WorldWideScience

Sample records for graphitic slit pores

  1. Adsorption of ethylene on graphitized thermal carbon black and in slit pores: a computer simulation study.

    Science.gov (United States)

    Do, D D; Do, H D

    2004-08-17

    In this paper, we studied vapor-liquid equilibria (VLE) and adsorption of ethylene on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers. Simple models of a one-center Lennard-Jones (LJ) potential and a two-center united atom (UA)-LJ potential are investigated to study the impact of the choice of potential models in the description of VLE and adsorption behavior. Here, we used a Monte Carlo simulation method with grand canonical Monte Carlo (GCMC) and Gibbs ensemble Monte Carlo ensembles. The one-center potential model cannot describe adequately the VLE over the practical range of temperature from the triple point to the critical point. On the other hand, the two-center potential model (Wick et al. J. Phys. Chem. B 2000, 104, 8008-8016) performs well in the description of VLE (saturated vapor and liquid densities and vapor pressure) over the wide range of temperature. This UA-LJ model is then used in the study of adsorption of ethylene on graphitized thermal carbon black and in slit pores. Agreement between the GCMC simulation results and the experimental data on graphitized thermal carbon black for moderate temperatures is excellent, demonstrating that the potential of the GCMC method and the proper choice of potential model are essential to investigate adsorption. For slit pores of various sizes, we have found that the behavior of ethylene exhibits a number of features that are not manifested in the study of spherical LJ particles. In particular, the singlet density distribution versus distance across the pore and the angle between the molecular axis and the z direction provide rich information about the way molecules arrange themselves when the pore width is varied. Such an arrangement has been found to be very sensitive to the pore width.

  2. Imaging Slit Pores Under Delaminated Splats by White Light Interference

    Science.gov (United States)

    Chen, Lin; Gao, Li-li; Yang, Guan-Jun

    2018-01-01

    The slit pores under delaminated films significantly contribute to the properties of the film and the coating. In the present study, a novel and practical technique, the white light interference method, is proposed to characterize the slit pores covered by the 8YSZ and LZ splats. In this method, only an ordinary optical microscopy (OM) is used. Interestingly, colorful Newton's rings and parabolic shapes of the slit pores were clearly observed by OM. The crack spacing and the shapes of the slit pores captured by OM were in good agreement with those obtained by scanning electron microscopy and focus ion beam. Moreover, this is the first time when successful quantitative imaging of the slit pores under the thermal spray splats is achieved. Besides, mechanical analyses were carried out, and the results were consistent with those obtained by OM. In addition, the essential fact that the slit pores were mainly caused by transverse cracking/delamination in the thermal spray coatings was clarified. These results indicate that white light interference is an excellent method to characterize the slit pores under smooth and transparent films.

  3. Imaging Slit Pores Under Delaminated Splats by White Light Interference

    Science.gov (United States)

    Chen, Lin; Gao, Li-li; Yang, Guan-Jun

    2018-02-01

    The slit pores under delaminated films significantly contribute to the properties of the film and the coating. In the present study, a novel and practical technique, the white light interference method, is proposed to characterize the slit pores covered by the 8YSZ and LZ splats. In this method, only an ordinary optical microscopy (OM) is used. Interestingly, colorful Newton's rings and parabolic shapes of the slit pores were clearly observed by OM. The crack spacing and the shapes of the slit pores captured by OM were in good agreement with those obtained by scanning electron microscopy and focus ion beam. Moreover, this is the first time when successful quantitative imaging of the slit pores under the thermal spray splats is achieved. Besides, mechanical analyses were carried out, and the results were consistent with those obtained by OM. In addition, the essential fact that the slit pores were mainly caused by transverse cracking/delamination in the thermal spray coatings was clarified. These results indicate that white light interference is an excellent method to characterize the slit pores under smooth and transparent films.

  4. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  5. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes.

    Science.gov (United States)

    Delavari, Armin; Baltus, Ruth

    2017-08-10

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle-membrane interactions at the pore mouth result in particle "funneling" in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined.

  6. Multilayer approximation for a confined fluid in a slit pore

    Directory of Open Access Journals (Sweden)

    V. A. Kuz

    2010-02-01

    Full Text Available A simple Lennard-Jones fluid confined in a slit nanopore with hard walls is studied on the basis of a multilayer structured model. Each layer is homogeneous and parallel to the walls of the pore. The Helmholtz energy of this system is constructed following van der Waals-like approximations, with the advantage that the model geometry permits to obtain analytical expressions for the integrals involved. Being the multilayer system in thermodynamic equilibrium, a system of non-linear equations is obtained for the densities and widths of the layers. A numerical solution of the equations gives the density profile and the longitudinal pressures. The results are compared with Monte Carlo simulations and with experimental data for Nitrogen, showing very good agreement.Received: 23 December 2009, Accepted: 24 February 2010; Edited by: D. A. Stariolo; DOI: 10.4279/PIP.020002

  7. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  8. Insight into the wetting of a graphene-mica slit pore with a monolayer of water

    Science.gov (United States)

    Lin, Hu; Schilo, Andre; Kamoka, A. Rauf; Severin, Nikolai; Sokolov, Igor M.; Rabe, Jürgen P.

    2017-05-01

    Scanning force microscopy (SFM) and Raman spectroscopy allow the unraveling of charge doping and strain effects upon wetting and dewetting of a graphene-mica slit pore with water. SFM reveals a wetting monolayer of water, slightly thinner than a single layer of graphene. The Raman spectrum of the dry pore exhibits the D' peak of graphene, which practically disappears upon wetting, and recurs when the water layer dewets the pore. Based on the 2 D - and G -peak positions, the corresponding peak intensities, and the widths, we conclude that graphene on dry mica is charge-doped and variably strained. A monolayer of water in between graphene and mica removes the doping and reduces the strain. We attribute the D' peak to direct contact of the graphene with the ionic mica surface in dry conditions, and we conclude that a complete monolayer of water wetting the slit pore decouples the graphene from the mica substrate both mechanically and electronically.

  9. Effects of pore size on the adsorption of hydrogen in slit pores of constant width and varying height

    Energy Technology Data Exchange (ETDEWEB)

    Culp, J.T.; Natesakhawat, S.; Smith, M.R.; Bittner, E.W.; Matranga, C.S.; Bockrath, B.C.

    2007-08-01

    The effects of pore size on the hydrogen storage properties of a series of pillared layered solids were investigated at 77 K and 87 K up to a pressure of 1 atm. The isotherms were fit to the Langmuir-Freundlich equation and extrapolated to determine saturation values. The materials studied are based on the M(L)[M'(CN)4] structural motif, where M = Co or Ni, L = pyrazine (pyz), 4,4'bipyridine (bpy) or 4,4'-dipyridylacetylene (dpac), and M' = Ni, Pd or Pt. The compounds all possess slit like pores with constant inplane dimensions and pore heights that vary as a function of (L). The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to the bulk liquid. The adsorbed hydrogen density drops by a factor of two as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series, and weakly correlate with pore size.

  10. Fluids in micropores. II. Self-diffusion in a simple classical fluid in a slit pore

    International Nuclear Information System (INIS)

    Schoen, M.; Cushman, J.H.; Diestler, D.J.; Rhykerd, C.L. Jr.

    1988-01-01

    Self-diffusion coefficients D are computed for a model slit pore consisting of a rare-gas fluid confined between two parallel face-centered cubic (100) planes (walls) of rigidly fixed rare-gas atoms. By means of an optimally vectorized molecular-dynamics program for the CYBER 205, the dependence of D on the thermodynamic state (specified by the chemical potential μ, temperature T, and the pore width h) of the pore fluid has been explored. Diffusion is governed by Fick's law, even in pores as narrow as 2 or 3 atomic diameters. The diffusion coefficient oscillates as a function of h with fixed μ and T, vanishing at critical values of h, where fluid--solid phase transitions occur. A shift of the pore walls relative to one another in directions parallel with the walls can radically alter the structure of the pore fluid and consequently the magnitude of D. Since the pore fluid forms distinct layers parallel to the walls, a local diffusion coefficient D/sup (//sup i//sup )//sub parallel/ associated with a given layer i can be defined. D/sup (//sup i//sup )//sub parallel/ is least for the contact layer, even for pores as wide as 30 atomic diameters (∼100 A). Moreover, D/sup (//sup i//sup )//sub parallel/ increases with increasing distance of the fluid layer from the wall and, for pore widths between 16 and 30 atomic diameters, D/sup (//sup i//sup )//sub parallel/ is larger in the center of the pore than in the bulk fluid that is in equilibrium with the pore fluid. The opposite behavior is observed in corresponding smooth-wall pores, in which the discrete fluid--wall interactions have been averaged by smearing the wall atoms over the plane of the wall

  11. Gas adsorption in active carbons and the slit-pore model 1: Pure gas adsorption.

    Science.gov (United States)

    Sweatman, M B; Quirke, N

    2005-05-26

    We describe procedures based on the polydisperse independent ideal slit-pore model, Monte Carlo simulation and density functional theory (a 'slab-DFT') for predicting gas adsorption and adsorption heats in active carbons. A novel feature of this work is the calibration of gas-surface interactions to a high surface area carbon, rather than to a low surface area carbon as in all previous work. Our models are used to predict the adsorption of carbon dioxide, methane, nitrogen, and hydrogen up to 50 bar in several active carbons at a range of near-ambient temperatures based on an analysis of a single 293 K carbon dioxide adsorption isotherm. The results demonstrate that these models are useful for relatively simple gases at near-critical or supercritical temperatures.

  12. Opening of slit-shaped pores from bending of graphene walls

    Science.gov (United States)

    Connolly, Matthew; Wexler, Carlos

    2011-03-01

    Graphene has gained particular interest in many areas of research including adsorption. Recent studies have shown deformations in graphene resulting from the pressure of intercalants or edge bonds. In this talk, the opening of slit shaped pores from uniaxial bending of the graphene walls of the pore is examined. The energy functional associated with the deformation from equilibrium shape is minimized to obtain an optimal shape. The minimization is done analytically for a simple model and numerically for various graphene-graphene interaction potentials. The strain induced from bending has been shown to effect the hybridization of carbon bonds within the graphene sheet. The effect of any increase in the number of binding sites due to bending as well as hybridization effects on excess adsorption are studied by Molecular Dynamics simulations. This material is based upon work supported in part by the Department of Energy under Award Nos. DE-FG02-07ER46411, DE-FG36-08GO18142 and DE-AC02-06CH11357.

  13. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.

    Science.gov (United States)

    Hlushak, Stepan

    2018-01-03

    Temperature, pressure and pore-size dependences of the heat of adsorption, adsorption stress, and adsorption capacity of methane in simple models of slit and cylindrical carbon pores are studied using classical density functional theory (CDFT) and grand-canonical Monte-Carlo (MC) simulation. Studied properties depend nontrivially on the bulk pressure and the size of the pores. Heat of adsorption increases with loading, but only for sufficiently narrow pores. While the increase is advantageous for gas storage applications, it is less significant for cylindrical pores than for slits. Adsorption stress and the average adsorbed fluid density show oscillatory dependence on the pore size and increase with bulk pressure. Slit pores exhibit larger amplitude of oscillations of the normal adsorption stress with pore size increase than cylindrical pores. However, the increase of the magnitude of the adsorption stress with bulk pressure increase is more significant for cylindrical than for slit pores. Adsorption stress appears to be negative for a wide range of pore sizes and external conditions. The pore size dependence of the average delivered density of the gas is analyzed and the optimal pore sizes for storage applications are estimated. The optimal width of slit pore appears to be almost independent of storage pressure at room temperature and pressures above 10 bar. Similarly to the case of slit pores, the optimal radius of cylindrical pores does not exhibit much dependence on the storage pressure above 15 bar. Both optimal width and optimal radii of slit and cylindrical pores increase as the temperature decreases. A comparison of the results of CDFT theory and MC simulations reveals subtle but important differences in the underlying fluid models employed by the approaches. The differences in the high-pressure behaviour between the hard-sphere 2-Yukawa and Lennard-Jones models of methane, employed by the CDFT and MC approaches, respectively, result in an overestimation of

  14. Development of image analysis for graphite pore-structure determination using fluorescence techniques

    International Nuclear Information System (INIS)

    Stephen, W.J.; Bowden, E.A.T.; Wickham, A.J.

    1983-03-01

    The use of image analysis to assess the pore structure of graphite has been developed to the point at which it may be considered available for routine use. A definitive pore structure in terms of the geometry-independent ''characteristic pore dimension'' is derived from the computer analysis of polished specimens whose open-pore structure has been impregnated with bismuth or a fluorescent epoxy resin, with the very small pores identified separately by mercury porosimetry as in the past. The pore-size distributions obtained from these combined techniques have been used successfully to predict the corrosion rates of nine graphites, of widely differing pore structure, in a variety of gas compositions and, indirectly, to confirm appropriate mean ranges and rate constants for the reaction of the oxidising species in these gas mixtures. The development of the fluorescent-impregnant technique is discussed in detail and its use is justified in preference to ''traditional'' methods. Further possible refinements are discussed, including the eventual aim of obtaining a computer prediction of the future oxidation behaviour of the graphite directly from the image analyser. (author)

  15. A study of the pore-size distributions of some virgin Oldbury test-well graphites

    International Nuclear Information System (INIS)

    Bahia, A.; Bowden, E.A.T.

    1988-02-01

    The pore-size distributions of some virgin Oldbury test-well graphite specimens have been determined using both image analysis and mercury porosimetry. Image analysis has revealed that the pore-size distribution (PSD) is not a function of distance from the channel wall (fuel and interstitial). Differences found between the PSDs of individual specimens have led to predicted weight losses which exhibit a variability similar to that found in installed-specimen data. The results, therefore, confirm that the channel wall densification is unlikely to be pore related, but rather to be due to short-range inhibition in the gas phase. (author)

  16. Reversible dewetting of a molecularly thin fluid water film in a soft graphene-mica slit pore.

    Science.gov (United States)

    Severin, Nikolai; Lange, Philipp; Sokolov, Igor M; Rabe, Jürgen P

    2012-02-08

    The behavior of water and other molecular liquids confined to the nanoscale is of fundamental importance, e.g., in biology, material science, nanofluidics, and tribology. Direct microscopic imaging of wetting dynamics in subnanometer pores is however challenging. We will show in the following that a molecularly thin water film confined between mica and graphene is fluid. Ambient humidity allows to control the wetting and dewetting of the film. We follow these processes in space and time using scanning force microscopy imaging of the graphene conforming to the film. At sufficiently high humidity a continuous molecularly thin water film wets the interface between the graphene and mica. At lower humidities the film dewets with fractal depressions exhibiting dimensions around 1.7 and depths comparable to the size of a water molecule. The soft graphene cover offers a previously unexplored semihydrophilic slit pore of self-adjustable size, which enables high-resolution imaging of confined molecularly thin fluid films, and bears the potential for the fabrication of novel nanofluidic devices. © 2012 American Chemical Society

  17. Towards the description of the phase behavior of electrolyte solutions in slit-like pores. Density functional approach for the restricted primitive model

    Directory of Open Access Journals (Sweden)

    O.Pizio

    2004-01-01

    Full Text Available We develop a density functional approach for the phase behavior of the restricted primitive model for electrolyte solutions confined to slit-like pores. The theory permits to evaluate the effects of confinement on the ionic vapor - ionic liquid coexistence envelope. We have shown that due to confinement in pores with uncharged walls the critical temperature of the model decreases compared to the bulk. Also the coexistence envelope of the transition is narrower in comparison to the bulk model. The transition between dense and dilute phase represents capillary evaporation. We have analyzed changes of the density profiles of ions during transition. Possible extensions of this study are discussed.

  18. Phase behaviour of symmetric binary mixtures with partially miscible components in slit-like pores. Application of the fundamental measure density functional approach

    CERN Document Server

    Martínez, A; Patrykiejew, A; Sokolowski, S

    2003-01-01

    We investigate adsorption in slit-like pores of model symmetric binary mixtures exhibiting demixing in bulk phase, by using a density functional approach. Our focus is on the evaluation of the first-order phase transitions in adsorbed fluids and the lines separating mixed and demixed phases. The scenario for phase transitions is sensitive to the pore width and to the energy of adsorption. Both these parameters can change the phase diagrams of the confined fluid. In particular, for relatively wide pores and for strong wall-fluid interactions, the demixing line can precede the first-order transition. Moreover, a competition between layering transitions and demixing within particular layers also leads to further enrichment of the phase diagram.

  19. Restricted primitive model for electrolyte solutions in slit-like pores with grafted chains: microscopic structure, thermodynamics of adsorption, and electric properties from a density functional approach.

    Science.gov (United States)

    Pizio, Orest; Sokołowski, Stefan

    2013-05-28

    We apply a density functional theory to describe properties of a restricted primitive model of an ionic fluid in slit-like pores. The pore walls are modified by grafted chains. The chains are built of uncharged or charged segments. We study the influence of modification of the pore walls on the structure, adsorption, ion selectivity, and the electric double layer capacitance of ionic fluid under confinement. The brush built of uncharged segments acts as a collection of obstacles in the walls vicinity. Consequently, separation of charges requires higher voltages, in comparison to the models without brushes. At high grafting densities the formation of crowding-type structure is inhibited. The double layer structure becomes more complex in various aspects, if the brushes are built of charged segments. In particular, the evolution of the brush height with the bulk fluid density and with the charge on the walls depends on the length of the blocks of charged spheres as well as on the distribution of charged species along chains. We also investigated how the dependence of the double layer capacitance on the electrostatic potential (or on the charge on the walls) changes with grafting density, the chain length, distribution of charges along the chain, the bulk fluid density, and, finally, with the pore width. The shape of the electric double layer capacitance vs. voltage changes from a camel-like to bell-like shape, if the bulk fluid density changes from low to moderate and high. If the bulk density is appropriately chosen, it is possible to alter the shape of this curve from the double hump to single hump by changing the grafting density. Moreover, in narrow pores one can observe the capacitance curve with even three humps for a certain set of parameters describing brush. This behavior illustrates how strong the influence of brushes on the electric double layer properties can be, particularly for ionic fluids in narrow pores.

  20. The role of graphite foam pore structure on saturated pool boiling enhancement

    International Nuclear Information System (INIS)

    Pranoto, I.; Leong, K.C.; Jin, L.W.

    2012-01-01

    This paper presents an experimental study of the pool boiling phenomena and performance of porous graphite foam evaporators of different structures and thermophysical properties. Two dielectric liquids viz. FC-72 and HFE-7000 were used as working fluids. Block and fin evaporators of different fin-to-block-surface-area ratios (AR) were designed to study the role of the internal pore structure of graphite foams in a compact air-cooled thermosyphon under saturated pool boiling condition for high heat flux electronics cooling applications. The wall temperatures were measured and the boiling heat transfer coefficients were calculated to analyze the boiling performance. It was found that both fin structures with AR = 3.70 and 2.73 result in reduced boiling heat transfer performances and higher wall temperatures. The experimental results show that the boiling heat transfer coefficients of the block structures are about 1.2–1.6 times higher than those of the fin structures. The total internal surface area to volume ratio (β) and the total exposed areas (A T ) of the graphite foams were calculated in this study. The results show that the values of β and A T of the block structures are much higher than the fin structures for both tested “Pocofoam” 61% porosity and “Kfoam” 78% porosity evaporators which resulted in higher boiling heat transfer coefficient and lower wall temperature of the block structures. A visualization study shows that more bubbles were generated from the block structures compared to the fin structures due to the larger number of nucleation sites from the block structures. It was also found that use of FC-72 resulted in better boiling heat transfer performance compared to HFE-7000. - Highlights: ► We studied the pool boiling performance of a thermosyphon with graphite foam evaporators of block and fin structures. ► FC-72 and HFE-7000 were used as the working fluids. ► The boiling heat transfer coefficients of the block structures are 1.2

  1. Solvent primitive model of an electric double layer in slit-like pores: microscopic structure, adsorption and capacitance from a density functional approach

    Directory of Open Access Journals (Sweden)

    O. Pizio

    2014-06-01

    Full Text Available We investigate the electric double layer formed between charged walls of a slit-like pore and a solvent primitive model (SPM for electrolyte solution. The recently developed version of the weighted density functional approach for electrostatic interparticle interaction is applied to the study of the density profiles, adsorption and selectivity of adsorption of ions and solvent species. Our principal focus, however, is in the dependence of differential capacitance on the applied voltage, on the electrode and on the pore width. We discuss the properties of the model with respect to the behavior of a primitive model, i.e., in the absence of a hard-sphere solvent. We observed that the differential capacitance of the SPM on the applied electrostatic potential has the camel-like shape unless the ion fraction is high. Moreover, it is documented that the dependence of differential capacitance of the SPM on the pore width is oscillatory, which is in close similarity to the primitive model.

  2. Influence of polymer architecture and polymer-wall interaction on the adsorption of polymers into a slit-pore.

    Science.gov (United States)

    Chen, Zhong; Escobedo, Fernando A

    2004-02-01

    The effects of molecular topology and polymer-surface interaction on the properties of isolated polymer chains trapped in a slit were investigated using off-lattice Monte Carlo simulations. Various methods were implemented to allow efficient simulation of molecular structure, confinement force, and free energy for a chain interacting with such "sticky" surfaces. The simulations were performed in the canonical ensemble, and the free energy was sampled via virtual slit-separation moves. Six different chain architectures were studied: linear, star-branched, dendritic, cyclic, two-node (i.e., containing two tetrafunctional intramolecular crosslinks), and six-node molecules. The first three topologies entail increasing degrees of branching, and the last three topologies entail increasing degrees of intramolecular bonding. The confinement force, monomer density profile, and conformational properties for all these systems were compared (for identical molecular weight N) and analyzed as a function of adsorption strength. The compensation point where the wall attraction counterbalances the polymer-slit exclusion effects was the focus of our study. It was found that the attractive energy at the compensation point, epsilon(c), is a weak increasing function of the chain length for excluded-volume chains. The value of epsilon(c) differs significantly for different topologies, and smaller values are associated with better-adsorbing molecules. Due to their globular shape and numerous chain ends, branched molecules (e.g., stars and dendrimers) experience a relatively small entropic penalty for adsorption at low adsorption force and moderate confinement. However, as the adsorption force increases, the more flexible linear chains reach the compensation point at a weaker attractive energy because of the ease with which monomers can be packed near the walls. In moderate to weak confinement, molecules with intramolecular cross-links, such as cyclic, two-node, and six-node molecules

  3. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  4. Local pressure components and interfacial tensions of a liquid film in the vicinity of a solid surface with a nanometer-scale slit pore obtained by the perturbative method.

    Science.gov (United States)

    Fujiwara, K; Shibahara, M

    2015-03-07

    A classical molecular dynamics simulation was conducted for a liquid-solid interfacial system with a nanometer-scale slit pore in order to reveal local thermodynamic states: local pressure components and interfacial tensions of a liquid film in the vicinity of the slit. The simulation also examined the transition mechanism between the two states of the liquid film: (a) liquid film on the slit and (b) liquid film in the slit, based on the local thermodynamic quantities from a molecular point of view. An instantaneous expression of the local pressure components and interfacial tensions, which is based on a volume perturbation, was presented to investigate time-dependent phenomena in molecular dynamics simulations. The interactions between the particles were described by the 12-6 Lennard-Jones potential, and effects of the fluid-solid interaction intensity on the local pressure components and interfacial tensions of the fluid in the vicinity of the slit were examined in detail by the presented perturbative method. The results revealed that the local pressure components tangential to the solid surface in the vicinity of the 1st fluid layer from the solid surface are different in a two dimensional plane, and the difference became pronounced in the vicinity of the corner of the slit, for cases where the fluid-solid interaction intensities are relatively strong. The results for the local interfacial tensions of the fluid inside the slit suggested that the local interfacial tensions in the vicinity of the 2nd and 3rd layers of the solid atoms from the entrance of the slit act as a trigger for the transition between the two states under the influence of a varying fluid-solid interaction.

  5. A pore structure model for the gas transport property changes, initial oxidation rates and cumulative weight loss of AGR moderator graphite

    International Nuclear Information System (INIS)

    Johnson, P.A.V.

    1985-09-01

    A quantitative model has been developed for the gas transport property variation, cumulative weight loss and initial oxidation rates of AGR moderator graphite. The model utilises the theory of dynamic moments of the pore structure to calculate the changes in physical properties brought about by radiolytic corrosion taking place within the graphite porosity. In order to account for the behaviour of the initial rate curves, and the weight loss data obtained it is necessary to invoke the presence of a group of cylindrical pore and a group of small slab-shaped pores. The latter are methane depleted. This is in addition to the pore group involved in gas transport which is best represented by cylinders of mean radius 2.13 μm. The model satisfactorily predicts the experimental weight loss data obtained from experiments in the DIDO 6V3 and BFB loops. (author)

  6. The application of the pore population balance method to the calculation of the radiolytic weight loss and gas transport property changes of nuclear graphites

    International Nuclear Information System (INIS)

    Johnson, P.A.V.

    1982-01-01

    A pore population balance equation, previously used to describe the physical property changes of porous carbons during thermal oxidation in carbon dioxide, has been modified to treat the radiolytic oxidation of graphite in CO 2 /CO/CH 4 gas mixtures. Good agreement has been obtained between theory and experiment for the variation in the gas transport coefficients B, K and lambda of gilsonite graphite with absorbed radiation dose. Calculations indicate that the addition of blind pores to the transport porosity, and an allowance for the opening of closed pores with burn-off, do not account for the experimental fractional weight loss curve. An excellent fit is obtained, however, if a small volume of cylindrical pores of a mean radius approximately equal to the diffusion length of oxidising species in the coolant are present in the pore size spectrum. Gilsonite graphite therefore behaves as if the pore size distribution function is trimodal, with mean radii at about 0.5μm, 2.48μm and greater than or equal to 10.57μm. (author)

  7. Slit radiography

    International Nuclear Information System (INIS)

    Bonar, David C.

    1985-01-01

    In accordance with the invention, collimating means are provided between the output screen of an X-ray image intensifier and the output of a television pickup. If a light collimator is used, this moves in synchronism with an X-ray collimator slit which is disposed between the X-ray source and the patient. The light collimator slit restricts the field of view of the television pickup to a limited area on the output screen of the image intensifier which corresponds to a portion of the image produced by direct radiation which reaches the input screen of the intensifier through the X-ray collimator slit. The light collimator prevents glare produced in the image intensifier tube from reaching the television pickup and contributing to background noise in the system and reduces the effects of off-focal radiation and scatter

  8. Nondestructive evaluation method on mechanical property change of graphite components in the HTGR by ultrasonic wave propagation with grain/pore microstructure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro

    2003-01-01

    Oxidation damage is one of the crucial factors to degrade mechanical properties of graphite components in the HTGRs. The oxidation increases the porosity of graphite and, hence, results in degradation. In order to evaluate the oxidation damage at neutron irradiated conditions, a new analytical method by ultrasonic wave propagation characteristics was developed. Irradiation effects, a dimensional change and a pinning of dislocations in crystals, on the propagation characteristics in graphite are taken into consideration in the method. It was shown that an equivalent velocity of the wave in graphite is increased by the irradiation, and that a signal height of a propagated waveform is increased by the irradiation, and it decreases with increasing porosity caused by the oxidation. The Young's modulus for an ideal graphite polycrystals without pore was evaluated by considering the wave velocity in them in order to evaluate the change of the apparent modulus at simultaneous irradiated and oxidized conditions as an application of the developed method. It was also shown that the oxidation-induced change of the modulus is appropriately evaluated by the method, suggesting that it is possible to evaluate the change for the irradiated conditions. It can be said from this study that the developed method is promising to evaluate the oxidation damage on graphite components in the HTGRs by nondestructive way. (author)

  9. Significance of Graphitic Surfaces in Aurodicyanide Adsorption by Activated Carbon: Experimental and Computational Approach

    Science.gov (United States)

    Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.

    Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.

  10. Enhanced gas absorption in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in silica slit pores: a molecular simulation study.

    Science.gov (United States)

    Shi, Wei; Luebke, David R

    2013-05-07

    Two-dimensional NPxyT and isostress-osmotic (N2PxyTf1) Monte Carlo simulations were used to compute the density and gas absorption properties of the ionic liquid (IL) 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in silica slit pores (25-45 Å). Self-diffusivity values for both gas and IL were calculated from NVE molecular dynamics simulations using both smooth and atomistic potential models for silica. The simulations showed that the molar volume of [hmim][Tf2N] confined in 25-45-Å silica slit pores is 12-31% larger than that of the bulk IL at 313-573 K and 1 bar. The amounts of CO2, H2, and N2 absorbed in the confined IL are 1.1-3 times larger than those in the bulk IL because of the larger molar volume of the confined IL compared to the bulk IL. The CO2, N2, and H2 molecules are generally absorbed close to the silica wall where the IL density is very low. This arrangement causes the self-diffusivities of these gases in the confined IL to be 2-8 times larger than those in the bulk IL at 298-573 K. The solubilities of water in the confined and bulk ILs are similar, which is likely due to strong water interactions with [hmim][Tf2N] through hydrogen bonding, so that the molar volume of the confined IL plays a less important role in determining the H2O solubility. Water molecules are largely absorbed in the IL-rich region rather than close to the silica wall. The self-diffusivities of water correlate with those of the confined IL. The confined IL exhibits self-diffusivities larger than those of the bulk IL at lower temperatures, but smaller than those of the bulk IL at higher temperatures. The findings from our simulations are consistent with available experimental data for similar confined IL systems.

  11. Enhanced Gas Absorption in the Ionic Liquid 1- n -Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim][Tf 2 N]) Confined in Silica Slit Pores: A Molecular Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Luebke, David R.

    2013-05-07

    Two-dimensional NP{sub xy}T and isostress-osmotic (N{sub 2}P{sub xy}Tf{sub 1}) Monte Carlo simulations were used to compute the density and gas absorption properties of the ionic liquid (IL) 1-n-hexyl-3- methylimidazolium bis(Trifluoromethylsulfonyl)amide ([hmim][Tf{sub 2}N]) confined in silica slit pores (25-45 Å). Self-diffusivity values for both gas and IL were calculated from NVE molecular dynamics simulations using both smooth and atomistic potential models for the silica. Simulations show that the molar volume for [hmim][Tf{sub 2}N] confined in 25-45 Å silica slit pores are 12-31% larger than for the bulk IL at 313-573 K and 1 bar. The amounts of CO{sub 2}, H{sub 2}, and N{sub 2} absorbed in the confined IL are typically 1.1-3 times larger than in the bulk IL due to larger molar volumes for the confined IL compared to the bulk IL. The CO{sub 2}, N{sub 2}, and H{sub 2} molecules are generally absorbed close to the silica wall where the IL density is very low. This arrangement causes the self-diffusivities for these gases in the confined IL to be 2 to 8 times larger than in the bulk IL at 298-573 K. The solubility for water in the confined and bulk ILs are similar, which is likely due to strong water interactions with [hmim][Tf{sub 2}N] through hydrogen-bonding resulting in the confined IL molar volume playing a less important role in determining H{sub 2}O solubility. Water molecules were largely absorbed in the IL-rich region rather than close to the silica wall. The self-diffusivities for water correlate with the confined IL. The confined IL exhibits self-diffusivities larger than the bulk IL at lower temperatures, but smaller than the bulk IL at higher temperatures. The findings from simulations are consistent with available experimental data for similar confined IL systems.

  12. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  13. Origin of melting point depression for rare gas solids confined in carbon pores.

    Science.gov (United States)

    Morishige, Kunimitsu; Kataoka, Takaaki

    2015-07-21

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.

  14. Origin of melting point depression for rare gas solids confined in carbon pores

    International Nuclear Information System (INIS)

    Morishige, Kunimitsu; Kataoka, Takaaki

    2015-01-01

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests that the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point

  15. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl...... with gas permeability exceeding the target of 10−14m2 are obtained. In the temperature range 1250–1400°C the support gas permeability is insensitive to the sintering temperature, and the feedstocks shrink more than 15% during sintering, making them ideal for co-sintering with functional OTM layers....... This demonstrates the suitability of thermoplastic extrusion for fabrication of porous 3Y-TZP OTM supports, or for other technologies requiring porous ceramics....

  16. Graphitic packing removal tool

    Science.gov (United States)

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  17. Impedance of electrochemically modified graphite.

    Science.gov (United States)

    Magdić, Katja; Kvastek, Krešimir; Horvat-Radošević, Višnja

    2014-01-01

    Electrochemical impedance spectroscopy, EIS, has been applied for characterization of electrochemically modified graphite electrodes in the sulphuric acid solution. Graphite modifications were performed by potential cyclization between potentials of graphite oxide formation/reduction, different number of cycles, and prolonged reduction steps after cyclization. Impedance spectra measured at two potential points within double-layer region of graphite have been successfully modeled using the concept of porous electrodes involving two different electrolyte diffusion paths, indicating existence of two classes of pores. The evaluated impedance parameter values show continuous changes with stages of graphite modification, indicating continuous structural changes of pores by number of potential cycles applied. Differences of impedance parameter values at two potential values indicate the potential induced changes of solution properties within the pores of modified graphite.

  18. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  19. Podosit dan Slit Diafragma serta Perannya

    OpenAIRE

    Sudung O. Pardede

    2016-01-01

    Podosit dan slit diafragma adalah bagian dari dinding kapiler glomerulus ginjal yang mempunyai peran yang sangat penting dalam filtrasi glomerulus. Berbagai molekul terdapat pada podosit dan slit diafragma yang berperan penting dalam integritas proses filtrasi. Foot processes podosit berinteraksi dengan slit diafragma melalui interaksi antara nefrin dan Neph1 dalam slit diafragma dengan molekul adapter intraselular pada membran foot processes. Molekul adapter intraselular dalam...

  20. Slit aperture technique for mammography

    International Nuclear Information System (INIS)

    Friedrich, M.

    1984-01-01

    Following a discussion of various principles used in the elimination of scatter, the prototype of a simple slit aperture mammography apparatus is described (modified Mammomat, Siemens). The main advantage of this technique compared with grid mammography is a halving of the radiation dose for identical image quality, using an identical film system. The technical requirements (heavy duty tube, new generator) are, however, considerable. If the film-screen systems currently in use are to remain the common systems for the future, then the development of a multi-lamellar slit diaphragm technique carries much promise for mammography. (orig.) [de

  1. On slit-lamp microscopy.

    Science.gov (United States)

    Schmidt, T A

    1975-11-21

    Theoretically the contact lens with a refractive power of -64 dioptres is superior to the concave pre-set lens (Hruby lens) or the convex lens (Bayadi). In practice the results are as follows: With the convex lens the examination of the vitreous is unsatisfactory. The reversed image with the convex lens will become familiar with some experience as one will also get used to the mirror images of the three-mirror contact lens. However, the abnormal curvature of the image is really a nuisance. On the other hand the large field of view is an advantage. The convex lens is only practically useful when it can be firmly attached to the slit-lamp microscope, as otherwise the new adjustment necessary for searching the fundus is too difficult. Attachment to the microscope is also of advantage with the Hruby lens. The concave contact lens of 64 dioptres is best suited for detailed examination of vitreous and fundus and for measurements. When no value is placed on a minute examination and a quick simple orientation suffices, the concave pre-set lens (Hruby lens) has the advantage that the lens does not have to be placed on the eye. If it is centred to the middle axis of the microscope, it facilitates especially quick observation. There will be cases where the pre-set lens will be the only answer, especially shortly after an operation or with very sensitive patients. Furthermore, the Hruby lens is preferable to the Bayadi lens because the vitreous can be better examined. The Hruby lens is also advantageous for examination of the region in the middle, lateral periphery of the fundus, 30 degrees - 60 degrees, and is superior in this area to the simple concave contact lens. The Bayadi lens seems to us only indicated for fundus examination of extremely high myopes. There it definitely offers advantages over and above the concave lens. For the most peripheral fundus, expecially below and above, the three-mirror lens with its modification is so far the best method. Especially for

  2. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  3. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  4. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P.; Scheifele, W.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  5. Effective and accurate approach for modeling of commensurate–incommensurate transition in krypton monolayer on graphite

    International Nuclear Information System (INIS)

    Ustinov, E. A.

    2014-01-01

    Commensurate–incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs–Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton–graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton–carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas–solid and solid–solid system

  6. Controlled double-slit electron diffraction

    International Nuclear Information System (INIS)

    Bach, Roger; Liou, Sy-Hwang; Batelaan, Herman; Pope, Damian

    2013-01-01

    Double-slit diffraction is a corner stone of quantum mechanics. It illustrates key features of quantum mechanics: interference and the particle-wave duality of matter. In 1965, Richard Feynman presented a thought experiment to show these features. Here we demonstrate the full realization of his famous thought experiment. By placing a movable mask in front of a double-slit to control the transmission through the individual slits, probability distributions for single- and double-slit arrangements were observed. Also, by recording single electron detection events diffracting through a double-slit, a diffraction pattern was built up from individual events. (paper)

  7. The study of the relationship between pore structure and ...

    Indian Academy of Sciences (India)

    Two kinds of channels, straight channels made of cylindrical capillaries and curved channels made of slit-shaped pores, exist in the bulk materials. The influence of the pore structure of mesoporous TiO2 on its photocatalytic performance was studied. The sample with higher porosity, better textural properties and straight ...

  8. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  9. The micro slit gas detector

    Energy Technology Data Exchange (ETDEWEB)

    Claude Labbe, J.; Gomez, F. E-mail: fgomez@cern.ch; Nunez, T.; Pazos, A.; Vazquez, P

    1999-06-01

    We describe the first tests with a new proportional gas detector. Its geometry consists of slits opened in a copper metallized kapton foil with 30 {mu}m anode strips suspended in these openings. In this way, the multiplication process is similar to a standard MSGC. The fundamental difference is the absence of an insulating substrate around the anode. Also the material budget is significantly reduced, and the problems related to charging-up or polarization are removed. Ageing properties of this detector are under study.

  10. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  11. Application of quantitative image analysis to the investigation of macroporosity of graphitic materials

    International Nuclear Information System (INIS)

    Delle, W.; Koizlik, K.; Hoven, H.; Wallura, E.

    1978-01-01

    The essence of quantitative image analysis is that the classification of graphitic materials to be inspected is possible on the basis of the grey value contrast between pores (dark) and carbon (bright). Macroporosity is defined as total of all pores with diameters larger than 0.2 μm. The pore size distributions and pore shapes of graphites based on petroleum, pitch, gilsonite and fluid coke as well as graphitic fuel matrices and pyrolytic carbons were investigated. The relationships between maximum grain size, macroporosity and total porosity as well as the anisotropies of macroporosity and electrical resistivity of graphite were established. (orig./GSC) [de

  12. Slit Tubes for Semisoft Pneumatic Actuators.

    Science.gov (United States)

    Belding, Lee; Baytekin, Bilge; Baytekin, Hasan Tarik; Rothemund, Philipp; Verma, Mohit S; Nemiroski, Alex; Sameoto, Dan; Grzybowski, Bartosz A; Whitesides, George M

    2018-03-01

    This article describes a new principle for designing soft or 'semisoft' pneumatic actuators: SLiT (for SLit-in-Tube) actuators. Inflating an elastomeric balloon, when enclosed by an external shell (a material with higher Young's modulus) containing slits of different directions and lengths, produces a variety of motions, including bending, twisting, contraction, and elongation. The requisite pressure for actuation depends on the length of the slits, and this dependence allows sequential actuation by controlling the applied pressure. Different actuators can also be controlled using external "sliders" that act as reprogrammable "on-off" switches. A pneumatic arm and a walker constructed from SLiT actuators demonstrate their ease of fabrication and the range of motions they can achieve. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Drag reduction in silica nanochannels induced by graphitic wall coatings

    DEFF Research Database (Denmark)

    Wagemann, Enrique; Walther, Jens Honore; Zambrano, Harvey

    . In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbonnanotubes (CNTs), respectively...

  14. Linear expansion of products out of thermal splitting graphite

    International Nuclear Information System (INIS)

    Tishina, E.A.; Kurnevich, G.I.

    1994-01-01

    Linear expansion of thermally split graphite in the form of foil and pressed items of different density was studied. It is ascertained that the extreme character of temperature dependence of linear expansion factor of pressed samples of thermally split graphite is determined by the formation of closed pores containing air in the course of their production. 3 refs., 2 figs

  15. Slit-lamp calibration, crucial but neglected

    Directory of Open Access Journals (Sweden)

    Lutfah Rif’ati

    2013-05-01

    Full Text Available AbstrakLatar belakang: Kalibrasi berkala alat diagnostik sangat esensial untuk diagnosis yang akurat. Riset fasilitas kesehatan (Rifaskes 2011 mengumpulkan data termasuk kalibrasi lampu celah (slit-lamp pada sampel rumah sakit (RS di Indonesia. Tujuan analisis ialah untuk mengidentifikasi faktor dominan yang berpengaruh terhadap pelaksanaan kalibrasi berkala lampu celah di RS.Metode: Analisis memakai sebagian data Rifaskes 2011 di antara 442 RS yang menyediakan layanan kesehatan mata. Risiko relatif dipergunakan untuk menilai kemungkinan tidak dilakukannya kalibrasi lampu celah di RS.Hasil: Di antara 248 RS sampel yang memenuhi kriteria inklusi, hanya 25,8% RS yang melakukan kalibrasi lampu celah tepat waktu. Dibandingkan dengan rumah sakit yang dimiliki oleh Badan Usaha Milik Negara (BUMN, rumah sakit yang dimiliki lembaga lain memiliki risiko yang lebih tinggi tidak mengkalibrasi lampu celah. Menurut tipe RS, RS non-pendidikan dibandingkan dengan RS -pendidikan berisiko 40% lebih tinggi tidak mengkalibrasi lampu [risiko relatif suaian (RRa = 1,40; 95% interval kepercayaan (CI = 1,02-1,91].Kesimpulan: Kalibrasi tepat waktu lampu-celah masih menjadi masalah di sebagian besar RS. Dibandingkan dengan rumah sakit yang dimiliki oleh BUMN, rumah sakit yang dimiliki oleh instansi lain berisiko yang lebih tinggi tidak mengkalibrasi lampu celah. (Health Science Indones 2012;2:xx-xxKata kunci:kalibrasi, lampu celah, rumah sakitAbstractBackground: Periodical diagnostic tool calibration is essential for accurate diagnosis. Health Facilities Research (Rifaskes in 2011 collected data on the slit-lamp calibration of all registered general hospitals in Indonesia.Methods: Analysis using a part Rifaskes 2011 data among 442 hospitals that provide eye health services. Relative risk was used to assess the risk of performing calibration slit lamp.Results: Out of 442 hospitals, 248 hospitals met the inclusion study criteria, and only 25.8% calibrating the slit

  16. Radiolytic graphite oxidation revisited

    International Nuclear Information System (INIS)

    Minshall, P.C.; Sadler, I.A.; Wickham, A.J.

    1996-01-01

    The importance of radiolytic oxidation in graphite-moderated CO 2 -cooled reactors has long been recognised, especially in the Advanced Gas-Cooled Reactors where potential rates are higher because of the higher gas pressure and ratings than the earlier Magnox designs. In all such reactors, the rate of oxidation is partly inhibited by the CO produced in the reaction and, in the AGR, further reduced by the deliberate addition of CH 4 . Significant roles are also played by H 2 and H 2 O. This paper reviews briefly the mechanisms of these processes and the data on which they are based. However, operational experience has demonstrated that these basic principles are unsatisfactory in a number of respects. Gilsocarbon graphites produced by different manufacturers have demonstrated a significant difference in oxidation rate despite a similar specification and apparent equivalence in their pore size and distribution, considered to be the dominant influence on oxidation rate for a given coolant-gas composition. Separately, the inhibiting influence of CH 4 , which for many years had been considered to arise from the formation of a sacrificial deposit on the pore walls, cannot adequately be explained by the actual quantities of such deposits found in monitoring samples which frequently contain far less deposited carbon than do samples from Magnox reactors where the only source of such deposits is the CO. The paper also describes the current status of moderator weight-loss predictions for Magnox and AGR Moderators and the validation of the POGO and DIFFUSE6 codes respectively. 2 refs, 5 figs

  17. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  18. Training package 1 for slitting data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prime, Michael Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-23

    This document and accompanying files are intended as a first training package on how to analyze slitting data. The end goal is to have Idaho National Laboratory (INL) personnel trained to analyze future slitting data taken in the INL Hot Cell on clad, Low-Enriched Uranium (LEU) fuel plates. This first data package will cover data analysis for a monolithic material (as compared to a layered material like the clad fuel plates). The additional issues for layered specimens will be covered in a future training package.

  19. Quantum eraser for three-slit interference

    Indian Academy of Sciences (India)

    Abstract. It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the ... Department of Physics, Jamia Millia Islamia, New Delhi 110 025, India; Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110 025, India ...

  20. Quantum eraser for three-slit interference

    Indian Academy of Sciences (India)

    Naveed Ahmad Shah

    2017-11-09

    Nov 9, 2017 ... Abstract. It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a set-up where this path information is 'erased', the interference can reappear. Such a set-up is ...

  1. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  2. Quantum eraser for three-slit interference

    Indian Academy of Sciences (India)

    Naveed Ahmad Shah

    2017-11-09

    Nov 9, 2017 ... Figure 2. Recovered interference pattern, given by. |ψ↑(x, t)|2 (solid line) and the original 3-slit interfer- ence pattern, given by (10) (dashed line). The two are clearly different. The dotted line represents the lost interference in the presence of which-way information, given by (12). +e−(d2−2xd)/. 2 cos(2xd/a − ...

  3. Slit-Robo signalling in heart development

    OpenAIRE

    Zhao, J; Mommersteeg, MTM

    2018-01-01

    The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system, but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins and pericardium. Ab...

  4. [Remote Slit Lamp Microscope Consultation System Based on Web].

    Science.gov (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  5. Expected sliding distance of vertical slit caisson breakwater

    Science.gov (United States)

    Kim, Dong Hyawn

    2017-06-01

    Evaluating the expected sliding distance of a vertical slit caisson breakwater is proposed. Time history for the wave load to a vertical slit caisson is made. It consists of two impulsive wave pressures followed by a smooth sinusoidal pressure. In the numerical analysis, the sliding distance for an attack of single wave was shown and the expected sliding distance during 50 years was also presented. Those results were compared with a vertical front caisson breakwater without slit. It was concluded that the sliding distance of a vertical slit caisson may be over-estimated if the wave pressure on the caisson is evaluated without considering vertical slit.

  6. Ablation in the slit in combustion

    Science.gov (United States)

    Tairova, A. A.; Belyakov, G. V.; Chervinchuk, S. Yu.

    2017-12-01

    The understanding of the patterns of the front of exothermic reaction propagation in permeable media is necessary for a correct description of both natural and technological processes. The study of mechanisms of combustion and filtration flow in the slit consists in determining the conditions of propagation of melting waves and evaporation in a cocurrent gas flow as well the associated mass loss of the surface material. This paper presents the heat flow effect on the hydrocarbon reservoir model. The poly methyl methacrylate with the boiling point Tboil = 200°C and sublimation heat ΔHsubl = 40.29 kJ/mol was chosen as the model of the hydrocarbon layer, which on heating becomes liquid and gaseous (ethers and methyl methacrylate pairs). Heated gas flows along the slit preliminary created. The flow was maintained by a pump. The gas burner was installed at the entrance to the slit. The heat flow was constant. The impulse of gas flow and the mass loss of the material from the surface of the gap were continuously measured with scales. The pressure in the flow was controlled by the manometer.

  7. Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

    DEFF Research Database (Denmark)

    Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.

    2012-01-01

    Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited....... A study of the effect on transmission of different combinations of available transmission and reflection diffraction orders show optimum total transmission when only the fundamental reflection order and higher transmission diffraction orders are available. The optimum taper angle is shown...

  8. Conformal mapping of unbounded multiply connected regions onto logarithmic spiral slit with infinite straight slit

    Science.gov (United States)

    Yunus, Arif A. M.; Murid, Ali H. M.

    2017-04-01

    This paper presents a boundary integral equation method with the adjoint generalized Neumann kernel for conformal mapping of unbounded multiply connected regions. The canonical region is the entire complex plane bounded by an infinite straight slit on the line Im ω = 0 and finite logarithmic spiral slits. Some linear boundary integral equations are constructed from a boundary relationship satisfied by an analytic function on a multiply connected region. These integral equations are uniquely solvable. The kernel involved in these integral equations is the adjoint generalized Neumann kernel.

  9. Triple templating of graphitic carbon nitride to enhance photocatalytic properties

    Directory of Open Access Journals (Sweden)

    Z. Yang

    2016-01-01

    Full Text Available Graphitic carbon nitride materials show some promising properties for applications such as photocatalytic water splitting. However, the conversion efficiency is still low due to factors such as a low surface area and limited light absorption. In this paper, we describe a “triple templating” approach to generating porous graphitic carbon nitride. The introduction of pores on several length-scales results in enhanced photocatalytic properties.

  10. Triple templating of graphitic carbon nitride to enhance photocatalytic properties

    OpenAIRE

    Z. Yang; A. E. Danks; J. Wang; Y. Zhang; Z. Schnepp

    2016-01-01

    Graphitic carbon nitride materials show some promising properties for applications such as photocatalytic water splitting. However, the conversion efficiency is still low due to factors such as a low surface area and limited light absorption. In this paper, we describe a “triple templating” approach to generating porous graphitic carbon nitride. The introduction of pores on several length-scales results in enhanced photocatalytic properties.

  11. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  12. MUSE: the Multi-Slit Solar Explorer

    Science.gov (United States)

    Tarbell, Theodore D.; De Pontieu, Bart

    2017-08-01

    The Multi-Slit Solar Explorer is a proposed Small Explorer mission for studying the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE’s multi-slit coronal spectroscopy will use a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.

  13. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  14. A microstructurally based fracture model for nuclear graphite

    International Nuclear Information System (INIS)

    Burchell, T.D.

    1991-01-01

    This paper reports the physical basis of, and assumptions behind, a fracture model for nuclear graphites. Microstructurally related inputs, such as filler particle size, filler particle fracture toughness (K Ic ), density, pore size distribution, number of pores and specimen geometry (size and volume), are utilized in the model. The model has been applied to two graphites, Great Lakes Carbon Corporation grade H-451 and Toyo Tanso grade IG-110. For each graphite, the predicted tensile failure probabilities are compared with experimental data generated using ASTM Standard C-749 tensile test specimens. The predicted failure probabilities are in close agreement with the experimental data, particularly in the case of the H-451. The model is also shown to qualitatively predict the influence on the failure probabilities of changes in filler particle size, density, pore size, pore size distribution, number of pores and specimen geometry (stressed volume). The good performance is attributed to the sound physical basis of the model, which recognizes the dominant role of porosity in controlling crack initiation and propagation during graphite fracture. 8 refs., 12 figs., 1 tab

  15. Radiation damage in graphite

    CERN Document Server

    Simmons, John Harry Walrond

    1965-01-01

    Nuclear Energy, Volume 102: Radiation Damage in Graphite provides a general account of the effects of irradiation on graphite. This book presents valuable work on the structure of the defects produced in graphite crystals by irradiation. Organized into eight chapters, this volume begins with an overview of the description of the methods of manufacturing graphite and of its physical properties. This text then presents details of the method of setting up a scale of irradiation dose. Other chapters consider the effect of irradiation at a given temperature on a physical property of graphite. This

  16. Pore structure and growth kinetics in carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Bose, S.

    1978-04-01

    Pore structure of glassy carbon (GC) and pyrolytic graphite (PG) have been investigated. GC is one of the most impervious of solids finding applications in prosthetic devices and fuel cells while PG is used extensively in the aerospace industry. One third of the microstructure of GC consists of closed pores inaccessible to fluids. The microstructure of this material has been characterized using x-ray diffraction (XRD) and high resolution electron microscopy. Small angle x-ray scattering (SAXS) has been used to measure the angstrom sized pores and to follow the evolution of pore surface area as a function of heat treatment temperature (HTT) and heat treatment time (HTt) at constant temperature. From these measurements an analysis of the surface area kinetics was made to find out if rate processes are involved and to locate graphitization occurring at pore surfaces. PG on the other hand has been found to have larger sized pores that comprise five percent of its volume. In addition to being closed these pores are oriented. Some pore models are proposed for PG and the existing scattering theory from oriented ellipsoids is modified to include the proposed shapes.

  17. Modifications to improve entrance slit thermal stability for grasshopper monochromators

    Science.gov (United States)

    Wallace, Daniel J.; Rogers, Gregory C.; Crossley, Sherry L.

    1994-08-01

    As new monochromators are designed for high-flux storage rings, computer modeling and thermal engineering can be done to process increased heat loads and achieve mechanical stability. Several older monochromators, such as the Mark 2 and Mark 5 Grasshopper monochromators, which were designed in 1974, have thermal instabilities in their entrance slit mechanisms. The Grasshoppers operating with narrow slits experience closure of the entrance slit from thermal expansion. In extreme cases, the thermal expansion of the precision components has caused permanent mechanical damage, leaving the slit uncalibrated and/or inoperable. For the Mark 2 and Mark 5 Grasshopper monochromators at the Synchrotron Radiation Center, the original 440 stainless steel entrance slit jaws were retrofitted with an Invar (low expansion Fe, Ni alloy) slit jaw. To transfer the heat from the critical components, two flexible heat straps of Cu were attached. These changes allow safe operation with a 10 μm entrance slit width where the previous limit was 30 μm. After an initial 2 min equilibration, the slit remains stable to 10%, with 100 mA of beam current. Additional improvements in slit thermal stability are planned for a third Grasshopper.

  18. Deuterium pumping and erosion behavior of selected graphite materials under high flux plasma bombardment in PISCES

    International Nuclear Information System (INIS)

    Hirooka, Y.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.

    1988-06-01

    Deuterium plasma recycling and chemical erosion behavior of selected graphite materials have been investigated using the PISCES-A facility. These materials include: Pyro-graphite; 2D-graphite weave; 4D-graphite weave; and POCO-graphite. Deuterium plasma bombardment conditions are: fluxes around 7 /times/ 10 17 ions s/sup /minus/1/cm/sup /minus/2/; exposure time in the range from 10 to 100 s; bombarding energy of 300 eV; and graphite temperatures between 20 and 120/degree/C. To reduce deuterium plasma recycling, several approaches have been investigated. Erosion due to high-fluence helium plasma conditioning significantly increases the surface porosity of POCO-graphite and 4D-graphite weave whereas little change for 2D-graphite weave and Pyro-graphite. The increased pore openings and refreshed in-pore surface sites are found to reduce the deuterium plasma recycling and chemical erosion rates at transient stages. The steady state recycling rates for these graphite materials can be also correlated to the surface porosity. Surface topographical modification by machined-grooves noticeably reduces the steady state deuterium recycling rate and the impurity emission from the surface. These surface topography effects are attributed to co-deposition of remitted deuterium, chemically sputtered hydrocarbon and physically sputtered carbon under deuterium plasma bombardment. The co-deposited film is found to have a characteristic surface morphology with dendritic microstructures. 18 ref., 4 figs., 1 tab

  19. Turbulence-Free Double-slit Interferometer

    Science.gov (United States)

    Smith, Thomas A.; Shih, Yanhua

    2018-02-01

    Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

  20. Turbulence-Free Double-slit Interferometer.

    Science.gov (United States)

    Smith, Thomas A; Shih, Yanhua

    2018-02-09

    Optical turbulence can be detrimental for optical observations. For instance, atmospheric turbulence may reduce the visibility or completely blur out the interference produced by an interferometer in open air. However, a simple two-photon interference theory based on Einstein's granularity picture of light makes a turbulence-free interferometer possible; i.e., any refraction index, length, or phase variations along the optical paths of the interferometer do not have any effect on its interference. Applying this mechanism, the reported experiment demonstrates a two-photon double-slit interference that is insensitive to atmospheric turbulence. The turbulence-free mechanism and especially the turbulence-free interferometer would be helpful in optical observations that require high sensitivity and stability such as for gravitational-wave detection.

  1. Enhanced ordering reduces electric susceptibility of liquids confined to graphene slit pores

    Science.gov (United States)

    Terrones, Jeronimo; Kiley, Patrick J.; Elliott, James A.

    2016-01-01

    The behaviours of a range of polar and non-polar organic liquids (acetone, ethanol, methanol, N-methyl-2-pyrrolidone (NMP), carbon tetrachloride and water) confined to 2D graphene nanochannels with thicknesses in the range of 4.5 Å to 40 Å were studied using classical molecular dynamics and hybrid density functional theory. All liquids were found to organise spontaneously into ordered layers parallel to the confining surfaces, with those containing polar molecules having their electric dipoles aligned parallel to such surfaces. In particular, monolayers of NMP showed remarkable in-plane ordering and low molecular mobility, suggesting the existence of a previously unknown 2D solid-like phase. Calculations for polar liquids showed dramatically reduced static permittivities normal to the confining surfaces; these changes are expected to improve electron tunnelling across the liquid films, modifying the DC electrical properties of immersed assemblies of carbon nanomaterials. PMID:27265098

  2. Flow enhancement of water flow through silica slit pores with graphene-coated walls

    DEFF Research Database (Denmark)

    Zambrano, Harvey; Wagemann, Enrique; Oyarzua, Elton

    coatings to induce flow enhancement in silica channels. We conduct molecular dynamics simulations of pressurized water flow inside silica channels with and without graphene layers covering the walls. In particular, we compute density and velocity profiles, flow enhancement and slip lengths to understand...

  3. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  4. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  5. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    impact is lower and can therefore be counteracted by temperature, a better reordering of the structure should be achieved. Concerning 14C, except when located close to open pores where it can be removed through radiolytic corrosion, it tends to stabilize in the graphite matrix into sp2 or sp3 structures with variable proportions depending on the irradiation conditions.

  6. (a, deletion; b, methylation; c, overall alterations) of SLIT2, ROBO1

    Indian Academy of Sciences (India)

    author

    Table 3. Associations between alterations (a, deletion; b, methylation; c, overall alterations) of SLIT2, ROBO1/ ROBO2. genes in BC. *P≤0.05. SLIT2. ROBO1. ROBO2. SLIT2. ROBO1. ROBO2. SLIT2. ROBO1. ROBO2. D+. D-. D+. D-. D+. D-. M+. M-. M+. M-. M+. M-. A+. A-. A+. A-. A+. A-. SLIT2. D+. -. -. 21. 37. 4. 54. SLIT2. M+.

  7. On New Phenomena of Photon from Modified Double Slit Experiment

    Science.gov (United States)

    Liu, Haisheng

    2011-03-01

    A modified double slit experiment of light was implemented. In the experiment, a spatial shape filter is used to manipulate the shape of cross section of laser beam. When this modified laser beam was shined on the double slit, the intensity distribution of laser beam on double slit is asymmetrical. In this way, the laser light was directed to pass through only one or two slits of double slit in different sections. So the which-way information is predetermined before the photons pass through the slits. At the same time, the visible interference pattern can be observed on a monitor screen after the double slit. A couple of new phenomena had been observed from this experiment. The results of this experiment raise questions about Wave-Particle Duality model of quantum theory, which is the foundation for the Copenhagen explanation that is generally regarded as the principal interpretation of quantum theory. As the observed properties from this experiment cannot be fully explained using the quantum theory, especially the Copenhagen explanation, a new model of photon is proposed. The new model for photon should be also applicable to all other micro entities, according to L. de Broglie assumption.

  8. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  9. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...

  10. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  11. On estimating the fracture probability of nuclear graphite components

    International Nuclear Information System (INIS)

    Srinivasan, Makuteswara

    2008-01-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation

  12. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  13. Beam manipulating by metallic nano-slits with variant widths.

    Science.gov (United States)

    Shi, Haofei; Wang, Changtao; Du, Chunlei; Luo, Xiangang; Dong, Xiaochun; Gao, Hongtao

    2005-09-05

    A novel method is proposed to manipulate beam by modulating light phase through a metallic film with arrayed nano-slits, which have constant depth but variant widths. The slits transport electro-magnetic energy in the form of surface plasmon polaritons (SPPs) in nanometric waveguides and provide desired phase retardations of beam manipulating with variant phase propagation constant. Numerical simulation of an illustrative lens design example is performed through finite-difference time-domain (FDTD) method and shows agreement with theory analysis result. In addition, extraordinary optical transmission of SPPs through sub-wavelength metallic slits is observed in the simulation and helps to improve elements' energy using factor.

  14. Slit scan radiographic system for intermediate size rocket motors

    Science.gov (United States)

    Bernardi, Richard T.; Waters, David D.

    1992-12-01

    The development of slit-scan radiography capability for the NASA Advanced Computed Tomography Inspection System (ACTIS) computed tomography (CT) scanner at MSFC is discussed. This allows for tangential case interface (bondline) inspection at 2 MeV of intermediate-size rocket motors like the Hawk. Motorized mounting fixture hardware was designed, fabricated, installed, and tested on ACTIS. The ACTIS linear array of x-ray detectors was aligned parallel to the tangent line of a horizontal Hawk motor case. A 5 mm thick x-ray fan beam was used. Slit-scan images were produced with continuous rotation of a horizontal Hawk motor. Image features along Hawk motor case interfaces were indicated. A motorized exit cone fixture for ACTIS slit-scan inspection was also provided. The results of this SBIR have shown that slit scanning is an alternative imaging technique for case interface inspection. More data is required to qualify the technique for bondline inspection.

  15. Irradiation creep of graphite

    International Nuclear Information System (INIS)

    Kennedy, C.R.

    1990-01-01

    Displacement damage of graphite by neutron irradiation causes graphite to change dimensions. This dimensional instability requires careful attention when graphite is used as as moderator and reflector material in nuclear devices. Natural gradients in flux and temperature result in time-varying differential growth generating stresses similar to thermal stresses with an ever increasing temperature gradient. Graphite, however, does have the ability to creep under irradiation, allowing the stress intensity to relax below the fracture strength of the material. Creep strain also serves to average the radiation-induced strains, thus contributing to the stability of the core. As the dimensional instability is a function of temperature, so are the creep characteristics of graphite, and it is of interest to generalize the available data for extension to more extreme conditions of fluence and temperature. Irradiation creep of graphite is characterized by two stages of creep; a primary stage that saturates with time and a secondary stage that is generally assumed to be linear and constant with time. Virtually all past studies have not considered primary creep in detail primarily because there is limited available data at the very low fluences required to saturate primary creep. It is the purpose of this study to carefully examine primary creep in detail over the irradiation temperature range of 150 to 1000 degree C. These studies also include the combined effects of creep, differential growth, and structural changes in graphite by irradiation. 3 refs., 5 figs

  16. Slit-lamp photography and videography with high magnifications

    Science.gov (United States)

    Yuan, Jin; Jiang, Hong; Mao, Xinjie; Ke, Bilian; Yan, Wentao; Liu, Che; Cintrón-Colón, Hector R; Perez, Victor L; Wang, Jianhua

    2015-01-01

    Purpose To demonstrate the use of the slit-lamp photography and videography with extremely high magnifications for visualizing structures of the anterior segment of the eye. Methods A Canon 60D digital camera with Movie Crop Function was adapted into a Nikon FS-2 slit-lamp to capture still images and video clips of the structures of the anterior segment of the eye. Images obtained using the slit-lamp were tested for spatial resolution. The cornea of human eyes was imaged with the slit-lamp and the structures were compared with the pictures captured using the ultra-high resolution optical coherence tomography (UHR-OCT). The central thickness of the corneal epithelium and total cornea was obtained using the slit-lamp and the results were compared with the thickness obtained using UHR-OCT. Results High-quality ocular images and higher spatial resolutions were obtained by using the slit-lamp with extremely high magnifications and Movie Crop Function, rather than the traditional slit-lamp. The structures and characteristics of the cornea, such as the normal epithelium, abnormal epithelium of corneal intraepithelial neoplasia, LASIK interface, and contact lenses, were clearly visualized using this device. These features were confirmed by comparing the obtained images with those acquired using UHR-OCT. Moreover, the tear film debris on the ocular surface and the corneal nerve in the anterior corneal stroma were also visualized. The thicknesses of the corneal epithelium and total cornea were similar to that measured using UHR-OCT (P photography and videography with extremely high magnifications allows better visualization of the anterior segment structures of the eye, especially of the epithelium, when compared with the traditional slit-lamp. PMID:26020484

  17. [The coding correction of slit diffraction in Hadamard transform spectrometer].

    Science.gov (United States)

    Li, Bo; Wang, Shu-Rong; Huang, Yu; Wang, Jun-Bo

    2013-08-01

    According to the principles of Hadamard transform spectrometer and the slit diffraction characteristics, the influence of spectrometer entrance slit diffraction of Hadamard transform spectrometer on the measurement result was analyzed, for the diffraction case, the Hadamard transform spectrometer instrument structure matrix was studied, and the Hadamard transform spectrometer encoding/decoding method was established. The analysis of incident spectral verified the correctness of the coding/ decoding. This method is very important for the high precision measurement of Hadamard transform spectrometer.

  18. Inter-slit Coupling in Gold Film Hole Arrays

    OpenAIRE

    Carmeli, Itai; Walther, Roman; Schneider, Reinhard; Gerthsen, Dagmar; Kaufman, Yaron; Shvarzman, Ayala; Richter, Shachar; Cohen, Hagai

    2012-01-01

    Inter-slit interactions across one-dimensional arrays of sub-micro meter rectangular holes in gold films are explored. Using electron energy loss spectroscopy combined with scanning transmission electron microscopy, a series of cavity standing waves is resolved, indicating particularly high interslit interactions, about an order of magnitude larger than the intra-slit edge to edge coupling. Pronounced signal enhancements are thus induced, dominated by short-range interactions and high mode-lo...

  19. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  20. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  1. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal significant defects in Slit2−/− as well as Slit1−/−Slit2−/− embryos

    Directory of Open Access Journals (Sweden)

    Down Matthew

    2013-01-01

    Full Text Available Abstract Background Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm’s normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1−/−, Slit2−/− and Slit1−/−Slit2−/− embryos. Results We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2−/− and Slit1−/−Slit2−/− mutants. There were very few axon defects at the chiasm of Slit1−/− mutants. Conclusions We found defects of the chiasms of Slit1−/−Slit2−/− and Slit1−/− mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline.

  2. An analytical study on porosity changes of nuclear graphites under high temperature irradiations

    International Nuclear Information System (INIS)

    Arai, T.

    1996-01-01

    A quantitative description of the changing pore structure, based on some radiation damage mechanisms, may introduce a physically appropriate method for lifetime assessment of graphite fuel and moderator components. Recently Brocklehurst and Kelly have analyzed well-characterized data on dimensional changes of UK reactor graphites to quantify volumetric and linear pore generation terms. The analysis (B/K theory) has demonstrated that a crystal strain parameter X T , depending on irradiation temperature and fluence, is suitable for defining structure factors, which relate changes in microstructure with those in macroscopic properties of a family of nuclear graphites. Graphite components in high temperature reactors are subjected to higher temperatures well above 1000 deg. C, which accelerate pore generation. Their mechanical integrity will suffer from the deterioration, resulting in a reduced lifetime. Previous design considerations on the dimensional change behavior have been based on an empirical approach using measured data obtained in a number of irradiation experiments. A large variety of experimental data have been utilized to develop a general phenomenological model(Graphite Damage Model, GDM) for predicting engineering properties of nuclear graphites. The present study tries to combine the B/K theory with the GDM prediction with a view to characterizing porosity changes at high temperatures of some graphites from different manufacturing routes. The dimensional change data in the literature are analyzed by the GDM to obtain their analytical presentation as a function of temperature and fluence. The results are used to derive an X T function and pore volume change as a function of X T for each grade of graphite. The resulting porosity changes are compared between different kinds of graphites. 13 refs, 6 figs, 3 tabs

  3. Multi-tests for pore structure characterization-A case study using lamprophyre

    Science.gov (United States)

    Li, Zhen; Feng, Guorui; Luo, Yi; Hu, Shengyong; Qi, Tingye; Jiang, Haina; Guo, Jun; Bai, Jinwen; Du, Xianjie; Kang, Lixun

    2017-08-01

    The pore structure plays an important role to understand methane adsorption, storage and flow behavior of geological materials. In this paper, the multi-tests including N2 adsorption, mercury intrusion porosimetry (MIP) and CT reconstruction have been proposed on Tashan lamprophyre samples. The main findings are listed: (1) The pore size distribution has a broad range ranging from 2-100000nm, among which the adsorption pores (100nm) only account for 34% of total pore volume. (2) The lamprophyre open pores are mainly slit-like/plate-like and ink-bottle-shaped pores on a two-dimensional level. The lamprophyre 3D pore structure shows more stochastic and anisotropic extension on the z axis to form a complex pore system on a three-dimensional level. (3) The closed pores (>647nm) occupy averaged 74.86% and 72.75% of total pores (>647nm) volume and specific surface area indicating a poor connectivity pore system. The revealed results provide basic information for understanding the abnormal methane emission reasons in similar geological conditions with lamprophyre invasions.

  4. Multi-tests for pore structure characterization-A case study using lamprophyre

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-08-01

    Full Text Available The pore structure plays an important role to understand methane adsorption, storage and flow behavior of geological materials. In this paper, the multi-tests including N2 adsorption, mercury intrusion porosimetry (MIP and CT reconstruction have been proposed on Tashan lamprophyre samples. The main findings are listed: (1 The pore size distribution has a broad range ranging from 2-100000nm, among which the adsorption pores (100nm only account for 34% of total pore volume. (2 The lamprophyre open pores are mainly slit-like/plate-like and ink-bottle-shaped pores on a two-dimensional level. The lamprophyre 3D pore structure shows more stochastic and anisotropic extension on the z axis to form a complex pore system on a three-dimensional level. (3 The closed pores (>647nm occupy averaged 74.86% and 72.75% of total pores (>647nm volume and specific surface area indicating a poor connectivity pore system. The revealed results provide basic information for understanding the abnormal methane emission reasons in similar geological conditions with lamprophyre invasions.

  5. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  6. Graphite Technology Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  7. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  8. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  9. Characterization of Exfoliated Graphite Prepared with the Method of Secondary Intervening

    Directory of Open Access Journals (Sweden)

    Zhang Shengtao

    2011-04-01

    Full Text Available Exfoliated graphite was prepared with the method of secondary intervening. The results showed that the optimum conditions for the procedure were as follows: mass ratio of nature flake graphite: sulfuric acid: nitric acid: potassium permanganate =1:9:3:0.44 and immersing time in formic acid was 150 minutes. Exfoliated graphite with 300 mL/g exfoliation volume at 900C was obtained. The prepared sample in the best process condition was characterized by means of scanning electron microscopy (SEM, thermogravimetry and differential thermal analysis (TGA-DTA, infrared ray spectrum (IR and X-ray diffraction (XRD. After secondary intervening, the layer distance of expandable graphite was enlarged and the boundary layers were broken. Exfoliated graphite was worm-like and graphite layers were held together at their edges, and the expanded domain had a multilayer structure with many diamond-shaped pores. Sulfuric acid, nitric acid and formic acid were intercalated into graphite, and the decomposition of exfoliated graphite at 900C was mostly derived from graphite intercalation. Crystalline of graphite was damaged because of oxidation intercalation, but the C-C bond was not undermined. Furthermore, oxidation intercalation process and mechanism were discussed.

  10. Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials

    International Nuclear Information System (INIS)

    Kamali, Ali Reza; Schwandt, Carsten; Fray, Derek J.

    2011-01-01

    The electrochemical erosion of a graphite cathode during the electrolysis of molten lithium chloride salt may be used for the preparation of nano-structured carbon materials. It has been found that the structures and morphologies of these carbon nanomaterials are dependent on those of the graphite cathodes employed. A combination of tubular and spherical carbon nanostructures has been produced from a graphite with a microstructure of predominantly planar micro-sized grains and a minor fraction of more irregular nano-sized grains, whilst only spherical carbon nanostructures have been produced from a graphite with a microstructure of primarily nano-sized grains. Based on the experimental results, a best-fit regression equation is proposed that relates the crystalline domain size of the graphite reactants and the carbon products. The carbon nanomaterials prepared possess a fairly uniform mesoporosity with a sharp peak in pore size distribution at around 4 nm. The results are of crucial importance to the production of carbon nanomaterials by way of the molten salt electrolytic method. - Highlights: → Carbon nanomaterials are synthesised by LiCl electrolysis with graphite electrodes. → The degree of crystallinity of graphite reactant and carbon product are related. → A graphite reactant is identified that enables the preparation of carbon nanotubes. → The carbon products possess uniform mesoporosity with narrow pore size distribution.

  11. The development of transport and non-transport porosity in radiolytic graphite oxidation

    International Nuclear Information System (INIS)

    Blanchard, A.

    1980-01-01

    In graphite moderated, carbon dioxide cooled, reactors, radiolytic graphite oxidation arises from the production of short lived energetic species and is confined to the internal porous structure. Exponential weight loss is possible as the volume of internal porosity, absorbing radiation, increases with time. Inhibitors are added to the coolant to minimise weight and hence strength loss. Carbon monoxide and methane are the principal gas phase inhibitors, competing with the graphite for the oxidising species. Methane has the further effect of producing a sacrificial layer at the pore wall. It follows from the mechanisms of inhibition that oxidation is reduced in the larger pores. In the small pores, the probability is high that oxidising species will reach the pore wall and exponential weight loss can occur until such time as the pores become sufficiently large for the inhibitors to operate. The results from a high weight loss experiment confirm this behaviour and allow predictions to be made with some confidence for other coolants - for which initial oxidation rate data are available. In this paper the results from an earlier weight loss experiment in an 'uninhibited', nominally pure, carbon dioxide coolant are assessed. Particular attention is drawn to the information which can be obtained from a study of transport properties as they develop with graphite weight loss. The objectives in understanding more exactly the process occurring inside the complex pore structure are to allow extensions in planned life, or greater flexibility in coolant plant operation and compatibility with fuel clad. (author)

  12. Research of oxidation properties of graphite used in HTR-10

    International Nuclear Information System (INIS)

    Luo Xiaowei; Jean-Charles, R.

    2006-01-01

    The oxidation of graphite influences the graphite performance. There are many factors to influence the graphite oxidation. In 10 MW High Temperature Gas-cooled Reactor(HTR-10), the graphite IG-11 was used as moderator and structure material. The dependence of oxidation behaviour on temperature for the graphite IG-11, was investigated by thermogravimetric analysis in the temperature range of 400 to 1200 degree C. The oxidant was dry air (water content -6 ) with a flow rate of 20 ml/min. The oxidation time was 4 hours. The oxidation results exhibited three regimes: in the 400-600 degree C range, the activation energy was 158.56 kJ/mol and oxidation was controlled by chemical reaction; in the 600-800 degree C range, the activation energy was 72.01 kJ/mol and oxidation kinetics were controlled by in-pore diffusion; when the temperature was over 800 degree C, the activation energy was very small and oxidation was controlled by the boundary layer. Due to CO production, the oxidation rate increased at high temperatures. The effect of burn-off on activation energy was also investigated. In the 600-800 degree C range, the activation energy decreased with burn-off. Results in low temperature tests were very dispersible because the oxidation behaviour at low temperatures was sensitive to inhomogeneous distribution of impurities and some impurities can catalyse graphite oxidation. (authors)

  13. Porosity effects in the neutron total cross section of graphite

    International Nuclear Information System (INIS)

    Santisteban, J. R; Dawidowski, J; Petriw, S. N

    2009-01-01

    Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es

  14. Reconstituted Fusion Pore

    OpenAIRE

    Jeremic, Aleksandar; Kelly, Marie; Cho, Sang-Joon; Stromer, Marvin H.; Jena, Bhanu P.

    2003-01-01

    Fusion pores or porosomes are basket-like structures at the cell plasma membrane, at the base of which, membrane-bound secretory vesicles dock and fuse to release vesicular contents. Earlier studies using atomic force microscopy (AFM) demonstrated the presence of fusion pores at the cell plasma membrane in a number of live secretory cells, revealing their morphology and dynamics at nm resolution and in real time. ImmunoAFM studies demonstrated the release of vesicular contents through the por...

  15. Decoherence in a double-slit quantum eraser

    International Nuclear Information System (INIS)

    Torres-Ruiz, F. A.; Lima, G.; Delgado, A.; Saavedra, C.; Padua, S.

    2010-01-01

    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down-conversion process, is prepared in a maximally entangled polarization state. A birefringent double slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled-not gate that couples the polarization with the transversal momentum of these photons. The other photon, which acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wavelike to particle-like behavior of the signal photons crossing the double slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.

  16. Multiscale Modeling of Red Blood Cells Squeezing through Submicron Slits

    Science.gov (United States)

    Peng, Zhangli; Lu, Huijie

    2016-11-01

    A multiscale model is applied to study the dynamics of healthy red blood cells (RBCs), RBCs in hereditary spherocytosis, and sickle cell disease squeezing through submicron slits. This study is motivated by the mechanical filtration of RBCs by inter-endothelial slits in the spleen. First, the model is validated by comparing the simulation results with experiments. Secondly, the deformation of the cytoskeleton in healthy RBCs is investigated. Thirdly, the mechanisms of damage in hereditary spherocytosis are investigated. Finally, the effects of cytoplasm and membrane viscosities, especially in sickle cell disease, are examined. The simulations results provided guidance for future experiments to explore the dynamics of RBCs under extreme deformation.

  17. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  18. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  19. SPECIAL ANALYSIS OF OPERATIONAL STORMWATER RUNOFF COVERS OVER SLIT TRENCHES

    Energy Technology Data Exchange (ETDEWEB)

    Collard, L; Luther Hamm, L

    2008-12-18

    Solid Waste Management (SWM) commissioned this Special Analysis (SA) to determine the effects of placing operational stormwater runoff covers (referred to as covers in the remainder of this document) over slit trench (ST) disposal units ST1 through ST7 (the center set of slit trenches). Previously the United States Department of Energy (DOE) entered into an agreement with the United States Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC) to place covers over Slit Trenches 1 and 2 to be able to continue disposing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) solid waste (see USDOE 2008). Because the covers changed the operating conditions, DOE Order 435.1 (DOE 1999) required that an SA be performed to assess the impact. This Special Analysis has been prepared to determine the effects of placing covers over slit trenches at about years 5, 10 and 15 of the 30-year operational period. Because some slit trenches have already been operational for about 15 years, results from analyzing covers at 5 years and 10 years provide trend analysis information only. This SA also examined alternatives of covering Slit Trenches 1 and 2 with one cover and Slit Trenches 3 and 4 with a second cover versus covering them all with a single cover. Based on modeling results, minimal differences exist between covering Slit Trench groups 1-2 and 3-4 with two covers or one large cover. This SA demonstrates that placement of covers over slit trenches will slow the subsequent release and transport of radionuclides in the vadose zone in the early time periods (from time of placement until about 100 years). Release and transport of some radionuclides in the vadose zone beyond 100 years were somewhat higher than for the case without covers. The sums-of-fractions (SOFs) were examined for the current waste inventory in ST1 and ST2 and for estimated inventories at closure for ST3 through ST7. In all

  20. Changes in porosity of graphite caused by radiolytic gasification by carbon dioxide

    International Nuclear Information System (INIS)

    Murdie, Neil; Edwards, I.A.S.; Marsh, Harry

    1986-01-01

    Methods have been developed to study porosity in nuclear grade graphite. The changes induced during the radiolytic gasification of graphite in carbon dioxide have been investigated. Porosity in radiolytically gasified graphite (0-22.8% wt. loss) was examined by optical microscopy and scanning electron microscopy (SEM). Each sample was vacuum impregnated with a slow-setting resin containing a fluorescent dye. Optical microscopy was used to study pores >2 μm 2 c.s.a. A semi-automatic image analysis system linked to the optical microscope enabled pore parameter data including cross-sectional areas, perimeters, Feret's diameters and shape factors, to be collected. The results showed that radiolytic gasification produced a large increase in the number of pores 2 c.s.a. New open pores 2 c.s.a. were developed by gasification of existing open porosity into the closed porosity ( 2 c.s.a.) within the binder-coke. Open pores, 2-100 μm 2 c.s.a., which were gasified within the coarse-grained mosaics of the binder-coke. In the gasification process to 22.8% wt. loss, the apparent open pore volume increased from 6.6 to 33.8% and the apparent closed pore volumes decreased from approx. 3% to 0.1%. The increase in apparent open porosity from 6.6% (virgin) to 33.8% resulted from gasification within original open porosity and by the opening and development of closed porosity. There was no evidence for creation of porosity from within the 'bulk' graphite, it being developed from existing fine porosity. The structure of pores > 100 μm 2 c.s.a. showed no change because of the inhibition of oxidation by deposition of carbonaceous species from the CH 4 inhibitor. Such species diffuse to the pore wall and are sacrificially oxidised. (author)

  1. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  2. Enhanced models for teaching slit-lamp skills.

    Science.gov (United States)

    Romanchuk, Kenneth G

    2003-10-01

    This article describes enhancements to models previously devised for demonstrating slit-lamp findings to students and physicians. The models can simulate the optical appearance of the anterior segment, "flare" and "cells" in the anterior chamber, hypopyon, gross and microscopic hyphema, the red reflex, cataract, corneal epithelial defects (including fluorescein staining) and superficial corneal foreign bodies, whose removal can be practised.

  3. A Portable Double-Slit Quantum Eraser with Individual Photons

    Science.gov (United States)

    Dimitrova, T. L.; Weis, A.

    2011-01-01

    The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…

  4. Vector wave diffraction pattern of slits masked by polarizing devices

    Indian Academy of Sciences (India)

    This calls for a systematic study of diffraction properties of different apertures using polarization-sensitive devices. In the present paper, we have studied the Fraunhofer diffraction pattern of slits masked by different kinds of polarizing devices which introduce a phase difference between the two orthogonal components of the ...

  5. Thin Slits Manufacturing Process Using Electro Discharge Technique

    Czech Academy of Sciences Publication Activity Database

    Hošek, Jan

    -, č. 40 (2011), s. 175-178 ISSN 1584-5982 R&D Projects: GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z20760514 Keywords : thin slit * EDM process * manufacturing Subject RIV: JR - Other Machinery

  6. A tool for cutting ultra thin slits in metals

    Science.gov (United States)

    Mcmahon, W.

    1972-01-01

    Tool produces slits of 0.0305 mm widths in materials up to RC 50 hardness, minimizes material waste and improves precision. Device may be used for general metal cutting and for producing simulated cracks in metal samples used in fatigue tests.

  7. Change of properties after oxidation of IG-11 graphite by air and CO2 gas

    International Nuclear Information System (INIS)

    Lim, Yun-Soo; Chi, Se-Hwan; Cho, Kwang-Yun

    2008-01-01

    Artificial graphite is typically manufactured by carbonization of a shaped body of a kneaded mixture using granular cokes as a filler and pitch as a binder. It undergoes a pitch impregnation process if necessary and finally applying graphitization heat treatment. The effect of thermal oxidation in air or a CO 2 atmosphere on IG-11 graphite samples is investigated in this study. The results show a localized oxidation process that progressively reveals the large coke particles with increasing level of overall weight loss in air. The surface of the graphite was peeled off and no change was found in the specific gravity after air oxidation. However, the specific gravity of graphite was continuously decreased by CO 2 oxidation. The decrease in the specific gravity by CO 2 oxidation was due to CO 2 gas that progressed from the surface to the interior. The pore shape after CO 2 oxidation differed from that under air oxidation

  8. A discussion of possible mechanisms affecting fission product transport in irradiated and unirradiated nuclear grade graphite

    International Nuclear Information System (INIS)

    Firth, M.J.

    1977-09-01

    137 Cs, 85 Sr, and sup(110m)Ag adsorption experiments were conducted on three graphite powders with differing amounts of specific basal and edge surface areas. No direct proportionality was found between the specific amounts of the isotopes adsorbed and either of the surface characteristics. There appears to be some correlation with the specific basal surface area despite the fact that each isotope behaves differently. Factors that might influence the adsorption behaviour of Cs and Ag during reactor irradiation and heat treatment of nuclear grade graphites are discussed. These include the form of Cs with the graphite surface. A model based on Cs adsorption at vacancy clusters is used to analyse adsorption experiments. A possible explanation for the behaviour of Ag through the migration of graphite impurities from the bulk of the graphite to the pore surface is also discussed. (author)

  9. Graphite technology development plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  10. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  11. Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Moncoffre, N., E-mail: n.moncoffre@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon, F-69622 Villeurbanne cedex (France); Ammar, M.R. [CNRS, CEMHTI UPR3079, Université Orléans, CS90055, F-45071 Orléans cedex 2 (France); Rouzaud, J.N.; Deldicque, D. [Laboratoire de Géologie de l’Ecole Normale Supérieure, Paris, UMR CNRS ENS 8538, F-75231 Paris cedex 5 (France)

    2016-03-15

    This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO{sub 2} cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges R{sub p} of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D({sup 3}He,p){sup 4}He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200–1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower

  12. Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure

    Science.gov (United States)

    Le Guillou, M.; Moncoffre, N.; Toulhoat, N.; Pipon, Y.; Ammar, M. R.; Rouzaud, J. N.; Deldicque, D.

    2016-03-01

    This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO2 cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges Rp of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D(3He,p)4He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200-1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower temperatures when D is located

  13. Development of mercury porosimeter. Application to nuclear graphite studies (1961)

    International Nuclear Information System (INIS)

    Bocquet, M.; Genisson, J.; Sailleau, J.

    1961-01-01

    A mercury porosimeter, model IFP-CEA, has been developed for application to nuclear graphite studies. The apparatus is based on the capillary depression phenomenon. The relationship between the radius of a pore and the pressure at which mercury fills it is pr = -2 σ cos θ ( σ is the surface tension, θ the angle of contact of the mercury). After some theoretical consideration, the apparatus is described. The mercury pressure is increased step-wise from 0 to 1000 kg/cm 2 thus yielding the complete distribution of pores from 92 μ to 75 A. Results are, then presented concerning nuclear graphites which show the evolution of the porous structure under the effect of bitumen impregnation. In general, the volume of the large pores decreases while that of the small pores increases. The structure of impregnated products appears to depend to a certain extent on that of the starting materials. It has also been possible to study other products with this porosimeter; the range of measurements possible is such that it may be used for the study of the majority of porous materials. (authors) [fr

  14. Graphites for nuclear applications; Les graphites pour les applications nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.P.; Gosmain, L. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DMN), Lab. de Microscopie et d' Etudes de l' Endommagement, 91 - Gif-sur-Yvette (France)

    2006-03-15

    Being an excellent neutron moderator, graphite is used as a structural material in many nuclear reactor types. By the end of the 50's, the French gas-cooled reactor development needed manufacturing of a nuclear-grade graphite. Graphite irradiation can lead to in-lattice energy accumulation, dimensional changes and physical properties modification. Moreover, the radiolytic corrosion induced by the coolant (CO{sub 2}) may generate mechanical properties degradation. Today, French gas-cooled reactors are all in their decommissioning phase that requires the knowledge of the radiological inventory of the irradiated graphites. At present time, graphite is still foreseen as a future material for hydrogen production by high temperature gas cooled nuclear plants. In the future, graphite will be the necessary moderator material for high temperature reactors with thermal neutron spectrum dedicated to hydrogen and electricity production. (authors)

  15. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  16. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  17. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  18. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  19. Processing a fine slit by means of electric discharge

    International Nuclear Information System (INIS)

    Kasahara, S.; Inoue, H.; Hongo, T.

    1979-03-01

    Among fabrication methods using electricity, the electric discharge processing is widely used for fabrication of forms and dies. If one notes however features proper to the electric discharge processors and minds their effective utilization, it is possible to fabricate pieces of very special shapes or of high precision as such. This paper reports on our trial to process a fine slit by means of electric discharge, whose fabrication is impossible by the conventional methods. (author)

  20. Tolerability of the SQ Tree SLIT Tablet in Adults.

    Science.gov (United States)

    Birk, Anne O; Andersen, Jens S; Villesen, Hanne H; Steffensen, Maria A; Calderon, Moises A

    2017-09-01

    The tree pollen sublingual immunotherapy (SLIT)-tablet (ALK, Denmark) is being developed for the treatment of tree pollen induced allergic rhinitis with or without conjunctivitis. The objective of this Phase I trial was to investigate the tolerability and acceptable dose range of the SQ tree SLIT-tablet in adults with allergic rhinoconjunctivitis. The trial was a randomized, double-blind, placebo-controlled, dose escalation Phase I trial that included 70 adults (aged 19-61 years) with birch pollen-induced rhinoconjunctivitis with or without mild to moderate asthma. The trial included 6 different dosage groups that were randomized 3:1 to active treatment or placebo once daily for 28 days. Adverse events (AEs) were coded in the Medical Dictionary for Regulatory Activities by medically qualified personnel. Immunologic assessments included IgE and IgE-blocking factor. Most (96%) reported AEs were mild, and only 5 severe events (0.2%) were reported. The most frequently reported investigational medicinal product-related AEs were oral pruritus, ear pruritus, mouth edema, sensation of foreign body, throat irritation, pharyngolaryngeal pain, dry throat, tongue blistering, eye pruritus, and headache. The trial included doses ranging from 1 to 24 development units (DU), and the mean number of investigational medicinal product-related AEs per participant was highest in the 24 DU group. The 12 and 24 DU doses induced statistically significant changes from baseline compared with placebo in birch specific IgE and IgE-blocking factor. The trial found that doses up to 12 DU of the SQ tree SLIT tablet have a tolerability profile suitable for at-home administration. An immunomodulatory effect was found for all doses included in the trial, and doses up to 12 DU were thus chosen for further clinical development of the SQ tree SLIT tablet. EudraCT identifier: 2007-003234-42. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  1. Finally making sense of the double-slit experiment.

    Science.gov (United States)

    Aharonov, Yakir; Cohen, Eliahu; Colombo, Fabrizio; Landsberger, Tomer; Sabadini, Irene; Struppa, Daniele C; Tollaksen, Jeff

    2017-06-20

    Feynman stated that the double-slit experiment "…has in it the heart of quantum mechanics. In reality, it contains the only mystery" and that "nobody can give you a deeper explanation of this phenomenon than I have given; that is, a description of it" [Feynman R, Leighton R, Sands M (1965) The Feynman Lectures on Physics ]. We rise to the challenge with an alternative to the wave function-centered interpretations: instead of a quantum wave passing through both slits, we have a localized particle with nonlocal interactions with the other slit. Key to this explanation is dynamical nonlocality, which naturally appears in the Heisenberg picture as nonlocal equations of motion. This insight led us to develop an approach to quantum mechanics which relies on pre- and postselection, weak measurements, deterministic, and modular variables. We consider those properties of a single particle that are deterministic to be primal. The Heisenberg picture allows us to specify the most complete enumeration of such deterministic properties in contrast to the Schrödinger wave function, which remains an ensemble property. We exercise this approach by analyzing a version of the double-slit experiment augmented with postselection, showing that only it and not the wave function approach can be accommodated within a time-symmetric interpretation, where interference appears even when the particle is localized. Although the Heisenberg and Schrödinger pictures are equivalent formulations, nevertheless, the framework presented here has led to insights, intuitions, and experiments that were missed from the old perspective.

  2. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  3. Gravity and decoherence: the double slit experiment revisited

    Science.gov (United States)

    Samuel, Joseph

    2018-02-01

    The double slit experiment is iconic and widely used in classrooms to demonstrate the fundamental mystery of quantum physics. The puzzling feature is that the probability of an electron arriving at the detector when both slits are open is not the sum of the probabilities when the slits are open separately. The superposition principle of quantum mechanics tells us to add amplitudes rather than probabilities and this results in interference. This experiment defies our classical intuition that the probabilities of exclusive events add. In understanding the emergence of the classical world from the quantum one, there have been suggestions by Feynman, Diosi and Penrose that gravity is responsible for suppressing interference. This idea has been pursued in many different forms ever since, predominantly within Newtonian approaches to gravity. In this paper, we propose and theoretically analyse two ‘gedanken’ or thought experiments which lend strong support to the idea that gravity is responsible for decoherence. The first makes the point that thermal radiation can suppress interference. The second shows that in an accelerating frame, Unruh radiation does the same. Invoking the Einstein equivalence principle to relate acceleration to gravity, we support the view that gravity is responsible for decoherence.

  4. Diffraction of neutrons in crystals macroscopic double slits

    International Nuclear Information System (INIS)

    Lacroix, A.

    2000-06-01

    Diffraction experiments with neutrons at slits in free space have been measured with very high accuracy and can be found in many text books. The experiments in this thesis demonstrate that diffraction still takes place when the ratio between the dimensions of the slits and the wavelength of the particle is very large. In our experiment neutrons are diffracted at macroscopic objects and these diffraction effects will be amplified in a silicon crystal. The following effect is used : Similar to electrons in solid state materials, the interaction of the neutron with a periodic crystal potential can be described by an effective mass. In contrast to the case of the electrons, however, the crystal potential is very small in comparison to the kinetic energy for neutrons. Thus the effective neutron mass can become almost six orders of magnitude smaller than the rest mass of the free neutron. Therefore the characteristic length, equivalent to the de Broglie wavelength in free space, inside the crystal is the Pendelloesung length which is in our case larger by a factor of 2x10 5 . Due to this fact a deflection by small forces can already be observed on a distance of some centimeters. Thus diffraction of neutrons with wavelengths of the order of a few angstroms at slits in the millimeter range can be shown. We remark that our intensity was of the order of 4 neutrons per minute which clearly indicates single-neutron interference. (author)

  5. Seismic Behaviour of Reinforced Concrete Slit Shear Walls Energy Dissipators

    Directory of Open Access Journals (Sweden)

    Sergiu Băetu

    2010-01-01

    Full Text Available The types of slit walls energy dissipators, from monolith or precast reinforced concrete, proposed by researchers and the seismic behaviour of these types of walls are described. The overall ductility of the structure increases, considering the energy dissipation solutions proposed by the researchers of the reinforced concrete walls, resulting a supplementary safety for the structure. The objective of these solutions is to create an ideal structure for tall multi-storey buildings, that behaves as a rigid structure at low seismic action and turns into a flexible one in case of a high intensity earthquake action. The solutions for increasing ductility proposed in this paper are viable and easily to use in constructions practice. For the analysis of slit wall, the researchers used a series of analytical calculation methods, among the most important being the equivalent frame method and the finite element method, both presented s. 3 of the paper. The researchers concluded that by using this calculations methods, the dynamic behaviour of the reinforced concrete slit walls can be simulated very accurate and realistic.

  6. Residual stress measurements in polycrystalline graphite with micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, Ram; Jones, Abbie N.; Edge, Ruth; Marsden, Barry J.

    2015-01-01

    Micro-Raman microscopy technique is applied to evaluate unevenly distributed residual stresses in the various constituents of polygranular reactor grades graphite. The wavenumber based Raman shift (cm −1 ) corresponds to the local residual stress and measurements of stress dependent first order Raman spectra in graphite have enabled localized residual stress values to be determined. The bulk polygranular graphite of reactor grades – Gilsocarbon, NBG-18 and PGA – are examined to illustrate the residual stress variations in their constituents. Binder phase and filler particles have shown to be under compressive and tensile stresses, respectively. Among the studied graphite grades, the binder phase in Gilsocarbon has the highest residual stress and NBG-18 has the lowest value. Filler particles in Gilsocarbon have the highest residual stress and PGA showed the lowest, this is most likely due to the morphology of the coke particles used in the manufacturing and applied processing techniques for fabrications. Stresses have also been evaluated along the peripheral of pores and at the tips of the cracks. Cracks in filler and binder phases have shown mixed behaviour, compressive as well as tensile, whereas pores in binder and filler particles have shown compressive behaviour. The stresses in these graphitic constituents are of the order of MPa. Non-destructive analyses presented in this study make the current state-of-the-art technique a powerful method for the study of stress variations near the graphite surface and are expected to increase its use further in property determination analysis of low to highly fluence irradiated graphite samples from the material test reactors. - Highlights: • Micro-Raman spectroscopy can measure significantly small residual stresses. • Gilsocarbon, NBG-18 and PGA graphite were evaluated for residual stresses. • Residual stresses in the constituents of graphite were evaluated. • Binder and filler particles are often found under

  7. The pore space scramble

    Science.gov (United States)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  8. Passive control of base pressure on an axisymmetric blunt body using a perimetric slit

    Science.gov (United States)

    García de la Cruz, Juan Marcos; Oxlade, Anthony R.; Morrison, Jonathan F.

    2017-04-01

    The effect on the base pressure of a thin slit located at the base edge of a blunt axisymmetric body, communicating an internal cavity with the external flow, is investigated. A parametric study is performed of the effect on base pressure of changes in slit size and cavity depth. The base pressure increases initially with increasing cavity depth, but saturates at a depth which depends on the slit size. The base pressure increases monotonically up to 5 % with increasing slit size for the geometries tested. An upper limit of base pressure recovery of 20 % is extrapolated from the data. It is observed that the main effect of the slit is to reduce the instantaneous pressure asymmetry, which is linked to the total base pressure in a similar fashion for all the slit sizes. As a second-order effect, for highly asymmetric pressure distributions, the slit produces a base pressure increase not associated with the base pressure asymmetry. The results suggest a global effect of the slit on the wake due to a diametrical flow within the cavity driven by the pressure differences across the slit and regulated by the largest of the pressure drops between the slit and cavity. The slit also reduces the periodic base pressure fluctuations, corresponding mainly to the vortex shedding, and increases the rotational speed of the wake.

  9. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  10. Blunt indentation of core graphite

    International Nuclear Information System (INIS)

    Hartley, M.; McEnaney, B.

    1996-01-01

    Blunt indentation experiments were carried out on unoxidized and thermally oxidised IM1-24 graphite as a model to simulate local point stresses acting on graphite moderator bricks. Blunt indentation of unoxidized graphite initiates cracks close to the region of maximum tensile stress at the edge of the indentation. Cracks propagate and converge to form a cone of material. Failure is catastrophic, typically forming three pieces of graphite and ejecting the cone referred to above. The failure mode under indentation loading for highly oxidised graphite (weigh loss > 40%) is different from that for the unoxidized graphite. There is no longer a distinct crack path, the indentation is much deeper than in the case of the unoxidized graphite, and there is a region of crushed debris beneath the indentation, producing a crater-like structure. The reduction in the compressive fracture stress, σ cf , under indentation loading with increasing fractional weight loss on oxidation, x, can be fitted to σ cf /σ 0 = exp-[5.2x] where σ 0 is the compressive fracture stress of the unoxidized graphite. This indicates that the effect of thermal oxidation on indentation fracture stress is more severe than the effects of radiolytic oxidation on conventional strengths of nuclear graphites. (author). 8 refs, 12 figs

  11. Evolutionarily conserved repulsive guidance role of slit in the silkworm Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Axon guidance molecule Slit is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the function of Slit in the silkworm Bombyx mori was unknown. Here we showed that the structure of Bombyx mori Slit (BmSlit was different from that in most other species in its C-terminal sequence. BmSlit was localized in the midline glial cell, the neuropil, the tendon cell, the muscle and the silk gland and colocalized with BmRobo1 in the neuropil, the muscle and the silk gland. Knock-down of Bmslit by RNA interference (RNAi resulted in abnormal development of axons and muscles. Our results suggest that BmSlit has a repulsive role in axon guidance and muscle migration. Moreover, the localization of BmSlit in the silk gland argues for its important function in the development of the silk gland.

  12. Effects of pore structure and distribution on strength of porous Cu-Sn-Ti alumina composites

    Directory of Open Access Journals (Sweden)

    Biao ZHAO

    2017-12-01

    Full Text Available Porous Cu-Sn-Ti alumina composites were fabricated by sintering Cu-Sn-Ti alloy powders, graphite particles, and alumina hollow particles agent. The effects of the pore structure and distribution on the composites strength were evaluated. Different pore distributions were modeled by using finite element analysis to investigate the tensile strength of the composites. Furthermore, a fractal analysis-based box-covering algorithm was used on the Cu-Sn-Ti alumina composites topology graphs to better investigate the pore structure and distribution. Results obtained show that different sizes and concentrations of alumina hollow particles could result in different porosities from 20% to 50%. A larger pore size and a higher pore concentration reduce the strength, but provide more space for chip formation as a bonding material of a grinding wheel. The body-centered pore structure of the composites shows the highest stress under a tension load. The original composites topology graphs have been transformed to ordered distributed pore graphs based on the total pore area conservation. The information dimension magnitude difference between the original topology graphs and the ordered distributed circulars graphs is found to be linear with the Cu-Sn-Ti alumina composites strength. A larger difference renders a lower flexural strength, which indicates that uniform ordered distributed pores could benefit the composites strength. Keywords: Finite element analysis (FEA, Metal-matrix composites (MMCs, Microstructural analysis, Pore structure, Strength

  13. Potassium vapor assisted preparation of highly graphitized hierarchical porous carbon for high rate performance supercapacitors

    Science.gov (United States)

    Liu, Zheng; Zeng, Ying; Tang, Qunli; Hu, Aiping; Xiao, Kuikui; Zhang, Shiying; Deng, Weina; Fan, Binbin; Zhu, Yanfei; Chen, Xiaohua

    2017-09-01

    Ultrahigh graphitized carbon microspheres with rich hierarchical pores (AGHPCM-1) have been successfully synthesized through the one-step activation-carbonization strategy (OACS) with porous sulfonated poly-divinylbenzene as the carbon precursor, iron as the hard template and catalyst, and potassium hydroxide (KOH) as activation agent. Through the XRD, TEM, Raman and BET analysis, AGHPCM-1 shows very high graphitization degree and rich micro-, meso- and macro-pores. More importantly, the mechanism for KOH to improve the graphitization degree of carbon materials in OACS has been illustrated by the thermodynamical theory. The tremendous heat releasing from the reaction between the catalyst precursor of Fe2O3 and potassium vapor plays a key role in the formation of graphitized carbon. It may provide a general direction to prepare highly graphitized porous carbon at a moderate temperature. Integrating the advantages of high graphitization degree and rich hierarchical porous structure, the AGHPCM-1 exhibits an excellent rate performance with a response to up to the high current density of 150 A g-1 and high scan rate of 2000 mV s-1. No obvious capacitance decay can be observed after 10000 charge/discharge cycles even at the high current density of 20 A g-1.

  14. The behaviour of CAGR moderator and sleeve graphites radiolytically oxidised to high weight loss in inhibited coolant gas compositions

    International Nuclear Information System (INIS)

    Schofield, P.; Fitzgerald, B.; Ketchen, J.

    1987-01-01

    Gilsocarbon graphites were irradiated to high weight losses in three different CO 2 based coolants. The experimental data is tested against a model which interprets the gas phase chemistry and pore geometry and allows weight loss and gas flow properties to be calculated. The observed changes of oxidation rate with dose were successfully predicted from the model. An empirical relationship was also derived which was shown to fit data for moderator, sleeve and special pore structure graphites. Changes in graphite permeability and diffusivity were predicted by the model, and also by other simplified, more approximate methods. The model based upon the measured transport pore spectrum was shown to be the best with other methods proving adequate to moderate doses. (author)

  15. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    Energy Technology Data Exchange (ETDEWEB)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina [CIEMAT, Av. Complutense, 22, 28040-MADRID (Spain); Fachinger, Johannes; Grosse, Karl-Heinz [Furnaces Nuclear Application Grenoble SAS (FNAG), 4, avenue Charles de Gaulle, 38800 Le Pont de Claix (France); Leganes Nieto, Jose Luis; Quiros Gracian, Maria [ENRESA, C/ Emilio Vargas,7 - 28043 - MADRID (Spain); Seemann, Richard [ALD Vacuum Technologies GmbH, Wilhelm-Rohn-Strasse 35, 63450 Hanau (Germany)

    2012-07-01

    encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)

  16. N-terminal Slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton

    Directory of Open Access Journals (Sweden)

    Anand Appakkudal R

    2013-01-01

    Full Text Available Abstract Background Slit2 is a ~ 200 kDa secreted glycoprotein that has been recently shown to regulate immune functions. However, not much is known about its role in HIV (human immunodeficiency virus-1 pathogenesis. Results In the present study, we have shown that the N-terminal fragment of Slit2 (Slit2N (~120 kDa inhibits replication of both CXCR4 and CCR5-tropic HIV-1 viruses in T-cell lines and peripheral blood T-cells. Furthermore, we demonstrated inhibition of HIV-1 infection in resting CD4+ T-cells. In addition, we showed that Slit2N blocks cell-to-cell transmission of HIV-1. We have shown that Slit2N inhibits HIV-1 infection by blocking viral entry into T-cells. We also ruled out Slit2N-mediated inhibition of various other steps in the life cycle including binding, integration and viral transcription. Elucidation of the molecular mechanism revealed that Slit2N mediates its functional effects by binding to Robo1 receptor. Furthermore, we found that Slit2N inhibited Gp120-induced Robo1-actin association suggesting that Slit2N may inhibit cytoskeletal rearrangements facilitating HIV-1 entry. Studies into the mechanism of inhibition of HIV-1 revealed that Slit2N abrogated HIV-1 envelope-induced actin cytoskeletal dynamics in both T-cell lines and primary T-cells. We further showed that Slit2N specifically attenuated the HIV-1 envelope-induced signaling pathway consisting of Rac1, LIMK and cofilin that regulates actin polymerization. Conclusions Taken together, our results show that Slit2N inhibits HIV-1 replication through novel mechanisms involving modulation of cytoskeletal dynamics. Our study, thus, provides insights into the role of Slit2N in HIV-1 infection and underscores its potential in limiting viral replication in T-cells.

  17. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    Science.gov (United States)

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.

  18. Influence of porewidening duration on the template assisted growth of graphitic carbon nitride nanostructures

    Science.gov (United States)

    Suchitra, S. M.; Udayashankar, N. K.

    2018-01-01

    Porous anodic aluminium oxide (AAO) membranes with a highly ordered pore arrangement are typically used as ideal templates for the synthesis of numerous nanostructured materials. Highly ordered templates gained significant attraction due to the fact that they are readily fabricated through self-organised simple anodization process. In this paper, the effect of different pore-widening treatments on the quality of the pores of the AAO templates prepared with different electrolytes were inspected. Results confirmed that, without altering the interpore distance different pore dimensions and diameters of the AAO templates can be easily achieved by chemical pore widening process at room temperature. Also, graphitic carbon nitride nanorods of different dimension have been fabricated from AAO template after porewidening process. These nanostructures are widely used in case of metal free visible light driven photo catalysis, photo degradation of organic pollutants, photo electric conversion and water splitting applications.

  19. Critical discharge of initially subcooled water through slits

    International Nuclear Information System (INIS)

    Amos, C.N.; Schrock, V.E.

    1983-09-01

    This report describes an experimental investigation into the critical flow of initially subcooled water through rectangular slits. The study of such flows is relevant to the prediction of leak flow rates from cracks in piping, or pressure vessels, which contain sufficient enthalpy that vaporization will occur if they are allowed to expand to the ambient pressure. Two new analytical models, which allow for the generation of a metastable liquid phase, are developed. Experimental results are compared with the predictions of both these new models and with a Fanno Homogeneous Equilibrium Model

  20. High sound screening in low impedance slit arrays

    International Nuclear Information System (INIS)

    Estrada, Hector; Bravo, Jose Maria; Meseguer, Francisco

    2011-01-01

    We report on the key role of the acoustical impedance ratio between the solid and the host fluid in the transmission properties of slit arrays. Numerical calculations predict huge sound screening effects up to 60 dB for low impedance ratio values. The screening band appears over a broad frequency region and is very robust against dissipative losses of the material as well as against the sound incident angle. This counterintuitive result is discussed in terms of the hydrodynamic short circuit, where the fluid and the solid at the radiating interface vibrate out of phase, resulting in a huge sound blocking effect.

  1. Sublingual (SLIT) versus oral immunotherapy (OIT) for food allergy.

    Science.gov (United States)

    McGowan, Emily C; Wood, Robert A

    2014-12-01

    Food allergy is a common condition for which the only currently approved treatments are avoidance of the allergenic food and the administration of emergency medications upon accidental exposure. Over the past 10 years, significant advances have been made in the field of food immunotherapy, with efforts focusing on allergen exposure via the oral mucosa. Oral immunotherapy (OIT) and sublingual immunotherapy (SLIT) are the two modalities that have been most extensively studied, and this article will review recent advances in our knowledge of the efficacy and safety of these treatments.

  2. Edge contact angle and modified Kelvin equation for condensation in open pores.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin

    2017-08-01

    We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.

  3. Hydrogen pumping and release by graphite under high flux plasma bombardment

    International Nuclear Information System (INIS)

    Hirooka, Y.; Leung, W.K.; Conn, R.W.; Goebel, D.M.; LaBombard, B.; Nygren, R.; Wilson, K.L.

    1988-01-01

    Inert gas (helium or argon) plasma bombardment has been found to increase the surface gas adsorptivity of isotropic graphite (POCO-graphite), which can then getter residual gases in a high vacuum system. The inert gas plasma bombardment was carried out at a flux ≅ 1 x 10 18 ions s -1 cm -2 to a fluence of the order of 10 21 ions/cm 2 and at temperatures around 800 0 C. The gettering capability of graphite can be easily recovered by repeating inert gas plasma bombardment. The activated graphite surface exhibits a smooth, sponge-like morphology with significantly increased pore openings, which correlates with the observed increase in the surface gas adsorptivity. The activated graphite surface has been observed to pump hydrogen plasma particles as well. From calibrated H-alpha measurements, the dynamic hydrogen retention capacity is evaluated to be as large as 2 x 10 18 H/cm 2 at temperatures below 100 0 C and at a plasma bombarding energy of 300 eV. The graphite temperature was varied between 15 and 480 0 C. Due to the plasma particle pumping capability, hydrogen recycling from the activated graphite surface is significantly reduced, relative to that from a pre-saturated surface. A pre-saturated surface was also observed to reproducibly pump a hydrogen plasma to a concentration of 9.5 x 10 17 H/cm 2 . The hydrogen retention capacity of graphite is found to decrease with increasing temperature. A transient pumping mechanism associated with the sponge-like surface morphology is conjectured to explain the large hydrogen retention capacity. Hydrogen release behavior under helium and argon plasma bombardment was also investigated, and the result indicated the possibility of some in-pore retrapping effect. 43 refs., 11 figs

  4. Preparation and characterization of dense graphite/glassy carbon composite coating for sealing application

    Science.gov (United States)

    Wang, Yang; Chen, Zhaofeng; Yu, Shengjie; Pan, Ning; Liao, Jiahao

    2017-09-01

    Glassy carbon (GC), characterized by a homogeneous structure and glass-like fracture surface once broken, has attracted increasing attention because of its excellent performance. In this paper, a dense graphite/glassy carbon composite coating with low gas permeability was introduced. In this composite coating, small graphite particles acting as second phase were wrapped by glassy carbon matrix. The composite coatings with different mass fractions of graphite particles were prepared. The mass loss of phenolic resin was determined by TG (thermogravimetry) analysis to determine the pyrolysis process. Raman spectrum analysis indicates that graphite content in composite coatings affected the G/D ratio significantly. The permeability of composite coatings with 50% and 100% graphite particles was almost same, which was ranged from 6  ×  10-13 m3 · µm/m2 · s · Pa to 3  ×  10-13 m3 · µm/m2 · s · Pa within the differential pressure from 100 kPa to 70 kPa. While the composite coating with 150% graphite particles had higher gas permeability due to the tiny micro-cracks and micro-pores produced. What was more, the densification mechanism of graphite/glassy carbon composite coating was also discussed in detail.

  5. Pore roller filtration apparatus

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to the field of filtering, more precisely the present invention concerns an apparatus and a method for the separation of dry matter from a medium and the use of said apparatus. One embodiment discloses an apparatus for the separation of dry matter from a medium, comp...... of a pore roller and one other roller, means for establishing a pressure difference across the filter, means for passing filter and filter cake through the set of rollers, and a closure mechanism configured to control the transverse tension between the rollers......., comprising a pressure regulated separation chamber defined, in cross section, by a plurality of rollers mounted between opposing sidewalls, each of said rollers having a shaft adapted to be engaged with the sidewalls, a filter arranged so that it passes between at least one set of said rollers consisting...

  6. Precision optical slit for high heat load or ultra high vacuum

    Science.gov (United States)

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  7. Drag reduction in silica nanochannels induced by graphitic wall coatings

    Science.gov (United States)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2017-11-01

    Transport of water in hydrophilic nanopores is of significant technological and scientific interest. Water flow through hydrophilic nanochannels is known to experience enormous hydraulic resistance. Therefore, drag reduction is essential for the development of highly efficient nanofluidic devices. In this work, we propose the use of graphitic materials as wall coatings in hydrophilic silica nanopores. Specifically, by conducting atomistic simulations, we investigate the flow inside slit and cylindrical silica channels with walls coated with graphene (GE) layers and carbon nanotubes (CNTs), respectively. We develop realistic force fields to simulate the systems of interest and systematically, compare flow rates in coated and uncoated nanochannels under different pressure gradients. Moreover, we assess the effect that GE and CNT translucencies to wettability have on water hydrodynamics in the nanochannels. The influence of channel size is investigated by systematically varying channel heights and nanopore diameters. In particular, we present the computed water density and velocity profiles, volumetric flow rates, slip lengths and flow enhancements, to clearly demonstrate the drag reduction capabilities of graphitic wall coatings. We wish to thank partial funding from CRHIAM Conicyt/ Fondap Project 15130015 and computational support from DTU and NLHPC (Chile).

  8. Nickel-graphite composites of variable architecture by graphitization-accompanied spark plasma sintering and hot pressing and their response to phase separation

    Directory of Open Access Journals (Sweden)

    Dudina D.V.

    2015-01-01

    Full Text Available We report the formation and phase separation response of nickel-graphite composites with variable-architecture phases by graphitization-accompanied consolidation via Spark Plasma Sintering and hot pressing. It was shown that the application of pressure during consolidation is crucial for the occurrence of graphitization and formation of 3D graphite structures. We evaluated the suitability of the synthesized composites as precursors for making porous structures. Nickel behaved as a space holder with the particle size and spatial distribution changing during consolidation with the temperature and determining the structure of porous graphite formed by phase separation by dissolution in HCl. The response of the consolidated Ni-Cgr to separation of carbon by its burnout in air was studied. The result of the carbon removal was either the formation of a dense and continuous NiO film on the surface of the compacts or oxidation through the compact thickness. The choice between these two options depended on the density of the compacts and on the presence of carbon dissolved in nickel. It was found that during the burnout of graphite from Ni-Cgr composites, sintering, rather than formation of pores, dominated.

  9. Hypervelocity impacts into graphite

    Science.gov (United States)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  10. The Role of Circulating Slit2, the One of the Newly Batokines, in Human Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Yea Eun Kang

    2017-09-01

    Full Text Available BackgroundSlit2 is a new secreted protein from adipose tissue that improves glucose hemostasis in mice; however, there is no study about the serum levels and precise role of Slit2 in human. The aim of this study is to explore the serum level of Slit2 in human, and to identify the role of Slit2 in diabetes mellitus (DM.MethodsThe participants of this study consist of 38 subjects with newly diagnosed DM, and 75 healthy subjects as a control group. Serum Slit2 levels were measured using an enzyme-linked immunosorbent assay. Relationship between circulating Slit2 and diabetic related factors was investigated in diabetic group compared with non-diabetic group. Additionally, the correlations between the serum level of Slit2 and diverse metabolic parameters were analyzed.ResultsCirculating Slit2 level was more decreased in diabetic group than in control group, but there was no significant difference statistically. Interestingly, serum levels of Slit2 were significantly negatively correlated to the serum concentrations of fasting glucose (coefficient r=–0.246, P=0.008, the serum concentrations of postprandial glucose (coefficient r=–0.233, P=0.017, and glycosylated hemoglobin (HbA1c; coefficient r=–0.357, P<0.001.ConclusionFrom our study, the first report of circulating Slit2 levels in human, circulating Slit2 level significantly negatively correlated with serum glucose and HbA1c. Our results suggest that the circulating Slit2 may play a role in maintainence of glucose homeostasis in human, even though exact contribution and mechanism are not yet known.

  11. Dicentric chromosome frequency analysis using slit-scan flow cytometry

    International Nuclear Information System (INIS)

    Lucas, J.N.; Mullikin, J.C.; Gray, J.W.

    1991-01-01

    Slit-scan flow cytometry (SSFCM) was used to quantify the frequency of dicentric chromosomes in human lymphoblastoid cells following gamma irradiation. In this study, cultured human cells were irradiated with 0, 0.25, 0.5, 1.0, and 2.0 Gy of 0.66 MeV gamma-rays, cultured for an additional 11 h, and treated for 5 h with colcemid. Chromosomes were then isolated, stained with propidium iodide, and analyzed using SSFCM for total fluorescence and slit-scan profile. The frequency of chromosomes having DNA contents greater than once and less than twice the DNA content of the number 1 chromosome and producing trimodal profiles was determined at each dose. This frequency was used as an estimate of the relative dicentric chromosome frequency at that dose. The estimated dicentric chromosome frequency per cell, f(D), increased with dose, D, in a linear-quadratic manner according to the relation f(D) = 4.52 x 10(-5) + 5.72 x 10(-5) D + 1.19 x 10(-4) D2

  12. Superfocusing the light through the nanosize slit via photonic tornado

    Science.gov (United States)

    Choi, Seong Soo; Jha, Vinaya; Suwal, Om; Park, Myoung Jin; Park, Nam Kyu; Kim, Daisik

    2010-03-01

    The macro size pyramidal horn probe such as klystron horn antenna has been used to provide the excellent focusing capabilities in microwave region. In the similar way, the pyramidal probe with the micron size mirror (pyramidal horn probe) has been fabricated with a nano-size aperture with diameter ranging from ˜1 nm to ˜30 nm. Light transmission through the micro-fabricated pyramidal horn probe has been measured to enhance the light transmission due to resonant effects between the cavity mode and the slit modes in the probe, along with improved directionality of the transmitted beam. The resonant tunneling between two standing waves in the input groove and in the output groove can provide the transmission enhancements. With decreasing slit width, the transmission is found to increasing tremendously.[1] The transmission is measured to be inversely proportional to the area.[2,3] References:[1] R. Gordon, Phys. Rev. B 73, 153405 (2006).[2] R. Harrington, IEEE Trans. Antennas Propagat. Ap-30, 205(1982).[3] Y Leviatan, R. Harrington, J. Maut, IEEE Trans. Antennas Propagat. Ap-30, 1533(1982)

  13. Graphite reactor physics

    International Nuclear Information System (INIS)

    Bacher, P.; Cogne, F.

    1964-01-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm 2 , channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [fr

  14. Graphite structure and magnetic parameters of flake graphite cast iron

    Science.gov (United States)

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, I.; Kage, H.

    2017-11-01

    Different matrix and graphite morphologies were generated by a special heat treatment in three chemically different series of flake graphite cast iron samples. As cast, furnace cooled and air cooled samples were investigated. The length of graphite particles and the pearlite volume of samples were determined by metallographic examination and these parameters were compared with the nondestructively measured magnetic parameters. Magnetic measurements were performed by the method of Magnetic Adaptive Testing, which is based on systematic measurement and evaluation of minor magnetic hysteresis loops. It was shown that linear correlation existed between the magnetic quantities and the graphite length, and also between the magnetic quantities and the relative pearlite content in the investigated cast iron. A numerical expression was also determined between magnetic descriptors and relative pearlite content, which does not depend on the detailed experimental conditions.

  15. Eutectic solidification mode of spheroidal graphite cast iron and graphitization

    Directory of Open Access Journals (Sweden)

    Hideo Nakae

    2007-02-01

    Full Text Available The shrinkage and chilling tendency of spheroidal graphite (abbreviated SG cast iron is much greater than that of the flake graphite cast iron in spite of its higher amount of C and Si contents. Why? The main reason should be the difference in their graphitization during the eutectic solidification. In this paper, we discuss the difference in the solidification mechanism of both cast irons for solving these problems using unidirectional solidification and the cooling curves of the spheroidal graphite cast iron. The eutectic solidification rate of the SG cast iron is controlled by the diffusion of carbon through the austenite shell, and the final thickness is 1.4 times the radius of the SG, therefore, the reduction of the SG size, namely, the increase in the number, is the main solution of these problems.

  16. Deriving the slit functions from OMI solar observations and its implications for ozone-profile retrieval

    Science.gov (United States)

    Sun, Kang; Liu, Xiong; Huang, Guanyu; González Abad, Gonzalo; Cai, Zhaonan; Chance, Kelly; Yang, Kai

    2017-10-01

    The Ozone Monitoring Instrument (OMI) has been successfully measuring the Earth's atmospheric composition since 2004, but the on-orbit behavior of its slit functions has not been thoroughly characterized. Preflight measurements of slit functions have been used as a static input in many OMI retrieval algorithms. This study derives on-orbit slit functions from the OMI irradiance spectra assuming various function forms, including standard and super-Gaussian functions and a stretch to the preflight slit functions. The on-orbit slit functions in the UV bands show U-shaped cross-track dependences that cannot be fully represented by the preflight ones. The full widths at half maximum (FWHM) of the stretched preflight slit functions for detector pixels at large viewing angles are up to 30 % larger than the nadir pixels for the UV1 band, 5 % larger for the UV2 band, and practically flat in the VIS band. Nonetheless, the on-orbit changes of OMI slit functions are found to be insignificant over time after accounting for the solar activity, despite of the decaying of detectors and the occurrence of OMI row anomaly. Applying the derived on-orbit slit functions to ozone-profile retrieval shows substantial improvements over the preflight slit functions based on comparisons with ozonesonde validations.

  17. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  18. Study of graphite strength properties under conditions of hydrostatic pressure

    International Nuclear Information System (INIS)

    Strokov, V.I.; Barabanov, V.N.

    1987-01-01

    Three graphite grades are studied under compression, tension and hydrostaic pressure. It is shown that an increase in the ultimate strength and higher arrangement of strain curves are observed beginning with a certain value of hydrostatic pressure under compression. Several different types of coatings have been tested under compression and none of them gave a reliable protection against of oil in pores and cracks of a specimen as a result of which the strength values in this case are lower that under atmospheric pressure

  19. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  20. A pore water conductivity sensor

    NARCIS (Netherlands)

    Hilhorst, M.A.

    2001-01-01

    The electrical permittivity and conductivity of the bulk soil are a function of the permittivity and conductivity of the pore water. For soil water contents higher than 0.10 both functions are equal, facilitating in situ conductivity measurements of the pore water. A novel method is described, based

  1. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    Science.gov (United States)

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  2. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  3. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  4. Toward highly stable electrocatalysts via nanoparticle pore confinement.

    Science.gov (United States)

    Galeano, Carolina; Meier, Josef C; Peinecke, Volker; Bongard, Hans; Katsounaros, Ioannis; Topalov, Angel A; Lu, Anhui; Mayrhofer, Karl J J; Schüth, Ferdi

    2012-12-19

    The durability of electrode materials is a limiting parameter for many electrochemical energy conversion systems. In particular, electrocatalysts for the essential oxygen reduction reaction (ORR) present some of the most challenging instability issues shortening their practical lifetime. Here, we report a mesostructured graphitic carbon support, Hollow Graphitic Spheres (HGS) with a specific surface area exceeding 1000 m(2) g(-1) and precisely controlled pore structure, that was specifically developed to overcome the long-term catalyst degradation, while still sustaining high activity. The synthetic pathway leads to platinum nanoparticles of approximately 3 to 4 nm size encapsulated in the HGS pore structure that are stable at 850 °C and, more importantly, during simulated accelerated electrochemical aging. Moreover, the high stability of the cathode electrocatalyst is also retained in a fully assembled polymer electrolyte membrane fuel cell (PEMFC). Identical location scanning and scanning transmission electron microscopy (IL-SEM and IL-STEM) conclusively proved that during electrochemical cycling the encapsulation significantly suppresses detachment and agglomeration of Pt nanoparticles, two of the major degradation mechanisms in fuel cell catalysts of this particle size. Thus, beyond providing an improved electrocatalyst, this study describes the blueprint for targeted improvement of fuel cell catalysts by design of the carbon support.

  5. Graphite oral tattoo: case report

    OpenAIRE

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-01-01

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more f...

  6. Slit2 is decreased after spontaneous labour in myometrium and regulates pro-labour mediators.

    Science.gov (United States)

    Lim, Ratana; Liong, Stella; Barker, Gillian; Lappas, Martha

    2014-12-01

    Preterm birth, a global healthcare problem, is commonly associated with inflammation. As Slit2 plays an emerging role in inflammation, the purpose of this study was to determine the effect of Slit2 on labour mediators in human gestational tissues. Slit2 mRNA and protein expression were assessed using qRT-PCR and immunohistochemistry in foetal membranes and myometrium obtained before and after labour. Slit2 silencing was achieved using siRNA in primary myometrial cells. Pro-inflammatory and pro-labour mediators were evaluated by qRT-PCR, ELISA and gelatin zymography. Slit2 mRNA and protein expression were found to be significantly lower in myometrium after labour onset. There was no effect of term or preterm labour on Slit2 expression in foetal membranes. Slit2 mRNA expression was decreased in myometrium treated with LPS and IL-1β. Slit2 siRNA in myometrial cells increased IL-1β-induced pro-inflammatory cytokine gene expression and release (IL-6 and IL-8), COX-2 expression and prostaglandin PGE2 and PGF2α release, and MMP-9 gene expression and pro MMP-9 release. There was no effect of Slit2 siRNA on IL-1β-induced NF-κB transcriptional activity. Our results demonstrate that Slit2 is decreased in human myometrium after labour and our knock-down studies describe an anti-inflammatory effect of Slit2 in myometrial cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Conditioning for definitive storage of radioactive graphite bricks from reactor decommissioning

    International Nuclear Information System (INIS)

    Costes, J.R.; Koch, C.; Tassigny, C. de; Vidal, H.; Raymond, A.

    1990-01-01

    The decommissioning of gas-graphite reactors in the EC (e.g. French UNGGs, British Magnox reactors and AGRs, and reactors in Spain and in Italy) will produce large amounts of graphite bricks. This graphite cannot be accepted without particular conditioning by the existing shallow land disposal sites. The aim of the study is to examine the behaviour of graphite waste and to develop a conditioning technique which makes this waste acceptable for shallow land disposal sites. 18 kg of graphite core samples with an outside diameter of 74 mm were removed from the G2 gas-cooled reactor at Marcoule. Their radioactivity is highly dependent on the position of the graphite bricks inside the reactor. Measured results indicate an activity range of 100-400 MBq/kg with 90% Tritium, 5% 14 C, 3% 60 Co, 1.5% 63 Ni. Repeated porosity analyses showed that open porosity ranging from 0 to 100 μm exceeded 23 vol% in the graphite. Water penetration kinetics were investigated in unimpregnated graphite and resulted in impregnation by water of 50-90% of the open porosity. Preliminary lixiviation tests on the crude samples showed quick lixidegree of Cs (several per cent) and of 60 Co, and 133 Ba at a lesser degree. The proposed conditioning technique does not involve a simple coating but true impregnation by a tar-epoxy mixture. The bricks recovered intact from the core by robot services will be placed one by one inside a cylindrical metallic container. But this container may corrode and the bricks may become fragmented in the future, the normally porous graphite will be unaffected by leaching since it is proved that all pores larger than 0.1 μm will be filled with the tar-epoxy mixture. This is a true long-term waste packaging concept. The very simple technology required for industrial implementation is discussed

  8. One-dimensional rainbow thermometry system by using slit apertures.

    Science.gov (United States)

    Wu, Xuecheng; Jiang, Haoyu; Wu, Yingchun; Song, Jin; Gréhan, Gérard; Saengkaew, Sawitree; Chen, Linghong; Gao, Xiang; Cen, Kefa

    2014-02-01

    A new rainbow thermometry system by using slit apertures and a laser light sheet, called a one-dimensional rainbow thermometry (ORT) system, has been developed as an extension of global rainbow thermometry (GRT). This system is capable of one-dimensional or line measurements of the size and refractive index of droplets in the spray space, while the conventional GRT system is normally considered a typical "single-point" or "small volume" measurement method. The performance of this new system was tested and verified with both water and ethanol spray. The results show the feasibility and potential of ORT in simultaneous and one-dimensional measurement of the size and refractive index of liquid droplets, especially in the research field of spray evaporation and combustion.

  9. Benefit of SLIT and SCIT for Allergic Rhinitis and Asthma.

    Science.gov (United States)

    Passalacqua, Giovanni; Canonica, Giorgio Walter; Bagnasco, Diego

    2016-11-01

    Allergen immunotherapy (AIT) has been in use since more than one century, when Leonard Noon experimentally proved its efficacy in hayfever (Noon, in Lancet 1:1572-3, 1911). Since then, AIT was administered only as subcutaneous injections (SCIT) until the sublingual route (SLIT) was proposed in 1986. The use of SLIT was proposed following several surveys from the USA and UK that repeatedly reported fatalities due to SCIT (Lockey et al. in J Allergy Clin Immunol 75(1): 166, 1985; Lockey et al. in J Allergy Clin Immunol 660-77, 1985; Committee on the safety of medicines. CSM update. Desensitizing vaccines. Br Med J, 293: 948, 1986). These reports raised serious concerns about the safety and the risk/benefit ratio of AIT. Many cases of life-threatening events with SCIT were due to avoidable human errors in administration, but a relevant fraction of them remained unexplained and unpredictable (Aaronson and Gandhi in J Allergy Clin Immunol 113: 1117-21, 2014). Subsequently, in a few years, SLIT gained credibility and was included in the official documents and guidelines (Table 1) (Bousquet et al. in J Allergy Clin Immunol 108(5 Supp):S146-S150, 2001; Canonica et al. in Allergy 64 (Supp 91):1-59, 2009) as a viable alternative to traditional SCIT. Of note, the local bronchial (aerosol) and the intranasal route of administration were attempted after the 1970s as alternatives to SCIT: the bronchial route was soon abandoned due to the poor efficacy and/or side effects, and the local nasal route, although effective and safe, was judged substantially impractical (Canonica and Passalacqua in J Allergy Clin Immunol 111: 437-48, 2003). In contrast to SCIT, SLIT was tested in very large clinical trials (need references), including hundreds of patients and with dose-ranging experimental designs, so that some products (tablets) for grass, mite, and ragweed were officially approved as commercial drugs by regulatory agencies such as the Food and Drug Administration and the European

  10. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, James [Johns Hopkins Univ., Baltimore, MD (United States)

    2017-12-06

    how these measurements can be used to assess elastic anisotropy in nuclear graphites. Using models developed in this program, ultrasonic data were interpreted to extract orientation distribution coefficients that could be used to represent anisotropy in these materials. This demonstration showed the use of ultrasonic methods to quantify anisotropy and how these methods provide more detailed information than do measurements of thermal expansion – a technique commonly used for assessing anisotropy in nuclear graphites. Finally, we have employed laser-based, ultrasonic-correlation techniques in attempts to quantify aspects of graphite microstructure such as pore size and distribution. Results of these measurements indicate that additional work must be performed to make this ultrasonic approach viable for quantitative microstructural characterization.

  11. Two-slit experiment: quantum and classical probabilities

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2015-01-01

    Inter-relation between quantum and classical probability models is one of the most fundamental problems of quantum foundations. Nowadays this problem also plays an important role in quantum technologies, in quantum cryptography and the theory of quantum random generators. In this letter, we compare the viewpoint of Richard Feynman that the behavior of quantum particles cannot be described by classical probability theory with the viewpoint that quantum–classical inter-relation is more complicated (cf, in particular, with the tomographic model of quantum mechanics developed in detail by Vladimir Man'ko). As a basic example, we consider the two-slit experiment, which played a crucial role in quantum foundational debates at the beginning of quantum mechanics (QM). In particular, its analysis led Niels Bohr to the formulation of the principle of complementarity. First, we demonstrate that in complete accordance with Feynman's viewpoint, the probabilities for the two-slit experiment have the non-Kolmogorovian structure, since they violate one of basic laws of classical probability theory, the law of total probability (the heart of the Bayesian analysis). However, then we show that these probabilities can be embedded in a natural way into the classical (Kolmogorov, 1933) probability model. To do this, one has to take into account the randomness of selection of different experimental contexts, the joint consideration of which led Feynman to a conclusion about the non-classicality of quantum probability. We compare this embedding of non-Kolmogorovian quantum probabilities into the Kolmogorov model with well-known embeddings of non-Euclidean geometries into Euclidean space (e.g., the Poincaré disk model for the Lobachvesky plane). (paper)

  12. Lyriform slit sense organs on the pedipalps and spinnerets of spiders

    Indian Academy of Sciences (India)

    Lyriform slits sense organs (LSSO) are a precise assembly of stress detecting cuticular slit sensilla found on the appendages of arachnids. While these structures on the legs of the wandering spider Cupennius salei are well studied in terms of morphology, function and contribution to behaviour, their distribution on ...

  13. Lyriform slit sense organs on the pedipalps and spinnerets of spiders

    Indian Academy of Sciences (India)

    Madhu

    The trochanter bears a LSSO of type D (Tr 1) with 10 slits on the dorsal side adjacent to the femur- trochanter joint. Bhavani Patil, Suphala Prabhu and K P Rajashekhar. 78. J. Biosci. 31(1), March 2006. Table 2. Slit sense organs found on different segments of pedipalps of the spiders studied. Number. Segment. LSSO. Type.

  14. Influence of Particle Size on Properties of Expanded Graphite

    Directory of Open Access Journals (Sweden)

    Kurajica, S

    2010-02-01

    between the graphene layers due to oxidation and repulsion of positively charged layers. The increased width and reduced height of diffraction peaks were a consequence of small-sized ordered domains. The intercalation is partial, intercalated layers are divided by a considerable number of non-intercalated layers. FTIR spectra revealed that dominant intercalating species is perchloric acid.Thermo-gravimetric analysis revealed that deintercalation occurs in the temperature interval between 150 and 300 °C and that a mass loss in this temperature interval is dependent on particle diameter, i. e. the intercalation is more intensive for greater particles. The fact that deintercalation proceeds as a one-stage process indicates the existence of only one intercalating specie. Additional mass loss at higher temperatures is a consequence of graphite oxidation.The particles with a higher amount of interlcalant showed greater expansion volumes as well as specific surface area. The fraction with greatest particle diameter (315–425 µm showed expansion specific volume of v=86 cm3g–1. Weaker expansion of smaller particles is a consequence of intercalant thermal degradation gaseous products loss at the layer edges, as well as of lesser amount of intercalants due to their removal during washing.Adsorption-desorption isotherms of expanded graphite could be classified as type III, according to BDDT/IUPAC classification, characteristic for macro porous materials. Small variations in adsorption and desorption pressure for the same amount of adsorbed gas indicate that the macro pores are open. Specific surface area was calculated using BET equation and for sample 315–425 yields s = 36 m2 g–1.SEM micrographs revealed typical worm-like microstructure generated by exfoliation of graphene sheets. The areas of intense exfoliation forming typical pores, as well as less exfoliated sheets canbe observed.

  15. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  16. [A micro-silicon multi-slit spectrophotometer based on MEMS technology].

    Science.gov (United States)

    Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen

    2009-06-01

    A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.

  17. Source-model technique analysis of electromagnetic scattering by surface grooves and slits.

    Science.gov (United States)

    Trotskovsky, Konstantin; Leviatan, Yehuda

    2011-04-01

    A computational tool, based on the source-model technique (SMT), for analysis of electromagnetic wave scattering by surface grooves and slits is presented. The idea is to use a superposition of the solution of the unperturbed problem and local corrections in the groove/slit region (the grooves and slits are treated as perturbations). In this manner, the solution is obtained in a much faster way than solving the original problem. The proposed solution is applied to problems of grooves and slits in otherwise planar or periodic surfaces. Grooves and slits of various shapes, both smooth ones as well as ones with edges, empty or filled with dielectric material, are considered. The obtained results are verified against previously published data. © 2011 Optical Society of America

  18. Minimum Lens Size Supporting the Leaky-Wave Nature of Slit Dipole Antenna at Terahertz Frequency

    Directory of Open Access Journals (Sweden)

    Niamat Hussain

    2016-01-01

    Full Text Available We designed a slit dipole antenna backed by an extended hemispherical silicon lens and investigated the minimum lens size in which the slit dipole antenna works as a leaky-wave antenna. The slit dipole antenna consists of a planar feeding structure, which is a center-fed and open-ended slot line. A slit dipole antenna backed by an extended hemispherical silicon lens is investigated over a frequency range from 0.2 to 0.4 THz with the center frequency at 0.3 THz. The numerical results show that the antenna gain responses exhibited an increased level of sensitivity to the lens size and increased linearly with increasing lens radius. The lens with the radius of 1.2λo is found to be the best possible minimum lens size for a slit dipole antenna on an extended hemispherical silicon lens.

  19. Selection of patients for sublingual immunotherapy (SLIT) versus subcutaneous immunotherapy (SCIT).

    Science.gov (United States)

    Tabatabaian, Farnaz; Casale, Thomas B

    2015-01-01

    Allergy immunotherapy has been used to help alleviate symptoms of allergic diseases for over 100 years. In the setting of the recently approved sublingual immunotherapy, allergists are now faced with which therapeutic regimen to use in clinical practice, sublingual immunotherapy (SLIT) or subcutaneous immunotherapy (SCIT). Both SLIT and SCIT have been shown to be beneficial for the therapy of seasonal allergic rhinoconjunctivitis. Each therapeutic measure has its associated benefits. SLIT has a better safety profile with less systemic reactions and to date, no reported fatal reactions. SCIT, the primary method of allergen immunotherapy in the United States, has a slightly better efficacy profile and readily allows for treatment of polyallergic patients. This review focuses on how to incorporate SLIT into daily clinical practice and on how to choose SLIT versus SCIT.

  20. Laser ultrasonic assessment of the effects of porosity and microcracking on the elastic moduli of nuclear graphites

    International Nuclear Information System (INIS)

    Spicer, James B.; Olasov, Lauren R.; Zeng, Fan W.; Han, Karen; Gallego, Nidia C.; Contescu, Cristian I.

    2016-01-01

    Laser ultrasonic methods have been used to measure the elastic moduli of various nuclear graphites. Measurements were made to assess wavespeeds for longitudinal and shear waves in different propagation directions and these were used along with density measurements to compute the longitudinal and shear moduli as well as Young's modulus. All moduli decreased with increasing graphite porosity and these variations could be interpreted using models describing the effect of porosity on material stiffness. Extrapolations for these models to zero porosity were used to infer the moduli for theoretically dense graphite; the results were far below predicted values reported in the literature for fully dense, polycrystalline, isotropic graphite. Differences can be attributed to microcracking in the graphite microstructure. Using models for the effects of microcracking on modulus, estimates for microcrack populations indicate that the number of cracks per unit volume must be much greater than the number of pores per unit volume. Experimental results reported in the literature for irradiated graphites as well as for the stress dependence of graphite modulus are consistent with the influence of microcracking on elastic behavior and could be interpreted using concepts developed here. Results in this work for graphite structure-property relationships should allow for more sophisticated characterization of nuclear graphites using ultrasonic methods. - Highlights: • Moduli of nuclear graphites measured using laser ultrasonic methods. • Estimates made for the moduli of fully dense, polycrystalline, isotropic graphite. • Models for modulus used to assess effects of microcracking on stiffness. • Microcrack densities estimated using models for effect of microcracks on modulus.

  1. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  2. Metal structures with parallel pores

    Science.gov (United States)

    Sherfey, J. M.

    1976-01-01

    Four methods of fabricating metal plates having uniformly sized parallel pores are studied: elongate bundle, wind and sinter, extrude and sinter, and corrugate stack. Such plates are suitable for electrodes for electrochemical and fuel cells.

  3. Graphite Black shale of Vendas de Ceira, Coimbra, Portugal

    Science.gov (United States)

    Quinta-Ferreira, Mário; Silva, Daniela; Coelho, Nuno; Gomes, Ruben; Santos, Ana; Piedade, Aldina

    2017-04-01

    The graphite black shale of Vendas de Ceira located in south of Coimbra (Portugal), caused serious instability problems in recent road excavation slopes. The problems increased with the rain, transforming shales into a dark mud that acquires a metallic hue when dried. The black shales are attributed to the Devonian or eventually, to the Silurian. At the base of the slope is observed graphite black shale and on the topbrown schist. Samples were collected during the slope excavation works. Undisturbed and less altered materials were selected. Further, sampling was made difficult as the graphite shale was covered by a thick layer of reinforced concrete, which was used to stabilize the excavated surfaces. The mineralogy is mainly constituted by quartz, muscovite, ilite, ilmenite and feldspar without the presence of expansive minerals. The organic matter content is 0.3 to 0.4%. The durability evaluated by the Slake Durability Test varies from very low (Id2 of 6% for sample A) to high (98% for sample C). The grain size distribution of the shale particles, was determined after disaggregation with water, which allowed verifying that sample A has 37% of fines (5% of clay and 32% of silt) and 63% of sand, while sample C has only 14% of fines (2% clay and 12% silt) and 86% sand, showing that the decrease in particle size contributes to reduce durability. The unconfined linear expansion confirms the higher expandability (13.4%) for sample A, reducing to 12.1% for sample B and 10.5% for sample C. Due the shale material degradated with water, mercury porosimetry was used. While the dry weight of the three samples does not change significantly, around 26 kN/m3, the porosity is much higher in sample A with 7.9% of pores, reducing to 1.4% in sample C. The pores size vary between 0.06 to 0.26 microns, does not seem to have any significant influence in the shale behaviour. In order to have a comparison term, a porosity test was carried out on the low weatherable brown shale, which is

  4. Graphite Formation in Cast Iron

    Science.gov (United States)

    Stefanescu, D. M.

    1985-01-01

    In the first phase of the project it was proven that by changing the ratio between the thermal gradient and the growth rate for commercial cast iron samples solidifying in a Bridgman type furnace, it is possible to produce all types of graphite structures, from flake to spheroidal, and all types of matrices, from ferritic to white at a certain given level of cerium. KC-135 flight experiments have shown that in a low-gravity environment, no flotation occurs even in spheroidal graphite cast irons with carbon equivalent as high as 5%, while extensive graphite flotation occurred in both flake and spheroidal graphite cast irons, in high carbon samples solidified in a high gravity environment. This opens the way for production of iron-carbon composite materials, with high carbon content (e.g., 10%) in a low gravity environment. By using KC-135 flights, the influence of some basic elements on the solidification of cast iron will be studied. The mechanism of flake to spheroidal graphite transition will be studied, by using quenching experiments at both low and one gravity for different G/R ratios.

  5. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  6. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    International Nuclear Information System (INIS)

    Wang, Guang; Li, Yan; Wang, Xiao-yu; Han, Zhe; Chuai, Manli; Wang, Li-jing; Ho Lee, Kenneth Ka; Geng, Jian-guo; Yang, Xuesong

    2013-01-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1 + migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug + pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1 + migrating NCCs but reduced Pax7 expression and fewer Slug + pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube development by tightly

  7. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    Formation of the neural tube is the morphological hallmark for development of the embryonic central nervous system (CNS). Therefore, neural tube development is a crucial step in the neurulation process. Slit/Robo signaling was initially identified as a chemo-repellent that regulated axon growth cone elongation, but its role in controlling neural tube development is currently unknown. To address this issue, we investigated Slit/Robo1 signaling in the development of chick neCollege of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH, UKural tube and transgenic mice over-expressing Slit2. We disrupted Slit/Robo1 signaling by injecting R5 monoclonal antibodies into HH10 neural tubes to block the Robo1 receptor. This inhibited the normal development of the ventral body curvature and caused the spinal cord to curl up into a S-shape. Next, Slit/Robo1 signaling on one half-side of the chick embryo neural tube was disturbed by electroporation in ovo. We found that the morphology of the neural tube was dramatically abnormal after we interfered with Slit/Robo1 signaling. Furthermore, we established that silencing Robo1 inhibited cell proliferation while over-expressing Robo1 enhanced cell proliferation. We also investigated the effects of altering Slit/Robo1 expression on Sonic Hedgehog (Shh) and Pax7 expression in the developing neural tube. We demonstrated that over-expressing Robo1 down-regulated Shh expression in the ventral neural tube and resulted in the production of fewer HNK-1{sup +} migrating neural crest cells (NCCs). In addition, Robo1 over-expression enhanced Pax7 expression in the dorsal neural tube and increased the number of Slug{sup +} pre-migratory NCCs. Conversely, silencing Robo1 expression resulted in an enhanced Shh expression and more HNK-1{sup +} migrating NCCs but reduced Pax7 expression and fewer Slug{sup +} pre-migratory NCCs were observed. In conclusion, we propose that Slit/Robo1 signaling is involved in regulating neural tube

  8. Mechanical properties of graphites and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, Gilbert.

    1977-01-01

    The mechanical behavior of graphites and artificial carbons is related to the structure of these materials. The influence of structural modifications in a graphite monocrystal on the deformation and fracture properties is studied [fr

  9. Effect of V-shape on the light transmission of subwavelength slits in metallic thin films

    Science.gov (United States)

    Silva, O. B.; Ferri, F. A.; Rivera, V. A. G.; Osório, S. P. A.; Marega, E.

    2013-02-01

    Currently, the focused ion beam milling (FIB) technique is a commonly used approach to fabricate nanostructures because of its unique advantages of one-step fabrication, nanoscale resolution, and no material selectivity, etc. However, the FIB technique also has its own disadvantages. Regarding the process of fabrication of the corrugations and subwavelength apertures, nowadays, there is a major problem: the V-shaped structuring. In this work, we discuss the influence of V-shape on the optical transmission of subwavelength slits designed in silver (Ag) and gold (Au) thin films possessing different thicknesses. The effect of different cone angles (ratio between the widths at the incidence plane and at the exit plane) originated from the V-shaped slits was also considered. We had performed computational simulations carried out with COMSOL Multiphysics® to investigate the slits optical transmission. In most cases, the subwavelength slits were illuminated with 488 nm (for Ag) and 632.8 nm (for Au) wavelength light sources in TM polarization (magnetic H-field component parallel to the axis of the slits). The origin of the slits transmission is attributed to plasmonic surface excitations. Our simulation results demonstrated that different cone angles originated from the Vshaped subwavelength slits generate different influences on the beam propagation. The width variation affects the optical transmission intensity significantly. Hopefully, exploring the influence on the light propagation behaviour through subwavelength apertures via theoretical simulations can provide a better understanding of the beam propagation phenomena for future studies.

  10. Screen for Slit/Robo signaling in trunk neural cells reveals new players.

    Science.gov (United States)

    Martinez, Darwin; Zuhdi, Nora; Reyes, Michelle; Ortega, Blanca; Giovannone, Dion; Lee, Vivian M; de Bellard, Maria Elena

    2018-02-07

    Slits ligands and their Robo receptors are involved in quite disparate cell signaling pathways that include axon guidance, cell proliferation, cell motility and angiogenesis. Neural crest cells emerge by delamination from neural cells in the dorsal neural tube, and give rise to various components of the peripheral nervous system in vertebrates. It is well established that these cells change from a non-migratory to a highly migratory state allowing them to reach distant regions before they differentiate. However, but the mechanism controlling this delamination and subsequent migration are still not fully understood. The repulsive Slit ligand family members, have been classified also as true tumor suppressor molecules. The present study explored in further detail what possible Slit/Robo signals are at play in the trunk neural cells and neural crest cells by carrying out a microarray after Slit2 gain of function in trunk neural tubes. We found that in addition to molecules known to be downstream of Slit/Robo signaling, there were a large set of molecules known to be important in maintaining cells in non-motile, epithelia phenotype. Furthermore, we found new molecules previously not associated with Slit/Robo signaling: cell proliferation markers, Ankyrins and RAB intracellular transporters. Our findings suggest that neural crest cells use and array of different Slit/Robo pathways during their transformation from non-motile to highly motile cells. Copyright © 2018. Published by Elsevier B.V.

  11. Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure

    Science.gov (United States)

    Ren, S. W.; Meng, H.; Xin, F. X.; Lu, T. J.

    2016-01-01

    An ultrathin (subwavelength) hierarchy multi-slit metamaterial with simultaneous negative effective density and negative compressibility is proposed to absorb sound over a wide frequency range. Different from conventional acoustic metamaterials having only negative real parts of acoustic parameters, the imaginary parts of effective density and compressibility are both negative for the proposed metamaterial, which result in superior viscous and thermal dissipation of sound energy. By combining the slit theory of sound absorption with the double porosity theory for porous media, a theoretical model is developed to investigate the sound absorption performance of the metamaterial. To verify the model, a finite element model is established to calculate the effective density, compressibility, and sound absorption of the metamaterial. It is theoretically and numerically confirmed that, upon introducing micro-slits into the meso-slits matrix, the multi-slit metamaterial possesses indeed negative imaginary parts of effective density and compressibility. The influence of micro-slits on the acoustical performance of the metamaterial is analyzed in the context of its specific surface area and static flow resistivity. This work shows great potential of multi-slit metamaterials in noise control applications that require both small volume and small weight of sound-absorbing materials.

  12. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation

    International Nuclear Information System (INIS)

    Moucka, Filip; Bratko, Dusan; Luzar, Alenka

    2015-01-01

    Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores

  13. Tapered-slit membrane filters for high-throughput viable circulating tumor cell isolation.

    Science.gov (United States)

    Kang, Yoon-Tae; Doh, Il; Cho, Young-Ho

    2015-04-01

    This paper presents tapered-slit membrane filters for high-throughput viable circulating tumor cell (CTC) isolation. The membrane filter with a 2D array of vertical tapered slits with a gap that is wide at the entrance and gradually decreases with depth, provide minimal cell stress and reduce 82.14% of the stress generated in conventional straight-hole filters. We designed two types of tapered-slit filters, Filters 6 and 8, respectively, containing the tapered slits with outlet widths of 6 μm and 8 μm at a slit density of 34,445/cm(2) on the membrane. We fabricated the vertical slits with a tapered angle of 2 ° on a SU8 membrane by adjusting the UV expose dose and the air gap between the membrane and the photomask during lithography. In the experimental study, the proposed tapered-slit filter captured 89.87% and 82.44% of the cancer cells spiked in phosphate buffered saline (PBS) and diluted blood (blood: PBS = 1:4), respectively, at a sample flow rate of 5 ml per hour, which is 33.3 times faster than previous lateral tapered-slit filters. We further verified the capability to culture on chip after capturing: 72.33% of cells among the captured cells still remained viable after a 5-day culture. The proposed tapered-slit membrane filters verified high-throughput viable CTC isolation capability, thereby inaugurating further advanced CTC research for cancer diagnosis and prognosis.

  14. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  15. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    Science.gov (United States)

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  16. A rotating-slit-collimator-based gamma radiation mapper.

    Science.gov (United States)

    Nilsson, Jonas M C; Finck, Robert R; Rääf, Christopher L

    2017-10-01

    For situations with radioactive material out of control where it may be physically difficult or prohibited to access areas close to the source, measurements from distance may be the only way to assess the radiation environment. Using collimated detectors will provide means to locate the direction of the radiation from the source. To investigate the possibilities of mapping gamma emitting radioactive material in a closed non-enterable area, a tentative system for mapping radioactive materials from a distance was built. The system used a computer controlled cylindrical rotating slit collimator with a high purity germanium detector placed in the cylinder. The system could be placed on a car-towed trailer, with the centre of the detector about 1.4 m above ground. Mapping was accomplished by the use of a specially developed image reconstruction algorithm that requires measurements from two or more locations around the area to be investigated. The imaging capability of the system was tested by mapping an area, 25 by 25 m 2 , containing three 330 MBq 137 Cs point sources. Using four locations outside the area with about 20 min measuring time in each location and applying the image reconstruction algorithm on the deconvoluted data, the system indicated the three source locations with an uncertainty of 1-3 m. The results demonstrated the potential of using collimated mobile gamma radiometry combined with image reconstruction to localize gamma sources inside non-accessible areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Low-cost endothelium cell counter for slit lamp

    Science.gov (United States)

    Ventura, Liliane; Faria de Sousa, Sidney J.; Ribeiro, Paulo E. M., Jr.; Caetano, Cesar A. C.

    1998-06-01

    One of the optical ways to evaluate the donated cornea in order to provide a diagnostic regarding its indication for transplant is to count the number of the living endothelial cells (over 2000 cells/mm2), which are responsible for maintaining the corneal transparency. Specular Microscopes are equipments which are exclusively dedicated for this kind of evaluation. However they are of high cost and most of the Eye Banks are not provided by them. Hence, the usual evaluation is done in a Slit Lamp (SL) -- 40X magnification -- and just the aspect of the cells are subjectively observed. In order to overcome the limitations of subjective assessment and high cost, we have developed a system attached to the SL (optical system with 250X magnification image captured by a CCD detector which displays the image of the cells on a PC monitor and a dedicated software) which is able to count the endothelial cells providing a lower cost objective diagnostic of the donated cornea.

  18. Impact of radiolysis and radiolytic corrosion on the release of {sup 13}C and {sup 37}Cl implanted into nuclear graphite: Consequences for the behaviour of {sup 14}C and {sup 36}Cl in gas cooled graphite moderated reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moncoffre, N., E-mail: nathalie.moncoffre@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Toulhoat, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); CEA/DEN, Centre de Saclay (France); Bérerd, N.; Pipon, Y. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Université de Lyon, Université Lyon, IUT Lyon-1 département chimie (France); Silbermann, G. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); Blondel, A. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); Andra, Châtenay-Malabry (France); Galy, N. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon (IPNL) (France); EDF – DPI - DIN – CIDEN, DIE - Division Environnement, Lyon (France); and others

    2016-04-15

    Graphite finds widespread use in many areas of nuclear technology based on its excellent moderator and reflector qualities as well as its strength and high temperature stability. Thus, it has been used as moderator or reflector in CO{sub 2} cooled nuclear reactors such as UNGG, MAGNOX, and AGR. However, neutron irradiation of graphite results in the production of {sup 14}C (dose determining radionuclide) and {sup 36}Cl (long lived radionuclide), these radionuclides being a key issue regarding the management of the irradiated waste. Whatever the management option (purification, storage, and geological disposal), a previous assessment of the radioactive inventory and the radionuclide's location and speciation has to be made. During reactor operation, the effects of radiolysis are likely to promote the radionuclide release especially at the gas/graphite interface. Radiolysis of the coolant is mainly initiated through γ irradiation as well as through Compton electrons in the graphite pores. Radiolysis can be simulated in laboratory using γ irradiation or ion irradiation. In this paper, {sup 13}C, {sup 37}Cl and {sup 14}N are implanted into virgin nuclear graphite in order to simulate respectively the presence of {sup 14}C, {sup 36}Cl and nitrogen, a {sup 14}C precursor. Different irradiation experiments were carried out using different irradiation devices on implanted graphite brought into contact with a gas simulating the coolant. The aim was to assess the effects of gas radiolysis and radiolytic corrosion induced by γ or He{sup 2+} irradiation at the gas/graphite interface in order to evaluate their role on the radionuclide release. Our results allow inferring that radiolytic corrosion has clearly promoted the release of {sup 14}C, {sup 36}Cl and {sup 14}N located at the graphite brick/gas interfaces and open pores.

  19. Asymmetric acoustic convergence in a metal plate with binary wave-path slits

    Science.gov (United States)

    Sun, Hong-xiang; Huang, Yu-lei; Xia, Jian-ping; Yuan, Shou-qi

    2017-09-01

    We report both experimentally and numerically that asymmetric acoustic convergence is realized by perforating two types of slits (inclined and vertical slits) in a steel plate immersed in water. The asymmetric acoustic convergence phenomenon exists in the frequency band of 560 kHz-592 kHz, which is attributed to the interference enhancement and cancellation induced by the symmetric structure and the acoustic path differences from two types of slits. The proposed lens has the advantages of multi-functionality, broader bandwidth, and planar structure, which provides more possibilities for sound manipulation and improves the applications in various scenarios, such as focused ultrasound therapy and ultrasound imaging.

  20. Asymmetric acoustic convergence in a metal plate with binary wave-path slits

    International Nuclear Information System (INIS)

    Sun, Hong-xiang; Huang, Yu-lei; Xia, Jian-ping; Yuan, Shou-qi

    2017-01-01

    We report both experimentally and numerically that asymmetric acoustic convergence is realized by perforating two types of slits (inclined and vertical slits) in a steel plate immersed in water. The asymmetric acoustic convergence phenomenon exists in the frequency band of 560 kHz–592 kHz, which is attributed to the interference enhancement and cancellation induced by the symmetric structure and the acoustic path differences from two types of slits. The proposed lens has the advantages of multi-functionality, broader bandwidth, and planar structure, which provides more possibilities for sound manipulation and improves the applications in various scenarios, such as focused ultrasound therapy and ultrasound imaging. (letter)

  1. Beam Manipulation by Metallic Nanoslit Arrays with Perpendicular Cuts inside Slits

    International Nuclear Information System (INIS)

    Hao Zhi-Qiang; Li Yu-Dong; Chen Jing; Chen Zong-Qiang; Xu Jing-Jun; Sun Qian

    2012-01-01

    Beam manipulation by metallic nanoslit arrays with perpendicular cuts inside the slits was investigated numerically. The simulated results performed by the finite element method (FEM) show that perpendicular cuts with different heights can modulate phase retardation of the transmitted light through the slits. With the proper distribution of cut height, a focused beam is achieved in our metallic nanostructure with four-time amplitude at the focus point and half focal length compared to a slit array without cuts inside. By using asymmetric distribution of height amplitude, a beam deflection around 6° can also be realized in our design

  2. The effect of compressive stress on the Young's modulus of unirradiated and irradiated nuclear graphites

    International Nuclear Information System (INIS)

    Oku, T.; Usui, T.; Ero, M.; Fukuda, Y.

    1977-01-01

    The Young's moduli of unirradiated and high temperature (800 to 1000 0 C) irradiated graphites for HTGR were measured by the ultrasonic method in the direction of applied compressive stress during and after stressing. The Young's moduli of all the tested graphites decreased with increasing compressive stress both during and after stressing. In order to investigate the reason for the decrease in Young's modulus by applying compressive stress, the mercury pore diameter distributions of a part of the unirradiated and irradiated specimens were measured. The change in pore distribution is believed to be associated with structural changes produced by irradiation and compressive stressing. The residual strain, after removing the compressive stress, showed a good correlation with the decrease in Young's modulus caused by the compressive stress. The decrease in Young's modulus by applying compressive stress was considered to be due to the increase in the mobile dislocation density and the growth or formation of cracks. The results suggest, however, that the mechanism giving the larger contribution depends on the brand of graphite, and in anisotropic graphite it depends on the direction of applied stress and the irradiation conditions. (author)

  3. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  4. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  5. Slit-check dams for the control of debris flow

    Science.gov (United States)

    Armanini, Aronne; Larcher, Michele

    2017-04-01

    Debris flows are paroxysmal events that mobilize, alongside water, huge quantities of sediment in a very short time, then with both solid and liquid huge discharges, possibly exceeding the capacity of the current torrent restoration works. In this respect, the climate change forcing cannot be ignored. In the majority of urbanized areas, that are generally the most vulnerable, there is often not enough space to create channelling works able to let the volumes pass through without overflowing. The simplest, less expensive and most sustainable solution consists in reducing the peak solid discharge by creating storage areas upstream of the settlements, typically upstream of the alluvial fans, allowing for reduced works of canalization, that are compatible with the constraints imposed by the urbanization. The general idea consists in storing a part of the flowing solids during the peak of the hydrograph and releasing it in a successive phase or during minor floods. For this purpose, and in order to optimize the solid peak discharge reduction, it is necessary that properly designed open-check dams, capable of inducing a significative sedimentation of the solid discharge only when this exceeds a design-threshold value, control the deposition basins. A correct design of the check dam is crucial in order to induce the sedimentation in the right amount and at the right moment: a too early sedimentation might fill the volume before the peak, like in the case of close-check dams, while a too weak sedimentation might not use the whole available volume. In both cases, the channelling works might not be sufficient to let all the flow pass through, compromising the safety of the settlement. To avoid this inconvenience, we propose the use of slit-check dams, whose efficiency has already been proved for bed load. Check dams are often designed only on the base of the designer's experience. Besides, even today it is often believed that the filtering effect of open check dams is

  6. Slit manufacturing and integration for the Sentinel-4 NIR and UV-VIS spectrometers

    Science.gov (United States)

    Mohaupt, Matthias; Zeitner, Uwe; Harnisch, Gerd

    2017-09-01

    The sentinel-4 spectrometeŕs slits are the key components of the ultraviolet-visible (UV-VIS) and the near infrared (NIR) channels for earth observation, with absolute slit width accuracy and variation required as < 0.1 ?m, respectively, and slit planarity < 0.4 ?m peak to valley (P-V). Adapted lithographic structuring techniques as developed for the dry- and wet etching of silicon-on-insulator (SOI) wafers combined with special integration devices for accurate alignment as well as precision optical polishing of the mounting planes of the slit holders together with spring elements can fulfil these requirements. Protected aluminum coating ensures a light tight optical density at wavelengths between 200 nm and 1200 nm, electrical grounding, and chemical protection.

  7. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  8. Micro-Slit Collimators for X-ray/Gamma-ray Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mikro Systems, Inc. (MSI) will advance the state-of-the-art in high resolution, high-aspect-ratio x-ray/gamma-ray collimator fabrication into the micro-slit regime...

  9. Single slit interference made easy with a strand of hair and a laser

    Science.gov (United States)

    Messer, Rebecca

    2018-01-01

    Students can easily measure the width of a strand of their own hair with a monochromatic light source such as a laser. This inexpensive activity engages students in an application of single slit diffraction using Babinet's principle.

  10. "Slit Mask Design for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph"

    Science.gov (United States)

    Williams, Darius; Marshall, Jennifer L.; Schmidt, Luke M.; Prochaska, Travis; DePoy, Darren L.

    2018-01-01

    The Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS) is currently in development for the Giant Magellan Telescope (GMT). GMACS will employ slit masks with a usable diameter of approximately 0.450 m for the purpose of multi-slit spectroscopy. Of significant importance are the design constraints and parameters of the multi-object slit masks themselves as well as the means for mapping astronomical targets to physical mask locations. Analytical methods are utilized to quantify deformation effects on a potential slit mask due to thermal expansion and vignetting of target light cones. Finite element analysis (FEA) is utilized to simulate mask flexure in changing gravity vectors. The alpha version of the mask creation program for GMACS, GMACS Mask Simulator (GMS), a derivative of the OSMOS Mask Simulator (OMS), is introduced.

  11. Spectral Analysis of the Background in Ground-based, Long-slit ...

    Indian Academy of Sciences (India)

    Abstract. This paper examines the variations, because of atmospheric extinction, of broad-band visible spectra, obtained from long-slit spectroscopy, in the vicinity of some stars, nebulae, and one faint galaxy.

  12. Frequent alterations of SLIT2–ROBO1–CDC42 signalling pathway ...

    Indian Academy of Sciences (India)

    2016-09-07

    CDC42 signalling pathways in development of breast cancer (BC). Primary BC samples (n = 150), comprising of almost equal proportion of four subtypes were tested for molecu- lar alterations of SLIT2, ROBO1, ROBO2 and ...

  13. The electromagnetics of light transmission through subwavelength slits in metallic films.

    Science.gov (United States)

    Weiner, John

    2011-08-15

    By numerically calculating the relevant electromagnetic fields and charge current densities, we show how local charges and currents near subwavelength structures govern light transmission through subwavelength apertures in a real metal film. The illumination of a single aperture generates surface waves; and in the case of slits, generates them with high efficiency and with a phase close to -π with respect to a reference standing wave established at the metal film front facet. This phase shift is due to the direction of induced charge currents running within the slit walls. The surface waves on the entrance facet interfere with the standing wave. This interference controls the profile of the transmission through slit pairs as a function of their separation. We compare the calculated transmission profile for a two-slit array to simple interference models and measurements [Phys. Rev. B 77(11), 115411 (2008)]. © 2011 Optical Society of America

  14. Seismic Study of TMSR Graphite Core Structure

    International Nuclear Information System (INIS)

    Tsang, Derek; Huang Chao Chao

    2014-01-01

    Graphite plays an important role in the thorium based molten salt reactor (TMSR) nuclear energy system. The graphite core acts as reflector, moderator and structural material in the TMSR core. The graphite core assembly has hundreds of graphite bricks interconnected with graphite keys and dowels. In other words, the graphite core is a kind of discrete stack structure with highly nonlinear dynamic behaviour, and it will show totally different dynamics responses comparing with welded structure or bolted structure when subjected to the seismic loading. Hence it is important to investigate the dynamics characteristics of the TMSR graphite core assembly and to meet the seismic design requirement. The most popular way to investigate the nonlinearity of graphite core is to do finite element analyses. Due to the large number of nonlinear behaviour caused by contacts, collisions and impacts between the graphite bricks and keys, the computational costs on seismic analysis of the whole core would be very high. Many methods have been developed in the past 20 years to conquer this difficulty. In this work substructure method and finite element method have been used to study the dynamic behaviour of a stack of graphite bricks under seismic loading. The numerical results of these two methods will be compared. The results show that the super element method is an efficient method for graphite core seismic analyses. (author)

  15. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  16. Elucidating the Tumor-Suppressive Role of SLITs in Maintaining the Basal Cell Niche

    Science.gov (United States)

    2011-10-01

    metastasis by inhibiting detachment of tumor cells. Overexpression of SLIT2 in MCF7 cells has been shown to reduce the amount of beta- catenin in the... detachment from the tissue culture plate [59, 60]. These findings suggest that SEMA3F may play a pro-metastatic role by promoting tumor cell detachment ...for SLIT/ROBO4 function based on studies of pathologic angiogenesis in the retina (13). Both in this context and in the mammary gland, there are two

  17. Effects of slit width on water permeation through graphene membrane by molecular dynamics simulations

    OpenAIRE

    Yamada, Taro; Matsuzaki, Ryosuke

    2018-01-01

    Graphene membranes can be used for nanoscale filtration to remove atoms and are expected to be used for separation. To realize high-permeability and high-filtration performance, we must understand the flow configuration in the nanochannels. In this study, we investigated the applicability of continuum-dynamics laws to water flow through a graphene slit. We calculated the permeability of the flow through a slit using classical molecular dynamics (MD) and compared the MD simulation results for ...

  18. Characterization of structural defects in nuclear graphite IG-110 and NBG-18

    International Nuclear Information System (INIS)

    Zheng, Guiqiu; Xu, Peng; Sridharan, Kumar; Allen, Todd

    2014-01-01

    Nuclear graphite IG-110 and NBG-18 were examined using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM) and high resolution transmission electron microscope (HR-TEM) to understand the structure and microstructure of nuclear graphite. The lattice parameter (a), degree of graphitization (g ¯ ), crystallite size parallel and perpendicular to c-direction (L c and L ⊥ ), anisotropy (B), as well as in-plane crystallite size (L a ) were calculated and compared based on XRD patterns and Raman spectra. Results indicate that IG-110 has a larger crystallite size and higher degree of graphitization, but lower anisotropy than NBG-18. These differences are attributed to the properties of coke source and manufacturing processes. Additionally, the shape of the pores and crystallized filler particles, the interface between binders and fillers, Mrozowski cracks and nano-cracks, and the defects of disclination were observed and characterized from SEM and HR-TEM images. The similarities and differences in microstructure between IG-110 and NBG-18 are discussed. The results in this work provide useful information to guide selection of nuclear graphite for the design of next generation nuclear plants (NGNP)

  19. A correction for emittance-measurement errors caused by finite slit and collector widths

    International Nuclear Information System (INIS)

    Connolly, R.C.

    1992-01-01

    One method of measuring the transverse phase-space distribution of a particle beam is to intercept the beam with a slit and measure the angular distribution of the beam passing through the slit using a parallel-strip collector. Together the finite widths of the slit and each collector strip form an acceptance window in phase space whose size and orientation are determined by the slit width, the strip width, and the slit-collector distance. If a beam is measured using a detector with a finite-size phase-space window, the measured distribution is different from the true distribution. The calculated emittance is larger than the true emittance, and the error depends both on the dimensions of the detector and on the Courant-Snyder parameters of the beam. Specifically, the error gets larger as the beam drifts farther from a waist. This can be important for measurements made on high-brightness beams, since power density considerations require that the beam be intercepted far from a waist. In this paper we calculate the measurement error and we show how the calculated emittance and Courant-Snyder parameters can be corrected for the effects of finite sizes of slit and collector. (Author) 5 figs., 3 refs

  20. Macro and Microanatomical Studies on the Choanal Slit of Turkey (Meleagris gallopavo

    Directory of Open Access Journals (Sweden)

    Ramy K. A. Sayed

    2017-07-01

    Full Text Available This work was carried out to describe the morphological characteristics of the choanal slit of the turkey through gross, light, and scanning electron microscopy. The choanal slit measures 27.62 mm long, and constitutes 38.30 % of the total length of the palate. The edges of the narrow part of the choanal slit is smooth rostrally but slightly thickened caudally due to the presence of 2-3 small papillae. The edge of the wide part is thickened because of presence of 5-7 conical and wedge shaped papillae. SEM indicates the presence of median fold within the choana, which represents the direct continuation of the median palatine ridge. After a short distance, this fold bifurcates into right and left folds. Several openings of the palatine salivary glands are demonstrated on the palate at the level of the choanal slit. The epithelium of the oral roof at the level of the choanal slit is stratified squamous epithelium showing intraepithelial sensory corpuscles. This epithelium transforms at the edge of the choanal slit into pseudostratified ciliated columnar epithelium that interrupted by intraepithelial mucous glands surrounded by lymphatic infiltration and nodules. Altogether, this study provides inclusive information on the macroscopic and microscopic morphological features of the choana in the turkey in comparing with those of the other birds.

  1. Analysis of detection enhancement using microcantilevers with long-slit-based sensors.

    Science.gov (United States)

    Khaled, Abdul-Rahim A; Vafai, Kambiz

    2013-01-07

    The present work analyzes theoretically and verifies the advantage of utilizing rectangular microcantilevers with long-slits in microsensing applications. The deflection profile of these microcantilevers is compared with that of typical rectangular microcantilevers under the action of dynamic disturbances. Various force-loading conditions are considered. The theory of linear elasticity for thin beams is used to obtain the deflection-related quantities. The disturbance in these quantities is obtained based on wave propagation and beam vibration theories. It is found that detections of rectangular microcantilevers with long-slits based on maximum slit opening length can be more than 100 times the deflections of typical rectangular microcantilevers. Moreover, the disturbance (noise effect) in the detection quantities of the microcantilever with long-slits is found to be always smaller than that of typical microcantilevers, regardless of the wavelength, force amplitude, and the frequency of the dynamic disturbance. Eventually, the detection quantities of the microcantilever with long-slits are found to be almost unaffected by dynamic disturbances, as long as the wavelengths of these disturbances are larger than 3.5 times the microcantilever width. Finally, the present work recommends implementation of microcantilevers with long-slits as microsensors in robust applications, including real analyte environments and out of laboratory testing.

  2. A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function.

    Science.gov (United States)

    Svensson, Katrin J; Long, Jonathan Z; Jedrychowski, Mark P; Cohen, Paul; Lo, James C; Serag, Sara; Kir, Serkan; Shinoda, Kosaku; Tartaglia, Julia A; Rao, Rajesh R; Chédotal, Alain; Kajimura, Shingo; Gygi, Steven P; Spiegelman, Bruce M

    2016-03-08

    Activation of brown and beige fat can reduce obesity and improve glucose homeostasis through nonshivering thermogenesis. Whether brown or beige fat also secretes paracrine or endocrine factors to promote and amplify adaptive thermogenesis is not fully explored. Here we identify Slit2, a 180 kDa member of the Slit extracellular protein family, as a PRDM16-regulated secreted factor from beige fat cells. In isolated cells and in mice, full-length Slit2 is cleaved to generate several smaller fragments, and we identify an active thermogenic moiety as the C-terminal fragment. This Slit2-C fragment of 50 kDa promotes adipose thermogenesis, augments energy expenditure, and improves glucose homeostasis in vivo. Mechanistically, Slit2 induces a robust activation of PKA signaling, which is required for its prothermogenic activity. Our findings establish a previously unknown peripheral role for Slit2 as a beige fat secreted factor that has therapeutic potential for the treatment of obesity and related metabolic disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  5. Antera 3D capabilities for pore measurements.

    Science.gov (United States)

    Messaraa, C; Metois, A; Walsh, M; Flynn, J; Doyle, L; Robertson, N; Mansfield, A; O'Connor, C; Mavon, A

    2018-04-29

    The cause of enlarged pores remains obscure but still remains of concern for women. To complement subjective methods, bioengineered methods are needed for quantification of pores visibility following treatments. The study objective was to demonstrate the suitability of pore measurements from the Antera 3D. Pore measurements were collected on 22 female volunteers aged 18-65 years with the Antera 3D, the DermaTOP and image analysis on photographs. Additionally, 4 raters graded pore size on photographs on a scale 0-5. Repeatability of Antera 3D parameters was ascertained and the benefit of a pore minimizer product on the cheek was assessed on a sub panel of seven female volunteers. Pore parameters using the Antera were shown to depict pore severity similar to raters on photographs, except for Max Depth. Mean pore volume, mean pore area and count were moderately correlated with DermaTOP parameters (up to r = .50). No relationship was seen between the Antera 3D and pore visibility analysis on photographs. The most repeatable parameters were found to be mean pore volume, mean pore area and max depth, especially for the small and medium filters. The benefits of a pore minimizer product were the most striking for mean pore volume and mean pore area when using the small filter for analysis, rather than the medium/large ones. Pore measurements with the Antera 3D represent a reliable tool for efficacy and field studies, with an emphasis of the small filter for analysis for the mean pore volume/mean pore area parameters. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Graphite structure and magnetic parameters of flake graphite cast iron

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Takagi, T.; Tomáš, Ivan; Kage, H.

    2017-01-01

    Roč. 442, Nov (2017), s. 397-402 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 Keywords : magnetic NDE * magnetic adaptive testing * cast iron * graphite structure * pearlite content Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  7. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries

    Science.gov (United States)

    Shim, Jae-Hyun; Lee, Sanghun

    2016-08-01

    Surface-modified graphite for application as an anode material in lithium ion batteries was obtained by etching with KOH under mild conditions without high-temperature annealing. The surface of the etched graphite is covered with many nano-sized pores that act as entrances for lithium ions during the charging process. As compared with pristine graphite and other references such as pitch-coated or etched graphite samples with annealing, our non-annealed etched graphite exhibits excellent electrochemical properties, particularly at fast charging rates of over 2.5 C. While avoidance of the trade-off between increase of irreversible capacity and good rate capability has previously been a main concern in highly porous carbonaceous materials, we show that the slightly larger surface area created by the etching does not induce a significant increase of irreversible capacity. This study shows that it is important to limit the size of pores to the nanometer scale for excellent battery performance, which is possible by etching under relatively mild conditions.

  8. Improving molten fluoride salt and Xe135 barrier property of nuclear graphite by phenolic resin impregnation process

    Science.gov (United States)

    He, Zhao; Lian, Pengfei; Song, Yan; Liu, Zhanjun; Song, Jinliang; Zhang, Junpeng; Feng, Jing; Yan, Xi; Guo, Quangui

    2018-02-01

    A densification process has been conducted on isostatic graphite (IG-110, TOYO TANSO CO., Ltd., Japan) by impregnating phenolic resin to get the densified isostatic graphite (D-IG-110) with pore diameter of nearly 11 nm specifically for molten salt reactor application. The microstructure, mechanical, thermophysical and other properties of graphite were systematically investigated and compared before and after the densification process. The molten fluoride salt and Xe135 penetration in the graphite were evaluated in a high-pressure reactor and a vacuum device, respectively. Results indicated that D-IG-110 exhibited improved properties including infiltration resistance to molten fluoride salt and Xe135 as compared to IG-110 due to its low porosity of 2.8%, the average pore diameter of 11 nm and even smaller open pores on the surface of the graphite. The fluoride salt infiltration amount of IG-110 was 13.5 wt% under 1.5 atm and tended to be saturated under 3 atm with the fluoride salt occupation of 14.8 wt%. As to the D-IG-110, no salts could be detected even up to 10 atm attempted loading. The helium diffusion coefficient of D-IG-110 was 6.92 × 10-8 cm2/s, significantly less than 1.21 × 10-2 cm2/s of IG-110. If these as-produced properties for impregnated D-IG-110 could be retained during MSR operation, the material could prove effective at inhibiting molten fluoride salt and Xe135 inventories in the graphite.

  9. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  10. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  11. Influence of graphite and serpentine minerals along landslide failure surfaces

    Science.gov (United States)

    Alberti, Stefano; Battista Crosta, Giovanni; Wang, Gonghui; Dattola, Giuseppe; Bertolo, Davide

    2017-04-01

    Landslides and deep-seated gravitational slope deformation (DSGSD) often are concentrated in sedimentary and metasedimentary rocks (e.g. Ambrosi and Crosta, 2006) and in carbonaceous materials (CM), where weaker slip surfaces can be generated more easily, with a behaviour similar to that of fault zone (e.g. Zulauf et al., 1990; Craw, 2002; Oohashi et al., 2011, Nakamura et al., 2015). Among the carbonaceous minerals, graphite (grouped with other silicate sheet minerals) acts as a "solid lubrificant" and plays a key role on frictional properties of the slip surface (Yamasaki et al., 2015). These minerals have one key characteristic in common: the presence of weak bonding along (001) planes. Graphite also has one of the weakest bonding in the crystal structure, and it is characterized by a markedly low coefficient of friction (ca 0.1). A similar behaviour is found in serpentine minerals series and chlorite. We performed these tests on different samples derived from Mont de La Saxe landslide and Chervaz landslide. The first one is located in the upper Aosta Valley, the second in the central part of the Aosta Valley. Both these landslides are characterized by metasedimentary sequences. The undisturbed samples derived by core recovery surveys. We performed a petrographic characterization by XRD (X-Ray Diffraction), XRF (X-Ray Refraction) and SEM (Scansion Electron Microscope) with microprobe in addition to laboratory tests on samples from shear zones. Along these shear zones grains are crushed, their size and shapes are changed and these changes necessarily affect pore-water pressure due to volume change in the shear zone. We performed tests using a dynamic-loading ring-shear apparatus (DPRI-5, Sassa et al., 1997). This apparatus allows to simulate the entire process of failure, from initial static or dynamic loading, through shear failure, pore-pressure changes and possible liquefaction, to large-displacement, steady-state shear movement. It is also possible to

  12. 3D printed LED based on-capillary detector housing with integrated slit.

    Science.gov (United States)

    Cecil, Farhan; Zhang, Min; Guijt, Rosanne M; Henderson, Alan; Nesterenko, Pavel N; Paull, Brett; Breadmore, Michael C; Macka, Mirek

    2017-05-01

    A 3D printed photometric detector body with integrated slit was fabricated to position a LED and photodiode either side of capillary tubing using a fused deposition modelling (FDM) printer. To make this approach suitable for capillaries down to 50 μm i.d. the dimension of the in-built slit is the critical element of the printed housing. The spatial orientation of the model for printing was found to significantly impact on the resolution of the structures and voids that can be printed. By designing a housing with a slit positioned in the XY plane in parallel with the print direction, the narrowest void (slit) that could be printed was 70 μm. The potential use of the 3D printed slit for photometric detection was characterised using tubing and capillary from 500 down to 50 μm i.d, demonstrating a linear response from 632 to 40 mAU. The effective pathlength and stray light varied from 383 to 22 μm and 3.8% - 50% for 500- 50 μm i.d tubing and capillary. The use of a V-shaped alignment feature allowed for easy and reliable positioning of the tubing inside the detector, as demonstrated by a RSD of 1.9% (n = 10) in peak height when repositioning the tubing between measurements using flow injection analysis (FIA). The performance of the 3D printed housing and 70 μm slit was benchmarked against a commercially available interface using the CE separation of Zn 2+ and Cu 2+ complexes with PAR. The limit of detection with the 3D printed slit was 6.8 and 4.5 μM and is 2.8 and 1.6 μM with the commercial interface. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  14. Pore volume is most highly correlated with the visual assessment of skin pores.

    Science.gov (United States)

    Kim, S J; Shin, M K; Back, J H; Koh, J S

    2014-11-01

    Many studies have been focused on evaluating assessment techniques for facial pores amid growing attention on skin care. Ubiquitous techniques used to assess the size of facial pores include visual assessment, cross-section images of the skin surface, and profilometric analysis of silicone replica of the facial skin. In addition, there are indirect assessment methods, including observation of pores based on confocal laser scanning microscopy and the analysis of sebum secretion and skin elasticity. The aim of this study was to identify parameters useful in estimating pore of surface in normal skin. The severity of pores on the cheek area by frontal optical images was divided on a 0-6 scale with '0' being faint and small pore and '6' being obvious and large pore. After the photos of the frontal cheek of 32 women aged between 35 and 49 were taken, the size of their pores was measured on a 0-6 scale; and the correlation between visual grading of pore and various evaluations (pore volume by 3-D image, pore area and number by Optical Image Analyzer) contributing to pore severity investigated using direct, objective, and noninvasive evaluations. The visual score revealed that the size of pores was graded on a 1-6 scale. Visual grading of pore was highly correlated with pore volume measured from 3-D images and pore area measured from 2-D optical images in the order (P pore was also slightly correlated with the number of pores in size of over 0.04 mm(2) (P pore score and pore volume can be explained by 3-D structural characteristics of pores. It is concluded that pore volume and area serve as useful parameters in estimating pore of skin surface. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  16. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  17. Pore Pressure Measurements Inside Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.; Grüne, Joachim

    2004-01-01

    The present paper presents pore pressure measurements from large scale model tests performed at the Large Wave Channel, Hannover, Germany and small scale model test performed at the Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark. Information on pore pressure attenuation...

  18. Radiation behaviour of graphite for HTGR

    International Nuclear Information System (INIS)

    Shtrombakh, Ya.I.; Platonov, P.A.; Gurovich, B.A.; Alekseev, V.M.

    1996-01-01

    The paper presents the results of investigations of different graphite materials, among with the standard reactor graphite manufacturing by electrode technology and a number of advanced graphites of new generation. During the investigation of radiation stability of standard reactor graphite the basic mechanisms of radiation damage of its structure were studied. With the help of transmission electron microscopy deformations and cracking of filler and binder were detected in the vicinity of the boundaries, separating these two components. Cracking begins with crystallite splitting and ends in full fracture of boundary layers. Such process of degradation can be explained by disjoint deformations resulting from difference in growth rate of filler and binder crystallites, in its turn caused by considerable difference between their sizes. It has been concluded that radiation stability of graphite may be improved by creating such graphite materials, in which the difference in sizes of crystallites of different structure components would be the minimal possible. When developing production technology of isotropic graphite for high temperature reactors, some progress was made towards the solution of this problem. Despite considerable swelling at high temperature this type of graphite appeared to be substantially less susceptible to the degradation of the structure and to deterioration of physico-mechanical properties. In addition to graphites manufactured by tradition technology, the graphite was investigated, in which pyrocarbon precipitated from gas phase under 1000 deg. C was used as binder. Carbon precipitated in such a way was non-graphitized at high temperatures and therefore it demonstrated sharp shrinkage under irradiation at high temperature, and shrinkage rate correlated with pyrocarbon quota in graphite structure. (author). 5 refs, 18 figs, 1 tab

  19. ISX-A graphite limiter experiment

    International Nuclear Information System (INIS)

    Langley, R.A.; Colchin, R.J.; Isler, R.C.; Murakami, M.; Simpkins, J.E.; Cecchi, J.L.; Corso, V.L.; Dylla, H.F.; Ellis, R.A. Jr.; Nishi, M.

    1979-01-01

    Graphite limiters were installed and tested in the ISX-A tokamak as part of the ISX-A surface physics program and the TFTR materials research program. The puropse of the experiment was to compare plasma performance using graphite limiters as opposed to the standard ISX-A stainless steel limiters. Heaters were installed in the graphite limiters so that the effects of operation at elevated temperatures could be evaluated

  20. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  1. Graphitic Carbon Nitride Materials for Energy Applications

    OpenAIRE

    Belen Jorge, A.; Dedigama, I.; Mansor, N.; Jervis, R.; Corà, F.; McMillan, P. F.; Brett, D.

    2015-01-01

    Polymeric layered carbon nitrides were investigated for use as catalyst support materials for proton exchange membrane fuel cells (PEMFCs) and water electrolyzers (PEMWEs). Three different carbon nitride materials were prepared: a heptazine-based graphitic carbon nitride material (gCNM), poly (triazine) imide carbon nitride intercalated with LiCl component (PTI-Li+Cl-) and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride mate...

  2. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  3. Graphite-to-metal bonding techniques

    International Nuclear Information System (INIS)

    Lindquist, L.O.; Mah, R.

    1977-11-01

    The results of various bonding methods to join graphite to different metals are reported. Graphite/metal bonds were tested for thermal flux limits and thermal flux cycling lifetimes. The most successful bond transferred a heat flux of 6.50 MW/m 2 in more than 500 thermal cycles. This bond was between pyrolytic graphite and copper with Ti-Cu-Sil as the bonding agent

  4. The calculation of methane profiles in graphite structures

    International Nuclear Information System (INIS)

    Faircloth, R.L.

    1980-01-01

    The role of methane as an inhibitor of the radiolytic oxidation of the graphite moderator of an Advanced Gas Cooled Reactor (AGR) by the carbon dioxide coolant has been the subject of considerable study over the past decade. Although the exact mechanism of this inhibition process is not completely understood it is obvious that regions of the porous graphite structure remote from the surfaces directly accessible to the coolant can only be protected if in-depth penetration by the methane is possible. These in-pore mass transfer effects have been studied mathematically by equating the methane destruction rate with the rate of transport to and from the reaction site by means of both permeable flow and diffusion. More recently a numerical approach to the solution of the methane diffusion problem based on the FACSIMILE program for carrying out the relevant integrations has been adopted. This program has been written particularly to solve the mixed chemical, flow and diffusion problems which are typical of the kind occurring in the interpretation of AGR coolant chemistry. The advantage of a numerical technique such as this is that the solution method is quite general and may be applied to any type of radiolytic destruction term. Additionally, it is possible to solve for situations where parameters such as dose rate are a function of distance into the graphite phase and account may also be taken of the effect on the rate of the methane destruction process of changes in the water and carbon monoxide concentration produced within the structure as a result of this process. The model has recently been extended to cover this latter point and the resulting code is referred to as the MEDIC (MEthane DIffusion Calculation) program. The purpose of this paper is to describe briefly the assumptions made in the calculation and to highlight the more important conclusions. (author)

  5. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  6. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  7. Characterization of commercial expandable graphite fire retardants

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Walter Wilhelm, E-mail: walter.focke@up.ac.za; Badenhorst, Heinrich; Mhike, Washington; Kruger, Hermanus Joachim; Lombaard, Dewan

    2014-05-01

    Highlights: • Expandable graphite is less well-ordered than its graphite bisulfate progenitor. • It includes graphite oxide as a randomly interstratified phase. • CO{sub 2}, CO and SO{sub 2} are released during thermal-driven exfoliation. - Abstract: Thermal analysis and other techniques were employed to characterize two expandable graphite samples. The expansion onset temperatures of the expandable graphite's were ca. 220 °C and 300 °C respectively. The key finding is that the commercial products are not just pure graphite intercalation compounds with sulfuric acid species intercalated as guest ions and molecules in between intact graphene layers. A more realistic model is proposed where graphite oxide-like layers are also randomly interstratified in the graphite flakes. These graphite oxide-like layers comprise highly oxidized graphene sheets which contain many different oxygen-containing functional groups. This model explains the high oxygen to sulfur atomic ratios found in both elemental analysis of the neat materials and in the gas generated during the main exfoliation event.

  8. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  9. Study of corrosion resistance graphite in oxygen

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Odejchuk, N.P.; Petel'guzov, I.A.; Ryzhov, V.P.; Yakovlev, V.K.

    2011-01-01

    The paper presents the results of the corrosion resistance of MPG, ARV and GSP graphite grades in oxygen at temperatures of 400, 600 and 800 o C. The oxidation kinetics of graphites is defined. It is shown, that interaction process of graphites with oxygen is characterized by a decrease of sample weights. The description of installation for carrying out of tests and a technique of carrying out of tests and researches is resulted. It is shown that the best corrosion resistance in the investigated temperature range has GSP graphite with density of 1.8-1.9 g/cm 3 of NSC KIPT production.

  10. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  11. NGNP Graphite Selection and Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.; Bratton, R.; Windes, W.

    2007-09-30

    The nuclear graphite (H-451) previously used in the United States for High-Temperature Reactors (HTRs) is no longer available. New graphites have been developed and are considered suitable candidates for the Next-Generation Nuclear Plant (NGNP). A complete properties database for these new, available, candidate grades of graphite must be developed to support the design and licensing of NGNP core components. Data are required for the physical, mechanical (including radiation-induced creep), and oxidation properties of graphites. Moreover, the data must be statistically sound and take account of in-billet, between billets, and lot-to-lot variations of properties. These data are needed to support the ongoing development1 of the risk-derived American Society of Mechanical Engineers (ASME) graphite design code (a consensus code being prepared under the jurisdiction of the ASME by gas-cooled reactor and NGNP stakeholders including the vendors). The earlier Fort St. Vrain design of High-Temperature Reactor (HTRs) used deterministic performance models for H-451, while the NGNP will use new graphite grades and risk-derived (probabilistic) performance models and design codes, such as that being developed by the ASME. A radiation effects database must be developed for the currently available graphite materials, and this requires a substantial graphite irradiation program. The graphite Technology Development Plan (TDP)2 describes the data needed and the experiments planned to acquire these data in a timely fashion to support NGNP design, construction, and licensing. The strategy for the selection of appropriate grades of graphite for the NGNP is discussed here. The final selection of graphite grades depends upon the chosen reactor type and vendor because the reactor type (pebble bed or prismatic block) has a major influence on the graphite chosen by the designer. However, the time required to obtain the needed irradiation data for the selected NGNP graphite is sufficiently

  12. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  13. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    Science.gov (United States)

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Regeneration and maintenance of the planarian midline is regulated by a slit orthologue.

    Science.gov (United States)

    Cebrià, Francesc; Guo, Tingxia; Jopek, Jessica; Newmark, Phillip A

    2007-07-15

    Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians.

  15. Effect of excluded volume on the force-extension of wormlike chains in slit confinement

    Science.gov (United States)

    Li, Xiaolan; Dorfman, Kevin

    We will present a quantitative phase diagram for the stretching of a wormlike chain confined in a slit with excluded volume interactions. Using pruned-enriched Rosenbluth method (PERM) simulations, we demonstrate the existence of a ``confined Pincus'' regime in slit confinement. This regime is similar to the Pincus regime in free solution, where excluded volume effects are sensible. The lower bound for the confined Pincus regime in the force-contour length plane and the dependence of the extension with force and slit size are in agreement with scaling theory. The upper bound of the confined Pincus regime depends on the confinement strength; it ends in strong confinement when the Pincus blobs do not have excluded volume, while it ends in weak confinement when the Pincus blobs do not fit in the slit. We also show the existence of a free-solution Pincus regime in weak confinement that exists before ideal chain behavior sets in under strong forces. We will discuss the implication of our results on the analysis of experiments on the ``tug-of-war'' stretching of DNA partially confined to a slit.

  16. Final report on LDRD project : biodiesel production from vegetable oils using slit-channel reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kalu, E. Eric (FAMU-FSU College of Engineering, Tallahassee, FL); Chen, Ken Shuang

    2008-01-01

    This report documents work done for a late-start LDRD project, which was carried out during the last quarter of FY07. The objective of this project was to experimentally explore the feasibility of converting vegetable (e.g., soybean) oils to biodiesel by employing slit-channel reactors and solid catalysts. We first designed and fabricated several slit-channel reactors with varying channel depths, and employed them to investigate the improved performance of slit-channel reactors over traditional batch reactors using a NaOH liquid catalyst. We then evaluated the effectiveness of several solid catalysts, including CaO, ZnO, MgO, ZrO{sub 2}, calcium gluconate, and heteropolyacid or HPA (Cs{sub 2.5}H{sub 0.5}PW{sub 12}O{sub 40}), for catalyzing the soybean oil-to-biodiesel transesterification reaction. We found that the slit-channel reactor performance improves as channel depth decreases, as expected; and the conversion efficiency of a slit-channel reactor is significantly higher when its channel is very shallow. We further confirmed CaO as having the highest catalytic activity among the solid catalysts tested, and we demonstrated for the first time calcium gluconate as a promising solid catalyst for converting soybean oil to biodiesel, based on our preliminary batch-mode conversion experiments.

  17. Complementarity and the Nature of Uncertainty Relations in Einstein–Bohr Recoiling Slit Experiment

    Directory of Open Access Journals (Sweden)

    Shogo Tanimura

    2015-07-01

    Full Text Available A model of the Einstein–Bohr recoiling slit experiment is formulated in a fully quantum theoretical setting. In this model, the state and dynamics of a movable wall that has two slits in it, as well as the state of a particle incoming to the two slits, are described by quantum mechanics. Using this model, we analyzed complementarity between exhibiting an interference pattern and distinguishing the particle path. Comparing the Kennard–Robertson type and the Ozawa-type uncertainty relations, we conclude that the uncertainty relation involved in the double-slit experiment is not the Ozawa-type uncertainty relation but the Kennard-type uncertainty relation of the position and the momentum of the double-slit wall. A possible experiment to test the complementarity relation is suggested. It is also argued that various phenomena which occur at the interface of a quantum system and a classical system, including distinguishability, interference, decoherence, quantum eraser, and weak value, can be understood as aspects of entanglement. Quanta 2015; 4: 1–9.

  18. The double-slit experiment and the time-reversed fire alarm

    International Nuclear Information System (INIS)

    Halabi, T.

    2010-01-01

    When both slits of the double-slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to understand such a puzzling feature only draws into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double-slit experiment and a time-reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double-slit experiment with a time-reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow. In further support of this, we employ a plausible formulation of the thermodynamic arrow to derive an uncertainty in classical mechanics that is reminiscent of quantum uncertainty.

  19. Multifractal Characterization of Soil Pore Shapes

    Science.gov (United States)

    Gimenez, Daniel; Posadas, Adolfo; Cooper, Miguel

    2010-05-01

    Two dimensional (2-D) images representing pores and solids are used for direct quantification of soil structure using tools that are sensitive to the spatial arrangement of pores or by grouping pores by morphological properties such as shape and size. Pore shapes and sizes are related and have been used to interpret soil processes. Fractal and multifractal methods of pore characterization have been applied separately to spatial arrangement of soil pores and to pore size distributions derived from 2-D images. The objective of this work was to estimate fractal dimensions of spatial arrangement of soil pores of predetermined shapes. Images covering a range of soil structures were analyzed. Pore shape was classified using a shape factor S that quantifies the circularity of pores (S=1 for circular pores). Images containing only pores with S values smaller than 0.1, between 0.1 and 0.2, 0.2 and 0.5, 0.5 and 0.7 and greater than 0.7 were derived from the initial images and analyzed with a multifractal algorithm. The findings of this work will be discussed in relation to models of soil hydraulic properties.

  20. Facial Pores: Definition, Causes, and Treatment Options.

    Science.gov (United States)

    Lee, Sang Ju; Seok, Joon; Jeong, Se Yeong; Park, Kui Young; Li, Kapsok; Seo, Seong Jun

    2016-03-01

    Enlarged skin pores refer to conditions that present with visible topographic changes of skin surfaces. Although not a medical concern, enlarged pores are a cosmetic concern for a large number of individuals. Moreover, clear definition and possible causes of enlarged pores have not been elucidated. To review the possible causes and treatment options for skin pores. This article is based on a review of the medical literature and the authors' clinical experience in investigating and treating skin pores. There are 3 major clinical causes of enlarged facial pores, namely high sebum excretion, decreased elasticity around pores, and increased hair follicle volume. In addition, chronic recurrent acne, sex hormones, and skin care regimen can affect pore size. Given the different possible causes for enlarged pores, therapeutic modalities must be individualized for each patient. Potential factors that contribute to enlarged skin pores include excessive sebum, decreased elasticity around pores, and increased hair follicle volume. Because various factors cause enlarged facial pores, it might be useful to identify the underlying causes to be able to select the appropriate treatment.

  1. Current Evidence on Safety and Practical Considerations for Administration of Sublingual Allergen Immunotherapy (SLIT) in the United States.

    Science.gov (United States)

    Epstein, Tolly G; Calabria, Christopher; Cox, Linda S; Dreborg, Sten

    Liquid sublingual allergen immunotherapy (SLIT) has been used off-label for decades, and Food and Drug Administration (FDA)-approved grass and ragweed SLIT tablets have been available in the United States since 2014. Potentially life-threatening events from SLIT do occur, although they appear to be very rare, especially for FDA-approved products. Practice guidelines that incorporate safety precautions regarding the use of SLIT in the United States are needed. This clinical commentary attempts to address unresolved issues including controversy regarding the FDA mandate for the prescription of epinephrine autoinjectors for patients on SLIT; how to approach polysensitized patients; optimal timing and duration of SLIT administration; how to address gaps in therapy; whether antihistamines can prevent local reactions, if certain patient populations (such as persistent asthmatics) should not receive SLIT; and when to instruct patients to self-administer epinephrine. Key points are that physicians should focus on educating patients regarding: (1) when not to administer SLIT; (2) how to recognize a potentially serious allergic reaction to SLIT; and (3) when to administer epinephrine and seek emergency care. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Use of Soller slits to remove reference foil fluorescence from transmission spectra.

    Science.gov (United States)

    Tse, Justin J; George, Graham N; Pickering, Ingrid J

    2011-05-01

    Measurement of X-ray absorption spectroscopy (XAS) in transmission is the method of choice for strong or concentrated samples. In a typical XAS experiment above 5 keV the sample is placed between the first (I(0)) and second (I(1)) ion chambers and a standard foil is placed between the second (I(1)) and third (I(2)) ion chambers for simultaneous calibration of energy during sample analysis. However, some fluorescence from the foil may be registered in I(1), causing anomalies in the transmission signal of the sample, especially when the sample edge jump is relatively small. To remedy this, Soller slits were constructed and placed between the foil and I(1) to minimize back-fluorescence from the foil. A comparison of blank and standard samples, measured with or without Soller slits or under a worst-case scenario, demonstrates the advantages of Soller slits when analyzing weak signal samples via transmission XAS.

  3. Sensor based on Fano resonances of plane metamaterial with narrow slits

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wan-Xia, E-mail: kate@mail.ahnu.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433 (China); The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China); Guo, Juan-Juan; Wang, Mao-Sheng; Zhao, Guo-Ren [The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China)

    2017-03-11

    The optical properties of a composite metamaterial composed of narrow slits and nano hole pairs have been investigated experimentally and numerically. The strength of the transmission peak originating from the interference between the coupled surface plasmon polaritons (SPP) of the narrow slit and the SPP modes of the hole array is modulated by the degree of symmetry breaking. Some SPP modes can be inhibited by controlling the spacer layer thickness. Our metamaterial has potential applications in sensing and weak signal detection. - Highlights: • The plasmonic nanostructure composed of narrow slits and nano hole pairs were designed. • The optical properties were investigated experimentally and numerically. • The Fano resonances were found on the compound nanostructure. • The results have potential applications in sensing and weak signal detection.

  4. A model for calculating the quantum potential for time-varying multi-slit systems

    CERN Document Server

    Bracken, P

    2003-01-01

    A model is proposed and applied to the single and double slit experiments. The model is designed to take into account a change in the experimental setup. This includes opening and closing the slits in some way, or by introducing some object which can be thought of as having a perturbing effect on the space-time background. The single and double slits could be closed simultaneously or one after the other in such a way as to transform from one arrangement to the other. The model consists in using modified free particle propagators in such a way that the required integrals for calculating the overall wave function can be calculated. It is supposed that these constants reflect the ambient structure as the experimental situation is modified, and might be calculable with regard to a more fundamental theory.

  5. Retrocausation acting in the single-electron double-slit interference experiment

    Science.gov (United States)

    Hokkyo, Noboru

    The single electron double-slit interference experiment is given a time-symmetric interpretation and visualization in terms of the intermediate amplitude of transition between the particle source and the detection point. It is seen that the retarded (causal) amplitude of the electron wave expanding from the source shows an advanced (retrocausal) bifurcation and merging in passing through the double-slit and converges towards the detection point as if guided by the advanced (retrocausal) wave from the detected electron. An experiment is proposed to confirm the causation-retrocausation symmetry of the electron behavior by observing the insensitivity of the interference pattern to non-magnetic obstacles placed in the shadows of the retarded and advanced waves appearing on the rear and front sides of the double-slit.

  6. Magneto-optic observation of anomalous Meissner current flow in superconducting thin films with slits

    International Nuclear Information System (INIS)

    Baziljevich, M.; Johansen, T.H.; Bratsberg, H.; Shen, Y.; Vase, P.

    1996-01-01

    Slits patterned into a YBa 2 Cu 3 O 7-δ thin film were observed to obstruct Meissner sheet currents leading to an imbalance in the local Meissner screening properties. The new phenomenon was studied with magneto-optic imaging where twin lobes of opposite flux polarity were seen to form near the slits and inside the Meissner region. The lobe closest to the sample edge is always polarized opposite to the applied field. At weak fields, the anomalous flux generation is reversible. At higher fields, but still sufficiently small to keep the vortex penetration front away from the slits, the anomalous current starts nucleating flux lines which become trapped when the field is removed. copyright 1996 American Institute of Physics

  7. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  8. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  9. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  10. Flexible PVC flame retarded with expandable graphite

    CSIR Research Space (South Africa)

    Focke, WW

    2014-02-01

    Full Text Available The utility of expandable graphite as a flame retardant for PVC, plasticized with 60 phr of a phosphate ester, was investigated. Cone calorimeter results, at a radiant flux of 35 kW m 2, revealed that adding only 5 wt.% expandable graphite lowered...

  11. Mechanical properties of graphite and carbon materials

    International Nuclear Information System (INIS)

    Jouquet, G.

    1976-01-01

    The elastic properties of the graphite monocrystal, the role of internal characteristics (texture, porosity) on the mechanical behavior of carbons, effects caused by the gaseous environment and neutron irradiation, and the resistance of graphites to cyclic mechanical stresses are discussed [fr

  12. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  13. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  14. Microstructural Characterization of Next Generation Nuclear Graphites

    Energy Technology Data Exchange (ETDEWEB)

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  15. Effects of air flow rate on the oxidation of NBG-18 and NBG-25 nuclear graphite

    Science.gov (United States)

    Chi, Se-Hwan; Chan Kim, Gen

    2017-08-01

    The effects of air flow rate (FR) (FR range: 1-10 L/min) on the oxidation of NBG-18 and NBG-25 nuclear graphite grades at temperatures between 600 and 1100 °C were studied, in reference to the standard test procedure for measuring oxidation rates of nuclear graphite in air (ASTM D 7542-09). The results showed that the FR effects on oxidation rate (OR) increase with increasing temperature with negligible FR effects at 600 °C for both materials. At high temperatures (>800 °C) there appears to be a two-stage relationship between FR and OR, which corresponds to the transition between reaction rates dominated by chemical kinetics and those dominated by diffusion. The material-specific microstructure appeared strongly influences this transition. The overall OR-FR behaviours of NBG-18 were higher than NBG-25 at 600-800 °C while negligible differences in the OR-FR behaviours between the two grades were observed at 900-1100 °C. The mercury porosimetry data showed that the higher OR-FR behaviours observed in NBG-18 may partly be attributed to the differences in the pore size distribution (open porosity and cumulative pore area) between the grades, especially for the large size pores (diameter ≫ 5 × 103 nm).

  16. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  17. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  18. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  19. The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-06-01

    Full Text Available The pore size distribution for the 23 fresh outcrop shale samples collected from Shuanghe Town and Changning County, as well as the 14 core samples collected from the Qianqian 1 core well in southeast Chongqing, Sichuan Basin were investigated by means of low-pressure nitrogen adsorption. The main factors controlling pore development and gas accumulation in shales were discussed by integrating total organic carbon (TOC, mineralogy, and shale gas content. The results showed that open, slit-like, and parallel plate structure are major pore types that posses an average pore diameter of 3.76–8.53 nm; chiefly 2–30 nm for mesopores. The BET surface area and total pore volume are high in the Wufeng Formation and in the lower part of the Longmaxi Formation, and it's a bit lower in the upper part of the Longmaxi Formation. Consistent with the trends of TOC, that organic matter is the key controlling factor in the shale pore development. In addition, samples with higher content of clay minerals, but comparative TOC content have a larger specific surface area where clay mineral hosted pores are present. The Wufeng Formation and lower part of the Longmaxi Formation in the Sichuan Basin are preferred layers of shale reservoir fracturing due to high TOC, high rock brittleness, and high gas content.

  20. The fracture of graphite; La rupture des graphites

    Energy Technology Data Exchange (ETDEWEB)

    Rouby, D. [Institut National des Sciences Appliquees (INSA), Groupe d' Etudes de Metallurgie Physique et de Physique des Materiaux, UMR CNRS 5510, 69 - Villeurbanne (France); Monchaux, St. [Institut National des Sciences Appliquees (INSA), Dept. Science et Genie des Materiaux, 69 - Villeurbanne (France); Tahon, B. [Laboratoire SGL Carbon SAS, 74 - Passy (France)

    2006-03-15

    By mechanical loading, the behaviour of poly-granular graphites for industrial uses is globally brittle: when a pre-existing flaw becomes critical a crack initiates and then propagates more or less catastrophically. This scheme implies several features which are described in the present paper. First, as the crack will be initiated at a critical flaw, the ultimate stress appears as largely dispersed and the strength is not an intrinsic material's parameter. Secondly, the processing route introduces in the material some microstructure anisotropy, largely influencing the strength dispersion. Finally, the crack propagation is controlled by a bridging mechanism of the lips which depends on the microstructure. This effect can be described by the so-called crack growth resistance curve: the R-curve. (authors)

  1. Short carbon fiber reinforced electrically conductive aromatic polydisulfide/expanded graphite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Song, L.N. [Guangzhou Institute of Chemistry, Chinese Academy of Sciences, P.O. Box 1122, Guangzhou 510650 (China); Xiao, M. [Institute of Energy and Environmental Materials, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Li, X.H. [Institute of Energy and Environmental Materials, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Meng, Y.Z. [Institute of Energy and Environmental Materials, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China) and Guangzhou Institute of Chemistry, Chinese Academy of Sciences, P.O. Box 1122, Guangzhou 510650 (China)]. E-mail: stdpmeng@zsu.edu.cn

    2005-09-15

    Expanded graphite (EG) was prepared by the exfoliation of expandable graphite under microwave irradiation. Aromatic polydisulfide/EG nanocomposites were then fabricated by absorbing cyclic (arylene disulfide) oligomers into the pores of EG. Subsequently, the nanocomposite precursor was hot-molded at 200 deg C to carry out simultaneously the in situ ring-opening polymerization of these oligomers via free radical mechanism. The resulting aromatic polydisulfide/EG nanocomposite exhibited a intercalated nanostructure as evidenced by transmission electron microscopy (TEM) observation. Short carbon fiber (SCF) was used to further reinforce aromatic polydisulfide/EG nanocomposites. Consequently, the ternary polydisulfide/EG/SCF nanocomposites showed superior mechanical properties and good electrical conductivity. The ternary nanocomposites can be used as electrically conductive materials to prepare the bipolar plates of polymer electrolyte membrane fuel cell.

  2. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung

    NARCIS (Netherlands)

    Wittgen, Bart P. H.; Kunst, Peter W. A.; van der Born, Kasper; van Wijk, Atie W.; Perkins, Walter; Pilkiewicz, Frank G.; Perez-Soler, Roman; Nicholson, Susan; Peters, Godefridus J.; Postmus, Pieter E.

    2007-01-01

    PURPOSE: To investigate the safety and pharmacokinetics of aerosolized Sustained Release Lipid Inhalation Targeting (SLIT) Cisplatin in patients with lung carcinoma. EXPERIMENTAL DESIGN: Phase I, dose-escalating study of SLIT Cisplatin given in two sessions daily. Safety data, including laboratory

  3. A High-Resolution Multi-Slit Phase Space Measurement Technique for Low-Emittance Beams

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J. C.T. [Fermilab; Piot, P. [Northern Illinois U.

    2012-07-25

    Precise measurement of transverse phase space of a high-brightness electron beamis of fundamental importance in modern accelerators and free-electron lasers. Often, the transverse phase space of a high-brightness, space-charge-dominated electron beam is measured using a multi-slit method. In this method, a transverse mask (slit/pepperpot) samples the beaminto a set of beamlets, which are then analyzed on to a screen downstream. The resolution in this method is limited by the type of screen used which is typically around 20 mum for a high-sensitivity Yttrium Aluminum Garnet screen. Accurate measurement of sub-micron transverse emittance using this method would require a long drift space between the multi-slit mask and observation screen. In this paper, we explore a variation of the technique that incorporates quadrupole magnets between the multi-slit mask and the screen. It is shown that this arrangement can improve the resolution of the transverse-phase-space measurement with in a short footprint.

  4. Nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology

    NARCIS (Netherlands)

    Dijkstra, Marcel; Berenschot, Johan W.; de Boer, Meint J.; van der Linden, H.J.; Hankemeier, T.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Elwenspoek, Michael Curt; Tas, Niels Roelof

    2012-01-01

    This article presents nano-slit electrospray emitters fabricated by a micro- to nanofluidic via technology. The main advantage of the technology is the ability to position freely suspended nanochannels anywhere on a microfluidic chip, where leak-tight delivery of fluid from a fluid reservoir can be

  5. Single- and double-slit collimating effects on fast-atom diffraction spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gravielle, M.S., E-mail: msilvia@iafe.uba.ar; Miraglia, J.E.

    2016-09-01

    Diffraction patterns produced by fast He atoms grazingly impinging on a LiF(0 0 1) surface are investigated focusing on the influence of the beam collimation. Single- and double-slit collimating devices situated in front of the beam source are considered. To describe the scattering process we use the Surface Initial Value Representation (SIVR) approximation, which is a semi-quantum approach that incorporates a realistic description of the initial wave packet in terms of the collimating parameters. Our initial wave-packet model is based on the Van Cittert–Zernike theorem. For a single-slit collimation the width of the collimating aperture controls the shape of the azimuthal angle distribution, making different interference mechanisms visible, while the length of the slit affects the polar angle distribution. Additionally, we found that by means of a double-slit collimation it might be possible to obtain a wide polar angle distribution, which is associated with a large spread of the initial momentum perpendicular to the surface, derived from the uncertainty principle. It might be used as a simple way to probe the surface potential for different normal energies.

  6. An analytical algorithm for skew-slit imaging geometry with nonuniform attenuation correction.

    Science.gov (United States)

    Huang, Qiu; Zeng, Gengsheng L

    2006-04-01

    The pinhole collimator is currently the collimator of choice in small animal single photon emission computed tomography (SPECT) imaging because it can provide high spatial resolution and reasonable sensitivity when the animal is placed very close to the pinhole. It is well known that if the collimator rotates around the object (e.g., a small animal) in a circular orbit to form a cone-beam imaging geometry with a planar trajectory, the acquired data are not sufficient for an exact artifact-free image reconstruction. In this paper a novel skew-slit collimator is mounted instead of the pinhole collimator in order to significantly reduce the image artifacts caused by the geometry. The skew-slit imaging geometry is a more generalized version of the pinhole imaging geometry. The multiple pinhole geometry can also be extended to the multiple-skew-slit geometry. An analytical algorithm for image reconstruction based on the tilted fan-beam inversion is developed with nonuniform attenuation compensation. Numerical simulation shows that the axial artifacts are evidently suppressed in the skew-slit images compared to the pinhole images and the attenuation correction is effective.

  7. Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons

    NARCIS (Netherlands)

    Jin, Fengping; Yuan, Shengjun; De Raedt, Hans; Michielsen, Kristel; Miyashita, Seiji

    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The

  8. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    OpenAIRE

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-01-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbon...

  9. Honeycomb-like graphitic ordered macroporous carbon prepared by pyrolysis of ammonium bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liancheng [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 (China); Zhang, Junhao, E-mail: jhzhang6@mail.ustc.edu.cn [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 (China); School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Xu, Liqiang; Qian, Yitai [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan, Shandong 250100 (China)

    2011-10-15

    Graphical abstract: Honeycomb-like graphitic macroporous carbon (HGMC) with big pores centered at 1-3 {mu}m, has been prepared by controlling the reaction temperature and amount of NH{sub 4}HCO{sub 3} at 550 {sup o}C in a sealed reaction system. Possible formation processes of HGMC are discussed on the experimental results. It is believed that the in situ formed MgO microparticles play a template role during the preparation of HGMC. Highlights: {yields} Honeycomb-like graphitic carbon was synthesized at 550 {sup o}C. {yields} The honeycomb-like graphitic carbon is macroposous structures. {yields} The formed MgO microparticles play a template role during the HGMC formation. {yields} The method can be expended to synthesize other porous or hollow carbon material. -- Abstract: Honeycomb-like graphitic macroporous carbon (HGMC) was synthesized by means of pyrolysis of NH{sub 4}HCO{sub 3} using Mg powder as reductant in an autoclave at 550 {sup o}C. The characterization of structure and morphology was carried out by X-ray diffraction (XRD), Raman spectrum, field-emission scanning electron microscopy (FESEM), and (High-resolution) transmission electron microscope [(HR)TEM]. The results of nitrogen adsorption-desorption indicate that the products are macropore materials with the pore size of 1-3 {mu}m, and the Brunauer-Emett-Teller (BET) surface area was 14 m{sup 2}/g. As a typical morphology, the possible growth process of HGMC was also investigated and discussed. The experimental results show that the in situ formed MgO microparticles play a template role during the HGMC formation.

  10. New methodology of preparation support for solid oxide fuel cells using different pore forming agent

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, Raigenis da P.; Guedes, Bruna C.F.; Silva, Marcos A. da; Carvalho, Luiz F.V. de; Boaventura, Jaime S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Pontes, Luiz A.M. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica

    2008-07-01

    The development of environment-friendly energy sources has been of the most important scientific and technological area. Solid oxide fuel cells (SOFC) are very promising alternative for their ability to handle renewable fuels with low emissions and high efficiency. However, this device requires massive improvement before commercial application. This work studies the pore formation in the cell anode and cathode with NaHCO{sub 3} or citric acid, comparing to graphite. The three agents make pore with similar features, but the use of NaHCO{sub 3} and citric acid considerably improves the adhesion of the electrode-electrolyte interface, critical characteristic for good cell efficiency. The prepared anode-electrolyte-cathode structure was studied by SEM technique. The SOFC prepared using citric acid was tested with gaseous ethanol, natural gas and hydrogen. For all these three fuels the SOFC shows virtually no overpotential, indicating the good ionic conductance of the electrodes-electrolyte interface.. (author)

  11. Exact solution of the discrete (1+1)-dimensional RSOS model in a slit with field and wall interactions

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2010-01-01

    We present the solution of a linear restricted solid-on-solid (RSOS) model confined to a slit. We include a field-like energy, which equivalently weights the area under the interface, and also include independent interaction terms with both walls. This model can also be mapped to a lattice polymer model of Motzkin paths in a slit interacting with both walls including an osmotic pressure. This work generalizes the previous work on the RSOS model in the half-plane which has a solution that was shown recently to exhibit a novel mathematical structure involving basic hypergeometric functions 3 φ 2 . Because of the mathematical relationship between the half-plane and slit this work hence effectively explores the underlying q-orthogonal polynomial structure to that solution. It also generalizes two other recent works: one on Dyck paths weighted with an osmotic pressure in a slit and another concerning Motzkin paths without an osmotic pressure term in a slit.

  12. Design and execution of double slits type straight caisson at exclusive harbors of Ooma nuclear power plant

    International Nuclear Information System (INIS)

    Tsukamoto, Kunihiro; Yamamoto, Morikuni; Naruoka, Masayoshi; Matsubara, Takayuki

    2004-01-01

    Ooma nuclear power plant is going to build the exclusive harbors, of which west breakwater is a double slits type straight caisson bank (double slits caisson). It contains double transmission walls and retarding rooms, which show large effect of breaker, because the reflected wave height of short-period component is decreased in the rear retarding room and one of long-period component decreased in both retarding rooms. Accordingly, it is seemed to be proved larger effect of breaker than one slit type caisson. Outline of harbors construction, adoption of double slits caisson, design of caisson, construction of caisson and installation are stated. The effect of breaker of double slits caisson is shown. (S.Y.)

  13. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    Science.gov (United States)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing

  14. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...... and still to realize Si-Si bonding. It has been demonstrated that ribbed silicon plates can be produced and assembled into stacks. All previously work has been done using uncoated Si plates. In this paper we describe how to coat the ribbed Si plates with an Ir coating and a top C coating through a mask so...

  15. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  16. Wet winter pore pressures in railway embankments

    OpenAIRE

    Briggs, Kevin M; Smethurst, Joel A; Powrie, William; O'Brien, Anthony S

    2013-01-01

    This paper demonstrates the influence of extreme wet winter weather on pore water pressures within clay fill railway embankments, using field monitoring data and numerical modelling. Piezometer readings taken across the London Underground Ltd network following the wet winter of 2000/2001 were examined, and showed occurrences of hydrostatic pore water pressure within embankments but also many readings below this. A correlation was found between the maximum pore water pressures and the permeabi...

  17. Slit molecules prevent entrance of trunk neural crest cells in developing gut.

    Science.gov (United States)

    Zuhdi, Nora; Ortega, Blanca; Giovannone, Dion; Ra, Hannah; Reyes, Michelle; Asención, Viviana; McNicoll, Ian; Ma, Le; de Bellard, Maria Elena

    2015-04-01

    Neural crest cells emerge from the dorsal neural tube early in development and give rise to sensory and sympathetic ganglia, adrenal cells, teeth, melanocytes and especially enteric nervous system. Several inhibitory molecules have been shown to play important roles in neural crest migration, among them are the chemorepulsive Slit1-3. It was known that Slits chemorepellants are expressed at the entry to the gut, and thus could play a role in the differential ability of vagal but not trunk neural crest cells to invade the gut and form enteric ganglia. Especially since trunk neural crest cells express Robo receptor while vagal do not. Thus, although we know that Robo mediates migration along the dorsal pathway in neural crest cells, we do not know if it is responsible in preventing their entry into the gut. The goal of this study was to further corroborate a role for Slit molecules in keeping trunk neural crest cells away from the gut. We observed that when we silenced Robo receptor in trunk neural crest, the sympathoadrenal (somites 18-24) were capable of invading gut mesenchyme in larger proportion than more rostral counterparts. The more rostral trunk neural crest tended not to migrate beyond the ventral aorta, suggesting that there are other repulsive molecules keeping them away from the gut. Interestingly, we also found that when we silenced Robo in sacral neural crest they did not wait for the arrival of vagal crest but entered the gut and migrated rostrally, suggesting that Slit molecules are the ones responsible for keeping them waiting at the hindgut mesenchyme. These combined results confirm that Slit molecules are responsible for keeping the timeliness of colonization of the gut by neural crest cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Powerful DMD-based light sources with a high throughput virtual slit

    Science.gov (United States)

    Hajian, Arsen R.; Gooding, Ed; Gunn, Thomas; Bradbury, Steven

    2016-02-01

    Many DMD-based programmable light sources consist of a white light source and a pair of spectrometers operating in subtractive mode. A DMD between the two spectrometers shapes the delivered spectrum. Since both spectrometers must (1) fit within a small volume, and (2) provide significant spectral resolution, a narrow intermediary slit is required. Another approach is to use a spectrometer designed around a High Throughput Virtual Slit, which enables higher spectral resolution than is achievable with conventional spectroscopy by manipulating the beam profile in pupil space. Conventional imaging spectrograph designs image the entrance slit onto the exit focal plane after dispersing the spectrum. Most often, near 1:1 imaging optics are used in order to optimize both entrance aperture and spectral resolution. This approach limits the spectral resolution to the product of the dispersion and the slit width. Achieving high spectral resolution in a compact instrument necessarily requires a narrow entrance slit, which limits instrumental throughput (étendue). By reshaping the pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane without altering the NA, typically delivering 5X or better spectral resolution than is achievable with a conventional design. This approach works equally well in DMD-based programmable light sources as in single stage spectrometers. Assuming a 5X improvement in étendue, a 500 W source can be replaced by a 100 W equivalent, creating a cooler, more efficient tunable light source with equal power density over the desired bandwidth without compromising output power.

  19. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation.

    Directory of Open Access Journals (Sweden)

    Andrew D Beggs

    2013-05-01

    Full Text Available Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.

  20. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China

    Science.gov (United States)

    Hou, Haihai; Shao, Longyi; Li, Yonghong; Li, Zhen; Zhang, Wenlong; Wen, Huaijun

    2018-03-01

    The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, low-temperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fractal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.

  1. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  2. Graphite Fluoride Fiber Composites For Heat Sinking

    Science.gov (United States)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1989-01-01

    Graphite fluoride fiber/polymer composite materials consist of graphite fluoride fibers in epoxy, polytetrafluoroethylene, or polyimide resin. Combines high electrical resistivity with high thermal conductivity and solves heat-transfer problems of many electrical systems. Commercially available in powder form, for use as dry lubricant or cathode material in lithium batteries. Produced by direct fluorination of graphite powder at temperature of 400 to 650 degree C. Applications include printed-circuit boards for high-density power electronics, insulators for magnetic-field cores like those found in alternators and transformers, substrates for thin-film resistors, and electrical-protection layers in aircraft de-icers.

  3. Synthesis of soluble graphite and graphene.

    Science.gov (United States)

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  4. Stable dispersions of polymer-coated graphitic nanoplatelets

    Science.gov (United States)

    Stankovich, Sasha (Inventor); Nguyen, Sonbinh T. (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  5. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    OpenAIRE

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  6. Optical motion control of maglev graphite.

    Science.gov (United States)

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  7. Large Scale Reduction of Graphite Oxide

    Data.gov (United States)

    National Aeronautics and Space Administration — This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction...

  8. Graphite Oxide and Aromatic Amines : Size Matters

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Calvaresi, Matteo; Diamanti, Evmorfi A. K.; Tsoufis, Theodoros; Gournis, Dimitrios; Rudolf, Petra; Zerbetto, Francesco

    2015-01-01

    Experimental and theoretical studies are performed in order to illuminate, for first time, the intercalation mechanism of polycyclic aromatic molecules into graphite oxide. Two representative molecules of this family, aniline and naphthalene amine are investigated. After intercalation, aniline

  9. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  10. Analysis of Picosecond Pulsed Laser Melted Graphite

    Science.gov (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  11. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  12. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  13. Immobilization of Rocky Flats Graphite Fines Residue

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report

  14. Poly (propylene carbonate)/exfoliated graphite nanocomposites ...

    Indian Academy of Sciences (India)

    propylene carbonate)/exfoliated graphite nanocomposites: selective adsorbent for the extraction and detection of gold(III). Sher Bahadar Khan Hadi M Marwani Jongchul Seo Esraa M Bakhsh Kalsoom Akhtar Dowan Kim Abdullah M Asiri. Volume 38 ...

  15. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  16. Automatic facial pore analysis system using multi-scale pore detection.

    Science.gov (United States)

    Sun, J Y; Kim, S W; Lee, S H; Choi, J E; Ko, S J

    2017-08-01

    As facial pore widening and its treatments have become common concerns in the beauty care field, the necessity for an objective pore-analyzing system has been increased. Conventional apparatuses lack in usability requiring strong light sources and a cumbersome photographing process, and they often yield unsatisfactory analysis results. This study was conducted to develop an image processing technique for automatic facial pore analysis. The proposed method detects facial pores using multi-scale detection and optimal scale selection scheme and then extracts pore-related features such as total area, average size, depth, and the number of pores. Facial photographs of 50 subjects were graded by two expert dermatologists, and correlation analyses between the features and clinical grading were conducted. We also compared our analysis result with those of conventional pore-analyzing devices. The number of large pores and the average pore size were highly correlated with the severity of pore enlargement. In comparison with the conventional devices, the proposed analysis system achieved better performance showing stronger correlation with the clinical grading. The proposed system is highly accurate and reliable for measuring the severity of skin pore enlargement. It can be suitably used for objective assessment of the pore tightening treatments. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Energy evaluations, graphite corrosion in Bugey I

    International Nuclear Information System (INIS)

    Brisbois, J.; Fiche, C.

    1967-01-01

    Bugey I presents a problem of radiolytic corrosion of the graphite by the CO 2 under pressure at high temperature. This report aims to evaluate the energy transferred to the gas by a Bugey I core cell, in normal operating conditions. The water, the carbon oxides and the hydrogen formed quantities are deduced as the consumed graphite and methane. Experimental studies are realized in parallel to validate the presented results. (A.L.B.)

  18. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  19. Intraocular light scatter, reflections, fluorescence and absorption: what we see in the slit lamp.

    Science.gov (United States)

    van den Berg, Thomas J T P

    2018-01-01

    Much knowledge has been collected over the past 20 years about light scattering in the eye- in particular in the eye lens- and its visual effect, called straylight. It is the purpose of this review to discuss how these insights can be applied to understanding the slit lamp image. The slit lamp image mainly results from back scattering, whereas the effects on vision result mainly from forward scatter. Forward scatter originates from particles of about wavelength size distributed throughout the lens. Most of the slit lamp image originates from small particle scatter (Rayleigh scatter). For a population of middle aged lenses it will be shown that both these scatter components remove around 10% of the light from the direct beam. For slit lamp observation close to the reflection angles, zones of discontinuity (Wasserspalten) at anterior and posterior parts of the lens show up as rough surface reflections. All these light scatter effects increase with age, but the correlations with age, and also between the different components, are weak. For retro-illumination imaging it will be argued that the density or opacity seen in areas of cortical or posterior subcapsular cataract show up because of light scattering, not because of light loss. NOTES: (1) Light scatter must not be confused with aberrations. Light penetrating the eye is divided into two parts: a relatively small part is scattered, and removed from the direct beam. Most of the light is not scattered, but continues as the direct beam. This non-scattered part is the basis for functional imaging, but its quality is under the control of aberrations. Aberrations deflect light mainly over small angles (light scatter is important because of the straylight effects over large angles (>1°), causing problems like glare and hazy vision. (2) The slit lamp image in older lenses and nuclear cataract is strongly influenced by absorption. However, this effect is greatly exaggerated by the light path lengths concerned. This

  20. Gas transport and subsoil pore characteristics

    DEFF Research Database (Denmark)

    Berisso, Feto Esimo; Schjønning, Per; Keller, Thomas

    2013-01-01

    Arrangements of elementary soil particles during soil deposition and subsequent biological and physical processes in long-term pedogenesis are expected to lead to anisotropy of the non-tilled subsoil pore system. Soil compaction by agricultural machinery is known to affect soil pore characteristi...

  1. Nuclear pore structure: warming up the core.

    Science.gov (United States)

    Harel, Amnon; Gruenbaum, Yosef

    2011-07-22

    Structural determination of the nuclear pore complex has been limited by the complexity and size of this cellular megalith. By taking advantage of exceptionally stable nucleoporins from the thermophilic fungus Chaetomium thermophilum, Amlacher et al. (2011) provide new insight into a core element of the nuclear pore scaffold. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Nano-porous carbide derived carbon with tunable pore size: synthesis and energy-related applications

    International Nuclear Information System (INIS)

    Gleb Yushin; John Chmiola; Ranjan K Dash; Elisabeth Hoffman; Michel Barsoum; Yury Gogotsi; Giovanna Laudisio; John E Fischer

    2005-01-01

    The large surface area and adjustable internal surface chemistry of porous carbons are attractive for a wide range of energy applications, including gas separation and storage, high power super-capacitors and lithium ion batteries. Major efforts in the field have been directed toward control of pore size, shape and uniformity, and total pore volume. Here we demonstrate that pore size can be precisely tuned with sub-Angstroms accuracy over a 0.5-3.0 nm range by preferentially removing metals from metal carbides. This is achieved by 'burning out' the metals (and metalloids) in halogen atmospheres at modest temperatures. The resulting carbide-derived carbon (CDC) retains the original shape of the carbide and shows linear reaction kinetics, allowing conversion of a carbide surface to a CDC layer of any thickness, including the entire monolith, film or particle. CDCs produced from binary and ternary carbides have been investigated, and specific surface areas (SSA) in excess of 2000 m 2 /g have been achieved. Pore size is determined by the structure and chemistry of the precursor, and by process parameters including temperature and composition of the reaction mixture. Most CDCs show smaller and more uniform pores when processed below 400-800 C, while larger and less uniform pores are found at 600-1200 C. Some CDCs (e.g. from B 4 C) have relatively broad pore size distributions, including meso-pores, even when processed at low temperatures. In contrast, other CDCs, e.g from SiC maintain a narrow distribution up to 1200 C. CDC microstructures become more ordered, evolving from amorphous to graphitic, with increasing process temperature. Other carbon forms, e.g. nano-tubes, onions, and nanocrystalline diamonds have also been obtained as CDC. The ability to fine tune the pore size, and independently to control the microstructure and surface termination, offers unique opportunities for parametric studies of gas sorption and desorption phenomena. Our recent studies show that

  3. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    L Rahmani; D Roubineau; S Cornet

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  4. Oxidizability and explosibility of pure graphite powder

    International Nuclear Information System (INIS)

    Rahmani, L.; Roubineau, D.; Cornet, S.

    2005-01-01

    Full text of publication follows: While graphite is widely considered a heat-resistant material, e.g. able to screen metallic shielding from thermal damage, and graphite powder is used as a fire extinguisher agent where water or carbon dioxide should not, it still can react with air and - being carbon - give forth a significant amount of heat. Whether this makes it a hazard in operations such as dismantling nuclear reactors that contain hundreds of tons of graphite, including a small percentage of powder, is a question that has to be answered, considering that dismantling implies the use of such potential fire initiators as thermal cutters and electrical equipment. For this reason EDF commissioned the Centre National de Prevention et Protection (CNPP) to carry out explosibility tests on unirradiated, nuclear grade (i.e. with about 100 ppm of impurities) graphite powder. CNPP tests were so designed as to simulate realistic conditions that might result from a severe mishap during a dismantling operation, such as the crash of heavy equipment on graphite blocks coupled with the bruise of a high power electrical cable. EDF-CNPP tests complement others, done either in Italy most notably on irradiated graphite dust contaminated with various pollutants, or in the UK where the ability of settled graphite dust to propagate an initial gas explosion into an adjacent volume was assessed. EDF-CNPP tests comprise two steps. Step one was intended to produce a qualitative understanding of how nuclear grade graphite behaves while heated in air. In a first series of experiments graphite samples were heated up to 900 C during two and a half hours and their mass loss measured: it was found that while fine powder is wholly oxidised, coarser powder and chunks retained about two thirds of their initial mass. Oxidation kinetics, as assessed by oven temperature shoot-up, begins at 580 C and is quite low, compared with that of iron powder. In a second series of experiments a graphite piece

  5. Measurement of the cleavage energy of graphite.

    Science.gov (United States)

    Wang, Wen; Dai, Shuyang; Li, Xide; Yang, Jiarui; Srolovitz, David J; Zheng, Quanshui

    2015-08-28

    The basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m(-2) for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitive to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m(-2), is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.

  6. FINGERPRINT MATCHING BASED ON PORE CENTROIDS

    Directory of Open Access Journals (Sweden)

    S. Malathi

    2011-05-01

    Full Text Available In recent years there has been exponential growth in the use of bio- metrics for user authentication applications. Automated Fingerprint Identification systems have become popular tool in many security and law enforcement applications. Most of these systems rely on minutiae (ridge ending and bifurcation features. With the advancement in sensor technology, high resolution fingerprint images (1000 dpi pro- vide micro level of features (pores that have proven to be useful fea- tures for identification. In this paper, we propose a new strategy for fingerprint matching based on pores by reliably extracting the pore features The extraction of pores is done by Marker Controlled Wa- tershed segmentation method and the centroids of each pore are con- sidered as feature vectors for matching of two fingerprint images. Experimental results shows that the proposed method has better per- formance with lower false rates and higher accuracy.

  7. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell

    Science.gov (United States)

    Lin, Jie; Chen, Long; Liu, Tong; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang

    2018-01-01

    This study is aimed at improving the electrochemical performance of electrode-supported solid oxide electrolysis cells (SOECs) by optimizing the pore structure of the supports. Two planar NiO-8 mol% yttria-stabilized zirconia supports are prepared, one by the phase-inversion tape casting, and the other by conventional tape casting method using graphite as the pore former. The former contains finger-like straight open large pores, while the latter contains randomly distributed and tortuous pores. The steam electrolysis of the cells with different microstructure cathode supports is measured. The cell supported on the cathode with straight pores shows a high current density of 1.42 A cm-2 and a H2 production rate of 9.89 mL (STP) cm-2 min-1 at 1.3 V and 50 vol % humidity and 750 °C, while the cell supported on the cathode with tortuous pores shows a current density of only 0.91 A cm-2 and a H2 production rate of 6.34 mL cm-2min-1. It is concluded that the introduction of large straight open pores into the cathode support allows fast gas phase transport and thus minimizes the concentration polarization. Furthermore, the straight pores could provide better access to the reaction site (the electrode functional layer), thereby reducing the activation polarization as well.

  8. Structural aspects of graphitic carbon modified SBA-15 mesoporous silica and biological interactions with red blood cells and plasma proteins.

    Science.gov (United States)

    Martinez, Diego S T; Damasceno, João Paulo V; Franqui, Lidiane S; Bettini, Jefferson; Mazali, Italo O; Strauss, Mathias

    2017-09-01

    Functional mesoporous materials have been worldwide studied for different applications. Mesoporous silicas are highlighted due to the synthetic possibilities for the preparation of such materials with different particle sizes and morphologies, and controlled pores sizes and structures. Moreover, the silica superficial silanol groups are explored in several chemical modifications, leading to functional materials with tuned functionalities and properties. In this work, an organo-functionalization and pyrolysis synthetic procedure is used to obtain graphitic carbon modified mesoporous SBA-15 silica. The carbon content was tuned during the functionalization step, and the graphitic nanodomains were formed in the pores surface and particles outer surface. Textural and small angle X-ray diffraction analysis accessed the presence of the carbon nanostructures inside the SBA-15 mesopores. Advanced microanalysis using electron energy loss spectroscopy coupled to a transmission electron microscope had confirmed the carbon distribution along the silica pores, which gives higher hydrophobicity and changed the interaction of the mesoporous material with biological systems. Finally, the influence of the surface modification with graphitic carbon species over the interaction with human red blood cells (hemolysis) and human blood plasma (protein corona formation) was elucidated for the very first time for this kind of functional materials. It was observed that the graphitic carbon species considerably reduced the hemolytic effect of the silica particles, and was responsible for modulating the loading and composition of the hard corona plasma proteins. This work deepness the fundamental knowledge on the interaction between such nanomaterials and biological systems, one step further the use of these modified silicas in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO{sub 2}-cooled reactors and for the decontamination of irradiated graphite waste

    Energy Technology Data Exchange (ETDEWEB)

    Le Guillou, M. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Agence nationale pour la gestion des déchets radioactifs, DRD/CM – 1-7, rue Jean Monnet, Parc de la Croix-Blanche, F-92298 Châtenay-Malabry cedex (France); Toulhoat, N., E-mail: nelly.toulhoat@univ-lyon1.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); CEA/DEN – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Pipon, Y. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire Technologique, Université Claude Bernard Lyon 1, Université de Lyon – 43, boulevard du 11 novembre 1918, F-69622 Villeurbanne cedex (France); Moncoffre, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon – 4, rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Khodja, H. [Laboratoire d’Etude des Eléments Légers, CEA/DSM/IRAMIS/NIMBE, UMR 3299 SIS2M – Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-06-15

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO{sub 2}-cooled nuclear fission reactors (called UNGG for “Uranium Naturel-Graphite-Gaz”) to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D{sup +} ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO{sub 2}) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the

  10. Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO2-cooled reactors and for the decontamination of irradiated graphite waste

    Science.gov (United States)

    Le Guillou, M.; Toulhoat, N.; Pipon, Y.; Moncoffre, N.; Khodja, H.

    2015-06-01

    In this paper, we aim at understanding tritium behavior in the graphite moderator of French CO2-cooled nuclear fission reactors (called UNGG for "Uranium Naturel-Graphite-Gaz") to get information on its distribution and inventory in the irradiated graphite waste after their dismantling. These findings should be useful both to improve waste treatment processes and to foresee tritium behavior during reactor decommissioning and waste disposal operations. The purpose of the present work is to elucidate the effects of temperature on the behavior of tritium during reactor operation. Furthermore, it aims at exploring options of thermal decontamination. For both purposes, annealing experiments were carried out in inert atmosphere as well as in thermal conditions as close as possible to those encountered in UNGG reactors and in view of a potential decontamination in humid gas. D+ ions were implanted into virgin nuclear graphite in order to simulate tritium displaced from its original structural site through recoil during reactor operation. The effect of thermal treatments on the mobility of the implanted deuterium was then investigated at temperatures ranging from 200 to 1200 °C, in inert atmosphere (vacuum or argon), in a gas simulating the UNGG coolant gas (mainly CO2) or in humid nitrogen. Deuterium was analyzed by Nuclear Reaction Analysis (NRA) both at millimetric and micrometric scales. We have identified three main stages for the deuterium release. The first one corresponds to deuterium permeation through graphite open pores. The second and third ones are controlled by the progressive detrapping of deuterium located at different trapping sites and its successive migration through the crystallites and along crystallites and coke grains edges. Extrapolating the thermal behavior of deuterium to tritium, the results show that the release becomes significant above the maximum UNGG reactor temperature of 500 °C and should be lower than 30% of the total amount produced

  11. Development and exploitation of the slit method for the characterization of x-ray screen-film combinations

    International Nuclear Information System (INIS)

    Hoeschen, D.

    1987-01-01

    For the determination of the modulation transfer function (MTF) of screen-film combinations which are used in medical x-ray diagnostics a measuring method has been developed: the screen-film combination is exposed to x-rays behind a thin slit and the modulation transfer function is calculated from the resulting rather broad slit images on the film. After solving many technical and photographic problems, the slit method provides high precision in the MTF determination. The only objection against this method is the necessary high dose variation which has to be provided by the x-ray machine

  12. Near-field beam focusing by a single bare subwavelength metal slit with the high-index transmission space.

    Science.gov (United States)

    Guo, Yan; Zhao, Bo; Yang, Jianjun

    2013-06-17

    We theoretically demonstrate that a single bare subwavelength metal slit without any surrounding corrugations can have a capability to steer the incident light into focusing patterns by introducing a high index in the transmission half-space. The focusing properties are identified to depend on both the slit width and the output permittivity. The underlying physics lies in the interference of quasi-cylindrical waves scattered from the slit, and our proposed model agrees well with the simulation results. This finding is believed to inspire some novel ideas for the nano-optics design.

  13. Experimental triple-slit interference in a strongly driven V-type artificial atom

    Science.gov (United States)

    Dada, Adetunmise C.; Santana, Ted S.; Koutroumanis, Antonios; Ma, Yong; Park, Suk-In; Song, Jindong; Gerardot, Brian D.

    2017-08-01

    Rabi oscillations of a two-level atom appear as a quantum interference effect between the amplitudes associated with atomic superpositions, in analogy with the classic double-slit experiment which manifests a sinusoidal interference pattern. By extension, through direct detection of time-resolved resonance fluorescence from a quantum-dot neutral exciton driven in the Rabi regime, we experimentally demonstrate triple-slit-type quantum interference via quantum erasure in a V-type three-level artificial atom. This result is of fundamental interest in the experimental studies of the properties of V-type three-level systems and may pave the way for further insight into their coherence properties as well as applications for quantum information schemes. It also suggests quantum dots as candidates for multipath-interference experiments for probing foundational concepts in quantum physics.

  14. A molecular theory for predicting the thermodynamic efficiency of electrokinetic energy conversion in slit nanochannels

    Science.gov (United States)

    Hu, Xiaoyu; Kong, Xian; Lu, Diannan; Wu, Jianzhong

    2018-02-01

    The classical density functional theory is incorporated with the Stokes equation to examine the thermodynamic efficiency of pressure-driven electrokinetic energy conversion in slit nanochannels. Different from previous mean-field predictions, but in good agreement with recent experiments, the molecular theory indicates that the thermodynamic efficiency may not be linearly correlated with the channel size or the electrolyte concentration. For a given electrolyte, an optimal slit nanochannel size and ion concentration can be identified to maximize both the electrical current and the thermodynamic efficiency. The optimal conditions are sensitive to a large number of parameters including ion diameters, valences, electrolyte concentration, channel size, and the valence- and size-asymmetry of oppositely charged ionic species. The theoretical results offer fresh insights into pressure-driven current generation processes and are helpful guidelines for the design of apparatus for the electrokinetic energy conversion.

  15. Implementation of rectangular slit-inserted ultra-wideband tapered slot antenna.

    Science.gov (United States)

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a tapered slot antenna capable of ultra-wideband communication was designed. In the proposed antenna, rectangular slits were inserted to enhance the bandwidth and reduce the area of the antenna. The rectangular slit-inserted tapered slot antenna operated at a bandwidth of 8.45 GHz, and the bandwidth improved upon the basic tapered slot antenna by 4.72 GHz. The radiation pattern of the antenna was suitable for location recognition in a certain direction owing to an appropriate 3 dB beam width. The antenna gain was analyzed within the proposed bandwidth, and the highest gain characteristic at 7.55 dBi was exhibited at a 5-GHz band. The simulation and measurement results of the proposed tapered slot antenna were similar.

  16. Numerical simulation of thermoacoustic response of laboratory scale premixed multi-slit burner flames

    Science.gov (United States)

    O'Brien, Adam

    Thermoacoustic instabilities are an entirely unwanted, yet nearly inevitable phenomenon occurring in many practical premixed combustors. If not properly accounted and designed for, they can incur significant increases in the development combustion systems. The fact that such unexpected issues are encountered is indicative of a fundamental lack of understanding regarding the mechanisms that drive thermoacoustic phenomena. Numerical techniques are used to characterize the thermoacoustic response of premixed multi-slit bunsen burner flames. A symmetrical representation of the multi-slit burner is used, and the transfer function is computed at several different frequencies and at three different equivalence ratios. The numerical results are then compared against experimental results in order to determine the suitability of numerical techniques for studying thermoacoustics. A fully compressible Navier-Stokes combustion solver is used in conjunction with adaptive mesh refinement (AMR) for improved resolution at the flame interface.

  17. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther

    2015-01-01

    even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes......¨dinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can...... not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics....

  18. Lyriform slit sense organs on the pedipalps and spinnerets of spiders

    Indian Academy of Sciences (India)

    Madhu

    31(1), March 2006. Figure 2. Photomicrographs of lyriform slit sense organs on the pedipalps of spiders. (a) Type B3 LSSO (Fe 1 in figure 3e) on the femur of Stegodyphus sarasinorum located at the joint. (b) Type B1 LSSO (Pa 3 in figure 3f) on the patella of Cyrtophora cicatrosa. (c) Trochanter of Pardosa sp. showing a type ...

  19. A new non intercepting beam size diagnostics using diffraction radiation from a Slit

    International Nuclear Information System (INIS)

    Castellano, M.

    1996-09-01

    A new non interpreting beam size diagnostic for high charge electron beams is presented. This diagnostics is based on the analysis of the angular distribution of the 'diffracted' transition radiation emitted by the beam when crossing a slit cut in metallic foil. It allows a resolution better then the radiation transverse formation zone. Numerical results based on the parameters of the TTF FEL beam are given as example

  20. Potential of Lactobacillus curvatus LFC1 to produce slits in Cheddar cheese.

    Science.gov (United States)

    Porcellato, D; Johnson, M E; Houck, K; Skeie, S B; Mills, D A; Kalanetra, K M; Steele, J L

    2015-08-01

    Defects in Cheddar cheese resulting from undesired gas production are a sporadic problem that results in significant financial losses in the cheese industry. In this study, we evaluate the potential of a facultatively heterofermentative lactobacilli, Lactobacillus curvatus LFC1, to produce slits, a gas related defect in Cheddar cheese. The addition of Lb. curvatus LFC1 to cheese milk at log 3 CFU/ml resulted in the development of small slits during the first month of ripening. Chemical analyses indicated that the LFC1 containing cheeses had less galactose and higher levels of lactate and acetate than the control cheeses. The composition the cheese microbiota was examined through a combination of two culture independent approaches, 16S rRNA marker gene sequencing and automated ribosomal intergenic spacer analysis; the results indicated that no known gas producers were present and that high levels of LFC1 was the only significant difference between the cheese microbiotas. A ripening cheese model system was utilized to examine the metabolism of LFC1 under conditions similar to those present in cheeses that exhibited the slit defect. The combined cheese and model system results indicate that when Lb. curvatus LFC1 was added to the cheese milk at log 3 CFU/ml it metabolized galactose to lactate, acetate, and CO2. For production of sufficient CO2 to result in the formation of slits there needs to be sufficient galactose and Lb. curvatus LFC1 present in the cheese matrix. To our knowledge, facultatively heterofermentative lactobacilli have not previously been demonstrated to result in gas-related cheese defects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma

    OpenAIRE

    Marko, Tracy A.; Shamsan, Ghaidan A.; Edwards, Elizabeth N.; Hazelton, Paige E.; Rathe, Susan K.; Cornax, Ingrid; Overn, Paula R.; Varshney, Jyotika; Diessner, Brandon J.; Moriarity, Branden S.; O?Sullivan, M. Gerard; Odde, David J.; Largaespada, David A.

    2016-01-01

    Osteosarcoma is the most common primary bone tumor, with metastatic disease responsible for most treatment failure and patient death. A forward genetic screen utilizing Sleeping Beauty mutagenesis in mice previously identified potential genetic drivers of osteosarcoma metastasis, including Slit-Robo GTPase-Activating Protein 2 (Srgap2). This study evaluates the potential role of SRGAP2 in metastases-associated properties of osteosarcoma cell lines through Srgap2 knockout via the CRISPR/Cas9 n...

  2. A new non intercepting beam size diagnostics using diffraction radiation from a Slit

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati

    1996-09-01

    A new non interpreting beam size diagnostic for high charge electron beams is presented. This diagnostics is based on the analysis of the angular distribution of the `diffracted` transition radiation emitted by the beam when crossing a slit cut in metallic foil. It allows a resolution better then the radiation transverse formation zone. Numerical results based on the parameters of the TTF FEL beam are given as example.

  3. Natural and synthetic graphite powders: production and main industrial uses; Graphites naturels et synthetiques pulverulents

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, H.A. [Timcal Graphite et Carton, CH (Switzerland); L' heureux, J. [Timcal Graphite et Carton, Quebec (Canada)

    2006-03-15

    Large volumes of natural and synthetic graphite powders are yearly used worldwide in applications as different as alkaline and lithium-ion batteries, refractory, lubricant and carbon brushes for instance... After a short description of the conventional processes used to obtain these powders, the role of graphite material into chosen applications is detailed. (authors)

  4. Experimental and numerical investigation of the acoustic response of multi-slit Bunsen burners

    Energy Technology Data Exchange (ETDEWEB)

    Kornilov, V.N.; de Goey, L.P.H. [Department of Mechanical Engineering, Combustion Technology Group, TU/e, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rook, R.; ten Thije Boonkkamp, J.H.M. [Department of Mathematics and Computer Science, Scientific Computing Group, TU/e, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2009-10-15

    Experimental and numerical techniques to characterize the response of premixed methane-air flames to acoustic waves are discussed and applied to a multi-slit Bunsen burner. The steady flame shape, flame front kinematics and flow field of acoustically exited flames, as well as the flame transfer function and matrix are computed. The numerical results are compared with experiments. The influence of changes in the mean flow velocity, mixture equivalence ratio, slit width and distance between the slits on the transfer function is studied, both numerically and experimentally. Good agreement is found which indicates the suitability of both the experimental and numerical approach and shows the importance of predicting the influence of the flow on the flame and vice versa. On the basis of the results obtained, the role and physical nature of convective flow structures, heat transfer between the flame and burner plate and interaction between adjacent flames are discussed. Suggestions for analytical models of premixed flame-acoustics interaction are formulated. (author)

  5. Computed tomography contrast media extravasation: treatment algorithm and immediate treatment by squeezing with multiple slit incisions.

    Science.gov (United States)

    Kim, Sue Min; Cook, Kyung Hoon; Lee, Il Jae; Park, Dong Ha; Park, Myong Chul

    2017-04-01

    In our hospital, an adverse event reporting system was initiated that alerts the plastic surgery department immediately after suspecting contrast media extravasation injury. This system is particularly important for a large volume of extravasation during power injector use. Between March 2011 and May 2015, a retrospective chart review was performed on all patients experiencing contrast media extravasation while being treated at our hospital. Immediate treatment by squeezing with multiple slit incisions was conducted for a portion of these patients. Eighty cases of extravasation were reported from approximately 218 000 computed tomography scans. The expected extravasation volume was larger than 50 ml, or severe pressure was felt on the affected limb in 23 patients. They were treated with multiple slit incisions followed by squeezing. Oedema of the affected limb disappeared after 1-2 hours after treatment, and the skin incisions healed within a week. We propose a set of guidelines for the initial management of contrast media extravasation injuries for a timely intervention. For large-volume extravasation cases, immediate management with multiple slit incisions is safe and effective in reducing the swelling quickly, preventing patient discomfort and decreasing skin and soft tissue problems. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph

    Science.gov (United States)

    Calcines, A.; López, R. L.; Collados, M.

    2013-09-01

    Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.

  7. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays.

    Science.gov (United States)

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W; Tolstova, Yulia; Mauser, Kelly W; Atwater, Harry A

    2016-08-08

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm(-1), corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

  8. EEL Calculations and Measurements of Graphite and Graphitic-CNx Core-Losses

    International Nuclear Information System (INIS)

    Seepujak, A; Bangert, U; Harvey, A J; Blank, V D; Kulnitskiy, B A; Batov, D V

    2006-01-01

    Core EEL spectra of MWCNTs (multi-wall carbon nanotubes) grown in a nitrogen atmosphere were acquired utilising a dedicated STEM equipped with a Gatan Enfina system. Splitting of the carbon K-edge π* resonance into two peaks provided evidence of two nondegenerate carbon bonding states. In order to confirm the presence of a CN x bonding state, a full-potential linearised augmented plane-wave method was utilised to simulate core EEL spectra of graphite and graphitic-CN x compounds. The simulations confirmed splitting of the carbon K-edge π* resonance in graphitic-CN x materials, with the pristine graphite π* resonance remaining unsplit. The simulations also confirmed the increasing degree of amorphicity with higher concentrations (25%) of substitutional nitrogen in graphite

  9. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  10. Graphite matrix materials for nuclear waste isolation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  11. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  12. Enlarged facial pores: an update on treatments.

    Science.gov (United States)

    Dong, Joanna; Lanoue, Julien; Goldenberg, Gary

    2016-07-01

    Enlarged facial pores remain a common dermatologic and cosmetic concern from acne and rosacea, among other conditions, that is difficult to treat due to the multifactorial nature of their pathogenesis and negative impact on patients' quality of life. Enlarged facial pores are primarily treated through addressing associative factors, such as increased sebum production and cutaneous aging. We review the current treatment modalities for enlarged or dense facial pores, including topical retinoids, chemical peels, oral antiandrogens, and lasers and devices, with a focus on newer therapies.

  13. Particle diffusion in complex nanoscale pore networks

    DEFF Research Database (Denmark)

    Müter, Dirk; Sørensen, Henning Osholm; Bock, H.

    2015-01-01

    We studied the diffusion of particles in the highly irregular pore networks of chalk, a very fine-grained rock, by combining three-dimensional X-ray imaging and dissipative particle dynamics (DPD) simulations. X-ray imaging data were collected at 25 nm voxel dimension for two chalk samples...... with very different porosities (4% and 26%). The three-dimensional pore systems derived from the tomograms were imported into DPD simulations and filled with spherical particles of variable diameter and with an optional attractive interaction to the pore surfaces. We found that diffusion significantly...

  14. Control of pore size in epoxy systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow (North Dakota State University, Fargo, ND); Lee, Elizabeth (North Dakota State University, Fargo, ND); Kallam, Alekhya (North Dakota State University, Fargo, ND); Majumdar, Partha (North Dakota State University, Fargo, ND); Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J. (North Dakota State University, Fargo, ND); Celina, Mathias C.; Bahr, James (North Dakota State University, Fargo, ND); Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  15. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.

    Science.gov (United States)

    Peng, Chengxin; Wen, Zubiao; Qin, Yao; Schmidt-Mende, Lukas; Li, Chongzhong; Yang, Shihe; Shi, Donglu; Yang, Jinhu

    2014-03-01

    Three-dimensional nanoporous carbon with interconnected vesicle-like pores (1.5-4.2 nm) has been prepared through a low-cost, template-free approach from petroleum coke precursor by KOH activation. It is found that the thin pore walls are highly graphitized and consist of only three to four layers of graphene, which endows the material with an unusually high specific surface area (2933 m(2)  g(-1) ) and good conductivity. With such unique structural characteristics, if used as supercapacitor electrodes in ionic liquid (IL) electrolytes, the graphitized carbon nanovesicle (GCNV) material displays superior performance, such as high energy densities up to 145.9 Wh kg(-1) and a high combined energy-power delivery, and an energy density of 97.6 Wh kg(-1) can be charged in 47 s at 60 °C. This demonstrates that the energy output of the GCNV-based supercapacitors is comparable to that of batteries, and the power output is one order of magnitude higher. Moreover, the synergistic effect of the GCNVs and the IL electrolyte on the extraordinary performance of the GCNV supercapacitors has been analyzed and discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yifeng; Du, Juan; Liu, Lei; Wang, Guoxu; Zhang, Hongliang; Chen, Aibing, E-mail: chen-ab@163.com [Hebei University of Science and Technology, College of Chemical and Pharmaceutical Engineering (China)

    2017-03-15

    Porous carbon monoliths have attracted great interest in many fields due to their easy availability, large specific surface area, desirable electronic conductivity, and tunable pore structure. In this work, hierarchical porous nitrogen-doped partial graphitized carbon monoliths (N–MC–Fe) with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron salts as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method. In the reactant system, hexamethylenetetramine (HMT) is used as nitrogen source and one of the carbon precursors under hydrothermal conditions instead of using toxic formaldehyde. The N–MC–Fe show hierarchically porous structures, with interconnected macroporous and ordered hexagonally arranged mesoporous. Nitrogen element is in situ doped into carbon through decomposition of HMT. Iron catalyst is helpful to improve the graphitization degree and pore volume of N–MC–Fe. The synthesis strategy is user-friendly, cost-effective, and can be easily scaled up for production. As supercapacitors, the N–MC–Fe show good capacity with high specific capacitance and good electrochemical stability.

  17. A study of damage zones or characteristic lengths as related to the fracture behavior of graphite/epoxy laminates

    Science.gov (United States)

    Yeow, Y. T.; Brinson, H. F.

    1977-01-01

    Uniaxial tensile tests conducted on a variety of graphite/epoxy laminates, containing narrow rectangular slits, square or circular holes with various aspect ratios are discussed. The techniques used to study stable crack or damage zone growth--namely, birefringence coatings, COD gages, and microscopic observations are discussed. Initial and final fracture modes are discussed as well as the effect of notch size and shape, and laminate type on the fracture process. Characteristic lengths are calculated and compared to each other using the point, average and inherent flaw theories. Fracture toughnesses are calculated by the same theories and compared to a boundary integral equation technique. Finite width K-calibration factors are also discussed.

  18. Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System

    Science.gov (United States)

    Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.

    2017-12-01

    The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.

  19. Clinical and immunological responses of dust mite sensitive, atopic dogs to treatment with sublingual immunotherapy (SLIT).

    Science.gov (United States)

    DeBoer, Douglas J; Verbrugge, Maria; Morris, Mary

    2016-04-01

    Sublingual immunotherapy (SLIT) has been reported to be beneficial in people with atopic dermatitis (AD) and dust mite sensitivity. Evaluation of this therapy has not been reported in spontaneous canine AD. The objective of this study was to preliminarily evaluate the effectiveness of an established SLIT protocol, as used in human patients, in dogs with AD. Ten dust mite sensitive dogs with spontaneous AD. Dogs underwent a 6 month open trial of SLIT concurrently with decreasing dose oral methylprednisolone. Clinical evaluations and quantitative serum anti-mite IgE and IgG levels were performed every 2 months. Mean methylprednisolone use from the first 2 months of the study to the final 2 months declined from 10.2 to 4.3 mg/kg/2 months (P < 0.001, Student's paired t-test); at 6 months, four dogs required no oral corticosteroid administration. Over the course of the study, median Canine Atopic Dermatitis Extent and Severity Index (CADESI)-03 scores declined from 76.5 to 59; median pruritus scores declined from 65 to 37 (P < 0.02 and P < 0.01, respectively; Wilcoxon signed-rank test). Pre- and post-SLIT intradermal test scores for mite allergen were not significantly different over time. Median Dermatophagoides farinae (DF)-specific IgE levels declined significantly from 150.2 × 10(3) AU/mL to 3.6 × 10(3) AU/mL (P < 0.05). Concurrently, median DF-specific IgG levels increased from 18.5 × 10(6) AU/mL to 3923.4 × 10(6) AU/mL (P < 0.05; Wilcoxon signed-rank tests). SLIT treatment produced clinical improvement in dogs with dust mite-associated AD and was associated with serological changes supporting this improvement. Further studies in larger numbers of dogs and those with polysensitization are warranted. © 2016 ESVD and ACVD.

  20. Flow and Aggregation of Rod-like Proteins in Slit and Cylindrical Pores Coated with Polymer Brushes: An Insight from Dissipative Particle Dynamics.

    Czech Academy of Sciences Publication Activity Database

    Posel, Zbyšek; Svoboda, Martin; Colina, C.M.; Lísal, Martin

    2017-01-01

    Roč. 13, č. 8 (2017), s. 1634-1645 ISSN 1744-683X R&D Projects: GA ČR GA13-09914S Institutional support: RVO:67985858 Keywords : chains * dendrimers * glycoproteins Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.889, year: 2016

  1. Partitioning of star branched polymers into pores at three chromatography conditions.

    Science.gov (United States)

    Wang, Yongmei; Masur, Aaron; Zhu, Yutian; Ziebarth, Jesse

    2010-09-24

    The partitioning of star branched polymers into a slit pore at three different chromatography conditions, namely, size exclusion chromatography (SEC), liquid chromatography at the critical condition (LCCC), and liquid adsorption chromatography (LAC) have been investigated with lattice Monte Carlo simulations. Two different chain models are used: random walks (RW) that have no excluded volume interaction and self-avoiding walks (SAW) that have excluded volume interaction. The simulation data obtained for the two chain models are compared to illustrate the effect of excluded volume interactions on the partitioning of star branched polymers. The two most outstanding effects observed due to the introduction of excluded volume interactions are: (i) stars with a high number of arms can be excluded from the pore at condition corresponding to the LCCC of the linear polymers; (ii) the partition coefficient of stars in LAC mode is not dependent only on the total number of monomers on the chain. These effects illustrated by the current study should be taken into account when interpreting experimental chromatography data for branched polymers. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Water imbibition by mica pores: what happens when capillary flow is suppressed?

    Science.gov (United States)

    Fang, Chao; Qiao, Rui

    2017-11-01

    The imbibition of liquids into porous media plays a critical role in numerous applications. Most prior studies focused on imbibition driven by capillary flows. In this work, we study the imbibition of water into slit-shaped mica pores filled with pressurized methane using molecular simulations. Despite that capillary flow is suppressed by the high gas pressure, water is imbibed into the pore as monolayer liquid films. Since the classical hydrodynamic flow is not readily applicable for the monolayer water film propagating on the mica wall and the imbibition is driven by the strong affinity of water molecules to the mica walls, the observed imbibition is best taken as surface hydration. We show that the dynamics of water's imbibition front follows a simple diffusive scaling law. The effective diffusion coefficient of the imbibition front, however, is more than ten times larger than the diffusion coefficient of the water molecules in the water film adsorbed on the mica walls. Using a molecular theory originally developed for the spreading of monolayer films on solid substrates, we clarify the mechanism underlying the rapid water imbibition observed here.

  3. Sublingual immunotherapy (SLIT – indications, mechanism, and efficacy Position paper prepared by the Section of Immunotherapy, Polish Society of Allergy

    Directory of Open Access Journals (Sweden)

    Marek Jutel

    2015-12-01

    Full Text Available SLIT ( sublingual immunotherapy induces allergen-specific immune tolerance by sublingual administration of a gradually increasing dose of an allergen. The mechanism of SLIT is comparable to those during SCIT (subcutaneous immunotherapy, with the exception of local oral dendritic cells, pre-programmed to elicit tolerance. In the SLIT dose, to achieve the same efficacy as in SCIT, it should be 50–100 times higher with better safety profile. The highest quality evidence supporting the efficacy of SLIT lasting 1 – 3 years has been provided by the large scale double-blind, placebo-controlled (DBPC trials for grass pollen extracts, both in children and adults with allergic rhinitis. Current indications for SLIT are allergic rhinitis (and conjunctivitis in both children and adults sensitized to pollen allergens (trees, grass, Parietaria , house dust mites ( Dermatophagoides pteronyssinus, Dermatophagoides farinae , cat fur, as well as mild to moderate controlled atopic asthma in children sensitized to house dust mites. There are positive findings for both asthma and new sensitization prevention. Severe adverse events, including anaphylaxis, are very rare, and no fatalities have been reported. Local adverse reactions develop in up to 70 – 80% of patients. Risk factors for SLIT adverse events have not been clearly identified. Risk factors of non-adherence to treatment might be dependent on the patient, disease treatment, physician-patient relationship, and variables in the health care system organization.

  4. Sublingual immunotherapy (SLIT)--indications, mechanism, and efficacy: Position paper prepared by the Section of Immunotherapy, Polish Society of Allergy.

    Science.gov (United States)

    Jutel, Marek; Bartkowiak-Emeryk, Małgorzata; Bręborowicz, Anna; Cichocka-Jarosz, Ewa; Emeryk, Andrzej; Gawlik, Radosław; Gonerko, Paweł; Rogala, Barbara; Nowak-Węgrzyn, Anna; Samoliński, Bolesław

    2016-03-23

    SLIT (sublingual immunotherapy,) induces allergen-specific immune tolerance by sublingual administration of a gradually increasing dose of an allergen. The mechanism of SLIT is comparable to those during SCIT (subcutaneous immunotherapy), with the exception of local oral dendritic cells, pre-programmed to elicit tolerance. In the SLIT dose, to achieve the same efficacy as in SCIT, it should be 50-100 times higher with better safety profile. The highest quality evidence supporting the efficacy of SLIT lasting 1-3 years has been provided by the large scale double-blind, placebo-controlled (DBPC) trials for grass pollen extracts, both in children and adults with allergic rhinitis. Current indications for SLIT are allergic rhinitis (and conjunctivitis) in both children and adults sensitized to pollen allergens (trees, grass, Parietaria), house dust mites (Dermatophagoides pteronyssinus, Dermatophagoides farinae), cat fur, as well as mild to moderate controlled atopic asthma in children sensitized to house dust mites. There are positive findings for both asthma and new sensitization prevention. Severe adverse events, including anaphylaxis, are very rare, and no fatalities have been reported. Local adverse reactions develop in up to 70 - 80% of patients. Risk factors for SLIT adverse events have not been clearly identified. Risk factors of non-adherence to treatment might be dependent on the patient, disease treatment, physician-patient relationship, and variables in the health care system organization.

  5. Estimation of pore pressure from seismic velocities

    International Nuclear Information System (INIS)

    Perez, Zayra; Ojeda, German Y; Mateus, Darwin

    2009-01-01

    On pore pressure calculations it is common to obtain a profile in a well bore, which is then extrapolated toward offset wells. This practice might generate mistakes on pore pressure measurements, since geological conditions may change from a well bore to another, even into the same basin. Therefore, it is important to use other tools which allow engineers not only to detect and estimate in an indirect way overpressure zones, but also to keep a lateral tracking of possible changes that may affect those values in the different formations. Taking into account this situation, we applied a methodology that estimates formation pressure from 3D seismic velocities by using the Eaton method. First, we estimated formation pore pressure; then, we identified possible overpressure zones. Finally, those results obtained from seismic information were analyzed involving well logs and pore pressure tests, in order to compare real data with prediction based on seismic information from the Colombian foothill.

  6. Block copolymer structures in nano-pores

    Science.gov (United States)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  7. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  8. Distribution of fission products in graphite sleeves and blocks of the eleventh and twelfth OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Fukuda, Kousaku; Kikuchi, Teruo; Tsuruta, Harumichi.

    1994-06-01

    The 11th and 12th fuel assemblies were irradiated in an in-pile gas loop, OGL-1, installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Distribution of fission products in the graphite sleeves and blocks of the assemblies was measured by gamma-ray spectrometry. The 11th fuel assembly was aimed at testing the irradiation performance of mass product fuels in trial manufacturing of the first charge fuel for the High Temperature Engineering Test Reactor (HTTR) in relatively short irradiation, and the 12th assembly in long-term irradiation. The 12th assembly attained a burnup approximately as high as that of the HTTR driver fuel design. In the graphite sleeve of the 11th assembly, high concentration peaks of fission products were found in the axial distribution. Exposure of failed fuel particles was not detected on the surface of fuel compacts, while fissures of graphite matrix at overcoat boundaries were observed on the surface. These results led to a presumption that fission products, which were released from failed particles located inside of the fuel compact, was easily transported through the fissures of the matrix to the inner surface of the sleeve. In the graphite sleeve of the 12th assembly, 110m Ag was detected together with other fission products of 137 Cs, 134 Cs etc. Silver-110m showed characteristic distribution: this nuclides was less concentrated at the region with highly concentrated 60 Co which is presumed to have been transported from melted sheath material of thermocouples to the graphite sleeve. It was inferred from the distribution that the transport behavior of 110m Ag had been influenced by co-sorption or by pore structure change in the graphite material of the sleeve, which had been induced by metallic elements including cobalt. (author)

  9. Visualization of enzyme activities inside earthworm pores

    Science.gov (United States)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  10. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder

    Science.gov (United States)

    Magampa, P. P.; Manyala, N.; Focke, W. W.

    2013-05-01

    Model graphite composites, similar to those used in nuclear applications as encasement material in fuel pebbles, were prepared by uniaxial cold compression moulding. They contained natural flake graphite, synthetic graphite and 20 wt.% phenolic novolac resin binder. The materials were carbonised at 900 °C in a nitrogen atmosphere and then annealed at 1800 °C in helium atmosphere. The X-ray diffraction studies showed that the graphite in these composites had hexagonal crystal structure after annealing. Raman spectroscopy revealed the presence of the structurally disordered phase derived from the carbonised resin. Optical microscopy revealed a flake-like microstructure for composites containing mainly natural graphite and needle-coke like particles for composites containing mainly synthetic graphite. The composites featured anisotropic property behaviour as the particles were partially aligned in a direction perpendicular to the compression direction. Thermogravimetric analysis studies showed that the annealed graphite composites were stable in air to 650 °C. The linear thermal expansion coefficients measured by thermomechanical analysis (20-600 °C) in the direction of pressing were in the range 5-9 × 10-6 K-1 and in the range 1.2-2 × 10-6 K-1 in the direction normal to pressing. The thermal conductivity of the composites were measured using Xenon flash method from 100 to 1000 °C and the values ranged from 19 to 30 W m-1 K-1.

  11. Carbon Nanotubes Growth on Graphite Fibers

    Science.gov (United States)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  12. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  13. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  14. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  15. Single Particle Tracking to Characterize the Mechanism of Pore Formation by Pore Forming Proteins

    OpenAIRE

    Subburaj, Yamunadevi

    2014-01-01

    Pore formation is a common natural mechanism occurring in large number of organisms where proteins are involved as toxins, effectors in immune response or apoptosis. Despite intense research, the structural and dynamic aspects of oligomerization and membrane permeabilization by pore forming proteins remains poorly understood. In this work we have aimed to provide a better understanding on dynamics, oligomerization and pore forming process of two proteins; a) Equinatoxin II, b) Bax (Bcl2 famil...

  16. The electrochemical properties of graphite and carbon

    International Nuclear Information System (INIS)

    Yeager, E.; Gupta, S.; Molla, J.A.

    1983-01-01

    Carbon and graphite are often used as supports for electrocatalysts, but also have an electrocatalytic function in such electrode reactions as O 2 reduction in alkaline electrolytes, Cl 2 generation in brine and SOCl 2 reduction in lithium-thionyl chloride batteries. These catalytic functions involve specific chemical functional groups bound to the carbon and graphite surfaces. The factors controlling O 2 reduction with various types of carbon electrodes of both low and high surface area are reviewed. Of particular importance is the role of hydrogen peroxide. The role of the functionality of the carbon in the electrocatalysis will be discussed

  17. London forces in highly oriented pyrolytic graphite

    Directory of Open Access Journals (Sweden)

    L.V. Poperenko

    2017-07-01

    Full Text Available Surface of highly oriented pyrolytic graphite with terrace steps was studied using scanning tunneling microscopy with high spatial resolution. Spots with positive and negative charges were found in the vicinity of the steps. Values of the charges depended both on the microscope needle scan velocity and on its motion direction. The observed effect was theoretically explained with account of London forces that arise between the needle tip and the graphite surface. In this scheme, a terrace step works as a nanoscale diode for surface electric currents.

  18. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    Science.gov (United States)

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  19. Vacuum brazing of graphite-metals

    International Nuclear Information System (INIS)

    Jacquot, P.; Coll, B.; Gabriel, M.; Speri, R.

    1989-01-01

    This conference paper discusses the brazing in vacuum of stainless steel (304 L) and graphite. In order to reduce stresses induced in the brazed system, molybdenum and copper foils are inserted between the two base materials. The filler metal used for brazing is the alloy 69AG27Cu4Ti (Ticusil). The structure of the metal-graphite joint is explained in detail, and a microhardness profile is given. This type of joint is primarily applied in devices for thermonuclear fusion (Tokamak devices). (MM) [de

  20. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...

  1. Direct reading spectrochemical analysis of nuclear graphite

    International Nuclear Information System (INIS)

    Roca Adell, M.; Becerro Ruiz, E.; Alvarez Gonzalez, F.

    1964-01-01

    A description is given about the application of a direct-reading spectrometer the Quantometer, to the determination of boron. calcium, iron, titanium and vanadium in nuclear grade graphite. for boron the powdered sample is mixed with 1% cupric fluoride and excited in a 10-amperes direct current arc and graphite electrodes with a crater 7 mm wide and 10 mm deep. For the other elements a smaller crater has been used and dilution with a number of matrices has been investigated; the best results are achieved by employing 25% cupric fluoride. The sensitivity limit for boron is 0,15 ppm. (Author) 21 refs

  2. Graphite target for the spiral project

    Energy Technology Data Exchange (ETDEWEB)

    Putaux, J.C.; Ducourtieux, M.; Ferro, A.; Foury, P.; Kotfila, L.; Mueller, A.C.; Obert, J.; Pauwels, N.; Potier, J.C.; Proust, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bertrand, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Loiselet, M. [Universite Catholique de Louvain, Louvain-La-Neuve (Belgium)] [and others

    1996-12-31

    A study of the thermal and physical properties of graphite targets for the SPIRAL project is presented. The main objective is to develop an optimized set-up both mechanically and thermally resistant, presenting good release properties (hot targets with thin slices). The results of irradiation tests concerning the mechanical and thermal resistance of the first prototype of SPIRAL target with conical geometry are presented. The micro-structural properties of the graphite target is also studied, in order to check that the release properties are not deteriorated by the irradiation. Finally, the results concerning the latest pilot target internally heated by an electrical current are shown. (author). 5 refs.

  3. Large Scale Reduction of Graphite Oxide Project

    Science.gov (United States)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  4. Electrical properties of Egyptian natural graphite

    International Nuclear Information System (INIS)

    El-Shazly, O.; El-Wahidy, E.F.; Elanany, N.; Saad, N.A.

    1992-06-01

    The electrical properties of Egyptian natural graphite flakes, obtained from the graphite schists of Wadi Bent, Eastern Desert, were measured. The flakes were ground and compressed into pellets. The standard four probe dc method was used to measure the temperature dependence of the electric resistivity from room temperature down to 12 K. The transverse and longitudinal magnetoresistance were measured in the low magnetic field range at temperatures 300 K, 77 K and 12 K. The transverse magnetoresistance data was used to estimate the average mobility, assuming a simple two-band model. (author). 20 refs, 4 figs, 1 tab

  5. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City Univ. (CUNY), NY (United States)

    2017-04-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  6. Thermal Properties of G-348 Graphite

    Energy Technology Data Exchange (ETDEWEB)

    McEligot, Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Swank, W. David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cottle, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Valentin, Francisco I. [City College of New York, NY (United States)

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  7. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Van Eyndhoven, G., E-mail: geert.vaneyndhoven@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Kurttepeli, M. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van Oers, C.J.; Cool, P. [Laboratory of Adsorption and Catalysis, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica, Science Park 123, NL-1090 GB Amsterdam (Netherlands); Mathematical Institute, Universiteit Leiden, Niels Bohrweg 1, NL-2333 CA Leiden (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-01-15

    Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction, segmentation and quantification. Furthermore, most common approaches require subjective manual user input. In this paper, the PORES algorithm “POre REconstruction and Segmentation” is introduced; it is a tailor-made, integral approach, for the reconstruction, segmentation, and quantification of porous nanomaterials. The PORES processing chain starts by calculating a reconstruction with a nanoporous-specific reconstruction algorithm: the Simultaneous Update of Pore Pixels by iterative REconstruction and Simple Segmentation algorithm (SUPPRESS). It classifies the interior region to the pores during reconstruction, while reconstructing the remaining region by reducing the error with respect to the acquired electron microscopy data. The SUPPRESS reconstruction can be directly plugged into the remaining processing chain of the PORES algorithm, resulting in accurate individual pore quantification and full sample pore statistics. The proposed approach was extensively validated on both simulated and experimental data, indicating its ability to generate accurate statistics of nanoporous materials. - Highlights: • An electron tomography reconstruction/segmentation method for nanoporous materials. • The method exploits the porous nature of the scanned material. • Validated extensively on both simulation and real data experiments. • Results in increased image resolution and improved porosity quantification.

  8. Effect of pore size on the calculated pressure at biological cells pore wall.

    Science.gov (United States)

    El-Hag, Ayman H; Zheng, Zhong; Boggs, Steven A; Jayaram, Shesha H

    2006-09-01

    A transient nonlinear finite-element program has been used to calculate the electric field distribution as a function of time for a spherical cell with a pore in a conducting medium during application of a subnanosecond rise time "step" wave, including the effects of dipolar saturation in the water-based cytoplasm and cell medium. The time-dependent pressure on the pore wall has been computed as a function of time as the system polarizes from the change of the energy in the electric field to the left (inside the pore) and to the right (inside the membrane) of the pore wall. The computations suggest that dipolar saturation, while significant, has little effect on the time-dependent electric field distribution but a substantial effect on the field-induced pore wall pressure. Also, the effect of pore size on both the computed electric field and field-induced pressure was studied. As the pore size increases, a collapse in both the electric field and field-induced pressure has been noticed. This suggests that as the pore size increases, the driving force for further opening the pore is not electrical.

  9. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  10. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  11. Sublingual immunotherapy (SLIT) for house dust mites does not prevent new allergen sensitization and bronchial hyper-responsiveness in allergic rhinitis children.

    Science.gov (United States)

    Lim, Jae Hyun; Kim, Jin Youp; Han, Doo Hee; Lee, Chul Hee; Hong, Seung-No; Wee, Jee Hye; Park, Sue K; Rhee, Chae-Seo

    2017-01-01

    The aim of this study is to identify the effects of sublingual immunotherapy (SLIT) on immunologic parameters and bronchial-hyper-responsiveness in children with allergic rhinitis to house-dust mite (HDM), through long-term follow-up cohort. Among the Allergic Rhinitis Cohort Study for Kids, pediatric patients who visited the hospital for rhinitis symptoms and proven allergy to HDM through skin prick test were studied. In this cohort, 37 patients received SLIT more than 3-years (SLIT group), and 184 patients received only pharmacologic therapy (non-SLIT group) were included in this study. The results of skin prick test, eosinophil percent and count, total immunoglobulin E (IgE), and bronchial provocation test at initial and 3-year followed-up were compared in the two groups. After 3 year follow-up, only the serum eosinophil percent decreased more significantly in SLIT group than that in the non-SLIT group. New-sensitization rate other than HDM between SLIT and non-SLIT group did not show any significant differences. The distribution of sensitized allergen other than HDM showed increasing tendency after 3 years in both groups. Older age and a small number of sensitized allergen affected the improvement of bronchial hyper-responsiveness regardless of SLIT. HDM SLIT in allergic rhinitis children for 3 years in Korea does not affect prevention of new sensitization and poly-sensitization rate increment, and improvement of bronchial hyper-responsiveness.

  12. Sublingual immunotherapy (SLIT for house dust mites does not prevent new allergen sensitization and bronchial hyper-responsiveness in allergic rhinitis children.

    Directory of Open Access Journals (Sweden)

    Jae Hyun Lim

    Full Text Available The aim of this study is to identify the effects of sublingual immunotherapy (SLIT on immunologic parameters and bronchial-hyper-responsiveness in children with allergic rhinitis to house-dust mite (HDM, through long-term follow-up cohort.Among the Allergic Rhinitis Cohort Study for Kids, pediatric patients who visited the hospital for rhinitis symptoms and proven allergy to HDM through skin prick test were studied. In this cohort, 37 patients received SLIT more than 3-years (SLIT group, and 184 patients received only pharmacologic therapy (non-SLIT group were included in this study. The results of skin prick test, eosinophil percent and count, total immunoglobulin E (IgE, and bronchial provocation test at initial and 3-year followed-up were compared in the two groups.After 3 year follow-up, only the serum eosinophil percent decreased more significantly in SLIT group than that in the non-SLIT group. New-sensitization rate other than HDM between SLIT and non-SLIT group did not show any significant differences. The distribution of sensitized allergen other than HDM showed increasing tendency after 3 years in both groups. Older age and a small number of sensitized allergen affected the improvement of bronchial hyper-responsiveness regardless of SLIT.HDM SLIT in allergic rhinitis children for 3 years in Korea does not affect prevention of new sensitization and poly-sensitization rate increment, and improvement of bronchial hyper-responsiveness.

  13. New bimodal pore catalysts for Fischer-Tropsch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, Misao; Zhang, Yi; Yoneyama, Yoshiharu; Hasegawa, Kiyoshi; Tsubaki, Noritatsu [Department of Material System and Life Science, School of Engineering, Toyama University, Gofuku 3190, Toyama 930-8555 (Japan)

    2004-11-15

    A simple preparation method of bimodal pore supports was developed by introducing SiO{sub 2} or ZrO{sub 2} sols into large pores of SiO{sub 2} gel pellets directly. The pores of the obtained bimodal pore supports distributed distinctly as two kinds of main pores. On the other hand, the increased BET surface area and decreased pore volume, compared to those of original silica gel, indicated that the obtained bimodal pore supports formed according to the designed route. The obtained bimodal pore supports were applied in liquid-phase Fischer-Tropsch synthesis (FTS) where cobalt was supported. The bimodal pore catalysts presented the best reaction performance in liquid-phase Fischer-Tropsch synthesis (FTS) as higher reaction rate and lower methane selectivities, because the spatial promotional effect of bimodal pore structure and chemical effect of the porous zirconia behaved inside the large pores of original silica gel.

  14. Fracture behavior of nuclear graphites under tensile impact loading

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni

    1994-01-01

    Impact tensile strength test was performed with two kinds of HTTR graphites, fine grained isotropic graphite, IG-11 and coarse grained near isotropic graphite, PGX and deformation and fracture behavior under the strain rate of over 100s -1 was measured and the following results were derived: (1) Tensile strength for IG-11 graphite does not depend on the strain rate less than 1 s -1 , but over 1 s -1 , tensile strength for IG-11 graphite increase larger than that measured under 1 s -1 . At the strain rate more than 100 s -1 , remarkable decrease of tensile strength for IG-11 graphite was found. Tensile strength of PGX graphite does not depend on the strain rate less than 1 s -1 , but beyond this value, the sharp tensile strength decrease occurs. (2) Under 100 s -1 , fracture strain for both graphites increase with increase of strain rate and over 100 s -1 , drastic increase of fracture strain for IG-11 graphite was found. (3) At the part of gage length, volume of specimen increase with increase of tensile loading level and strain rate. (4) Poisson's ratio for both graphites decrease with increase of tensile loading level and strain rate. (5) Remarkable change of stress-strain curve for both graphites under 100 s -1 was not found, but over 100 s -1 , the slope of these curve for IG-11 graphite decrease drastically. (author)

  15. Facial skin pores: a multiethnic study.

    Science.gov (United States)

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm(2)) and determination of their respective sizes in mm(2). Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having "enlarged pores" like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore's morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed.

  16. Pore fluid pressure and the seismic cycle

    Science.gov (United States)

    French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.

    2017-12-01

    In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes

  17. Special Analysis: 2004 General Revision of Slit and Engineered Trench Limits

    Energy Technology Data Exchange (ETDEWEB)

    COLLARD, LEONARDB.

    2004-06-14

    This Special Analysis revises the Slit Trench and Engineered Trench inventory limits. Changes have been made in the methods of analyses and in the implementation of those methods. General changes applicable to multiple pathways/scenarios are discussed in this section, while changes specific to individual pathways/scenarios are discussed in their applicable sections. This report provides limits for each nuclide for each pathway/scenario in a single table to help implement the approach introduced in the ''timed sum-of-fractions'' report. The pathways/scenarios include the following: (1) Groundwater; (2) Inadvertent Intruder; (3) Air; (4) Radon. In the timed sum-of-fractions report, the time intervals were selected to be 0-100 years, 100-1000 years, and 1000-10,000 years. The time intervals for this report were refined to 0-12 years, 12-100 years, and 100-1000 years to account for the separation of the tritium groundwater peak from those of other radionuclides. This report includes nuclides not previously included in the process analysis. Some of these nuclides are included because they have been disposed in Slit or Engineered Trenches and the latest screening analysis indicates that they survived the screening process. Other nuclides are only included because they survived the screening process and they have been disposed in other disposal units. Inventory limits for Slit Trenches and Engineered Trenches were recalculated while imposing a multitude of changes. The most important changes both tended to increase limits, such as changing the time of compliance from 10,000 years to 1000 years and tended to decrease limits, such as modifying the aquifer source node selection. The net effect for the groundwater pathway reduced some limits for nuclides that dominate the sum-of-fractions.

  18. A New Approach to Observing Coronal Dynamics: MUSE, the Multi-Slit Solar Explorer

    Science.gov (United States)

    Tarbell, T. D.

    2017-12-01

    The Multi-Slit Solar Explorer is a Small Explorer mission recently selected for a Phase A study, which could lead to a launch in 2022. It will provide unprecendented observations of the dynamics of the corona and transition region using both conventional and novel spectral imaging techniques. The physical processes that heat the multi-million degree solar corona, accelerate the solar wind and drive solar activity (CMEs and flares) remain poorly known. A breakthrough in these areas can only come from radically innovative instrumentation and state-of-the-art numerical modeling and will lead to better understanding of space weather origins. MUSE's multi-slit coronal spectroscopy will exploit a 100x improvement in spectral raster cadence to fill a crucial gap in our knowledge of Sun-Earth connections; it will reveal temperatures, velocities and non-thermal processes over a wide temperature range to diagnose physical processes that remain invisible to current or planned instruments. MUSE will contain two instruments: an EUV spectrograph (SG) and EUV context imager (CI). Both have similar spatial resolution and leverage extensive heritage from previous high-resolution instruments such as IRIS and the HiC rocket payload. The MUSE investigation will build on the success of IRIS by combining numerical modeling with a uniquely capable observatory: MUSE will obtain EUV spectra and images with the highest resolution in space (1/3 arcsec) and time (1-4 s) ever achieved for the transition region and corona, along 35 slits and a large context FOV simultaneously. The MUSE consortium includes LMSAL, SAO, Stanford, ARC, HAO, GSFC, MSFC, MSU, ITA Oslo and other institutions.

  19. Thickness optimization and activity induction in beam slit monitor for Indus

    International Nuclear Information System (INIS)

    Petwal, V.C.; Pramod, R.; Dwivedi, Jishnu; Senecha, V.K.

    2009-01-01

    A large number of beam slit monitors are planned to be installed in the TL-2 and TL-3 of Indus for probing the 450 MeV and 700 MeV electron beams. The beam slit monitor consists of 2 pairs of metallic blades, mounted in orthogonal direction and shall be installed inside the beam chamber. These shutters provide current signals, on interception with electron beam, which can be used to determine precisely beam position, shape and size. The physical dimensions of the shutter blades are of crucial importance due to the requirement of high resolution, accuracy and space constraints. As part of design study of beam slit monitors, Monte Carlo simulation using MCNP code has been performed to investigate the radiological characteristics of the suitable blade materials e.g. Cu, Ta, W, and Inermet. The thickness has been optimised to absorb 90% of electron beam. The power density profiles along thickness and radial direction have been simulated to carry out thermal design. The high energy electron beam on interception with shutter blade develops cascading shower, containing secondary particles such as photons, photoneutrons, pions, and muons etc, which induce radioactivity in shutter material as well in the surrounding components. The state of the art Monte Carlo Code FLUKA has been used to estimate the amount of the activity induced in the shutter blade. In the first step, the FLUKA calculations are compared with data reported in IAEA TRS 188 for Cu, W target in the energy range 15 - 35 MeV, which shows good agreement. In second step, these calculations are extended to estimate induced activity in the shutter blade at actual electron energy 450 MeV and 700 MeV. (author)

  20. Decompressive Craniectomy for Acute Subdual Haematoma with Expansile Duraplasty Versus Dura-Slits

    International Nuclear Information System (INIS)

    Khan, B.; Afridi, E. A. K.; Khan, S. A.; Aurangzeb, A.; Khan, A. A.; Khan, W.; Bhatti, S. N.; Khan, B.

    2016-01-01

    Background: Traumatic subdural hematoma is one of the lethal injuries to brain. Various surgical techniques are used to evacuate the acute subdural hematoma. The hematoma evacuation can either be done by opening of dura by multiple slits or by opening of dura in single large c shape and then doing the expansile duraplasty. Present study aimed to compare both these techniques. Methods: This randomized control study was conducted in department of neurosurgery, Ayub Medical College, Abbottabad from July 2011 to July 2013. A total of 59 patients were included in this study, which were randomly allocated in two groups (i.e., group A and group B) for decompressive craniectomy. Thirty-one patients were operated by craniectomy with full dural flap opening (Group A), and 28 patients were operated by craniectomy with multidural-slits (Group B). Glasgow Outcome score (GOS) at 6 weeks after the surgery was used to determine the outcome. Results: Mean age of the patients was 33.4±12.8 years. Majority were males. In group A 51.6 percent (16) of the patients survived out of which a favourable outcome (GOC 3-5) was observed in 41.9 percent of the patients, and 9.1 percent of patients ended up in vegetative state. While in group B 46.4 percent (13) of the patients survived among which favourable outcome was seen in 39.3 percent of patients and 7.1 percent of patients ended up in vegetative state. The difference in outcome measure is insignificant. Conclusion: There was no statistically significant difference among the two groups as regards the mortality, GOS, frequency of complications and hospital. While the duration of surgery was significantly shorter in patients operated with dural slits. (author)

  1. Detection of mixed-range proton pencil beams with a prompt gamma slit camera

    International Nuclear Information System (INIS)

    Priegnitz, M; Helmbrecht, S; Fiedler, F; Janssens, G; Smeets, J; Vander Stappen, F; Perali, I; Sterpin, E

    2016-01-01

    With increasing availability of proton and particle therapy centers for tumor treatment, the need for in vivo range verification methods comes more into the focus. Imaging of prompt gamma rays emitted during the treatment is one of the possibilities currently under investigation. A knife-edge shaped slit camera was recently proposed for this task and measurements proved the feasibility of range deviation detection in homogeneous and inhomogeneous targets. In the present paper, we concentrate on laterally inhomogeneous materials, which lead to range mixing situations when crossed by one pencil beam: different sections of the beam have different ranges. We chose exemplative cases from clinical irradiation and assembled idealized tissue equivalent targets. One-dimensional emission profiles were obtained by measuring the prompt gamma emission with the slit camera. It could be shown that the resulting range deviations can be detected by evaluation of the measured data with a previously developed range deviation detection algorithm. The retrieved value, however, strongly depends on the target composition, and is not necessarily in direct relation to the ranges of both parts of the beam. By combining the range deviation detection with an analysis of the slope of the distal edge of the measured prompt gamma profile, the origin of the detected range deviation, i.e. the mixed range of the beam, is also identified. It could be demonstrated that range mixed prompt gamma profiles exhibit less steep distal slopes than profiles from beams traversing laterally homogeneous material. For future application of the slit camera to patient irradiation with double scattered proton beams, situations similar to the range mixing cases are present and results could possibly apply. (paper)

  2. Pore Structure Characterization of Indiana Limestone and Pink Dolomite from Pore Network Reconstructions

    Directory of Open Access Journals (Sweden)

    Freire-Gormaly Marina

    2016-05-01

    Full Text Available Carbon sequestration in deep underground saline aquifers holds significant promise for reducing atmospheric carbon dioxide emissions (CO2. However, challenges remain in predicting the long term migration of injected CO2. Addressing these challenges requires an understanding of pore-scale transport of CO2 within existing brine-filled geological reservoirs. Studies on the transport of fluids through geological porous media have predominantly focused on oil-bearing formations such as sandstone. However, few studies have considered pore-scale transport within limestone and other carbonate formations, which are found in potential storage sites. In this work, high-resolution micro-Computed Tomography (microCT was used to obtain pore-scale structural information of two model carbonates: Indiana Limestone and Pink Dolomite. A modified watershed algorithm was applied to extract pore network from the reconstructed microCT volumetric images of rock samples and compile a list of pore-scale characteristics from the extracted networks. These include statistical distributions of pore size and radius, pore-pore separation, throat radius, and network coordination. Finally, invasion percolation algorithms were applied to determine saturation-pressure curves for the rock samples. The statistical distributions were comparable to literature values for the Indiana Limestone. This served as validation for the network extraction approach for Pink Dolomite, which has not been considered previously. Based on the connectivity and the pore-pore separation, formations such as Pink Dolomite may present suitable storage sites for carbon storage. The pore structural distributions and saturation curves obtained in this study can be used to inform core- and reservoir-scale modeling and experimental studies of sequestration feasibility.

  3. Calculating emittance for Gaussian and Non-Gaussian distributions by the method of correlations for slits

    International Nuclear Information System (INIS)

    Tan, Cheng-Yang; Fermilab

    2006-01-01

    One common way for measuring the emittance of an electron beam is with the slits method. The usual approach for analyzing the data is to calculate an emittance that is a subset of the parent emittance. This paper shows an alternative way by using the method of correlations which ties the parameters derived from the beamlets to the actual parameters of the parent emittance. For parent distributions that are Gaussian, this method yields exact results. For non-Gaussian beam distributions, this method yields an effective emittance that can serve as a yardstick for emittance comparisons

  4. Fluorescence depolarisation monitoring of liquid flow before and after exiting a slit nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Quintella, C.M.; Musse, A.P.S.; Goncalves, C.C. [Inst. de Quimica, Univ. Federal da Bahia, Campus de Ondina, Salvador, BA (Brazil); McCaffery, A.J. [School of Chemistry, Physics and Environmental Science, Univ. of Sussex, Falmer, Brighton (United Kingdom)

    2003-07-01

    Steady-state fluorescence depolarisation was used to study the hydrodynamics of ethylene glycol flow inside a quartz slit nozzle for 24 mm (Re{proportional_to}200) and outside as a free thin jet, for 14 mm. The polarisation profiles (over 1000 points) allowed direct evaluation of the velocity gradient within the flowing liquid from this molecular-level probe. Inside the nozzle two lateral boundary layers were observed. The velocity profile was flattened, which was attributed to strong chemical interactions with the walls of the cell. Within the jet, four polarisation profile maxima were observed for the first time, corresponding to two internal converging streams. (orig.)

  5. Numerical simulation of the flow formation in a cylindrical tube upon opening of a ring slit

    Science.gov (United States)

    Bulovich, S. V.; Vikolaĭnen, V. É.; Petrov, R. L.

    2007-12-01

    The formation of flow structure in a cylindrical shock tube equipped with a high-speed valve has been numerically studied in the axisymmetric case using integration of the Navier-Stockes equations in the thin layer approximation. The valve operation is modeled by the opening of a ring slit between the high- and low-pressure compartments. The results of solution are illustrated by the patterns of the velocity vector field and the Mach number isolines in the vicinity of the valve. The shock wave front formation is analyzed using a system of monitoring points.

  6. Broadband and stable acoustic vortex emitter with multi-arm coiling slits

    KAUST Repository

    Jiang, Xue

    2016-05-16

    We present the analytical design and experimental realization of a scheme based on multi-arm coiling slits to generate the stable acoustic vortices in a broadband. The proposed structure is able to spiral the acoustic wave spatially and generate the twisted acoustic vortices with invariant topological charge for a long propagation distance. Compared with conventional methods which require the electronic control of a bulky loudspeaker, this scheme provides an effective and compact solution to generate acoustic vortices with controllable topological charge in the broadband, which offers more initiatives in the demanding applications.

  7. Classical two-slit interference effects in double photoionization of molecular hydrogen at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Horner, Daniel A.; Miyabe, Shungo; Rescigno, Thomas N; McCurdy, C. William; Morales, Felipe; Martin, Fernando

    2008-07-06

    Recent experiments on double photoionization of H$_2$ with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate atsubstantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two non-diffractive contributions by circularly polarized light.

  8. Characteristics of Wave Reflection for Vertical and Slit Caissons with Porous Structures

    Directory of Open Access Journals (Sweden)

    Tae-Hwa Jung

    2012-01-01

    Full Text Available Offshore structures are occasionally located at a relatively deep water region, the outside of breakwater. In this case, these structures may be damaged by the supposition of incident and reflected waves from a vertical breakwater. To prevent the damage, the reflected waves are controlled by installing porous structures at the face of the vertical breakwater. In this study, numerical experiments are carried out to identify the characteristics of wave reflection from the porous structures installing in front of a vertical or slit caisson.

  9. The scattering of electromagnetic pulses by a slit in a conducting screen

    Science.gov (United States)

    Ackerknecht, W. E., III; Chen, C.-L.

    1975-01-01

    A direct method for calculating the impulse response of a slit in a conducting screen is presented which is derived specifically for the analysis of transient scattering by two-dimensional objects illuminated by a plane incident wave. The impulse response is obtained by assuming that the total response is composed of two sequences of diffracted waves. The solution is determined for the first two waves in one sequence by using Green's functions and the equivalence principle, for additional waves in the sequence by iteration, and for the other sequence by a transformation of coordinates. The cases of E-polarization and H-polarization are considered.

  10. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Czech Academy of Sciences Publication Activity Database

    Kumar, A. R. S. S.; Piana, Francesco; Mičušík, M.; Pionteck, J.; Banerjee, S.; Voit, B.

    2016-01-01

    Roč. 182, 1 October (2016), s. 237-245 ISSN 0254-0584 Institutional support: RVO:61389013 Keywords : graphite oxide * surface modification * conductive nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.084, year: 2016

  11. Modeling branching pore structures in membrane filters

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2016-11-01

    Membrane filters are in widespread industrial use, and mathematical models to predict their efficacy are potentially very useful, as such models can suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe particle capture by membrane filters and the associated fluid dynamics, but most such models are based on a very simple structure in which the pores of the membrane are assumed to be simple circularly-cylindrical tubes spanning the depth of the membrane. Real membranes used in applications usually have much more complex geometry, with interconnected pores which may branch and bifurcate. Pores are also typically larger on the upstream side of the membrane than on the downstream side. We present an idealized mathematical model, in which a membrane consists of a series of bifurcating pores, which decrease in size as the membrane is traversed. Feed solution is forced through the membrane by applied pressure, and particles are removed from the feed either by sieving, or by particle adsorption within pores (which shrinks them). Thus the membrane's permeability decreases as the filtration progresses, ultimately falling to zero. We discuss how filtration efficiency depends on the characteristics of the branching structure. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  12. Modeling Tissue Growth Within Nonwoven Scaffolds Pores

    Science.gov (United States)

    Church, Jeffrey S.; Alexander, David L.J.; Russell, Stephen J.; Ingham, Eileen; Ramshaw, John A.M.; Werkmeister, Jerome A.

    2011-01-01

    In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process. PMID:20687775

  13. Industrial Applications of Graphite Fluoride Fibers

    Science.gov (United States)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  14. Studies on POM/graphite/Ekonol composites

    Indian Academy of Sciences (India)

    Unknown

    behaviour was also investigated by the friction and wear experiment. The worn surface of the composite was studied by SEM technique, and on its basis, the wear mechanism was analysed. Results show that it was possible to prepare POM/graphite/Ekonol composites of high tribology performance and good mechanical.

  15. Studies on POM/graphite/Ekonol composites

    Indian Academy of Sciences (India)

    POM/graphite/Ekonol composites were prepared by the Torque Rheometer mixing and compression molding, and their hardness, compressive and impact strengths have been tested. The tribology behaviour was also investigated by the friction and wear experiment. The worn surface of the composite was studied by SEM ...

  16. US graphite reactor D&D experience

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, S.M.K.; Williams, N.C.

    1997-02-01

    This report describes the results of the U.S. Graphite Reactor Experience Task for the Decommissioning Strategy Plan for the Leningrad Nuclear Power Plant (NPP) Unit 1 Study. The work described in this report was performed by the Pacific Northwest National Laboratory (PNNL) for the Department of Energy (DOE).

  17. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  18. Ultrafast Multiphoton Thermionic Photoemission from Graphite

    Directory of Open Access Journals (Sweden)

    Shijing Tan

    2017-01-01

    Full Text Available Electronic heating of cold crystal lattices in nonlinear multiphoton excitation can transiently alter their physical and chemical properties. In metals where free electron densities are high and the relative fraction of photoexcited hot electrons is low, the effects are small, but in semimetals, where the free electron densities are low and the photoexcited densities can overwhelm them, the intense femtosecond laser excitation can induce profound changes. In semimetal graphite and its derivatives, strong optical absorption, weak screening of the Coulomb potential, and high cohesive energy enable extreme hot electron generation and thermalization to be realized under femtosecond laser excitation. We investigate the nonlinear interactions within a hot electron gas in graphite through multiphoton-induced thermionic emission. Unlike the conventional photoelectric effect, within about 25 fs, the memory of the excitation process, where resonant dipole transitions absorb up to eight quanta of light, is erased to produce statistical Boltzmann electron distributions with temperatures exceeding 5000 K; this ultrafast electronic heating causes thermionic emission to occur from the interlayer band of graphite. The nearly instantaneous thermalization of the photoexcited carriers through Coulomb scattering to extreme electronic temperatures characterized by separate electron and hole chemical potentials can enhance hot electron surface femtochemistry, photovoltaic energy conversion, and incandescence, and drive graphite-to-diamond electronic phase transition.

  19. Smooth Particle Hydrodynamics Simulation of Micro-Cup-Extrusion Using a Graphit-ic Coating

    Directory of Open Access Journals (Sweden)

    Li Shi-Cheng

    2014-01-01

    Full Text Available Microextrusion is becoming increasingly important for the manufacturing of microcomponents. However, this reduction in scale to a microlevel means that the influence of friction and the need for suitable lubrication are greatly increased. This study therefore looks at the use of a low-friction and highly wear resistant Graphit-ic coating on the mold-forming section of a microextrusion mold, this coating being applied by a closed-field unbalanced magnetron sputter ion plating technique. A microcup of CuZn33 brass alloy was then extruded, with a wall thickness of 0.45 mm, outside diameter of 2.9 mm, and an internal diameter of 2 mm. The experimental results in which extrusion uses the mold coating with Graphit-ic film are compared against the experimental results in which extrusion uses the mold uncoating with Graphit-ic film. This showed that the load was decreased a lot and the self-lubricating solid coating facilitates a smooth extrusion process. As the extrusion rate was quite high, smoothed particle hydrodynamics method simulations of the extrusion process were conducted, these being then compared with the experimental results. These result showed that the SPH simulation can be applied to show the deformation of materials and predict the load trend.

  20. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  1. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  2. Neutronographic investigations into homogeneity and crystalline anisotropy of graphite materials

    International Nuclear Information System (INIS)

    Kajzar, F.; Oles, A.; Pawpowski, K.; Szudek, M.

    1976-01-01

    A numerical methods is proposed for evaluating the share of components having various graphitization degree in the graphite material. This method consists in adjusting the diffraction lines of separated components characterized by a different graphitization degree to the profile of an experimental diffraction line. Results are also given which were obtained by this method for some selected graphite materials manufactured at the Coal Electrodes Factory in Nowy Sacz. Using the technique of neutron diffraction, investigation were carried out in like manner into crystalline anisotropy in the semi-conducting graphite and in the connecting material. (author)

  3. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  4. Graphite Oxidation Simulation in HTR Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, Mohamed

    2012-10-19

    Massive air and water ingress, following a pipe break or leak in steam-generator tubes, is a design-basis accident for high-temperature reactors (HTRs). Analysis of these accidents in both prismatic and pebble bed HTRs requires state-of-the-art capability for predictions of: 1) oxidation kinetics, 2) air helium gas mixture stratification and diffusion into the core following the depressurization, 3) transport of multi-species gas mixture, and 4) graphite corrosion. This project will develop a multi-dimensional, comprehensive oxidation kinetics model of graphite in HTRs, with diverse capabilities for handling different flow regimes. The chemical kinetics/multi-species transport model for graphite burning and oxidation will account for temperature-related changes in the properties of graphite, oxidants (O2, H2O, CO), reaction products (CO, CO2, H2, CH4) and other gases in the mixture (He and N2). The model will treat the oxidation and corrosion of graphite in geometries representative of HTR core component at temperatures of 900°C or higher. The developed chemical reaction kinetics model will be user-friendly for coupling to full core analysis codes such as MELCOR and RELAP, as well as computational fluid dynamics (CFD) codes such as CD-adapco. The research team will solve governing equations for the multi-dimensional flow and the chemical reactions and kinetics using Simulink, an extension of the MATLAB solver, and will validate and benchmark the model's predictions using reported experimental data. Researchers will develop an interface to couple the validated model to a commercially available CFD fluid flow and thermal-hydraulic model of the reactor , and will perform a simulation of a pipe break in a prismatic core HTR, with the potential for future application to a pebble-bed type HTR.

  5. Unplugging the callose plug from sieve pores.

    Science.gov (United States)

    Xie, Bo; Hong, Zonglie

    2011-04-01

    The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds.

  6. Pore-forming toxins in Cnidaria.

    Science.gov (United States)

    Podobnik, Marjetka; Anderluh, Gregor

    2017-12-01

    The ancient phylum of Cnidaria contains many aquatic species with peculiar lifestyle. In order to survive, these organisms have evolved attack and defense mechanisms that are enabled by specialized cells and highly developed venoms. Pore-forming toxins are an important part of their venomous arsenal. Along some other types, the most representative are examples of four protein families that are commonly found in other kingdoms of life: actinoporins, Cry-like proteins, aerolysin-like toxins and MACPF/CDC toxins. Some of the homologues of pore-forming toxins may serve other functions, such as in food digestion, development and response against pathogenic organisms. Due to their interesting physico-chemical properties, the cnidarian pore-forming toxins may also serve as tools in medical research and nanobiotechnological applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Moving Magnetic Features Around a Pore

    Energy Technology Data Exchange (ETDEWEB)

    Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.; Lagg, A.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; VanNoort, M. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen D-37077 (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: anjali@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s{sup −1} and 1.2 km s{sup −1}, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 10{sup 17} Mx.

  8. Bilocal current densities and mean trajectories in a Young interferometer with two Gaussian slits and two detectors

    Energy Technology Data Exchange (ETDEWEB)

    Withers, L. P., E-mail: lpwithers@mitre.org [School of Physics, Astronomy, and Computational Science, George Mason University, Fairfax, Virginia 22030-4444 (United States); Narducci, F. A., E-mail: francesco.narducci@navy.mil [Naval Air Systems Command, Patuxent River, Maryland 20670 (United States)

    2015-06-15

    The recent single-photon double-slit experiment of Steinberg et al., based on a weak measurement method proposed by Wiseman, showed that, by encoding the photon’s transverse momentum behind the slits into its polarization state, the momentum profile can subsequently be measured on average, from a difference of the separated fringe intensities for the two circular polarization components. They then integrated the measured average velocity field, to obtain the average trajectories of the photons enroute to the detector array. In this paper, we propose a modification of their experiment, to demonstrate that the average particle velocities and trajectories change when the mode of detection changes. The proposed experiment replaces a single detector by a pair of detectors with a given spacing between them. The pair of detectors is configured so that it is impossible to distinguish which detector received the particle. The pair of detectors is then analogous to the simple pair of slits, in that it is impossible to distinguish which slit the particle passed through. To establish the paradoxical outcome of the modified experiment, the theory and explicit three-dimensional formulas are developed for the bilocal probability and current densities, and for the average velocity field and trajectories as the particle wavefunction propagates in the volume of space behind the Gaussian slits. Examples of these predicted results are plotted. Implementation details of the proposed experiment are discussed.

  9. A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications

    Science.gov (United States)

    Miao, Xiuxiu; Gerke, Kirill M.; Sizonenko, Timofey O.

    2017-07-01

    Pore-network models were found useful in describing important flow and transport mechanisms and in predicting flow properties of different porous media relevant to numerous fundamental and industrial applications. Pore-networks provide very fast computational framework and permit simulations on large volumes of pores. This is possible due to significant pore space simplifications and linear/exponential relationships between effective properties and geometrical characteristics of the pore elements. To make such relationships work, pore-network elements are usually simplified by circular, triangular, square and other basic shapes. However, such assumptions result in inaccurate prediction of transport properties. In this paper, we propose that pore-networks can be constructed without pore shape simplifications. To test this hypothesize we extracted 3292 2D pore element cross-sections from 3D X-ray microtomography images of sandstone and carbonate rock samples. Based on the circularity, convexity and elongation of each pore element we trained neural networks to predict the dimensionless hydraulic conductance. The optimal neural network provides 90% of predictions lying within the 20% error bounds compared against direct numerical simulation results. Our novel approach opens a new way to parameterize pore-networks and we outlined future improvements to create a new class of pore-network models without pore shape simplifications.

  10. Common Pedagogical Issues with De Broglie Waves: Moving Double Slits, Composite Mass, and Clock Synchronization

    Directory of Open Access Journals (Sweden)

    Robert L. Shuler

    2015-01-01

    Full Text Available This paper addresses gaps identified in pedagogical studies of how misunderstanding of De Broglie waves affects later coursework and presents a heuristic for understanding the De Broglie frequency of composite. De Broglie’s little known derivation is reviewed with a new illustration based on his description. Simple techniques for reference frame independent analysis of a moving double slit electron interference experiment are not previously found in any literature and cement the concepts. Points of similarity and difference between De Broglie and Schrödinger waves are explained. The necessity of momentum, energy, and wavelength changes in the electrons in order for them to be vertically displaced in their own reference frame is shown to be required to make the double slit analysis work. A relativistic kinematic analysis of De Broglie frequency is provided showing how the higher De Broglie frequency of moving particles is consistent with Special Relativity and time dilation and that it demonstrates a natural system which obeys Einstein’s clock synchronization convention of simultaneity and no other. Students will be better prepared to identify practical approaches to solving problems and to think about fundamental questions.

  11. Design Considerations of a Slit Diaphragm Flexure Used in a Precision Mirror Gimbal

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. C., Kaufman, M. I.

    2011-09-01

    Two precision mirror gimbals were designed using slit diaphragm flexures to provide two-axis precision mirror alignment in space-limited applications. Both gimbals are currently in use in diagnostics at the National Ignition Facility: one design in the Gamma Reaction History (GRH) diagnostic and the other in the Neutron Imaging System (NIS) diagnostic. The GRH gimbal has an adjustment sensitivity of 0.1 mrad about both axes and a total adjustment capability of ±6°; the NIS gimbal has an adjustment sensitivity of 0.8 μrad about both axes and a total adjustment range of ±3°. Both slit diaphragm flexures were electro-discharge machined out of high-strength titanium and utilize stainless steel stiffeners. The stiffener-flexure design results in adjustment axes with excellent orthogonality and centering with respect to the mirror in a single stage; a typical two-axis gimbal flexure requires two stages. Finite element analyses are presented for both flexure designs, and a design optimization of the GRH flexure is discussed.

  12. GRAPHITIZATION OF METASEDIMENTARY ROCKS IN THE WESTERN KONYA

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2000-01-01

    Full Text Available The Paleozoic-Mesozoic metasedimentary rocks in the study area are metacarbonate, metachert, metapelite, metasandstone and metaconglomerate. Graphite layers are 1cm to 2m thick, extend laterally for tens of meters and are intercalated with metasedimentary rocks. Generally, the graphite is black in color, with a well developed cleavage which is concordant with the cleavage of the host rocks. In addition, the crystal and flake graphites formed in metasedimentary rocks are mostly aligned parallel to the cleavage planes. These metamorphic rocks are subjected to shearing and granulation providing structural control for the development of graphite. It was probably this phenomenon that first led to emphasize the relationship between graphite and metasedimentary rocks. Graphite mineralization has been controlled by bedding, microfractures and granulations. Briefly, the metamorphism has converted carbonaceous matter into graphite .

  13. Hydrophilization of graphite using plasma above/in a solution

    Science.gov (United States)

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma-solution contact area.

  14. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  15. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  16. Nuclear pore complex tethers to the cytoskeleton.

    Science.gov (United States)

    Goldberg, Martin W

    2017-08-01

    The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed. Copyright © 2017. Published by Elsevier Ltd.

  17. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.

    Science.gov (United States)

    Wang, Zizhen; Wang, Ruihe; Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks.

  18. Analysis of Natural Graphite, Synthetic Graphite, and Thermosetting Resin Candidates for Use in Fuel Compact Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Trammell, Michael P [ORNL; Pappano, Peter J [ORNL

    2011-09-01

    The AGR-1 and AGR-2 compacting process involved overcoating TRISO particles and compacting them in a steel die. The overcoating step is the process of applying matrix to the OPyC layer of TRISO particles in a rotating drum in order to build up an overcoat layer of desired thickness. The matrix used in overcoating is a mixture of natural graphite, synthetic graphite, and thermosetting resin in the ratio, by weight, of 64:16:20. A wet mixing process was used for AGR-1 and AGR-2, in that the graphites and resin were mixed in the presence of ethyl alcohol. The goal of the wet mixing process was to 'resinate' the graphite particles, or coat each individual graphite particle with a thin layer of resin. This matrix production process was similar to the German, Chinese, Japanese, and South African methods, which also use various amount of solvent during mixing. See Appendix 1 for information on these countries matrix production techniques. The resin used for AGR-1 and AGR-2 was provided by Hexion, specifically Hexion grade Durite SC1008. Durite SC1008 is a solvated (liquid) resole phenolic resin. A resole resin does not typically have a hardening agent added. The major constituent of SC1008 is phenol, with minor amounts of formaldehyde. Durite SC1008 is high viscosity, so additional ethyl alcohol was added during matrix production in order to reduce its viscosity and enhance graphite particle resination. The current compacting scale up plan departs from a wet mixing process. The matrix production method specified in the scale up plan is a co-grinding jet mill process where powdered phenolic resin and graphite are all fed into a jet mill at the same time. Because of the change in matrix production style, SC1008 cannot be used in the jet milling process because it is a liquid. The jet milling/mixing process requires that a suite of solid or powdered resins be investigated. The synthetic graphite used in AGR-1 and AGR-2 was provided by SGL Carbon, grade KRB2000. KRB

  19. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  20. Development of an image intensifier-TV digital imaging system with a multiple-slit scanning x-ray beam

    International Nuclear Information System (INIS)

    Kume, Y.; Doi, K.

    1986-01-01

    The authors are developing a new digital x-ray imaging system employing a multiple-slit assembly (MSA) and an image intensifier (II)-TV digital system. The final image consisting of primary radiation is digitally reconstructed from multiple slit images obtained with the MSA. This system can significantly reduce the scattered radiation from an object and the veiling glare from II-TV system. The quality of the reconstructed image is related to many parameters, such as slit width, the number of image frames, and the image reconstruction algorithm. They present the effect of these various parameters on basic imaging properties and the practicability of the method in comparison with conventional wide beam imaging

  1. Diffraction of electromagnetic waves by a metallic bar grating with a defect in dielectric filling of the slits

    Science.gov (United States)

    Kochetova, Lyudmila A.; Prosvirnin, Sergey L.

    2018-04-01

    The problem of electromagnetic wave diffraction by the metallic bar grating with inhomogeneous dielectric filling of each slit between bars has been investigated by using the mode matching technique. The transmission and the inner field distribution have been analyzed for the structure which has a single defect in the periodic filling of slits. Such periodic structures are of particular interest for applications in optics, as they have the ability to concentrate a strong inner electromagnetic field and are characterized by high-Q transmission resonances. We use a simple approach to control the width and location of the stopband of the structure by placing a defect in the periodic filling of the grating slits. As a result, we observe the narrow resonance of transmission in terms of stopband width of the defect-free grating and confinement of strong inner electromagnetic field. By changing the permittivity of the defect layer we can shift the frequency of the resonant transmission.

  2. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  3. Double urine circulation: importance of pores.

    Science.gov (United States)

    Antonello, Augusto; D'Angelo, Angela; Nalesso, Federico; Capezzi, Maria; Malagoli, Andrea; Pastori, Giordano; Lazzarin, Roberta; Calò, Lorenzo; Bonfante, Luciana; Gambaro, Giovanni

    2003-01-01

    The authors examine a presentation to the Royal Academy of Sciences of Paris by L. Morin, French physician and meteorologist. In this communication the presence of "pores" in the stomach and the bladder, which would allow a quick elimination of the urines on the occasion of an abundant fluid intake.

  4. Mimicking the nuclear pore complex using nanopores

    NARCIS (Netherlands)

    Ananth, A.N.

    2018-01-01

    Nuclear pore complexes acts as a gatekeeper for molecular transport between the nucleus and the cytoplasm in eukaryotic cells. The central NPC channel is filled with intrinsically disordered FG domains (phenylalanine (F), glycine (G)) that are responsible for the fascinating selectivity of NPCs, for

  5. Induction of nano pore in Agrobacterial hemoglobin

    Directory of Open Access Journals (Sweden)

    Mojtaba Tousheh

    2014-01-01

    Full Text Available Introduction: A variety of oxygen-transport and -binding proteins exist in organisms including bacteria, protozoans, and fungi all have hemoglobin-like proteins. In addition to dealing with transport and sensing of oxygen, they may also deal with NO2, CO2, sulfide compounds, and even O2 scavenging in environments. Also they detoxified chlorinated materials like P450 enzymes and peroxidases and use as a detector of nitrate and hydrogen peroxide. Pore-forming bacterial globins are interested for filtration. Materials and methods: Although there are data for bacterial toxin as a filter, here we used Agrobacterial hem to induce nano pore in the heme structure using point mutation. Results: Investigations showed that three amino acids leucine 76, alanine 83 and histidine 80 are important for pore formation in Agrobacterium hemoglobin. A point mutation on leucine 76 to glycine, histidine 80 to asparagine and alanine 83 to lysine step by step led to create the nano pore 0.7- 0.8 nm in the globin. Discussion and conclusion: These mutations in bacterial hemoglobin increase the stability when mutation is with it’s at pH7. This mutation decreases the aliphatic index however increase the stability index.

  6. Detailed measurements of the H beta line shape in a transient plasma using a fiber optics slit system

    Science.gov (United States)

    Stickford, G. H., Jr.

    1972-01-01

    Through the use of fiber optics, a series of very narrow slits have been constructed and placed at the exit plane of a spectrograph. Plasma radiation which is dispersed by the spectrograph is incident on the slits and is transmitted to separate phototubes via the quartz fibers. With this technique, time resolved measurements of the spectral shape of the hydrogen H beta line have been made and used to determine the electron density of a transient plasma. Data obtained in a shock tube indicated that the thermodynamic conditions behind the reflected shock in a mixture of 20 percent H 80 percent He correspond to theoretically predicted conditions.

  7. Synthesis of Titanium Dioxide Nanoparticles Using a Double-Slit Curved Wall-Jet Burner

    KAUST Repository

    Ismail, Mohamed

    2016-05-04

    A novel double-slit curved wall-jet (DS-CWJ) burner was proposed and utilized for flame synthesis. This burner was comprised of double curved wall-jet nozzles with coaxial slits; the inner slit was for the delivery of titanium tetraisopropoxide (TTIP) precursor while the outer one was to supply premixed fuel/air mixture of ethylene (C2H4) or propane (C3H8). This configuration enabled rapid mixing between the precursor and reactants along the curved surface and inside the recirculation zone of the burner. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases was investigated with varying equivalence ratio and Reynolds number. Flow field and flame structure were measured using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. The nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and nitrogen adsorption Brunauer–Emmett–Teller (BET) for surface area analysis. The flow field consisted of a wall-jet region leading to a recirculation zone, an interaction jet region, followed by a merged-jet region. The DS-CWJ burner revealed appreciable mixing characteristics between the precursor and combustion gases near the nozzle regions, with a slight increase in the axial velocity due to the precursor injection. The precursor supply had a negligible effect on the flame structure. The burner produced a reasonably uniform size (13–18 nm) nanoparticles with a high BET surface area (>100 m2/g). The phase of TiO2 nanoparticles was mainly dependent on the equivalence ratio and fuel type, which impact flame height, heat release rate, and high temperature residence time of the precursor vapor. For ethylene flames, the anatase content increased with the equivalence ratio, whereas it decreased in the case of propane flames. The synthesized TiO2 nanoparticles exhibited high crystallinity and the anatase phase was dominant at high equivalence

  8. Effect of graphite reflector on activation of fusion breeding blanket

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young-Ouk; Lee, Dong Won; Cho, Seungyon; Ahn, Mu-Young

    2016-01-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  9. Theoretical analysis of the graphitization of a nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S Joon; Park, Jae-Gwan [Nano Science and Technology Division, Korea Institute of Science and Technology (KIST), PO Box 131, Cheongryang, Seoul, 130-650 (Korea, Republic of)

    2007-09-26

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F{sub 2g} vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond.

  10. Theoretical analysis of the graphitization of a nanodiamond

    International Nuclear Information System (INIS)

    Kwon, S Joon; Park, Jae-Gwan

    2007-01-01

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F 2g vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond

  11. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  12. Fracture toughness of reactor grade graphites, 3

    International Nuclear Information System (INIS)

    Sato, Sennosuke; Awaji, Hideo; Akuzawa, Hironobu; Kon, Junichi.

    1979-01-01

    In our recent papers, we presented a new technique for determining the thermal shock fracture toughness, using a disk specimen with an edge crack. The thermal shock fracture toughness is defined as K sub( ic)k/Eα(K sub( ic) standing for fracture toughness; k for thermal conductivity; E for Young's modulus; α for thermal expansion coefficient) and it can be determined en bloc by measuring the threshold electric power of the arc discharge heating produced when an edge crack propagates in the disk. The value obtained is the fracture toughness corresponding to the thermal shock resistance defined as σk/Eα (σ standing for tensile strength). The experimental data shown in the following discussion concern themselves with four kinds of reactor grade graphite and some varieties of electrode graphite. (author)

  13. Spectroscopical determination of impurities in nuclear graphite

    International Nuclear Information System (INIS)

    Lordello, A.R.; Tognini, R.P.

    1975-01-01

    A spectrochemical method for the direct determination of B, Cd, Si, Hg, Fe, Mg, Mn, Cr, Ni, Al, Mo, Ti, Sr, Na, Zn, and As in nuclear grade graphite is described. A 9:1 ratio of graphite to copper difluoride is used in the preparation of samples and standards. The excitation is carried out in a d-c at 10 amperes. The copper fluoride used as spectrographic buffer serves to increase the volatilization rate of the impurities and to diminish the differences in the nature of the analytical and calibration samples. The relative standard deviations for the determination of the 16 trace elements, except Sr, Fe, Cd, Al and Si, are in the range of 8 - 20% in their appropriate calibration levels. For the latter five elements they are approximately 20-40%

  14. Temperature and Pressure from Collapsing Pores in HMX

    Science.gov (United States)

    Hardin, D. Barrett

    2017-06-01

    The thermal and mechanical response of collapsing voids in HMX is analyzed. In this work, the focus is simulating the temperature and pressure fields arising from isolated, idealized pores as they collapse in the presence of a shock. HMX slabs are numerically generated which contain a single pore, isolated from the boundaries to remove all wave reflections. In order to understand the primary pore characteristics leading to temperature rise, a series of 2D, plane strain simulations are conducted on HMX slabs containing both cylindrical and elliptical pores of constant size equal to the area of a circular pore with a 1 micron diameter. Each of these pore types is then subjected to shock pressures ranging from a weak shock that is unable to fully collapse the pore to a strong shock which overwhelms the tendency for localization. Results indicate that as shock strength increases, pore collapse phenomenology for a cylindrical pore transitions from a mode dominated by localized melt cracking to an idealized hydrodynamic pore collapse. For the case of elliptical pores, the orientation causing maximum temperature and pressure rise is found. The relative heating in elliptical pores is then quantified as a function of pore orientation and aspect ratio for a pore of a given area. Distribution A: Distribution unlimited. (96TW 2017-0036).

  15. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  16. The expression of the Slit-Robo signal in the retina of diabetic rats and the vitreous or fibrovascular retinal membranes of patients with proliferative diabetic retinopathy.

    Science.gov (United States)

    Zhou, Weiyan; Wang, Hongya; Yu, Wenzhen; Xie, Wankun; Zhao, Min; Huang, Lvzhen; Li, Xiaoxin

    2017-01-01

    The Slit-Robo signal has an important role in vasculogenesis and angiogenesis. Our study examined the expression of Slit2 and its receptor, Robo1, in a rat model of streptozotocin-induced diabetes and in patients with proliferative diabetic retinopathy. Diabetes was induced in male Sprague-Dawley rats via a single, intraperitoneal injection of streptozotocin. The rats were sacrificed 1, 3 or 6 months after the injection. The expression of Slit2 and Robo1 in retinal tissue was measured by real-time reverse transcription polymerase chain reaction (RT-PCR), and protein levels were measured by western blotting and immunohistochemistry. Recombinant N-Slit2 protein was used to study the effects of Slit2 on the expression of VEGF in vivo. The concentration of Slit2 protein in human eyes was measured by enzyme-linked immunosorbent assay in 27 eyes with proliferative diabetic retinopathy and 28 eyes in control group. The expression of Slit2, Robo1 and VEGF in the excised human fibrovascular membranes was examined by fluorescence immunostaining and semi-quantitative RT-PCR. The expression of Slit2 and Robo1 in the retina was altered after STZ injection. Recombinant N-Slit2 protein did not increase the retinal VEGF expression. Vitreous concentrations of Slit2 were significantly higher in the study group than in the control group. In the human fibrovascular membranes of the study group, the co-localization of VEGF with the markers for Slit2 and Robo1was observed. The expression of Slit2 mRNA, Robo1 mRNA, and VEGF mRNA was significantly higher in human fibrovascular proliferative diabetic retinopathy membranes than in the control membranes. The alteration of Slit2 and Robo1 expression in the retinas of diabetic rats and patients with proliferative diabetic retinopathy suggests a role for the Slit-Robo signal in the various stages diabetic retinopathy. Further studies should address the possible involvement of the Slit-Robo signal in the pathophysiological progress of diabetic

  17. Atomic resolution images of graphite in air

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  18. Electron oxidation of graphite by fluorospecies

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, G.L.

    1984-09-01

    The fluoride-ion affinity (A/sub F/sup -//) of phosphorus pentafluoride was determined to be 100 kcal/mole from the heats of reaction of the Lewis bases SF/sub 4/ and ClO/sub 2/F with PF/sub 5/ near room temperature. The fluoride-ion affinity of boron trifluoride was determined to be 92 kcal/mole from the heat of reaction of ClO/sub 2/F with BF/sub 3/. The crystal structure of ClO/sub 2/BF/sub 4/ was determined and a precise lattice energy was calculated from this structure and used to determined A/sub F/sup -//. Both PF/sub 5/ and BF/sub 3/ were found to react with graphite in the presence of fluorine gas to yield a variety of non-stoichiometric compounds. The fluoride-ion affinity of silicon tetrafluoride is not known, but it does not react with graphite and F/sub 2/ except at high pressures. These and previous results suggested a threshold in oxidizing power of intercalating species below which the oxidative intercalation reaction would not occur. The reduction of C/sub x/PF/sub 6/ by PF/sub 3/ proved that the reaction is thermodynamically controlled to some extent. The displacement of PF/sub 5/ in C/sub x/PF/sub 6/ by BF/sub 3/ (with a smaller A/sub F/sup -//) suggested that two BF/sub 3/ molecules may have a larger fluoride-ion affinity than one PF/sub 5/ and that B/sub 2/F/sub 7//sup -/ may be a stable anion in graphite. Conductivity studies of PF/sub x/ and BF/sub y/ salts showed that a large drop in conductivity when the reaction reaches first stage is due in the most part to direct fluorination of carbon in graphite.

  19. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  20. Electronic chip cooling system using graphite fins

    OpenAIRE

    Xue , Dong; Wu , Long; Xun , Lian

    2017-01-01

    International audience; As electronic devices get smaller, cooling systems with higher thermal efficiency is demanding by fast growing electronic industry. Great amount of research has been performed on the cooling systems but research on the materials of the cooling systems needs more work. Graphite with high thermal conductivity and light weight is a great candidate to be used in electronic devices. The bottleneck of using graphene in the cooling systems is the thermal transport among the i...

  1. Hilbert, Fock and Cantorian spaces in the quantum two-slit gedanken experiment

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    On the one hand, a rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space and as we move to the second quantization, a Fock space. On the other hand, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we utilize some novel reinterpretations of basic E (∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. Proceeding in this way, we gain a better understanding of the physico-mathematical structure of quantum spacetime which is at the heart of the paradoxical and non-intuitive outcome of the famous quantum two-slit gedanken experiment

  2. Analysis of electroosmotic flow of power-law fluids in a slit microchannel.

    Science.gov (United States)

    Zhao, Cunlu; Zholkovskij, Emilijk; Masliyah, Jacob H; Yang, Chun

    2008-10-15

    Electroosmotic flow of power-law fluids in a slit channel is analyzed. The governing equations including the linearized Poisson-Boltzmann equation, the Cauchy momentum equation, and the continuity equation are solved to seek analytical expressions for the shear stress, dynamic viscosity, and velocity distribution. Specifically, exact solutions of the velocity distributions are explicitly found for several special values of the flow behavior index. Furthermore, with the implementation of an approximate scheme for the hyperbolic cosine function, approximate solutions of the velocity distributions are obtained. In addition, a generalized Smoluchowski velocity is introduced by taking into account contributions due to the finite thickness of the electric double layer and the flow behavior index of power-law fluids. Calculations are performed to examine the effects of kappaH, flow behavior index, double layer thickness, and applied electric field on the shear stress, dynamic viscosity, velocity distribution, and average velocity/flow rate of the electroosmotic flow of power-law fluids.

  3. Five-grass pollen 300IR SLIT tablets: efficacy and safety in children and adolescents

    DEFF Research Database (Denmark)

    Halken, Susanne; Agertoft, Lone; Seidenberg, Jürgen

    2010-01-01

    The efficacy and safety of five-grass pollen 300IR sublingual immunotherapy (SLIT) tablets (Stallergènes SA, France) have previously been demonstrated in paediatric patients. This report presents additional data concerning efficacy at pollen peak, efficacy and safety according to age, nasal...... and ocular symptoms, use of rescue medication, satisfaction with treatment and compliance. Children (5-11 yr) and adolescents (12-17 yr) with grass pollen-allergic rhinoconjunctivitis were included in a multinational, randomized, double-blind, placebo-controlled study and received either a 300IR five......-grass pollen tablet or placebo daily in a pre- (4 months) and co-seasonal protocol. The severity of six symptoms (sneezing, rhinorrhoea, nasal congestion, nasal and ocular pruritis, and tearing) was scored, and rescue medication use was recorded daily during the pollen season. Patient satisfaction was recorded...

  4. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    Science.gov (United States)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  5. Observing the average momentum flow lines of particles in a double slit interferometer

    Science.gov (United States)

    Morley, Joel; Edmunds, Peter; Barker, Peter; Hiley, Basil; Flack, Rob; Monachello, Vincenzo; Experimental Weak Values Team

    2016-05-01

    The 1988 work on weak values by Aharonov et al., introduced a new kind of quantum variable. This created new perspectives when it came to the limits of quantum uncertainty. More recently, Kocsis et al. had used these techniques experimentally, claiming to have reconstructed the trajectories of photons after passing through an interferometer. This was done without destroying the interference pattern, an act apparently forbidden by standard quantum mechanics. We aim to replicate Kocsis' experiment using atoms. A ready made magneto-optical trap can routinely cool and trap, metastable argon atoms to the mK range. The ultra-cold temperatures offers particles with a large De Broglie wavelength. Here we present our intended method of reconstructing the atom's trajectories, while maintaining the interference pattern, as they fall below the slits. Thanks to the John E. Fetzer Memorial Fund.

  6. Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model

    International Nuclear Information System (INIS)

    Taylor, G. A.; Hiergesell, R. A.

    2013-01-01

    The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow

  7. Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Hiergesell, R. A.

    2013-11-12

    The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow

  8. Placentation in the Egyptian slit-faced bat Nycteris thebaica (Chiroptera: Nycteridae)

    DEFF Research Database (Denmark)

    Enders, A C; Jones, C J P; Taylor, P J

    2009-01-01

    Bats are a highly successful, widely distributed group, with considerable variation in placental structure. The Egyptian slit-faced bat Nycteris thebaica is a member of one of the few families with previously undescribed placentation. It was found that, although the interhemal type of the Nycteris...... placenta is endotheliochorial with a single layer of cytotrophoblast, the arborizing pattern of the maternal vessels and especially the extraordinary major placental artery differs from the placenta of the emballonurid bats to which this family is considered to be most closely related. The major placental...... other bat species. The paraplacenta is extensive with abundant fetal vessels underlying cytotrophoblast and syncytial trophoblast layers, fronting on an endometrium that largely lacks uterine epithelial cells but has large decidual cells and is poorly vascularized. The placenta of Nycteris lacks...

  9. Correction method of slit modulation transfer function on digital medical imaging system

    International Nuclear Information System (INIS)

    Kim, Jung Min; Jung, Hoi Woun; Min, Jung Whan; Im, Eon Kyung

    2006-01-01

    By using CR image pixel data, We examined the way how to calculate the MTF and digital characteristic curve. It can be changed to the text-file (Excel) from a pixel data which was printed with a digital x-ray equipment. In this place, We described the way how to figure out and correct the sharpness of a digital images of the MTF from FUJITA. Excel program was utilized to calculate from radiography of slit. Digital characteristic curve, Line Spread Function, Discrete Fourier Transform, Fast Fourier Transform digital specification curve, were indicated in regular sequence. A big advantage of this method, It can be understood easily and you can get results without costly program an without full knowledge of computer language. It shows many different values by using different correction methods. Therefore we need to be handy with appropriate correction method and we should try many experiments to get a precise MTF figures

  10. Pore-scale mechanisms of gas flow in tight sand reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the

  11. The effect of mass transport on the graphite/CO2 reaction

    International Nuclear Information System (INIS)

    Stephen, W.J.

    1984-11-01

    The Graphite/CO 2 reaction is strongly inhibited by the reaction product CO and therefore any model for the influence of mass transport on reaction rate should consider this. The problem of internal mass transport alone has been considered in previous notes. This note extends the models to include external mass transport. Results are compared with simple first order reaction with no volume change. The calculations demonstrate that, for strong CO inhibition, external mass transport limits reaction at a much lower rate than for first order kinetics and that the usual concept of three reaction zones corresponding to chemical control, in-pore diffusion control and boundary layer control can be unrealistically idealised. (U.K.)

  12. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis.

    Science.gov (United States)

    Liu, Jian; Huang, Jianhui; Zhou, Han; Antonietti, Markus

    2014-06-11

    Uniform graphitic carbon nitride nanorods (CNR) were facilely obtained by a morphology-preserving strategy by templating a chiral mesostructured silica nanorod. The hexagonal mesostructured pore structures of one-dimensional silica nanorods can provide nanoconfinement space for carbon nitride condensation to perfect layered structures. CNR demonstrated excellent photocatalytic capability in generating hydrogen from water even with a small specific surface area, compared with its mesoporous counterpart. For further application demonstration, the CNR was used for photocatalytic regeneration of NAD(+) to NADH, the biological form of hydrogen. The in situ NADH regeneration system was further coupled with l-glutamate dehydrogenase for sustainable generation of l-glutamate from α-ketoglutarate. The high yield and high efficiency obtained here point a high-throughput and sustainable way for practical enzymatic applications.

  13. Titania with Alkaline Treated Graphitic Carbon Nitride (g-C3N4) to Improve Photocatalysis Properties

    Science.gov (United States)

    Tan, Wei Han; Hak, Chen Hong; Saravanan, Pichiah; Leong, Kah Hon; Sim, Lan Ching

    2017-06-01

    The graphitic carbon nitride (g-C3N4) was treated via alkaline hydrothermal treatment to change the porous structure of g-C3N4 to “tube-like” structure. The developed alkaline treated g-C3N4 (A-g-C3N4) was combined with P25 Degussa TiO2 for the competent removal of methylene blue (MB). The morphological changes increased the crystallite size and pore size of g-C3N4, causing a decrease in the specific surface area of A-g-C3N4. The pure g-C3N4 demonstrated the best degradation efficiency among the all samples due to its high specific surface area, low band gap energy and small pore size. The combination of both A-g-C3N4 and g-C3N4 with TiO2 did not exert significant effect on the degradation efficiency of MB owing to the low specific surface area, high band gap and large pore size. Thus concluding the degradation efficiency of organic dye is attributed predominantly to the factors of energy band gap, specific surface area and pore sizes.

  14. Ventral Slit Scrotal Flap: A New Outpatient Surgical Option for Reconstruction of Adult Buried Penis Syndrome.

    Science.gov (United States)

    Westerman, Mary E; Tausch, Timothy J; Zhao, Lee C; Siegel, Jordan A; Starke, Nathan; Klein, Alexandra K; Morey, Allen F

    2015-06-01

    We present a novel technique using ventral slit with scrotal skin flaps (VSSF) for the reconstruction of adult buried penis without skin grafting. An initial ventral slit is made in the phimotic ring, and the penis is exposed. To cover the defect in the ventral shaft skin, local flaps are created by making a ventral midline scrotal incision with horizontal relaxing incisions. The scrotal flaps are rotated to resurface the ventral shaft. Clinical data analyzed included preoperative diagnoses, length of stay, blood loss, and operative outcomes. Complications were also recorded. Fifteen consecutive patients with a penis trapped due to lichen sclerosus (LS) or phimosis underwent repair with VSSF. Each was treated in the outpatient setting with no perioperative complications. Mean age was 51 years (range, 26-75 years), and mean body mass index was 42.6 kg/m(2) (range, 29.8-53.9 kg/m(2)). The majority of patients (13 of 15, 87%) had a pathologic diagnosis of LS. Mean estimated blood loss was 57 cc (range, 25-200 cc), mean operative time was 83 minutes (range, 35-145 minutes), and all patients were discharged on the day of surgery. The majority of patients (11 of 15, 73.3%) remain satisfied with their results and have required no further intervention. Recurrences in 3 of 15 (20.0%) were due to LS, panniculus migration, and concealment by edematous groin tissue; 2 of these patients underwent subsequent successful skin grafting. VSSF is a versatile, safe, and effective reconstructive option in appropriately selected patients with buried penis, which enables reconstruction of penile shaft skin defects without requiring complex skin grafting. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Fabrication of TREAT Fuel with Increased Graphite Loading

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Leckie, Rafael M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-05

    As part of the feasibility study exploring the replacement of the HEU fuel core of the TREAT reactor at Idaho National Laboratory with LEU fuel, this study demonstrates that it is possible to increase the graphite content of extruded fuel by reformulation. The extrusion process was use to fabricate the “upgrade” core1 for the TREAT reactor. The graphite content achieved is determined by calculation and has not been measured by any analytical method. In conjunction, a technique, Raman Spectroscopy, has been investigated for measuring the graphite content. This method shows some promise in differentiating between carbon and graphite; however, standards that would allow the technique to be calibrated to quantify the graphite concentration have yet to be fabricated. Continued research into Raman Spectroscopy is on going. As part of this study, cracking of graphite extrusions due to volatile evolution during heat treatment has been largely eliminated. Continued research to optimize this extrusion method is required.

  16. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  17. Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA Bending Bars Used for Seismic Restrainers

    Directory of Open Access Journals (Sweden)

    Junwon Seo

    2015-07-01

    Full Text Available Although the steel slit dampers commonly utilized for aseismic design approach can dissipate considerable energy created by the yielding of base materials, large residual deformation may happen in the entire frame structure. After strong external excitation, repair costs will be incurred in restoring a structure to its original condition and to replace broken components. For this reason, alternative recentering devices characterized by smart structures, which mitigate the damage for such steel energy dissipation slit dampers, are developed in this study. These devices, feasibly functioning as seismic restrainers, can be improved by implementing superelastic shape memory alloy (SMA bending bars in a parallel motion with the steel energy-dissipating damper. The bending bars fabricated with superelastic SMAs provide self-centering forces upon unloading, and accordingly contribute to reducing permanent deformation in the integrated slit damper system. The steel slit dampers combined with the superelastic SMA bending bars are evaluated with respect to inelastic behavior as simulated by refined finite element (FE analyses. The FE slit damper models subjected to cyclic loads are calibrated to existing test results in an effort to predict behavior accurately. The responses of the proposed slit damper systems are compared to those of the conventionally used slit damper systems. From the analysis results, it is concluded that innovative steel slit dampers combined with superelastic SMA bending bars generate remarkable performance improvements in terms of post-yield strength, energy dissipation, and recentering capability.

  18. Mode II interlaminar fracture of graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Carlsson, L. A.; Gillespie, J. W.; Trethewey, B. R.

    1986-01-01

    The end notched flexure (ENF) specimen is employed in an investigation of the interlaminar fracture toughness in Mode II (skew symmetric shear) loading of unidirectional graphite/epoxy and graphite/PEEK composites. Important experimental parameters such as the influence of precracking and the data reduction scheme for the Mode II toughness are discussed. Nonlinear load-deflection response is significant for the tough thermoplastic resin composite but is also present for the brittle thermoset composite. The observed nonlinearities, which are highly rate dependent, are attributed to a combination of slow stable crack growth preceding unstable crack growth and material inelastic behavior in the process zone around the crack tip.

  19. Change in properties of graphite on stake of Obninsk NPP

    International Nuclear Information System (INIS)

    Virgul'ev, Yu.S.; Gundorov, V.V.; Kalyagina, I.P.; Belinskaya, N.T.; Dolgov, V.V.; Komissarov, O.V.; Stuzhnev, Yu.A.

    1997-01-01

    The results of testing the graphite from the AM-1 reactor masonry at the Obninsk NPP for its operation period are discussed. It is shown that the masonry graphite state after 42 years of the reactor operation remains satisfactory in the most cells inspected. Separate cells requiring a repair resulted from oxidation are characterized by strength decreased by several times. The laws of radiation changes in graphite properties are analyzed. The conclusion on possibility of the further masonry operation is drawn

  20. Vermicular graphite cast iron current state of the art

    OpenAIRE

    Murthy, VSR; Seshan, S; Seshan, K

    1985-01-01

    Vermicular graphite cast iron is a new addition to the family of cast irons. Various methods for producing vermicular graphite cast iron are briefly discussed in this paper. The mechanical and physical properties of cast irons with vermicular graphite have been found to be intermediate between those of gray and ductile irons. Other properties such as casting characteristics, scaling resistance, damping capacity and machinability have been compared with those of gray and ductile irons. Probabl...