Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Optimization of heat transfer utilizing graph based evolutionary algorithms
International Nuclear Information System (INIS)
Bryden, Kenneth M.; Ashlock, Daniel A.; McCorkle, Douglas S.; Urban, Gregory L.
2003-01-01
This paper examines the use of graph based evolutionary algorithms (GBEAs) for optimization of heat transfer in a complex system. The specific case examined in this paper is the optimization of heat transfer in a biomass cookstove utilizing three-dimensional computational fluid dynamics to generate the fitness function. In this stove hot combustion gases are used to heat a cooking surface. The goal is to provide an even spatial temperature distribution on the cooking surface by redirecting the flow of combustion gases with baffles. The variables in the optimization are the position and size of the baffles, which are described by integer values. GBEAs are a novel type of EA in which a topology or geography is imposed on an evolving population of solutions. The choice of graph controls the rate at which solutions can spread within the population, impacting the diversity of solutions and convergence rate of the EAs. In this study, the choice of graph in the GBEAs changes the number of mating events required for convergence by a factor of approximately 2.25 and the diversity of the population by a factor of 2. These results confirm that by tuning the graph and parameters in GBEAs, computational time can be significantly reduced
Szabó, György; Fáth, Gábor
2007-07-01
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
Fixation Time for Evolutionary Graphs
Nie, Pu-Yan; Zhang, Pei-Ai
Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.
Fixation Probabilities of Evolutionary Graphs Based on the Positions of New Appearing Mutants
Directory of Open Access Journals (Sweden)
Pei-ai Zhang
2014-01-01
Full Text Available Evolutionary graph theory is a nice measure to implement evolutionary dynamics on spatial structures of populations. To calculate the fixation probability is usually regarded as a Markov chain process, which is affected by the number of the individuals, the fitness of the mutant, the game strategy, and the structure of the population. However the position of the new mutant is important to its fixation probability. Here the position of the new mutant is laid emphasis on. The method is put forward to calculate the fixation probability of an evolutionary graph (EG of single level. Then for a class of bilevel EGs, their fixation probabilities are calculated and some propositions are discussed. The conclusion is obtained showing that the bilevel EG is more stable than the corresponding one-rooted EG.
Evolutionary Graphs with Frequency Dependent Fitness
Nie, Pu-Yan; Zhang, Pei-Ai
Evolutionary graph theory was recently proposed by Lieberman et al. in 2005. In the previous papers about evolutionary graphs (EGs), the fitness of the residents in the EGs is in general assumed to be unity, and the fitness of a mutant is assumed to be a constant r. We aim to extend EG to general cases in this paper, namely, the fitness of a mutant is heavily dependent upon frequency. The corresponding properties for these new EGs are analyzed, and the fixation probability is obtained for large population.
Resistance and relatedness on an evolutionary graph
Maciejewski, Wes
2012-01-01
When investigating evolution in structured populations, it is often convenient to consider the population as an evolutionary graph—individuals as nodes, and whom they may act with as edges. There has, in recent years, been a surge of interest in evolutionary graphs, especially in the study of the evolution of social behaviours. An inclusive fitness framework is best suited for this type of study. A central requirement for an inclusive fitness analysis is an expression for the genetic similarity between individuals residing on the graph. This has been a major hindrance for work in this area as highly technical mathematics are often required. Here, I derive a result that links genetic relatedness between haploid individuals on an evolutionary graph to the resistance between vertices on a corresponding electrical network. An example that demonstrates the potential computational advantage of this result over contemporary approaches is provided. This result offers more, however, to the study of population genetics than strictly computationally efficient methods. By establishing a link between gene transfer and electric circuit theory, conceptualizations of the latter can enhance understanding of the former. PMID:21849384
Evolutionary dynamics on graphs: Efficient method for weak selection
Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph
2009-04-01
Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.
Evolutionary stability of mixed strategies on graphs
International Nuclear Information System (INIS)
Li, Yan; Liu, Xinsheng; Claussen, Jens Christian
2016-01-01
Up to the present time, the study of evolutionary dynamics mostly focused on pure strategy games in finite discrete strategy space, either in well-mixed or structured populations. In this paper, we study mixed strategy games in continuous strategy space on graphs of degree k . Each player is arranged on a vertex of the graph. The edges denote the interaction between two individuals. In the limit of weak selection, we first derive the payoff functions of two mixed strategies under three different updating rules, named birth–death, death–birth and imitation. Then we obtain the conditions for a strategy being a continuously stable strategy (CSS), and we also confirm that the equilibrium distribution corresponding to the CSS is neighborhood attracting and strongly uninvadable. Finally, we apply our theory to the prisoner’s dilemma and the snowdrift game to obtain possible CSS. Simulations are performed for the two special games and the results are well consistent with the conclusions we made. (paper)
Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237
Fixation probability on clique-based graphs
Choi, Jeong-Ok; Yu, Unjong
2018-02-01
The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.
CORECLUSTER: A Degeneracy Based Graph Clustering Framework
Giatsidis , Christos; Malliaros , Fragkiskos; Thilikos , Dimitrios M. ,; Vazirgiannis , Michalis
2014-01-01
International audience; Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typically suffer from high time and space complexity. In thisarticle, we present \\textsc{CoreCluster}, an efficient graph clusteringframework based on the concept of graph degeneracy, that can be used along withany known graph clusteri...
Degree-based graph construction
International Nuclear Information System (INIS)
Kim, Hyunju; Toroczkai, Zoltan; Erdos, Peter L; Miklos, Istvan; Szekely, Laszlo A
2009-01-01
Degree-based graph construction is a ubiquitous problem in network modelling (Newman et al 2006 The Structure and Dynamics of Networks (Princeton Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical compounds and biochemical reaction networks in the cell. This problem includes existence, enumeration, exhaustive construction and sampling questions with aspects that are still open today. Here we give necessary and sufficient conditions for a sequence of nonnegative integers to be realized as a simple graph's degree sequence, such that a given (but otherwise arbitrary) set of connections from an arbitrarily given node is avoided. We then use this result to present a swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a wider context, we show that our result provides a greedy construction method to build all the f-factor subgraphs (Tutte 1952 Can. J. Math. 4 314) embedded within K n setmn S k , where K n is the complete graph and S k is a star graph centred on one of the nodes. (fast track communication)
Graph Model Based Indoor Tracking
DEFF Research Database (Denmark)
Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin
2009-01-01
The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...
Visibility Graph Based Time Series Analysis.
Stephen, Mutua; Gu, Changgui; Yang, Huijie
2015-01-01
Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
Visibility Graph Based Time Series Analysis.
Directory of Open Access Journals (Sweden)
Mutua Stephen
Full Text Available Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
Compression-based inference on graph data
Bloem, P.; van den Bosch, A.; Heskes, T.; van Leeuwen, D.
2013-01-01
We investigate the use of compression-based learning on graph data. General purpose compressors operate on bitstrings or other sequential representations. A single graph can be represented sequentially in many ways, which may in uence the performance of sequential compressors. Using Normalized
A heterogeneous graph-based recommendation simulator
Energy Technology Data Exchange (ETDEWEB)
Yeonchan, Ahn [Seoul National University; Sungchan, Park [Seoul National University; Lee, Matt Sangkeun [ORNL; Sang-goo, Lee [Seoul National University
2013-01-01
Heterogeneous graph-based recommendation frameworks have flexibility in that they can incorporate various recommendation algorithms and various kinds of information to produce better results. In this demonstration, we present a heterogeneous graph-based recommendation simulator which enables participants to experience the flexibility of a heterogeneous graph-based recommendation method. With our system, participants can simulate various recommendation semantics by expressing the semantics via meaningful paths like User Movie User Movie. The simulator then returns the recommendation results on the fly based on the user-customized semantics using a fast Monte Carlo algorithm.
Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia.
Wang, Jiguang; Khiabanian, Hossein; Rossi, Davide; Fabbri, Giulia; Gattei, Valter; Forconi, Francesco; Laurenti, Luca; Marasca, Roberto; Del Poeta, Giovanni; Foà, Robin; Pasqualucci, Laura; Gaidano, Gianluca; Rabadan, Raul
2014-12-11
Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.
Graph-based Operational Semantics of a Lazy Functional Languages
DEFF Research Database (Denmark)
Rose, Kristoffer Høgsbro
1992-01-01
Presents Graph Operational Semantics (GOS): a semantic specification formalism based on structural operational semantics and term graph rewriting. Demonstrates the method by specifying the dynamic ...
Graph-based semi-supervised learning
Subramanya, Amarnag
2014-01-01
While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer visi
Citation graph based ranking in Invenio
Marian, Ludmila; Rajman, Martin; Vesely, Martin
2010-01-01
Invenio is the web-based integrated digital library system developed at CERN. Within this framework, we present four types of ranking models based on the citation graph that complement the simple approach based on citation counts: time-dependent citation counts, a relevancy ranking which extends the PageRank model, a time-dependent ranking which combines the freshness of citations with PageRank and a ranking that takes into consideration the external citations. We present our analysis and results obtained on two main data sets: Inspire and CERN Document Server. Our main contributions are: (i) a study of the currently available ranking methods based on the citation graph; (ii) the development of new ranking methods that correct some of the identified limitations of the current methods such as treating all citations of equal importance, not taking time into account or considering the citation graph complete; (iii) a detailed study of the key parameters for these ranking methods. (The original publication is ava...
A Modal-Logic Based Graph Abstraction
Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.
2008-01-01
Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract
Graph-based modelling in engineering
Rysiński, Jacek
2017-01-01
This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .
Graph based techniques for tag cloud generation
DEFF Research Database (Denmark)
Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes
2013-01-01
Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...... or citation counts for improved measurement of relevance of tag clouds. We show, that on the given data sets, our approach outperforms the state of the art baseline methods with respect to such relevance by 41 % on Movielens dataset and by 11 % on Bibsonomy data set....
Image based Monument Recognition using Graph based Visual Saliency
DEFF Research Database (Denmark)
Kalliatakis, Grigorios; Triantafyllidis, Georgios
2013-01-01
This article presents an image-based application aiming at simple image classification of well-known monuments in the area of Heraklion, Crete, Greece. This classification takes place by utilizing Graph Based Visual Saliency (GBVS) and employing Scale Invariant Feature Transform (SIFT) or Speeded......, the images have been previously processed according to the Graph Based Visual Saliency model in order to keep either SIFT or SURF features corresponding to the actual monuments while the background “noise” is minimized. The application is then able to classify these images, helping the user to better...
Graph-based clustering and data visualization algorithms
Vathy-Fogarassy, Ágnes
2013-01-01
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on
Hierarchical graphs for rule-based modeling of biochemical systems
Directory of Open Access Journals (Sweden)
Hu Bin
2011-02-01
Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for
An internet graph model based on trade-off optimization
Alvarez-Hamelin, J. I.; Schabanel, N.
2004-03-01
This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.
Analyzing locomotion synthesis with feature-based motion graphs.
Mahmudi, Mentar; Kallmann, Marcelo
2013-05-01
We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.
A Graph Summarization Algorithm Based on RFID Logistics
Sun, Yan; Hu, Kongfa; Lu, Zhipeng; Zhao, Li; Chen, Ling
Radio Frequency Identification (RFID) applications are set to play an essential role in object tracking and supply chain management systems. The volume of data generated by a typical RFID application will be enormous as each item will generate a complete history of all the individual locations that it occupied at every point in time. The movement trails of such RFID data form gigantic commodity flowgraph representing the locations and durations of the path stages traversed by each item. In this paper, we use graph to construct a warehouse of RFID commodity flows, and introduce a database-style operation to summarize graphs, which produces a summary graph by grouping nodes based on user-selected node attributes, further allows users to control the hierarchy of summaries. It can cut down the size of graphs, and provide convenience for users to study just on the shrunk graph which they interested. Through extensive experiments, we demonstrate the effectiveness and efficiency of the proposed method.
Dynamic airspace configuration method based on a weighted graph model
Directory of Open Access Journals (Sweden)
Chen Yangzhou
2014-08-01
Full Text Available This paper proposes a new method for dynamic airspace configuration based on a weighted graph model. The method begins with the construction of an undirected graph for the given airspace, where the vertices represent those key points such as airports, waypoints, and the edges represent those air routes. Those vertices are used as the sites of Voronoi diagram, which divides the airspace into units called as cells. Then, aircraft counts of both each cell and of each air-route are computed. Thus, by assigning both the vertices and the edges with those aircraft counts, a weighted graph model comes into being. Accordingly the airspace configuration problem is described as a weighted graph partitioning problem. Then, the problem is solved by a graph partitioning algorithm, which is a mixture of general weighted graph cuts algorithm, an optimal dynamic load balancing algorithm and a heuristic algorithm. After the cuts algorithm partitions the model into sub-graphs, the load balancing algorithm together with the heuristic algorithm transfers aircraft counts to balance workload among sub-graphs. Lastly, airspace configuration is completed by determining the sector boundaries. The simulation result shows that the designed sectors satisfy not only workload balancing condition, but also the constraints such as convexity, connectivity, as well as minimum distance constraint.
Fitchi: haplotype genealogy graphs based on the Fitch algorithm.
Matschiner, Michael
2016-04-15
: In population genetics and phylogeography, haplotype genealogy graphs are important tools for the visualization of population structure based on sequence data. In this type of graph, node sizes are often drawn in proportion to haplotype frequencies and edge lengths represent the minimum number of mutations separating adjacent nodes. I here present Fitchi, a new program that produces publication-ready haplotype genealogy graphs based on the Fitch algorithm. http://www.evoinformatics.eu/fitchi.htm : michaelmatschiner@mac.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Skin Segmentation Based on Graph Cuts
Institute of Scientific and Technical Information of China (English)
HU Zhilan; WANG Guijin; LIN Xinggang; YAN Hong
2009-01-01
Skin segmentation is widely used in many computer vision tasks to improve automated visualiza-tion. This paper presents a graph cuts algorithm to segment arbitrary skin regions from images. The detected face is used to determine the foreground skin seeds and the background non-skin seeds with the color probability distributions for the foreground represented by a single Gaussian model and for the background by a Gaussian mixture model. The probability distribution of the image is used for noise suppression to alle-viate the influence of the background regions having skin-like colors. Finally, the skin is segmented by graph cuts, with the regional parameter y optimally selected to adapt to different images. Tests of the algorithm on many real wodd photographs show that the scheme accurately segments skin regions and is robust against illumination variations, individual skin variations, and cluttered backgrounds.
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
Graph-based linear scaling electronic structure theory
Energy Technology Data Exchange (ETDEWEB)
Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Germann, Timothy C.; Bock, Nicolas [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Mniszewski, Susan M.; Mohd-Yusof, Jamal; Wall, Michael E.; Djidjev, Hristo [Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Rubensson, Emanuel H. [Division of Scientific Computing, Department of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala (Sweden)
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Dim target detection method based on salient graph fusion
Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun
2018-02-01
Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.
Overlapping community detection based on link graph using distance dynamics
Chen, Lei; Zhang, Jing; Cai, Li-Jun
2018-01-01
The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government
A DNA Computing Model for the Graph Vertex Coloring Problem Based on a Probe Graph
Directory of Open Access Journals (Sweden)
Jin Xu
2018-02-01
Full Text Available The biggest bottleneck in DNA computing is exponential explosion, in which the DNA molecules used as data in information processing grow exponentially with an increase of problem size. To overcome this bottleneck and improve the processing speed, we propose a DNA computing model to solve the graph vertex coloring problem. The main points of the model are as follows: ① The exponential explosion problem is solved by dividing subgraphs, reducing the vertex colors without losing the solutions, and ordering the vertices in subgraphs; and ② the bio-operation times are reduced considerably by a designed parallel polymerase chain reaction (PCR technology that dramatically improves the processing speed. In this article, a 3-colorable graph with 61 vertices is used to illustrate the capability of the DNA computing model. The experiment showed that not only are all the solutions of the graph found, but also more than 99% of false solutions are deleted when the initial solution space is constructed. The powerful computational capability of the model was based on specific reactions among the large number of nanoscale oligonucleotide strands. All these tiny strands are operated by DNA self-assembly and parallel PCR. After thousands of accurate PCR operations, the solutions were found by recognizing, splicing, and assembling. We also prove that the searching capability of this model is up to O(359. By means of an exhaustive search, it would take more than 896 000 years for an electronic computer (5 × 1014 s−1 to achieve this enormous task. This searching capability is the largest among both the electronic and non-electronic computers that have been developed since the DNA computing model was proposed by Adleman’s research group in 2002 (with a searching capability of O(220. Keywords: DNA computing, Graph vertex coloring problem, Polymerase chain reaction
Semantic content-based recommendations using semantic graphs.
Guo, Weisen; Kraines, Steven B
2010-01-01
Recommender systems (RSs) can be useful for suggesting items that might be of interest to specific users. Most existing content-based recommendation (CBR) systems are designed to recommend items based on text content, and the items in these systems are usually described with keywords. However, similarity evaluations based on keywords suffer from the ambiguity of natural languages. We present a semantic CBR method that uses Semantic Web technologies to recommend items that are more similar semantically with the items that the user prefers. We use semantic graphs to represent the items and we calculate the similarity scores for each pair of semantic graphs using an inverse graph frequency algorithm. The items having higher similarity scores to the items that are known to be preferred by the user are recommended.
A novel line segment detection algorithm based on graph search
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
Memoryless cooperative graph search based on the simulated annealing algorithm
International Nuclear Information System (INIS)
Hou Jian; Yan Gang-Feng; Fan Zhen
2011-01-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment. (interdisciplinary physics and related areas of science and technology)
A sediment graph model based on SCS-CN method
Singh, P. K.; Bhunya, P. K.; Mishra, S. K.; Chaube, U. C.
2008-01-01
SummaryThis paper proposes new conceptual sediment graph models based on coupling of popular and extensively used methods, viz., Nash model based instantaneous unit sediment graph (IUSG), soil conservation service curve number (SCS-CN) method, and Power law. These models vary in their complexity and this paper tests their performance using data of the Nagwan watershed (area = 92.46 km 2) (India). The sensitivity of total sediment yield and peak sediment flow rate computations to model parameterisation is analysed. The exponent of the Power law, β, is more sensitive than other model parameters. The models are found to have substantial potential for computing sediment graphs (temporal sediment flow rate distribution) as well as total sediment yield.
[A retrieval method of drug molecules based on graph collapsing].
Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z
2018-04-18
To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1
Muhammad, Akram; Musavarah, Sarwar
2016-01-01
In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing domination in bipolar neutrosophic graphs.
Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking
Kant, Gijs
Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing
Graph-Based Methods for Discovery Browsing with Semantic Predications
DEFF Research Database (Denmark)
Wilkowski, Bartlomiej; Fiszman, Marcelo; Miller, Christopher M
2011-01-01
. Poorly understood relationships may be explored through novel points of view, and potentially interesting relationships need not be known ahead of time. In a process of "cooperative reciprocity" the user iteratively focuses system output, thus controlling the large number of relationships often generated...... in literature-based discovery systems. The underlying technology exploits SemRep semantic predications represented as a graph of interconnected nodes (predication arguments) and edges (predicates). The system suggests paths in this graph, which represent chains of relationships. The methodology is illustrated...
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
Graph-cut based discrete-valued image reconstruction.
Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim
2015-05-01
Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.
Summary: beyond fault trees to fault graphs
International Nuclear Information System (INIS)
Alesso, H.P.; Prassinos, P.; Smith, C.F.
1984-09-01
Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability
Diffusion-based recommendation with trust relations on tripartite graphs
Wang, Ximeng; Liu, Yun; Zhang, Guangquan; Xiong, Fei; Lu, Jie
2017-08-01
The diffusion-based recommendation approach is a vital branch in recommender systems, which successfully applies physical dynamics to make recommendations for users on bipartite or tripartite graphs. Trust links indicate users’ social relations and can provide the benefit of reducing data sparsity. However, traditional diffusion-based algorithms only consider rating links when making recommendations. In this paper, the complementarity of users’ implicit and explicit trust is exploited, and a novel resource-allocation strategy is proposed, which integrates these two kinds of trust relations on tripartite graphs. Through empirical studies on three benchmark datasets, our proposed method obtains better performance than most of the benchmark algorithms in terms of accuracy, diversity and novelty. According to the experimental results, our method is an effective and reasonable way to integrate additional features into the diffusion-based recommendation approach.
Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina
2015-03-01
Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new
Identifying Threats Using Graph-based Anomaly Detection
Eberle, William; Holder, Lawrence; Cook, Diane
Much of the data collected during the monitoring of cyber and other infrastructures is structural in nature, consisting of various types of entities and relationships between them. The detection of threatening anomalies in such data is crucial to protecting these infrastructures. We present an approach to detecting anomalies in a graph-based representation of such data that explicitly represents these entities and relationships. The approach consists of first finding normative patterns in the data using graph-based data mining and then searching for small, unexpected deviations to these normative patterns, assuming illicit behavior tries to mimic legitimate, normative behavior. The approach is evaluated using several synthetic and real-world datasets. Results show that the approach has high truepositive rates, low false-positive rates, and is capable of detecting complex structural anomalies in real-world domains including email communications, cellphone calls and network traffic.
Declarative Event-Based Workflow as Distributed Dynamic Condition Response Graphs
DEFF Research Database (Denmark)
Hildebrandt, Thomas; Mukkamala, Raghava Rao
2010-01-01
We present Dynamic Condition Response Graphs (DCR Graphs) as a declarative, event-based process model inspired by the workflow language employed by our industrial partner and conservatively generalizing prime event structures. A dynamic condition response graph is a directed graph with nodes repr...... exemplify the use of distributed DCR Graphs on a simple workflow taken from a field study at a Danish hospital, pointing out their flexibility compared to imperative workflow models. Finally we provide a mapping from DCR Graphs to Buchi-automata....
Artistic image analysis using graph-based learning approaches.
Carneiro, Gustavo
2013-08-01
We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.
Knowledge based analysis of radiology reports using conceptual graphs
International Nuclear Information System (INIS)
Schroeder, M.
1992-07-01
The telegraphic language found in radiological reports can be well understood by a natrual language system using the underlying domain knowledge. We present the METEXA system, which emphasizes the use of radiological domain knowledge to determine the semantics of utterances. Syntactic and semantic analysis, lexical sematics and the structure of the domain model are described in some detail. A resolution-based inference engine answers relevant questions concerning the contents of the reports. As knowledge representation formalism the Conceptual Graph Theory by John Sowa has been chosen. (orig.)
Graph-based geometric-iconic guide-wire tracking.
Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos
2011-01-01
In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.
Ranking Scientific Publications Based on Their Citation Graph
Marian, L; Rajman, M
2009-01-01
CDS Invenio is the web-based integrated digital library system developed at CERN. It is a suite of applications which provides the framework and tools for building and managing an autonomous digital library server. Within this framework, the goal of this project is to implement new ranking methods based on the bibliographic citation graph extracted from the CDS Invenio database. As a first step, we implemented the Citation Count as a baseline ranking method. The major disadvantage of this method is that all citations are treated equally, disregarding their importance and their publication date. To overcome this drawback, we consider two different approaches: a link-based approach which extends the PageRank model to the bibliographic citation graph and a time-dependent approach which takes into account time in the citation counts. In addition, we also combined these two approaches in a hybrid model based on a time-dependent PageRank. In the present document, we describe the conceptual background behind our new...
Image interpolation via graph-based Bayesian label propagation.
Xianming Liu; Debin Zhao; Jiantao Zhou; Wen Gao; Huifang Sun
2014-03-01
In this paper, we propose a novel image interpolation algorithm via graph-based Bayesian label propagation. The basic idea is to first create a graph with known and unknown pixels as vertices and with edge weights encoding the similarity between vertices, then the problem of interpolation converts to how to effectively propagate the label information from known points to unknown ones. This process can be posed as a Bayesian inference, in which we try to combine the principles of local adaptation and global consistency to obtain accurate and robust estimation. Specially, our algorithm first constructs a set of local interpolation models, which predict the intensity labels of all image samples, and a loss term will be minimized to keep the predicted labels of the available low-resolution (LR) samples sufficiently close to the original ones. Then, all of the losses evaluated in local neighborhoods are accumulated together to measure the global consistency on all samples. Moreover, a graph-Laplacian-based manifold regularization term is incorporated to penalize the global smoothness of intensity labels, such smoothing can alleviate the insufficient training of the local models and make them more robust. Finally, we construct a unified objective function to combine together the global loss of the locally linear regression, square error of prediction bias on the available LR samples, and the manifold regularization term. It can be solved with a closed-form solution as a convex optimization problem. Experimental results demonstrate that the proposed method achieves competitive performance with the state-of-the-art image interpolation algorithms.
Enhancements to Graph based methods for Multi Document Summarization
Directory of Open Access Journals (Sweden)
Rengaramanujam Srinivasan
2009-01-01
Full Text Available This paper focuses its attention on extractivesummarization using popular graph based approaches. Graphbased methods can be broadly classified into two categories:non- PageRank type and PageRank type methods. Of themethods already proposed - the Centrality Degree methodbelongs to the former category while LexRank and ContinuousLexRank methods belong to later category. The paper goes on tosuggest two enhancements to both PageRank type and non-PageRank type methods. The first modification is that ofrecursively discounting the selected sentences, i.e. if a sentence isselected it is removed from further consideration and the nextsentence is selected based upon the contributions of theremaining sentences only. Next the paper suggests a method ofincorporating position weight to these schemes. In all 14methods –six of non- PageRank type and eight of PageRanktype have been investigated. To clearly distinguish betweenvarious schemes, we call the methods of incorporatingdiscounting and position weight enhancements over LexicalRank schemes as Sentence Rank (SR methods. Intrinsicevaluation of all the 14 graph based methods were done usingconventional Precision metric and metrics earlier proposed byus - Effectiveness1 (E1 and Effectiveness2 (E2. Experimentalstudy brings out that the proposed SR methods are superior toall the other methods.
Note on Ideal Based Zero-Divisor Graph of a Commutative Ring
Directory of Open Access Journals (Sweden)
Mallika A.
2017-12-01
Full Text Available In this paper, we consider the ideal based zero divisor graph ΓI(R of a commutative ring R. We discuss some graph theoretical properties of ΓI(R in relation with zero divisor graph. We also relate certain parameters like vertex chromatic number, maximum degree and minimum degree for the graph ΓI(R with that of Γ(R/I . Further we determine a necessary and sufficient condition for the graph to be Eulerian and regular.
Unsupervised active learning based on hierarchical graph-theoretic clustering.
Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve
2009-10-01
Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.
Evolutionary Based Solutions for Green Computing
Kołodziej, Joanna; Li, Juan; Zomaya, Albert
2013-01-01
Today’s highly parameterized large-scale distributed computing systems may be composed of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system’s services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems. This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance ``green computing’’ systems. The recent evolutionary and general metaheuristic-based solutions ...
Graph-Based Analysis of Nuclear Smuggling Data
International Nuclear Information System (INIS)
Cook, Diane; Holder, Larry; Thompson, Sandra E.; Whitney, Paul D.; Chilton, Lawrence
2009-01-01
Much of the data that is collected and analyzed today is structural, consisting not only of entities but also of relationships between the entities. As a result, analysis applications rely upon automated structural data mining approaches to find patterns and concepts of interest. This ability to analyze structural data has become a particular challenge in many security-related domains. In these domains, focusing on the relationships between entities in the data is critical to detect important underlying patterns. In this study we apply structural data mining techniques to automate analysis of nuclear smuggling data. In particular, we choose to model the data as a graph and use graph-based relational learning to identify patterns and concepts of interest in the data. In this paper, we identify the analysis questions that are of importance to security analysts and describe the knowledge representation and data mining approach that we adopt for this challenge. We analyze the results using the Russian nuclear smuggling event database.
Motifs in triadic random graphs based on Steiner triple systems
Winkler, Marco; Reichardt, Jörg
2013-08-01
Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.
Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages
Directory of Open Access Journals (Sweden)
Kevin Holder
2017-10-01
Full Text Available For several decades, a wide-spread consensus concerning the enormous importance of an in-depth clarification of the specifications of a product has been observed. A weak clarification of specifications is repeatedly listed as a main cause for the failure of product development projects. Requirements, which can be defined as the purpose, goals, constraints, and criteria associated with a product development project, play a central role in the clarification of specifications. The collection of activities which ensure that requirements are identified, documented, maintained, communicated, and traced throughout the life cycle of a system, product, or service can be referred to as “requirements engineering”. These activities can be supported by a collection and combination of strategies, methods, and tools which are appropriate for the clarification of specifications. Numerous publications describe the strategy and the components of requirements management. Furthermore, recent research investigates its industrial application. Simultaneously, promising developments of graph-based design languages for a holistic digital representation of the product life cycle are presented. Current developments realize graph-based languages by the diagrams of the Unified Modelling Language (UML, and allow the automatic generation and evaluation of multiple product variants. The research presented in this paper seeks to present a method in order to combine the advantages of a conscious requirements management process and graph-based design languages. Consequently, the main objective of this paper is the investigation of a model-based integration of requirements in a product development process by means of graph-based design languages. The research method is based on an in-depth analysis of an exemplary industrial product development, a gear system for so-called “Electrical Multiple Units” (EMU. Important requirements were abstracted from a gear system
A cognitive architecture-based model of graph comprehension
Peebles, David
2012-01-01
I present a model of expert comprehension performance for 2 × 2 "interaction" graphs typically used to present data from two-way factorial research designs. Developed using the ACT-R cognitive architecture, the model simulates the cognitive and perceptual operations involved in interpreting interaction graphs and provides a detailed characterisation of the information extracted from the diagram, the prior knowledge required to interpret interaction graphs, and the knowledge generated during t...
Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices.
Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh
2015-01-01
In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164-168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work.
An LG-graph-based early evaluation of segmented images
International Nuclear Information System (INIS)
Tsitsoulis, Athanasios; Bourbakis, Nikolaos
2012-01-01
Image segmentation is one of the first important parts of image analysis and understanding. Evaluation of image segmentation, however, is a very difficult task, mainly because it requires human intervention and interpretation. In this work, we propose a blind reference evaluation scheme based on regional local–global (RLG) graphs, which aims at measuring the amount and distribution of detail in images produced by segmentation algorithms. The main idea derives from the field of image understanding, where image segmentation is often used as a tool for scene interpretation and object recognition. Evaluation here derives from summarization of the structural information content and not from the assessment of performance after comparisons with a golden standard. Results show measurements for segmented images acquired from three segmentation algorithms, applied on different types of images (human faces/bodies, natural environments and structures (buildings)). (paper)
Clone Detection for Graph-Based Model Transformation Languages
DEFF Research Database (Denmark)
Strüber, Daniel; Plöger, Jennifer; Acretoaie, Vlad
2016-01-01
and analytical quality assurance. From these use cases, we derive a set of key requirements. We describe our customization of existing model clone detection techniques allowing us to address these requirements. Finally, we provide an experimental evaluation, indicating that our customization of ConQAT, one......Cloning is a convenient mechanism to enable reuse across and within software artifacts. On the downside, it is also a practice related to significant long-term maintainability impediments, thus generating a need to identify clones in affected artifacts. A large variety of clone detection techniques...... has been proposed for programming and modeling languages; yet no specific ones have emerged for model transformation languages. In this paper, we explore clone detection for graph-based model transformation languages. We introduce potential use cases for such techniques in the context of constructive...
Image-Based Edge Bundles : Simplified Visualization of Large Graphs
Telea, A.; Ersoy, O.
2010-01-01
We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph
Individual Travel Behavior Modeling of Public Transport Passenger Based on Graph Construction
Quan Liang; Jiancheng Weng; Wei Zhou; Selene Baez Santamaria; Jianming Ma; Jian Rong
2018-01-01
This paper presents a novel method for mining the individual travel behavior regularity of different public transport passengers through constructing travel behavior graph based model. The individual travel behavior graph is developed to represent spatial positions, time distributions, and travel routes and further forecasts the public transport passenger’s behavior choice. The proposed travel behavior graph is composed of macronodes, arcs, and transfer probability. Each macronode corresponds...
Lee, Kyu J.; Kunii, T. L.; Noma, T.
1993-01-01
In this paper, we propose a syntactic pattern recognition method for non-schematic drawings, based on a new attributed graph grammar with flexible embedding. In our graph grammar, the embedding rule permits the nodes of a guest graph to be arbitrarily connected with the nodes of a host graph. The ambiguity caused by this flexible embedding is controlled with the evaluation of synthesized attributes and the check of context sensitivity. To integrate parsing with the synthesized attribute evaluation and the context sensitivity check, we also develop a bottom up parsing algorithm.
PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.
Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein
2016-05-01
The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Network-based Arbitrated Quantum Signature Scheme with Graph State
Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying
2017-08-01
Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.
On the Evolutionary Bases of Consumer Reinforcement
Nicholson, Michael; Xiao, Sarah Hong
2010-01-01
This article locates consumer behavior analysis within the modern neo-Darwinian synthesis, seeking to establish an interface between the ultimate-level theorizing of human evolutionary psychology and the proximate level of inquiry typically favored by operant learning theorists. Following an initial overview of the central tenets of neo-Darwinism,…
Approximate labeling via graph cuts based on linear programming.
Komodakis, Nikos; Tziritas, Georgios
2007-08-01
A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.
Directory of Open Access Journals (Sweden)
Sarunya Kanjanawattana
2017-01-01
Full Text Available literature. Extracting graph information clearly contributes to readers, who are interested in graph information interpretation, because we can obtain significant information presenting in the graph. A typical tool used to transform image-based characters to computer editable characters is optical character recognition (OCR. Unfortunately, OCR cannot guarantee perfect results, because it is sensitive to noise and input quality. This becomes a serious problem because misrecognition provides misunderstanding information to readers and causes misleading communication. In this study, we present a novel method for OCR-error correction based on bar graphs using semantics, such as ontologies and dependency parsing. Moreover, we used a graph component extraction proposed in our previous study to omit irrelevant parts from graph components. It was applied to clean and prepare input data for this OCR-error correction. The main objectives of this paper are to extract significant information from the graph using OCR and to correct OCR errors using semantics. As a result, our method provided remarkable performance with the highest accuracies and F-measures. Moreover, we examined that our input data contained less of noise because of an efficiency of our graph component extraction. Based on the evidence, we conclude that our solution to the OCR problem achieves the objectives.
Graph based communication analysis for hardware/software codesign
DEFF Research Database (Denmark)
Knudsen, Peter Voigt; Madsen, Jan
1999-01-01
In this paper we present a coarse grain CDFG (Control/Data Flow Graph) model suitable for hardware/software partitioning of single processes and demonstrate how it is necessary to perform various transformations on the graph structure before partitioning in order to achieve a structure that allows...... for accurate estimation of communication overhead between nodes mapped to different processors. In particular, we demonstrate how various transformations of control structures can lead to a more accurate communication analysis and more efficient implementations. The purpose of the transformations is to obtain...
A semantic graph-based approach to biomedical summarisation.
Plaza, Laura; Díaz, Alberto; Gervás, Pablo
2011-09-01
Access to the vast body of research literature that is available in biomedicine and related fields may be improved by automatic summarisation. This paper presents a method for summarising biomedical scientific literature that takes into consideration the characteristics of the domain and the type of documents. To address the problem of identifying salient sentences in biomedical texts, concepts and relations derived from the Unified Medical Language System (UMLS) are arranged to construct a semantic graph that represents the document. A degree-based clustering algorithm is then used to identify different themes or topics within the text. Different heuristics for sentence selection, intended to generate different types of summaries, are tested. A real document case is drawn up to illustrate how the method works. A large-scale evaluation is performed using the recall-oriented understudy for gisting-evaluation (ROUGE) metrics. The results are compared with those achieved by three well-known summarisers (two research prototypes and a commercial application) and two baselines. Our method significantly outperforms all summarisers and baselines. The best of our heuristics achieves an improvement in performance of almost 7.7 percentage units in the ROUGE-1 score over the LexRank summariser (0.7862 versus 0.7302). A qualitative analysis of the summaries also shows that our method succeeds in identifying sentences that cover the main topic of the document and also considers other secondary or "satellite" information that might be relevant to the user. The method proposed is proved to be an efficient approach to biomedical literature summarisation, which confirms that the use of concepts rather than terms can be very useful in automatic summarisation, especially when dealing with highly specialised domains. Copyright © 2011 Elsevier B.V. All rights reserved.
A Graph Based Framework to Model Virus Integration Sites
Directory of Open Access Journals (Sweden)
Raffaele Fronza
2016-01-01
Here, we addressed the challenge to: 1 define the notion of CIS on graph models, 2 demonstrate that the structure of CIS enters in the category of scale-free networks and 3 show that our network approach analyzes CIS dynamically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene Database (RTCGD as a testing dataset.
EIT Imaging Regularization Based on Spectral Graph Wavelets.
Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut
2017-09-01
The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.
Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue
2016-01-01
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
MSGD: Scalable back-end for indoor magnetic field-based GraphSLAM
Gao, C; Harle, Robert Keith
2017-01-01
Simultaneous Localisation and Mapping (SLAM) systems that recover the trajectory of a robot or mobile device are characterised by a front-end and back-end. The front-end uses sensor observations to identify loop closures; the back-end optimises the estimated trajectory to be consistent with these closures. The GraphSLAM framework formulates the back-end problem as a graph-based optimisation on a pose graph. This paper describes a back-end system optimised for very dense sequence-based lo...
Individual Travel Behavior Modeling of Public Transport Passenger Based on Graph Construction
Directory of Open Access Journals (Sweden)
Quan Liang
2018-01-01
Full Text Available This paper presents a novel method for mining the individual travel behavior regularity of different public transport passengers through constructing travel behavior graph based model. The individual travel behavior graph is developed to represent spatial positions, time distributions, and travel routes and further forecasts the public transport passenger’s behavior choice. The proposed travel behavior graph is composed of macronodes, arcs, and transfer probability. Each macronode corresponds to a travel association map and represents a travel behavior. A travel association map also contains its own nodes. The nodes of a travel association map are created when the processed travel chain data shows significant change. Thus, each node of three layers represents a significant change of spatial travel positions, travel time, and routes, respectively. Since a travel association map represents a travel behavior, the graph can be considered a sequence of travel behaviors. Through integrating travel association map and calculating the probabilities of the arcs, it is possible to construct a unique travel behavior graph for each passenger. The data used in this study are multimode data matched by certain rules based on the data of public transport smart card transactions and network features. The case study results show that graph based method to model the individual travel behavior of public transport passengers is effective and feasible. Travel behavior graphs support customized public transport travel characteristics analysis and demand prediction.
Crichton, Gamal; Guo, Yufan; Pyysalo, Sampo; Korhonen, Anna
2018-05-21
Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation between nodes. Recently several works have used neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate performances with comprehensive metrics or explain when or why neural network methods outperform. We investigated how inputs from four node representation algorithms affect performance of a neural link predictor on random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and report performance across five metrics. In random- and time-sliced experiments when the neural network methods were able to learn good node representations and there was a negligible amount of disconnected nodes, those approaches outperformed the baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes, baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while neural network methods benefit from large amounts of data, they require considerable amounts of computational resources to utilise them. Our results indicate
2015-01-01
Assistant for Calculus (winter 2011) xii CHAPTER 1 Introduction We present several methods, outlined in Chapters 3-5, for image processing and data...local calculus formulation [103] to generalize the continuous formulation to a (non-local) discrete setting, while other non-local versions for...graph-based model based on the Ginzburg-Landau functional in their work [9]. To define the functional on a graph, the spatial gradient is replaced by a
Graph-based structural change detection for rotating machinery monitoring
Lu, Guoliang; Liu, Jie; Yan, Peng
2018-01-01
Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).
Demadroid: Object Reference Graph-Based Malware Detection in Android
Directory of Open Access Journals (Sweden)
Huanran Wang
2018-01-01
Full Text Available Smartphone usage has been continuously increasing in recent years. In addition, Android devices are widely used in our daily life, becoming the most attractive target for hackers. Therefore, malware analysis of Android platform is in urgent demand. Static analysis and dynamic analysis methods are two classical approaches. However, they also have some drawbacks. Motivated by this, we present Demadroid, a framework to implement the detection of Android malware. We obtain the dynamic information to build Object Reference Graph and propose λ-VF2 algorithm for graph matching. Extensive experiments show that Demadroid can efficiently identify the malicious features of malware. Furthermore, the system can effectively resist obfuscated attacks and the variants of known malware to meet the demand for actual use.
POOR TEXTURAL IMAGE MATCHING BASED ON GRAPH THEORY
Directory of Open Access Journals (Sweden)
S. Chen
2016-06-01
Full Text Available Image matching lies at the heart of photogrammetry and computer vision. For poor textural images, the matching result is affected by low contrast, repetitive patterns, discontinuity or occlusion, few or homogeneous textures. Recently, graph matching became popular for its integration of geometric and radiometric information. Focused on poor textural image matching problem, it is proposed an edge-weight strategy to improve graph matching algorithm. A series of experiments have been conducted including 4 typical landscapes: Forest, desert, farmland, and urban areas. And it is experimentally found that our new algorithm achieves better performance. Compared to SIFT, doubled corresponding points were acquired, and the overall recall rate reached up to 68%, which verifies the feasibility and effectiveness of the algorithm.
Directory of Open Access Journals (Sweden)
Fubiao Feng
2017-03-01
Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.
Graph-based Techniques for Topic Classification of Tweets in Spanish
Directory of Open Access Journals (Sweden)
Hector Cordobés
2014-03-01
Full Text Available Topic classification of texts is one of the most interesting challenges in Natural Language Processing (NLP. Topic classifiers commonly use a bag-of-words approach, in which the classifier uses (and is trained with selected terms from the input texts. In this work we present techniques based on graph similarity to classify short texts by topic. In our classifier we build graphs from the input texts, and then use properties of these graphs to classify them. We have tested the resulting algorithm by classifying Twitter messages in Spanish among a predefined set of topics, achieving more than 70% accuracy.
Multi-label literature classification based on the Gene Ontology graph
Directory of Open Access Journals (Sweden)
Lu Xinghua
2008-12-01
Full Text Available Abstract Background The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. Results In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Conclusion Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate
Tyner, Bryan C.; Fienup, Daniel M.
2015-01-01
Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance.…
Weighted graph based ordering techniques for preconditioned conjugate gradient methods
Clift, Simon S.; Tang, Wei-Pai
1994-01-01
We describe the basis of a matrix ordering heuristic for improving the incomplete factorization used in preconditioned conjugate gradient techniques applied to anisotropic PDE's. Several new matrix ordering techniques, derived from well-known algorithms in combinatorial graph theory, which attempt to implement this heuristic, are described. These ordering techniques are tested against a number of matrices arising from linear anisotropic PDE's, and compared with other matrix ordering techniques. A variation of RCM is shown to generally improve the quality of incomplete factorization preconditioners.
An Efficient Evolutionary Based Method For Image Segmentation
Aslanzadeh, Roohollah; Qazanfari, Kazem; Rahmati, Mohammad
2017-01-01
The goal of this paper is to present a new efficient image segmentation method based on evolutionary computation which is a model inspired from human behavior. Based on this model, a four layer process for image segmentation is proposed using the split/merge approach. In the first layer, an image is split into numerous regions using the watershed algorithm. In the second layer, a co-evolutionary process is applied to form centers of finals segments by merging similar primary regions. In the t...
Individual-based modeling of ecological and evolutionary processes
DeAngelis, Donald L.; Mooij, Wolf M.
2005-01-01
Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.
A phase plane graph based model of the ovulatory cycle lacking the "positive feedback" phenomenon
Directory of Open Access Journals (Sweden)
Kurbel Sven
2012-08-01
Full Text Available Abstract When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning “&" symbol, while LH and progesterone (Pg values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883–887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. in several estrogen target tissue progesterone receptor (PgR expression depends on previous estrogen binding to functional estrogen receptors (ER, while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge. A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic
Rapid Separation of Disconnected Triangle Meshes Based on Graph Traversal
International Nuclear Information System (INIS)
Ji, S J; Wang, Y
2006-01-01
In recent year, The STL file become a de facto standard on the file presentation in CAD/CAM, computer graph and reverse engineering. When point cloud which is obtained by scanning object body using optical instrument is used to reconstruct an original model, the points cloud is presented by the STL file. Usually, datum of several separated and relative objects are stored in a single STL file, when such a file is operated by a computer, the datum in the file is firstly separated and then each element of every triangle pitch on the triangle mesh is traversed and visited and is calculated. The problem is analyzed and studied by many experts, but there is still a lack of a simple and quick algorithm. An algorithm which uses graph traversal to traverse each element of the triangle meshes and separate several disconnected triangle meshes is presented by the paper, the searching and calculating speed of the data on the triangle meshes is enhanced, memory size of the computer is reduced, complexity of the data structure is simplified and powerful guarantee is made for the next process by using this algorithm
Network Forensics Method Based on Evidence Graph and Vulnerability Reasoning
Directory of Open Access Journals (Sweden)
Jingsha He
2016-11-01
Full Text Available As the Internet becomes larger in scale, more complex in structure and more diversified in traffic, the number of crimes that utilize computer technologies is also increasing at a phenomenal rate. To react to the increasing number of computer crimes, the field of computer and network forensics has emerged. The general purpose of network forensics is to find malicious users or activities by gathering and dissecting firm evidences about computer crimes, e.g., hacking. However, due to the large volume of Internet traffic, not all the traffic captured and analyzed is valuable for investigation or confirmation. After analyzing some existing network forensics methods to identify common shortcomings, we propose in this paper a new network forensics method that uses a combination of network vulnerability and network evidence graph. In our proposed method, we use vulnerability evidence and reasoning algorithm to reconstruct attack scenarios and then backtrack the network packets to find the original evidences. Our proposed method can reconstruct attack scenarios effectively and then identify multi-staged attacks through evidential reasoning. Results of experiments show that the evidence graph constructed using our method is more complete and credible while possessing the reasoning capability.
An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images
Directory of Open Access Journals (Sweden)
Rasha Al Shehhi
2016-01-01
Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.
Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis
Kuźnik, Krzysztof
2012-06-02
This paper introduces the graph grammar based model for developing multi-thread multi-frontal parallel direct solver for two dimensional isogeometric finite element method. Execution of the solver algorithm has been expressed as the sequence of graph grammar productions. At the beginning productions construct the elimination tree with leaves corresponding to finite elements. Following sequence of graph grammar productions generates element frontal matri-ces at leaf nodes, merges matrices at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar productions allows us to explore the concurrency of the algorithm. The graph grammar productions are grouped into sets of independent tasks that can be executed concurrently. The resulting concurrent multi-frontal solver algorithm is implemented and tested on NVIDIA GPU, providing O(NlogN) execution time complexity where N is the number of degrees of freedom. We have confirmed this complexity by solving up to 1 million of degrees of freedom with 448 cores GPU.
Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation
Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah
2018-03-01
To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.
Text Summarization Using FrameNet-Based Semantic Graph Model
Directory of Open Access Journals (Sweden)
Xu Han
2016-01-01
Full Text Available Text summarization is to generate a condensed version of the original document. The major issues for text summarization are eliminating redundant information, identifying important difference among documents, and recovering the informative content. This paper proposes a Semantic Graph Model which exploits the semantic information of sentence using FSGM. FSGM treats sentences as vertexes while the semantic relationship as the edges. It uses FrameNet and word embedding to calculate the similarity of sentences. This method assigns weight to both sentence nodes and edges. After all, it proposes an improved method to rank these sentences, considering both internal and external information. The experimental results show that the applicability of the model to summarize text is feasible and effective.
Graph-Based Cooperative Localization Using Symmetric Measurement Equations.
Gulati, Dhiraj; Zhang, Feihu; Clarke, Daniel; Knoll, Alois
2017-06-17
Precise localization is a key requirement for the success of highly assisted or autonomous vehicles. The diminishing cost of hardware has resulted in a proliferation of the number of sensors in the environment. Cooperative localization (CL) presents itself as a feasible and effective solution for localizing the ego-vehicle and its neighboring vehicles. However, one of the major challenges to fully realize the effective use of infrastructure sensors for jointly estimating the state of a vehicle in cooperative vehicle-infrastructure localization is an effective data association. In this paper, we propose a method which implements symmetric measurement equations within factor graphs in order to overcome the data association challenge with a reduced bandwidth overhead. Simulated results demonstrate the benefits of the proposed approach in comparison with our previously proposed approach of topology factors.
Individual-based modeling of ecological and evolutionary processes
DeAngelis, D.L.; Mooij, W.M.
2005-01-01
Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential and difference equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis
Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network.
Wan, Mengting; Ouyang, Yunbo; Kaplan, Lance; Han, Jiawei
2015-01-01
A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model ( Grempt ), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.
A technology mapping based on graph of excitations and outputs for finite state machines
Kania, Dariusz; Kulisz, Józef
2017-11-01
A new, efficient technology mapping method of FSMs, dedicated for PAL-based PLDs is proposed. The essence of the method consists in searching for the minimal set of PAL-based logic blocks that cover a set of multiple-output implicants describing the transition and output functions of an FSM. The method is based on a new concept of graph: the Graph of Excitations and Outputs. The proposed algorithm was tested using the FSM benchmarks. The obtained results were compared with the classical technology mapping of FSM.
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
Scaling up graph-based semisupervised learning via prototype vector machines.
Zhang, Kai; Lan, Liang; Kwok, James T; Vucetic, Slobodan; Parvin, Bahram
2015-03-01
When the amount of labeled data are limited, semisupervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via l1 -regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning.
Designers' Cognitive Thinking Based on Evolutionary Algorithms
Zhang Shutao; Jianning Su; Chibing Hu; Peng Wang
2013-01-01
The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reaso...
Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information
Jamshidpour, N.; Homayouni, S.; Safari, A.
2017-09-01
Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.
A graph-based approach to detect spatiotemporal dynamics in satellite image time series
Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal
2017-08-01
Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.
spa: Semi-Supervised Semi-Parametric Graph-Based Estimation in R
Directory of Open Access Journals (Sweden)
Mark Culp
2011-04-01
Full Text Available In this paper, we present an R package that combines feature-based (X data and graph-based (G data for prediction of the response Y . In this particular case, Y is observed for a subset of the observations (labeled and missing for the remainder (unlabeled. We examine an approach for fitting Y = Xβ + f(G where β is a coefficient vector and f is a function over the vertices of the graph. The procedure is semi-supervised in nature (trained on the labeled and unlabeled sets, requiring iterative algorithms for fitting this estimate. The package provides several key functions for fitting and evaluating an estimator of this type. The package is illustrated on a text analysis data set, where the observations are text documents (papers, the response is the category of paper (either applied or theoretical statistics, the X information is the name of the journal in which the paper resides, and the graph is a co-citation network, with each vertex an observation and each edge the number of times that the two papers cite a common paper. An application involving classification of protein location using a protein interaction graph and an application involving classification on a manifold with part of the feature data converted to a graph are also presented.
GRAPH-BASED SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPATIAL INFORMATION
Directory of Open Access Journals (Sweden)
N. Jamshidpour
2017-09-01
Full Text Available Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.
Betweenness-based algorithm for a partition scale-free graph
International Nuclear Information System (INIS)
Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua
2011-01-01
Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)
GDM:A New Graph Based Data Model Using Functional Abstractionx
Institute of Scientific and Technical Information of China (English)
Sankhayan Choudhury; Nabendu Chaki; Swapan Bhattacharya
2006-01-01
In this paper, a Graph-based semantic Data Model (GDM) is proposed with the primary objective of bridging the gap between the human perception of an enterprise and the needs of computing infrastructure to organize information in some particular manner for efficient storage and retrieval. The Graph Data Model (GDM) has been proposed as an alternative data model to combine the advantages of the relational model with the positive features of semantic data models.The proposed GDM offers a structural representation for interacting to the designer, making it always easy to comprehend the complex relations amongst basic data items. GDM allows an entire database to be viewed as a Graph (V, E) in a layered organization. Here, a graph is created in a bottom up fashion where V represents the basic instances of data or a functionally abstracted module, called primary semantic group (PSG) and secondary semantic group (SSG). An edge in the model implies the relationship among the secondary semantic groups. The contents of the lowest layer are the semantically grouped data values in the form of primary semantic groups. The SSGs are nothing but the higher-level abstraction and are created by the method of encapsulation of various PSGs, SSGs and basic data elements. This encapsulation methodology to provide a higher-level abstraction continues generating various secondary semantic groups until the designer thinks that it is sufficient to declare the actual problem domain. GDM, thus, uses standard abstractions available in a semantic data model with a structural representation in terms of a graph. The operations on the data model are formalized in the proposed graph algebra. A Graph Query Language (GQL) is also developed, maintaining similaritywith the widely accepted user-friendly SQL. Finally, the paper also presents the methodology to make this GDM compatible with the distributed environment,and a corresponding query processing technique for distributed environment is also
Overlapping communities detection based on spectral analysis of line graphs
Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan
2018-05-01
Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.
Predictions of first passage times in sparse discrete fracture networks using graph-based reductions
Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.
2017-12-01
We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.
Modal Analysis of In-Wheel Motor-Driven Electric Vehicle Based on Bond Graph Theory
Directory of Open Access Journals (Sweden)
Di Tan
2017-01-01
Full Text Available A half-car vibration model of an electric vehicle driven by rear in-wheel motors was developed using bond graph theory and the modular modeling method. Based on the bond graph model, modal analysis was carried out to study the vibration characteristics of the electric vehicle. To verify the effectiveness of the established model, the results were compared to ones computed on the ground of modal analysis and Newton equations. The comparison shows that the vibration model of the electric vehicle based on bond graph theory not only is able to better compute the natural frequency but also can easily determine the deformation mode, momentum mode, and other isomorphism modes and describe the dynamic characteristics of an electric vehicle driven by in-wheel motors more comprehensively than other modal analysis methods.
Ant-based extraction of rules in simple decision systems over ontological graphs
Directory of Open Access Journals (Sweden)
Pancerz Krzysztof
2015-06-01
Full Text Available In the paper, the problem of extraction of complex decision rules in simple decision systems over ontological graphs is considered. The extracted rules are consistent with the dominance principle similar to that applied in the dominancebased rough set approach (DRSA. In our study, we propose to use a heuristic algorithm, utilizing the ant-based clustering approach, searching the semantic spaces of concepts presented by means of ontological graphs. Concepts included in the semantic spaces are values of attributes describing objects in simple decision systems
Top-k Keyword Search Over Graphs Based On Backward Search
Directory of Open Access Journals (Sweden)
Zeng Jia-Hui
2017-01-01
Full Text Available Keyword search is one of the most friendly and intuitive information retrieval methods. Using the keyword search to get the connected subgraph has a lot of application in the graph-based cognitive computation, and it is a basic technology. This paper focuses on the top-k keyword searching over graphs. We implemented a keyword search algorithm which applies the backward search idea. The algorithm locates the keyword vertices firstly, and then applies backward search to find rooted trees that contain query keywords. The experiment shows that query time is affected by the iteration number of the algorithm.
Clustering cliques for graph-based summarization of the biomedical research literature
DEFF Research Database (Denmark)
Zhang, Han; Fiszman, Marcelo; Shin, Dongwook
2013-01-01
Background: Graph-based notions are increasingly used in biomedical data mining and knowledge discovery tasks. In this paper, we present a clique-clustering method to automatically summarize graphs of semantic predications produced from PubMed citations (titles and abstracts).Results: Sem......Rep is used to extract semantic predications from the citations returned by a PubMed search. Cliques were identified from frequently occurring predications with highly connected arguments filtered by degree centrality. Themes contained in the summary were identified with a hierarchical clustering algorithm...
Tyner, Bryan C; Fienup, Daniel M
2015-09-01
Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance. Participants who used VM constructed graphs significantly faster and with fewer errors than those who used text-based instruction or no instruction. Implications for instruction are discussed. © Society for the Experimental Analysis of Behavior.
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Directory of Open Access Journals (Sweden)
Shan Li
2014-01-01
Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
Sur, Chiranjib; Shukla, Anupam
2018-03-01
Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.
Classification of user interfaces for graph-based online analytical processing
Michaelis, James R.
2016-05-01
In the domain of business intelligence, user-oriented software for conducting multidimensional analysis via Online- Analytical Processing (OLAP) is now commonplace. In this setting, datasets commonly have well-defined sets of dimensions and measures around which analysis tasks can be conducted. However, many forms of data used in intelligence operations - deriving from social networks, online communications, and text corpora - will consist of graphs with varying forms of potential dimensional structure. Hence, enabling OLAP over such data collections requires explicit definition and extraction of supporting dimensions and measures. Further, as Graph OLAP remains an emerging technique, limited research has been done on its user interface requirements. Namely, on effective pairing of interface designs to different types of graph-derived dimensions and measures. This paper presents a novel technique for pairing of user interface designs to Graph OLAP datasets, rooted in Analytic Hierarchy Process (AHP) driven comparisons. Attributes of the classification strategy are encoded through an AHP ontology, developed in our alternate work and extended to support pairwise comparison of interfaces. Specifically, according to their ability, as perceived by Subject Matter Experts, to support dimensions and measures corresponding to Graph OLAP dataset attributes. To frame this discussion, a survey is provided both on existing variations of Graph OLAP, as well as existing interface designs previously applied in multidimensional analysis settings. Following this, a review of our AHP ontology is provided, along with a listing of corresponding dataset and interface attributes applicable toward SME recommendation structuring. A walkthrough of AHP-based recommendation encoding via the ontology-based approach is then provided. The paper concludes with a short summary of proposed future directions seen as essential for this research area.
Evolutionary game theory using agent-based methods.
Adami, Christoph; Schossau, Jory; Hintze, Arend
2016-12-01
Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright Â© 2016 Elsevier B.V. All rights reserved.
GaMuSo: Graph base music recommendation in a social bookmarking service
Knijf, de J.; Liekens, A.M.L.; Gama, J.; Bradley, E.; Hollmén, J.
2011-01-01
In this work we describe a recommendation system based upon user-generated description (tags) of content. In particular, we describe an experimental system (GaMuSo) that consists of more than 140.000 user-defined tags for over 400.000 artists. From this data we constructed a bipartite graph, linking
The Role of Microcomputer-Based Laboratories in Learning To Make Graphs of Distance and Velocity.
Brasell, Heather
Two questions about the effects of microcomputer-based laboratory (MBL) activities on graphing skills were addressed in this study: (1) the extent to which activities help students link their concrete experiences with motion with graphic representations of these experiences; and (2) the degree of importance of the real-time aspect of the MBL in…
A Graph-Based Approach to Action Scheduling in a Parallel Database System
Grefen, P.W.P.J.; Apers, Peter M.G.
Parallel database machines are meant to obtain high performance in transaction processing, both in terms of response time adn throughput. To obtain high performance, a good scheduling of the execution of the various actions in transactions is crucial. This paper describes a graph-based technique for
Yan, Kang K; Zhao, Hongyu; Pang, Herbert
2017-12-06
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
Evolutionary modeling-based approach for model errors correction
Directory of Open Access Journals (Sweden)
S. Q. Wan
2012-08-01
Full Text Available The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963 equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data."
On the basis of the intelligent features of evolutionary modeling (EM, including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
An effective trust-based recommendation method using a novel graph clustering algorithm
Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin
2015-10-01
Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.
A graph rewriting programming language for graph drawing
Rodgers, Peter
1998-01-01
This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...
Graph-Based Semantic Web Service Composition for Healthcare Data Integration.
Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena
2017-01-01
Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.
SemaTyP: a knowledge graph based literature mining method for drug discovery.
Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian
2018-05-30
Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.
Endriss, U.; Grandi, U.
Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference
Directory of Open Access Journals (Sweden)
Amine Labriji
2017-07-01
Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and offers a contribution to solving the problem mentioned above.
Semantic Mining based on graph theory and ontologies. Case Study: Cell Signaling Pathways
Directory of Open Access Journals (Sweden)
Carlos R. Rangel
2016-08-01
Full Text Available In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease, and the main cells in each community. We analyze our approach in two cases: TGF-ß and the Alzheimer Disease.
a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds
Li, Minglei
2018-04-01
Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.
Wahid, Juliana; Hussin, Naimah Mohd
2016-08-01
The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.
Graph configuration model based evaluation of the education-occupation match.
Gadar, Laszlo; Abonyi, Janos
2018-01-01
To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.
The wind power prediction research based on mind evolutionary algorithm
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
Analog Group Delay Equalizers Design Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
M. Laipert
2006-04-01
Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.
Graph-based Geospatial Prediction and Clustering for Situation Recognition
Tang, Mengfan
2017-01-01
Big data continues to grow and diversify at an increasing pace. To understand constantly evolving situations, data is collected from various location-based sensors as well as people using effective participatory sensing. Static sensors are placed at particular locations, monitoring and measuring important variables from the environment. Additionally, people contribute data in the form of mobile streams through participatory sensing. To process such disparate data for situation recognition, we...
Answering PICO Clinical Questions: a Semantic Graph-Based Approach
Znaidi , Eya; Tamine , Lynda; Latiri , Chiraz
2015-01-01
International audience; In this paper, we tackle the issue related to the retrieval of the best evidence that fits with a PICO (Population, Intervention, Comparison and Outcome) question. We propose a new document ranking algorithm that relies on semantic based query expansion bounded by the local search context to better discard irrelevant documents. Experiments using a standard dataset including 423 PICO questions and more than 1,2 million of documents, show that our aproach is promising.
Alshehhi, Rasha; Marpu, Prashanth Reddy
2017-04-01
Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.
Graph theoretical analysis and application of fMRI-based brain network in Alzheimer's disease
Directory of Open Access Journals (Sweden)
LIU Xue-na
2012-08-01
Full Text Available Alzheimer's disease (AD, a progressive neurodegenerative disease, is clinically characterized by impaired memory and many other cognitive functions. However, the pathophysiological mechanisms underlying the disease are not thoroughly understood. In recent years, using functional magnetic resonance imaging (fMRI as well as advanced graph theory based network analysis approach, several studies of patients with AD suggested abnormal topological organization in both global and regional properties of functional brain networks, specifically, as demonstrated by a loss of small-world network characteristics. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis. In this paper we introduce the essential concepts of complex brain networks theory, and review recent advances of the study on human functional brain networks in AD, especially focusing on the graph theoretical analysis of small-world network based on fMRI. We also propound the existent problems and research orientation.
Common integration sites of published datasets identified using a graph-based framework
Directory of Open Access Journals (Sweden)
Alessandro Vasciaveo
2016-01-01
Full Text Available With next-generation sequencing, the genomic data available for the characterization of integration sites (IS has dramatically increased. At present, in a single experiment, several thousand viral integration genome targets can be investigated to define genomic hot spots. In a previous article, we renovated a formal CIS analysis based on a rigid fixed window demarcation into a more stretchy definition grounded on graphs. Here, we present a selection of supporting data related to the graph-based framework (GBF from our previous article, in which a collection of common integration sites (CIS was identified on six published datasets. In this work, we will focus on two datasets, ISRTCGD and ISHIV, which have been previously discussed. Moreover, we show in more detail the workflow design that originates the datasets.
Network Security Risk Assessment System Based on Attack Graph and Markov Chain
Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian
2017-10-01
Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.
Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.
Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo
2017-07-01
Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.
Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier
Luqman, Muhammad Muzzamil; Brouard, Thierry; Ramel, Jean-Yves
2010-01-01
We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational g...
Face Recognition by Bunch Graph Method Using a Group Based Adaptive Tolerant Neural Network
Aradhana D.; Girish H.; Karibasappa K.; Reddy A. Chennakeshava
2011-01-01
This paper presents a new method for feature extraction from the facial image by using bunch graph method. These extracted geometric features of the face are used subsequently for face recognition by utilizing the group based adaptive neural network. This method is suitable, when the facial images are rotation and translation invariant. Further the technique also free from size invariance of facial image and is capable of identifying the facial images correctly when corrupted w...
A Cultural Study of a Science Classroom and Graphing Calculator-based Technology
Casey, Dennis Alan
2001-01-01
Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology...
Hell, Pavol
2004-01-01
This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an
FPFH-based graph matching for 3D point cloud registration
Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua
2018-04-01
Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.
GraDit: graph-based data repair algorithm for multiple data edits rule violations
Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
A Fixpoint-Based Calculus for Graph-Shaped Computational Fields
DEFF Research Database (Denmark)
Lluch Lafuente, Alberto; Loreti, Michele; Montanari, Ugo
2015-01-01
topology is represented by a graph-shaped field, namely a network with attributes on both nodes and arcs, where arcs represent interaction capabilities between nodes. We propose a calculus where computation is strictly synchronous and corresponds to sequential computations of fixpoints in the graph......-shaped field. Under some conditions, those fixpoints can be computed by synchronised iterations, where in each iteration the attributes of a node is updated based on the attributes of the neighbours in the previous iteration. Basic constructs are reminiscent of the semiring μ-calculus, a semiring......-valued generalisation of the modal μ-calculus, which provides a flexible mechanism to specify the neighbourhood range (according to path formulae) and the way attributes should be combined (through semiring operators). Additional control-How constructs allow one to conveniently structure the fixpoint computations. We...
Agha-mohammadi, Ali-akbar
2013-06-01
This paper is concerned with the problem of stochastic optimal control (possibly with imperfect measurements) in the presence of constraints. We propose a computationally tractable framework to address this problem. The method lends itself to sampling-based methods where we construct a graph in the state space of the problem, on which a Dynamic Programming (DP) is solved and a closed-loop feedback policy is computed. The constraints are seamlessly incorporated to the control policy selection by including their effect on the transition probabilities of the graph edges. We present a unified framework that is applicable both in the state space (with perfect measurements) and in the information space (with imperfect measurements).
Learning Based Approach for Optimal Clustering of Distributed Program's Call Flow Graph
Abofathi, Yousef; Zarei, Bager; Parsa, Saeed
Optimal clustering of call flow graph for reaching maximum concurrency in execution of distributable components is one of the NP-Complete problems. Learning automatas (LAs) are search tools which are used for solving many NP-Complete problems. In this paper a learning based algorithm is proposed to optimal clustering of call flow graph and appropriate distributing of programs in network level. The algorithm uses learning feature of LAs to search in state space. It has been shown that the speed of reaching to solution increases remarkably using LA in search process, and it also prevents algorithm from being trapped in local minimums. Experimental results show the superiority of proposed algorithm over others.
DEFF Research Database (Denmark)
Kraft, Peter; Sørensen, Jens Otto
Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely...... with a unified graphic model is more efficient and less error-prone than working with more complex ER models and models based on lexical description. Key terms: Entity-relationship model, path expressions, entity-relationship language, derived interface view, view updates, graphical models....
Zhang, L.-C.; Patone, M.
2017-01-01
We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.
Some results on ethnic conflicts based on evolutionary game simulation
Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin
2014-07-01
The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.
Iris double recognition based on modified evolutionary neural network
Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai
2017-11-01
Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.
A cultural study of a science classroom and graphing calculator-based technology
Casey, Dennis Alan
Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.
Directory of Open Access Journals (Sweden)
Gabriel Kocevar
2016-10-01
Full Text Available Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles.Materials and methods: Sixty-four MS patients (12 Clinical Isolated Syndrome (CIS, 24 Relapsing Remitting (RR, 24 Secondary Progressive (SP, and 17 Primary Progressive (PP along with 26 healthy controls (HC underwent MR examination. T1 and diffusion tensor imaging (DTI were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects’ groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM combined with Radial Basic Function (RBF kernel.Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F-Measures (91.8%, 91.8%, 75.6% and 70.6% were obtained for binary (HC-CIS, CIS-RR, RR-PP and multi-class (CIS-RR-SP classification tasks, respectively. When using only one graph metric, the best F-Measures (83.6%, 88.9% and 70.7% were achieved for modularity with previous binary classification tasks.Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients’ clinical profiles.
G-Bean: an ontology-graph based web tool for biomedical literature retrieval.
Wang, James Z; Zhang, Yuanyuan; Dong, Liang; Li, Lin; Srimani, Pradip K; Yu, Philip S
2014-01-01
Currently, most people use NCBI's PubMed to search the MEDLINE database, an important bibliographical information source for life science and biomedical information. However, PubMed has some drawbacks that make it difficult to find relevant publications pertaining to users' individual intentions, especially for non-expert users. To ameliorate the disadvantages of PubMed, we developed G-Bean, a graph based biomedical search engine, to search biomedical articles in MEDLINE database more efficiently. G-Bean addresses PubMed's limitations with three innovations: (1) Parallel document index creation: a multithreaded index creation strategy is employed to generate the document index for G-Bean in parallel; (2) Ontology-graph based query expansion: an ontology graph is constructed by merging four major UMLS (Version 2013AA) vocabularies, MeSH, SNOMEDCT, CSP and AOD, to cover all concepts in National Library of Medicine (NLM) database; a Personalized PageRank algorithm is used to compute concept relevance in this ontology graph and the Term Frequency - Inverse Document Frequency (TF-IDF) weighting scheme is used to re-rank the concepts. The top 500 ranked concepts are selected for expanding the initial query to retrieve more accurate and relevant information; (3) Retrieval and re-ranking of documents based on user's search intention: after the user selects any article from the existing search results, G-Bean analyzes user's selections to determine his/her true search intention and then uses more relevant and more specific terms to retrieve additional related articles. The new articles are presented to the user in the order of their relevance to the already selected articles. Performance evaluation with 106 OHSUMED benchmark queries shows that G-Bean returns more relevant results than PubMed does when using these queries to search the MEDLINE database. PubMed could not even return any search result for some OHSUMED queries because it failed to form the appropriate Boolean
Simplicial complexes of graphs
Jonsson, Jakob
2008-01-01
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.
GRAPH-BASED POST INCIDENT INTERNAL AUDIT METHOD OF COMPUTER EQUIPMENT
Directory of Open Access Journals (Sweden)
I. S. Pantiukhin
2016-05-01
Full Text Available Graph-based post incident internal audit method of computer equipment is proposed. The essence of the proposed solution consists in the establishing of relationships among hard disk damps (image, RAM and network. This method is intended for description of information security incident properties during the internal post incident audit of computer equipment. Hard disk damps receiving and formation process takes place at the first step. It is followed by separation of these damps into the set of components. The set of components includes a large set of attributes that forms the basis for the formation of the graph. Separated data is recorded into the non-relational database management system (NoSQL that is adapted for graph storage, fast access and processing. Damps linking application method is applied at the final step. The presented method gives the possibility to human expert in information security or computer forensics for more precise, informative internal audit of computer equipment. The proposed method allows reducing the time spent on internal audit of computer equipment, increasing accuracy and informativeness of such audit. The method has a development potential and can be applied along with the other components in the tasks of users’ identification and computer forensics.
High Girth Column-Weight-Two LDPC Codes Based on Distance Graphs
Directory of Open Access Journals (Sweden)
Gabofetswe Malema
2007-01-01
Full Text Available LDPC codes of column weight of two are constructed from minimal distance graphs or cages. Distance graphs are used to represent LDPC code matrices such that graph vertices that represent rows and edges are columns. The conversion of a distance graph into matrix form produces an adjacency matrix with column weight of two and girth double that of the graph. The number of 1's in each row (row weight is equal to the degree of the corresponding vertex. By constructing graphs with different vertex degrees, we can vary the rate of corresponding LDPC code matrices. Cage graphs are used as examples of distance graphs to design codes with different girths and rates. Performance of obtained codes depends on girth and structure of the corresponding distance graphs.
Android malware detection based on evolutionary super-network
Yan, Haisheng; Peng, Lingling
2018-04-01
In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.
A Comparison of SLAM Algorithms Based on a Graph of Relations
Burgard, W.; Stachniss, C.; Grisetti, G.; Steder, B.; Kümmerle, R.; Dornhege, C.; Ruhnke, M.; Kleiner, Alexander; Tardós, Juan D.
2009-01-01
In this paper, we address the problem of creating an objective benchmark for comparing SLAM approaches. We propose a framework for analyzing the results of SLAM approaches based on a metric for measuring the error of the corrected trajectory. The metric uses only relative relations between poses and does not rely on a global reference frame. The idea is related to graph-based SLAM approaches, namely to consider the energy that is needed to deform the trajectory estimated by a SLAM approach in...
Directed graph based carbon flow tracing for demand side carbon obligation allocation
DEFF Research Database (Denmark)
Sun, Tao; Feng, Donghan; Ding, Teng
2016-01-01
In order to achieve carbon emission abatement, some researchers and policy makers have cast their focus on demand side carbon abatement potentials. This paper addresses the problem of carbon flow calculation in power systems and carbon obligation allocation at demand side. A directed graph based...... method for tracing carbon flow is proposed. In a lossy network, matrices such as carbon losses, net carbon intensity (NCI) and footprint carbon intensity (FCI) are obtained with the proposed method and used to allocate carbon obligation at demand side. Case studies based on realistic distribution...... and transmission systems are provided to demonstrate the effectiveness of the proposed method....
On an edge partition and root graphs of some classes of line graphs
Directory of Open Access Journals (Sweden)
K Pravas
2017-04-01
Full Text Available The Gallai and the anti-Gallai graphs of a graph $G$ are complementary pairs of spanning subgraphs of the line graph of $G$. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph $G$ into the edge sets of the Gallai and anti-Gallai graphs of $G$. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.
Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis
Kuźnik, Krzysztof; Paszyński, Maciej; Calo, Victor M.
2012-01-01
at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2018-06-01
Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results
Empirical Comparison of Graph-based Recommendation Engines for an Apps Ecosystem
Directory of Open Access Journals (Sweden)
Luis F. Chiroque
2015-03-01
Full Text Available Recommendation engines (RE are becoming highly popular, e.g., in the area of e-commerce. A RE offers new items (products or content to users based on their profile and historical data. The most popular algorithms used in RE are based on collaborative filtering. This technique makes recommendations based on the past behavior of other users and the similarity between users and items. In this paper we have evaluated the performance of several RE based on the properties of the networks formed by users and items. The RE use in a novel way graph theoretic concepts like edges weights or network flow. The evaluation has been conducted in a real environment (ecosystem for recommending apps to smartphone users. The analysis of the results allows concluding that the effectiveness of a RE can be improved if the age of the data, and if a global view of the data is considered. It also shows that graph-based RE are effective, but more experiments are required for a more accurate characterization of their properties.
Graph-based network analysis of resting-state functional MRI
Directory of Open Access Journals (Sweden)
Jinhui Wang
2010-06-01
Full Text Available In the past decade, resting-state functional MRI (R-fMRI measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain’s spontaneous or intrinsic (i.e., task-free activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain’s intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
Graph-based network analysis of resting-state functional MRI.
Wang, Jinhui; Zuo, Xinian; He, Yong
2010-01-01
In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
A new paradigm for particle tracking velocimetry, based on graph-theory and pulsed neural network
International Nuclear Information System (INIS)
Derou, D.; Herault, L.
1994-01-01
The Particle Tracking Velocimetry (PTV) technique works by recording, at different instances in time, positions of small tracers particles following a flow and illuminated by a sheet, or pseudo sheet, of light. It aims to recognize each particle trajectory, constituted of n different spots and determine thus each particle velocity vector. In this paper, we devise a new method, taking into account a global consistency of the trajectories to be extracted, in terms of visual perception and physical properties. It is based on a graph-theoretic formulation of the particle tracking problem and the use of an original neural network, called pulsed neural network. (authors). 4 figs
Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling
2005-01-01
Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.
Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.
2012-01-01
This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.
Improving the Computational Performance of Ontology-Based Classification Using Graph Databases
Directory of Open Access Journals (Sweden)
Thomas J. Lampoltshammer
2015-07-01
Full Text Available The increasing availability of very high-resolution remote sensing imagery (i.e., from satellites, airborne laser scanning, or aerial photography represents both a blessing and a curse for researchers. The manual classification of these images, or other similar geo-sensor data, is time-consuming and leads to subjective and non-deterministic results. Due to this fact, (semi- automated classification approaches are in high demand in affected research areas. Ontologies provide a proper way of automated classification for various kinds of sensor data, including remotely sensed data. However, the processing of data entities—so-called individuals—is one of the most cost-intensive computational operations within ontology reasoning. Therefore, an approach based on graph databases is proposed to overcome the issue of a high time consumption regarding the classification task. The introduced approach shifts the classification task from the classical Protégé environment and its common reasoners to the proposed graph-based approaches. For the validation, the authors tested the approach on a simulation scenario based on a real-world example. The results demonstrate a quite promising improvement of classification speed—up to 80,000 times faster than the Protégé-based approach.
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
Directory of Open Access Journals (Sweden)
Unil Yun
2016-05-01
Full Text Available Frequent graph mining has been proposed to find interesting patterns (i.e., frequent sub-graphs from databases composed of graph transaction data, which can effectively express complex and large data in the real world. In addition, various applications for graph mining have been suggested. Traditional graph pattern mining methods use a single minimum support threshold factor in order to check whether or not mined patterns are interesting. However, it is not a sufficient factor that can consider valuable characteristics of graphs such as graph sizes and features of graph elements. That is, previous methods cannot consider such important characteristics in their mining operations since they only use a fixed minimum support threshold in the mining process. For this reason, in this paper, we propose a novel graph mining algorithm that can consider various multiple, minimum support constraints according to the types of graph elements and changeable minimum support conditions, depending on lengths of graph patterns. In addition, the proposed algorithm performs in mining operations more efficiently because it can minimize duplicated operations and computational overheads by considering symmetry features of graphs. Experimental results provided in this paper demonstrate that the proposed algorithm outperforms previous mining approaches in terms of pattern generation, runtime and memory usage.
Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros
2012-11-01
Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.
The Research of Disease Spots Extraction Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Kangshun Li
2017-01-01
Full Text Available According to the characteristics of maize disease spot performance in the image, this paper designs two-histogram segmentation method based on evolutionary algorithm, which combined with the analysis of image of maize diseases and insect pests, with full consideration of color and texture characteristic of the lesion of pests and diseases, the chroma and gray image, composed of two tuples to build a two-dimensional histogram, solves the problem of one-dimensional histograms that cannot be clearly divided into target and background bimodal distribution and improved the traditional two-dimensional histogram application in pest damage lesion extraction. The chromosome coding suitable for the characteristics of lesion image is designed based on second segmentation of the genetic algorithm Otsu. Determining initial population with analysis results of lesion image, parallel selection, optimal preservation strategy, and adaptive mutation operator are used to improve the search efficiency. Finally, by setting the fluctuation threshold, we continue to search for the best threshold in the range of fluctuations for implementation of global search and local search.
The investigation of social networks based on multi-component random graphs
Zadorozhnyi, V. N.; Yudin, E. B.
2018-01-01
The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.
Graph cut-based method for segmenting the left ventricle from MRI or echocardiographic images.
Bernier, Michael; Jodoin, Pierre-Marc; Humbert, Olivier; Lalande, Alain
2017-06-01
In this paper, we present a fast and interactive graph cut method for 3D segmentation of the endocardial wall of the left ventricle (LV) adapted to work on two of the most widely used modalities: magnetic resonance imaging (MRI) and echocardiography. Our method accounts for the fundamentally different nature of both modalities: 3D echocardiographic images have a low contrast, a poor signal-to-noise ratio and frequent signal drop, while MR images are more detailed but also cluttered and contain highly anisotropic voxels. The main characteristic of our method is to work in a 3D Bezier coordinate system instead of the original Euclidean space. This comes with several advantages, including an implicit shape prior and a result guarantied not to have any holes in it. The proposed method is made of 4 steps. First, a 3D sampling of the LV cavity is made based on a Bezier coordinate system. This allows to warp the input 3D image to a Bezier space in which a plane corresponds to an anatomically plausible 3D Euclidean bullet shape. Second, a 3D graph is built and an energy term (which is based on the image gradient and a 3D probability map) is assigned to each edge of the graph, some of which being given an infinite energy to ensure the resulting 3D structure passes through key anatomical points. Third, a max-flow min-cut procedure is executed on the energy graph to delineate the endocardial surface. And fourth, the resulting surface is projected back to the Euclidean space where a post-processing convex hull algorithm is applied on every short axis slice to remove local concavities. Results obtained on two datasets reveal that our method takes between 2 and 5s to segment a 3D volume, it has better results overall than most state-of-the-art methods on the CETUS echocardiographic dataset and is statistically as good as a human operator on MR images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs
Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki
This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.
Gao, Yang; Wang, Xuesong; Cheng, Yuhu; Wang, Z Jane
2015-08-01
To take full advantage of hyperspectral information, to avoid data redundancy and to address the curse of dimensionality concern, dimensionality reduction (DR) becomes particularly important to analyze hyperspectral data. Exploring the tensor characteristic of hyperspectral data, a DR algorithm based on class-aware tensor neighborhood graph and patch alignment is proposed here. First, hyperspectral data are represented in the tensor form through a window field to keep the spatial information of each pixel. Second, using a tensor distance criterion, a class-aware tensor neighborhood graph containing discriminating information is obtained. In the third step, employing the patch alignment framework extended to the tensor space, we can obtain global optimal spectral-spatial information. Finally, the solution of the tensor subspace is calculated using an iterative method and low-dimensional projection matrixes for hyperspectral data are obtained accordingly. The proposed method effectively explores the spectral and spatial information in hyperspectral data simultaneously. Experimental results on 3 real hyperspectral datasets show that, compared with some popular vector- and tensor-based DR algorithms, the proposed method can yield better performance with less tensor training samples required.
Key Concept Identification: A Comprehensive Analysis of Frequency and Topical Graph-Based Approaches
Directory of Open Access Journals (Sweden)
Muhammad Aman
2018-05-01
Full Text Available Automatic key concept extraction from text is the main challenging task in information extraction, information retrieval and digital libraries, ontology learning, and text analysis. The statistical frequency and topical graph-based ranking are the two kinds of potentially powerful and leading unsupervised approaches in this area, devised to address the problem. To utilize the potential of these approaches and improve key concept identification, a comprehensive performance analysis of these approaches on datasets from different domains is needed. The objective of the study presented in this paper is to perform a comprehensive empirical analysis of selected frequency and topical graph-based algorithms for key concept extraction on three different datasets, to identify the major sources of error in these approaches. For experimental analysis, we have selected TF-IDF, KP-Miner and TopicRank. Three major sources of error, i.e., frequency errors, syntactical errors and semantical errors, and the factors that contribute to these errors are identified. Analysis of the results reveals that performance of the selected approaches is significantly degraded by these errors. These findings can help us develop an intelligent solution for key concept extraction in the future.
Visual texture perception via graph-based semi-supervised learning
Zhang, Qin; Dong, Junyu; Zhong, Guoqiang
2018-04-01
Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.
Proxy Graph: Visual Quality Metrics of Big Graph Sampling.
Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra
2017-06-01
Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.
General upper bounds on the runtime of parallel evolutionary algorithms.
Lässig, Jörg; Sudholt, Dirk
2014-01-01
We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms.
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems.
Elmeligy Abdelhamid, Sherif H; Kuhlman, Chris J; Marathe, Madhav V; Mortveit, Henning S; Ravi, S S
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools.
Improving graph-based OCT segmentation for severe pathology in retinitis pigmentosa patients
Lang, Andrew; Carass, Aaron; Bittner, Ava K.; Ying, Howard S.; Prince, Jerry L.
2017-03-01
Three dimensional segmentation of macular optical coherence tomography (OCT) data of subjects with retinitis pigmentosa (RP) is a challenging problem due to the disappearance of the photoreceptor layers, which causes algorithms developed for segmentation of healthy data to perform poorly on RP patients. In this work, we present enhancements to a previously developed graph-based OCT segmentation pipeline to enable processing of RP data. The algorithm segments eight retinal layers in RP data by relaxing constraints on the thickness and smoothness of each layer learned from healthy data. Following from prior work, a random forest classifier is first trained on the RP data to estimate boundary probabilities, which are used by a graph search algorithm to find the optimal set of nine surfaces that fit the data. Due to the intensity disparity between normal layers of healthy controls and layers in various stages of degeneration in RP patients, an additional intensity normalization step is introduced. Leave-one-out validation on data acquired from nine subjects showed an average overall boundary error of 4.22 μm as compared to 6.02 μm using the original algorithm.
Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.
Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo
2017-10-01
Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.
Dynamic Allocation of SPM Based on Time-Slotted Cache Conflict Graph for System Optimization
Wu, Jianping; Ling, Ming; Zhang, Yang; Mei, Chen; Wang, Huan
This paper proposes a novel dynamic Scratch-pad Memory allocation strategy to optimize the energy consumption of the memory sub-system. Firstly, the whole program execution process is sliced into several time slots according to the temporal dimension; thereafter, a Time-Slotted Cache Conflict Graph (TSCCG) is introduced to model the behavior of Data Cache (D-Cache) conflicts within each time slot. Then, Integer Nonlinear Programming (INP) is implemented, which can avoid time-consuming linearization process, to select the most profitable data pages. Virtual Memory System (VMS) is adopted to remap those data pages, which will cause severe Cache conflicts within a time slot, to SPM. In order to minimize the swapping overhead of dynamic SPM allocation, a novel SPM controller with a tightly coupled DMA is introduced to issue the swapping operations without CPU's intervention. Last but not the least, this paper discusses the fluctuation of system energy profit based on different MMU page size as well as the Time Slot duration quantitatively. According to our design space exploration, the proposed method can optimize all of the data segments, including global data, heap and stack data in general, and reduce the total energy consumption by 27.28% on average, up to 55.22% with a marginal performance promotion. And comparing to the conventional static CCG (Cache Conflicts Graph), our approach can obtain 24.7% energy profit on average, up to 30.5% with a sight boost in performance.
de Mol, M.J.; Rensink, Arend; Hunt, James J.
This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class
Multi-objective mixture-based iterated density estimation evolutionary algorithms
Thierens, D.; Bosman, P.A.N.
2001-01-01
We propose an algorithm for multi-objective optimization using a mixture-based iterated density estimation evolutionary algorithm (MIDEA). The MIDEA algorithm is a prob- abilistic model building evolutionary algo- rithm that constructs at each generation a mixture of factorized probability
An Efficient Graph-based Method for Long-term Land-use Change Statistics
Directory of Open Access Journals (Sweden)
Yipeng Zhang
2015-12-01
Full Text Available Statistical analysis of land-use change plays an important role in sustainable land management and has received increasing attention from scholars and administrative departments. However, the statistical process involving spatial overlay analysis remains difficult and needs improvement to deal with mass land-use data. In this paper, we introduce a spatio-temporal flow network model to reveal the hidden relational information among spatio-temporal entities. Based on graph theory, the constant condition of saturated multi-commodity flow is derived. A new method based on a network partition technique of spatio-temporal flow network are proposed to optimize the transition statistical process. The effectiveness and efficiency of the proposed method is verified through experiments using land-use data in Hunan from 2009 to 2014. In the comparison among three different land-use change statistical methods, the proposed method exhibits remarkable superiority in efficiency.
Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.
Directory of Open Access Journals (Sweden)
Wei He
Full Text Available A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF for space instruments. A model for the system functional error rate (SFER is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA is presented. Based on experimental results of different ions (O, Si, Cl, Ti under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2, while the MTTF is approximately 110.7 h.
Perception-based Co-evolutionary Reinforcement Learning for UAV Sensor Allocation
National Research Council Canada - National Science Library
Berenji, Hamid
2003-01-01
.... A Perception-based reasoning approach based on co-evolutionary reinforcement learning was developed for jointly addressing sensor allocation on each individual UAV and allocation of a team of UAVs...
Maryam, Syeda; McCrackin, Laura; Crowley, Mark; Rathi, Yogesh; Michailovich, Oleg
2017-03-01
The world's aging population has given rise to an increasing awareness towards neurodegenerative disorders, including Alzheimers Disease (AD). Treatment options for AD are currently limited, but it is believed that future success depends on our ability to detect the onset of the disease in its early stages. The most frequently used tools for this include neuropsychological assessments, along with genetic, proteomic, and image-based diagnosis. Recently, the applicability of Diffusion Magnetic Resonance Imaging (dMRI) analysis for early diagnosis of AD has also been reported. The sensitivity of dMRI to the microstructural organization of cerebral tissue makes it particularly well-suited to detecting changes which are known to occur in the early stages of AD. Existing dMRI approaches can be divided into two broad categories: region-based and tract-based. In this work, we propose a new approach, which extends region-based approaches to the simultaneous characterization of multiple brain regions. Given a predefined set of features derived from dMRI data, we compute the probabilistic distances between different brain regions and treat the resulting connectivity pattern as an undirected, fully-connected graph. The characteristics of this graph are then used as markers to discriminate between AD subjects and normal controls (NC). Although in this preliminary work we omit subjects in the prodromal stage of AD, mild cognitive impairment (MCI), our method demonstrates perfect separability between AD and NC subject groups with substantial margin, and thus holds promise for fine-grained stratification of NC, MCI and AD populations.
AN INTEGRATED RANSAC AND GRAPH BASED MISMATCH ELIMINATION APPROACH FOR WIDE-BASELINE IMAGE MATCHING
Directory of Open Access Journals (Sweden)
M. Hasheminasab
2015-12-01
Full Text Available In this paper we propose an integrated approach in order to increase the precision of feature point matching. Many different algorithms have been developed as to optimizing the short-baseline image matching while because of illumination differences and viewpoints changes, wide-baseline image matching is so difficult to handle. Fortunately, the recent developments in the automatic extraction of local invariant features make wide-baseline image matching possible. The matching algorithms which are based on local feature similarity principle, using feature descriptor as to establish correspondence between feature point sets. To date, the most remarkable descriptor is the scale-invariant feature transform (SIFT descriptor , which is invariant to image rotation and scale, and it remains robust across a substantial range of affine distortion, presence of noise, and changes in illumination. The epipolar constraint based on RANSAC (random sample consensus method is a conventional model for mismatch elimination, particularly in computer vision. Because only the distance from the epipolar line is considered, there are a few false matches in the selected matching results based on epipolar geometry and RANSAC. Aguilariu et al. proposed Graph Transformation Matching (GTM algorithm to remove outliers which has some difficulties when the mismatched points surrounded by the same local neighbor structure. In this study to overcome these limitations, which mentioned above, a new three step matching scheme is presented where the SIFT algorithm is used to obtain initial corresponding point sets. In the second step, in order to reduce the outliers, RANSAC algorithm is applied. Finally, to remove the remained mismatches, based on the adjacent K-NN graph, the GTM is implemented. Four different close range image datasets with changes in viewpoint are utilized to evaluate the performance of the proposed method and the experimental results indicate its robustness and
Forecasting Construction Cost Index based on visibility graph: A network approach
Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong
2018-03-01
Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.
Lin, Po-Chuan; Chen, Bo-Wei; Chang, Hangbae
2016-07-01
This study presents a human-centric technique for social video expansion based on semantic processing and graph analysis. The objective is to increase metadata of an online video and to explore related information, thereby facilitating user browsing activities. To analyze the semantic meaning of a video, shots and scenes are firstly extracted from the video on the server side. Subsequently, this study uses annotations along with ConceptNet to establish the underlying framework. Detailed metadata, including visual objects and audio events among the predefined categories, are indexed by using the proposed method. Furthermore, relevant online media associated with each category are also analyzed to enrich the existing content. With the above-mentioned information, users can easily browse and search the content according to the link analysis and its complementary knowledge. Experiments on a video dataset are conducted for evaluation. The results show that our system can achieve satisfactory performance, thereby demonstrating the feasibility of the proposed idea.
Properties of predictor based on relative neighborhood graph localized FIR filters
DEFF Research Database (Denmark)
Sørensen, John Aasted
1995-01-01
A time signal prediction algorithm based on relative neighborhood graph (RNG) localized FIR filters is defined. The RNG connects two nodes, of input space dimension D, if their lune does not contain any other node. The FIR filters associated with the nodes, are used for local approximation...... of the training vectors belonging to the lunes formed by the nodes. The predictor training is carried out by iteration through 3 stages: initialization of the RNG of the training signal by vector quantization, LS estimation of the FIR filters localized in the input space by RNG nodes and adaptation of the RNG...... nodes by equalizing the LS approximation error among the lunes formed by the nodes of the RNG. The training properties of the predictor is exemplified on a burst signal and characterized by the normalized mean square error (NMSE) and the mean valence of the RNG nodes through the adaptation...
Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs
van Dam, Wim; Howard, Mark
2011-07-01
We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiołkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.
Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs
International Nuclear Information System (INIS)
Dam, Wim van; Howard, Mark
2011-01-01
We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.
Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.
Habershon, Scott
2016-04-12
In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing
Fan, Lei
., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.
Optimal graph based segmentation using flow lines with application to airway wall segmentation
DEFF Research Database (Denmark)
Petersen, Jens; Nielsen, Mads; Lo, Pechin
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for ...
Optimal graph based segmentation using flow lines with application to airway wall segmentation
DEFF Research Database (Denmark)
Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited...
Extraction of Graph Information Based on Image Contents and the Use of Ontology
Kanjanawattana, Sarunya; Kimura, Masaomi
2016-01-01
A graph is an effective form of data representation used to summarize complex information. Explicit information such as the relationship between the X- and Y-axes can be easily extracted from a graph by applying human intelligence. However, implicit knowledge such as information obtained from other related concepts in an ontology also resides in…
Enumeration for spanning trees and forests of join graphs based on the combinatorial decomposition
Directory of Open Access Journals (Sweden)
Sung Sik U
2016-10-01
Full Text Available This paper discusses the enumeration for rooted spanning trees and forests of the labelled join graphs $K_m+H_n$ and $K_m+K_{n,p}$, where $H_n$ is a graph with $n$ isolated vertices.
MEDRank: using graph-based concept ranking to index biomedical texts.
Herskovic, Jorge R; Cohen, Trevor; Subramanian, Devika; Iyengar, M Sriram; Smith, Jack W; Bernstam, Elmer V
2011-06-01
As the volume of biomedical text increases exponentially, automatic indexing becomes increasingly important. However, existing approaches do not distinguish central (or core) concepts from concepts that were mentioned in passing. We focus on the problem of indexing MEDLINE records, a process that is currently performed by highly trained humans at the National Library of Medicine (NLM). NLM indexers are assisted by a system called the Medical Text Indexer (MTI) that suggests candidate indexing terms. To improve the ability of MTI to select the core terms in MEDLINE abstracts. These core concepts are deemed to be most important and are designated as "major headings" by MEDLINE indexers. We introduce and evaluate a graph-based indexing methodology called MEDRank that generates concept graphs from biomedical text and then ranks the concepts within these graphs to identify the most important ones. We insert a MEDRank step into the MTI and compare MTI's output with and without MEDRank to the MEDLINE indexers' selected terms for a sample of 11,803 PubMed Central articles. We also tested whether human raters prefer terms generated by the MEDLINE indexers, MTI without MEDRank, and MTI with MEDRank for a sample of 36 PubMed Central articles. MEDRank improved recall of major headings designated by 30% over MTI without MEDRank (0.489 vs. 0.376). Overall recall was only slightly (6.5%) higher (0.490 vs. 0.460) as was F(2) (3%, 0.408 vs. 0.396). However, overall precision was 3.9% lower (0.268 vs. 0.279). Human raters preferred terms generated by MTI with MEDRank over terms generated by MTI without MEDRank (by an average of 1.00 more term per article), and preferred terms generated by MTI with MEDRank and the MEDLINE indexers at the same rate. The addition of MEDRank to MTI significantly improved the retrieval of core concepts in MEDLINE abstracts and more closely matched human expectations compared to MTI without MEDRank. In addition, MEDRank slightly improved overall recall
Graph transformation tool contest 2008
Rensink, Arend; van Gorp, Pieter
This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case
Directory of Open Access Journals (Sweden)
Krzysztof Małecki
2017-12-01
Full Text Available A complex system is a set of mutually interacting elements for which it is possible to construct a mathematical model. This article focuses on the cellular automata theory and the graph theory in order to compare various types of cellular automata and to analyse applications of graph structures together with cellular automata. It proposes a graph cellular automaton with a variable configuration of cells and relation-based neighbourhoods (r–GCA. The developed mechanism enables modelling of phenomena found in complex systems (e.g., transport networks, urban logistics, social networks taking into account the interaction between the existing objects. As an implementation example, modelling of moving vehicles has been made and r–GCA was compared to the other cellular automata models simulating the road traffic and used in the computer simulation process.
Designing a graph-based approach to landscape ecological assessment of linear infrastructures
Energy Technology Data Exchange (ETDEWEB)
Girardet, Xavier, E-mail: xavier.girardet@univ-fcomte.fr; Foltête, Jean-Christophe, E-mail: jean-christophe.foltete@univ-fcomte.fr; Clauzel, Céline, E-mail: celine.clauzel@univ-fcomte.fr
2013-09-15
The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact.
Neurally and ocularly informed graph-based models for searching 3D environments
Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul
2014-08-01
Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.
Designing a graph-based approach to landscape ecological assessment of linear infrastructures
International Nuclear Information System (INIS)
Girardet, Xavier; Foltête, Jean-Christophe; Clauzel, Céline
2013-01-01
The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact
Optimal perturbations for nonlinear systems using graph-based optimal transport
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
Neurally and ocularly informed graph-based models for searching 3D environments.
Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul
2014-08-01
As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.
DEFF Research Database (Denmark)
Vestergaard, Preben Dahl; Hartnell, Bert L.
2006-01-01
There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...
Morisi, Rita; Manners, David Neil; Gnecco, Giorgio; Lanconelli, Nico; Testa, Claudia; Evangelisti, Stefania; Talozzi, Lia; Gramegna, Laura Ludovica; Bianchini, Claudio; Calandra-Buonaura, Giovanna; Sambati, Luisa; Giannini, Giulia; Cortelli, Pietro; Tonon, Caterina; Lodi, Raffaele
2018-02-01
In this study we attempt to automatically classify individual patients with different parkinsonian disorders, making use of pattern recognition techniques to distinguish among several forms of parkinsonisms (multi-class classification), based on a set of binary classifiers that discriminate each disorder from all others. We combine diffusion tensor imaging, proton spectroscopy and morphometric-volumetric data to obtain MR quantitative markers, which are provided to support vector machines with the aim of recognizing the different parkinsonian disorders. Feature selection is used to find the most important features for classification. We also exploit a graph-based technique on the set of quantitative markers to extract additional features from the dataset, and increase classification accuracy. When graph-based features are not used, the MR markers that are most frequently automatically extracted by the feature selection procedure reflect alterations in brain regions that are also usually considered to discriminate parkinsonisms in routine clinical practice. Graph-derived features typically increase the diagnostic accuracy, and reduce the number of features required. The results obtained in the work demonstrate that support vector machines applied to multimodal brain MR imaging and using graph-based features represent a novel and highly accurate approach to discriminate parkinsonisms, and a useful tool to assist the diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hsu, P. -S.; Van Dyke, M.; Chen, Y.; Smith, T. J.
2015-01-01
The purpose of this quasi-experimental study was to explore how seventh graders in a suburban school in the United States developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application. A total of 54 students (three classes) comprised this treatment…
He, Xianjin; Zhang, Xinchang; Xin, Qinchuan
2018-02-01
Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.
Canonical Labelling of Site Graphs
Directory of Open Access Journals (Sweden)
Nicolas Oury
2013-06-01
Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.
Improved microarray-based decision support with graph encoded interactome data.
Directory of Open Access Journals (Sweden)
Anneleen Daemen
Full Text Available In the past, microarray studies have been criticized due to noise and the limited overlap between gene signatures. Prior biological knowledge should therefore be incorporated as side information in models based on gene expression data to improve the accuracy of diagnosis and prognosis in cancer. As prior knowledge, we investigated interaction and pathway information from the human interactome on different aspects of biological systems. By exploiting the properties of kernel methods, relations between genes with similar functions but active in alternative pathways could be incorporated in a support vector machine classifier based on spectral graph theory. Using 10 microarray data sets, we first reduced the number of data sources relevant for multiple cancer types and outcomes. Three sources on metabolic pathway information (KEGG, protein-protein interactions (OPHID and miRNA-gene targeting (microRNA.org outperformed the other sources with regard to the considered class of models. Both fixed and adaptive approaches were subsequently considered to combine the three corresponding classifiers. Averaging the predictions of these classifiers performed best and was significantly better than the model based on microarray data only. These results were confirmed on 6 validation microarray sets, with a significantly improved performance in 4 of them. Integrating interactome data thus improves classification of cancer outcome for the investigated microarray technologies and cancer types. Moreover, this strategy can be incorporated in any kernel method or non-linear version of a non-kernel method.
A graph-based approach to construct target-focused libraries for virtual screening.
Naderi, Misagh; Alvin, Chris; Ding, Yun; Mukhopadhyay, Supratik; Brylinski, Michal
2016-01-01
Due to exorbitant costs of high-throughput screening, many drug discovery projects commonly employ inexpensive virtual screening to support experimental efforts. However, the vast majority of compounds in widely used screening libraries, such as the ZINC database, will have a very low probability to exhibit the desired bioactivity for a given protein. Although combinatorial chemistry methods can be used to augment existing compound libraries with novel drug-like compounds, the broad chemical space is often too large to be explored. Consequently, the trend in library design has shifted to produce screening collections specifically tailored to modulate the function of a particular target or a protein family. Assuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. On this account, we developed eSynth, an exhaustive graph-based search algorithm to computationally synthesize new compounds by reconnecting these building blocks following their connectivity patterns. We conducted a series of benchmarking calculations against the Directory of Useful Decoys, Enhanced database. First, in a self-benchmarking test, the correctness of the algorithm is validated with the objective to recover a molecule from its building blocks. Encouragingly, eSynth can efficiently rebuild more than 80 % of active molecules from their fragment components. Next, the capability to discover novel scaffolds is assessed in a cross-benchmarking test, where eSynth successfully reconstructed 40 % of the target molecules using fragments extracted from chemically distinct compounds. Despite an enormous chemical space to be explored, eSynth is computationally efficient; half of the molecules are rebuilt in less than a second, whereas 90 % take only about a minute to be generated. eSynth can successfully reconstruct chemically feasible molecules from molecular fragments
OpenMP Parallelization and Optimization of Graph-based Machine Learning Algorithms
2016-05-01
Understanding Application Data Movement Characteristics using Intel VTune Amplifier and Software Development Emulator tools, Intel Xeon Phi User Group...sured by a summation of the weights along the graph cut) for this problem. This is equivalent to assigning a scalar or vector value ui to each i th data...graph Laplacian [9]. By projecting all vectors onto this sub-eigenspace, the iteration step reduces to a simple coefficient update. 2.2 Semi-supervised
An industrial robot singular trajectories planning based on graphs and neural networks
Łęgowski, Adrian; Niezabitowski, Michał
2016-06-01
Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.
ElectroGraph - Graphene-based electrodes for application in supercapacitors
Kosidlo, Urszula
2012-01-01
The ElectroGraph project follows an integrated, technology driven approach in development of novel materials and components for realization of optimized supercapacitors. These are considered one of the newest innovations in the field of electrical energy storage. To design a supercapacitor with high energy and power density, it is crucial to select the correct electrode materials and the most suitable electrolytes. That is why ElectroGraph project focuses on development and use of graphene as...
Label-based routing for a family of scale-free, modular, planar and unclustered graphs
International Nuclear Information System (INIS)
Comellas, Francesc; Miralles, Alicia
2011-01-01
We give an optimal labeling and routing algorithm for a family of scale-free, modular and planar graphs with zero clustering. The relevant properties of this family match those of some networks associated with technological and biological systems with a low clustering, including some electronic circuits and protein networks. The existence of an efficient routing protocol for this graph model should help when designing communication algorithms in real networks and also in the understanding of their dynamic processes.
A network growth model based on the evolutionary ultimatum game
International Nuclear Information System (INIS)
Deng, L L; Zhou, G G; Cai, J H; Wang, C; Tang, W S
2012-01-01
In this paper, we provide a network growth model with incorporation into the ultimatum game dynamics. The network grows on the basis of the payoff-oriented preferential attachment mechanism, where a new node is added into the network and attached preferentially to nodes with higher payoffs. The interplay between the network growth and the game dynamics gives rise to quite interesting dynamical behaviors. Simulation results show the emergence of altruistic behaviors in the ultimatum game, which is affected by the growing network structure. Compared with the static counterpart case, the levels of altruistic behaviors are promoted. The corresponding strategy distributions and wealth distributions are also presented to further demonstrate the strategy evolutionary dynamics. Subsequently, we turn to the topological properties of the evolved network, by virtue of some statistics. The most studied characteristic path length and the clustering coefficient of the network are shown to indicate their small-world effect. Then the degree distributions are analyzed to clarify the interplay of structure and evolutionary dynamics. In particular, the difference between our growth network and the static counterpart is revealed. To explain clearly the evolved networks, the rich-club ordering and the assortative mixing coefficient are exploited to reveal the degree correlation. (paper)
Bollobas, Bela
2004-01-01
The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A
GraphAlignment: Bayesian pairwise alignment of biological networks
Directory of Open Access Journals (Sweden)
Kolář Michal
2012-11-01
Full Text Available Abstract Background With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative and evolutionary analysis are needed. A key component for such studies is the alignment of networks. Results We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks. The alignment incorporates information both from network vertices and network edges and is based on an explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0. On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case complexity grows approximately as O(N2.6. On empirical bacterial protein-protein interaction networks (PIN and gene co-expression networks, GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin. On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment. Conclusions The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and shows very good performance in identification of homologous vertices defined by high vertex and/or interaction similarity. The simplicity and generality of GraphAlignment edge scoring makes the algorithm an appropriate choice for global alignment of networks.
Graph-based surface reconstruction from stereo pairs using image segmentation
Bleyer, Michael; Gelautz, Margrit
2005-01-01
This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.
Content-based image retrieval using a signature graph and a self-organizing map
Directory of Open Access Journals (Sweden)
Van Thanh The
2016-06-01
Full Text Available In order to effectively retrieve a large database of images, a method of creating an image retrieval system CBIR (contentbased image retrieval is applied based on a binary index which aims to describe features of an image object of interest. This index is called the binary signature and builds input data for the problem of matching similar images. To extract the object of interest, we propose an image segmentation method on the basis of low-level visual features including the color and texture of the image. These features are extracted at each block of the image by the discrete wavelet frame transform and the appropriate color space. On the basis of a segmented image, we create a binary signature to describe the location, color and shape of the objects of interest. In order to match similar images, we provide a similarity measure between the images based on binary signatures. Then, we present a CBIR model which combines a signature graph and a self-organizing map to cluster and store similar images. To illustrate the proposed method, experiments on image databases are reported, including COREL,Wang and MSRDI.
Curvature correction of retinal OCTs using graph-based geometry detection
Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan
2013-05-01
In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods.
Curvature correction of retinal OCTs using graph-based geometry detection
International Nuclear Information System (INIS)
Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan
2013-01-01
In this paper, we present a new algorithm as an enhancement and preprocessing step for acquired optical coherence tomography (OCT) images of the retina. The proposed method is composed of two steps, first of which is a denoising algorithm with wavelet diffusion based on a circular symmetric Laplacian model, and the second part can be described in terms of graph-based geometry detection and curvature correction according to the hyper-reflective complex layer in the retina. The proposed denoising algorithm showed an improvement of contrast-to-noise ratio from 0.89 to 1.49 and an increase of signal-to-noise ratio (OCT image SNR) from 18.27 to 30.43 dB. By applying the proposed method for estimation of the interpolated curve using a full automatic method, the mean ± SD unsigned border positioning error was calculated for normal and abnormal cases. The error values of 2.19 ± 1.25 and 8.53 ± 3.76 µm were detected for 200 randomly selected slices without pathological curvature and 50 randomly selected slices with pathological curvature, respectively. The important aspect of this algorithm is its ability in detection of curvature in strongly pathological images that surpasses previously introduced methods; the method is also fast, compared to the relatively low speed of similar methods. (paper)
Superiority Of Graph-Based Visual Saliency GVS Over Other Image Segmentation Methods
Directory of Open Access Journals (Sweden)
Umu Lamboi
2017-02-01
Full Text Available Although inherently tedious the segmentation of images and the evaluation of segmented images are critical in computer vision processes. One of the main challenges in image segmentation evaluation arises from the basic conflict between generality and objectivity. For general segmentation purposes the lack of well-defined ground-truth and segmentation accuracy limits the evaluation of specific applications. Subjectivity is the most common method of evaluation of segmentation quality where segmented images are visually compared. This is daunting task however limits the scope of segmentation evaluation to a few predetermined sets of images. As an alternative supervised evaluation compares segmented images against manually-segmented or pre-processed benchmark images. Not only good evaluation methods allow for different comparisons but also for integration with target recognition systems for adaptive selection of appropriate segmentation granularity with improved recognition accuracy. Most of the current segmentation methods still lack satisfactory measures of effectiveness. Thus this study proposed a supervised framework which uses visual saliency detection to quantitatively evaluate image segmentation quality. The new benchmark evaluator uses Graph-based Visual Saliency GVS to compare boundary outputs for manually segmented images. Using the Berkeley Segmentation Database the proposed algorithm was tested against 4 other quantitative evaluation methods Probabilistic Rand Index PRI Variation of Information VOI Global Consistency Error GSE and Boundary Detection Error BDE. Based on the results the GVS approach outperformed any of the other 4 independent standard methods in terms of visual saliency detection of images.
Graph Creation, Visualisation and Transformation
Directory of Open Access Journals (Sweden)
Maribel Fernández
2010-03-01
Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.
A faithful functor among algebras and graphs
Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vigo Aguiar, Jesús (Coordinador)
2016-01-01
The problem of identifying a functor between the categories of algebras and graphs is currently open. Based on a known algorithm that identifies isomorphisms of Latin squares with isomorphism of vertex-colored graphs, we describe here a pair of graphs that enable us to find a faithful functor between finite-dimensional algebras over finite fields and these graphs.
A New DG Multiobjective Optimization Method Based on an Improved Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2013-01-01
Full Text Available A distribution generation (DG multiobjective optimization method based on an improved Pareto evolutionary algorithm is investigated in this paper. The improved Pareto evolutionary algorithm, which introduces a penalty factor in the objective function constraints, uses an adaptive crossover and a mutation operator in the evolutionary process and combines a simulated annealing iterative process. The proposed algorithm is utilized to the optimize DG injection models to maximize DG utilization while minimizing system loss and environmental pollution. A revised IEEE 33-bus system with multiple DG units was used to test the multiobjective optimization algorithm in a distribution power system. The proposed algorithm was implemented and compared with the strength Pareto evolutionary algorithm 2 (SPEA2, a particle swarm optimization (PSO algorithm, and nondominated sorting genetic algorithm II (NGSA-II. The comparison of the results demonstrates the validity and practicality of utilizing DG units in terms of economic dispatch and optimal operation in a distribution power system.
A graph-based method for fitting planar B-spline curves with intersections
Directory of Open Access Journals (Sweden)
Pengbo Bo
2016-01-01
Full Text Available The problem of fitting B-spline curves to planar point clouds is studied in this paper. A novel method is proposed to deal with the most challenging case where multiple intersecting curves or curves with self-intersection are necessary for shape representation. A method based on Delauney Triangulation of data points is developed to identify connected components which is also capable of removing outliers. A skeleton representation is utilized to represent the topological structure which is further used to create a weighted graph for deciding the merging of curve segments. Different to existing approaches which utilize local shape information near intersections, our method considers shape characteristics of curve segments in a larger scope and is thus capable of giving more satisfactory results. By fitting each group of data points with a B-spline curve, we solve the problems of curve structure reconstruction from point clouds, as well as the vectorization of simple line drawing images by drawing lines reconstruction.
de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano
2015-06-01
Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.
A systematic composite service design modeling method using graph-based theory.
Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh
2015-01-01
The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.
Graph-Based Semi-Supervised Learning for Indoor Localization Using Crowdsourced Data
Directory of Open Access Journals (Sweden)
Liye Zhang
2017-04-01
Full Text Available Indoor positioning based on the received signal strength (RSS of the WiFi signal has become the most popular solution for indoor localization. In order to realize the rapid deployment of indoor localization systems, solutions based on crowdsourcing have been proposed. However, compared to conventional methods, lots of different devices are used in crowdsourcing system and less RSS values are collected by each device. Therefore, the crowdsourced RSS values are more erroneous and can result in significant localization errors. In order to eliminate the signal strength variations across diverse devices, the Linear Regression (LR algorithm is proposed to solve the device diversity problem in crowdsourcing system. After obtaining the uniform RSS values, a graph-based semi-supervised learning (G-SSL method is used to exploit the correlation between the RSS values at nearby locations to estimate an optimal RSS value at each location. As a result, the negative effect of the erroneous measurements could be mitigated. Since the AP locations need to be known in G-SSL algorithm, the Compressed Sensing (CS method is applied to precisely estimate the location of the APs. Based on the location of the APs and a simple signal propagation model, the RSS difference between different locations is calculated and used as an additional constraint to improve the performance of G-SSL. Furthermore, to exploit the sparsity of the weights used in the G-SSL, we use the CS method to reconstruct these weights more accurately and make a further improvement on the performance of the G-SSL. Experimental results show improved results in terms of the smoothness of the radio map and the localization accuracy.
DEFF Research Database (Denmark)
Li, Wuzhao; Wang, Lei; Cai, Xingjuan
2015-01-01
and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...
Personalized PageRank Clustering: A graph clustering algorithm based on random walks
A. Tabrizi, Shayan; Shakery, Azadeh; Asadpour, Masoud; Abbasi, Maziar; Tavallaie, Mohammad Ali
2013-11-01
Graph clustering has been an essential part in many methods and thus its accuracy has a significant effect on many applications. In addition, exponential growth of real-world graphs such as social networks, biological networks and electrical circuits demands clustering algorithms with nearly-linear time and space complexity. In this paper we propose Personalized PageRank Clustering (PPC) that employs the inherent cluster exploratory property of random walks to reveal the clusters of a given graph. We combine random walks and modularity to precisely and efficiently reveal the clusters of a graph. PPC is a top-down algorithm so it can reveal inherent clusters of a graph more accurately than other nearly-linear approaches that are mainly bottom-up. It also gives a hierarchy of clusters that is useful in many applications. PPC has a linear time and space complexity and has been superior to most of the available clustering algorithms on many datasets. Furthermore, its top-down approach makes it a flexible solution for clustering problems with different requirements.
Tailored Random Graph Ensembles
International Nuclear Information System (INIS)
Roberts, E S; Annibale, A; Coolen, A C C
2013-01-01
Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.
Multifractal analysis of visibility graph-based Ito-related connectivity time series.
Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano
2016-02-01
In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.
Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization
Zhao, Qiangfu; Liu, Yong
2015-01-01
A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050
Assessing the efficiency of different CSO positions based on network graph characteristics.
Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W
2013-01-01
The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.
Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo
2012-08-01
We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.
AGM: A DSL for mobile cloud computing based on directed graph
Tanković, Nikola; Grbac, Tihana Galinac
2016-06-01
This paper summarizes a novel approach for consuming a domain specific language (DSL) by transforming it to a directed graph representation persisted by a graph database. Using such specialized database enables advanced navigation trough the stored model exposing only relevant subsets of meta-data to different involved services and components. We applied this approach in a mobile cloud computing system and used it to model several mobile applications in retail, supply chain management and merchandising domain. These application are distributed in a Software-as-a-Service (SaaS) fashion and used by thousands of customers in Croatia. We report on lessons learned and propose further research on this topic.
Interactive Graph Layout of a Million Nodes
Peng Mi; Maoyuan Sun; Moeti Masiane; Yong Cao; Chris North
2016-01-01
Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph to...
DEFF Research Database (Denmark)
Seiller, Thomas
2016-01-01
Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...
Trudeau, Richard J
1994-01-01
Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or
A Graph-Based Approach for 3D Building Model Reconstruction from Airborne LiDAR Point Clouds
Directory of Open Access Journals (Sweden)
Bin Wu
2017-01-01
Full Text Available 3D building model reconstruction is of great importance for environmental and urban applications. Airborne light detection and ranging (LiDAR is a very useful data source for acquiring detailed geometric and topological information of building objects. In this study, we employed a graph-based method based on hierarchical structure analysis of building contours derived from LiDAR data to reconstruct urban building models. The proposed approach first uses a graph theory-based localized contour tree method to represent the topological structure of buildings, then separates the buildings into different parts by analyzing their topological relationships, and finally reconstructs the building model by integrating all the individual models established through the bipartite graph matching process. Our approach provides a more complete topological and geometrical description of building contours than existing approaches. We evaluated the proposed method by applying it to the Lujiazui region in Shanghai, China, a complex and large urban scene with various types of buildings. The results revealed that complex buildings could be reconstructed successfully with a mean modeling error of 0.32 m. Our proposed method offers a promising solution for 3D building model reconstruction from airborne LiDAR point clouds.
Doostparast Torshizi, Abolfazl; Petzold, Linda R
2018-01-01
Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Institute of Scientific and Technical Information of China (English)
莫建文; 王朝选; 首照宇; 张彤; 陈利霞
2013-01-01
针对Graph-Based方法容易出现欠合并现象的不足,结合L*a*b*颜色空间,提出一种改进的Graph-Based图像分割方法.该方法首先将图像由RGB空间转换到L*a*b*颜色空间,接着将每个像素作为节点构造带权无向图,相邻节点之间的欧氏距离作为图的权值,表征相邻像素间的颜色差异；同时,引入一个常数s用于控制颜色差异程度.实验证明,该方法效率高,分割效果良好.%In view of the deficiency of Graph-Based method that it is easy to appear the less merging, in combination with L * a * b * colour space, we propose an improved Graph-Based image segmentation algorithm. First, the method converts the image from RGB colour space to L * a * b * colour space. Then, it takes every pixel as the node to construct the weighted undirected graph, to be the weight of the graph, the Euclidean distance between adjacent nodes is used to represent the colour difference between adjacent pixels; At the same time, a constant S is introduced for the control of the colour difference degree. Experiments show that the method has high efficiency and very good segmentation results.
Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng
2018-08-01
Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.
Hard exudates segmentation based on learned initial seeds and iterative graph cut.
Kusakunniran, Worapan; Wu, Qiang; Ritthipravat, Panrasee; Zhang, Jian
2018-05-01
(Background and Objective): The occurrence of hard exudates is one of the early signs of diabetic retinopathy which is one of the leading causes of the blindness. Many patients with diabetic retinopathy lose their vision because of the late detection of the disease. Thus, this paper is to propose a novel method of hard exudates segmentation in retinal images in an automatic way. (Methods): The existing methods are based on either supervised or unsupervised learning techniques. In addition, the learned segmentation models may often cause miss-detection and/or fault-detection of hard exudates, due to the lack of rich characteristics, the intra-variations, and the similarity with other components in the retinal image. Thus, in this paper, the supervised learning based on the multilayer perceptron (MLP) is only used to identify initial seeds with high confidences to be hard exudates. Then, the segmentation is finalized by unsupervised learning based on the iterative graph cut (GC) using clusters of initial seeds. Also, in order to reduce color intra-variations of hard exudates in different retinal images, the color transfer (CT) is applied to normalize their color information, in the pre-processing step. (Results): The experiments and comparisons with the other existing methods are based on the two well-known datasets, e_ophtha EX and DIARETDB1. It can be seen that the proposed method outperforms the other existing methods in the literature, with the sensitivity in the pixel-level of 0.891 for the DIARETDB1 dataset and 0.564 for the e_ophtha EX dataset. The cross datasets validation where the training process is performed on one dataset and the testing process is performed on another dataset is also evaluated in this paper, in order to illustrate the robustness of the proposed method. (Conclusions): This newly proposed method integrates the supervised learning and unsupervised learning based techniques. It achieves the improved performance, when compared with the
Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph
Directory of Open Access Journals (Sweden)
Jae-wook Jang
2015-01-01
Full Text Available As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that “influence-based” graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.
Directory of Open Access Journals (Sweden)
Feilong Tang
2010-01-01
Full Text Available Mobile and wireless networks are the integrant infrastructure of mobile and pervasive computing that aims at providing transparent and preferred information and services for people anytime anywhere. In such environments, end-to-end network bandwidth is crucial to improve user's transparent experience when providing on-demand services such as mobile video playing. As a result, powerful computing power is required for networked nodes, especially for routers. General-purpose processors cannot meet such requirements due to their limited processing ability, and poor programmability and scalability. Intel's network processor IXP is specially designed for fast packet processing to achieve a broad bandwidth. IXP provides a large number of registers to reduce the number of memory accesses. Registers in an IXP are physically partitioned as two banks so that two source operands in an instruction have to come from the two banks respectively, which makes the IXP register allocation tricky and different from conventional ones. In this paper, we investigate an approach for efficiently generating balanced bipartite graph and register allocation algorithms for the dual-bank register allocation in IXPs. The paper presents a graph uniform 2-way partition algorithm (FPT, which provides an optimal solution to the graph partition, and a heuristic algorithm for generating balanced bipartite graph. Finally, we design a framework for IXP register allocation. Experimental results demonstrate the framework and the algorithms are efficient in register allocation for IXP network processors.
Fault diagnosis of air conditioning systems based on qualitative bond graph
International Nuclear Information System (INIS)
Ghiaus, C.
1999-01-01
The bond graph method represents a unified approach for modeling engineering systems. The main idea is that power transfer bonds the components of a system. The bond graph model is the same for both quantitative representation, in which parameters have numerical values, and qualitative approach, in which they are classified qualitatively. To infer the cause of faults using a qualitative method, a system of qualitative equations must be solved. However, the characteristics of qualitative operators require specific methods for solving systems of equations having qualitative variables. This paper proposes both a method for recursively solving the qualitative system of equations derived from bond graph, and a bond graph model of a direct-expansion, mechanical vapor-compression air conditioning system. Results from diagnosing two faults in a real air conditioning system are presented and discussed. Occasionally, more than one fault candidate is inferred for the same set of qualitative values derived from measurements. In these cases, additional information is required to localize the fault. Fault diagnosis is initiated by a fault detection mechanism which also classifies the quantitative measurements into qualitative values; the fault detection is not presented here. (author)
Graph-Based Specification and Simulation of Featherweight Java with Around Advice
Staijen, T.; Rensink, Arend
In this paper we specify an operational run-time semantics of Assignment Featherweight Java -- a minimal subset of Java with assignments -- with around advice, using graph transformations. We introduce a notion of correctness of our specification with respect to an existing semantics and claim a
An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization
Directory of Open Access Journals (Sweden)
Rafał Dreżewski
2017-08-01
Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.
Matsutani, Shigeki; Sato, Iwao
2017-09-01
In the previous report (Matsutani and Suzuki, 2000 [21]), by proposing the mechanism under which electric conductivity is caused by the activational hopping conduction with the Wigner surmise of the level statistics, the temperature-dependent of electronic conductivity of a highly disordered carbon system was evaluated including apparent metal-insulator transition. Since the system consists of small pieces of graphite, it was assumed that the reason why the level statistics appears is due to the behavior of the quantum chaos in each granular graphite. In this article, we revise the assumption and show another origin of the Wigner surmise, which is more natural for the carbon system based on a recent investigation of graph zeta function in graph theory. Our method can be applied to the statistical treatment of the electronic properties of the randomized molecular system in general.
X-Graphs: Language and Algorithms for Heterogeneous Graph Streams
2017-09-01
are widely used by academia and industry. 15. SUBJECT TERMS Data Analytics, Graph Analytics, High-Performance Computing 16. SECURITY CLASSIFICATION...form the core of the DeepDive Knowledge Construction System. 2 INTRODUCTION The goal of the X-Graphs project was to develop computational techniques...memory multicore machine. Ringo is based on Snap.py and SNAP, and uses Python . Ringo now allows the integration of Delite DSL Framework Graph
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
Graph Algorithm Animation with Grrr
Rodgers, Peter; Vidal, Natalia
2000-01-01
We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional gra...
Kou, Qiang; Wu, Si; Tolic, Nikola; Paša-Tolic, Ljiljana; Liu, Yunlong; Liu, Xiaowen
2017-05-01
Although proteomics has rapidly developed in the past decade, researchers are still in the early stage of exploring the world of complex proteoforms, which are protein products with various primary structure alterations resulting from gene mutations, alternative splicing, post-translational modifications, and other biological processes. Proteoform identification is essential to mapping proteoforms to their biological functions as well as discovering novel proteoforms and new protein functions. Top-down mass spectrometry is the method of choice for identifying complex proteoforms because it provides a 'bird's eye view' of intact proteoforms. The combinatorial explosion of various alterations on a protein may result in billions of possible proteoforms, making proteoform identification a challenging computational problem. We propose a new data structure, called the mass graph, for efficient representation of proteoforms and design mass graph alignment algorithms. We developed TopMG, a mass graph-based software tool for proteoform identification by top-down mass spectrometry. Experiments on top-down mass spectrometry datasets showed that TopMG outperformed existing methods in identifying complex proteoforms. http://proteomics.informatics.iupui.edu/software/topmg/. xwliu@iupui.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Directory of Open Access Journals (Sweden)
Kifayat Ullah Khan
2017-11-01
Full Text Available Normally, individuals use smartphones for a variety of purposes like photography, schedule planning, playing games, and so on, apart from benefiting from the core tasks of call-making and short messaging. These services are sources of personal data generation. Therefore, any application that utilises personal data of a user from his/her smartphone is truly a great witness of his/her interests and this information can be used for various personalised services. In this paper, we present Lifestyle Pattern MIning (LPaMI, which is a personalised application for mining the lifestyle patterns of a smartphone user. LPaMI uses the personal photograph collections of a user, which reflect the day-to-day photos taken by a smartphone, to recognise scenes (called objects of interest in our work. These are then mined to discover lifestyle patterns. The uniqueness of LPaMI lies in our graph-based approach to mining the patterns of interest. Modelling of data in the form of graphs is effective in preserving the lifestyle behaviour maintained over the passage of time. Graph-modelled lifestyle data enables us to apply variety of graph mining techniques for pattern discovery. To demonstrate the effectiveness of our proposal, we have developed a prototype system for LPaMI to implement its end-to-end pipeline. We have also conducted an extensive evaluation for various phases of LPaMI using different real-world datasets. We understand that the output of LPaMI can be utilised for variety of pattern discovery application areas like trip and food recommendations, shopping, and so on.
Abdelaziz, Ibrahim; Fokoue, Achille; Hassanzadeh, Oktie; Zhang, Ping; Sadoghi, Mohammad
2017-01-01
Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.
Abdelaziz, Ibrahim
2017-06-12
Drug-Drug Interactions (DDIs) are a major cause of preventable Adverse Drug Reactions (ADRs), causing a significant burden on the patients’ health and the healthcare system. It is widely known that clinical studies cannot sufficiently and accurately identify DDIs for new drugs before they are made available on the market. In addition, existing public and proprietary sources of DDI information are known to be incomplete and/or inaccurate and so not reliable. As a result, there is an emerging body of research on in-silico prediction of drug-drug interactions. In this paper, we present Tiresias, a large-scale similarity-based framework that predicts DDIs through link prediction. Tiresias takes in various sources of drug-related data and knowledge as inputs, and provides DDI predictions as outputs. The process starts with semantic integration of the input data that results in a knowledge graph describing drug attributes and relationships with various related entities such as enzymes, chemical structures, and pathways. The knowledge graph is then used to compute several similarity measures between all the drugs in a scalable and distributed framework. In particular, Tiresias utilizes two classes of features in a knowledge graph: local and global features. Local features are derived from the information directly associated to each drug (i.e., one hop away) while global features are learnt by minimizing a global loss function that considers the complete structure of the knowledge graph. The resulting similarity metrics are used to build features for a large-scale logistic regression model to predict potential DDIs. We highlight the novelty of our proposed Tiresias and perform thorough evaluation of the quality of the predictions. The results show the effectiveness of Tiresias in both predicting new interactions among existing drugs as well as newly developed drugs.
On the sizes of expander graphs and minimum distances of graph codes
DEFF Research Database (Denmark)
Høholdt, Tom; Justesen, Jørn
2014-01-01
We give lower bounds for the minimum distances of graph codes based on expander graphs. The bounds depend only on the second eigenvalue of the graph and the parameters of the component codes. We also give an upper bound on the size of a degree regular graph with given second eigenvalue....
DEFF Research Database (Denmark)
Wang, Yong; Cai, Zixing; Zhou, Yuren
2009-01-01
A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...
Study on Cooperative Mechanism of Prefabricated Producers Based on Evolutionary Game Theory
Directory of Open Access Journals (Sweden)
Tongyao Feng
2017-01-01
Full Text Available Good cooperation mechanism is an important guarantee for the advancement of industrialization construction. To strengthen the partnership between producers, we analyze the behavior evolution trend of both parties using an evolutionary game theory. Based on the original model, the mechanism of coordination and cooperation between prefabricated producers is explained under the condition of punishment and incentive. The results indicate that stable evolutionary strategies exist under both cooperation and noncooperation, and the evolutionary results are influenced by the initial proportion of both decision-making processes. The government can support the production enterprises to establish a solid partnership through effective punishment and incentive mechanisms to reduce the initial cost in the supply chain of prefabricated construction, resulting in a win-win situation.
A New Type of Graphical Passwords Based on Odd-Elegant Labelled Graphs
Directory of Open Access Journals (Sweden)
Hongyu Wang
2018-01-01
Full Text Available Graphical password (GPW is one of various passwords used in information communication. The QR code, which is widely used in the current world, is one of GPWs. Topsnut-GPWs are new-type GPWs made by topological structures (also, called graphs and number theory, but the existing GPWs use pictures/images almost. We design new Topsnut-GPWs by means of a graph labelling, called odd-elegant labelling. The new Topsnut-GPWs will be constructed by Topsnut-GPWs having smaller vertex numbers; in other words, they are compound Topsnut-GPWs such that they are more robust to deciphering attacks. Furthermore, the new Topsnut-GPWs can induce some mathematical problems and conjectures.
Entropy and Graph Based Modelling of Document Coherence using Discourse Entities
DEFF Research Database (Denmark)
Petersen, Casper; Lioma, Christina; Simonsen, Jakob Grue
2015-01-01
We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse...... entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28......] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse...
Hermann, Frank; Ehrig, Hartmut; Orejas, Fernando; Ulrike, Golas
2010-01-01
Triple Graph Grammars (TGGs) are a well-established concept for the specification of model transformations. In previous work we have formalized and analyzed already crucial properties of model transformations like termination, correctness and completeness, but functional behaviour - especially local confluence - is missing up to now. In order to close this gap we generate forward translation rules, which extend standard forward rules by translation attributes keeping track of the elements whi...
Graph-based representation of behavior in detection and prediction of daily living activities.
Augustyniak, Piotr; Ślusarczyk, Grażyna
2018-04-01
Various surveillance systems capture signs of human activities of daily living (ADLs) and store multimodal information as time line behavioral records. In this paper, we present a novel approach to the analysis of a behavioral record used in a surveillance system designed for use in elderly smart homes. The description of a subject's activity is first decomposed into elementary poses - easily detectable by dedicated intelligent sensors - and represented by the share coefficients. Then, the activity is represented in the form of an attributed graph, where nodes correspond to elementary poses. As share coefficients of poses are expressed as attributes assigned to graph nodes, their change corresponding to a subject's action is represented by flow in graph edges. The behavioral record is thus a time series of graphs, which tiny size facilitates storage and management of long-term monitoring results. At the system learning stage, the contribution of elementary poses is accumulated, discretized and probability-ordered leading to a finite list representing the possible transitions between states. Such a list is independently built for each room in the supervised residence, and employed for assessment of the current action in the context of subject's habits and a room purpose. The proposed format of a behavioral record, applied to an adaptive surveillance system, is particularly advantageous for representing new activities not known at the setup stage, for providing a quantitative measure of transitions between poses and for expressing the difference between a predicted and actual action in a numerical way. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Integrating EMDR into an evolutionary-based therapy for depression: a case study
Krupnik, Valery
2015-01-01
Key Clinical Message We present an intervention in a case of major depression, where eye movement desensitization and reprocessing (EMDR) therapy was integrated into an evolutionary-based psychotherapy for depression. At the end of the treatment and at follow up assessment we observed a more accepting disposition and decreased depressive but not anxiety symptoms.
Integrating EMDR into an evolutionary-based therapy for depression: a case study
Krupnik, Valery
2015-01-01
Key Clinical Message We present an intervention in a case of major depression, where eye movement desensitization and reprocessing (EMDR) therapy was integrated into an evolutionary-based psychotherapy for depression. At the end of the treatment and at follow up assessment we observed a more accepting disposition and decreased depressive but not anxiety symptoms. PMID:25984310
Möller, E.L.; Majdandžić, M.; Vriends, N.; Bögels, S.M.
2014-01-01
Children use signals from others to guide their behavior when confronted with potentially dangerous situations, so called social referencing. Due to evolutionary based different expertise of fathers and mothers, parents might be different social references for their children. The present study
Multiresolution analysis over graphs for a motor imagery based online BCI game.
Asensio-Cubero, Javier; Gan, John Q; Palaniappan, Ramaswamy
2016-01-01
Multiresolution analysis (MRA) over graph representation of EEG data has proved to be a promising method for offline brain-computer interfacing (BCI) data analysis. For the first time we aim to prove the feasibility of the graph lifting transform in an online BCI system. Instead of developing a pointer device or a wheel-chair controller as test bed for human-machine interaction, we have designed and developed an engaging game which can be controlled by means of imaginary limb movements. Some modifications to the existing MRA analysis over graphs for BCI have also been proposed, such as the use of common spatial patterns for feature extraction at the different levels of decomposition, and sequential floating forward search as a best basis selection technique. In the online game experiment we obtained for three classes an average classification rate of 63.0% for fourteen naive subjects. The application of a best basis selection method helps significantly decrease the computing resources needed. The present study allows us to further understand and assess the benefits of the use of tailored wavelet analysis for processing motor imagery data and contributes to the further development of BCI for gaming purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking
He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.
2018-04-01
The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.
Sea Basing: Evolutionary Naval Doctrine and Military Transformation
National Research Council Canada - National Science Library
Gentry, Robin
2004-01-01
.... Sea Basing through a combination of naval platforms provides the bridge for the American military forces between the advance force operations needed to prepare the battlespace and the war-winning...
Cat swarm optimization based evolutionary framework for multi document summarization
Rautray, Rasmita; Balabantaray, Rakesh Chandra
2017-07-01
Today, World Wide Web has brought us enormous quantity of on-line information. As a result, extracting relevant information from massive data has become a challenging issue. In recent past text summarization is recognized as one of the solution to extract useful information from vast amount documents. Based on number of documents considered for summarization, it is categorized as single document or multi document summarization. Rather than single document, multi document summarization is more challenging for the researchers to find accurate summary from multiple documents. Hence in this study, a novel Cat Swarm Optimization (CSO) based multi document summarizer is proposed to address the problem of multi document summarization. The proposed CSO based model is also compared with two other nature inspired based summarizer such as Harmony Search (HS) based summarizer and Particle Swarm Optimization (PSO) based summarizer. With respect to the benchmark Document Understanding Conference (DUC) datasets, the performance of all algorithms are compared in terms of different evaluation metrics such as ROUGE score, F score, sensitivity, positive predicate value, summary accuracy, inter sentence similarity and readability metric to validate non-redundancy, cohesiveness and readability of the summary respectively. The experimental analysis clearly reveals that the proposed approach outperforms the other summarizers included in the study.
Symmetry-based reciprocity: evolutionary constraints on a proximate mechanism.
Campennì, Marco; Schino, Gabriele
2016-01-01
Background. While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals. Methods. We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated "social relationships" and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated. Discussion. In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions.
Optimization Problems on Threshold Graphs
Directory of Open Access Journals (Sweden)
Elena Nechita
2010-06-01
Full Text Available During the last three decades, different types of decompositions have been processed in the field of graph theory. Among these we mention: decompositions based on the additivity of some characteristics of the graph, decompositions where the adjacency law between the subsets of the partition is known, decompositions where the subgraph induced by every subset of the partition must have predeterminate properties, as well as combinations of such decompositions. In this paper we characterize threshold graphs using the weakly decomposition, determine: density and stability number, Wiener index and Wiener polynomial for threshold graphs.
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
An evolutionary approach for colour constancy based on gamut ...
Indian Academy of Sciences (India)
Many colour constancy algorithms have been proposed to achieve a good performance in this ﬁeld. The gamut mapping algorithm is one of the most accurate and promising algorithms based on gamut assumption: illuminant can be estimated by comparing the colours distribution in the current image to acanonical gamut ...
Chartrand, Gary; Zhang, Ping
2010-01-01
Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...
Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques
Directory of Open Access Journals (Sweden)
O. P. Bharti
2017-06-01
Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.
Drug-target interaction prediction from PSSM based evolutionary information.
Mousavian, Zaynab; Khakabimamaghani, Sahand; Kavousi, Kaveh; Masoudi-Nejad, Ali
2016-01-01
The labor-intensive and expensive experimental process of drug-target interaction prediction has motivated many researchers to focus on in silico prediction, which leads to the helpful information in supporting the experimental interaction data. Therefore, they have proposed several computational approaches for discovering new drug-target interactions. Several learning-based methods have been increasingly developed which can be categorized into two main groups: similarity-based and feature-based. In this paper, we firstly use the bi-gram features extracted from the Position Specific Scoring Matrix (PSSM) of proteins in predicting drug-target interactions. Our results demonstrate the high-confidence prediction ability of the Bigram-PSSM model in terms of several performance indicators specifically for enzymes and ion channels. Moreover, we investigate the impact of negative selection strategy on the performance of the prediction, which is not widely taken into account in the other relevant studies. This is important, as the number of non-interacting drug-target pairs are usually extremely large in comparison with the number of interacting ones in existing drug-target interaction data. An interesting observation is that different levels of performance reduction have been attained for four datasets when we change the sampling method from the random sampling to the balanced sampling. Copyright © 2015 Elsevier Inc. All rights reserved.
Krieger, M; Schwabenbauer, E-M; Hoischen-Taubner, S; Emanuelson, U; Sundrum, A
2018-03-01
Production diseases in dairy cows are multifactorial, which means they emerge from complex interactions between many different farm variables. Variables with a large impact on production diseases can be identified for groups of farms using statistical models, but these methods cannot be used to identify highly influential variables in individual farms. This, however, is necessary for herd health planning, because farm conditions and associated health problems vary largely between farms. The aim of this study was to rank variables according to their anticipated effect on production diseases on the farm level by applying a graph-based impact analysis on 192 European organic dairy farms. Direct impacts between 13 pre-defined variables were estimated for each farm during a round-table discussion attended by practitioners, that is farmer, veterinarian and herd advisor. Indirect impacts were elaborated through graph analysis taking into account impact strengths. Across farms, factors supposedly exerting the most influence on production diseases were 'feeding', 'hygiene' and 'treatment' (direct impacts), as well as 'knowledge and skills' and 'herd health monitoring' (indirect impacts). Factors strongly influenced by production diseases were 'milk performance', 'financial resources' and 'labour capacity' (directly and indirectly). Ranking of variables on the farm level revealed considerable differences between farms in terms of their most influential and most influenced farm factors. Consequently, very different strategies may be required to reduce production diseases in these farms. The method is based on perceptions and estimations and thus prone to errors. From our point of view, however, this weakness is clearly outweighed by the ability to assess and to analyse farm-specific relationships and thus to complement general knowledge with contextual knowledge. Therefore, we conclude that graph-based impact analysis represents a promising decision support tool for herd
A security mechanism based on evolutionary game in fog computing.
Sun, Yan; Lin, Fuhong; Zhang, Nan
2018-02-01
Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.
Design of synthetic biological logic circuits based on evolutionary algorithm.
Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei
2013-08-01
The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.
A security mechanism based on evolutionary game in fog computing
Directory of Open Access Journals (Sweden)
Yan Sun
2018-02-01
Full Text Available Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.
Efficient fractal-based mutation in evolutionary algorithms from iterated function systems
Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.
2018-03-01
In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.
Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.
Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu
2014-10-01
Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.
Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal
2015-04-01
computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.
Directory of Open Access Journals (Sweden)
Qu Li
2014-01-01
Full Text Available Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Vanpool trip planning based on evolutionary multiple objective optimization
Zhao, Ming; Yang, Disheng; Feng, Shibing; Liu, Hengchang
2017-08-01
Carpool and vanpool draw a lot of researchers’ attention, which is the emphasis of this paper. A concrete vanpool operation definition is given, based on the given definition, this paper tackles vanpool operation optimization using user experience decline index(UEDI). This paper is focused on making each user having identical UEDI and the system having minimum sum of all users’ UEDI. Three contributions are made, the first contribution is a vanpool operation scheme diagram, each component of the scheme is explained in detail. The second contribution is getting all customer’s UEDI as a set, standard deviation and sum of all users’ UEDI set are used as objectives in multiple objective optimization to decide trip start address, trip start time and trip destination address. The third contribution is a trip planning algorithm, which tries to minimize the sum of all users’ UEDI. Geographical distribution of the charging stations and utilization rate of the charging stations are considered in the trip planning process.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Directory of Open Access Journals (Sweden)
Azmat Ullah
Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Power system dynamic state estimation using prediction based evolutionary technique
International Nuclear Information System (INIS)
Basetti, Vedik; Chandel, Ashwani K.; Chandel, Rajeevan
2016-01-01
In this paper, a new robust LWS (least winsorized square) estimator is proposed for dynamic state estimation of a power system. One of the main advantages of this estimator is that it has an inbuilt bad data rejection property and is less sensitive to bad data measurements. In the proposed approach, Brown's double exponential smoothing technique has been utilised for its reliable performance at the prediction step. The state estimation problem is solved as an optimisation problem using a new jDE-self adaptive differential evolution with prediction based population re-initialisation technique at the filtering step. This new stochastic search technique has been embedded with different state scenarios using the predicted state. The effectiveness of the proposed LWS technique is validated under different conditions, namely normal operation, bad data, sudden load change, and loss of transmission line conditions on three different IEEE test bus systems. The performance of the proposed approach is compared with the conventional extended Kalman filter. On the basis of various performance indices, the results thus obtained show that the proposed technique increases the accuracy and robustness of power system dynamic state estimation performance. - Highlights: • To estimate the states of the power system under dynamic environment. • The performance of the EKF method is degraded during anomaly conditions. • The proposed method remains robust towards anomalies. • The proposed method provides precise state estimates even in the presence of anomalies. • The results show that prediction accuracy is enhanced by using the proposed model.
A cyber kill chain based taxonomy of banking Trojans for evolutionary computational intelligence
Kiwia, D; Dehghantanha, A; Choo, K-KR; Slaughter, J
2017-01-01
Malware such as banking Trojans are popular with financially-motivated cybercriminals. Detection of banking Trojans remains a challenging task, due to the constant evolution of techniques used to obfuscate and circumvent existing detection and security solutions. Having a malware taxonomy can facilitate the design of mitigation strategies such as those based on evolutionary computational intelligence. Specifically, in this paper, we propose a cyber kill chain based taxonomy of banking Trojans...
Data Based Prediction of Blood Glucose Concentrations Using Evolutionary Methods.
Hidalgo, J Ignacio; Colmenar, J Manuel; Kronberger, Gabriel; Winkler, Stephan M; Garnica, Oscar; Lanchares, Juan
2017-08-08
Predicting glucose values on the basis of insulin and food intakes is a difficult task that people with diabetes need to do daily. This is necessary as it is important to maintain glucose levels at appropriate values to avoid not only short-term, but also long-term complications of the illness. Artificial intelligence in general and machine learning techniques in particular have already lead to promising results in modeling and predicting glucose concentrations. In this work, several machine learning techniques are used for the modeling and prediction of glucose concentrations using as inputs the values measured by a continuous monitoring glucose system as well as also previous and estimated future carbohydrate intakes and insulin injections. In particular, we use the following four techniques: genetic programming, random forests, k-nearest neighbors, and grammatical evolution. We propose two new enhanced modeling algorithms for glucose prediction, namely (i) a variant of grammatical evolution which uses an optimized grammar, and (ii) a variant of tree-based genetic programming which uses a three-compartment model for carbohydrate and insulin dynamics. The predictors were trained and tested using data of ten patients from a public hospital in Spain. We analyze our experimental results using the Clarke error grid metric and see that 90% of the forecasts are correct (i.e., Clarke error categories A and B), but still even the best methods produce 5 to 10% of serious errors (category D) and approximately 0.5% of very serious errors (category E). We also propose an enhanced genetic programming algorithm that incorporates a three-compartment model into symbolic regression models to create smoothed time series of the original carbohydrate and insulin time series.
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
Directory of Open Access Journals (Sweden)
Mehmet Fatih Öçal
2017-01-01
Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.
Gilani, S. A. N.; Awrangjeb, M.; Lu, G.
2015-03-01
Building detection in complex scenes is a non-trivial exercise due to building shape variability, irregular terrain, shadows, and occlusion by highly dense vegetation. In this research, we present a graph based algorithm, which combines multispectral imagery and airborne LiDAR information to completely delineate the building boundaries in urban and densely vegetated area. In the first phase, LiDAR data is divided into two groups: ground and non-ground data, using ground height from a bare-earth DEM. A mask, known as the primary building mask, is generated from the non-ground LiDAR points where the black region represents the elevated area (buildings and trees), while the white region describes the ground (earth). The second phase begins with the process of Connected Component Analysis (CCA) where the number of objects present in the test scene are identified followed by initial boundary detection and labelling. Additionally, a graph from the connected components is generated, where each black pixel corresponds to a node. An edge of a unit distance is defined between a black pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to a neighbouring white pixel, if any. This phenomenon produces a disconnected components graph, where each component represents a prospective building or a dense vegetation (a contiguous block of black pixels from the primary mask). In the third phase, a clustering process clusters the segmented lines, extracted from multispectral imagery, around the graph components, if possible. In the fourth step, NDVI, image entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and isolated building's occluded parts. Finally, the initially extracted building boundary is extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate the building and to maximise the boundary reach towards building edges. The proposed technique is evaluated using two Australian data sets
3D automatic anatomy segmentation based on iterative graph-cut-ASM.
Chen, Xinjian; Bagci, Ulas
2011-08-01
This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al. [Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 degrees and 0.03, and over all foot bones are about 3.5709 mm, 0.35 degrees and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for
3D automatic anatomy segmentation based on iterative graph-cut-ASM
International Nuclear Information System (INIS)
Chen, Xinjian; Bagci, Ulas
2011-01-01
Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and
A Self-adaptive Dynamic Evaluation Model for Diabetes Mellitus, Based on Evolutionary Strategies
Directory of Open Access Journals (Sweden)
An-Jiang Lu
2016-03-01
Full Text Available In order to evaluate diabetes mellitus objectively and accurately, this paper builds a self-adaptive dynamic evaluation model for diabetes mellitus, based on evolutionary strategies. First of all, on the basis of a formalized description of the evolutionary process of diabetes syndromes, using a state transition function, it judges whether a disease is evolutionary, through an excitation parameter. It then, provides evidence for the rebuilding of the evaluation index system. After that, by abstracting and rebuilding the composition of evaluation indexes, it makes use of a heuristic algorithm to determine the composition of the evolved evaluation index set of diabetes mellitus, It then, calculates the weight of each index in the evolved evaluation index set of diabetes mellitus by building a dependency matrix and realizes the self-adaptive dynamic evaluation of diabetes mellitus under an evolutionary environment. Using this evaluation model, it is possible to, quantify all kinds of diagnoses and treatment experiences of diabetes and finally to adopt ideal diagnoses and treatment measures for different patients with diabetics.
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks
Directory of Open Access Journals (Sweden)
Sho Fukuda
2014-12-01
Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks
A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sutanay; Holder, Larry; Chin, George; Agarwal, Khushbu; Feo, John T.
2015-05-27
Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.
Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan
Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.
Tang, Xiaolan; Hong, Donghui; Chen, Wenlong
2017-06-08
Existing studies on data acquisition in vehicular networks often take the mobile vehicular nodes as data carriers. However, their autonomous movements, limited resources and security risks impact the quality of services. In this article, we propose a data acquisition model using stable matching of bipartite graph in cooperative vehicle-infrastructure systems, namely, DAS. Contents are distributed to roadside units, while vehicular nodes support supplementary storage. The original distribution problem is formulated as a stable matching problem of bipartite graph, where the data and the storage cells compose two sides of vertices. Regarding the factors relevant with the access ratio and delay, the preference rankings for contents and roadside units are calculated, respectively. With a multi-replica preprocessing algorithm to handle the potential one-to-many mapping, the matching problem is addressed in polynomial time. In addition, vehicular nodes carry and forward assistant contents to deliver the failed packets because of bandwidth competition. Furthermore, an incentive strategy is put forward to boost the vehicle cooperation and to achieve a fair bandwidth allocation at roadside units. Experiments show that DAS achieves a high access ratio and a small storage cost with an acceptable delay.
Graph Theory. 2. Vertex Descriptors and Graph Coloring
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.
Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro
2015-01-01
The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo
2009-01-01
In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java
Girth 5 graphs from relative difference sets
DEFF Research Database (Denmark)
Jørgensen, Leif Kjær
2005-01-01
We consider the problem of construction of graphs with given degree $k$ and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed ...
Graph Transformation Semantics for a QVT Language
Rensink, Arend; Nederpel, Ronald; Bruni, Roberto; Varró, Dániel
It has been claimed by many in the graph transformation community that model transformation, as understood in the context of Model Driven Architecture, can be seen as an application of graph transformation. In this paper we substantiate this claim by giving a graph transformation-based semantics to
Girth 5 graphs from relative difference sets
DEFF Research Database (Denmark)
Jørgensen, Leif Kjær
We consider the problem of construction of graphs with given degree and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G...
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.
2009-01-01
In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax
Bond graph modeling of centrifugal compression systems
Uddin, Nur; Gravdahl, Jan Tommy
2015-01-01
A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...
Deep Learning with Dynamic Computation Graphs
Looks, Moshe; Herreshoff, Marcello; Hutchins, DeLesley; Norvig, Peter
2017-01-01
Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. We introduce a technique called dynami...
Constructs for Programming with Graph Rewrites
Rodgers, Peter
2000-01-01
Graph rewriting is becoming increasingly popular as a method for programming with graph based data structures. We present several modifications to a basic serial graph rewriting paradigm and discuss how they improve coding programs in the Grrr graph rewriting programming language. The constructs we present are once only nodes, attractor nodes and single match rewrites. We illustrate the operation of the constructs by example. The advantages of adding these new rewrite modifiers is to reduce t...
Directory of Open Access Journals (Sweden)
P. Fischer
2018-04-01
Full Text Available This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Bell inequalities for graph states
International Nuclear Information System (INIS)
Toth, G.; Hyllus, P.; Briegel, H.J.; Guehne, O.
2005-01-01
Full text: In the last years graph states have attracted an increasing interest in the field of quantum information theory. Graph states form a family of multi-qubit states which comprises many popular states such as the GHZ states and the cluster states. They also play an important role in applications. For instance, measurement based quantum computation uses graph states as resources. From a theoretical point of view, it is remarkable that graph states allow for a simple description in terms of stabilizing operators. In this contribution, we investigate the non-local properties of graph states. We derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, any graph state violates at least one of the inequalities. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positively of the partial transpose or the geometric measure of entanglement. (author)
Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei
2017-03-01
The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.
Network evolution driven by dynamics applied to graph coloring
International Nuclear Information System (INIS)
Wu Jian-She; Li Li-Guang; Yu Xin; Jiao Li-Cheng; Wang Xiao-Hua
2013-01-01
An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring
Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L
2015-02-01
A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. Copyright © 2014 Elsevier B.V. All rights reserved.
Wjst, M
2013-12-01
Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.
Directory of Open Access Journals (Sweden)
Hossien Pourghassem
2011-04-01
Full Text Available Relevance feedback approaches is used to improve the performance of content-based image retrieval systems. In this paper, a novel relevance feedback approach based on similarity measure modification in an X-ray image retrieval system based on fuzzy representation using fuzzy attributed relational graph (FARG is presented. In this approach, optimum weight of each feature in feature vector is calculated using similarity rate between query image and relevant and irrelevant images in user feedback. The calculated weight is used to tune fuzzy graph matching algorithm as a modifier parameter in similarity measure. The standard deviation of the retrieved image features is applied to calculate the optimum weight. The proposed image retrieval system uses a FARG for representation of images, a fuzzy matching graph algorithm as similarity measure and a semantic classifier based on merging scheme for determination of the search space in image database. To evaluate relevance feedback approach in the proposed system, a standard X-ray image database consisting of 10000 images in 57 classes is used. The improvement of the evaluation parameters shows proficiency and efficiency of the proposed system.
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
Ni-MH batteries state-of-charge prediction based on immune evolutionary network
International Nuclear Information System (INIS)
Cheng Bo; Zhou Yanlu; Zhang Jiexin; Wang Junping; Cao Binggang
2009-01-01
Based on clonal selection theory, an improved immune evolutionary strategy is presented. Compared with conventional evolutionary strategy algorithm (CESA) and immune monoclonal strategy algorithm (IMSA), experimental results show that the proposed algorithm is of high efficiency and can effectively prevent premature convergence. A three-layer feed-forward neural network is presented to predict state-of-charge (SOC) of Ni-MH batteries. Initially, partial least square regression (PLSR) is used to select input variables. Then, five variables, battery terminal voltage, voltage derivative, voltage second derivative, discharge current and battery temperature, are selected as the inputs of NN. In order to overcome the weakness of BP algorithm, the new algorithm is adopted to train weights. Finally, under the state of dynamic power cycle, the predicted SOC and the actual SOC are compared to verify the proposed neural network with acceptable accuracy (5%).
EvoBuild: A Quickstart Toolkit for Programming Agent-Based Models of Evolutionary Processes
Wagh, Aditi; Wilensky, Uri
2018-04-01
Extensive research has shown that one of the benefits of programming to learn about scientific phenomena is that it facilitates learning about mechanisms underlying the phenomenon. However, using programming activities in classrooms is associated with costs such as requiring additional time to learn to program or students needing prior experience with programming. This paper presents a class of programming environments that we call quickstart: Environments with a negligible threshold for entry into programming and a modest ceiling. We posit that such environments can provide benefits of programming for learning without incurring associated costs for novice programmers. To make this claim, we present a design-based research study conducted to compare programming models of evolutionary processes with a quickstart toolkit with exploring pre-built models of the same processes. The study was conducted in six seventh grade science classes in two schools. Students in the programming condition used EvoBuild, a quickstart toolkit for programming agent-based models of evolutionary processes, to build their NetLogo models. Students in the exploration condition used pre-built NetLogo models. We demonstrate that although students came from a range of academic backgrounds without prior programming experience, and all students spent the same number of class periods on the activities including the time students took to learn programming in this environment, EvoBuild students showed greater learning about evolutionary mechanisms. We discuss the implications of this work for design research on programming environments in K-12 science education.
Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm
Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung
2016-07-01
In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.
Chartrand, Gary; Rosen, Kenneth H
2008-01-01
Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...
David , Romain; FERAL , Jean-Pierre; Archambeau , Anne; Bailly , Nicolas; Blanpain , Cyrille; Breton , Vincent; De Jode , Aurélie; Delavaud , Aurélie; Dias , Alrick; Gachet , Sophie; Guillemain , Dorian; Lecubin , Julien; Romier , Geneviève; Surace , Christian; Thierry De Ville D 'avray , Laure
2016-01-01
International audience; Data produced by the CIGESMED project (Coralligenous based Indicators to evaluate and monitor the "Good Environmental Status" of the MEDiterranean coastal waters) have a high potential for use by several stakeholders involved in environmental management. A new consortium called IndexMed whose task is to index Mediterranean biodiversity data, makes it possible to build graphs in order to analyse the CIGESMED data and develop new ways for data mining of coralligenous dat...
Wagh, Aditi
Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both
Liu, Yuanming; Huang, Changwei; Dai, Qionglin
2018-06-01
Strategy imitation plays a crucial role in evolutionary dynamics when we investigate the spontaneous emergence of cooperation under the framework of evolutionary game theory. Generally, when an individual updates his strategy, he needs to choose a role model whom he will learn from. In previous studies, individuals choose role models randomly from their neighbors. In recent works, researchers have considered that individuals choose role models according to neighbors' attractiveness characterized by the present network topology or historical payoffs. Here, we associate an individual's attractiveness with the strategy persistence, which characterizes how frequently he changes his strategy. We introduce a preferential parameter α to describe the nonlinear correlation between the selection probability and the strategy persistence and the memory length of individuals M into the evolutionary games. We investigate the effects of α and M on cooperation. Our results show that cooperation could be promoted when α > 0 and at the same time M > 1, which corresponds to the situation that individuals are inclined to select their neighbors with relatively higher persistence levels during the evolution. Moreover, we find that the cooperation level could reach the maximum at an optimal memory length when α > 0. Our work sheds light on how to promote cooperation through preferential selection based on strategy persistence and a limited memory length.
Parsons, P A
2001-12-01
Fitness varies nonlinearly with environmental variables such as temperature, water availability, and nutrition, with maximum fitness at intermediate levels between more stressful extremes. For environmental agents that are highly toxic at exposures that substantially exceed background levels, fitness is maximized at concentrations near zero--a phenomenon often referred to as hormesis. Two main components are suggested: (1) background hormesis, which derives from the direct adaptation of organisms to their habitats; and (2) stress-derived hormonesis, which derives from metabolic reserves that are maintained as an adaptation to environmental stresses through evolutionary time. These reserves provide protection from lesser correlated stresses. This article discusses illustrative examples, including ethanol and ionizing radiation, aimed at placing hormesis into an ecological and evolutionary context. A unifying approach comes from fitness-stress continua that underlie responses to abiotic variables, whereby selection for maximum metabolic efficiency and hence fitness in adaptation to habitats in nature underlies hormetic zones. Within this reductionist model, more specific metabolic mechanisms to explain hormesis are beginning to emerge, depending upon the agent and the taxon in question. Some limited research possibilities based upon this evolutionary perspective are indicated.
Understanding herding based on a co-evolutionary model for strategy and game structure
International Nuclear Information System (INIS)
Wang, Tao; Huang, Keke; Cheng, Yuan; Zheng, Xiaoping
2015-01-01
Highlights: •We model herding effect in emergency from perspective of evolutionary game theory. •Rational subpopulation survives only when the game parameter is significantly large. •Herding effect may arise if the relative rewarding for rational agents is small. •Increasing the relative rewarding for rational agents will prevent herding effect. •The evolution result is unstable if the game parameter approaches critical points. -- Abstract: So far, there has been no conclusion on the mechanism for herding, which is often discussed in the academia. Assuming escaping behavior of individuals in emergency is rational rather than out of panic according to recent findings in social psychology, we investigate the behavioral evolution of large crowds from the perspective of evolutionary game theory. Specifically, evolution of the whole population divided into two subpopulations, namely the co-evolution of strategy and game structure, is numerically simulated based on the game theoretical models built and the evolutionary rule designed, and a series of phenomena including extinction of one subpopulation and herding effect are predicted in the proposed framework. Furthermore, if the rewarding for rational agents becomes significantly larger than that for emotional ones, herding effect will disappear. It is exciting that some phase transition points with interesting properties for the system can be found. In addition, our model framework is able to explain the fact that it is difficult for mavericks to prevail in society. The current results of this work will be helpful in understanding and restraining herding effect in real life
Identifying Vulnerabilities and Hardening Attack Graphs for Networked Systems
Energy Technology Data Exchange (ETDEWEB)
Saha, Sudip; Vullinati, Anil K.; Halappanavar, Mahantesh; Chatterjee, Samrat
2016-09-15
We investigate efficient security control methods for protecting against vulnerabilities in networked systems. A large number of interdependent vulnerabilities typically exist in the computing nodes of a cyber-system; as vulnerabilities get exploited, starting from low level ones, they open up the doors to more critical vulnerabilities. These cannot be understood just by a topological analysis of the network, and we use the attack graph abstraction of Dewri et al. to study these problems. In contrast to earlier approaches based on heuristics and evolutionary algorithms, we study rigorous methods for quantifying the inherent vulnerability and hardening cost for the system. We develop algorithms with provable approximation guarantees, and evaluate them for real and synthetic attack graphs.
An evolutionary programming based simulated annealing method for solving the unit commitment problem
Energy Technology Data Exchange (ETDEWEB)
Christober Asir Rajan, C. [Department of EEE, Pondicherry Engineering College, Pondicherry 605014 (India); Mohan, M.R. [Department of EEE, Anna University, Chennai 600 025 (India)
2007-09-15
This paper presents a new approach to solve the short-term unit commitment problem using an evolutionary programming based simulated annealing method. The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal generating unit commitment in the power system for the next H hours. Evolutionary programming, which happens to be a global optimisation technique for solving unit commitment Problem, operates on a system, which is designed to encode each unit's operating schedule with regard to its minimum up/down time. In this, the unit commitment schedule is coded as a string of symbols. An initial population of parent solutions is generated at random. Here, each schedule is formed by committing all the units according to their initial status (''flat start''). Here the parents are obtained from a pre-defined set of solution's, i.e. each and every solution is adjusted to meet the requirements. Then, a random recommitment is carried out with respect to the unit's minimum down times. And SA improves the status. The best population is selected by evolutionary strategy. The Neyveli Thermal Power Station (NTPS) Unit-II in India demonstrates the effectiveness of the proposed approach; extensive studies have also been performed for different power systems consists of 10, 26, 34 generating units. Numerical results are shown comparing the cost solutions and computation time obtained by using the Evolutionary Programming method and other conventional methods like Dynamic Programming, Lagrangian Relaxation and Simulated Annealing and Tabu Search in reaching proper unit commitment. (author)
Eco-evolutionary population simulation models are powerful new forecasting tools for exploring management strategies for climate change and other dynamic disturbance regimes. Additionally, eco-evo individual-based models (IBMs) are useful for investigating theoretical feedbacks ...
A Study towards Building An Optimal Graph Theory Based Model For The Design of Tourism Website
Panigrahi, Goutam; Das, Anirban; Basu, Kajla
2010-10-01
Effective tourism website is a key to attract tourists from different parts of the world. Here we identify the factors of improving the effectiveness of website by considering it as a graph, where web pages including homepage are the nodes and hyperlinks are the edges between the nodes. In this model, the design constraints for building a tourism website are taken into consideration. Our objectives are to build a framework of an effective tourism website providing adequate level of information, service and also to enable the users to reach to the desired page by spending minimal loading time. In this paper an information hierarchy specifying the upper limit of outgoing link of a page has also been proposed. Following the hierarchy, the web developer can prepare an effective tourism website. Here loading time depends on page size and network traffic. We have assumed network traffic as uniform and the loading time is directly proportional with page size. This approach is done by quantifying the link structure of a tourism website. In this approach we also propose a page size distribution pattern of a tourism website.
A quantum annealing approach for fault detection and diagnosis of graph-based systems
Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.
2015-02-01
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
Multi-layer service function chaining scheduling based on auxiliary graph in IP over optical network
Li, Yixuan; Li, Hui; Liu, Yuze; Ji, Yuefeng
2017-10-01
Software Defined Optical Network (SDON) can be considered as extension of Software Defined Network (SDN) in optical networks. SDON offers a unified control plane and makes optical network an intelligent transport network with dynamic flexibility and service adaptability. For this reason, a comprehensive optical transmission service, able to achieve service differentiation all the way down to the optical transport layer, can be provided to service function chaining (SFC). IP over optical network, as a promising networking architecture to interconnect data centers, is the most widely used scenarios of SFC. In this paper, we offer a flexible and dynamic resource allocation method for diverse SFC service requests in the IP over optical network. To do so, we firstly propose the concept of optical service function (OSF) and a multi-layer SFC model. OSF represents the comprehensive optical transmission service (e.g., multicast, low latency, quality of service, etc.), which can be achieved in multi-layer SFC model. OSF can also be considered as a special SF. Secondly, we design a resource allocation algorithm, which we call OSF-oriented optical service scheduling algorithm. It is able to address multi-layer SFC optical service scheduling and provide comprehensive optical transmission service, while meeting multiple optical transmission requirements (e.g., bandwidth, latency, availability). Moreover, the algorithm exploits the concept of Auxiliary Graph. Finally, we compare our algorithm with the Baseline algorithm in simulation. And simulation results show that our algorithm achieves superior performance than Baseline algorithm in low traffic load condition.
Dexter, Alex; Race, Alan M; Steven, Rory T; Barnes, Jennifer R; Hulme, Heather; Goodwin, Richard J A; Styles, Iain B; Bunch, Josephine
2017-11-07
Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.
Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol
2007-11-27
A huge amount of biomedical textual information has been produced and collected in MEDLINE for decades. In order to easily utilize biomedical information in the free text, document clustering and text summarization together are used as a solution for text information overload problem. In this paper, we introduce a coherent graph-based semantic clustering and summarization approach for biomedical literature. Our extensive experimental results show the approach shows 45% cluster quality improvement and 72% clustering reliability improvement, in terms of misclassification index, over Bisecting K-means as a leading document clustering approach. In addition, our approach provides concise but rich text summary in key concepts and sentences. Our coherent biomedical literature clustering and summarization approach that takes advantage of ontology-enriched graphical representations significantly improves the quality of document clusters and understandability of documents through summaries.
Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.
Directory of Open Access Journals (Sweden)
Chaoyang eZhou
2016-05-01
Full Text Available Amyotrophic lateral sclerosis (ALS is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex- matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC, a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC’s z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.
A Reasoning And Hypothesis-Generation Framework Based On Scalable Graph Analytics
Energy Technology Data Exchange (ETDEWEB)
Sukumar, Sreenivas Rangan [ORNL
2016-01-01
Finding actionable insights from data has always been difficult. As the scale and forms of data increase tremendously, the task of finding value becomes even more challenging. Data scientists at Oak Ridge National Laboratory are leveraging unique leadership infrastructure (e.g. Urika-XA and Urika-GD appliances) to develop scalable algorithms for semantic, logical and statistical reasoning with unstructured Big Data. We present the deployment of such a framework called ORiGAMI (Oak Ridge Graph Analytics for Medical Innovations) on the National Library of Medicine s SEMANTIC Medline (archive of medical knowledge since 1994). Medline contains over 70 million knowledge nuggets published in 23.5 million papers in medical literature with thousands more added daily. ORiGAMI is available as an open-science medical hypothesis generation tool - both as a web-service and an application programming interface (API) at http://hypothesis.ornl.gov . Since becoming an online service, ORIGAMI has enabled clinical subject-matter experts to: (i) discover the relationship between beta-blocker treatment and diabetic retinopathy; (ii) hypothesize that xylene is an environmental cancer-causing carcinogen and (iii) aid doctors with diagnosis of challenging cases when rare diseases manifest with common symptoms. In 2015, ORiGAMI was featured in the Historical Clinical Pathological Conference in Baltimore as a demonstration of artificial intelligence to medicine, IEEE/ACM Supercomputing and recognized as a Centennial Showcase Exhibit at the Radiological Society of North America (RSNA) Conference in Chicago. The final paper will describe the workflow built for the Cray Urika-XA and Urika-GD appliances that is able to reason with the knowledge of every published medical paper every time a clinical researcher uses the tool.
Graph visualization (Invited talk)
Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.
2012-01-01
Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.
Evolutionary dynamics of incubation periods.
Ottino-Loffler, Bertrand; Scott, Jacob G; Strogatz, Steven H
2017-12-21
The incubation period for typhoid, polio, measles, leukemia and many other diseases follows a right-skewed, approximately lognormal distribution. Although this pattern was discovered more than sixty years ago, it remains an open question to explain its ubiquity. Here, we propose an explanation based on evolutionary dynamics on graphs. For simple models of a mutant or pathogen invading a network-structured population of healthy cells, we show that skewed distributions of incubation periods emerge for a wide range of assumptions about invader fitness, competition dynamics, and network structure. The skewness stems from stochastic mechanisms associated with two classic problems in probability theory: the coupon collector and the random walk. Unlike previous explanations that rely crucially on heterogeneity, our results hold even for homogeneous populations. Thus, we predict that two equally healthy individuals subjected to equal doses of equally pathogenic agents may, by chance alone, show remarkably different time courses of disease.
Smooth Bundling of Large Streaming and Sequence Graphs
Hurter, C.; Ersoy, O.; Telea, A.
2013-01-01
Dynamic graphs are increasingly pervasive in modern information systems. However, understanding how a graph changes in time is difficult. We present here two techniques for simplified visualization of dynamic graphs using edge bundles. The first technique uses a recent image-based graph bundling
On a conjecture concerning helly circle graphs
Directory of Open Access Journals (Sweden)
Durán Guillermo
2003-01-01
Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.
Evolutionary patterns of RNA-based duplication in non-mammalian chordates.
Directory of Open Access Journals (Sweden)
Ming Chen
Full Text Available The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes.
Pragmatic Graph Rewriting Modifications
Rodgers, Peter; Vidal, Natalia
1999-01-01
We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...
Interacting particle systems on graphs
Sood, Vishal
In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations
Generating random networks and graphs
Coolen, Ton; Roberts, Ekaterina
2017-01-01
This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...
Directory of Open Access Journals (Sweden)
Hui Lu
2014-01-01
Full Text Available Test task scheduling problem (TTSP is a complex optimization problem and has many local optima. In this paper, a hybrid chaotic multiobjective evolutionary algorithm based on decomposition (CMOEA/D is presented to avoid becoming trapped in local optima and to obtain high quality solutions. First, we propose an improving integrated encoding scheme (IES to increase the efficiency. Then ten chaotic maps are applied into the multiobjective evolutionary algorithm based on decomposition (MOEA/D in three phases, that is, initial population and crossover and mutation operators. To identify a good approach for hybrid MOEA/D and chaos and indicate the effectiveness of the improving IES several experiments are performed. The Pareto front and the statistical results demonstrate that different chaotic maps in different phases have different effects for solving the TTSP especially the circle map and ICMIC map. The similarity degree of distribution between chaotic maps and the problem is a very essential factor for the application of chaotic maps. In addition, the experiments of comparisons of CMOEA/D and variable neighborhood MOEA/D (VNM indicate that our algorithm has the best performance in solving the TTSP.
Directory of Open Access Journals (Sweden)
Zabiniako Vitaly
2014-12-01
Full Text Available In this article, the authors perform an analysis in order to assess adaptation of magnetic force-directed algorithms for context-based information extraction from multi-attributed graphs during visualization sessions. Theoretic standings behind magnetic force-directed approach are stated together with review on how particular features of respective algorithms in combination with appropriate visual techniques are especially suitable for improved processing and presenting of knowledge that is captured in form of graphs. The complexity of retrieving multi-attributed information within the proposed approach is handled with dedicated tools, such as selective attraction of nodes to MFE (Magnetic Force Emitter based on search criteria, localization of POI (Point of Interest regions, graph node anchoring, etc. Implicit compatibility of aforementioned tools with interactive nature of data exploration is distinguished. Description of case study, based on bibliometric network analysis is given, which is followed by the review of existing related works in this field. Conclusions are made and further studies in the field of visualization of multi-attributed graphs are defined.
Time warping of evolutionary distant temporal gene expression data based on noise suppression
Directory of Open Access Journals (Sweden)
Papatsenko Dmitri
2009-10-01
Full Text Available Abstract Background Comparative analysis of genome wide temporal gene expression data has a broad potential area of application, including evolutionary biology, developmental biology, and medicine. However, at large evolutionary distances, the construction of global alignments and the consequent comparison of the time-series data are difficult. The main reason is the accumulation of variability in expression profiles of orthologous genes, in the course of evolution. Results We applied Pearson distance matrices, in combination with other noise-suppression techniques and data filtering to improve alignments. This novel framework enhanced the capacity to capture the similarities between the temporal gene expression datasets separated by large evolutionary distances. We aligned and compared the temporal gene expression data in budding (Saccharomyces cerevisiae and fission (Schizosaccharomyces pombe yeast, which are separated by more then ~400 myr of evolution. We found that the global alignment (time warping properly matched the duration of cell cycle phases in these distant organisms, which was measured in prior studies. At the same time, when applied to individual ortholog pairs, this alignment procedure revealed groups of genes with distinct alignments, different from the global alignment. Conclusion Our alignment-based predictions of differences in the cell cycle phases between the two yeast species were in a good agreement with the existing data, thus supporting the computational strategy adopted in this study. We propose that the existence of the alternative alignments, specific to distinct groups of genes, suggests presence of different synchronization modes between the two organisms and possible functional decoupling of particular physiological gene networks in the course of evolution.
Xu, Weijia; Ozer, Stuart; Gutell, Robin R
2009-01-01
With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.
Quantum information processing with graph states
International Nuclear Information System (INIS)
Schlingemann, Dirk-Michael
2005-04-01
Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)
SIMULATING AN EVOLUTIONARY MULTI-AGENT BASED MODEL OF THE STOCK MARKET
Directory of Open Access Journals (Sweden)
Diana MARICA
2015-08-01
Full Text Available The paper focuses on artificial stock market simulations using a multi-agent model incorporating 2,000 heterogeneous agents interacting on the artificial market. The agents interaction is due to trading activity on the market through a call auction trading mechanism. The multi-agent model uses evolutionary techniques such as genetic programming in order to generate an adaptive and evolving population of agents. Each artificial agent is endowed with wealth and a genetic programming induced trading strategy. The trading strategy evolves and adapts to the new market conditions through a process called breeding, which implies that at each simulation step, new agents with better trading strategies are generated by the model, from recombining the best performing trading strategies and replacing the agents which have the worst performing trading strategies. The simulation model was build with the help of the simulation software Altreva Adaptive Modeler which offers a suitable platform for financial market simulations of evolutionary agent based models, the S&P500 composite index being used as a benchmark for the simulation results.
International Nuclear Information System (INIS)
Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang
2013-01-01
Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.
Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development
Directory of Open Access Journals (Sweden)
Yuliya Vladimirovna Dubrovskaya
2016-10-01
Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.
International Nuclear Information System (INIS)
Ahmadi, Pouria; Rosen, Marc A.; Dincer, Ibrahim
2012-01-01
A comprehensive thermodynamic modeling and optimization is reported of a polygeneration energy system for the simultaneous production of heating, cooling, electricity and hot water from a common energy source. This polygeneration system is composed of four major parts: gas turbine (GT) cycle, Rankine cycle, absorption cooling cycle and domestic hot water heater. A multi-objective optimization method based on an evolutionary algorithm is applied to determine the best design parameters for the system. The two objective functions utilized in the analysis are the total cost rate of the system, which is the cost associated with fuel, component purchasing and environmental impact, and the system exergy efficiency. The total cost rate of the system is minimized while the cycle exergy efficiency is maximized by using an evolutionary algorithm. To provide a deeper insight, the Pareto frontier is shown for multi-objective optimization. In addition, a closed form equation for the relationship between exergy efficiency and total cost rate is derived. Finally, a sensitivity analysis is performed to assess the effects of several design parameters on the system total exergy destruction rate, CO 2 emission and exergy efficiency.
Towards Behavior Control for Evolutionary Robot Based on RL with ENN
Directory of Open Access Journals (Sweden)
Jingan Yang
2012-03-01
Full Text Available This paper proposes a behavior-switching control strategy of anevolutionary robotics based on Artificial NeuralNetwork (ANN and Genetic Algorithms (GA. This method is able not only to construct thereinforcement learning models for autonomous robots and evolutionary robot modules thatcontrol behaviors and reinforcement learning environments, and but also to perform thebehavior-switching control and obstacle avoidance of an evolutionary robotics (ER intime-varying environments with static and moving obstacles by combining ANN and GA.The experimental results on thebasic behaviors and behavior-switching control have demonstrated that ourmethod can perform the decision-making strategy and parameters set opimization ofFNN and GA by learning and can escape successfully from the trap of a localminima and avoid \\emph{"motion deadlock" status} of humanoid soccer robotics agents,and reduce the oscillation of the planned trajectory betweenthe multiple obstacles by crossover and mutation. Some results of the proposed algorithmhave been successfully applied to our simulation humanoid robotics soccer team CIT3Dwhich won \\emph{the 1st prize} of RoboCup Championship and ChinaOpen2010 (July 2010 and \\emph{the $2^{nd}$ place}of the official RoboCup World Championship on 5-11 July, 2011 in Istanbul, Turkey.As compared with the conventional behavior network and the adaptive behavior method,the genetic encoding complexity of our algorithm is simplified, and the networkperformance and the {\\em convergence rate $\\rho$} have been greatlyimproved.
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
An algebraic approach to graph codes
DEFF Research Database (Denmark)
Pinero, Fernando
This thesis consists of six chapters. The first chapter, contains a short introduction to coding theory in which we explain the coding theory concepts we use. In the second chapter, we present the required theory for evaluation codes and also give an example of some fundamental codes in coding...... theory as evaluation codes. Chapter three consists of the introduction to graph based codes, such as Tanner codes and graph codes. In Chapter four, we compute the dimension of some graph based codes with a result combining graph based codes and subfield subcodes. Moreover, some codes in chapter four...
Energy Technology Data Exchange (ETDEWEB)
Kasselmann, S., E-mail: s.kasselmann@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Schitthelm, O. [Forschungszentrum Jülich, 52425 Jülich (Germany); Tantillo, F. [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH-Aachen, 52064 Aachen (Germany); Scholthaus, S.; Rössel, C. [Forschungszentrum Jülich, 52425 Jülich (Germany); Allelein, H.-J. [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH-Aachen, 52064 Aachen (Germany)
2016-09-15
The problem of calculating the amounts of a coupled nuclide system varying with time especially when exposed to a neutron flux is a well-known problem and has been addressed by a number of computer codes. These codes cover a broad spectrum of applications, are based on comprehensive validation work and are therefore justifiably renowned among their users. However, due to their long development history, they are lacking a modern interface, which impedes a fast and robust internal coupling to other codes applied in the field of nuclear reactor physics. Therefore a project has been initiated to develop a new object-oriented nuclide transmutation code. It comprises an innovative solver based on graph theory, which exploits the topology of nuclide chains and therefore speeds up the calculation scheme. Highest priority has been given to the existence of a generic software interface well as an easy handling by making use of XML files for the user input. In this paper we report on the status of the code development and present first benchmark results, which prove the applicability of the selected approach.
International Nuclear Information System (INIS)
Kasselmann, S.; Scholthaus, S.; Rössel, C.; Allelein, H.-J.
2014-01-01
The problem of calculating the amounts of a coupled nuclide system varying with time especially when exposed to a neutron flux is a well-known problem and has been addressed by a number of computer codes. These codes cover a broad spectrum of applications, are based on comprehensive validation work and are therefore justifiably renowned among their users. However, due to their long development history, they are lacking a modern interface, which impedes a fast and robust internal coupling to other codes applied in the field of nuclear reactor physics. Therefore a project has been initiated to develop a new object-oriented nuclide transmutation code. It comprises an innovative solver based on graph theory, which exploits the topology of nuclide chains. This allows to always deal with the smallest nuclide system for the problem of interest. Highest priority has been given to the existence of a generic software interfaces well as an easy handling by making use of XML files for input and output. In this paper we report on the status of the code development and present first benchmark results, which prove the applicability of the selected approach. (author)
Directory of Open Access Journals (Sweden)
C. Dalfo
2015-10-01
Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.
Data-Based Decision-Making: Developing a Method for Capturing Teachers' Understanding of CBM Graphs
Espin, Christine A.; Wayman, Miya Miura; Deno, Stanley L.; McMaster, Kristen L.; de Rooij, Mark
2017-01-01
In this special issue, we explore the decision-making aspect of "data-based decision-making". The articles in the issue address a wide range of research questions, designs, methods, and analyses, but all focus on data-based decision-making for students with learning difficulties. In this first article, we introduce the topic of…
Directory of Open Access Journals (Sweden)
J. Dolezalova
2016-06-01
Full Text Available The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents’ task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc. or type of stimuli (2D, 3D map.
Dolezalova, J.; Popelka, S.
2016-06-01
The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents' task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc.) or type of stimuli (2D, 3D map).
Zhang, Ke; Jiang, Bin; Shi, Peng
2017-02-01
In this paper, a novel adjustable parameter (AP)-based distributed fault estimation observer (DFEO) is proposed for multiagent systems (MASs) with the directed communication topology. First, a relative output estimation error is defined based on the communication topology of MASs. Then a DFEO with AP is constructed with the purpose of improving the accuracy of fault estimation. Based on H ∞ and H 2 with pole placement, multiconstrained design is given to calculate the gain of DFEO. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed DFEO design with AP.
Directory of Open Access Journals (Sweden)
F. Taia Alaoui
2017-01-01
Full Text Available An A⁎-based routing graph is proposed to assist PDR indoor and outdoor navigation with handheld devices. Measurements are provided by inertial and magnetic sensors together with a GNSS receiver. The novelty of this work lies in providing a realistic motion support that mitigates the absence of obstacles and enables the calibration of the PDR model even in large spaces where GNSS signal is unavailable. This motion support is exploited for both predicting positions and updating them using a particle filter. The navigation network is used to correct for the gyro drift, to adjust the step length model and to assess heading misalignment between the pedestrian’s walking direction and the pointing direction of the handheld device. Several datasets have been tested and results show that the proposed model ensures a seamless transition between outdoor and indoor environments and improves the positioning accuracy. The drift is almost cancelled thanks to heading correction in contrast with a drift of 8% for the nonaided PDR approach. The mean error of filtered positions ranges from 3 to 5 m.
An improved recommended algorithm for network structure based on two partial graphs
Directory of Open Access Journals (Sweden)
Deng Song
2017-08-01
Full Text Available In this thesis,we introduce an improved algorithm based on network structure.Based on the standard material diffusion algorithm,considering the influence of the user's score on the recommendation,the adjustment factor of the initial resource allocation vector and the resource transfer matrix in the recommendation algorithm is improved.Using the practical data set from GroupLens webite to evaluate the performance of the proposed algorithm,we performed a series of experiments.The experimental results reveal that it can yield better recommendation accuracy and has higher hitting rate than collaborative filtering,network-based inference.It can solve the problem of cold start and scalability in the standard material diffusion algorithm.And it also can make the recommendation results diversified.
A chaos-based evolutionary algorithm for general nonlinear programming problems
International Nuclear Information System (INIS)
El-Shorbagy, M.A.; Mousa, A.A.; Nasr, S.M.
2016-01-01
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.
Attack Graph Construction for Security Events Analysis
Directory of Open Access Journals (Sweden)
Andrey Alexeevich Chechulin
2014-09-01
Full Text Available The paper is devoted to investigation of the attack graphs construction and analysis task for a network security evaluation and real-time security event processing. Main object of this research is the attack modeling process. The paper contains the description of attack graphs building, modifying and analysis technique as well as overview of implemented prototype for network security analysis based on attack graph approach.
Efficient Algorithmic Frameworks via Structural Graph Theory
2016-10-28
constant. For example, they measured that, on large samples of the entire network, the Amazon graph has average degree 17.7, the Facebook graph has average...department heads’ opinions of departments, and generally lack transparency and well-defined measures . On the other hand, the National Research Council (the...Efficient and practical resource block allocation for LTE -based D2D network via graph coloring. Wireless Networks 20(4): 611-624 (2014) 50. Hossein
Jing Chen
2015-01-01
This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.
National Research Council Canada - National Science Library
Albert, Cecilia
2002-01-01
.... The Evolutionary Process for Integrating COTS-based systems (EPIC) redefines acquisition, management, and engineering practices to more effectively leverage the COTS marketplace and other sources of pre-existing components...
Directory of Open Access Journals (Sweden)
Dániel Bánky
Full Text Available Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in public repositories for important species. Tools for the quantitative analysis of these networks are being developed today. Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners. Here, we show a novel method applicable in networks with directed edges (such as metabolic networks that compensates for the low degree (non-hub vertices in the network, and identifies important nodes, regardless of their hub properties. Our method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number of incoming edges of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-degree nodes, that is, for hubs and non-hubs as well, but may differ significantly from node to node in directed graphs. We suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis, Plasmodium falciparum and MRSA Staphylococcus aureus, and consequently, it may suggest new possible protein targets as well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant; therefore its high value captures
Bánky, Dániel; Iván, Gábor; Grolmusz, Vince
2013-01-01
Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in public repositories for important species. Tools for the quantitative analysis of these networks are being developed today. Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners. Here, we show a novel method applicable in networks with directed edges (such as metabolic networks) that compensates for the low degree (non-hub) vertices in the network, and identifies important nodes, regardless of their hub properties. Our method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number of incoming edges) of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-degree nodes, that is, for hubs and non-hubs as well), but may differ significantly from node to node in directed graphs. We suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis, Plasmodium falciparum and MRSA Staphylococcus aureus), and consequently, it may suggest new possible protein targets as well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant; therefore its high value captures importance in the
Hekler, Eric B; Buman, Matthew P; Grieco, Lauren; Rosenberger, Mary; Winter, Sandra J; Haskell, William; King, Abby C
2015-04-15
There is increasing interest in using smartphones as stand-alone physical activity monitors via their built-in accelerometers, but there is presently limited data on the validity of this approach. The purpose of this work was to determine the validity and reliability of 3 Android smartphones for measuring physical activity among midlife and older adults. A laboratory (study 1) and a free-living (study 2) protocol were conducted. In study 1, individuals engaged in prescribed activities including sedentary (eg, sitting), light (sweeping), moderate (eg, walking 3 mph on a treadmill), and vigorous (eg, jogging 5 mph on a treadmill) activity over a 2-hour period wearing both an ActiGraph and 3 Android smartphones (ie, HTC MyTouch, Google Nexus One, and Motorola Cliq). In the free-living study, individuals engaged in usual daily activities over 7 days while wearing an Android smartphone (Google Nexus One) and an ActiGraph. Study 1 included 15 participants (age: mean 55.5, SD 6.6 years; women: 56%, 8/15). Correlations between the ActiGraph and the 3 phones were strong to very strong (ρ=.77-.82). Further, after excluding bicycling and standing, cut-point derived classifications of activities yielded a high percentage of activities classified correctly according to intensity level (eg, 78%-91% by phone) that were similar to the ActiGraph's percent correctly classified (ie, 91%). Study 2 included 23 participants (age: mean 57.0, SD 6.4 years; women: 74%, 17/23). Within the free-living context, results suggested a moderate correlation (ie, ρ=.59, PAndroid smartphone can provide comparable estimates of physical activity to an ActiGraph in both a laboratory-based and free-living context for estimating sedentary and MVPA and that different Android smartphones may reliably confer similar estimates.
Soetevent, A.R.
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial
Graphing Inequalities, Connecting Meaning
Switzer, J. Matt
2014-01-01
Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
Brouwer, A.E.; Haemers, W.H.
2012-01-01
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association
Jeong, Chan-Seok; Kim, Dongsup
2016-02-24
Elucidating the cooperative mechanism of interconnected residues is an important component toward understanding the biological function of a protein. Coevolution analysis has been developed to model the coevolutionary information reflecting structural and functional constraints. Recently, several methods have been developed based on a probabilistic graphical model called the Markov random field (MRF), which have led to significant improvements for coevolution analysis; however, thus far, the performance of these models has mainly been assessed by focusing on the aspect of protein structure. In this study, we built an MRF model whose graphical topology is determined by the residue proximity in the protein structure, and derived a novel positional coevolution estimate utilizing the node weight of the MRF model. This structure-based MRF method was evaluated for three data sets, each of which annotates catalytic site, allosteric site, and comprehensively determined functional site information. We demonstrate that the structure-based MRF architecture can encode the evolutionary information associated with biological function. Furthermore, we show that the node weight can more accurately represent positional coevolution information compared to the edge weight. Lastly, we demonstrate that the structure-based MRF model can be reliably built with only a few aligned sequences in linear time. The results show that adoption of a structure-based architecture could be an acceptable approximation for coevolution modeling with efficient computation complexity.
Directory of Open Access Journals (Sweden)
Daniil S. Chivilikhin
2014-11-01
Full Text Available The procedure of testing traditionally used in software engineering cannot guarantee program correctness; therefore verification is used at the excess requirements to programs reliability. Verification makes it possible to check certain properties of programs in all possible computational states; however, this process is very complex. In the model checking method a model of the program is built (often, manually and requirements in terms of temporal logic are formulated. Such temporal properties of the model can be checked automatically. The main issue in this framework is the gap between the program and its model. Automata-based programming paradigm gives the possibility to overcome this limitation. In this paradigm, program logic is represented using finite-state machines. The advantage of finite-state machines is that their models can be constructed automatically. The paper deals with the application of mutation-based ant colony optimization algorithm to the problem of finite-state machine construction from their specification, defined by test scenarios and temporal properties. The presented approach has been tested on the elevator doors control problem as well as on randomly generated data. Obtained results show the ant colony algorithm is two-three times faster than the previously used genetic algorithm. The proposed approach can be recommended for inferring control programs for critical systems.
International Nuclear Information System (INIS)
Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.
2012-01-01
Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector
Vers Un Système De Traduction Automatique En Ligne Des Documents Amazighes Base Sur Les Graphes UNL
Directory of Open Access Journals (Sweden)
Ali Rachidi
2007-06-01
Full Text Available The use of IT tools with Tamazight Berber is an absolute requisite for giving this language full citizenship on the Web in particular and in the digital world in general. Thus, the need to create Tamazight digital documents is becoming increasingly urgent. Granted, Unicode now includes the full Tifinagh character set, but the question that remains is how to implement information interchange between Tamazight and the languages of the Web. We contend that the best and simplest way to share concurrent revisions of the same text in multiple languages is to coedit text in natural language and then to render it into Interlingua (IL for dissemination. This method allows the participants to (i translate the text, with modifications if any, from L0 into IL, and subsequently to (ii regenerate the text in L1 ... Ln starting from the same IL representation. Generators will never be perfect. Therefore, manual editing should always be allowed, because the automatically generated IL form may be irremediably inexpressive, or may altogether be unavailable due to lack of relevant data in the knowledge base. Since Universal Networking Language (UNL graphs seem to be the best tool for the job, human participants should use a UNL editor for manual translation and revising. We propose that the collaborative manual translations be done on the Web with the help of the bank of multilingual utterances compiled by C. Boitet's team (GETA, CLIPS, IMAG à Grenoble, France. The resulting Tamazight utterances should then be integrated in a UNLXML document. At a later stage it will be necessary to build a UNLTamazight deconverter and a TamazightUNL enconverter, relying on the knowledge base built on top of the objects that have been tagged so far.
Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min
2018-06-01
We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Kwak, Kichang; Yoon, Uicheul; Lee, Dong-Kyun; Kim, Geon Ha; Seo, Sang Won; Na, Duk L; Shim, Hack-Joon; Lee, Jong-Min
2013-09-01
The hippocampus has been known to be an important structure as a biomarker for Alzheimer's disease (AD) and other neurological and psychiatric diseases. However, it requires accurate, robust and reproducible delineation of hippocampal structures. In this study, an automated hippocampal segmentation method based on a graph-cuts algorithm combined with atlas-based segmentation and morphological opening was proposed. First of all, the atlas-based segmentation was applied to define initial hippocampal region for a priori information on graph-cuts. The definition of initial seeds was further elaborated by incorporating estimation of partial volume probabilities at each voxel. Finally, morphological opening was applied to reduce false positive of the result processed by graph-cuts. In the experiments with twenty-seven healthy normal subjects, the proposed method showed more reliable results (similarity index=0.81±0.03) than the conventional atlas-based segmentation method (0.72±0.04). Also as for segmentation accuracy which is measured in terms of the ratios of false positive and false negative, the proposed method (precision=0.76±0.04, recall=0.86±0.05) produced lower ratios than the conventional methods (0.73±0.05, 0.72±0.06) demonstrating its plausibility for accurate, robust and reliable segmentation of hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.
Graph algorithms in the titan toolkit.
Energy Technology Data Exchange (ETDEWEB)
McLendon, William Clarence, III; Wylie, Brian Neil
2009-10-01
Graph algorithms are a key component in a wide variety of intelligence analysis activities. The Graph-Based Informatics for Non-Proliferation and Counter-Terrorism project addresses the critical need of making these graph algorithms accessible to Sandia analysts in a manner that is both intuitive and effective. Specifically we describe the design and implementation of an open source toolkit for doing graph analysis, informatics, and visualization that provides Sandia with novel analysis capability for non-proliferation and counter-terrorism.
A fault diagnosis method based on signed directed graph and matrix for nuclear power plants
International Nuclear Information System (INIS)
Liu, Yong-Kuo; Wu, Guo-Hua; Xie, Chun-Li; Duan, Zhi-Yong; Peng, Min-Jun; Li, Meng-Kun
2016-01-01
Highlights: • “Rules matrix” is proposed for FDD. • “State matrix” is proposed to solve SDG online inference. • SDG inference and search method are combined for FDD. - Abstract: In order to solve SDG online fault diagnosis and inference, matrix diagnosis and inference methods are proposed for fault detection and diagnosis (FDD). Firstly, “rules matrix” based on SDG model is used for FDD. Secondly, “status matrix” is proposed to achieve SDG online inference. According to different diagnosis results, “status matrix” is applied for the depth-first search and the breadth-first search respectively to find the propagation paths of each fault. Finally, the SDG model of the secondary-loop system in pressurized water reactor (PWR) is built to verify the effectiveness of the proposed method. The simulation experiment results indicate that the “status matrix” used for online inference can be used to find the fault propagation paths and to explain the causes for fault. Therefore, it can be concluded that the proposed method is one of the fault diagnosis for nuclear power plants (NPPs), which can be used to facilitate the development of fault diagnostic system.
A fault diagnosis method based on signed directed graph and matrix for nuclear power plants
Energy Technology Data Exchange (ETDEWEB)
Liu, Yong-Kuo, E-mail: LYK08@126.com [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Wu, Guo-Hua [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China); Institute of Nuclear Energy Technology, Tsinghua University, Beijing 100084 (China); Xie, Chun-Li [Traffic College, Northeast Forestry University, Harbin, 150040 (China); Duan, Zhi-Yong; Peng, Min-Jun; Li, Meng-Kun [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin 150001 (China)
2016-02-15
Highlights: • “Rules matrix” is proposed for FDD. • “State matrix” is proposed to solve SDG online inference. • SDG inference and search method are combined for FDD. - Abstract: In order to solve SDG online fault diagnosis and inference, matrix diagnosis and inference methods are proposed for fault detection and diagnosis (FDD). Firstly, “rules matrix” based on SDG model is used for FDD. Secondly, “status matrix” is proposed to achieve SDG online inference. According to different diagnosis results, “status matrix” is applied for the depth-first search and the breadth-first search respectively to find the propagation paths of each fault. Finally, the SDG model of the secondary-loop system in pressurized water reactor (PWR) is built to verify the effectiveness of the proposed method. The simulation experiment results indicate that the “status matrix” used for online inference can be used to find the fault propagation paths and to explain the causes for fault. Therefore, it can be concluded that the proposed method is one of the fault diagnosis for nuclear power plants (NPPs), which can be used to facilitate the development of fault diagnostic system.
Interactive Graph Layout of a Million Nodes
Directory of Open Access Journals (Sweden)
Peng Mi
2016-12-01
Full Text Available Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph topology. This algorithm can interactively layout graphs with millions of nodes, and support real-time interaction to explore alternative graph layouts. Users can directly manipulate the layout of vertices in a force-directed fashion. The complexity of traditional repulsive force computation is reduced by approximating calculations based on the hierarchical structure of multi-level clustered graphs. We evaluate the algorithm performance, and demonstrate human-in-the-loop layout in two sensemaking case studies. Moreover, we summarize lessons learned for designing interactive large graph layout algorithms on the GPU.
Introduction to quantum graphs
Berkolaiko, Gregory
2012-01-01
A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...
Directory of Open Access Journals (Sweden)
Julien Maheut
2013-07-01
Full Text Available Purpose: The purpose of this paper is to present an algorithm that solves the supply network configuration and operations scheduling problem in a mass customization company that faces alternative operations for one specific tool machine order in a multiplant context. Design/methodology/approach: To achieve this objective, the supply chain network configuration and operations scheduling problem is presented. A model based on stroke graphs allows the design of an algorithm that enumerates all the feasible solutions. The algorithm considers the arrival of a new customized order proposal which has to be inserted into a scheduled program. A selection function is then used to choose the solutions to be simulated in a specific simulation tool implemented in a Decision Support System. Findings and Originality/value: The algorithm itself proves efficient to find all feasible solutions when alternative operations must be considered. The stroke structure is successfully used to schedule operations when considering more than one manufacturing and supply option in each step. Research limitations/implications: This paper includes only the algorithm structure for a one-by-one, sequenced introduction of new products into the list of units to be manufactured. Therefore, the lotsizing process is done on a lot-per-lot basis. Moreover, the validation analysis is done through a case study and no generalization can be done without risk. Practical implications: The result of this research would help stakeholders to determine all the feasible and practical solutions for their problem. It would also allow to assessing the total costs and delivery times of each solution. Moreover, the Decision Support System proves useful to assess alternative solutions. Originality/value: This research offers a simple algorithm that helps solve the supply network configuration problem and, simultaneously, the scheduling problem by considering alternative operations. The proposed system
Three Syntactic Theories for Combinatory Graph Reduction
DEFF Research Database (Denmark)
Danvy, Olivier; Zerny, Ian
2013-01-01
, as a store-based reduction semantics of combinatory term graphs. We then refocus this store-based reduction semantics into a store-based abstract machine. The architecture of this store-based abstract machine coincides with that of Turner's original reduction machine. The three syntactic theories presented......We present a purely syntactic theory of graph reduction for the canonical combinators S, K, and I, where graph vertices are represented with evaluation contexts and let expressions. We express this rst syntactic theory as a storeless reduction semantics of combinatory terms. We then factor out...... the introduction of let expressions to denote as many graph vertices as possible upfront instead of on demand . The factored terms can be interpreted as term graphs in the sense of Barendregt et al. We express this second syntactic theory, which we prove equivalent to the rst, as a storeless reduction semantics...
A graph signal filtering-based approach for detection of different edge types on airborne lidar data
Bayram, Eda; Vural, Elif; Alatan, Aydin
2017-10-01
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.
The many faces of graph dynamics
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
Gomersall, Sjaan R; Ng, Norman; Burton, Nicola W; Pavey, Toby G; Gilson, Nicholas D; Brown, Wendy J
2016-09-07
systematic bias across all outcomes for both devices. Correlations with ActiGraph data for longest idle time (Jawbone UP) ranged from .08 to .19. Agreement for classifying days as active or inactive using the ≥10,000 steps/day criterion was substantial (Fitbit One: κ=.68; Jawbone UP: κ=.52) and slight-fair using the criterion of ≥30 min/day of MVPA (Fitbit One: κ=.40; Jawbone UP: κ=.14). There was moderate-strong agreement between the ActiGraph and both Fitbit One and Jawbone UP for the estimation of daily steps. However, due to modest accuracy and systematic bias, they are better suited for consumer-based self-monitoring (eg, for the public consumer or in behavior change interventions) rather than to evaluate research outcomes. The outcomes that relate to health-enhancing MVPA (eg, "very active minutes" for Fitbit One or "active time" for Jawbone UP) and sedentary behavior ("idle time" for Jawbone UP) should be used with caution by consumers and researchers alike.
Xu, Kexiang; Trinajstić, Nenad
2015-01-01
This is the first book to focus on the topological index, the Harary index, of a graph, including its mathematical properties, chemical applications and some related and attractive open problems. This book is dedicated to Professor Frank Harary (1921—2005), the grandmaster of graph theory and its applications. It has be written by experts in the field of graph theory and its applications. For a connected graph G, as an important distance-based topological index, the Harary index H(G) is defined as the sum of the reciprocals of the distance between any two unordered vertices of the graph G. In this book, the authors report on the newest results on the Harary index of a graph. These results mainly concern external graphs with respect to the Harary index; the relations to other topological indices; its properties and applications to pure graph theory and chemical graph theory; and two significant variants, i.e., additively and multiplicatively weighted Harary indices. In the last chapter, we present a number o...
Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI
Directory of Open Access Journals (Sweden)
Stavros I. Dimitriadis
2017-09-01
Full Text Available The brain at rest consists of spatially and temporal distributed but functionally connected regions that called intrinsic connectivity networks (ICNs. Resting state electroencephalography (rs-EEG is a way to characterize brain networks without confounds associated with task EEG such as task difficulty and performance. A novel framework of how to study dynamic functional connectivity under the notion of functional connectivity microstates (FCμstates and symbolic dynamics is further discussed. Furthermore, we introduced a way to construct a single integrated dynamic functional connectivity graph (IDFCG that preserves both the strength of the connections between every pair of sensors but also the type of dominant intrinsic coupling modes (DICM. The whole methodology is demonstrated in a significant and unexplored task for EEG which is the definition of an objective Chronnectomic Brain Aged index (CBAI extracted from resting-state data (N = 94 subjects with both eyes-open and eyes-closed conditions. Novel features have been defined based on symbolic dynamics and the notion of DICM and FCμstates. The transition rate of FCμstates, the symbolic dynamics based on the evolution of FCμstates (the Markovian Entropy, the complexity index, the probability distribution of DICM, the novel Flexibility Index that captures the dynamic reconfiguration of DICM per pair of EEG sensors and the relative signal power constitute a valuable pool of features that can build the proposed CBAI. Here we applied a feature selection technique and Extreme Learning Machine (ELM classifier to discriminate young adults from middle-aged and a Support Vector Regressor to build a linear model of the actual age based on EEG-based spatio-temporal features. The most significant type of features for both prediction of age and discrimination of young vs. adults age groups was the dynamic reconfiguration of dominant coupling modes derived from a subset of EEG sensor pairs. Specifically
Neuro-symbolic representation learning on biological knowledge graphs
AlShahrani, Mona; Khan, Mohammed Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Nú ria; Hoehndorf, Robert
2017-01-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph
Dataflow Interchange Format and a Framework for Processing Dataflow Graphs
National Research Council Canada - National Science Library
Keceli, Fuat
2004-01-01
Digital Signal Processing (DSP) applications are often designed with tools based on dataflow graphs and the increasing number of such tools shows the need for a common intermediate graph representation for exchanging dataflow information...
Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks
Directory of Open Access Journals (Sweden)
Chien-Ho Ko
2013-01-01
Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.
Ko, Chien-Ho
2013-01-01
Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.
Jiang, Shouyong; Yang, Shengxiang
2016-02-01
The multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been shown to be very efficient in solving multiobjective optimization problems (MOPs). In practice, the Pareto-optimal front (POF) of many MOPs has complex characteristics. For example, the POF may have a long tail and sharp peak and disconnected regions, which significantly degrades the performance of MOEA/D. This paper proposes an improved MOEA/D for handling such kind of complex problems. In the proposed algorithm, a two-phase strategy (TP) is employed to divide the whole optimization procedure into two phases. Based on the crowdedness of solutions found in the first phase, the algorithm decides whether or not to delicate computational resources to handle unsolved subproblems in the second phase. Besides, a new niche scheme is introduced into the improved MOEA/D to guide the selection of mating parents to avoid producing duplicate solutions, which is very helpful for maintaining the population diversity when the POF of the MOP being optimized is discontinuous. The performance of the proposed algorithm is investigated on some existing benchmark and newly designed MOPs with complex POF shapes in comparison with several MOEA/D variants and other approaches. The experimental results show that the proposed algorithm produces promising performance on these complex problems.
Nan, Fangru; Feng, Jia; Lv, Junping; Liu, Qi; Fang, Kunpeng; Gong, Chaoyan; Xie, Shulian
2017-06-07
Freshwater representatives of Rhodophyta were sampled and the complete chloroplast and mitochondrial genomes were determined. Characteristics of the chloroplast and mitochondrial genomes were analyzed and phylogenetic relationship of marine and freshwater Rhodophyta were reconstructed based on the organelle genomes. The freshwater member Compsopogon caeruleus was determined for the largest chloroplast genome among multicellular Rhodophyta up to now. Expansion and subsequent reduction of both the genome size and GC content were observed in the Rhodophyta except for the freshwater Compsopogon caeruleus. It was inferred that the freshwater members of Rhodophyta occurred through diverse origins based on evidence of genome size, GC-content, phylogenomic analysis and divergence time estimation. The freshwater species Compsopogon caeruleus and Hildenbrandia rivularis originated and evolved independently at the inland water, whereas the Bangia atropurpurea, Batrachospermum arcuatum and Thorea hispida are derived from the marine relatives. The typical freshwater representatives Thoreales and Batrachospermales are probably derived from the marine relative Palmaria palmata at approximately 415-484 MYA. The origin and evolutionary history of freshwater Rhodophyta needs to be testified with more organelle genome sequences and wider global sampling.
Othman, Muhammad Murtadha; Abd Rahman, Nurulazmi; Musirin, Ismail; Fotuhi-Firuzabad, Mahmud; Rajabi-Ghahnavieh, Abbas
2015-01-01
This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE) in various conditions. Eventually, the power transfer based available transfer capability (ATC) is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.
Directory of Open Access Journals (Sweden)
Muhammad Murtadha Othman
2015-01-01
Full Text Available This paper introduces a novel multiobjective approach for capacity benefit margin (CBM assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE in various conditions. Eventually, the power transfer based available transfer capability (ATC is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.
Declarative Process Mining for DCR Graphs
DEFF Research Database (Denmark)
Debois, Søren; Hildebrandt, Thomas T.; Laursen, Paw Høvsgaard
2017-01-01
We investigate process mining for the declarative Dynamic Condition Response (DCR) graphs process modelling language. We contribute (a) a process mining algorithm for DCR graphs, (b) a proposal for a set of metrics quantifying output model quality, and (c) a preliminary example-based comparison...
From concatenated codes to graph codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom
2004-01-01
We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...
International Nuclear Information System (INIS)
Rosmanis, Ansis
2011-01-01
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Evolutionary Agent-based Models to design distributed water management strategies
Giuliani, M.; Castelletti, A.; Reed, P. M.
2012-12-01
There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a
Energy Technology Data Exchange (ETDEWEB)
Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.
Trajectories entropy in dynamical graphs with memory
Directory of Open Access Journals (Sweden)
Francesco eCaravelli
2016-04-01
Full Text Available In this paper we investigate the application of non-local graph entropy to evolving and dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph, and relies on the entropy applied to trajectories originating at a specific node. In particular, we study the model of reinforcement-decay graph dynamics, which leads to scale free graphs. We find that the node entropy characterizes the structure of the network in the two parameter phase-space describing the dynamical evolution of the weighted graph. We then apply an adapted version of the entropy measure to purely memristive circuits. We provide evidence that meanwhile in the case of DC voltage the entropy based on the forward probability is enough to characterize the graph properties, in the case of AC voltage generators one needs to consider both forward and backward based transition probabilities. We provide also evidence that the entropy highlights the self-organizing properties of memristive circuits, which re-organizes itself to satisfy the symmetries of the underlying graph.
Isoperimetric inequalities for minimal graphs
International Nuclear Information System (INIS)
Pacelli Bessa, G.; Montenegro, J.F.
2007-09-01
Based on Markvorsen and Palmer's work on mean time exit and isoperimetric inequalities we establish slightly better isoperimetric inequalities and mean time exit estimates for minimal graphs in N x R. We also prove isoperimetric inequalities for submanifolds of Hadamard spaces with tamed second fundamental form. (author)
Energy Technology Data Exchange (ETDEWEB)
Daneshmand, Morteza [University of Tartu, Tartu (Estonia); Saadatzi, Mohammad Hossein [Colorado School of Mines, Golden (United States); Kaloorazi, Mohammad Hadi [École de Technologie Supérieur, Montréal (Canada); Masouleh, Mehdi Tale [University of Tehran, Tehran (Iran, Islamic Republic of); Anbarjafari, Gholamreza [Hasan Kalyoncu University, Gaziantep (Turkmenistan)
2016-03-15
This study aims to provide an optimal design for a Spherical parallel manipulator (SPM), namely, the Agile Eye. This aim is approached by investigating kinetostatic performance and workspace and searching for the most promising design. Previously recommended designs are examined to determine whether they provide acceptable kinetostatic performance and workspace. Optimal designs are provided according to different kinetostatic performance indices, especially kinematic sensitivity. The optimization process is launched based on the concept of the genetic algorithm. A single-objective process is implemented in accordance with the guidelines of an evolutionary algorithm called differential evolution. A multi-objective procedure is then provided following the reasoning of the nondominated sorting genetic algorithm-II. This process results in several sets of Pareto points for reconciliation between kinetostatic performance indices and workspace. The concept of numerous kinetostatic performance indices and the results of optimization algorithms are elaborated. The conclusions provide hints on the provided set of designs and their credibility to provide a well-conditioned workspace and acceptable kinetostatic performance for the SPM under study, which can be well extended to other types of SPMs.
Directory of Open Access Journals (Sweden)
Jie Zhang
2013-01-01
Full Text Available In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
Zhang, Jie; Wang, Yuping; Feng, Junhong
2013-01-01
In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming, we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specified minimum support and minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can significantly reduce the number of comparisons and time consumption.
Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics.
Pascal, Robert; Pross, Addy; Sutherland, John D
2013-11-06
A sudden transition in a system from an inanimate state to the living state-defined on the basis of present day living organisms-would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages-dynamic kinetic stability (DKS)-which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred.
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
Remembering the evolutionary Freud.
Young, Allan
2006-03-01
Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.
Directory of Open Access Journals (Sweden)
Lingyun Li
2013-01-01
Full Text Available We provide a new gossip algorithm to investigate the problem of opinion consensus with the time-varying influence factors and weakly connected graph among multiple agents. What is more, we discuss not only the effect of the time-varying factors and the randomized topological structure but also the spread of misinformation and communication constrains described by probabilistic quantized communication in the social network. Under the underlying weakly connected graph, we first denote that all opinion states converge to a stochastic consensus almost surely; that is, our algorithm indeed achieves the consensus with probability one. Furthermore, our results show that the mean of all the opinion states converges to the average of the initial states when time-varying influence factors satisfy some conditions. Finally, we give a result about the square mean error between the dynamic opinion states and the benchmark without quantized communication.
Energy Technology Data Exchange (ETDEWEB)
Fuster, P. [Dept. Mat. and Infor. UIB, Palma de Mallorca (Spain)] Ligeza, A. [Faculty of Electrical Engineering, Automation and Electrics, Technical University of Cracow (Poland)] Martin, J.A. [LEA-SICA: LAAS-CNRS Toulouse, France and IIiA-UdG Girona (Spain)
1998-12-31
In this presentation the diagnostic of technical systems is adressed by considering first of all their expected normal behaviour. The formalism that is used is called AND/OR/NOT causal graphs. This approach can be regarded as an extension of abductive models. A symptom can be True. False or Unknown, it can be represented by a propositional formula. The nodes are partitioned into: Manifestations, that characterize each type of misbehaviour, Elementary diagnosis, that correspond to single faulty states and Intermediate, these last are observable or not partial symptoms. An illustration about the on-line diagnosis of a gas turbine shows also some of the steps leading to a causal graph modelisation in which this diagnosis methodology has been applied. (orig.) 5 refs.
Energy Technology Data Exchange (ETDEWEB)
Fuster, P. [Dept. Mat. and Infor. UIB, Palma de Mallorca (Spain)] Ligeza, A. [Faculty of Electrical Engineering, Automation and Electrics, Technical University of Cracow (Poland)] Martin, J.A. [LEA-SICA: LAAS-CNRS Toulouse, France and IIiA-UdG Girona (Spain)
1997-12-31
In this presentation the diagnostic of technical systems is adressed by considering first of all their expected normal behaviour. The formalism that is used is called AND/OR/NOT causal graphs. This approach can be regarded as an extension of abductive models. A symptom can be True. False or Unknown, it can be represented by a propositional formula. The nodes are partitioned into: Manifestations, that characterize each type of misbehaviour, Elementary diagnosis, that correspond to single faulty states and Intermediate, these last are observable or not partial symptoms. An illustration about the on-line diagnosis of a gas turbine shows also some of the steps leading to a causal graph modelisation in which this diagnosis methodology has been applied. (orig.) 5 refs.
Empirical tests of natural selection-based evolutionary accounts of ADHD: a systematic review.
Thagaard, Marthe S; Faraone, Stephen V; Sonuga-Barke, Edmund J; Østergaard, Søren D
2016-10-01
ADHD is a prevalent and highly heritable mental disorder associated with significant impairment, morbidity and increased rates of mortality. This combination of high prevalence and high morbidity/mortality seen in ADHD and other mental disorders presents a challenge to natural selection-based models of human evolution. Several hypotheses have been proposed in an attempt to resolve this apparent paradox. The aim of this study was to review the evidence for these hypotheses. We conducted a systematic review of the literature on empirical investigations of natural selection-based evolutionary accounts for ADHD in adherence with the PRISMA guideline. The PubMed, Embase, and PsycINFO databases were screened for relevant publications, by combining search terms covering evolution/selection with search terms covering ADHD. The search identified 790 records. Of these, 15 full-text articles were assessed for eligibility, and three were included in the review. Two of these reported on the evolution of the seven-repeat allele of the ADHD-associated dopamine receptor D4 gene, and one reported on the results of a simulation study of the effect of suggested ADHD-traits on group survival. The authors of the three studies interpreted their findings as favouring the notion that ADHD-traits may have been associated with increased fitness during human evolution. However, we argue that none of the three studies really tap into the core symptoms of ADHD, and that their conclusions therefore lack validity for the disorder. This review indicates that the natural selection-based accounts of ADHD have not been subjected to empirical test and therefore remain hypothetical.
Adriaan R. Soetevent
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...
Pim Heijnen; Adriaan Soetevent
2014-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...
Directory of Open Access Journals (Sweden)
Aleks Kissinger
2014-03-01
Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.
Gelfand, I M; Shnol, E E
1969-01-01
The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
Energy Technology Data Exchange (ETDEWEB)
Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2013-10-01
The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.
DEFF Research Database (Denmark)
Mansutti, Alessio; Miculan, Marino; Peressotti, Marco
2017-01-01
We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...
Directory of Open Access Journals (Sweden)
Alberto Apostolico
2009-08-01
Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.
Efficient dynamic graph construction for inductive semi-supervised learning.
Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y
2017-10-01
Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Garciá-Arteaga, Juan D.; Corredor, Germán.; Wang, Xiangxue; Velcheti, Vamsidhar; Madabhushi, Anant; Romero, Eduardo
2017-11-01
Tumor-infiltrating lymphocytes occurs when various classes of white blood cells migrate from the blood stream towards the tumor, infiltrating it. The presence of TIL is predictive of the response of the patient to therapy. In this paper, we show how the automatic detection of lymphocytes in digital H and E histopathological images and the quantitative evaluation of the global lymphocyte configuration, evaluated through global features extracted from non-parametric graphs, constructed from the lymphocytes' detected positions, can be correlated to the patient's outcome in early-stage non-small cell lung cancer (NSCLC). The method was assessed on a tissue microarray cohort composed of 63 NSCLC cases. From the evaluated graphs, minimum spanning trees and K-nn showed the highest predictive ability, yielding F1 Scores of 0.75 and 0.72 and accuracies of 0.67 and 0.69, respectively. The predictive power of the proposed methodology indicates that graphs may be used to develop objective measures of the infiltration grade of tumors, which can, in turn, be used by pathologists to improve the decision making and treatment planning processes.
Yu, C. W.; Hodges, B. R.; Liu, F.
2017-12-01
Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement
Chevalier, Robert L
2017-05-01
Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.
A study of driver's route choice behavior based on evolutionary game theory.
Jiang, Xiaowei; Ji, Yanjie; Du, Muqing; Deng, Wei
2014-01-01
This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers' route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver's route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver's route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.
A Study of Driver’s Route Choice Behavior Based on Evolutionary Game Theory
Directory of Open Access Journals (Sweden)
Xiaowei Jiang
2014-01-01
Full Text Available This paper proposes a route choice analytic method that embeds cumulative prospect theory in evolutionary game theory to analyze how the drivers adjust their route choice behaviors under the influence of the traffic information. A simulated network with two alternative routes and one variable message sign is built to illustrate the analytic method. We assume that the drivers in the transportation system are bounded rational, and the traffic information they receive is incomplete. An evolutionary game model is constructed to describe the evolutionary process of the drivers’ route choice decision-making behaviors. Here we conclude that the traffic information plays an important role in the route choice behavior. The driver’s route decision-making process develops towards different evolutionary stable states in accordance with different transportation situations. The analysis results also demonstrate that employing cumulative prospect theory and evolutionary game theory to study the driver’s route choice behavior is effective. This analytic method provides an academic support and suggestion for the traffic guidance system, and may optimize the travel efficiency to a certain extent.
Graph Theory. 1. Fragmentation of Structural Graphs
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.
Deniz, Hasan; Dulger, Mehmet F.
2012-01-01
This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…
Three Syntactic Theories for Combinatory Graph Reduction
DEFF Research Database (Denmark)
Danvy, Olivier; Zerny, Ian
2011-01-01
in a third syntactic theory. The structure of the store-based abstract machine corresponding to this third syntactic theory oincides with that of Turner's original reduction machine. The three syntactic theories presented here The three syntactic heories presented here therefore have the following......We present a purely syntactic theory of graph reduction for the canonical combinators S, K, and I, where graph vertices are represented with evaluation contexts and let expressions. We express this syntactic theory as a reduction semantics, which we refocus into the first storeless abstract machine...... for combinatory graph reduction, which we refunctionalize into the first storeless natural semantics for combinatory graph reduction.We then factor out the introduction of let expressions to denote as many graph vertices as possible upfront instead of on demand, resulting in a second syntactic theory, this one...
Disease management research using event graphs.
Allore, H G; Schruben, L W
2000-08-01
Event Graphs, conditional representations of stochastic relationships between discrete events, simulate disease dynamics. In this paper, we demonstrate how Event Graphs, at an appropriate abstraction level, also extend and organize scientific knowledge about diseases. They can identify promising treatment strategies and directions for further research and provide enough detail for testing combinations of new medicines and interventions. Event Graphs can be enriched to incorporate and validate data and test new theories to reflect an expanding dynamic scientific knowledge base and establish performance criteria for the economic viability of new treatments. To illustrate, an Event Graph is developed for mastitis, a costly dairy cattle disease, for which extensive scientific literature exists. With only a modest amount of imagination, the methodology presented here can be seen to apply modeling to any disease, human, plant, or animal. The Event Graph simulation presented here is currently being used in research and in a new veterinary epidemiology course. Copyright 2000 Academic Press.
ERC analysis: web-based inference of gene function via evolutionary rate covariation.
Wolfe, Nicholas W; Clark, Nathan L
2015-12-01
The recent explosion of comparative genomics data presents an unprecedented opportunity to construct gene networks via the evolutionary rate covariation (ERC) signature. ERC is used to identify genes that experienced similar evolutionary histories, and thereby draws functional associations between them. The ERC Analysis website allows researchers to exploit genome-wide datasets to infer novel genes in any biological function and to explore deep evolutionary connections between distinct pathways and complexes. The website provides five analytical methods, graphical output, statistical support and access to an increasing number of taxonomic groups. Analyses and data at http://csb.pitt.edu/erc_analysis/ nclark@pitt.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Research on Information Sharing Mechanism of Network Organization Based on Evolutionary Game
Wang, Lin; Liu, Gaozhi
2018-02-01
This article first elaborates the concept and effect of network organization, and the ability to share information is analyzed, secondly introduces the evolutionary game theory, network organization for information sharing all kinds of limitations, establishes the evolutionary game model, analyzes the dynamic evolution of network organization of information sharing, through reasoning and evolution. The network information sharing by the initial state and two sides of the game payoff matrix of excess profits and information is the information sharing of cost and risk sharing are the influence of network organization node information sharing decision.
Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.
2004-01-01
In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite
Joyner, W David
2017-01-01
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems
DEFF Research Database (Denmark)
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
Packing Degenerate Graphs Greedily
Czech Academy of Sciences Publication Activity Database
Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana
2017-01-01
Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics
International Nuclear Information System (INIS)
Wang, Bo; Tai, Neng-ling; Zhai, Hai-qing; Ye, Jian; Zhu, Jia-dong; Qi, Liang-bo
2008-01-01
In this paper, a new ARMAX model based on evolutionary algorithm and particle swarm optimization for short-term load forecasting is proposed. Auto-regressive (AR) and moving average (MA) with exogenous variables (ARMAX) has been widely applied in the load forecasting area. Because of the nonlinear characteristics of the power system loads, the forecasting function has many local optimal points. The traditional method based on gradient searching may be trapped in local optimal points and lead to high error. While, the hybrid method based on evolutionary algorithm and particle swarm optimization can solve this problem more efficiently than the traditional ways. It takes advantage of evolutionary strategy to speed up the convergence of particle swarm optimization (PSO), and applies the crossover operation of genetic algorithm to enhance the global search ability. The new ARMAX model for short-term load forecasting has been tested based on the load data of Eastern China location market, and the results indicate that the proposed approach has achieved good accuracy. (author)
Identify alternative splicing events based on position-specific evolutionary conservation.
Directory of Open Access Journals (Sweden)
Liang Chen
Full Text Available The evolution of eukaryotes is accompanied by the increased complexity of alternative splicing which greatly expands genome information. One of the greatest challenges in the post-genome era is a complete revelation of human transcriptome with consideration of alternative splicing. Here, we introduce a comparative genomics approach to systemically identify alternative splicing events based on the differential evolutionary conservation between exons and introns and the high-quality annotation of the ENCODE regions. Specifically, we focus on exons that are included in some transcripts but are completely spliced out for others and we call them conditional exons. First, we characterize distinguishing features among conditional exons, constitutive exons and introns. One of the most important features is the position-specific conservation score. There are dramatic differences in conservation scores between conditional exons and constitutive exons. More importantly, the differences are position-specific. For flanking intronic regions, the differences between conditional exons and constitutive exons are also position-specific. Using the Random Forests algorithm, we can classify conditional exons with high specificities (97% for the identification of conditional exons from intron regions and 95% for the classification of known exons and fair sensitivities (64% and 32% respectively. We applied the method to the human genome and identified 39,640 introns that actually contain conditional exons and classified 8,813 conditional exons from the current RefSeq exon list. Among those, 31,673 introns containing conditional exons and 5,294 conditional exons classified from known exons cannot be inferred from RefSeq, UCSC or Ensembl annotations. Some of these de novo predictions were experimentally verified.
Evolutionary fitness as a function of pubertal age in 22 subsistence-based traditional societies
Directory of Open Access Journals (Sweden)
Gawlik Aneta
2011-06-01
Full Text Available Abstract Context The age of puberty has fallen over the past 130 years in industrialized, western countries, and this fall is widely referred to as the secular trend for earlier puberty. The current study was undertaken to test two evolutionary theories: (a the reproductive system maximizes the number of offspring in response to positive environmental cues in terms of energy balance, and (b early puberty is a trade-off response for high mortality rate and reduced resource availability. Methods Using a sample of 22 natural-fertility societies of mostly tropical foragers, horticulturalists, and pastoralists from Africa, South America, Australia, and Southeastern Asia, this study compares indices of adolescence growth and menarche with those of fertility fitness in these non-industrial, traditional societies. Results The average age at menarche correlated with the first reproduction, but did not correlate with the total fertility rate TFR or reproductive fitness. The age at menarche correlated negatively with their average adult body mass, and the average adult body weight positively correlated with reproductive fitness. Survivorship did not correlate with the age at menarche or age indices of the adolescent growth spurt. The population density correlated positively with the age at first reproduction, but not with menarche age, TFR, or reproductive fitness. Conclusions Based on our analyses, we reject the working hypotheses that reproductive fitness is enhanced in societies with early puberty or that early menarche is an adaptive response to greater mortality risk. Whereas body mass is a measure of resources is tightly associated with fitness, the age of menarche is not.
Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics.
Paijmans, Johanna L A; Barnett, Ross; Gilbert, M Thomas P; Zepeda-Mendoza, M Lisandra; Reumer, Jelle W F; de Vos, John; Zazula, Grant; Nagel, Doris; Baryshnikov, Gennady F; Leonard, Jennifer A; Rohland, Nadin; Westbury, Michael V; Barlow, Axel; Hofreiter, Michael
2017-11-06
Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (∼18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mutual proximity graphs for improved reachability in music recommendation.
Flexer, Arthur; Stevens, Jeff
2018-01-01
This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness.
Generalized connectivity of graphs
Li, Xueliang
2016-01-01
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Cao, Hengyi; Plichta, Michael M; Schäfer, Axel; Haddad, Leila; Grimm, Oliver; Schneider, Michael; Esslinger, Christine; Kirsch, Peter; Meyer-Lindenberg, Andreas; Tost, Heike
2014-01-01
The investigation of the brain connectome with functional magnetic resonance imaging (fMRI) and graph theory analyses has recently gained much popularity, but little is known about the robustness of these properties, in particular those derived from active fMRI tasks. Here, we studied the test-retest reliability of brain graphs calculated from 26 healthy participants with three established fMRI experiments (n-back working memory, emotional face-matching, resting state) and two parcellation schemes for node definition (AAL atlas, functional atlas proposed by Power et al.). We compared the intra-class correlation coefficients (ICCs) of five different data processing strategies and demonstrated a superior reliability of task-regression methods with condition-specific regressors. The between-task comparison revealed significantly higher ICCs for resting state relative to the active tasks, and a superiority of the n-back task relative to the face-matching task for global and local network properties. While the mean ICCs were typically lower for the active tasks, overall fair to good reliabilities were detected for global and local connectivity properties, and for the n-back task with both atlases, smallworldness. For all three tasks and atlases, low mean ICCs were seen for the local network properties. However, node-specific good reliabilities were detected for node degree in regions known to be critical for the challenged functions (resting-state: default-mode network nodes, n-back: fronto-parietal nodes, face-matching: limbic nodes). Between-atlas comparison demonstrated significantly higher reliabilities for the functional parcellations for global and local network properties. Our findings can inform the choice of processing strategies, brain atlases and outcome properties for fMRI studies using active tasks, graph theory methods, and within-subject designs, in particular future pharmaco-fMRI studies. © 2013 Elsevier Inc. All rights reserved.
An Extensible Component-Based Multi-Objective Evolutionary Algorithm Framework
DEFF Research Database (Denmark)
Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2017-01-01
The ability to easily modify the problem definition is currently missing in Multi-Objective Evolutionary Algorithms (MOEA). Existing MOEA frameworks do not support dynamic addition and extension of the problem formulation. The existing frameworks require a re-specification of the problem definition...
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation
Xu, Y.; Cai, W.; Aydt, H.; Lees, M.; Tolk, A.; Diallo, S.Y.; Ryzhov, I.O.; Yilmaz, L.; Buckley, S.; Miller, J.A.
2014-01-01
One of the issues of parallelizing large-scale agent-based traffic simulations is partitioning and load-balancing. Traffic simulations are dynamic applications where the distribution of workload in the spatial domain constantly changes. Dynamic load-balancing at run-time has shown better efficiency
Inferring ontology graph structures using OWL reasoning
Rodriguez-Garcia, Miguel Angel
2018-01-05
Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies\\' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies\\' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph .Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.
Inferring ontology graph structures using OWL reasoning.
Rodríguez-García, Miguel Ángel; Hoehndorf, Robert
2018-01-05
Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar
2017-03-06
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.