could, under certain circumstances, present a potential health hazard. The relative uptake of the two compounds has therefore been studied in rye grass, red clover, mushrooms, and maize in pot and water culture experiments...

  1. Large-scale downy brome treatments alter plant-soil relationships and promote perennial grasses in salt desert shrublands

    Science.gov (United States)

    The interrelationship between invasive annual grass abundance and soil resource availability varies spatially and temporally within ecosystems and may be altered by land treatments. We evaluated these relationships in two salt desert landscapes where the local abundance of Bromus tectorum L. (downy...

  2. Grass-on-grass competition along a catenal gradient in mesic ...

    African Journals Online (AJOL)

    Three aboveground treatments (full light competition, no light competition and clipping to simulate grazing), and two belowground treatments (full belowground competition and belowground competition excluded by a root tube), were used. On all soil depths the three grass species differed in mean mass, with E. racemosa ...

  3. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy.

    Science.gov (United States)

    Valovirta, Erkka; Petersen, Thomas H; Piotrowska, Teresa; Laursen, Mette K; Andersen, Jens S; Sørensen, Helle F; Klink, Rabih

    2018-02-01

    Allergy immunotherapy targets the immunological cause of allergic rhinoconjunctivitis and allergic asthma and has the potential to alter the natural course of allergic disease. The primary objective was to investigate the effect of the SQ grass sublingual immunotherapy tablet compared with placebo on the risk of developing asthma. A total of 812 children (5-12 years), with a clinically relevant history of grass pollen allergic rhinoconjunctivitis and no medical history or signs of asthma, were included in the randomized, double-blind, placebo-controlled trial, comprising 3 years of treatment and 2 years of follow-up. There was no difference in time to onset of asthma, defined by prespecified asthma criteria relying on documented reversible impairment of lung function (primary endpoint). Treatment with the SQ grass sublingual immunotherapy tablet significantly reduced the risk of experiencing asthma symptoms or using asthma medication at the end of trial (odds ratio = 0.66, P year posttreatment follow-up, and during the entire 5-year trial period. Also, grass allergic rhinoconjunctivitis symptoms were 22% to 30% reduced (P years). At the end of the trial, the use of allergic rhinoconjunctivitis pharmacotherapy was significantly less (27% relative difference to placebo, P < .001). Total IgE, grass pollen-specific IgE, and skin prick test reactivity to grass pollen were all reduced compared to placebo. Treatment with the SQ grass sublingual immunotherapy tablet reduced the risk of experiencing asthma symptoms and using asthma medication, and had a positive, long-term clinical effect on rhinoconjunctivitis symptoms and medication use but did not show an effect on the time to onset of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Maize, Quetzalcoatl, and Grass Imagery: Science in the Central Mexican Codex Borgia

    OpenAIRE

    Ellis, Helen

    2015-01-01

    Before the Spanish-led defeat of the Aztecs in 1521, manuscripts were ubiquitous in Mesoamerica. Regrettably very few survive. One of them is the Aztec (Eastern Nahua) Codex Borgia painted in the Late Postclassic period (ca. 1250–1521 CE). Many of its 76 pages include maize imagery in polychrome. The plant appears amid gods of fertility hovering above naked females; associated with Quetzalcoatl, the god of wind; and rendered to look strikingly similar to grass. The questions I address in this...

  5. Performances of legume-grass mixtures under different cutting managements in mediterranean environments

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-02-01

    Full Text Available Annual forage crops have great importance for sustaining animal production in southern Italy. Knowledge of the performance of legume-grass associations under management similar to systems encountered in farm practice is essential for their effective exploitation of the available environmental resources. The purpose of this investigation was to estimate the effects of five cutting managements on the productivity and botanical composition of ten annual fodder crop mixtures in two Mediterranean environments. Ten ternary combinations of one grass (Avena sativa L., oat and Lolium multiflorum Lam., Italian ryegrass, one clover (Trifolium alexandrinum L., berseem; Trifolium incarnatum L., crimson and Trifolium squarrosum L., squarrosum or burr medic (Medicago polymorpha L. and common vetch (Vicia sativa L. were compared in a field trial (split-plot design, 3 replicates in two locations (Cagliari and Foggia, Italy during the 2000-2001 growing season. The cutting treatments included a winter grazing simulation (G, a cutting only regime at early (EF or late flowering (F of legumes and a combination of treatments (GEF and GF. Plant density (no. m-2 prior to cutting, dry matter yield (g m-2 and botanical composition (% were evaluated. Considerable differences were observed in the harvestable dry matter yields of mixtures among cutting treatments in both localities, with treatment F showing the higher values (787.1 and 415.7 g m-2 for Cagliari and Foggia, respectively. The forage species were able to compete and establish good growth during their initial phase in both localities. However, the botanical composition between the two sites differed considerably after the winter period. Particularly, at Foggia, grass dominance was a permanent feature of all treatments, and all the mixtures contained about 84% of grass. Italian ryegrass was the most representative species under all treatments in both sites. Mixtures with Italian ryegrass, crimson or berseem

  6. Physiological advantages of C4 grasses in the field: a comparative experiment demonstrating the importance of drought.

    Science.gov (United States)

    Taylor, Samuel H; Ripley, Brad S; Martin, Tarryn; De-Wet, Leigh-Ann; Woodward, F Ian; Osborne, Colin P

    2014-06-01

    Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m(-2) s(-1) higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4-8.1 mmol mol(-1)) than C3 averages (0.7-6.8 mmol mol(-1)), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are

  7. A comparative study of transfer coefficient of Iodine from grass to cow milk under equilibrium and postulated accidental scenario

    International Nuclear Information System (INIS)

    Geetha, P.V.; Karunakara, N.; Prabhu, Ujwal; Yashodhara, I.; Ravi, P.M.; Dileep, B.N.; Karpe, Rupali

    2014-01-01

    Extensive studies on transfer of 131 I through grass-cow-milk pathway after the Chernobyl accident were reported. But, under nor mal operational conditions of a power reactor, 131 I is not present in measurable concentration in environmental matrices around a nuclear power generating station. Hence, database on 131 I transfer coefficients for grass-cow-milk pathway in equilibrium conditions in the environment of a nuclear power plant are sparse. One of method to estimate the equilibrium transfer coefficient is to use stable iodine, which is present naturally in very low levels in the environmental matrices. By measuring the concentration of stable iodine concentration in grass and cow milk, the grass-to-milk transfer coefficient of iodine can be estimated. Since the metabolism of stable and radioiodine is same, the data obtained for transfer coefficient of stable iodine could be used for predicting the transfer for radioiodine to cow milk. The measurement of stable iodine in the environmental sample is very challenging because of its extremely low concentration. Neutron Activation Analysis (NAA) can be used to estimate stable iodine in the environment matrices after suitably optimizing the condition to minimize interferences. This paper presents the results of a systematic study on the transfer coefficients for grass-cow milk pathway of iodine in normal (equilibrium) situations as well as for a postulated (simulated) emergency condition in Kaiga region

  8. Dynamika przyrostu masy i produktywność stokłosy bezostnej i stokłosy uniolowatej przy zróżnicowanym nawożeniu azotem w doświadczeniu polowym. Cz. I. Wskaźniki produktywności i plony [Dynamics of mass increase and productivity of smooth brome grass and rescue grass with different nitrogen fertilization in field experiments. Part I. Indexes of productivity and yields

    Directory of Open Access Journals (Sweden)

    Henryk Skrabka

    2015-06-01

    Full Text Available On the basis of daily dry weight increment and assimilation area of the investigated plants the production indexes NAR, LAI and CGR and yields of dry weight were calculated for three years. The comparison of indexes and yields showed that the dynamics and mass increment of rescue grass are higher that those of smooth brome grass.

  9. Root profile in Multi-layered Dehesas: an approach to plant-to-plant Interaction

    Science.gov (United States)

    Rolo, V.; Moreno, G.

    2009-04-01

    Assessing plant-to-plant relationship is a key issue in agroforestry systems. Due to the sessile feature of plants most of these interactions take place within a restricted space, so characterizing the zone where the plant alters its environment is important to find overlapping areas where the facilitation or competition could occur. Main part of plan-to-plant interactions in the dehesa are located at belowground level, thus the main limited resources in Mediterranean ecosystems are soil nutrient and water. Hence a better knowledge of rooting plant profile can be useful to understand the functioning of the dehesa. The Iberian dehesa has always been considered as a silvopastoral system where, at least, two strata of vegetation coexist: native grasses and trees. However the dehesa is also a diverse system where cropland and encroached territories have been systematically combined, more or less periodically, with native pasture in order to obtain agricultural, pastoral and forestry outputs. These multipurpose mosaic-type systems generate several scenarios where the plant influence zone may be overlapped and the interaction, competition or facilitation, between plants can play an important role in the ecosystem functioning in terms of productivity and stability. In the present study our aim was to characterize the rooting profile of multi-layered dehesas in order to understand the competitive, and/or facilitative, relationships within the different plant strata. The root profile of Quercus ilex subsp. ballota, Cistus ladanifer, Retama spaherocarpa and natural grasses was studied. So 48 trenches, up to 2 meters deep, were excavated in 4 different environments: (i) grass; (ii) tree-grass; (iii) tree-shrub and (iv) tree-shrub-grass (12 trenches in each environment). The study was carried out in 4 dehesas, 2 encroached with C. ladanifer and 2 with R. spaherocarpa. In every trench soil samples were taken each 20 cm. Subsequently, all samples were sieved using different mesh

  10. Optimization of Lead Removal via Napier Grass in Synthetic Brackish Water using Response Surface Model

    Science.gov (United States)

    Hongsawat, P.; Suttiarporn, P.; Wutsanthia, K.; Kongsiri, G.

    2018-03-01

    The efficiency of the lead (Pb) phytoremediation by Napier grass was studied on the plant’s growth and plant’s tolerance on the Pb toxicity in synthetic brackish water. It was found that the plant was high tolerance to high level of Pb concentration (10 mg/l) in synthetic brackish water. Which revealed on the possibilities of plant’s growth under the presence of Pb contaminated condition. According to the Pb removal efficiency, the highest one (88.63±4.9%) was found at 10 ppm Pb concentration, 0.3 g/l NaCl concentration during the period 45 day. However, this study investigated the optimum condition for lead (Pb) removal from synthetic brackish water using phytoremediation treatment with Napier grass through a Box-Behnken Design. Three operational variables, i.e. Pb concentration (1, 5.5, 10 mg/l), NaCl (0.1, 0.3, 0.5 g/l) and period time (7, 26, 45 day), were determined. The results were provided evidence that the highest Pb removal efficiency (93.56%) from synthetic brackish water via Napier grass was Pb and NaCl concentration at 10 mg/l and 0.5 g/l during 45 day.

  11. Convex relationships in ecosystems containing mixtures of trees and grass

    CSIR Research Space (South Africa)

    Scholes, RJ

    2003-12-01

    Full Text Available The relationship between grass production and the quantity of trees in mixed tree-grass ecosystems (savannas) is convex for all or most of its range. In other words, the grass production declines more steeply per unit increase in tree quantity...

  12. Morphogenesis in guinea grass pastures under rotational grazing strategies

    Directory of Open Access Journals (Sweden)

    Denise Baptaglin Montagner

    2012-04-01

    Full Text Available This study was conducted in order to evaluate the morphogenetic and structural characteristics of guinea grass cv. Mombasa under three post-grazing heights (intense - 30 cm, lenient - 50 cm and variable - 50 in spring-summer and 30 cm in autumn-winter when sward light interception reached 95% during regrowth. Post-grazing heights were allocated to experimental units (0.25 ha in a completely randomized block design with three replications. Post-grazing heights affected only leaf elongation rate and the number of live leaves. Pastures managed with variable post-grazing height showed higher leaf elongation rate in the summer of 2007. This management strategy also resulted in a higher number of live leaves. During the spring of 2006, plants showed lower leaf elongation rate, leaf appearance rate and number of live leaves, and greater phyllochron and leaf lifespan. In contrast, during the summer of 2007, the leaf appearance rate, leaf elongation rate, number of live leaves, and final leaf length were greater while phyllochron, stem elongation rate, and leaf senescence rate were lower. The management of the guinea grass cv. Mombasa with intense or variable post-grazing height throughout the year seems to represent an interesting management target, in terms of leaf appearance rate and number of live leaves.

  13. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  14. Control of long-term transfer of {sup 137}Cs to grass and cereal grain in Swedi Chernobyl affected areas, 1986 - 2003

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, K.; Haak, E. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Science

    2005-09-15

    In 1986 the {sup 137}Cs fallout from the Chernobyl accident was relatively high in three counties of North Sweden and in two counties of East-Mid Sweden, designated X, Y, Z and U/C respectively. In these counties an investigation of {sup 137}Cs fallout comprised a large number of farms, most of the farms on grass site and some on cereal site. The ground deposition of {sup 137}Cs varied largely, and was on average higher in X-county than in Y- and U/C- counties and lowest on Z-county. Transfer of {sup 137}Cs to crops was determined every year until 1996, and later every third year up to 2003. The transfer of {sup 137}Cs was higher to pasture grass than to ley grass and much lower to cereal grain. For all the three crops the transfer was higher on organic soils than on mineral soils. K-fertilization decreased the soil-to-plant transfer of {sup 137}Cs as did ploughing and harrowing the ley grass and cereal sites.

  15. Enhancing the Properties of Coal Briquette Using Spear Grass (Imperata Cylindrica

    Directory of Open Access Journals (Sweden)

    Adaora Stellamaris OGBUAGU

    2010-12-01

    Full Text Available Studies have been carried out on utilizing agricultural wastes (spear grass to enhance the properties of coal briquette. The proximate analysis of the plant material was carried out alongside with a sample of coal (sub-bituminous coal. Briquettes of different compositions were produced by blending the plant material with the coal at various concentrations: 0%, 10%, 20%, 30%, 40%, 50% and 100%, using cassava starch as a binder and calcium hydroxide (Ca(OH2 as desulfurizing agent. The properties of the briquettes were compared. It was found that the ignition, burning rate and reduction in smoke emission showed improvement with increase in biomass concentration. Compressive strength and cooking efficiency (water boiling time and specific fuel consumption showed initial improvement and rendered to decrease with briquette containing 30% biomass.

  16. 27 CFR 19.645 - Name and address of bottler.

    Science.gov (United States)

    2010-04-01

    ... of such other plants. However: (a) Where distilled spirits are bottled by or for the distiller... trade name) under which the particular spirits were distilled, or any trade name shown on the distiller... addresses) of the distiller; (b) Where “straight whiskies” of the same type which have been produced in the...

  17. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  18. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    OpenAIRE

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca...

  19. Effect of an Invasive Grass on Ambient Rates of Decomposition and Microbial Community Structure: A Search for Causality

    Science.gov (United States)

    In sutu decomposition of above and below ground plant biomass of the native grass species Andropogon glmoeratus (Walt.) B.S.P and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and below ground biomass of the inv...

  20. Is All Urban Green Space the Same? A Comparison of the Health Benefits of Trees and Grass in New York City.

    Science.gov (United States)

    Reid, Colleen E; Clougherty, Jane E; Shmool, Jessie L C; Kubzansky, Laura D

    2017-11-18

    Living near vegetation, often called "green space" or "greenness", has been associated with numerous health benefits. We hypothesized that the two key components of urban vegetation, trees and grass, may differentially affect health. We estimated the association between near-residence trees, grass, and total vegetation (from the 2010 High Resolution Land Cover dataset for New York City (NYC)) with self-reported health from a survey of NYC adults (n = 1281). We found higher reporting of "very good" or "excellent" health for respondents with the highest, compared to the lowest, quartiles of tree (RR = 1.23, 95% CI = 1.06-1.44) but not grass density (relative risk (RR) = 1.00, 95% CI = 0.86-1.17) within 1000 m buffers, adjusting for pertinent confounders. Significant positive associations between trees and self-reported health remained after adjustment for grass, whereas associations with grass remained non-significant. Adjustment for air pollutants increased beneficial associations between trees and self-reported health; adjustment for parks only partially attenuated these effects. Results were null or negative using a 300 m buffer. Findings imply that higher exposure to vegetation, particularly trees outside of parks, may be associated with better health. If replicated, this may suggest that urban street tree planting may improve population health.

  1. Estimating grass-clover ratio variations caused by traffic intensities using image analysis

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Nyholm; Sørensen, Claus Grøn; Green, Ole

    Grass and especially clover have a negative yield response as a function of  traffic intensity.  Conventional grass-clover production for silage have high traffic intensity due to fertilizing with slurry, cutting the grass, rolling the grass into swaths, and collecting and chopping the grass...... to fulfill the aim [1]http://www.ruralni.gov.uk/index/publications/press_articles/dairy-2/role-of-clover.htm...

  2. Population and community ecology of the rare plant amsinckia grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  3. Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photosynthetic capacity to plant growth.

    Science.gov (United States)

    Jiang, Yanling; Xu, Zhenzhu; Zhou, Guangsheng; Liu, Tao

    2016-07-12

    The atmospheric CO2 concentration is rising continuously, and abnormal precipitation may occur more frequently in the future. Although the effects of elevated CO2 and drought on plants have been well reported individually, little is known about their interaction, particularly over a water status gradient. Here, we aimed to characterize the effects of elevated CO2 and a water status gradient on the growth, photosynthetic capacity, and mesophyll cell ultrastructure of a dominant grass from a degraded grassland. Elevated CO2 stimulated plant biomass to a greater extent under moderate changes in water status than under either extreme drought or over-watering conditions. Photosynthetic capacity and stomatal conductance were also enhanced by elevated CO2 under moderate drought, but inhibited with over-watering. Severe drought distorted mesophyll cell organelles, but CO2 enrichment partly alleviated this effect. Intrinsic water use efficiency (WUEi) and total biomass water use efficiency (WUEt) were increased by elevated CO2, regardless of water status. Plant structural traits were also found to be tightly associated with photosynthetic potentials. The results indicated that CO2 enrichment alleviated severe and moderate drought stress, and highlighted that CO2 fertilization's dependency on water status should be considered when projecting key species' responses to climate change in dry ecosystems.

  4. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-01-01

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems

  5. Microbial protein synthesis, digestion and lactation responses of cows to grass or grass-red clover silage diet supplemented with barley or oats

    Directory of Open Access Journals (Sweden)

    A. VANHATALO

    2008-12-01

    Full Text Available The study was conducted to evaluate effects of silage type (grass-red clover vs. pure grass and grain supplement (oats vs. barley on rumen fermentation, post-ruminal nutrient flows, diet digestion and milk production. Four primiparous Finnish Ayrshire cows fitted with cannulae in the rumen and duodenum were used in a 4 × 4 Latin square experiment with four 28-d experimental periods and 2 × 2 factorial arrangements of treatments. Using red clover-containing (40% silage rather than pure grass silage had minor effects on rumen fermentation or diet digestion but increased non-ammonia nitrogen (N flow in terms of increased flows of microbial and dietary N entering to the small intestine. This was reflected as a reduced ruminal N degradability on grass-red clover diets. Furthermore, grass-red clover diets in comparison to grass silage diets increased milk lactose concentration and yields of milk, protein and lactose. Feeding oats in replacement for barley had minor effects on rumen fermentation or post-ruminal non-ammonia N flows but reduced digestibility of organic matter and neutral detergent fibre in the diet. Using oats rather than barley increased yields of milk and lactose but reduced milk protein concentration. Oats also increased proportions of C18:0 and C18:1 in milk fat and reduced those of C10:0 to C16:0. It is concluded that inclusion of red clover and replacement of barley with oats in grass silage based diets have beneficial effects in dairy cow production.;

  6. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  7. Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment

    Energy Technology Data Exchange (ETDEWEB)

    Jezowski, S.; Glowacka, K.; Kaczmarek, Z. [Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan (Poland)

    2011-02-15

    This study presents the results of investigations of variation, genotype x year interactions and genotype x year x location interactions for the yield and morphological traits of several selected clones of energy grasses of the genus Miscanthus. The analyses were performed on the best clones of selected hybrid plants, which were obtained within the species M. sinensis or are the result of interspecific hybridization of M. sinensis and M. sacchariflorus. Analyses were conducted on the basis of three-year field trials at two locations. The young plants produced from in vitro cultures were planted at a density of one plant per m{sup 2}. The early stages of plant development, from planting until peak yield in the third year of cultivation, were analysed. Statistical analyses performed on the yield and morphological traits as well as changes in these characteristics over the successive years of the study showed considerable genotypic variation for traits under study. Moreover, significant genotype x year interactions as well as genotype x year x location interactions were observed in terms of yield and morphological traits. Based on the collective results of the study, we suggest that apart from M. x giganteus particularly hybrids of M. sinensis x M. sacchariflorus, should be taken into consideration in genetic and breeding studies on the improvement of yield from energy grasses of the genus Miscanthus. (author)

  8. Estimating the energy requirements and CO{sub 2} emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.; Metcalfe, P.

    2001-07-01

    The perennial grasses miscanthus, reed canary and swithchgrass have attractions as energy crops in the United Kingdom: all have low demand for fertilizer and pesticide, and are harvested annually. Research on energy ratios and carbon ratios of the grasses is reported. A Microsoft Excel-based model was developed (from an ADAS database) and the input calculations and assumptions are explained. The study demonstrated the attractions of theses grasses as a source of fuel. The results agreed with those from a model developed for the SRC.

  9. The effects of energy grass plantations on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T; Slater, F

    2005-07-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI.

  10. The effects of energy grass plantations on biodiversity

    International Nuclear Information System (INIS)

    Semere, T.; Slater, F.

    2005-01-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI

  11. Uptake of actinides and nuclear fission products in graminaceous and nongraminaceous plants

    Science.gov (United States)

    Ely, Stephanie Lynn

    Radionuclides exist within the environment naturally and also from release during nuclear power and weapons production. The ability of plants to uptake radionuclides may prove beneficial for exploitation in the field of phytoremediation and as a biomonitor within the field of nuclear forensics. The fact that plants have the ability to take up radionuclides as an unintended metabolic process is well known, however, the mechanisms through which uptake occur present large gaps within the current research. Therefore, gaining further knowledge regarding overall plant radionuclide uptake and specific mechanisms may prove as an invaluable tool to enhance phytoremediation and nuclear forensic efforts. Within this work, controlled laboratory experiments were conducted in order to determine any uptake differences between graminaceous (rye grass) and nongraminaceous (cucumber) plants. A matrix of samples were individually spiked with known amounts of Sr, Cs, Th, U as well as ligands of acetate, citrate, DFOB. Uptake was compared through the calculation and analysis of distribution coefficients within the roots and shoots of each plant sample. A variety of trends were observed throughout this study. Overall, it was determined that the cucumber plant takes up slightly higher concentrations within both the roots and the shoots, except for within the Cs set of samples. Within the Cs samples it was determined that uptake was much higher in the rye grass than in the cucumber plant. Therefore, it was concluded that it may be more beneficial to focus on the collection of grasses and other graminaceous plants when the goal is to collect a plant to determine nuclear activity within the vicinity of a facility. This is due to the fact that Cs is generally released at higher concentrations than other radionuclides during the process of nuclear power and energy production. Similarly, grasses may also be desired as the main focus for phytoremediation efforts due to the fact that Cs is a

  12. Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus

    Directory of Open Access Journals (Sweden)

    Anja Magiera

    2018-02-01

    Full Text Available Plant functional groups—in our case grass, herbs, and legumes—and their spatial distribution can provide information on key ecosystem functions such as species richness, nitrogen fixation, and erosion control. Knowledge about the spatial distribution of plant functional groups provides valuable information for grassland management. This study described and mapped the distribution of grass, herb, and legume coverage of the subalpine grassland in the high-mountain Kazbegi region, Greater Caucasus, Georgia. To test the applicability of new sensors, we compared the predictive power of simulated hyperspectral canopy reflectance, simulated multispectral reflectance, simulated vegetation indices, and topographic variables for modeling plant functional groups. The tested grassland showed characteristic differences in species richness; in grass, herb, and legume coverage; and in connected structural properties such as yield. Grass (Hordeum brevisubulatum was dominant in biomass-rich hay meadows. Herb-rich grassland featured the highest species richness and evenness, whereas legume-rich grassland was accompanied by a high coverage of open soil and showed dominance of a single species, Astragalus captiosus. The best model fits were achieved with a combination of reflectance, vegetation indices, and topographic variables as predictors. Random forest models for grass, herb, and legume coverage explained 36%, 25%, and 37% of the respective variance, and their root mean square errors varied between 12–15%. Hyperspectral and multispectral reflectance as predictors resulted in similar models. Because multispectral data are more easily available and often have a higher spatial resolution, we suggest using multispectral parameters enhanced by vegetation indices and topographic parameters for modeling grass, herb, and legume coverage. However, overall model fits were merely moderate, and further testing, including stronger gradients and the addition of

  13. Transplanting native dominant plants to facilitate community development in restored coastal plain wetlands.

    Energy Technology Data Exchange (ETDEWEB)

    De Steven, Diane; Sharitz, Rebecca R.

    2007-12-01

    Abstract: Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous graminoid species may not recolonize because they are dispersal-limited and uncommon or absent in the seed banks of disturbed sites. We tested whether selectively planting such wetland dominants could facilitate restoration by accelerating vegetative cover development and suppressing non-wetland species. In an operational-scale project in a South Carolina forested landscape, drained depressional wetlands were restored in early 2001 by completely removing woody vegetation and plugging surface ditches. After forest removal, tillers of two rhizomatous wetland grasses (Panicum hemitomon, Leersia hexandra) were transplanted into singlespecies blocks in 12 restored depressions that otherwise were revegetating passively. Presence and cover of all plant species appearing in planted plots and unplanted control plots were recorded annually. We analyzed vegetation composition after two and four years, during a severe drought (2002) and after hydrologic recovery (2004). Most grass plantings established successfully, attaining 15%–85% cover in two years. Planted plots had fewer total species and fewer wetland species compared to control plots, but differences were small. Planted plots achieved greater total vegetative cover during the drought and greater combined cover of wetland species in both years. By 2004, planted grasses appeared to reduce cover of non-wetland species in some cases, but wetter hydrologic conditions contributed more strongly to suppression of non-wetland species. Because these two grasses typically form a dominant cover matrix in herbaceous depressions, our results indicated that

  14. Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. (Agaricomycetideae) on grass plants in Taiwan.

    Science.gov (United States)

    Liang, Zeng-Chin; Wu, Kuan-Jzen; Wang, Jinn-Chyi; Lin, Chorng-Horng; Wu, Chiu-Yeh

    2011-01-01

    Cultivation of the culinary-medicinal Lung Oyster mushroom, Pleurotus pulmonarius, on the stalks of three grass plants, i.e., Panicum repens, Pennisetum purpureum, and Zea mays were investigated. The effects of various combinatorial substrates on mushroom mycelial growth and yield calculated as biological efficiency (BE) were determined. Among 9 experimental substrates, the most suitable substrate for mycelial growth was 45ZMS:45S, followed by 45PRS:45S; their mycelial growth rates were obviously quicker than that of the control substrate. The BEs of all the experimental substrates respectively containing P. repens stalk, P. purpureum stalk and Z. mays stalk were higher than that of the control (39.55%) during the 2.5 months of cultivation period. The best substrate in terms of BE was 60ZMS:30S (58.33%), followed by 45PRS:45S (57.16%), 45ZMS:45S (49.86%), and 30ZMS:60S (47.20%). Based on the BE of the tested substrates, Z mays stalk appeared to be the best alternative material for the production of P. pulmonarius.

  15. Ploidy determination of buffel grass accessions in the USDA National Plant Germplasm System collection by flow cytometry

    Science.gov (United States)

    Buffelgrass [Pennisetum ciliare (L.) Link syn. Cenchrus ciliaris L.] is an important forage and range grass in many of the semi-arid tropical and subtropical regions of the world. The species reproduces primarily by apomixis but it is highly diverse because a wide array of different apomictic ecoty...

  16. Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland.

    Science.gov (United States)

    Klabi, Rim; Bell, Terrence H; Hamel, Chantal; Iwaasa, Alan; Schellenberg, Mike; Raies, Aly; St-Arnaud, Marc

    2015-01-01

    Adding inorganic P- and N-fixing legumes to semi-arid grasslands can increase forage yield, but soil nutrient concentrations and plant cover may also interact to modify soil fungal populations, impacting short- and long-term forage production. We tested the effect of plant assemblage (seven native grasses, seven native grasses + the domesticated N-fixing legume Medicago sativa, seven native grasses + the native N-fixing legume Dalea purpurea or the introduced grass Bromus biebersteinii + M. sativa) and soil P concentration (addition of 0 or 200 P2O5 kg ha(-1) at sowing) on the diversity and community structure of arbuscular mycorrhizal (AM) fungi and total fungi over two consecutive years, using 454-pyrosequencing of 18S rDNA and ITS amplicons. Treatment effects were stronger in the wet year (2008) than the dry year (2009). The presence of an N-fixing legume with native grasses generally increased AM fungal diversity, while the interaction between soil P concentration and plant assemblage modified total fungal community structure in 2008. Excluding interannual variations, which are likely driven by moisture and plant productivity, AM fungal communities in semi-arid grasslands appear to be primarily affected by plant assemblage composition, while the composition of other fungi is more closely linked to soil P. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Efficacy of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species

    Science.gov (United States)

    Kacprzak, Malgorzata; Grobelak, Anna; Grosser, Anna; Prasad, M. N. V.

    2013-01-01

    The role of sewage sludge as an immobilising agent in the phytostabilization of metal-contaminated soil was evaluated using five grass species viz., Dactylis glomerata L., Festuca arundinacea Schreb., F. rubra L., Lolium perenne L., L. westerwoldicum L. The function of metal immobilization was investigated by monitoring pH, Eh and Cd, Pb, and Zn levels in column experiment over a period of 5-months. Grasses grown on sewage sludge-amendments produced high biomass in comparison to controls. A significant reduction in metal uptake by plants was also observed as a result of sewage sludge application, which was attributed to decreased bioavailability through soil stabilisation. We have observed that the sludge amendment decreased metal bioavailability and concentrations in soil at a depth of 25 cm, in contrast to untreated columns, where metal concentrations in the soil solution were very high. PMID:24912245

  18. Development of new techniques of using irradiation in the genetic improvement of warm season grasses and an assessment of the genetic and cytogenetic effects. Annual report, August 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Burton, G.W.; Hanna, W.W.

    1977-08-01

    New techniques of using irradiation in the genetic improvement of several warm season grasses are described. The economic value of radiation induced plant mutants and the genetic and cytogenetic effects of these treatments are discussed. Alterations in protein quality in pearl millet grain and improved varieties of Bermuda grass following radiation treatment are reported

  19. Development of innovative technique that may be used as models for the increase of biomass production with grasses and other species

    Science.gov (United States)

    Burton, G. W.; Hanna, W. W.

    1981-09-01

    Techniques for biomass increase are discussed: irradiation breeding of sterile triploid turf bermuda grasses; irradiation breeding of sterile Coastcross-1, a forage grass hybrid to increase winter hardiness; heterosis resulting from crossing specific irradiation induced mutants with their normal inbred parent; use of mitomycin and streptomycin to create cytoplasmic male sterile mutants in pearl millet; biomass of napiergrass; evaluation of mutagen induced lignin mutants to maximize metabolizable energy in sorghum; interspecific crosses in Pennisetum; production of homozygous translocation tester stocks; use of radiation to induce and transfer reproductive behavior in plants; and genetics of radiation induced mutations.

  20. Preliminary analysis on mowing and harvesting grass along riverbanks for the supply of anaerobic digestion plants in north-eastern Italy

    Directory of Open Access Journals (Sweden)

    Davide Boscaro

    2015-10-01

    Full Text Available The increasing demand of vegetal biomass for biogas production is causing competition with food production. To reduce this problem and to provide new opportunities it is necessary to take into consideration different kinds of vegetable biomass that are more sustainable. Grass from the maintenance of non-cultivated areas such as riverbanks has not yet been fully studied as a potential biomass for biogas production. Although grass has lower methane potential, it could be interesting because it does not compete with food production. However, there is a lack of appropriate technologies and working system adapted to these areas. In this paper, different systems that could be available for the mowing and harvesting of grass along riverbanks have been preliminarily assessed through the evaluation of the field capacity, labour requirement, economic and energy aspects. The splitting of the cutting and harvesting phases into operations with different machinery seems to be the best system for handling this biomass. However, these solutions have to take into consideration the presence of obstacles or accessibility problems in the harvesting areas that could limit the operational feasibility and subsequent correct sizing.

  1. Functional immunoglobulin E cross-reactivity between Pas n 1 of Bahia grass pollen and other group 1 grass pollen allergens.

    Science.gov (United States)

    Davies, J M; Dang, T D; Voskamp, A; Drew, A C; Biondo, M; Phung, M; Upham, J W; Rolland, J M; O'Hehir, R E

    2011-02-01

    Grass pollens are major triggers of allergic rhinitis and asthma, but the immunological relationships between pollen allergens of the subtropical Bahia grass, Paspalum notatum, and temperate grasses are unresolved. To assess serum IgE cross-reactivity between subtropical P. notatum and temperate Lolium perenne (Ryegrass) pollen allergens. Serum IgE reactivities of grass pollen-allergic patients with P. notatum, L. perenne and Cynodon dactylon (Bermuda grass) pollen extracts and their respective purified group 1 allergens, Pas n 1, Lol p 1 and Cyn d 1, were compared by immunoblotting, ELISA and basophil activation. In a cohort of 51 patients from a temperate region, a high frequency of IgE reactivity with each grass pollen was detected, but reactivity with L. perenne pollen was substantially greater than with P. notatum and C. dactylon pollen. Similarly, serum IgE reactivity with Lol p 1 was greater than with Pas n 1 or Cyn d 1. For seven of eight sera studied in detail, asymmetric serum IgE cross-reactivity was observed; L. perenne pollen inhibited IgE reactivity with P. notatum pollen but not the converse, and IgE reactivity with Pas n 1 was inhibited by Lol p 1 but IgE reactivity with Lol p 1 was not inhibited by Pas n 1 or Cyn d 1. Importantly, P. notatum pollen and Pas n 1 activated basophils in grass pollen-allergic patients from a temperate region, although stimulation was greater by pollen of L. perenne than P. notatum or C. dactylon, and by Lol p 1 than Pas n 1 or Cyn d 1. In contrast, a cohort of 47 patients from a subtropical region showed similar IgE reactivity with P. notatum and L. perenne pollen, and reciprocal cross-inhibition of IgE reactivity between L. perenne and P. notatum. Pollen allergens of the subtropical P. notatum, including Pas n 1, show clinically relevant IgE cross-reactivity with pollen allergens of L. perenne but also species-specific IgE reactivity. © 2011 Blackwell Publishing Ltd.

  2. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Trace metal analysis in sea grasses from Mexican Caribbean Coast by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Solis, C.; Issac O, K.; Martinez, A.; Lavoisier, E.; Martinez, M. A.

    2008-01-01

    The growing urban and tourist activity in the Mexican Caribbean coasts has resulted in an increase of chemical substances, metals in particular, discharged to the coastal waters. In order to reach an adequate management and conservation of these marine ecosystems it is necessary to perform an inventory of the actual conditions that reflect the vulnerability and the level of damage. Sea-grasses are considered good biological indicators of heavy metal contamination in marine systems. The goal of this preliminary work is to evaluate the concentrations of trace metals such as Cr, Mn, Fe, Co, Cu, Zn, and Pb in Thalassia testudinum, a very common sea-grass in the Mexican Caribbean Sea. Samples were collected from several locations in the coasts of the Yucatan Peninsula: Holbox, Blanquizal and Punta Allen, areas virtually uninfluenced by anthropogenic activities. Trace elements in different part plants were determined by particle induced X-ray emission (PIXE). This is a very suitable technique since it offers a fast, accurate and multi-element analysis. Also, the analysis by PIXE can be performed directly on powdered leaves without a laborious sample preparation. The trace metal concentration determined in sea-grasses growing in Caribbean generally fall in the range of the lowest valuables reported for sea grasses from the Gulf of Mexico. The results indicate that the studied areas do not present contamination by heavy metals. (Author)

  4. Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil.

    Science.gov (United States)

    Xu, Jianling; Cai, Qiongyao; Wang, Hanxi; Liu, Xuejun; Lv, Jing; Yao, Difu; Lu, Yue; Li, Wei; Liu, Yuanyuan

    2017-05-01

    In this study, the microwave digestion method was used to determine total cadmium (Cd) and lead (Pb) concentrations, the BCR method was used to determine different states of Cd and Pb, and atomic absorption spectroscopy (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to determine Cd and Pb concentrations in simulated soil and barnyard grass before and after planting barnyard grass to provide a theoretical basis for the remediation of Cd- and Pb-contaminated soil. The results showed that the bioconcentration factor changes with different Cd concentrations are relatively complex and that the removal rate increases regularly. The 100 mg kg -1 Cd treatment had the highest removal rate, which reached 36.66%. For Pb, the bioconcentration factor decreased and tended to reach equilibrium as the Pb concentration increased. The highest removal rate was 41.72% and occurred in the 500 mg kg -1 Pb treatment; however, this removal rate was generally lower than that of Cd. In addition, the reduction state had the highest change rate, followed by the residual, acid soluble and oxidation states. For Pb, the residual state has the highest change rate, followed by the acid soluble state, reduction state and oxidation state. In addition, a significant correlation was observed between the soil Pb and Cd concentrations and the concentrations of Pb and Cd that accumulated in the belowground biomass of the barnyard grass, but no significant correlation was observed between the soil Pb and Cd concentrations and the amounts of Pb and Cd that accumulated in the aboveground biomass of the barnyard grass. The highest transfer factor of Cd was 0.49, which occurred in the 5 mg kg -1 Cd treatment. The higher transfer factor of Pb was 0.48 in the 100 mg kg -1 Pb treatment. All of these factors indicate that the belowground biomass of barnyard grass plays a more important role in the remediation of Cd- and Pb-contaminated soils than the aboveground

  5. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    Energy Technology Data Exchange (ETDEWEB)

    Boon, G.T. [State Univ. Groningen (Netherlands); Bouwman, L.A.; Bloem, J.; Roemkens, P.F.A.M. [Research Inst. for Agrobiology and Soil Fertility, Haren (Netherlands)

    1998-10-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reduced crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.

  6. Grass Rooting the System

    Science.gov (United States)

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  7. Transfer factors of 226Ra, 210Pb and 210Po from NORM-contaminated oil field soil to some Atriplex species, Alfalfa and Bermuda grass

    International Nuclear Information System (INIS)

    Al-Masria, M.S.; Mukalallati, H.; Al-Hamwi, A.

    2014-01-01

    Transfer factors of 226 Ra, 210 Pb and 210 Po from soil contaminated with naturally occurring radioactive materials (NORM) in oil fields to some grazing plants were determined using pot experiments. Contaminated soil was collected from a dry surface evaporation pit from a Syrian oil field in the Der Ezzor area. Five types of plants (Atriplex halimus L., Atriplex canescens, Atriplex Leucoclada Bioss, Alfalfa and Bermuda grass) were grown and harvested three times over two years. The results show that the mean transfer factors of 226 Ra from the contaminated soil to the studied plant species were 1.6 x 10 -3 for Atriplex halimus L., 2.1 x 10 -3 for Atriplex canescens, 2.5 x 10 -3 for Atriplex Leucoclada Bioss, 8.2 x 10 -3 for Bermuda grass, and the highest value was 1.7 x 10 -2 for Alfalfa. Transfer factors of 210 Pb and 210 Po were higher than 226 Ra TFs by one order of magnitude and reached 7 x 10 -3 , 1.1 x 10 -2 , 1.2 x 10 -2 , 3.2 x 10 -2 and 2.5 x 10 -2 for Atriplex halimus, Atriplex canescens, Atriplex Leucoclada Bioss, Bermuda grass and Alfalfa, respectively. The results can be considered as base values for transfer factors of 226 Ra, 210 Pb and 210 Po in semiarid regions. (authors)

  8. Hilly grasses and leaves: a promising unconventional feed resource for livestock.

    OpenAIRE

    Hossain M.E.; Karim M.H.; Ahmed M.I.; Sultana S.A.

    2016-01-01

    The study was undertaken to find out the chemical composition of different hilly grasses and leaves available in Bandarban areas of Bangladesh. Total 10 different hilly grasses and leaves such as Bottle gourd leaf (Lagenaria siceraria), Castor bean leaf (Ricinus communis), Cogon grass (Imperata cylindrica), Dhol kolmi (Ipomoea carnea), Giant reed leaf (Arundo donax), Hilly grass (Cynodon dactylon), Pithraj leaf (Aphanamixis polystachya), Sal leaf (Shorea robusta), Shegun leaf (Tectona grandis...

  9. Effect of machinery wheel load on grass yield

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Kristensen, Kristian

    2010-01-01

    Effect of machinery wheel load on grass   Ole Green1, Rasmus N. Jørgensen2, Kristian Kristensen3, René Gislum3, Dionysis Bochtis1, & Claus G. Sørensen1   1University of Aarhus, Dept. of Agricultural Engineering 2University of Southern Denmark, Inst. of Chemical Eng., Biotechnology and Environmental...... 3University of Aarhus, Dept. of Genetics and Biotechnology   Corresponding author: Ole Green Address & e-mail: Research Centre Foulum, Blichers Allé 20, 8830 Tjele. Ole.Green@agrsci.dk     Abstract   Different traffic intensities have been shown to have a negative influence on the yield of grass...... and clover. A full scale grass-clover field trial was established to estimate the effect on clover-grass yields as a function of different wheel loads and tire pressures. The trial comprised 16 different traffic intensities with 35 replicates and 1 traffic free treatment with 245 replicates, totalling 17...

  10. Base-line data on everglades soil-plant systems: elemental composition, biomass, and soil depth

    International Nuclear Information System (INIS)

    Volk, B.G.; Schemnitz, S.D.; Gamble, J.F.; Sartain, J.B.

    1975-01-01

    Plants and soils from plots in the Everglades Wildlife Management Area, Conservation Area 3, were examined. Chemical composition (N, P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, Co, Sr, Pb, Ni, Cr, Al, and Si) of most plant and soil digests was determined. Cladium jamaicense was the predominant plant species contributing to biomass in all plots except the wet prairie, where Rhynchospora sp. and Panicum hemitomon were most common. The biomass of dead C. jamaicense was greater than that of the living plants in unburned saw-grass plots. The burned saw grass, muck burn, and wet prairie were characterized by a large number of plant species per square meter but smaller average biomass production than the unburned saw-grass locations. Levels of Cu, Mn, Ca, Mg, K, and N in C. jamaicense differed significantly across locations. Highly significant differences in elemental composition existed between plant species. Concentrations of several elements (particularly Zn, Ca, Mg, P, and N) were low in live C. jamaicense compared with other plant species. Cesium-137 levels ranged from 670 to 3100 pCi/kg in sandy and in organic soils, respectively. Polygonum had a 137 Cs level of 11,600 pCi/kg. Dead C. jamaicense indicated a rapid leaching loss of 137 Cs from dead tissue

  11. Alley cropping of legumes with grasses as forages : Effect of different grass species and row spacing of gliricidia on the growth and biomass production of forages

    Directory of Open Access Journals (Sweden)

    Siti Yuhaeni

    1998-12-01

    Full Text Available A study to evaluate the effect of different grass species and row spacing of gliricidia (Gliricidia sepium on the growth and biomass production of forages in an alley cropping system was conducted in two different agroclimatical zones i.e. Bogor, located at 500 m a .s .l . with an average annual rainfall of 3,112 nun/year and Sukabumi located at 900 m a .s .l . with an average annual rainfall of 1,402 mm/year . Both locations have low N, P, and K content and the soil is classified as acidic. The experimental design used was a split plot design with 3 replicates . The main plots were different grass species i.e. king grass (Pennisetum purpureum x P. typhoides and elephant grass (P. purpureum. The sub plots were the row spacing of gliricidia at 2, 3, 4, 6 m (1 hedgerows and 4 m (2 hedgerows. The results indicated that the growth and biomass production of grasses were significantly affected (P<0 .05 by the treatments in Bogor. The highest biomass productions was obtained from the 2 m row spacing which gave the highest dry matter production of grasses (1 .65 kg/hill and gliricidia (0 .086 kg/tree . In Sukabumi the growth and biomass production of grasses and gliricidia were also significantly affected by the treatments . The highest dry matter production was obtained with 2 m row spacing (dry matter of grasses and gliricidia were 1 .12 kg/hill and 0 .026 kg/tree, respectively . The result further indicated that biomass production of forages increased with the increase in gliricidia population. The alley cropping system wich is suitable for Bogor was the 2 m row spacing of gliricidia intercropped with either king or elephant grass and for Sukabumi 2 and 4 m (2 rows of gliricidia row spacing intercropped with king or elephant grass .

  12. Indirect effects of an invasive annual grass on seed fates of two native perennial grass species.

    Science.gov (United States)

    Meyer, Susan E; Merrill, Katherine T; Allen, Phil S; Beckstead, Julie; Norte, Anna S

    2014-04-01

    Invasive plants exhibit both direct and indirect negative effects on recruitment of natives following invasion. We examined indirect effects of the invader Bromus tectorum (cheatgrass) on seed fates of two native grass species, Elymus elymoides and Pseudoroegneria spicata, by removing B. tectorum and by adding inoculum of the shared seed pathogen Pyrenophora semeniperda in factorial experiments at xeric and mesic field sites. We also included a supplemental watering treatment to increase emergence and also the potential for pathogen escape. We recorded emergence and survival of native seedlings and also determined the fate of unemerged seeds. At the xeric site, Pyrenophora-caused mortality was high (34%), and effects of other pathogens and failed emergence of germinants were smaller. Cheatgrass removal negatively affected both emergence (35 vs. 25%) and spring survival (69 vs. 42%). Pyrenophora-caused seed mortality increased with inoculum augmentation for both species (22 vs. 47% overall), but emergence was negatively impacted only for P. spicata (20 vs. 34%). At the mesic site, Pyrenophora-caused mortality was low (6%). Cheatgrass removal doubled emergence (26 vs. 14%). Seed mortality increased significantly with inoculum augmentation for P. spicata (12 vs. 5%) but not E. elymoides, while emergence was not significantly affected in either species. A large fraction of seeds produced germinants that failed to emerge (37%), while another large fraction (35%) was killed by other pathogens. We conclude that facilitation by cheatgrass at the xeric site but interference at the mesic site was probably mediated through litter effects that could be ameliorative or suppressive. Apparent competition between cheatgrass and native grasses could occur through Pyrenophora, especially in a xeric environment, but effects were weak or absent at emergence. This was probably because Pyrenophora attacks the same slow-germinating fraction that is subject to pre-emergence mortality from

  13. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  14. Using the Model Perennial Grass Brachypodium sylvaticum to Engineer Resistance to Multiple Abiotic Stresses

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Sean; Reguera, Maria; Sade, Nir; Cartwright, Amy; Tobias, Christian; Thilmony, Roger; Blumwald, Eduardo; Vogel, John

    2015-03-20

    We are using the perennial model grass Brachypodium sylvaticum to identify combinations of transgenes that enhance tolerance to multiple, simultaneous abiotic stresses. The most successful transgene combinations will ultimately be used to create improved switchgrass (Panicum virgatum L.) cultivars. To further develop B. sylvaticum as a perennial model grass, and facilitate our planned transcriptional profiling, we are sequencing and annotating the genome. We have generated ~40x genome coverage using PacBio sequencing of the largest possible size selected libraries (18, 22, 25 kb). Our initial assembly using only long-read sequence contained 320 Mb of sequence with an N50 contig length of 315 kb and an N95 contig length of 40 kb. This assembly consists of 2,430 contigs, the largest of which was 1.6 Mb. The estimated genome size based on c-values is 340 Mb indicating that about 20 Mb of presumably repetitive DNA remains yet unassembled. Significantly, this assembly is far superior to an assembly created from paired-end short-read sequence, ~100x genome coverage. The short-read-only assembly contained only 226 Mb of sequence in 19k contigs. To aid the assembly of the scaffolds into chromosome-scale assemblies we produced an F2 mapping population and have genotyped 480 individuals using a genotype by sequence approach. One of the reasons for using B. sylvaticum as a model system is to determine if the transgenes adversely affect perenniality and winter hardiness. Toward this goal, we examined the freezing tolerance of wild type B. sylvaticum lines to determine the optimal conditions for testing the freezing tolerance of the transgenics. A survey of seven accessions noted significant natural variation in freezing tolerance. Seedling or adult Ain-1 plants, the line used for transformation, survived an 8 hour challenge down to -6 oC and 50% survived a challenge down to -9 oC. Thus, we will be able to easily determine if the transgenes compromise freezing tolerance. In the

  15. Energy evaluation of fresh grass in the diets of lactating dairy cows

    NARCIS (Netherlands)

    Bruinenberg, M.H.; Zom, R.L.G.; Valk, H.

    2002-01-01

    The discrepancy between the estimated feeding value of fresh grass and the output per kg grass in terms of milk and maintenance was studied by evaluating 12 experiments with grass-fed dairy cows. The percentage grass in the diets varied between 40 and 90. Intake and milk production were recorded

  16. Screening of salt-tolerance potential of some native forage grasses from the eastern part of Terai-Duar grasslands in India

    Directory of Open Access Journals (Sweden)

    Swarnendu Roy

    2017-09-01

    Full Text Available The salt tolerance of 12 native forage grasses from the eastern part of Terai-Duar grasslands was assessed using a rapid method of leaf disc senescence bioassay. Samples of these grasses were grown in untreated water as well as 100 and 200 mM NaCl solutions for periods of 3, 6 and 9 days. Discs of fresh leaf were then placed in untreated water as well as in 100 and 200 mM NaCl solutions for 96 hours. Quantitative effects were measured as the effects on chlorophyll concentration in leaves in response to exposure to the varying solutions. From these results, the salt sensitivity index (SSI of the individual grasses was determined. The SSI values indicated that Imperata cylindrica, Digitaria ciliaris and Cynodon dactylon were most salt-tolerant of all grasses tested. Further characterization of the grasses was done by observing the changes in 6 biomarkers for salinity tolerance: relative water content, total sugar concentration, proline concentration, electrolyte leakage, membrane lipid peroxidation and H2O2 concentration following exposure to 100 and 200 mM NaCl concentrations for 3, 6 and 9 days. Finally, hierarchical cluster analysis using the software CLUSTER 3.0 was used to represent the inter-relations among the physiological parameters and to group the grasses on the basis of their salinity tolerance. The overall results indicated that Imperata cylindrica, Eragrostis amabilis, Cynodon dactylon and Digitaria ciliaris were potentially salt-tolerant grasses and should be planted on saline areas to verify our results. On the other hand, Axonopus compressus, Chrysopogon aciculatus, Oplismenus burmanni and Thysanolaena latifolia were found to be highly salt-sensitive and would be unsuitable for use in saline areas. 

  17. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    Science.gov (United States)

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  18. Towards reconstructing herbaceous biome dynamics and associated precipitation in Africa: insights from the classification of grass morphological traits

    Science.gov (United States)

    Pasturel, Marine; Alexandre, Anne; Novello, Alice; Moctar Dieye, Amadou; Wele, Abdoulaye; Paradis, Laure; Hely, Christelle

    2014-05-01

    Inter-tropical herbaceous ecosystems occupy a 1/5th of terrestrial surface, a half of the African continent, and are expected to extend in the next decades. Dynamic of these ecosystems is simulated with poor accuracy by Dynamic Global Vegetation Models (DGVMs). One of the bias results from the fact that the diversity of the grass layer dominating these herbaceous ecosystems is poorly taken into account. Mean annual precipitation and the length of the dry season are the main constrains of the dynamics of these ecosystems. Conversely, changes in vegetation affect the water cycle. Inaccuracy in herbaceous ecosystem simulation thus impacts simulations of the water cycle (including precipitation) and vice versa. In order to increase our knowledge of the relationships between grass morphological traits, taxonomy, biomes and climatic niches in Western and South Africa, a 3-step methodology was followed: i) values of culm height, leaf length and width of dominant grass species from Senegal were gathered from flora and clustered using the Partition Around Medoids (PAM) method; ii) trait group ability to sign climatic domains and biomes was assessed using Kruskal-Wallis tests; iii) genericity and robustness of the trait groups were evaluated through their application to Chadian and South African botanical datasets. Results show that 8 grass trait groups are present either in Senegal, Chad or South Africa. These 8 trait groups are distributed along mean annual precipitation and dry season length gradients. The combination of three of them allow to discriminate mean annual precipitation domains (1000 mm) and herbaceous biomes (steppes, savannas, South African grasslands and Nama-Karoo). With these results in hand, grass Plant Functional Types (PFTs) of the DGMV LPJ-GUESS will be re-parameterized and particular attention will be given to the herbaceous biomass assigned to each grass trait group. Simultaneously, relationships between grass trait groups and phytolith vegetation

  19. Negative impacts of invasive plants on conservation of sensitive desert wildlife

    Science.gov (United States)

    Drake, K. Kristina; Bowen, Lizabeth; Nussear, Kenneth E.; Esque, Todd C.; Berger, Andrew J.; Custer, Nathan; Waters, Shannon C.; Johnson, Jay D.; Miles, A. Keith; Lewison, Rebecca L.

    2016-01-01

    Habitat disturbance from development, resource extraction, off-road vehicle use, and energy development ranks highly among threats to desert systems worldwide. In the Mojave Desert, United States, these disturbances have promoted the establishment of nonnative plants, so that native grasses and forbs are now intermixed with, or have been replaced by invasive, nonnative Mediterranean grasses. This shift in plant composition has altered food availability for Mojave Desert tortoises (Gopherus agassizii), a federally listed species. We hypothesized that this change in forage would negatively influence the physiological ecology, immune competence, and health of neonatal and yearling tortoises. To test this, we monitored the effects of diet on growth, body condition, immunological responses (measured by gene transcription), and survival for 100 captive Mojave tortoises. Tortoises were assigned to one of five diets: native forbs, native grass, invasive grass, and native forbs combined with either the native or invasive grass. Tortoises eating native forbs had better body condition and immune functions, grew more, and had higher survival rates (>95%) than tortoises consuming any other diet. At the end of the experiment, 32% of individuals fed only native grass and 37% fed only invasive grass were found dead or removed from the experiment due to poor body conditions. In contrast, all tortoises fed either the native forb or combined native forb and native grass diets survived and were in good condition. Health and body condition quickly declined for tortoises fed only the native grass (Festuca octoflora) or invasive grass (Bromus rubens) with notable loss of fat and muscle mass and increased muscular atrophy. Bromus rubens seeds were found embedded in the oral mucosa and tongue in most individuals eating that diet, which led to mucosal inflammation. Genes indicative of physiological, immune, and metabolic functions were transcribed at lower levels for individuals fed B

  20. The Potential of Cellulosic Ethanol Production from Grasses in Thailand

    Directory of Open Access Journals (Sweden)

    Jinaporn Wongwatanapaiboon

    2012-01-01

    Full Text Available The grasses in Thailand were analyzed for the potentiality as the alternative energy crops for cellulosic ethanol production by biological process. The average percentage composition of cellulose, hemicellulose, and lignin in the samples of 18 types of grasses from various provinces was determined as 31.85–38.51, 31.13–42.61, and 3.10–5.64, respectively. The samples were initially pretreated with alkaline peroxide followed by enzymatic hydrolysis to investigate the enzymatic saccharification. The total reducing sugars in most grasses ranging from 500–600 mg/g grasses (70–80% yield were obtained. Subsequently, 11 types of grasses were selected as feedstocks for the ethanol production by simultaneous saccharification and cofermentation (SSCF. The enzymes, cellulase and xylanase, were utilized for hydrolysis and the yeasts, Saccharomyces cerevisiae and Pichia stipitis, were applied for cofermentation at 35°C for 7 days. From the results, the highest yield of ethanol, 1.14 g/L or 0.14 g/g substrate equivalent to 32.72% of the theoretical values was obtained from Sri Lanka ecotype vetiver grass. When the yields of dry matter were included in the calculations, Sri Lanka ecotype vetiver grass gave the yield of ethanol at 1,091.84 L/ha/year, whereas the leaves of dwarf napier grass showed the maximum yield of 2,720.55 L/ha/year (0.98 g/L or 0.12 g/g substrate equivalent to 30.60% of the theoretical values.

  1. Effects of vesicular-arbuscular mycorrhizae on survival and growth of perennial grasses in lignite overburden in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Call, C.A.; Davies, F.T.

    1988-12-01

    Seedlings of sideoats grama (Bouteloua curtipendula), Indiangrass (Sorghastrum nutans), and kleingrass (Panicum coloratum) were inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus fasciculatum and Gigaspora margarita) in a containerized system and transplanted into lignite overburden in the Post Oak Savannah region of Texas, U.S.A. After three growing seasons without cultural inputs, plants inoculated with VAM fungi had greater survival percentages, basal diameters, and above-ground biomass than noninoculated plants. Inoculated plants had higher levels of nitrogen and phosphorus in above-ground biomass than noninoculated plants. Root colonization percentages of inoculated plants remained fairly stable while noninoculated plants showed low levels of colonization over the 3-year study period. Vesicular-arbuscular mycorrhizae enhanced the survival and growth of the 3 grass species by making effective use of limited resources in the lignite overburden. 31 refs., 3 tabs.

  2. Plants that can be Poisonous for Cows. A Review

    Directory of Open Access Journals (Sweden)

    Cristina EL MAHDY

    2017-11-01

    Full Text Available Romania is blessed with a rich spontaneous flora, but some of the plants are toxic by their consumption in cattle, affecting the health, productions and endangering consumer safety. Sometimes even the consumption of small amounts causes poisoning with a broad extension: from mild, moderate to severe and with chronic or acute manifestations. Plant action is not similar. Taxus Buccata, Eupatorium spp. (E. rugosum, E. urticaefolium, E. ogeratoides are cardiotoxic plants, but, Eupatorium spp. also acts through depression of the central nervous system; Datura stramonium (Jimson weed, Solanum spp. (nightshades, Atropa belladonna (belladonna, are plants with cholinergic blocking; haemolytic anemia is caused by Pteridium aquilinum (Bracken fern and Equisetum (horsetail. The poisoning with cyanogenic principles occurs at Sorghum spp (Johnson grass, sudan grass; Elderberry consumption, Senecio spp. and Hypericum (St John’s wort induces liver toxicity. Plants containing alkaloids outside their toxicity also have teratogenic action: Lupinus spp., Nicotiana spp, Conium maculatum, Veratrum album. However, some of these plants can be used in certain cows’ treatments.

  3. Relationship between the Al resistance of grasses and their adaptation to an infertile habitat.

    Science.gov (United States)

    Poozesh, Vahid; Cruz, Pablo; Choler, Philippe; Bertoni, Georges

    2007-05-01

    Original data on Al resistance, relative growth rate and leaf traits of five European grasses as well as literature data on Al resistance, habitat preference and traits of grasses were considered to determine whether (a) Al resistance is correlated to a growth conservative strategy and (b) species occurrence could be useful to assess Al toxicity in meadows on acid soils. The Al resistance of 15 species was represented by the Al activity in nutrient solution that resulted in a 50 % decrease in root length, [Al(3+)](50), or, for published values, in root or plant biomass. The correlations between Al resistance and acidity or nitrogen indices and the correlation between Al resistance and selected traits (relative growth rate, leaf dry matter content, specific leaf area and leaf thickness) were calculated. Principal component analysis was used for the characterization of the relationships between Al resistance and measured traits. The [Al(3+)](50) values of the resistant species Molinia caerulea and Sieglingia decumbens were 13 and 26 microm [Al(3+)](50), respectively. The known Al resistance of 15 species that were mainly of the intermediate strategy competitor-stress tolerator-ruderal (C-S-R) type and of the S type was correlated with Ellenberg's nitrogen and acidity indices. For the whole set of species, the correlation between Al resistance and traits was not significant. The Al resistance of the C-S-R species was variable and independent of their traits. S-type species, adapted to acid soils and with traits of conservative strategy, displayed Al resistance. The large difference in Al resistance between grasses may help assess Al soil toxicity by using the abundance of grasses.

  4. Perennial Grass Bioenergy Cropping on Wet Marginal Land

    NARCIS (Netherlands)

    Das, Srabani; Teuffer, Karin; Stoof, Cathelijne R.; Walter, Michael F.; Walter, M.T.; Steenhuis, Tammo S.; Richards, Brian K.

    2018-01-01

    The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate

  5. Assessment of in situ and ex situ phytorestoration with grass mixtures in soils polluted with nickel, copper, and arsenic

    Science.gov (United States)

    Zacarías Salinas, Montserrat; Beltrán Villavicencio, Margarita; Bustillos, Luis Gilberto Torres; González Aragón, Abelardo

    This work shows a study of in situ and ex situ phytoextraction as a polishing step in the treatment of an industrial urban soil polluted with nickel, arsenic and copper. The soil was previously washed, and phytoextraction was performed by application of a mixture of grass (Festuca rubra, Cynodon dactylon, Lolium multiforum, Pennisetum). The soil had initial heavy metals concentrations of 131 ppm for Ni, 717 for As and 2734 for Cu (mg of metal/kg of dry soil). After seeding and emerging of grass, vegetal and soil samples were taken monthly during 4 months. Biomass generation, and concentration of Ni, As and Cu in vegetal tissue and soil were determined for every sample. Plants biomass growth in ex situ process was inhibited by 37% when compared with blank soil. Grass showed remarkable phytoextraction capability in situ, it produced 38 g of biomass every 15 days (wet weight) during a period of 3 months, but then declined in the fourth month. Concentrations of metals in grass biomass were up to 83 mg Ni/kg, 649 mg As/kg and 305 mg Cu/kg dry weight. Metal reduction of 49% for Ni, and 35% for Cu and As was observed at rhizospheric soil.

  6. Tensile fracture properties of seven tropical grasses at different phenological stages

    NARCIS (Netherlands)

    Jacobs, A.A.A.; Scheper, J.A.; Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P.; Elgersma, A.

    2011-01-01

    The intake of forage grasses by grazing ruminants is closely related to the mechanical fracture properties of grasses. The relationship between the tensile fracture properties of grasses and foraging behaviour is of particular importance in tropical reproductive swards composed of both stems and

  7. The broad spectrum revisited: evidence from plant remains.

    Science.gov (United States)

    Weiss, Ehud; Wetterstrom, Wilma; Nadel, Dani; Bar-Yosef, Ofer

    2004-06-29

    The beginning of agriculture is one of the most important developments in human history, with enormous consequences that paved the way for settled life and complex society. Much of the research on the origins of agriculture over the last 40 years has been guided by Flannery's [Flannery, K. V. (1969) in The Domestication and Exploitation of Plants and Animals, eds. Ucko, P. J. & Dimbleby, G. W. (Duckworth, London), pp. 73-100] "broad spectrum revolution" (BSR) hypothesis, which posits that the transition to farming in southwest Asia entailed a period during which foragers broadened their resource base to encompass a wide array of foods that were previously ignored in an attempt to overcome food shortages. Although these resources undoubtedly included plants, nearly all BSR hypothesis-inspired research has focused on animals because of a dearth of Upper Paleolithic archaeobotanical assemblages. Now, however, a collection of >90,000 plant remains, recently recovered from the Stone Age site Ohalo II (23,000 B.P.), Israel, offers insights into the plant foods of the late Upper Paleolithic. The staple foods of this assemblage were wild grasses, pushing back the dietary shift to grains some 10,000 years earlier than previously recognized. Besides the cereals (wild wheat and barley), small-grained grasses made up a large component of the assemblage, indicating that the BSR in the Levant was even broader than originally conceived, encompassing what would have been low-ranked plant foods. Over the next 15,000 years small-grained grasses were gradually replaced by the cereals and ultimately disappeared from the Levantine diet.

  8. How much gas can we get from grass?

    International Nuclear Information System (INIS)

    Nizami, A.S.; Orozco, A.; Groom, E.; Dieterich, B.; Murphy, J.D.

    2012-01-01

    Highlights: ► We highlight the various results for biomethane potential that may be obtained from the same grass silage. ► The results indicated that methane potential varied from 350 to 493 L CH 4 kg −1 VS added for three different BMP procedures. ► We compare two distinct digestion systems using the same grass. ► A two stage wet system achieved 451 L CH 4 kg −1 VS added over a 50 day retention period. ► A two phase system achieved 341 L CH 4 kg −1 VS added at a 30 day retention time. -- Abstract: Grass biomethane has been shown to be a sustainable gaseous transport biofuel, with a good energy balance, and significant potential for economic viability. Of issue for the designer is the variation in characteristics of the grass depending on location of source, time of cut and species. Further confusion arises from the biomethane potential tests (BMP) which have a tendency to give varying results. This paper has dual ambitions. One of these is to highlight the various results for biomethane potential that may be obtained from the same grass silage. The results indicated that methane potential from the same grass silage varied from 350 to 493 L CH 4 kg −1 VS added for three different BMP procedures. The second ambition is to attempt to compare two distinct digestion systems again using the same grass: a two stage continuously stirred tank reactor (CSTR); and a sequentially fed leach bed reactor connected to an upflow anaerobic sludge blanket (SLBR–UASB). The two engineered systems were designed, fabricated, commissioned and operated at small pilot scale until stable optimal operating conditions were reached. The CSTR system achieved 451 L CH 4 kg −1 VS added over a 50 day retention period. The SLBR–UASB achieved 341 L CH 4 kg −1 VS added at a 30 day retention time.

  9. Local area distribution of fallout radionuclides from Fukushima Daiichi Nuclear Power Plant determined by autoradiography analysis

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Ohnuki, Toshihiko; Kozai, Naofumi; Igarashi, Shosuke; Yamasaki, Shinya; Yoshida, Zenko; Tanaka, Shunichi

    2012-01-01

    The environmental behavior of radioactive Cs in the fallout from the accident of the Fukushima Daiichi Nuclear Power Plant has been studied by measuring its spatial distribution on/in trees, plants, and surface soil beneath the plants using autoradiography analysis. The results of autoradiography analysis showed that radioactive Cs was distributed on the branches and leaves of trees that were present during the accident and that only a small fraction of radioactive Cs was transported to new branches and leaves grown after the accident. Radioactive Cs was present on the grass and rice stubble on the soils, but not in the soils beneath the grass and rice stubble, indicating that the radioactive Cs was deposited on the grass and the rice plant. In addition, the ratio of the radioactive Cs that penetrated into the soil layer by weathering was very small two months after the accident. These results indicate that trees and other plants are the reservoir of the fallout Cs and function to retard the fallout Cs migration with rain water. (author)

  10. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    Science.gov (United States)

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  11. Forage production in mixed grazing systems of elephant grass with arrowleaf clover or forage peanut

    Directory of Open Access Journals (Sweden)

    Daiane Cristine Seibt

    Full Text Available ABSTRACT Most dairy production systems are pasture-based, usually consisting of sole grass species. This system facilitates pasture management, but results in high production costs, mainly because of nitrogen fertilizers. An alternative to making forage systems more sustainable is to introduce legumes into the pasture. Mixed pastures allow better forage distribution over time and reduce fertilization costs. Thus, the objective of this study was to evaluate, throughout the year, three forage systems (FS: FS1 (control - elephant grass (EG, ryegrass (RG, and spontaneous species (SS; FS2 - EG + RG + SS + arrowleaf clover; and FS3 - EG + RG + SS + forage peanut. Elephant grass was planted in rows spaced 4 m apart. Ryegrass was sown between the EG lines, in the winter. Arrowleaf clover was sown according to the respective treatments and forage peanut was preserved. Evaluation was carried out using Holstein cows. The experiment was arranged in a completely randomized design, with three treatments (FS, and three repetitions (paddocks with repeated measurements (grazing cycles. Forage mass achieved 3.46, 3.80, and 3.91 t ha-1 for the treatments FS1, FS2 and FS3, respectively. The forage systems intercropped with legumes produced the best results.

  12. Selecting elephant grass families and progenies to produce bioenergy through mixed models (REML/BLUP).

    Science.gov (United States)

    Rodrigues, E V; Daher, R F; Dos Santos, A; Vivas, M; Machado, J C; Gravina, G do A; de Souza, Y P; Vidal, A K; Rocha, A Dos S; Freitas, R S

    2017-05-18

    Brazil has great potential to produce bioenergy since it is located in a tropical region that receives high incidence of solar energy and presents favorable climatic conditions for such purpose. However, the use of bioenergy in the country is below its productivity potential. The aim of the current study was to select full-sib progenies and families of elephant grass (Pennisetum purpureum S.) to optimize phenotypes relevant to bioenergy production through mixed models (REML/BLUP). The circulating diallel-based crossing of ten elephant grass genotypes was performed. An experimental design using the randomized block methodology, with three repetitions, was set to assess both the hybrids and the parents. Each plot comprised 14-m rows, 1.40 m spacing between rows, and 1.40 m spacing between plants. The number of tillers, plant height, culm diameter, fresh biomass production, dry biomass rate, and the dry biomass production were assessed. Genetic-statistical analyses were performed through mixed models (REML/BLUP). The genetic variance in the assessed families was explained through additive genetic effects and dominance genetic effects; the dominance variance was prevalent. Families such as Capim Cana D'África x Guaçu/I.Z.2, Cameroon x Cuba-115, CPAC x Cuba-115, Cameroon x Guaçu/I.Z.2, and IAC-Campinas x CPAC showed the highest dry biomass production. The family derived from the crossing between Cana D'África and Guaçu/I.Z.2 showed the largest number of potential individuals for traits such as plant height, culm diameter, fresh biomass production, dry biomass production, and dry biomass rate. The individual 5 in the family Cana D'África x Guaçu/I.Z.2, planted in blocks 1 and 2, showed the highest dry biomass production.

  13. Variation in n-Alkane Distributions of Modern Plants: Questioning Applications of n-Alkanes in Chemotaxonomy and Paleoecology

    Science.gov (United States)

    Bush, R. T.; McInerney, F. A.

    2010-12-01

    Long chain n-alkanes (n-C21 to n-C37) are synthesized as part of the epicuticular leaf wax of terrestrial plants and are among the most recognizable and widely used plant biomarkers. n-Alkane distributions have been utilized in previous studies on modern plant chemotaxonomy, testing whether taxa can be identified based on characteristic n-alkane profiles. Dominant n-alkanes (e.g. n-C27 or n-C31) have also been ascribed to major plant groups (e.g. trees or grasses respectively) and have been used in paleoecology studies to reconstruct fluctuations in plant functional types. However, many of these studies have been based on relatively few modern plant data; with the wealth of modern n-alkane studies, a more comprehensive analysis of n-alkanes in modern plants is now possible and can inform the usefulness of n-alkane distributions as paleoecological indicators. The work presented here is a combination of measurements made using plant leaves collected from the Chicago Botanic Garden and a compilation of published literature data from six continents. We categorized plants by type: angiosperms, gymnosperms, woody plants, forbs, grasses, ferns and pteridophytes, and mosses. We then quantified n-alkane distribution parameters such as carbon preference index (CPI), average chain length (ACL), and dispersion (a measure of the spread of the profile over multiple chain lengths) and used these to compare plant groups. Among all plants, one of the emergent correlations is a decrease in dispersion with increasing CPI. Within and among plant groups, n-alkane distributions show a very large range of variation, and the results show little or no correspondence between broad plant groups and a single dominant n-alkane or a ratio of n-alkanes. These findings are true both when data from six continents are combined and when plants from a given region are compared (North America). We also compared the n-alkane distributions of woody angiosperms, woody gymnosperms, and grasses with one

  14. The effects of forest residual debris disposal on perennial grass emergence, growth, and survival in a ponderosa pine ecotone

    Science.gov (United States)

    Darin J. Law; Peter F. Kolb

    2007-01-01

    Soil surface conditions can have profound effects on plant seedling emergence and subsequent seedling survival. To test the hypothesis that different soil-surface treatments with logging residue affect range grass seedling emergence and survival, 6 alternative forest-residual treatments were established in the summer of 1998 following thinning of mature trees from...

  15. Preliminary Studies on Antimicrobial Activity of Extracts from Aloe Vera Leaf, Citrus Hystrix Leaf, Zingiber Officinale and Sabah Snake Grass Against Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Uda M.N.A.

    2018-01-01

    Full Text Available Herbal plants have several potential antimicrobial activities either as antifungal or antibacterial to fight against the disease and pathogen that attack the plants. The extractions of the Aloe vera leaf, Citrus hystrix leaf, Zingiber officinale rhizome and Sabah snake grass were selected in this study to fight against Bacillus subtilis. B. subtilis is a Gram-positive bacterium, rodshaped and catalase-positive that lives on decayed organic material. It is known as Gram-positive bacteria because of its thick peptidoglycan and would appear purple when subjected to Gram test. This species is commonly found in the upper layers of the soil, in meat or vegetables, in pastry, cooked meat, in bread or poultry products. The extracts of Sabah Snake Grass found to be most effective than A.vera leaf, Z. officinale, and C. hystrix against the B. subtilis.

  16. Seasonal variation in diurnal atmospheric grass pollen concentration profiles

    DEFF Research Database (Denmark)

    Peel, Robert George; Ørby, Pia Viuf; Skjøth, Carsten Ambelas

    2014-01-01

    the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods......In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish...... of the pollen season. Pollen concentrations are also influenced by meteorological factors - directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season...

  17. Harvesting Effects on Species Composition and Distribution of Cover Attributes in Mixed Native Warm-Season Grass Stands

    Directory of Open Access Journals (Sweden)

    Vitalis W. Temu

    2015-05-01

    Full Text Available Managing grasslands for forage and ground-nesting bird habitat requires appropriate defoliation strategies. Subsequent early-summer species composition in mixed stands of native warm-season grasses (Indiangrass (IG, Sorghastrum nutans, big bluestem (BB, Andropogon gerardii and little bluestem (LB, Schizachyrium scoparium responding to harvest intervals (treatments, 30, 40, 60, 90 or 120 d and durations (years in production was assessed. Over three years, phased May harvestings were initiated on sets of randomized plots, ≥90 cm apart, in five replications (blocks to produce one-, two- and three-year-old stands. Two weeks after harvest, the frequencies of occurrence of plant species, litter and bare ground, diagonally across each plot (line intercept, were compared. Harvest intervals did not influence proportions of dominant plant species, occurrence of major plant types or litter, but increased that of bare ground patches. Harvest duration increased the occurrence of herbaceous forbs and bare ground patches, decreased that of tall-growing forbs and litter, but without affecting that of perennial grasses, following a year with more September rainfall. Data suggest that one- or two-year full-season forage harvesting may not compromise subsequent breeding habitat for bobwhites and other ground-nesting birds in similar stands. It may take longer than a year’s rest for similar stands to recover from such changes in species composition.

  18. Symbiosis in the Context of an Invasive, Non-Native Grass: Fungal Biodiversity and Student Engagement

    Science.gov (United States)

    Lehr, Gavin

    Grasslands in the western United States face severe environmental threats including those brought about by climate change, such as changes in precipitation regimes and altered fire cycles; land-use conversion and development; and the introduction, establishment, and spread of non-native species. Lehmann's lovegrass (Eragrostis lehmanniana) was introduced to the southwestern United States in the early 1900s. Since its introduction, it has become the dominant grass in the mid-elevation grasslands of southern Arizona, including the Santa Rita Experimental Range (SRER), where it has displaced native grasses including Arizona cottontop, three awns, and gramas. Like all plants in terrestrial ecosystems, this grass harbors fungal symbionts that can be important for its establishment and persistence. This thesis focuses on fungal symbionts of Lehmann's lovegrass and has two components. First, the diversity and distributions of endophytes in Lehmann's lovegrass are evaluated in the context of biotic and abiotic factors in the SRER. Culturing from roots and shoots of Lehmann's lovegrass at points beneath and outside the canopy of native mesquites, which are encroaching on grasslands over time, provides insight into how a single plant species can exhibit local variation in the composition of its symbionts. Second, the thesis is used as the basis for engagement of students in science, technology, engineering, and mathematics (STEM) through the development and implementation of classroom- and field activities centered on endophytes, which help high school students address core learning aims while also gaining real research experience. Engaging students in important questions relevant to their local environment can catalyze interest in science and help students cross the threshold into research. The contributions of such approaches with respect to learning not only fulfills key next-generation science standards and common core objectives, but provides students with a meaningful

  19. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  20. Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces.

    Science.gov (United States)

    Hidaka, Taira; Arai, Sayuri; Okamoto, Seiichiro; Uchida, Tsutomu

    2013-02-01

    Adding greenery from public spaces to the co-digestion process with sewage sludge was evaluated by shredding experiments and laboratory-scale batch and continuous mesophilic anaerobic fermentation experiments. The ratio of the shredded grass with 20mm or less in length by a commercially available shredder was 93%. The methane production was around 0.2NL/gVS-grass in the batch experiment. The continuous experiment fed with sewage sludge and shredded grass was stably operated for 81days. The average methane production was 0.09NL/gVS-grass when the TS ratio of the sewage sludge and the grass was 10:1. This value was smaller than those of other reports using grass silage, but the grass species in this study were not managed, and the collected grass was just shredded and not ensiled before feeding to the reactor for simple operation. The addition of grass to a digester can improve the carbon/nitrogen ratio, methane production and dewaterability. Copyright © 2013 Elsevier Ltd. All rights reserved.